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ABSTRACT 

 

Although significant progress in the modelling of the nonlinear response of 

reinforced - concrete (RC) structures at the element level has been achieved in the past 

decades, reliable and accurate analysis models at the system level for RC structures are 

scarce. Due to the complexity of elements required to model the 3D response of RC panels, 

nonlinear analysis of complete RC structures is avoided and instead the response of 

selected sub-assemblies, isolated from the rest of the structure, is examined in usual design 

practice. As a result, there is substantial uncertainty on the response of complete RC 

buildings, making it impossible to analyse global failure modes and making the design 

more complicated and potentially unsafe. Although simple structures can be designed and 

analysed based on the response of their components with good accuracy, RC shear wall 

buildings with complex geometries or under extreme loading necessitate the analysis of the 

full structure. Recent progress in the development of efficient element formulations to 

simulate the nonlinear in-plane and out-of-plane response of RC panels, and the availability 

of experimental data on the response of full shear wall structures, offers the possibility of 

developing reliable and efficient analysis models for entire RC structures under static and 

dynamic loads.  

This research discusses the advantages and disadvantages of some of the most prominent 

biaxial element formulations for the nonlinear finite element analysis (FEA) of RC 

structures.  After the assessment, the Mazars concrete material, a damage-based model, is 

adapted for the use in finite element analysis in plane-stress multilayer-shell elements.  The 

element formulations are implemented in the OpenSees framework, an object-oriented and 
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open-source framework for simulating applications in earthquake engineering using finite 

element methods.  Finally, the new Mazars model is used to perform quasi-static, reversed 

cyclic and dynamic analysis of specimens found in literature, and the analytical results are 

verified with the test data. 
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CHAPTER 1 – INTRODUCTION 

 

1.1 Problem Definition 

The economy, availability, high compressive strength, durability, fire-resistance, and 

stiffness of concrete materials, coupled with the use of steel reinforcement to overcome its 

low tensile strength, have allowed for the height, overall size and complexity of 

reinforced - concrete (RC) structures to increase significantly in the last century.  This, in 

turn, makes the forces affecting the structure more difficult to determine.  

Accurate and reliable structural analysis is essential to ensure safety and economy, 

especially with structures with complex geometries or under extreme loading such as 

seismic events.  Usual design practice consists of using linear-elastic analysis software to 

examine the response of the structure under different loading scenarios.  For high-

importance buildings or unusual/extreme loads, a more refined tool consists of using 

nonlinear analysis, in which the nonlinear behaviour of steel and concrete materials is taken 

into account.  Nonlinear analysis, evidently, is more accurate than linear-elastic analysis, 

but its high cost is prohibitive – in consequence, nonlinear analysis is usually reserved only 

to study the behaviour of selected sub-assemblies, and suitable boundary conditions are 

used to simulate the rest of the structure.  Such an analysis, of course, would not yield the 

same level of accuracy of a nonlinear 3D analysis conducted at the system level. 

Although simple structures can be designed and analysed based on their linear-elastic 

response with good accuracy, some effects that may be overlooked include bi-directional 

moments, torsional effects, and second order effects.  Important response parameters in 
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seismic design, such as ductility reserve, rotational capacity at plastic hinges, and energy 

dissipation, cannot be calculated.  The effects of reversed, cyclic loading must also be 

considered, as the elements may experience rapid periods of tension and compression 

stresses.  Concrete and steel may exhibit strain-rate effects that cannot be captured with 

simple linear analysis. 

To conduct a nonlinear finite-element analysis at the system level, the finite-element 

method (FEM) has arisen as a convenient, reliable and versatile computational tool.  The 

constitutive, equilibrium and compatibility equations that arise from the nonlinear 

stress - strain behaviour of concrete and steel can be solved using iterative solution 

algorithms until convergence is achieved with acceptable accuracy.  The material 

constitutive relationships developed for the use in FEA, the vast availability of element 

formulations and solution schemes, and increasing computational power, make it possible 

to perform finite element analysis of complex reinforced concrete structures with good 

accuracy.  However, although a number of research-oriented and commercially-available 

finite-element programs are available to conduct this type of studies, programs able to 

conduct the nonlinear analysis of a full structure are few – most are suited to the study of 

subassemblies rather than whole structures, while others implement advanced concrete 

models that inevitably lead to accumulation of numerical errors when the number of 

elements is large.   

The finite element analysis of a 3D RC structure necessitates the use of formulations for 

the behaviour of concrete in three dimensions, but such formulations are complex given 

the orthotropic and nonlinear nature of concrete.  Certain simplifications in FE models can 

be made where one or two of the dimensions of a structural member are significantly larger 
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than the rest.  Elements where the longitudinal dimension is significantly larger than the 

two transverse dimensions (e.g. beams and columns), can be modelled using 1-dimensional 

(fiber) elements.  Similarly, elements with two dimensions significantly larger than the 

third one (e.g. plates, walls and slabs), can be modelled employing 2-dimensional (shell) 

elements with a defined thickness.  The stress and strain corresponding to the out-of-plane 

axis are recovered through piecewise integration through the thickness of the shell element. 

Considerable research has gone into developing element formulations that can resemble 

the behaviour of concrete for the use in fiber and shell elements.  Analytical models for the 

uniaxial behaviour of concrete have been successfully implemented into the FE framework 

for the use in fiber elements, and have been shown to provide accurate results when 

modelling elements such as beams and columns.  

Modelling the biaxial behaviour of concrete is more complex, and has become a very active 

research topic in the last two decades.  Total-strain based models, such as the Modified 

Compression Field Theory (MCFT) (Vecchio and Collins, 1986), and the Cyclic Softened 

Membrane Model (CSMM) (Mansour and Hsu, 2005), were developed to describe the 

behaviour of reinforced concrete biaxial elements.  These formulations give accurate 

results but their solutions require an iterative procedure within the elemental analysis, 

which increases the possibility of convergence problems when a full structure is analysed. 

Other researchers have described the biaxial behaviour of concrete using simpler, 

damage - based material models such as the Mazars model (Mazars, 1986), where the 

constitutive law of concrete is expressed as an elastic relationship but modifying the initial 

stiffness with a scalar damage parameter D that ranges from 0 for the undamaged material 

to 1 which represents failure of the material.  Damage-based material models have shown 
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to accurately represent the behaviour of concrete in two and three dimensions, while 

keeping simplicity in their formulations.  The material formulations are expressed as 

explicit equations. Thus, they do not require an iterative procedure to solve them, making 

the implementation and use of these formulations in FEA a simpler and a more 

computationally efficient procedure. 

Element formulations for the biaxial behaviour of concrete have been implemented in the 

finite element method.  The MCFT was implemented in the program VecTor2, showing a 

very accurate description of the behaviour of structures that can be modelled using 2D, 

four-node quadrilateral elements.  Abaqus FEA (2009) implements a concrete damaged 

plasticity model with the assumption of an isotropic damage for the use in 3D RC elements.  

A damage-based concrete material model has been implemented (Lu et al. 2015) in the 

OpenSees framework (Fenves, 2001), which can be used in multilayer-shell elements. 

But these programs have certain disadvantages.  VecTor2 cannot perform analysis in a 3D 

environment, nor can it be used to model a full structure due to the relatively small number 

of elements allowed by the program.  This makes it not suitable for the analysis at the 

system level of a RC structure.  In what pertains to the programs that allow the nonlinear 

simulation of full structures, Abaqus FEA has versatile static and dynamic methods for full 

structures, its source code does not allow the modification or addition of new analysis 

modules, which makes difficult for researchers to implement the latest results or to verify 

the theory behind the code.  This makes it impossible to analyse engineering phenomena 

not considered before, or to analyze the behavior of a newly-found material.  On the other 

hand, the open source finite-element platform OpenSees allows for the development of any 

number of element, material and analysis formulations, and was written specifically to 
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handle seismic analyses – however, research groups that develop biaxial concrete materials 

for this framework usually make their source code proprietary and thus key aspects of their 

performance are unknown. 

Based on the preceding discussion, there is a need to develop a simple, robust, yet 

reasonably accurate biaxial model for concrete in a finite-element platform that allows for 

the seismic analysis of full RC structures.  The material model needs to be simple to allow 

for a computationally efficient analysis, with minimal convergence problems, and have 

sufficient accuracy to ensure safe and economic designs.  Similarly, the platform in which 

the material formulations are to be implemented needs to be accessible for researchers to 

easily adopt new or refined analysis techniques. 

 

1.2 Objective and Scope 

The overall objective of this research is to implement a nonlinear material model for the 

behaviour of concrete in two dimensions, that is simple enough for modelling RC structures 

at the system level, yet reasonably accurate.  The implementation of the material 

formulations needs to be done in a FEA framework that allows the users to not only use, 

but to expand and modify this material model with new analysis techniques and innovative 

materials. 

The material model should be able to describe the behaviour of concrete in two dimensions 

and used in both static and dynamic analyses.   The ability to represent the residual strain 

of the concrete when subjected to cyclic loading, and an explicit relationship for shear are 

not part of this study, however, but can be addressed in future work. 
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Within this objective, specific objectives will be pursued in this research:  

• An element formulation will be selected after the assessment of some of the most 

prominent theories that attempt to describe the behaviour of concrete and reinforced 

concrete in two dimensions.  Chapter 2 presents a literature review and the 

background of finite element modeling and analysis of reinforced concrete 

structures.  The chapter begins by presenting an overview of the properties of 

concrete, its challenges and unique characteristics under uniaxial loading and 

biaxial loading.  The advantages and disadvantages of some of the most prominent 

analytical models for concrete in 2D, as well as their applicability, are discussed.  

The chapter ends by presenting a few FEA programs and frameworks that 

accurately describe the behaviour of RC structures, with an emphasis in the 

object - oriented finite element framework, OpenSees. 

• The Mazars concrete damage material will be adapted for the use in finite element 

analysis, in plane-stress multilayer-shell elements.  Then, the Mazars mode will be 

implemented in the OpenSees framework for the use in analysis of RC structures.  

Chapter 3 explains in detail the proposed nonlinear finite element analysis material 

model for concrete plane structures.  The chapter gives the generalities, definitions 

and the theoretical framework for the Mazars concrete damage material model.  The 

influence of the variables of the model on the concrete response are discussed.  

Finally, the chapter explains the adaptation of the model in C++ language for the 

implementation in the OpenSees framework.  

• The new Mazars material model will be used in biaxial elements to model different 

types of structures under various loading conditions, and compared with test results 



7 

 

from the literature to verify its validity.  Chapter 4 presents the validation by 

experimental data of the Mazars concrete damage material model implemented in 

OpenSees.  Three examples, including a beam tested at the University of Alberta 

under monotonic shear, a shear wall under axial compression and reversed cyclic 

shear (Hiotakis 2004), and a full RC building subjected to seismic loading (Nagae 

et al. 2011a, 2011b, and 2015) are analysed using the proposed finite element 

material model.  For each example, the validation is done following three steps.  

First, a description of the test is made, followed by theoretical analysis using the 

Mazars material model, where the analysis method is explained, finishing with a 

comparison of the theoretical results with the experimental results. 
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CHAPTER 2 – BACKGROUND AND LITERATURE REVIEW 

 

This chapter presents a literature review and discussion on typical mechanical properties 

of concrete under uniaxial and biaxial states of stress.  These properties are essential for 

the development of a numerical model for concrete.  A description of two of the most 

important approaches for describing the behaviour of concrete uniaxial and biaxial 

behaviour is presented.   A discussion of three state-of-the-art, finite-element programs that 

are widely used by practicing engineers and researchers to model reinforced-concrete 

structures is presented.   

 

2.1 Introduction 

Concrete is a composite material, made of inert granular aggregates joined by a paste of 

hydrated cement. Its complex structure gives concrete a non-homogeneous behaviour that 

depends in several factors, such as the design constituents, water-cement ratio, mixing, 

placement and curing conditions (Li, 2011).  When the aggregate is mixed with cement 

and water, the mixture reacts chemically to create a hard matrix that binds the materials 

together into a durable material.  Being a non-homogeneous material causes the concrete 

to contain a large number of micro-cracks, especially at the interfaces between the coarser 

aggregates and the cement paste, even at low levels of loading (Hsu and Mo, 2010).   

