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Abstract

The extreme e�ciency of sequential search� and the natural tendency of tree prun�

ing systems to produce wide variations in workload� partly explains why it is proving

di�cult to achieve more than ������ e�ciency for massively parallel implementations

of the � � � algorithm� Here we introduce typical enhanced sequential algorithms

and address the major issues of parallel game�tree searching under conditions of severe

pruning� It is this pruning that makes the parallelization di�cult� After examining

previous work on parallel �� � algorithms� we present a new method called Dynamic

Multiple Principal Variation Splitting �DM�PVSplit	 and implement it on the AP
����

In this algorithm� high performance is achieved by using some novel approaches� Paral�

lel speculative search of candidate principal variations is used to reduce re�search delay

and so obtain more quickly a better estimate of the subtree value� This is achieved by

con�guring a 
at processor arrangement as a dynamically changeable tree structure�

Also� with the aid of a group�based scheduling strategy� the game tree is split dynam�

ically at di�erent levels� This provides better load balance and takes more advantage

of parallelism� Preliminary experiments show that the scalability of the DM�PVSplit

algorithm is good for massively parallel machines�

Keywords� � � � search� Parallel tree splitting� Dynamic Multiple PVSplitting�

Massively parallel processing�
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� Introduction

With advances in VLSI technology and parallel architecture� systems consisting of a thousand

or more processors are coming into commercial use� This has led to an upsurge of interest

in parallel processing approaches to improve the e�ciency of tree search problems that seek

one or more optimal or sub�optimal solutions in a de�ned problem space� Two person games

is one domain where a special kind of branch�and�bound algorithm is commonly used to

reduce the search space� Although much e�ort has been put into further improvement of

sequential methods� such as use of memory functions� selective extensions and the null move�

parallelization o�ers further performance improvement� The level of speedup depends mainly

on the design and choice of the parallel algorithm� and this involves trade�o�s in search time�

memory space and communication� Because the powerful pruning mechanism leads to highly

variable tree sizes that con�ict with a uniform workload requirement for good performance�

� � � search has proved di�cult to parallelize� Even though various approaches have been

tried� including parallel window search� search tree partitioning� and principal variation

splitting� the potential remains for signi�cantly better parallelization methods� For massively

parallel systems� the exisitng approaches exhibit only acceptable e�ciency both in practice

�	
 ���
� and by simulation ���
� Here� we address the issues of parallel game tree search

and present a new parallel algorithm� called Dynamic Multiple Principal Variation Splitting


DM�PVSplit�� Our algorithm �rst de�nes a critical�node set and spawns those nodes for

parallel search� It then splits the other branches dynamically when the branching conditions

are met� This speculative search is used to reduce synchronization overhead and re�search

delay�

Before discussing major parallel search issues� we �rst examine important enhancements

to the sequential search method� and provide a brief review of the existing work on parallel

� � � algorithms� In Section �� emphasis is put on a new parallel algorithm� and this is

followed by results from some preliminary experiments� We conclude that although game�

tree search on massively parallel systems is a challenge� there is evidence that better systems

are possible�

��� Enhanced Game�tree Search

A two�person game�playing process is usually modelled by a tree� where a node represents a

position and a branch corresponds to a move� A program starts with the current position and

generates all legal moves� all legal responses to these moves� and so on until a leaf node� or

a horizon node at a speci�ed depth is reached� At each horizon node� a heuristic evaluation

function assigns a value to that position� The aim of the search is to �nd the most desirable

continuation under the assumption of best play by both sides� A true minimax search of

these approximating game trees is simple� but expensive� The � � � pruning procedure is
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most e�ective at reducing the game tree search�space� It maintains a search window 
�� ��

that causes the elimination of subtrees whose value cannot a�ect the minimax value of the

root�

Indeed modern chess programs have such good move ordering mechanisms 
including

iterative deepening and the use of hash�transposition tables� that they search within a factor

of two of the minimal game�tree size� For a uniform tree of width w and depth d� Knuth and