The propagation of microcracks during the loading phase contributes to the nonlinear 

behaviour of concrete at low stress level as well as near failure. Some of these microcracks 

are caused by segregation, shrinkage and thermal expansion in the cement (Hsu and Mo, 
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2010).  The rest of them are developed during loading, because of the differences in the 

stiffness between the aggregates and cement.  The difference in stiffness can create strains 

in the interface zone several times larger than the average strain presented in the composite 

system.  Since the interface of the aggregate-cement matrix has a significantly lower tensile 

strength than cement, it constitutes the weakest link in the composite system (Karsan and 

Jirsa, 1969).  The composite structure of concrete generates a highly nonlinear behaviour 

in the material.  The properties of concrete under uniaxial loading need to be studied, as 

well as the biaxial properties, in order to generate the correct element formulations for each 

case. 

 

2.2 Uniaxial Behaviour of Concrete 

A typical stress-strain relationship for concrete subjected to uniaxial compression and 

tension is shown in Fig. 2.1.  The behaviour of concrete under compression is very different 

from the tensile behaviour, due to the composite structure of the material.  Karsan and Jirsa 

(1969) described the uniaxial compressive stress-strain curve of concrete, as having a 

nearly linear-elastic behaviour up to about 30 percent of its maximum compressive 

strength, f’c.  For stresses above this point, the curve shows a gradual increase in curvature 

up to about 0.75 f’c, where it bends more sharply as it approaches the peak point, f’c.  

Beyond the peak stress, the stress-strain curve has a descending branch until the concrete 

crushes, which occurs at the ultimate strain εu. In tension, the stress-strain curve is nearly 

linear-elastic up to the cracking stress, ft.  After this point in tension, plain concrete cracks 

and loses its capacity to carry any more tensile load. 
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The shape of the stress-strain curve is closely associated with the mechanism of internal 

progressive micro-cracking.  For a stress in the linear-elastic region, the amount and size 

of the cracks existing in concrete before loading remain nearly unchanged.  In compression, 

a stress level of about 30 percent of f’c has been proposed as the limit of the elastic 

behaviour of concrete.  On the other hand, the tensile stress-strain relationship is assumed 

to be elastic before the cracking strength.  In compression, for stresses between 30 to 75 

percent of f’c, the micro-cracks in the cement-aggregate interface start to extend to the 

actual cement paste. If the load is reversed while the material is in the stress range between 

30 and 75 percent of f’c, the unloading and reloading path will follow closely the initial 

loading path. 

 

 

Figure 2.1.  Typical plot of stress vs. axial strain 

 

However, for unloading from stress at and over about 75 percent of f’c, the unloading and 

reloading curves exhibit strong nonlinearities, showing a significant degradation of the 

stiffness and the presence of residual (plastic) strains in the material. 



11 

 

The degradation in both stiffness and strength for plain concrete under an increasing 

number of compressive load cycles is presented in Fig. 2.2.  Each hysteresis loop 

corresponds to one cycle of unloading and reloading.  It is seen that the stress-strain curve 

for monotonic loading (the broken line in Fig. 2.2) serves as an envelope for the peak values 

of stress for concrete under cyclic loading. 

The progressive damage of concrete near f’c is primarily caused by microcracks through 

the cement, and these form microcrack zones or internal damage.  At this point the material 

has reached its maximum compressive strength, but compressive strain can be applied still.  

With the increase of the compressive strain, damage to the concrete material continues to 

accumulate, and the concrete enters the descending portion of its stress-strain curve, a 

region marked by the appearance of macro-cracks (Karsan and Jirsa, 1969). 

 

 

Figure 2.2.  Uniaxial compressive response with unloading and reloading paths at different strains 

(Hsu and Mo, 2010) 

 

The shape of the stress-strain curve is similar for concrete of low, normal and high strength, 

as shown in Fig. 2.3.  A high strength concrete behaves nearly elastically in compression 

up to a relatively higher stress level than that of low strength concrete (Wischers, 1978).  

On the descending portion of the stress-strain curve, higher strength concrete tends to 
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behave in a more brittle manner, with the stress dropping off more sharply than it does for 

concrete with lower strength, due to the increase of the speed in the development of cracks 

in the material.  The initial modulus of elasticity of concrete increases with the increase of 

the maximum compressive strength of the concrete (Wischers, 1978). 

 

 

Figure 2.3.  Compressive stress-strain curve for different concrete strengths (Attard et al., 1986) 

 

2.3 Uniaxial Concrete Models  

There are different material models that attempt to describe the uniaxial and the biaxial 

behaviours of concrete.  Analytical models for the full stress-strain relationship of concrete 

in compression and tension are required for the numerical simulation of the structural 

behaviour of reinforced concrete structural elements.  These models are generally 
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empirical, and based on tests conducted either on plain concrete specimens or on reinforced 

concrete ones.  

 

2.3.1 Hognestad Model  

One of the earliest and simplest models for compression in concrete with a nonlinear 

behaviour is the so-called Hognestad model for uniaxial compression of concrete 

(Hognestad, 1951).  The model describes the inelastic behaviour of concrete as a parabola, 

which can be defined using two values: the concrete strength and the strain at which the 

concrete achieves its peak strength. 

The stress-strain curve for the Hognestad model is given by: 

𝑓𝑐 = 𝑓′𝑐 [
2𝜀𝑐

𝜀𝑐0
− (

𝜀𝑐

𝜀𝑐0
)
2

]                           0 ≤ 𝜀𝑐 ≤ 2𝜀𝑐0                                                                           (2.1) 

Equation 2.1 relates the stress fc with the strain at the given state εc, where f’c is the 

maximum compressive strength of the concrete, and εc0 is the corresponding strain.  

 

Figure 2.4.  Compressive stress-strain curve (Hognestad, 1951) 

Figure 2.4 shows the complete stress-strain curve for concrete under uniaxial compression 

according to the Hognestad model.  The model accurately represents the ascending branch 
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of the actual concrete behaviour, but the descending branch is a mirror of the ascending 

part, which is not the case for the real behaviour of concrete. 

 

2.3.2 Kent and Park Model 

Kent and Park (1971) proposed a stress-strain equation for both unconfined and confined 

concrete.  In their model, they generalized Hognestad’s (1951) equation to better describe 

the post-peak stress-strain behaviour.  The ascending branch is given by the following 

equation: 

𝑓𝑐 = 𝑓′𝑐 [
2𝜀𝑐

𝜀𝑐0
− (

𝜀𝑐

𝜀𝑐0
)
2

]                              0 ≤ 𝜀𝑐 ≤ 𝜀𝑐0                                                                           (2.2) 

The post-peak branch was assumed to be a straight line whose slope was define primarily 

as a function of concrete strength, f’c. 

𝑓𝑐 = 𝑓′
𝑐
[1 − 𝑍(𝜀𝑐 − 𝜀𝑐0)]                      𝜀𝑐0 ≤ 𝜀𝑐 ≤ 𝜀𝑢                                                 (2.3) 

In which, 

𝑍 =
0.5

𝜀50𝑢−𝜀𝑐0
                                                                                                                     (2.4) 

Where, εu is the strain at which the concrete crushes, and ε50u is the strain corresponding to 

the stress equal to 50% of the maximum concrete strength. 
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Figure 2.5.  Compressive stress-strain curve from Kent and Park (1971) 

 

Figure 2.5 shows the complete stress-strain curve for concrete under uniaxial compression 

as described by the Kent and Park model for concrete.  This curve resembles the behaviour 

of concrete more accurately, even in the post-peak branch.  Kent and Park’s model is still 

widely used by the engineering community because of its simplicity.  It is also widely used 

in finite-element modelling of concrete structures. 

 

2.3.3 Tensile Model for Concrete 

Tensile behaviour in concrete is often neglected in uniaxial models as a conservative 

measure, but it is important in the case of reinforced concrete.  The tensile behaviour of 

concrete can be described as an elastic material before reaching its cracking strength. After 

reaching cracking, concrete abruptly loses its capacity to carry load. 

𝑓𝑐 = 𝐸𝐶 ∗ 𝜀𝑐                              0 ≤ 𝑓𝑐 ≤ 𝑓𝑡                                                                           (2.5) 

Where fc is the stress in the concrete in tension, εc is the strain at the given state, ft is the 

cracking strength of the concrete (usually between 8 and 12 percent of the maximum 

compressive strength), and Ec is the initial elastic modulus of the concrete (Fig. 2.6).  
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Figure 2.6.  Tensile stress-strain relationship of concrete 

 

2.4 Biaxial Behaviour of Concrete 

The behaviour of concrete when subjected to a biaxial state of stress is of importance when 

the resistance and deformation of elements such as shear walls, deep beams and slabs needs 

to be predicted.  In recent years, a large amount of research has been done on the 

mechanical properties of concrete under biaxial loading.  Figure 2.7 shows the failure 

envelope for a concrete element subjected to a biaxial state of stresses.  
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Figure 2.7.  Biaxial behaviour of concrete (Ebead and Neale, 2005) 

 

Each point of the failure envelope in Fig. 2.7 is calculated increasing the stresses at the 

same ratio in the element until failure.  The following differences from uniaxial behaviour 

are to be noted. 

• The maximum compressive strength increases for the biaxial - compression state 

(Quadrant I).  A maximum strength increase of approximately 25 percent is 

achieved at a stress ratio of σI/σII=0.5, and an increase of about 16 percent is 

achieved at an equal biaxial-compression state (σI/σII=1.0).  Under biaxial 

compression-tension (Quadrants II and IV), the compressive strength decreases 

almost linearly as the applied tensile stress is increased, this phenomenon is known 

as compression softening.  Under biaxial tension (Quadrant III), the strength is 

approximately 20 percent smaller than that of uniaxial tensile strength. 
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• Failure of concrete occurs by tensile splitting with the fracture surface orthogonal 

to the direction of the maximum tensile strain.  Tensile strains are of crucial 

importance in the failure criterion and failure mechanism of concrete.  The failure 

of concrete under all combinations of biaxial loading appears to be based on a 

maximum-tensile-strain criterion (Tasuji et al. 1978). The interaction in the axial 

and transverse strains in the concrete element can be explained using the Poisson’s 

ratio ν. The Poisson’s ratio ν for concrete ranges from about 0.15 to 0.22.   

 

2.5 Biaxial Concrete Models 

The necessity of predicting the performance of concrete under biaxial loading has led to 

the development of several analytical biaxial concrete models.  These can be divided in 

two major categories: Total-strain models, and Damage-based models. 

 

2.5.1 Total-Strain Models 

A total-strain model describes the average element stresses as a function of the average 

strains using the constitutive models from the materials.  This type of models can use either 

principal strains or global strains.  When global strains are used, the interaction of the 

normal and shear strains must be taken into account. This is usually done by introducing 

an empirical ratio depending on the model used.  The constitutive relationships and 

compatibility of strains are dependant in both the behaviours of concrete and steel.   

Examples of these models are the Modified Compression Field Theory (Vecchio and 

Collins, 1986), and the Cyclic Softened Membrane Model (Mansour and Hsu, 2005). 
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2.5.1.1 Stress Condition and Crack Pattern  

A reinforced-concrete, 2-D element subjected to in-plane shear and normal stresses can be 

separated into a concrete element and a steel grid element (Fig. 2.8).   

 

Figure 2.8.  Decomposition of a RC element 

 

Before cracking, the principal stresses in the concrete element coincide with the applied 

principal stresses in the RC element, while after cracking, the direction of the subsequent 

cracks deviate from the direction of the first crack, as seen in Fig. 2.9.  In view of the fact 

that the angle of subsequent cracks occurs between the angle of the principal applied 

stresses and the angle of the principal concrete stresses, two types of theories have been 

developed: rotating angle shear theories, and fixed angle shear theories. 

 

Figure 2.9.  Change in subsequent crack angles 
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2.5.1.2 Rotating Angle Shear Theories 

The Rotating Angle Shear Theories are based on the orientation of the concrete principal 

stresses.   As the stresses applied to the element increase, the concrete element cracks, and 

the angle of the principal stresses in the concrete element deviates from the principal 

applied stresses.  Therefore, this type of theory is called a “rotating angle” one.  The 

constitutive relationships for rotating angle models are developed in terms of the direction 

of the principal stresses in the concrete element, thus avoiding the need to explicitly 

consider the effect of shear stresses.  This is because the shear stress vanishes at the 

orientation of the principal stresses in the concrete element.  One of the most prominent 

rotating angle theories is the Modified Compression Field Theory (Vecchio and Collins, 

1986), a model that is the base of the General Method for shear design in the Canadian 

code for concrete structures (CSA A23.3-14). 

 

2.5.1.3 Modified Compression Field Theory (MCFT) 

Vecchio and Collins (1982) proposed the Compression Field Theory (CFT), which is based 

on the rotating angle approach.  In this model, the directions of orthotropy are taken normal 

and parallel to the direction of the principal strain and are continuously changed during 

loading.  The CFT neglects the contribution of concrete to tension because the tensile 

strength of concrete is assumed to be zero.  As a result, the CFT is able to predict failure 

loads but cannot accurately predict the deflections under shear.  In 1986, the CFT was 

revised to develop the Modified Compression Field Theory (Vecchio and Collins, 1986), 
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by including a relationship for concrete in tension to better model the deformation of the 

elements when subjected to shear stresses.  

In the MCFT, the cracked reinforced concrete is treated again as an orthotropic material 

with its principal axes in the direction of the principal strains.  The Poisson’s effect is 

neglected after the cracking of concrete, considering that after cracking the axial 

deformations do not affect the transverse deformations.  Equilibrium between the internal 

and external forces can be achieved with an iterative procedure such as a Newton-Raphson 

technique using a secant stiffness matrix approach (Vecchio and Collins, 1986). 

Figure 2.10 shows the summary of the MCFT for the analysis of reinforced concrete 2-D 

panels.  The implementation of the model is briefly described next for completeness.  

Equations 2.6 to 2.10 show the equilibrium of forces in a generic panel, that relates the 

applied stresses to those in the concrete and steel materials.  Equations 2.11 to 2.13 

illustrate relationships among the strains are distributed in the rotated cracked concrete 

element.  Equations 2.14 and 2.15 relate the crack widths in the concrete element with the 

spacing of the steel reinforcement and the principal tensile strain.  Equations 2.16 to 2.19 

are the material constitutive relationships, which include the tensile response of the 

concrete in Eq. 2.19 as the principal improvement over the CFT.   

The MCFT builds the constitutive relationship in terms of principal strains thereby 

avoiding the necessity of building a constitutive model for shear, but including a separate 

equation that checks concrete shear stress on crack surfaces, shown in Eq. 2.20.  

Characterizing the behaviour of a generic, reinforced concrete element requires the 

simultaneous solution of the 15x15 nonlinear system of equations described in Fig. 2.10.    
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Figure 2.10.  Summary of MCFT for reinforced concrete (Vecchio and Collins, 1986) 

 

2.5.1.4 Fixed Angle Shear Theories 

The Fixed Angle Shear Theories are based on the orientation of the applied principal 

stresses in the RC element, which never changes during the application of load if the 
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applied stresses are increased proportionally.  A fixed crack model allows a deviation 

between principal applied stresses in the RC element and principal stresses in the concrete 

element.  This deviation creates a need to relate the shear stresses in the element with the 

normal stresses, affecting the overall element performance. 

 

2.5.1.5 Cyclic Softened Membrane Model (CSMM) 

The Cyclic Softened Membrane Model (Mansour and Hsu, 2005) was developed based on 

the Fixed-Angle Softened Truss Model (Pang and Hsu, 1996).  This model predicts the 

reversed cyclic shear response of reinforced concrete membrane elements using a fixed 

crack approach, including different constitutive models for concrete and steel that include 

unloading and reloading effects. 

Similarly, as in the case of the MCFT, enforcing equilibrium between external and internal 

forces using this method necessitates an iterative procedure such as the Newton-Raphson 

solution scheme, using a tangent stiffness matrix approach.  Figure 2.11 shows the 

summary of the CSMM for the analysis of reinforced concrete 2-D panels.   The way that 

the CSMM models the different materials in a reinforced concrete element is briefly 

described next, using Fig. 2.11.  

Steel.  The uniaxial material constitutive model for steel considers the stress-strain 

response of a steel rebar considering the presence of the surrounding concrete.   It is seen 

that the behaviour on an embedded bar is different from the bilinear response of bare steel, 

as observed in the constitutive model for steel in Fig. 2.11. This is due to the transfer of 

tensile stresses that occur between the steel and the concrete. 
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Concrete.  The concrete constitutive model includes the softening effect produced by the 

strains in the perpendicular direction to that being analysed, as well as the smooth decrease 

in the tensile stress after cracking.  The cyclic constitutive laws of concrete and steel bars 

are used in the CSMM, including plastic strains in their formulations.  

The CSMM determines equivalent uniaxial strains to define compressive and tensile 

constitutive relationships.  The shear stress is expressed as a function of the corresponding 

axial strains and stresses in the principal directions, through the Hsu/Zhu ratios defined in 

Fig. 2.11.  The Hsu/Zhu ratios were developed to include the additional concrete “growth” 

effect under proportional biaxial tension-compression loading, and to transform the 

bidimensional tensor of strains into their equivalent uniaxial strains for either concrete or 

steel.  
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Figure 2.11. Summary of CSMM for reinforced concrete (adapted from Mansour and Hsu, 2005) 

 

2.5.2 Damage-Based Models 

Continuum damage mechanics was originally formulated as a tool to obtain a physical 

description of the internal failures that a material can exhibit.   It was developed to describe 

different types of effects such as creep, fatigue, constant load and chemical reactions 

(Kachanov, 1958).   It later evolved into an approach to describe material behaviour 

(Lemaitre, 1992).   When applied to concrete, it is assumed that concrete is an isotropic 

material with a varying stiffness.  The variation of the stiffness in the material is provided 
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by a scalar damage variable D, which is inversely proportional to the initial, elastic stiffness 

matrix of the material.   The more damaged the material, the greater the value of the scalar 

damage parameter.  A complete discussion of Damage-Based Models, as applied to 

concrete, is given in Chapter 3. 

 

2.6 Structural Simulation Using the Finite Element (FE) Method 

In the last years, the FE method has become an important tool for the analysis of reinforced 

concrete structures, and many material constitutive relationships, element formulations and 

solution schemes have been developed for the use in FEA.  Continuous improvement of 

nonlinear finite element techniques and computing facilities make the simulations of 

reinforced concrete structures more feasible. 

In research-oriented analysis of RC structures, the implementation of concrete and RC 

material models have led to the development of specialized finite element software that has 

been proven to lead to accurate simulations of the nonlinear behaviour of shear wall 

specimens (Lee and Kuchma, 2007; Han et al. 2010; Zhang and Li, 2012; Ali et al. 2013; 

Luu et al. 2013; Mergos and Beyer, 2013; Genikomsou and Polak, 2014).   However, these 

research-oriented tools have at least one of the following three limitations, or a combination 

of them: a) either their source-code is proprietary, which makes difficult for researchers to 

implement the latest research results on shear wall behaviour or verify the theory behind 

the code, b) the number of elements and nodes that they can handle are insufficient to 

model complete structures, which drastically reduces their usefulness, and c) the more 

accurate and advanced the material model implemented in the software, the greater the 

possibility of occurrence of convergence and numerical problems in large models.  Due to 
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the combination of these factors, finite-element simulations of complete shear wall 

structures (at the system level) are very scarce.   

The capabilities of currently available FE software to predict the behaviour of shear wall 

structures (at the component and system levels), are briefly described next. 

 

2.6.1 Abaqus FEA  

Abaqus FEA is a suite of general-purpose software applications for finite element analysis 

and computer-aided engineering design.  Users can implement their own nonlinear material 

models via user material subroutines (Abaqus, 2009). Three different constitutive concrete 

models are available in Abaqus: the smeared crack concrete model, the brittle cracking 

model, and the concrete damaged plasticity model. 

The smeared crack concrete model is an elasto-plastic model controlled by a 

“compression” yield surface. Cracking is assumed to be the most important of the 

behaviour of the material. This material model is intended for applications in which the 

concrete is exclusively subjected to monotonic loading. The brittle cracking model is useful 

in applications where the failure of concrete is given by tensile cracking. The behaviour in 

compression is assumed to be elastic, making it not suitable for any kind of dynamic 

analysis with load reversals. The concrete damaged plasticity model is damage-based 

material model, that can be used in applications where the concrete is subjected to any kind 

of loading conditions, including cyclic loading (Abaqus 2009). 

Studies on the response of RC elements using Abaqus have focused mainly on response at 

the component level.   The behaviour of a RC beam element under the effect of impact 
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vibration was studied using the concrete damaged plasticity model, generating several 

models with different mesh sizes, damping values, and compression and tension stiffness 

recovery, to better represent the test results (Ahmed, 2014). The investigation of punching 

shear in RC flat slabs without shear reinforcement, using the same concrete model in 3D 

elements, relating the results obtained for ultimate load, deflections and cracking patterns 

with these results (Genikomsou and Polak, 2014).  Studies on the seismic response of 

complete reinforced concrete structures using Abaqus are scarce.  Zhang and Li (2012) 

tested a 1/5 scale-three story frame and shear wall RC structure under the ‘El Centro’ 

earthquake, and compared the results with an Abaqus model.  The FEA model consisted 

on fiber elements for columns and beams, and shell elements for slabs and shear walls, the 

material properties were introduced as user-defined dynamic material subroutines.  The 

FEA results were in accordance of the experimental results when considering the strain 

rate effect in the material.  Han et al (2010) studied the crack development, failure pattern 

and the displacement ductility of a prestressed precast RC frame under cyclic loading, 

using a FEA model with solid 3D elements for concrete, linear-truss elements for the 

reinforcing and prestressed steel.  The skeleton curves of the hysteresis loops of both the 

test and the FEA model, presented very similar behaviours for the frame.  Ali et al (2013) 

studied the nonlinear cyclic behaviour of shear walls with composite steel-concrete.  

Concrete damaged plasticity material was used in solid 3D elements and subjected to a 

cyclic loading program.  The predicted load vs. deformation curves, peak loads, ultimate 

strength values and deformation profiles showed good agreement with experimental 

skeleton curves. 
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Abaqus FEA shows accurate results when studying the performance of an element or a 

structure under different types of loadings.  Abaqus provides a reasonable user-interface 

and access to some subroutines.  However, the source-code is proprietary, which makes 

difficult for researchers to implement the latest results or to verify the theory behind the 

code. Also, limiting the solution algorithms to the ones contained in the software, which 

may not be suitable to obtain a solution without convergence problems.  This makes it 

impossible to analyze engineering phenomena not considered before, or to analyze the 

behavior of a newly-found material. 

 

2.6.2 VecTor2 

VecTor2 is a nonlinear finite element analysis program for the analysis of 2-dimensional 

RC membrane structures. VecTor2 uses a smeared, rotating-crack formulation based on 

the MCFT (Vecchio and Collins, 1986) and the Disturbed Stress Field Model (DSFM) 

(Vecchio, 2000). A wide range of material constitutive models are available for 

representing the material responses and mechanisms of reinforced concrete structures. 

VecTor2 contains 25 concrete material types and 25 steel material types (smeared 

reinforcement and truss reinforcement), for the use in the analysis of 2D RC structures, 

using four-node quadrilateral elements (Wong et al. 2013).  

The program gives accurate results when modelling RC shear wall, or 2-dimensional 

structures.  The seismic overstrength of shear walls of parking structures was investigated 

by inelastic static pushover analyses and inelastic dynamic response analysis (Lee and 

Kuchma, 2007).  The results obtained in FEA resembled closely the test results.  Two series 

of shake table tests on slender RC walls were analysed using VecTor2 (Luu et al. 2013).  
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Damping was assumed to be 1.5% for the wall, and the model was able to predict the 

natural periods of the walls in elastic and damaged conditions.  The FEA model was able 

to predict the crack pattern, as well, showing the damage response of the actual test.  Quasi-

static tests on RC walls were compared with FEA model using VecTor2 (Mergos and 

Beyer, 2013).  The shear-flexure interaction response of the tall walls in the FEA model 

resembled very closely the test results selected to validate the model. 

However, VecTor2 cannot perform analyses in a 3D environment, nor can it be used to 

model a full structure due to the small number of elements allowed by the program (6000 

elements, 5200 nodes). This makes it not suitable for the analysis at the system level of a 

RC structure. On the other hand, VecTor2 does not allow the modification or addition of 

new analysis modules it its source code.  

 

2.6.3 OpenSees 

OpenSees stands for Open System for Earthquake Engineering Simulation, and was 

developed at the Pacific Earthquake Engineering Center (PEER), University of California, 

Berkeley.  OpenSees is an object-oriented, open-source framework for simulating 

applications in earthquake engineering using finite element methods (Fenves, 2001).  The 

behaviour of structural and geotechnical systems can be simulated in OpenSees using a 

modular approach, this means that the model configuration, numerical solution, and output 

recorder are independently defined.  