Moore ���
 quote that there are wb d
�
c�wd d

�
e�� horizon 
terminal� nodes in the minimal tree�

They also labelled the nodes in that tree as being of type �� type � and type �� and these

are PV� CUT and ALL nodes respectively ��	
� For the minimal tree the type � 
CUT� node

has exactly one successor� but in actual trees a few successors� It has been shown that an

average tree has six di�erent types of node ���
� but the inherent structure is more di�cult

to represent graphically� Although we show in Figure � the structure of the minimal tree�

we have in mind during our discussion a typical search tree�

Figure �� Structure of a minimal �� � search tree

There are several enhanced variants of the � � � algorithm� They aim to traverse a

tree that is as close as possible to the minimal size 
function ABS in Appendix A shows the

underlying structure of the algorithm�� One of them� aspiration search ��
� arti�cially narrows

the search window and gambles that� even with this reduced search space� the minimax value

of the root will fall into this window� An improvement to aspiration search is the fail�soft

� � � algorithm ��
� where a tighter bound based on the value returned from the previous

failed aspiration search is used to research the tree� If minmax
v� is the minimax value of

the node v� and R be the value returned by a fail�soft ��� search� the following inequalities

hold ��
�
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minmax
v�� R � � if minmax
v� � � � fail� low

minmax
v� � R if � � minmax
v� � � � success

minmax
v�� R � � if minmax
v� � � � fail� high

for any search window 
 �� � ��

To simplify di�culties with failed searches� the concept of a null window was introduced�

to form Principal Variation Search 
PVS� ���
� Its fundamental idea is that alternatives to

the best move found so far are assumed inferior until proven otherwise� In practice some

variation of PVS 
shown in Appendix B� is used in conjunction with powerful knowledge�

based enhancements like transposition tables� the history heuristic� iterative deepening and

the null move� as described in typical encyclopedia articles�

� Parallel �� � Search� A Brief Overview

��� Major Issues

The objective of a parallel algorithm is to achieve a speedup over the best available sequential

algorithm� but in a way that is proportional to the number of processors used�

It is obvious that the main source of improvement comes from searching di�erent parts

of the game tree at the same time� The simplest parallelization that comes to mind is direct

tree splitting� A game tree is divided into several subtrees which are assigned to independent

processors� Clearly it is inferior on theoretical grounds� because many resources are devoted

to fruitless parallel searches without the bene�t of the guidance provided by an improving

bound� Thus� direct tree�splitting has a high probability for anomalously poor parallel

speedup� where the parallel program visits an impressive number of nodes� but still does not

search more deeply than a single processor running the �� � algorithm�

On the other hand� all the bene�ts of pruning can only be achieved by fully searching one

subtree in order to establish a bound for the search of the next subtree� If one adheres to the

standard algorithm in an overly strict manner� there may be little opportunity for parallelism�

Thus parallelizing the � � � search involves controlling the following key factors�

� Search overhead� the extra e�ort that a given parallel algorithm does in comparison to

a sequential one� This comes down to the issue of how to exploit parallelism without

excessive duplication of search�
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� Communication and synchronization overhead� When a game tree is searched in par�

allel by several processors� a communication overhead arises when the better pruning

information is exchanged� or when distributing work among processors� When a pro�

cessor is waiting for other processors to �nish their work before being able to continue�

synchronization overhead is incurred� The latter overhead re�ects poor work balance

and measures excessive processor idleness�

� Bookkeeping overhead� The management and control of tasks and where they are

located must be simple�

��� Previous Work

In Baudet�s ��
 parallel aspiration search method� the search window is subdivided into a

multitude of narrower disjoint ranges� Each processor searches the tree with a di�erent�

non�overlapping range� Because the best continuation is guaranteed to fall in one of these

ranges� this algorithm is faster than a sequential one with a full window� It also has the

advantage of low communication overhead and has no need for synchronization� But the

companion theoretical work shows that the maximum speedup is limited to a factor of 	���

even with unlimited processors searching a randomly ordered tree� Baudet�s method gets no

bene�t from the structure present in well�ordered trees�

Akl� Barnard and Doran ��
 introduced the �Mandatory Work First� algorithm� By

searching critical nodes �rst� the algorithm attempts to achieve many of the cuto�s that

occur in the serial case� The algorithm has low search overhead� but su�ers from the heavy

memory requirements needed to store information about partially evaluated subtrees�

Finkel and Fishburn introduced a parallel � � � algorithm on a tree of processors� The

root processor evaluates the root position� Each interior processor evaluates its assigned

position by generating the successors and queuing them for parallel assignment to its slaves�

The leaf processors search the subtrees rooted at its assigned position with the sequential

� � � algorithm� When a processor �nishes� it reports the subtree value to its master�

Such a naive tree splitting algorithm results in high search overhead due to lost cuto�s�

The theoretical model predicts that at least order of
p
N �fold speedup are achieved for N

processors� A speedup of 	��� was achieved by simulation on a �� processor system con�gured

as a processor tree of depth � and width � ��
�

The basis for the most popular and successful parallel algorithms now in use appears

to be the Principal Variation Splitting 
PVSplitting� approach ���
� It was developed for

the �rst parallel chess machines� Ostrich ���
 and Parabelle ��	
� PVSplitting is based on

the assumption that game trees can be well ordered by state�of�the�art heuristic knowledge

	



about the application domain� It concentrates on searching the �rst path along the principal

variation before searching the other branches� But PVSplitting has the major disadvantage

that only a single processor is available to search replacement principal variations� and during

much of that time all other processors are idle� since a static processor assignment is made�

It is this static processor allocation mechanism that leads to load imbalance�

Later more dynamic processor allocation schemes were developed� Notable are Schaef�

fer�sDynamic PVSplit algorithm ���
 and the Enhanced Principal Variation Splitting 
EPVS�

method of Hyatt et al� ���
� Schae�er�s distributed search introduced dynamic work assign�

ments� In his algorithm there is one Controller Process to allocate work to Searcher processes

that use PVSplit to do the searching� When the Controller has no other work to allocate

it reassigns an idle Searcher to help others� The problem with this algorithm is that the

central Controller may become a bottleneck� Schae�er�s experiments ���
 show that � proces�

sors can achieve 	����fold speedups� but beyond that he believes not much more is possible�

suggesting that the approach is not suitable for massive parallelism�

The EPVS algorithm tries to identify the node types in the tree and use that knowledge

to reduce search overhead and minimize the problem of load imbalance� When a processor

�nds no additional work to do at the current divide node� it assumes that the remaining

busy processors are searching complex branches and sends a signal to them� The sequential

search then advances two plies deeper before the parallel division is restarted� A hash

table 
to recognize move transpositions� prevents the set of processors from re�examining

branches within this subtree that were examined by a single processor before it was stopped�

The EPVS algorithm is programmed for use in a high performance parallel computer chess

program on a Cray X�MP� Interestingly� Hyatt�s ���� PhD thesis contains an even more

e�cient method� Dynamic Tree Search 
DTS�� that seems to be comparable to Feldmann

et al��s Young Brothers Wait 
YBW� concept ��
 in e�ciency� but is for a shared memory

multiprocessor�

The hash table plays an important role in all these algorithms� but especially in Felten

and Otto�s ��
 dynamic parallel game search program on a Hypercube� As with the sequential

methods� if a move at a node is found in the hash�transposition table� the corresponding

successor is searched �rst� After the evaluation of the �rst successor is complete� all other

nodes are evaluated in parallel� If there is no transposition table entry available for some

node� all the successors may be searched in parallel� The speedup by the Waycool chess

program is ��� on a �	��processor hypercube� Part of the success of this method is attributed

to the bigger distributed hash�transposition table that the hypercube made possible�

On the other hand� the two important features of Feldmann et al��s algorithm ��
 are the
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distributed search control and the Young Brothers Wait 
YBW� concept� In this algorithm�

each searcher executes the same search and control code� When it is idle� a searcher requests

work from other searchers� The aim of the YBW method is to reduce super�uous search

overhead� Parallel search of inner game nodes is started only after the �rst successor of

the inner node is evaluated completely� This algorithm has been used in Zugzwang on a

�	��transputer array� and then on a �����processor array �	
� A good speed�up of �	� was

obtained� but this �gure may be a function of the relatively slow speed of the processors�

since the working overheads are then a smaller fraction of the elapsed time�

� Parallel Search� DM�PVSplit Algorithm

��� A Closer Look at Principal Variation Splitting

In practice� the distribution of values at terminal nodes in a tree is usually not random�

Especially with the guidance of domain�speci�c knowledge� the best move can be determined

with a high probability of success� For a chess game tree� it was estimated in ���� that the

�rst branch is best with ��� probability of success and the best move is in the �rst quarter

of the branches with ��� probability of success ���
� With newer move ordering heuristics�

these probabilities may now be higher� so that today�s game trees are even better ordered�

The Principal Variation Search 
PVS� algorithm takes advantage of the observed game�tree

structure� With PVS� the leftmost path is examined �rst� and the bound obtained is used to

prune the search of the alternative choices� The PVSplitting algorithm is a straightforward

extension of PVS to support parallel search� Tree decomposition is delayed until the �rst

path along the principal variation has been searched� After a revised bound is obtained�

the remaining branches are distributed among the available processors� It is known that the

major problem with the PVSplitting algorithm is the necessary synchronization at the PV

nodes� Also each null�window search is carried out by a single processor alone� Ultimately�

all other processors may be idle for a considerable time waiting in case an improved bound

is provided by the remaining processor 
as will be the case if it is now searching a new

principal variation�� In this static processor allocation method� such load imbalance causes

heavy synchronization overhead�

Because PVSplitting is a depth��rst algorithm that creates parallel work by splitting

nodes along the principal variation� it has negligible memory needs and low search overhead�

But the algorithm has two disadvantages� First the performance depends on how well a

game tree is ordered� and second the low search overhead comes at the cost of increased
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synchronization�

����� Null�window parallel search�

Aspiration search 
using a heuristically narrowed window� is also popular� because in general

the narrower the window the faster the search� However� Principal Variation Search employs

a null window 
smaller even than the minimal aspiration window� to simply refute the

merits of a subtree� Figure � compares the ratio of nodes visited by a null window and a full

window search on strongly ordered game trees with di�erent width and depth parameters�

Its characteristic shape has been referred to as the �minimax wall�� But Figure � also shows

that a null window search which fails high 
the left half of the graph� still visits �	� �	� of

the total nodes seen by the corresponding full window search� When a null window search

fails high� a re�search is necessary� The size of a null window search plus later re�search with

a wider window may be higher than that of a single search on the subtree with a correct

window� However� the use of a transposition table signi�cantly reduces that total cost�

�
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Figure �� Relative cost of a null window search on strongly ordered trees

On the other side� fail�low null window searches can produce anomalously bad behavior

when searched in parallel� For example� consider Figure � which illustrates how several

parallel null window searches can �incorrectly� fail high� causing re�searches� even though the

best move is actually in the �rst quarter of the subtrees at the root� This is our explanation

why unexpectedly bad speedup is seen in some parallel game�tree search examples�
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Figure �� Parallel re�search anomaly

Based on our experiments and analysis of other related algorithms� we now provide

a detailed description of dynamic multiple principal variation splitting� a method which

attempts to correct this �aw�

��� Multiple Principal Variation Splitting

Design of a better parallel algorithm is crucial to the e�cient search of a game tree on

massively parallel machines� The algorithm we present here is called the Dynamic� Multiple