The flexibility of this modular implementation enables OpenSees to be enhanced in an 

open-source fashion in which new components, such as material models, element types, 
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and analysis formulations, can be included as they are developed.  Key features of 

OpenSees include the interchangeability of components and the ability to integrate existing 

libraries and new components into the framework without the need to change the existing 

code (Fenves, 2001).  

Many advanced finite element techniques that are suitable for the nonlinear finite element 

analysis have already been implemented in OpenSees.  A damage-based concrete material 

model has been implemented (Lu et al. 2015) in the OpenSees framework (Fenves, 2001), 

which can be used in multilayer-shell elements to simulate the behaviour of reinforced 

concrete plane stress structures.  A biaxial concrete material model based on the CSMM 

has been implemented (Zhong, 2005) in OpenSees, which has shown to accurately predict 

the behaviour of shear walls when subjected to reversed-cyclic loading.  However, research 

groups that develop biaxial concrete materials for this framework usually make their source 

code proprietary and thus key aspects of their performance are unknown. 
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CHAPTER 3 – DAMAGE MODEL FOR CONCRETE 

 

This chapter describes the material model to be implemented for the analysis of concrete 

under bidimensional loading.  Generalities, definitions and theoretical framework for 

Damage Based Models are presented first, followed by the description of the Mazars 

Concrete Damage Model.   Parametric analyses investigating the influence of the variables 

of the model on the concrete response are discussed and a number of numerical analyses 

of the biaxial response of simple structures are presented to verify the accuracy of the 

proposed algorithm.  Then, the coordinate system, equilibrium and compatibility equations 

used in the Mazars model are described in a finite element formulation, resulting in a 

material constitutive matrix of concrete based on the Mazars model.  The material 

constitutive matrix is presented in its secant formulation.  Also presented is the 

implementation of the Mazars model for 2D plane stress elements into the finite element 

framework OpenSees (Fenves, 2001). 

 

3.1 Introduction 

Damage-based models for concrete are derived from continuum damage mechanics and 

adapted to describe the nonlinear behaviour of concrete.  Continuum damage mechanics 

originally started as a physical description of the internal failures that a material can exhibit 

at the micro- and macro-scale, produced by different types of effects such as creep, fatigue, 

constant load and chemical reactions (Kachanov, 1958), defining the creation, propagation, 

and expansion of concrete microcracks as ‘damage’.   
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Concrete is a composite material composed by granulates in a brittle matrix (the hydrated 

cement paste).  The change in the internal structure of the cement matrix, the interface 

between the cement matrix and the aggregate grains and with the voids in the structure, 

when subjected to loading, can be described by damage mechanics.  The collapse of the 

structure of the cement matrix and the propagation of cracks are the reason why the 

stiffness of the concrete degrades under the action of loads.  Describing the mechanical 

behaviour of concrete can be complex given the complexity of its microstructure, but using 

damage mechanics the behaviour of concrete can be simplified. 

 

 

Figure 3.1.  Elastic material vs. Damage material 

 

Concrete damage models describe the behaviour of a material by assuming it is elastic with 

a constant stiffness.  Upon being loaded, the stiffness is affected by a scalar damage 

parameter D, which ranges from 0 for the undamaged material to 1, which represents failure 

of the material (Fig. 3.1).  Since the damage at any given point is considered to affect the 

material in every direction, the material is assumed to be isotropic.  The element 
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formulations that control the behaviour of the damage variable D are derived from 

thermodynamic studies of the materials (Loland, 1980; Mazars, 1984), and its definition is 

dependent on the approach of each theory. 

 

3.2 Mazars Model 

Continuum damage mechanics is often used as a framework for describing the variations 

of the elastic properties of concrete due to micro-structural degradations (Lemaitre, 1992).  

Damage models in finite element analysis of concrete materials have been shown to 

successfully represent the behaviour of reinforced-concrete (RC) panels under in-plane 

loads (Mazars et al.  2002; Legeron et al.  2005; Mazars et al.  2015) 

Mazars (1984) developed a scalar damage model describing the behaviour of the concrete 

as elastic-damageable.  The model was developed to account for the triaxial behaviour of 

concrete.  Isotropy is assumed.  The model has a damage parameter given by an equivalent 

strain able to discriminate between tensile and compressive behaviour.  It is a simple, 

robust model that relies in a scalar local variable D to describe the damage and reduction 

of the stiffness due to tensile and compressive damage separately. 

Mazars’ model explains the damage in concrete accounting for all the micro- and macro- 

effects of the loading, rearranging of the concrete particles, collapse of the micro-voids in 

the mixture, and the interaction of the cement matrix with the aggregates.  This material 

model was created to represent the triaxial behaviour of concrete.  The fact that all 

compressive strains can be represented by the tensile strains in the orthogonal directions, 
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makes it possible to simplify the element formulations and represent every deformation 

with tensile strains. 

 

3.2.1 Analysis Procedure 

A characteristic of this model is that the material constitutive, equilibrium and 

compatibility equations can be solved explicitly, and there is no need for an iterative 

procedure to obtain stresses when given an arbitrary set of strains.   All the evolution laws 

for damage are expressed through an equivalent strain and a number of material parameters 

to describe the behaviour of the material under loading.  These parameters make it possible 

to modify the shape of the calculated stress-strain concrete curve to represent the measured 

stress-strain relationship.  The simplicity of the model makes its implementation in finite 

element analysis a straightforward process. 

The stress is obtained assuming elastic behaviour in the material, with the presence of a 

scalar damage parameter D that ranges from 0 for the undamaged, “healthy” material, to 1, 

which represents failure of the material.  Equation 3.1 relates the stress vector (σ) and the 

strain vector (ε), using the initial stiffness matrix (Γ) but multiplying it by the damage term 

(1 - D), obtained at the given state of the element.   

𝜎 = (1 − 𝐷)𝛤: 𝜀            (𝛤: 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥)                                                            (3.1) 

When the material is subjected to compressive loading, due to the presence of 

heterogeneities in the material (produced by the aggregates embedded into the cement 

matrix), tensile strains will generate a stress field orthogonal to the loading direction.  

Tensile strains generate micro- and macro-cracks in the concrete, which in turn generate 
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damage in the material.  Thus, this theory is based on the assumption that every 

deformation can be described using tensile strains (Fig. 3.2).  A state of deformation that 

includes normal and shear strains can be converted to a state of principal strains, leaving 

only normal compressive and tensile strains.  Then, the compression in the element can be 

described with tensile strains in the orthogonal direction of the applied load.   

 

 

Figure 3.2.  Use of tensile principal strains to describe any state of strains 

 

The damage variable D is dependent on the tensile strains of the element, so an equivalent 

strain (εeq) is defined to make it possible to translate the triaxial state of strains to a uniaxial 

state of strain.  The equivalent strain describes the amount of extension that the material is 

experiencing.  Equation 3.2 calculates the equivalent strain (εeq) as the average of the tensile 

principal strains of the element.  If a principal strain is compressive, it is not accounted in 

the calculation of εeq and it is taken as zero. 

𝜀𝑒𝑞 = √∑ (〈𝜀𝑖〉)23
𝑖=1 ;       𝑤ℎ𝑒𝑟𝑒 〈𝜀𝑖〉 = 𝜀𝑖    𝑖𝑓   𝜀𝑖 > 0                                                   (3.2) 

𝜀𝑖 = 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3 
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To differentiate the type of damage (compression or tension) to which the material is being 

subjected, the principal stress state (σp) is calculated with Eq. 3.2 and then divided in two 

tensors, one of them with only positive (tensile) stresses (σ+), and the other with only 

negative (compressive) stresses (σ-). 

𝜎𝑝 = (1 − 𝐷)𝛤: 𝜀𝑝                                                                                                          (3.3) 

𝜎𝑃 = 𝜎+ + 𝜎−  

The tensile (t) and compressive (c) strain tensors are obtained from the tensors in Eq. 3.3 

using the secant stiffness, as expressed by Eqs. 3.4 and 3.5. 

𝜀𝑡 = (
1

1−𝐷
)𝛤−1: 𝜎+                                                                                                         (3.4) 

𝜀𝑐 = (
1

1−𝐷
)𝛤−1: 𝜎−;                                                                                                        (3.5) 

The total damage of the element is defined as the weighted sum of the damage in tension 

and the damage in compression.  The weights are obtained from the predominant response 

of each of the principal strains, defining the contribution of each type of damage (tensile 

or compressive) for general loading.  Equations 3.6 and 3.7 define the weight of the tensile 

damage (αt) and the weight of the compressive damage (αc) respectively.  These weights 

are a function of the principal strains due to either positive (tensile) or negative 

(compressive) stresses.  Since the theory is based on the assumption that damage occurs 

via micro- and macro-cracking and that these cracks are generated exclusively from tensile 

strains, the weight exists only if the total strain (εi) is tensile.  Therefore, the use of the H 

parameter, which is equal to 1 if the total strain is positive (tensile) or 0 if the total strain 

is negative (compressive). 
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𝛼𝑡 = ∑ 𝐻𝑖
𝜀𝑡𝑖(𝜀𝑡𝑖+𝜀𝑐𝑖)

𝜀𝑒𝑞
2

3
𝑖=1                                                                                                    (3.6) 

𝛼𝑐 = ∑ 𝐻𝑖
𝜀𝑐𝑖(𝜀𝑡𝑖+𝜀𝑐𝑖)

𝜀𝑒𝑞
2

3
𝑖=1                                                                                                    (3.7) 

𝑤ℎ𝑒𝑟𝑒  𝐻𝑖 = 1 𝑖𝑓 𝜀𝑖 = 𝜀𝑐𝑖 + 𝜀𝑡𝑖 ≥ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝐻𝑖 = 0  ,   𝑤𝑖𝑡ℎ 𝑖 = 1,2,3 

Since the model uses principal strains, there are only tensile and compressive stresses. 

Hence, one variable for the damage in tension (Dt) and another for the damage in 

compression (Dc) are needed.  Dt and Dc are scalars that represent the mechanisms of 

deterioration sustained by the material in tension and compression, respectively.  These 

variables reflect the irreversible damage that the material has accumulated. Their values 

are obtained using Eqs. 3.8 and 3.9. 

𝐷𝑡 = 1 −
𝜀𝐷0∗(1−𝐴𝑡)

𝜀𝑒𝑞
− 𝐴𝑡 ∗ 𝑒𝑥𝑝[−𝐵𝑡 ∗ (𝜀𝑒𝑞 − 𝜀𝐷0)]                                                     (3.8) 

𝐷𝑐 = 1 −
𝜀𝐷0∗(1−𝐴𝑐)

𝜀𝑒𝑞
− 𝐴𝑐 ∗ 𝑒𝑥𝑝[−𝐵𝑐 ∗ (𝜀𝑒𝑞 − 𝜀𝐷0)]                                                    (3.9) 

Both types of damage depend on the initial damage threshold (εD0) and the equivalent strain 

of the element at that state (εeq), but Dt is related to the of the tensile material properties of 

the concrete (At, Bt) while Dc is related to the compressive material properties (Ac, Bc).  The 

variables εD0, At, Bt, Ac and Bc, modulate the shape of the tensile and compressive uniaxial 

curves, and they need to be adjusted to represent the actual material behaviour. 

The initial damage threshold (εD0) is the strain at which the damage initiates.  It affects the 

peak stress, but also the shape of the post-peak behaviour in both the tensile and 

compressive curves.  In general, εD0 ranges from 0.5x10-4 to 1.5x10-4, and it can also be 

taken as the cracking strain of the concrete (εt). Before εD0, the behaviour of the material is 
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completely elastic, and after this threshold is surpassed At, Bt, Ac and Bc need to be adjusted 

to adjust the compressive and tensile curves of the material model with the stress-strain 

relationships obtained from compressive and tensile tests. 

The variables At and Bt are the material parameters that reproduce the quasi brittle 

behaviour of concrete in tension.  They need to be adjusted to represent the uniaxial tensile 

behaviour of concrete obtained from a direct tensile test or a split test. 

At values are usually in between 0.7 to 1.  Figure 3.3 shows the influence of At in the tensile 

response of concrete.  As At increases, the damage given by tensile strains increases, 

eventually reaching complete damage at lower strains. 

 

 

Figure 3.3.  Influence of parameter At 

 

The values of the parameter Bt usually range between 9,000 and 21,000.  Figure 3.4 shows 

the influence of the Bt parameter on the tensile curve of the material.  This parameter is the 
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the damage threshold has been surpassed.  As Bt decreases the maximum tensile stress that 

the material can reach is larger and presents at a higher strain. 

 

 

Figure 3.4.  Influence of parameter Bt 

 

The variables Ac and Bc are the material parameters that reproduce the compressive curve 

of concrete.  They must be adjusted to represent the uniaxial compressive behaviour of 

concrete obtained from a compression cylinder test. 

The values for the parameter Ac are usually between 1.0 and 2.0.  Figure 3.5 shows the 

influence of the parameter Ac in the compressive response of concrete.  A higher value of 

Ac will increase the maximum strength of the concrete and provide a steeper post-peak 

response, while decreasing the strain at which the damage will be equal to 1.   
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Figure 3.5.  Influence of parameter Ac 

 

The values of the parameter Bc usually range between 1,000 and 5,000.   The parameter Bc 

is inversely proportional to the compressive strength and associated strain, as shown in 

Fig. 3.6.  As the value of Bc increases, the maximum stress and its strain become smaller. 

 

Figure 3.6.  Influence of parameter Bc 
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As stated before, the scalar damage variable D is defined as a weighted sum of two 

damaging modes, one related to tension and the other related to compression.  It is assumed 

that the damage in the material can only increase, not be recovered (i.e., closing of the 

cracks under reversed loading will not increase the stiffness of the concrete).   

Results from the Mazars model were reported to underestimate the strength of panels when 

subjected to shear, as a result a coefficient β was added to reduce the effects of damage 

when the response is governed by shear, to address this limitation (Hamon, 2013).  The 

value of the coefficient β is usually taken equal to 1.06.  The modified expression for the 

weighted sum is shown in Eq.  3.10. 

𝐷 = 𝛼𝑡
𝛽 ∗ 𝐷𝑡 + 𝛼𝑐

𝛽 ∗ 𝐷𝑐;         0 ≤ 𝐷 ≤ 1                                                                      (3.10)  

To illustrate the uniaxial response of concrete according to the damage model by Mazars, 

Figure 3.7 shows the uniaxial stress-strain response in tension and compression of a 

concrete material with the following parameters: Ec = 35,000 MPa, εD0 = 0.0001, Ac = 1.57, 

Bc = 3,000, At = 0.97, Bt = 10,000, ν = 0.18, and β = 1.06.  The loading path is as follows: 

1. Compressive load is applied to the material until it reaches its maximum strength 

of 35 MPa at a strain of 0.002.  The damage obtained at the peak stress of the 

material in this example is equal to 0.5. 

2. The load is reversed and the strain in the material goes back to zero.  The unloading 

path follows the initial stiffness reduced by the damage of 0.5. 

3. Compressive load is again applied to the element.  The reloading path is the same 

as the unloading path in the material, following the initial stiffness reduced by the 

damage of 0.5.  Then, the material continues to be loaded until it reaches a strain of 
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0.004, double of that associated to the maximum compressive strength.  The 

damage at this point is calculated to be equal to 0.83. 

4. The load is reversed and the strain in the material goes to zero, following the 

unloading path of the initial stiffness reduced by the damage of 0.83. 

5. Then, tensile load is applied to the element.  As the material is damaged at this point 

with a value of 0.83, the tensile loading path follows the initial stiffness reduced by 

the damage of 0.83.   

6. Tensile load is furthermore applied to the element, the damage in the material keeps 

increasing until it fails.  The damage in the material is 1, and the element is 

completely cracked. 

 

 

Figure 3.7.  Uniaxial stress-strain response of Mazars model 

 

The following phenomena are to be noted in the stress-strain response of the Mazars 

concrete model: 

-35

-25

-15

-5

5

-0.004 -0.002 0

St
re

ss
 [

M
P

a]

Strain

1

6

4

2

3

5



44 

 

• The damage affects the stiffness of the concrete, modifying the unloading and 

reloading paths. 

• The response in tension and compression are very asymmetrical, as is typical of a 

concrete material.  This asymmetrical behaviour is generated by the At, Bt and Ac, 

Bc parameters in tension and compression respectively. 

• The damage is non-recoverable in the concrete.  Once the equivalent strain 

surpasses the damage threshold, the element will be irreversibly damaged.  The 

damage will only increase as the loading cycles continue.  In this example, the 

damage was equal to 0.5 even when the load was reversed, and it kept increasing 

after reloading the element until the value was 0.83. 

• The material model does not account for permanent deformations.  Damage only 

modifies the stiffness of the material, assuming complete recovery in the 

deformations of the element.  This behaviour is a drawback of the material model, 

but helps in the simplicity of the element formulations. 

• The damage created by either compressive or tensile strains will affect the 

behaviour of the element in both the tensile and compressive response. 

 

3.3 Predictions and Comparison with FEA 

Equations 3.1 through 3.10 were implemented in a spreadsheet and the Mazars concrete 

damage material model was used to predict the response of single and multiple plain 

concrete elements.  The results are compared with two finite element analysis programs.   

One contains an implementation of the Modified Compression Field Theory, and the other 

implements a damage-based model.  The two programs have been shown to accurately 
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represent the behaviour of plain and reinforced concrete shell elements under 

bidimensional loading (Lee and Kuchma, 2007; Luu et al. 2013; Mergos and Beyer, 2013; 

Lu et al. 2015). 

 

3.3.1 Software Used for Comparison 

The finite element analysis programs and frameworks were chosen to represent some of 

the theories available to describe the performance of reinforced concrete shell elements.  

They are known to represent accurately the behaviour of elements subjected to 

bidimensional static and dynamic loading.  These programs are freely available under 

General Public License and are intended mainly for research purposes. 

 

3.3.1.1 VecTor2 with Modified Compression Field Theory (MCFT) 

VecTor2 is a program based on the Modified Compression Field Theory (Vecchio and 

Collins, 1986) and the Disturbed Stress Field Model (Vecchio, 2000), for nonlinear finite 

element analysis of RC membrane structures.  The program has been developed at the 

University of Toronto since 1990, predicting the load-deformation response of a variety of 

RC structures exhibiting well-distributed cracking when subject to static, monotonic and 

cyclic loading.   

 

3.3.1.2 OpenSees with PlaneStressUserMaterial (PSUMat) 

OpenSees is an research-oriented framework for finite element analysis (Fenves, 2001).  A 

key feature of the software is the interchangeability of components and the ability to 
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integrate existing libraries and new components into the framework without the need to 

change the existing code.  A numerical model for concrete in two dimensions was 

developed and programmed in the OpenSees framework as Plane Stress User Material, 

termed as PSUMat (Lu et al. 2015).  This material is a bidimensional, damage-based 

material model for use in shell elements, but the source code is proprietary and has not 

been released by the developers.  It is included here as a reference. 

 

3.3.2 Model Description and Results 

The first two models were selected to resemble the behaviour of plain concrete under 

uniaxial loading.  Single 200 x 200 mm elements, with 100 mm thickness were used in the 

analysis.  All of the analyses are considered to be under the plane stress theory.   

 

 

Figure 3.8.  Stress-strain response of 1 plain concrete element subjected to pure compression 

 

Figure 3.8 shows the stress-strain response of a single plain concrete element subjected to 

pure compression.  The boundary conditions of the element allow it to distribute the 
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stresses in a single direction, resembling the traditional stress-strain curve for concrete in 

compression.  All of the different theories describe the pre-peak behaviour of concrete as 

a curve, but only VecTor2 with MCFT and the Mazars model describe the post-peak 

behaviour as a curve.  The drop in the strength resistance of concrete is given by the 

collapse of the cement-aggregate matrix and the appearance of micro-cracks in the 

orthogonal direction.  Thus, a soft transition in the curve is expected in the post-peak 

behaviour, unlike the straight line observed with the Plane Stress User Material (PSUMat) 

in OpenSees. 

 

 

Figure 3.9.  Stress-strain response of 1 plain concrete element subjected to pure tension 

 

Figure 3.9 shows the stress-strain response of a single plain concrete element subjected to 

pure tension.  The same boundary conditions are applied to the element to resemble the 

uniaxial tensile resistance of concrete.  The behaviour of concrete under tension is known 

to be elastic before the ultimate tensile strength, with an abrupt loss of strength when the 

concrete cracks.  This behaviour is accurately represented by both the Mazars model and 
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VecTor2 with MCFT.  The soft transition given by the PSUMat in OpenSees is not 

expected when dealing with tensile stresses in unreinforced concrete. 

 

 

Figure 3.10.  Force-displacement of 1 plain concrete element subjected to a lateral load 

 

Figure 3.10 shows the force-displacement response of a single plain concrete element 

subjected to a lateral force, this is done to generate shear and normal stresses in the element.  

From this test, the two models that show the closest response are the damage based models 

(Mazars and PSUMat), they show a greater shear resistance than the one presented in 

VecTor2 with MCFT, this is given by the fact that the damage models account for 

post- crack shear resistance for the element, whereas in the MCFT formulation a steel 

reinforcement is needed to have this type of phenomenon. 
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Figure 3.11.  Force-displacement of 4 plain concrete elements subjected to a lateral load 

 

Figure 3.11 shows the force-displacement response of a plain concrete shell with four 

square elements subjected to a lateral force in the top left corner element.  All the elements 

will have a combination of normal and shear stresses.  As expected the damage based 

models (Mazars and PSUMat) show a stronger resistance to shear forces, with failure 

occurring when the first crack appears, but continuing to have lateral resistance from the 

post-crack shear resistance of the element and the redistribution of the stresses within the 

structure itself. 

 

3.4 Development of a Nonlinear 2D Material Model in the OpenSees Interface 

The Mazars concrete damage model (Mazars, 1984) is implemented in the finite element 

framework OpenSees for 2D plane-stress elements.  The coordinate system, equilibrium 

and compatibility equations used in the Mazars model are described in a finite element 

formulation, resulting in a material constitutive matrix of concrete based on the Mazars 
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3.4.1 OpenSees 

The Open System for Earthquake Engineering Simulation (OpenSees) is a computational 

platform for structural performance simulation developed within the Network for 

Earthquake Engineering Simulation (NEES) project.  The behaviour of structural and 

geotechnical systems can be simulated using a modular approach in OpenSees.  These 

modules contain independently defined model configurations, numerical solutions, and 

output recorders.  The flexibility of this modular implementation in OpenSees enables 

researchers to implement new components, such as material models, element types, and 

solution algorithms, as they are developed. 

OpenSees uses the Tcl script language to write an input file which includes the structural 

model, the analysis type, and the required output recorders.  The OpenSees source code is 

written in C++ language, using an object-oriented programming, which allows the creation 

of new classes or modules as parts of the framework. 

 

3.4.1.1 Multi-layer Shell Element in OpenSees 

The element selected to model plane structures under in- and out-of-plane loads in the 

OpenSees framework is the ShellMITC4 element, which is a four-node shell element based 

on the theory of mixed interpolation of tensorial components (MITC) (Dvorkin et al. 1995).  

The layered element simplifies the 3D nonlinear behaviour of the plane elements by 

discretizing them into several fully-bonded layers in the thickness direction.  Different 

material properties and thicknesses can be assigned to each layer, as in Fig. 3.12.  The 

stresses over a layer thickness are assumed to be consistent with those at the mid-surface 

of that layer (plane-stress theory).  Therefore, if the plane component (for example, a shear 
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wall or a slab) is subdivided into a sufficient number of layers, the multi-layer shell element 

can reasonably simulate the actual stress distribution over the thickness of the shell.  By 

using layered shell elements, the in-plane and the out-of-plane behaviour of a plane 

structure can be represented using biaxial element formulations. 

 

 

Figure 3.12.  Multi-layer shell element 

 

3.4.2 Coordinate System 

Two Cartesian coordinates, x-y and 1-2, are defined in the concrete elements, which are 

illustrated in Fig. 3.13.  Coordinate x-y represents the local coordinates of the elements.  

The coordinate 1-2 defines the principal stress directions of the applied stresses, which 

have an angle of θ1 with respect to the x-y coordinate. 

 

Figure 3.13.  Coordinate systems for concrete elements 
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The stress and strain vectors in x-y coordinates and 1-2 coordinates are denoted as  

{

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

}   ,  {

𝜀𝑥

𝜀𝑦

1

2
𝛾𝑥𝑦

}  ,   {

𝜎1

𝜎2

𝜏12

}   and   {

𝜀1

𝜀2
1

2
𝛾12

}  , respectively.  As the 1-2 coordinate represents 

the principal stress directions, τ12 is equal to zero in these vectors. 

By using the transformation matrix T(θ1), the stresses and strains can be transformed 

between the different coordinates.   