Principal Variation Splitting algorithm 
DM�PVSplit�� It also relies on the assumption that

trees are well�ordered� That is� the leftmost branch is the best move with a high probability

of success and all branches to the right of the leftmost one are also well ordered�

����� Searching multiple principal variations in parallel�

The hypothesis is that the �rst few successors at a type � node are candidate principal moves�

and hence are especially hard 
time�consuming� to refute even with a null�window search�

Thus they may as well be searched in parallel� As soon as one of them generates a bound

it is shared with the other candidates� We anticipate that the best move almost always lies

in this portion� Therefore� at each type � node the successors are divided into two sets� one

is called its principal variation set 
PV�set�� which consists of the ��rst�best� move plus a

few more promising ones 
speci�ed shortly�� and the other is called its inferior set where a

null�window search is applied�
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In our algorithm� the PV�set is searched in parallel �rst� instead of only the leftmost

branch� as done by both the PVSplitting algorithm and the Young Brothers Wait method�

as if every branch in the set is a principal variation� The size of the PV�set is matched to

the search width and is determined by the probability distribution of all the possible moves

at a position� The search width� s� is de�ned as follows� let v be the root of a game tree and

v�i �� � i � w
 be all the successors of v� let P 
v�i� be a success probability that v�i is the

best move� and let � be the expected success probability that the best move falls into the

set� The search width 
s� of v is the size of the set where the following equation holds�

P
s

i��
P 
v�i� � � and

P
s��
i��

P 
v�i� � �

This general model provides all the necessary scope for heuristic variations� The probability

function will be application dependent and will re�ect con�dence in the evaluation function

in this region of the tree� Also the probability function can control the speculative search

width s so that it may be narrower in the right half of the tree� where the probability of a

new variation emerging is much lower� while deeper in the tree s can be wider� because the

cost of search is so much lower and uncertainties from the quiescent search at the horizon

greater� For simplicity� in some of our preliminary experimental results s was simply held

constant� to provide a basis for comparison�

Thus� at each PV node� the subtrees rooted there are partitioned and the PV�set is

searched by several processors with a normal window� Most e�ort is put into the PV�set�

since the best move is expected to come from that set� The decomposition of the remaining

subtrees is delayed until the paths along the multiple principal variations have been searched�

A null window search is applied to these remaining subtrees and no re�search is expected�

To speed searching the PV�set� once a better bound is found at a node in the PV�set� it

is broadcast to other processors to update their search windows� Since we typically choose

over ���	 as the expected success probability � at a PV node� almost all the remaining null

window searches fail low� Therefore the granularity of searching each node in the inferior set

is relatively uniform� The scheduling mechanism can take advantage of this to balance the

work load among the processors�

There can be several variants of the multiple PVSplitting algorithm� For example� the

partitioning and splitting can be restricted to levels within a pre�speci�ed height from the

root� where the parallel search will be most e�ective� However� when the search width� s� of

the promising positions is always set to �� the behaviour of the new algorithm is like that

for PVSplitting� which might therefore be viewed as a special case of our new algorithm�
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Figure �� Multiple principal variation split�based �� � search

����� Identify the node�s type in a null window search�

Once a choice move has been found� and the evaluation of the PV�set is complete� decom�

position of the remaining subtrees starts� The value of the choice move forms a null window

to verify that the alternatives are inferior to the most plausible move found from the PV�

set� The node types in typical subtrees are clearly identi�ed in the PVS�NWS pseudo�codes

shown in Appendix B�

Furthermore� to control re�search overhead� the information gathered from the null�

window search of a subtree is used on a research to enable ignore�left cut�o�s and prove�best

cut�o�s� The data from partially informed NegaScout ���
 is smaller� but is more useful in

our case because it can be distributed across processors�

The processes in the system can be classi�ed into two categories� searching processes that

aim at �nding a better bound� and verifying processes that search current branches with a

null window and try to prove them inferior to the best move searched so far� see Figure ��

Since searching processes are speculative� multiple principal variation search is a promis�

ing approach for systems with many processors� Although DM�PVSplit may do more work

than PVSplitting when we choose an unsuitable search width� these speculative searches pro�

vide a high degree of parallelism and eliminate some other re�searches� It is e�ective because

the moves in the PV�set are all candidate principal moves� and hence may be especially hard


time�consuming� to refute� They may as well be searched in parallel since their trees could
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be as large as the principal variation�s�

����� Group�based scheduling strategy�

To balance the loads in the system e�ciently� we use a group�based dynamic scheduling

strategy� The physical processors are virtually con�gured as a tree structure� During the

search� the structure is recon�gured dynamically according to speci�ed rules� Di�erent

from the approaches in Schae�er�s ���
� Hyatt�s ��
 and Feldmann�s �	
 works� the physical

processors are initially con�gured as one group� i�e� a tree structure of depth �� The root is

the master and all others are slaves� After a tree is assigned to the root processor� it �rst

divides its slaves into �s� subgroups and then speci�es a master for each group� After that� the

subtrees rooted at the nodes in the PV�set are assigned to the subgroup of the master� Once

a processor become a master� it works in a self�scheduled manner� A master not only waits

for the answer from its slaves� and updates ��� bounds� but also schedules its slaves for best

load balance� When none of the master�s slaves have work� they all rejoin the group of the

next higher master� so the size of groups at the same depth are not necessarily equal� More

processors are assigned to the more plausible moves� This strategy combines local scheduling

within a subgroup with global scheduling by rejoining� Obviously it avoids the bottleneck

caused by central control� and imbalance caused by blind random task�stealing� It works

remarkably well when the search is performed on parallel machines where the communication

overhead depends on the distance between processors� because the group�based scheduling

strategy bene�ts from data and computation locality�

� Implementation and performance evaluation

��� Parallel search on the AP����

Our algorithm is implemented on an AP����� a large�scale message passing machine 
see

Figure 	�� It consists of processor elements that are connected with three networks called the

broadcast network 
B�Net�� torus network 
T�NET�� and synchronization network 
S�Net��

Each element is a SPARC IU with a FPU� A SUN � workstation is used as a host machine

to control the AP����� To reduce the communication latency� direct message sending from

the cache of a processor� bypassing the DMA channel and main memory access� is supported

and so is the reception of messages from the network directly into a circular bu�er allocated

in the user space� A variety of libraries support parallel programming� and especially for


asynchronous� non�blocking message passing� Since a wormhole routing technique is used�
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the communication latency does not depend on the distance between the processors and is

determined only by the setup time of message passing and the size of messages� Experiments

���
 have shown that the relationship betweenmessage size and point�to�point communication

time can be speci�ed as a linear function of message size N � i�e�� to � tb � N � Here to is

the setup time of ���us� and tb is the e�ective communication bandwidth and �����us�byte�

Since the size of a message in the game�tree search is small� the most time consuming part

of message passing is the setup�

Figure 	� The architecture of the AP����

To implement the DM�PVSplit algorithm� the processors in the AP���� are con�gured

as a dynamically changeable tree structure� To enable meaningful performance comparisons

between di�erent algorithms� we must implement di�erent algorithms on the same machine

and must guarantee that experiments are made in such a way that all the di�erent search

algorithms traverse the same game tree�

Although there are several di�erent ways of creating game trees in the literature ���
 ��


���
� we are more interested in an on�the��y tree generation method ���
 for our experiments�

due to its �exibility and memory e�ciency� Initially users can specify di�erent weights which

re�ect the probability of the best move at all nodes in the tree 
or at nodes at any level in

the tree�� Given the same width w� depth d and seed 
for random numbers�� the same tree

can always be generated with the memory requirement O
wd�� By collecting the statistics

about the average overhead for generating moves and evaluating positions in an actual game�

playing program 
e�g�� for Chess or Chinese Chess�� the method can be extended to generate

a simulated game tree� with properties typical of the target game�
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��� Results of Experiments