𝑇(𝜃1) = [

𝑐𝑜𝑠2(𝜃1) 𝑠𝑖𝑛2(𝜃1) 2𝑠𝑖𝑛(𝜃1)𝑐𝑜𝑠(𝜃1)

𝑠𝑖𝑛2(𝜃1) 𝑐𝑜𝑠2(𝜃1) −2𝑠𝑖𝑛(𝜃1)𝑐𝑜𝑠(𝜃1)

−𝑠𝑖𝑛(𝜃1)𝑐𝑜𝑠(𝜃1) 𝑠𝑖𝑛(𝜃1)𝑐𝑜𝑠(𝜃1) 𝑐𝑜𝑠2(𝜃1) − 𝑠𝑖𝑛2(𝜃1)

]                          (3.11) 

where θ1 is the angle between the x-y coordinates and the 1-2 coordinates, as seen in 

Fig. 3.13. 

The stresses and strains transformed from the x-y coordinate to the 1-2 coordinate using 

the transformation matrix are expressed as follows: 

{
𝜎1

𝜎2

0
} = [𝑇(𝜃1)] {

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

}                                                                                                                (3.12) 

{
𝜀1

𝜀2

0
} = [𝑇(𝜃1)] {

𝜀𝑥

𝜀𝑦

1

2
𝛾𝑥𝑦

}                                                                                                           (3.13) 

 

3.4.3 Material Constitutive Matrix 

A material constitutive matrix, also known as the material stiffness matrix, relates the state 

of stresses and strains for an element.  It can be expressed in terms of secant or tangent 
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formulations.  The secant material constitutive matrix relates the absolute values of strains 

and stresses of the element, and the tangent material constitutive matrix relates the 

increment of the stresses and strains of the element.  Given that damage theories employ 

elastic theory for the material, a secant material constitutive matrix approach was selected. 

The secant material constitutive matrix Γ for a plane stress element with an elastic isotropic 

material is given by: 

𝛤 =
𝐸

(1+𝜐)

[
 
 
 
 

1

1−𝜐

𝜐

1−𝜐
0

𝜐

1−𝜐

1

1−𝜐
0

0 0
1

2

 

]
 
 
 
 

                                                                                                        (3.14) 

Given the fact that the Mazars model is developed for the analysis of concrete in three 

dimensions, the analysis of the element needs to be done in three dimensions, adopting the 

axial strain in the out-of-plane direction assumed in plane stress theory.  The use of the 3D 

properties of the concrete is useful for plane elements that are subjected to biaxial 

compression, where otherwise it would be impossible to obtain the equivalent strain as it 

is defined by tensile strains in the orthogonal directions of the applied stress. 

In the plane stress assumption, the material can expand and contract freely in the third 

direction, which would be the thickness of the element.  The corresponding value of the 

axial strain in the thickness direction, εz, can be obtained with  

𝜀𝑧 = −
𝜐

𝐸
∗ (𝜎𝑥+𝜎𝑦)                                                                                                                (3.15) 

With this assumption, the principal strain ε3 will always be the out-of-plane strain obtained 

using the plane stress theory, εz.   
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The initial material constitutive matrix Γc for concrete in three dimensions is given by.   

𝛤𝑐 =
𝐸𝑐

(1+𝜐)∗(1−2∗𝜐)

[
 
 
 
 
 
 
 
1 − 𝜐 𝜐 𝜐

𝜐 1 − 𝜐 𝜐
𝜐 𝜐 1 − 𝜐

 0

0

1−2∗𝜐

2
0 0

0
1−2∗𝜐

2
0

0 0
1−2∗𝜐

2 ]
 
 
 
 
 
 
 

                                       (3.16)   

while its corresponding inverted material constitutive matrix Γc
-1 is given by.   

𝛤𝑐
−1 =

[
 
 
 
 
 
 
 
 
 
     

1

𝐸𝑐
−

𝜐

𝐸𝑐
−

𝜐

𝐸𝑐

−
𝜐

𝐸𝑐
   

1

𝐸𝑐
−

𝜐

𝐸𝑐

−
𝜐

𝐸𝑐
−

𝜐

𝐸𝑐
   

1

𝐸𝑐

 0

0

2(1+𝜐)

𝐸𝑐
0 0

0
2(1+𝜐)

𝐸𝑐
0

0 0
2(1+𝜐)

𝐸𝑐 ]
 
 
 
 
 
 
 
 
 
 

                                                                (3.17) 

where Ec is the initial Young’s modulus of the concrete, and ν is the Poisson’s ratio. 

The material constitutive matrix relates the concrete principal stresses σp and strains εp as 

given by 

{𝜎𝑝} = (1 − 𝐷)[𝛤𝑐]{𝜀𝑝} 

where D is the damage in the material calculated from Mazars theory (Eqs.  3.1 – 3.10) 

 

3.4.4 Analysis Procedure of Concrete Plane Stress Structures 

After the damaged-material constitutive matrix Γc D is determined, the element stiffness 

matrix is evaluated using the basic finite element procedure dependent on the type of 

element used, and is expressed as: 
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[𝐾] = ∫[𝐵]𝑇[𝛤𝑐]𝐷[𝐵]𝑑𝑉                                                                                                           (3.18) 

where B is a matrix that depends on the element displacement functions. 

There are several solution schemes to perform nonlinear analyses of reinforced concrete 

structures.  One option is to use static integrators such as in displacement-controlled 

analysis, or dynamic integrators such as the Newmark method.  There are also several 

possible solution algorithms such as the Modified Newton method, and the Krylov-Newton 

method.  For the sake of simplicity, the flow chart for an iterative analysis solution, 

described in Fig. 3.14, performs a static analysis using load increment with the Newton-

Raphson method.   

In each iteration, the damaged material stiffness matrix Γc D is determined using the Mazars 

material model described previously, and the element stiffness matrix K and the element 

resisting force increment vector ΔF are calculated.  The damaged material constitutive 

matrix Γc D and the element stiffness matrix are iteratively refined until convergence 

criterion is achieved.   

The procedure for establishing the damaged material constitutive matrix using the Mazars 

model is shown in Fig. 3.14.  It should be noted that this procedure does not require an 

iterative procedure to establish the damaged material constitutive matrix, making the 

Mazars model computationally efficient for finite element analysis.  The source code 

developed in this research obtains the input strains of the element and calculates the 

corresponding stresses in the material, i.e. the procedure presented in the dotted square in 

Fig. 3.14. 
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Figure 3.14.  Nonlinear analysis algorithm 
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3.5 New ND Material Model in the OpenSees Framework 

In order to perform analysis on reinforced concrete plane stress structures, a new material 

class is implemented into the OpenSees framework.  The plane stress concrete material 

with the Mazars Damage model needs the following input parameters: 

 

Where $matTag is the unique material object integer tag, $Ec is the initial Young’s 

modulus of the concrete, $epsD0 is the initial damage threshold, $Ac and $Bc are material 

parameters that define the compressive behaviour of the concrete, $At and $Bt are material 

parameters that define the tensile behaviour of the concrete, and $nu is the Poisson’s ratio.   

 

3.5.1 Methodology.  Adding a New Multi-Dimensional Material, nDMaterial 

The modular and hierarchical nature of the OpenSees software, as seen in Fig. 3.15b), 

allows new material models to be added to the framework by keeping element and material 

implementations separate.  A new material model can be used in an existing element 

without modifying the element implementation.  Figure 3.15a shows the modules necessary 

for the OpenSees solution to create the executable file (OpenSees.exe).  These modules 

have their own sub-classes. 

The four essential steps needed to add a new multi-dimensional material model, 

nDMaterial, will be discussed next. 

Box 1. Mazars Material Model 

nDMaterial Mazars $matTag $Ec $epsD0 $Ac $Bc $At $Bt $nu 
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Figure 3.15.  OpenSees Class Hierarchy.  a) OpenSees application Solution, and b) Classes hierarchy 

 

3.5.1.1 Constructor and Functions in the nDMaterial Class Interface 

The nDMaterial class provides default implementations for the functions used to create a 

new subclass material model.  The functions that are defined as virtual, i.e. the functions 

that contain ‘(void)’ at the end of the function declaration, must be defined by the 

subclasses because the nDMaterial class does not provide a default implementation.  The 

C++ source code for the Mazars model is shown in Appendix A. The inclusion of the C 

and C++ libraries necessary, and the declaration of the classes, functions and variables of 

the Mazars model is done in the Header File (Mazars.h).  The implementation of these 

classes, functions and variables is done in the C++ File (Mazars.cpp).  The declaration of 
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the constructors, functions and variables is presented next, and a brief description of some 

of the most important functions of the source code is given. 

 

Public functions in the declarations are accessible and modifiable by other classes in the 

OpenSees framework.  These include the nDMaterial class virtual functions that need to 

be implemented in the new Mazars subclass, such as setTrialStrain(), getStrain(), 

Box 2. Mazars Material Functions Declaration 

class Mazars: public NDMaterial{ 
  public :  
   Mazars( ) ; 
   Mazars(int tag, double _Ec, double _epsD0, double _Ac, double _Bc, double 
_At, double _Bt, double _nu) ; 
 
    virtual ~Mazars( ) ; 
    void setInitials( ) ; 
 
    NDMaterial *getCopy( ) ; 
    NDMaterial *getCopy( const char *type ) ; 
 
    int getOrder( ) const ; 
    const char *getType( ) const ; 
 
    int commitState( ) ;  
    int revertToLastCommit( ) ; 
    int revertToStart( ) ; 
 
    int setTrialStrain( const Vector &strainFromElement ) ; 
 
    const Vector& getStrain( ) ; 
    const Vector& getStress( ) ; 
    const Matrix& getTangent( ) ; 
    const Matrix& getInitialTangent( ) ; 
 
    void Print( OPS_Stream &s, int flag ) ; 
    int sendSelf(int commitTag, Channel &theChannel); 
    int recvSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker                                                           
&theBroker); 
 
  private : 
   Matrix iniTangent, tTangent, cTangent, iniSmallTangent, tangent; 
   Matrix iniTangentInv, tTangentInv, cTangentInv; 
   Vector tStrain, cStrain, strain, tStress, cStress, stress; 
   double nu, Ec, epsD0, Ac, Bc, At, Bt, Beta; 
   double fac, tDam, cDam, tepseq, cepseq; 
} ; 
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getStress(), and getTangent().  The function setTrialStrain(), takes the strain vector 

provided from the element to the material and defines the stress-strain relationship, this is 

where the element calculations of the Mazars model are executed (Fig. 3.14 and Eqs. 3.1-

3.15); the functions getStrain(), getStress(), getTangent(), and getInitialTangent() return 

the current strain vector, stress vector, material tangent stiffness matrix, and initial tangent 

stiffness matrix, respectively, for the global coordinate system. 

setInitials() is the function responsible to fill the vectors and matrices with the 

corresponding values.  The initial stiffness matrix is filled with its values, and the vectors 

are filled with zeros that will be substituted with values from the element calculations. 

The function commitState() is used to update the internal history variables at the converged 

solution path in the material.  The function revertToLastCommit() is provided to return the 

history variables to the last committed state when convergence is not achieved in the 

current step.  The function revertToStart() resets the history variables to their initial state. 

The functions sendSelf() and recvSelf() communicate with other classes in the OpenSees 

framework.  The function sendSelf() writes the material properties and the last committed 

history variable to a vector, and then sends it to the Channel object.  The function recvSelf() 

receives data from the Channel object and imports the data of the Mazars object. 

The functions getCopy() and getCopy(const char *type) are the functions in charge to 

create clones of the material, so it can be used in several elements within the same analysis. 

OPS_Mazars(void) is the function responsible of the parsing of the material.  This function 

makes sure that all the input values are provided and that they are valid values. 
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getOrder() and getType() are functions that communicate with the rest of the OpenSees 

modules, indicating the order of the strain vector needed, and the name of the material to 

execute. 

The data in the private declaration of the Mazars class is only accessible from within the 

class itself.  This is where the variables needed to perform the calculations in the material 

model are declared. 