The trees used in our experiment are classi�ed into three categories� weakly ordered� mod�

erately ordered and strongly ordered� where the �rst move is best at any given node with

the probability of ���� ��	 and ���� respectively�

Since in general the search time is directly proportional to the number of the nodes

searched� we �rst use ABS 
a sequential version of the algorithm� as a basis for the perfor�

mance of the DM�PVS algorithm�
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Figure �� Relative performance on uniform game trees of width �� and depth �

Figure � and Figure � show the average number of terminal nodes visited during searches

of �� arti�cial trees using sequential versions of the following algorithms� standard � � �

search 
ABS�� principal variation search 
PV S�� multiple principal variation search with

information exchange among the PV�sets 
mpv� and mpv�� and without such exchange


mpv��� In the latter three cases all the subtrees rooted at the nodes in the PV�sets are

searched by the current window� The di�erence between mpv� and mpv� is that in the
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former a variable speculative search width 
s� is used� while for the latter the speculative

width is �xed at a quarter of the branches at a node� Since the expected success probability


�� is set to over ���	 here� a re�search rarely takes place in mpv�� mpv� and mpv��

The results show that both mpv� and mpv� visit fewer nodes than ABS and even than

PV S� Although mpv� searches more nodes than mpv�� because no exchange of information

is made among the nodes in the PV�sets� its performance is still comparable to ABS� The

experiments also show 
not included in the above �gures� that in the worst case� i�e�� when

both the �xed search width is set too wide� and there is no subtree bound exchange be�

tween the nodes in the PV�sets� the ratio of the number of terminal visited by the multiple

PVSplitting search to ABS could range from � to �� This extreme case should never arise

in practice� because we have heuristics to help choose a suitable search width at di�erent

nodes� and bound exchange is always necessary�

From these �gures� the properties of the multiple PVSplitting search are apparent� The

number of nodes searched by the DM�PVSplit algorithm can be estimated to range from

�	



that of mpv� to that of mpv�� Therefore its search overhead is comparable to PVSplitting�s�

Notice that in the DM�PVSplit algorithm� all the nodes in the PV�sets are searched in parallel


di�erent from the PVSplitting algorithm�� Therefore� Multiple PVSplitting provides more

opportunities for parallelism at reasonable search overhead cost�

Comparison with other parallel methods�

In our experiments� besides the DM�PVSplit algorithm� we also implemented parallel as�

piration search� tree�splitting and PVsplitting search� Figure � plots the average speedups

achieved by these� four methods� on typical well ordered trees 
��� probability �rst�move�

best� of width �� and depth ��
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��

��
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Figure �� Speedups achieved by di�erent parallel algorithms

Based on the assumption that some heuristics can be used to estimate an appropriate

search window in a game� in parallel aspiration search� the tree is searched concurrently

with several disjoint narrow windows� But theory shows that only limited speedup can

be obtained� regardless of how many processors are available� This is consistent with the

null�window search results shown in Figure �� The DM�PVSplit search shows a better

performance than the PVSplitting search on both moderately and strongly ordered trees 
as

anticipated in Figure � and Figure ��� Although it is known that the null window search

succeeds often enough to outweigh the extra cost of re�research in PVS� in the parallel

case where PVSplitting is used more re�searches can occur leading to anomalously poor

performance� When more than one null window search fails high� it is very di�cult to make

tradeo�s between re�searching them in parallel at the cost of high search overhead� and re�

��



searching them sequentially at the cost of high delay� In DM�PVSplit� the search overhead

is mainly caused by searching with a full window those nodes which can actually be proven

inferior with a null window� But the advantages are dominant� more parallelism is available

since the nodes in the PV�sets are searched in parallel� and relatively uniform work exists

for each null window search since a re�search hardly occurs�

Furthermore� if we usually choose an appropriate speculative search width� DM�PVSplit

will have lower overhead than PVSplitting� Our experiments also con�rm that when the

trees become very strongly ordered 
more than ��� �rst�move�best�� the performance of all

these methods comes together� as indeed they must for search of a minimal game tree�

� Conclusion and future work

In this paper� we propose the DM�PVSplit algorithm� It searches the PV�set to exploit

speculative parallelism and guarantees that there is always a variety of work available to

distribute� It provides enough parallelism to bene�t frommassively parallel machines without

a signi�cant increase in search overhead� Most e�ort is �rst put into the subtrees rooted at

the PV�set� while search of the subtrees rooted in the inferior set is delayed until all moves in

the PV�set are examined� The method reduces the re�search delay and overhead� and even

reduces total search overhead in some cases� For instance� a shallow search on the leftmost

branch yields an initial approximate bound� and that bound is used to arti�cially narrow the

search window of the PV�set� to reduce possible search overheads� Through a group�based

scheduling strategy� better load balance is achieved without the bottleneck problem caused

by central control� The preliminary experiments are promising and have shown that Multiple

PVSplitting search achieves better performance than PVSplitting� The future work includes

measuring the e�ciency of DM�PVSplit in an actual game�playing program� since the trees

produced there are more complex due to their nonuniform depth and degree� We are also

rewriting the code in ABCL ���
� an object�oriented concurrent programming language� to

take advantage of parallel object�oriented techniques that model the game tree problem in

a more natural way�
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Appendix A� ABS� a standard Fail�soft � � � Search

function ABS 
n� node� �� �� height� integer�� integer�
begin freturns minimax value of ng

if height � � or n is a leaf then
return Evaluate
n�� fleaf or frontier nodeg

next � SelectSuccessor
n�� fgenerate �rst successorg
estimate� ���
while next �� NULL do

� � max
�� estimate�� fraise the alpha boundg
merit� �ABS 
next� ��� ��� height� ���
if merit � estimate then begin

estimate� merit� fimproved valueg
if estimate� � then

return estimate� fcut�o�g
end�
next � SelectBrother
next�� fgenerate brotherg

end while�
return estimate� freturn the subtree valueg

end�

Figure �� Appendix A� Standard Fail�soft �� � algorithm

Appendix B� Principal Variation Search with null windows

The program in Figure �� represents a version of PVS that explicitly calls a null�window

search �NWS� procedure� Figure ��� This version is presented here to make it easier to see

how the PV� CUT and ALL nodes develop and are related to each other in the general case�

By replacing the line

merit� �NWS 
next� ��� height� ���

in Figure �� with

merit� � PV S 
next� ��� �� ��� height� ���

and so eliminate the explicit call to NWS� we have another conventional form for the Principal

Variation Search�

��



function PV S 
n � node� �� �� height� integer�� integer� ffor PV nodesg
if height � � or n is a leaf then

return Evaluate
n�� fleaf or frontier nodeg
next � SelectSuccessor
n��
best � � PV S 
next� ��� ��� height� ��� fPV nodeg
next � SelectBrother
next��
while next �� NULL do

if best � � then

return best� faspiration CUT nodeg
� � max
�� best�� falpha raisingg
merit� �NWS 
next� ��� height� ���
if merit � best then

if merit � � or merit � �
then best� merit fimproved valueg
else best � � PV S 
next� ��� �merit� height� ��� fre�searchg

next � SelectBrother
next��
end while�
return best� freturn the subtree valueg

end�

Figure ��� Appendix B� Principal Variation Search 
PVS�

function NWS 
n � node� �� height� integer�� integer� ffor ALL and CUT nodesg
if height � � or n is a leaf then

return Evaluate
n�� fleaf or frontier nodeg
next � SelectSuccessor
n��
estimate� ���
while next �� NULL do

merit� �NWS 
next� �� � �� height� ���
if merit � estimate then

estimate� merit� fimproved valueg
if merit � � then

return estimate� fCUT nodeg
next � SelectBrother
next��

end while�
return estimate� fALL nodeg

end�

Figure ��� Appendix B� Null window search for use in PVS
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