 

3.5.1.2 Class Tags 

In order for the new Mazars material model to communicate with other classes in the 

OpenSees framework, a new internal class tag needs to be defined.  This is done as follows: 

 

 

3.5.1.3 TclModelBuilderNDMaterialCommand 

The new Mazars material model needs to be added to the OpenSees Tcl model builder to 

be used by the analysis models defined in the Tcl script input files.  This command parses 

the material parameters in Tcl script input files and transfers them to the Mazars material 

constructor.  The command is as follows: 

Box 3. classTags 

#define ND_TAG_Mazars  45 
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3.5.1.4 FEM_ObjectBrokerAllClasses 

The FEM_ObjectBrokerAllClasses returns an empty material object that can be populated 

with the data from the function recvSelf().  The nDMaterial model is modified to allow 

Box 4. Tcl Model Builder 

#include <Mazars.h> 
. 
. 
. 
  void * 
OPS_Mazars(void) 
{ 
  NDMaterial *theMaterial = 0; 
  int numArgs = OPS_GetNumRemainingInputArgs(); 
  if (numArgs != 8) { 
    opserr << "Want: nDMaterial Mazars tag? Ec? epsD0? Ac? Bc? At? Bt? nu?" << 
endln; 
    return 0;  
  } 
  int iData[1]; 
  double dData[7]; 
  int numData = 1; 
  if (OPS_GetInt(&numData, iData) != 0) { 
    opserr << "WARNING invalid integer tag: nDMaterial Mazars \n"; 
    return 0; 
  }   
  numData = 7;    
  if (OPS_GetDouble(&numData, dData) != 0) { 
    opserr << "WARNING invalid data: nDMaterial Mazars : " << iData[0] <<"\n"; 
    return 0; 
  }     
  theMaterial = new Mazars(iData[0], dData[0], dData[1], dData[2], dData[3], 
dData[4], dData[5], dData[6]);  
  return theMaterial; 
} 
. 
. 
. 
 
else if (strcmp(argv[1],"Mazars") == 0) { 
 void *theMat = OPS_Mazars(); 
 if (theMat != 0) 
 theMaterial = (NDMaterial *)theMat; 
 else 
 return TCL_ERROR; 
} 
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parallel processing and database programming to the new Mazars material object.  The 

FEM_ObjectBroker file needs to be modified, including the following: 

 

 

3.6 Summary 

The description of the material formulations from the Mazars concrete damage model are 

given, and parametric analyses for the influence of its variables are shown. The Mazars 

model is adapted for the use in biaxial elements in finite element analysis, using plane 

stress theory.  Then, the model is implemented in the open-source, FEA framework 

OpenSees for the use in multilayer-shell elements.  By doing so, the material model can be 

used for the modelling of 3D RC structures that contain plane elements such as shear walls, 

slabs or deep beams. 

Box 5. FEM_ObjectBrokerAllClasses 

#include <Mazars.h> 
 
. 
. 
. 
 
NDMaterial* 
FEM_ObjectBrokerAllClasses::getNewNDMaterial(int classTag) 
{ 
  switch(classTag) { 
   
case ND_TAG_Mazars: 
   return new Mazars(); 
  } 
} 
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CHAPTER 4 – VERIFICATION 

 

In this chapter, the Mazars Concrete Damage material implemented into the OpenSees 

computing platform is verified with experimental data.  

 

4.1 Introduction 

A new concrete material model was implemented in OpenSEES for use in 2D 

damage- based finite element analysis.  The proposed material model is based on damage 

mechanics and is capable of modeling the biaxial behaviour of concrete under static and 

dynamic loadings.  Three types of reinforced concrete structures are modelled using the 

OpenSees computing platform with the new Mazars concrete damage material and 

compared with test results.  The first is a simply supported beam under monotonic load 

built and tested at the University of Alberta in 2013, the second is a cantilevered shear wall 

under cyclic loading tested by Hiotakis (2004), and the third is a full-scale, four-story 

reinforced concrete building with shear walls tested under biaxial seismic excitation at the 

E-Defense shake table facilities in Japan (Nagae et al. 2011a; 2011b; 2012). 

 

4.2 Analysis of a RC Beam Under Monotonical Loading 

A reinforced concrete beam was designed and tested as part of the Civ E 672 course, 

“Behaviour and Design of Reinforced Concrete Elements” at the University of Alberta in 

December 2013.  The beam was simply supported and was subjected to four-point bending.  

The beam had a rectangular cross-section (Fig. 4.1).  The section dimensions were 
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150 x 300 mm.  The longitudinal reinforcement consisted of two 15M (16 mm) bars at the 

bottom of the beam, and two 10M (11.3 mm) bars at the top of the beam.  Transverse 

reinforcement consisted 10M (11.3 mm) stirrups spaced at 220 mm on both ends of the 

beam.  The beam supports were located at 2400 mm from each other, and the specimen 

was loaded with two point loads at 400 mm each from the beam centre line.  The 

compressive strength of the concrete at the time of the test was 37.2 MPa, and the 

associated strain at peak stress was measured as 0.004.  The yield stress of the reinforcing 

steel was measured as 475 MPa and the modulus of elasticity was 183,333 MPa. The 

strain- hardening modulus was calculated as 2,872 MPa, and the strain associated to onset 

of strain-hardening was 0.01.  The beam was tested under quasi-static, monotonic load until 

failure.  The failure mode consisted of buckling of the compressive reinforcement (top bars 

at the middle of the beam) and crushing of the concrete in compression (top of the beam, 

middle section). 

 

Figure 4.1.   Beam geometric details.  Dimensions in mm. 



66 

 

4.2.1 FEA Model and Analysis Method 

The beam model was built in OpenSEES using 312 four-node multilayer-shell elements 

for the concrete (Fig. 4.2). Each element consisted of three layers with a thickness of 

50 mm.  For the steel reinforcement 140 truss elements were used.  The adopted mesh was 

able to accommodate the steel reinforcement in their actual positions within the beam.  The 

concrete was modelled using the new Mazars material.  The parameters used to model the 

concrete were Ec = 18602.98 MPa, εD0 = 0.0002, Ac = 1.33, Bc = 1260.0, At = 0.97, 

Bt = 10,000.0 and ν = 0.18. The steel reinforcement was modelled using the 

Giuffre- Menegotto-Pinto steel model with isotropic strain hardening (Menegotto, 1978).  

Boundary conditions were set in nodes 5 and 49, they were restricted in the y-direction, 

while the middle of the beam was supported in the x-direction to allow for symmetry.  The 

load was applied in two steps.  First, the gravitational load was applied at all the top nodes 

of the beam and kept constant.  Then, a displacement-controlled analysis was conducted 

by applying a downward displacement at nodes 337 and 353.  The analysis was performed 

using the Krylov-Newton algorithm with current tangent for the iterations, given that is 

less computationally expensive in static and quasi-static analyses (Scott and Fenves, 2003).  

The nodal displacement and corresponding vertical forces were recorded at each converged 

displacement step. 

 

 

Figure 4.2.  FEA model of RC beam 

Node #5 Node #49 

Node #337 Node #353 
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4.2.2 Comparison of Predictions and Experimental Results 

The experimental and calculated load-deflection responses of the beam are shown in 

Fig. 4.3.  The comparison of the load-deflection responses shows satisfactory agreement 

between the experiment and the analysis.  However, the cracking moment of the beam was 

overestimated by the finite element model and yielding moment presented itself at a smaller 

strain in the test than the model.  This is given by the overestimation of the tensile capacity 

of the concrete.  The strain (ε0) at the maximum strength of the concrete measured in the 

tests was double of a regular concrete (0.004 vs. 0.002).  To account for this increase in the 

strain, the strain at which the damage starts (εD0) in the Mazars’ model needed to be 

increased accordingly.  By having a single variable (εD0) representing where the damage 

starts in both tension and compression, the tensile response was affected as well, giving the 

material a higher tensile strength.   

 

Figure 4.3.  Analysis results of RC beam 

 

The failure mode in both the test and the finite element model was given by the crushing 

of the concrete in compression. Buckling cannot be simulated by the steel material used in 
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the model, but despite this limitation the model had a satisfactory performance in predicting 

the failure displacement and load.  This is explained because the occurrence of buckling 

and the onset of concrete crushing occurred simultaneously in the experiment. 

 

4.3 Analysis of a RC Shear Wall Under Cyclic Loading 

The experimental results obtained from the cantilevered, reinforced concrete wall tested by 

Hiotakis (2004) were used to validate the model performance under reversed, cyclic load.  

The wall specimen consisted of a cantilevered, 1.8 x 1.5 x 0.1 m shear wall specimen, a 

heavily reinforced foundation block, and a cap beam at the top for distribution of the 

applied load, as seen in Fig. 4.4.   The wall was fixed to the laboratory strong floor through 

posttensioned rods to achieve a rigid connection.  The wall was subjected to cyclic lateral 

loading, of increasing magnitude, applied at the cap beam through hydraulic actuators.  The 

vertical reinforcement of the shear wall was composed of six pairs of 10M (11.3 mm) bars 

uniformly distributed along the wall and spaced at 280 mm, which corresponded to a steel 

reinforcement ratio (ρs) of 0.8%.  The horizontal reinforcement of the shear wall consisted 

of five pairs of 10M (11.3 mm) bars uniformly distributed and spaced at 400 mm, which 

corresponded to a steel reinforcement ratio (ρs) of 0.5%.  Closed stirrups consisting of 10M 

(11.3 mm) bars spaced at 80 mm along the height of the wall were anchored around the 

two extreme vertical reinforcement pairs as boundary reinforcement, for a reinforcement 

ratio (ρs) of 3.0%.  The concrete compressive cylinder strength at the time of test was 

36.2 MPa, and the yield stress of the reinforcing steel bars was 425 MPa. 
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Figure 4.4.  Shear wall geometric details (Hiotakis, 2004) 

 

4.3.1 FEA Model and Analysis Method 

A RC shear wall model for finite element analysis, using the new Mazars concrete damage 

material developed in the OpenSees framework, was created.  The shear wall model was 

built using 270 four-node rectangular, multilayered shell elements, as seen in Fig. 4.5.  The 

mesh was divided into two regions, the core and the boundaries, as indicated by the 

different shading.  It was assumed that the cap-beams are far stiffer than the shear wall, so 

to keep the simplicity in the model, the bottom and top slab were not modelled and were 

instead considered by binding the horizontal degree of freedom of all the nodes in the top 

of the wall, and by fixing all the nodes at the base of the shear wall.  A cyclic displacement 

history was applied to the centre top node of the wall in the horizontal direction, and the 

horizontal forces were recorded.  The size of the elements at the wall core and boundaries 

are 100 x 100 mm. 
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To model the steel rebars and stirrups, the reinforcement ratios at the wall boundaries and 

core are assigned as uniformly-distributed reinforcement within the shell elements.  This 

procedure allows for a more computationally efficient solution compared to modeling the 

reinforcement as truss elements, helping the model to reach convergence in each step when 

complex loading configurations are presented.  The failure criterion for steel reinforcement 

was fracture in tension. 

The layers for the shell elements were divided in concrete layers and steel reinforcement 

layers. The thickness of the concrete in the shear wall (tc) was divided into several layers 

with similar thicknesses. The thickness of the reinforcing steel was calculated using 

Eq. 4.1, obtaining a relative steel thickness (ts) for each of the steel layers. 

𝜌𝑠 =
𝐴𝑠

𝐴𝑐
=

𝑡𝑠

𝑡𝑐
                                                                                                                      (4.1) 

The multilayer-shell elements at the wall boundaries consisted of 12 layers.  The two outer-

most layers were the unconfined concrete cover with a thickness of 12.5 mm each, two 

layers consisting of the stirrups with a thickness (ts) of 0.8889 mm each, two layers 

consisting of the horizontal reinforcement with a thickness of 0.2778 mm each, two layers 

consisting the vertical reinforcement with a thickness of 0.4 mm each, and four layers 

consisting of the confined concrete with a thickness of 17.96665 mm each.   

The multilayer-shell elements at the wall core consisted of 8 layers.  The two outer-most 

layers were the unconfined concrete cover with a thickness of 12.5 mm each, two layers 

consisting of the horizontal reinforcement with a thickness of 0.2778 mm each, two layers 

consisting the vertical reinforcement with a thickness of 0.4 mm each, and two layers 

consisting of the unconfined concrete with a thickness of 36.8222 mm each. 
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The concrete at the boundaries of the wall was modeled as confined due to the presence of 

additional stirrups, as seen in Fig. 4.4, and unconfined concrete was used for the wall core.  

The response of the concrete was modeled with the new Mazars concrete damage material, 

and concrete failure was considered to occur when the crushing strength in compression 

was reached. The Mazars model was developed to represent the behaviour of normal-

strength unconfined concrete, but by adjusting the material parameters (εD0, Ac, Bc, At, Bt), 

confinement properties as per Mander’s model were simulated in the concrete material. 

The parameters used to model the unconfined concrete were Ec = 30,000 MPa, 

εD0 = 0.00008, Ac = 1.55, Bc = 2,700, At = 0.97, Bt = 7,000.0 and ν = 0.18. And the 

parameters used to model the confined concrete were Ec = 30,000 MPa, εD0 = 0.00008, 

Ac = 0.5, Bc = 1,200, At = 0.97, Bt = 7,000.0 and ν = 0.18.  

 

 

Figure 4.5.  FEA model of RC shear wall 

 

The load pattern in the finite element model is defined per the test conditions.  The cyclic 

load was applied as a horizontal nodal displacement at node 297 (Fig. 4.5), which varied 

 

 

Node #297 
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according to the displacement control scheme.  The file includes the material model 

assignment for each element, analysis method, and nonlinear solution algorithm.  The 

Krylov-Newton algorithm with current tangent for the iterations was selected for the 

analysis.  The nodal displacement and corresponding horizontal forces were recorded at 

each converged displacement step, and stress and strain of the elements were monitored. 

 

4.3.2 Comparison of Predictions and Experimental Results 

The calculated vs. measured global base shear-top displacement response of the shear wall 

is presented in Fig. 4.6. 

It is seen that the maximum strength and displacement calculated at each cycle with the 

model has a reasonable correspondence with the measured results.  However, the 

predictions for the hysteretic behaviour do not capture well the energy dissipation capacity 

(as given by the area within the hysteretic loops), residual displacement, and pinching 

effects seen in the experimental results.  The difference in the analytical and experimental 

results is mainly in the unloading and reloading cycles of the specimen. The test reflects 

the common behaviour of concrete to develop plastic (residual) strains when damaged after 

each cycle. However, Mazars concrete damage model is not capable of reproducing this 

behaviour, the damage is only reflected in the stiffness of the material.  The unloading and 

reloading paths after each cycle will always return to the origin of the stress-strain 

relationship in the Mazars model.  So, the only plastic deformations observed in the shear 

wall calculated response, are generated from the residual strains in the steel reinforcement.  

A concrete damage model that separates the concrete curve in its ‘elastic’ and ‘plastic’ 

parts, could represent the residual strains that affect concrete. 
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Figure 4.6.  Cyclic analysis results of RC shear wall 

 

4.4 Analysis of a Full-Scale Four-Story RC Building Under Seismic Loading 

A full-scale building structure was tested by Nagae et al. (2015) using the E-Defense 

shaking table facility (Japan) in 2010.  The structure was a four-story reinforced concrete 

building designed according to the Japanese seismic design code (AIJ, 1999 and 2010). 

The objective of the test was to assess the performance in service, design, and maximum 

considered earthquake shaking of full-scale structures designed under the current design 

codes for seismic regions. 
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Figure 4.7.  RC building geometric details (Nagae et al. 2011b) 

 

Figure 4.7 shows the plan and framing elevations of the structure.  The height of each story 

is 3 m.  Lateral support in the longitudinal (L) direction was provided by means of a 

moment frame system of two spans of 7.2 m each, and in the transverse (T) direction a pair 

of multi - story RC shear walls were incorporated in the exterior frames of one span of 

7.2 m.  The foundations were fixed on the shaking table to transmit the full motion to the 

structure.  The column sections of the structure were 500 x 500 mm.  In the moment frame 

Elevations 

Plan view 
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of the L-direction, the beam depth was 600 mm, and in the T-direction, the wall section 

was 250 x 2500 mm.  Walls were coupled to the corner columns by beams with a depth of 

300 mm.  The thickness of the top slab was 130 mm and the foundation beam had a depth 

of 1200 mm.   

Table 4.1 shows the complete list of the cross-section dimensions and reinforcement for 

the RC elements of the structure.  The building was designed following the Japanese 

Building Standard for RC building.  The concrete specified design strength was 27 MPa, 

the longitudinal reinforcement had a nominal yield strength of 345 MPa, and the shear 

reinforcement had a nominal yield strength of 295 MPa.  Table 4.2 shows the actual 

material properties at the time of the test.  The diameters of the longitudinal reinforcement 

of the beams and columns were 22 mm and 19 mm, while the reinforcement at the walls 

were 19 mm and 13 mm, and the diameter of the shear reinforcement was 10 mm. 

The weight of the structure was estimated considering the structural members, the 

measuring equipment, and safety steel frames.  The weights of the floors of the building 

were 867 kN for the second floor, 872 kN for the third floor, 867 kN for the fourth floor, 

and 934 kN for the roof, for a total weight of the structure estimated at 5877 kN. 
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Table 4.1.  List of reinforcing steel (Nagae et al. 2011b) 
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Table 4.2.  RC building actual material properties (Nagae et al. 2011b) 

 

The Kobe records for the 1995 Hyogoken-Nanbu earthquake were the input ground 

motions used in the test.  The accelerograms in the North-South, East-West, and Up-Down 

directions were provided as input motions for the longitudinal direction, transverse 

direction, and vertical direction respectively.  The acceleration records for the seismic 

motions are presented in Fig. 4.8.  The intensity of the motions was gradually increased 

during the test to observe the damage process in the structure.  The intensity increments for 

the Kobe record were 25%, 50%, and 100% of the recorded motions for the earthquake. 
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Figure 4.8.  Input ground motions 

 

4.4.1 FEA Model and Analysis Method 

A model was developed in the OpenSees framework with the new Mazars concrete damage 

material that described the behaviour of the full-scale RC building.  Due to the complexity 

of the structure, different types of elements and materials in the OpenSees framework were 

used to create the model.  Figure 4.9 shows the finite element model in the OpenSees 

framework. 

Columns and beams were created using linear uniaxial elements with cross-sections 

composed of fibers with either concrete or steel materials.  Actual material properties at 

the time of the test were used in the model (Table 4.2).  Confinement provided by the 

stirrups in the columns and beams was accounted for, using Mander’s confinement theory 

(Mander et al. 1988).  The response of the concrete was modeled with the Kent-Scott-Park 
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concrete material (Scott et al. 1982), and concrete failure was considered to occur when 

the crushing strength in compression was reached.  The response of the reinforcing steel 

was modeled using a Giuffre-Menegotto-Pinto steel material with isotropic strain 

hardening (Menegotto and Pinto, 1973), and the failure criterion for steel reinforcement 

was fracture in tension. 

 

 

Figure 4.9.  FEA model of RC building 
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The shear walls at each story were built using 16 four-node rectangular shell elements each, 

such that the size of the elements is 700 x 700 mm.  The response of the concrete was 

modeled with the new Mazars concrete damage material, and the reinforcing steel was 

defined as a uniformly-distributed reinforcement ratio within the shell elements. 

The nodes at the base were fixed in every degree of freedom, although bond-slip behaviour 

as proposed by Wehbe et al. (1997), was considered at the base of the columns, using zero-

length elements with a hysteretic material with each of the sections properties.  The load 

pattern in the finite element model is defined in two steps.  First, the gravitational load was 

applied at the horizontal members and set constant.  Then, the ground motions in each 

direction were created and imposed to all the base nodes. 

The transient analysis was performed using a Newton algorithm, with a Newmark 

integrator to solve the systems of equations.  This solution scheme has shown to perform 

better in complex structures, having fewer convergence problems in transient analyses.  

The damping of the structure was defined using Rayleigh Reitz damping of 2.0% in the 

first three modes of vibration.  The nodal displacement and corresponding forces were 

recorded at each converged step, and the stress and strain of the elements were monitored. 

 

4.4.2 Comparison of Predictions and Experimental Results 

The results presented are obtained in both the longitudinal and transverse direction of the 

building, with the lateral support provided by the moment-frame system, and shear walls 

respectively (Fig. 4.10). 
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Figure 4.10.  Transverse (T) and Longitudinal (L) directions of RC building 

 

Figures 4.11, 4.12 and 4.13 show the comparisons of the analytical results with the 

experimental results for the reinforced concrete model, in terms of base shear for the 25%, 

50%, and 100% Kobe records.  Figure 4.11 indicates that the model is capable of capturing 

the global base shear response of the RC building for the 25% Kobe record in both the 

longitudinal and the transverse directions, which is essentially elastic.  Similarly, the base 

shear for the 50% Kobe record was captured accurately, as seen in Fig. 4.12, whereas for 

the 100% Kobe (Fig. 4.13) record, the forces are generally overestimated at the peak 

acceleration of the motion.  One possible explanation of the overestimation of the base 

shear forces is that neglecting the deformations associated with sliding at the wall base 

T-direction 

L-direction 



82 

 

creates a stiffer structure that dissipates less energy at the peak accelerations of the motion.  

Another potential factor affecting the results is the inability of the Mazars model to register 

any residual strain, again diminishing the energy dissipation capacity of the structure, 

particularly on the transverse direction. 

For all three records, the overall force in both directions is reasonably captured by the 

model, although strength degradation at peak accelerations is moderately overestimated for 

the 100% Kobe record. 

 

 

Figure 4.11.  RC building base shear measured and calculated with 25% Kobe in a) longitudinal, and 

b) transverse directions 
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Figure 4.12.  RC building base shear measured and calculated with 50% Kobe in a) longitudinal, and 

b) transverse directions 

 

 

Figure 4.13.  RC building base shear measured and calculated with 100% Kobe in a) longitudinal, 

and b) transverse directions 
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Table 4.3 shows the measured and calculated distribution of the maximum global roof 

drifts of the reinforced concrete building.  They were estimated at the centre of the roof 

floor in both the longitudinal and the transverse directions.  The maximum calculated roof 

drift for the 25% Kobe record is overestimated in both directions, while the drifts for the 

50% and 100% records underestimate those of the test.  

 

 Maximum roof drift measured Maximum roof drift calculated 

Input wave L-direction, mm T-direction, mm L-direction, mm T-direction, mm 

JMA-Kobe 25% 16.9 24.2 21.78 39.84  

JMA-Kobe 50% 122.4 106.9 84.52 84.67 

JMA-Kobe 100% 242.7 323.9 182.54 313.82 
 

Table 4.3.  Maximum roof drifts for RC building 

 

Some potential reasons for this discrepancy in the results include the model’s inability to 

predict shear deformations of the uniaxial elements present in columns and beams in the 

longitudinal direction, as well as the fact that sliding at the base of the shear walls in the 

transverse direction is not considered.  This gives the structure a stiffer behaviour and 

decreases the displacements on each story.  However, the results obtained have reasonable 

accuracy for all three intensities of the motion and resemble the actual behaviour of the RC 

structure. 

 

4.5 Summary 

The comparison of the models in OpenSees using the Mazars model for the biaxial 

behaviour of concrete with the results from literature tests, show that the Mazars model can 

capture the general response of different types of RC structures subjected to various loading 
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conditions.  The maximum strength and displacement of the structures is predicted with 

reasonable accuracy; however, the model does not capture the energy dissipation 

capabilities of concrete accurately, nor it attempts to describe the cracking mechanism of 

these structures.  
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Chapter 5 – SUMMARY, CONCLUSIONS AND FUTURE WORK  

 

This chapter summarizes the content of the thesis and gives the conclusions drawn from 

the research. Furthermore, a discussion of future research that will support advancement of 

this work is presented. 

 

5.1 Summary 

The thesis presents the implementation of the Mazars model, for the behaviour of concrete 

in two dimensions in finite element analysis, in the open-source, FEA framework 

OpenSees.  The Mazars model is a damage-based material model that is simple enough for 

modelling RC structures at the system level, yet reasonably accurate.  OpenSees allows 

users to expand and modify its source code in a modular fashion.  The new material model 

is able to describe the behaviour of concrete in two dimensions in a simple way with a 

reasonable accuracy, which can be used with a multilayer-shell element in the modelling 

of complex 3D RC structures subjected to extreme loading. 

An assessment of some of the most prominent element formulations for the biaxial 

behaviour of concrete in FEA is presented in Chapter 2.  The uniaxial and biaxial behaviour 

of concrete is briefly explained, giving the background of the efforts in research to create 

a material model for the use in the FEA analysis of RC structures.  The advantages and 

disadvantages of these theories and the finite element programs for the nonlinear analysis 

of structures, are discussed.  Then, the presentation of the selected material model for this 

research is made in Chapter 3.  The description of the element formulations by the Mazars 
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concrete damage model were given, and parametric analyses for the influence of its 

variables were shown.  The element formulations were adapted for the use in a plane-stress 

element, and it was implemented in the OpenSees framework for the use in multilayer-

shell elements (ShellMITC4).  Last, the evaluation of the new Mazars model in OpenSees 

is presented in Chapter 4.  Comparison of the results of analyses of RC structures using 

this model with experimental results from the literature indicates that the Mazars model 

can capture the general response parameters of RC structures subjected to monotonic, 

cyclic and dynamic loads, in terms of peak displacement and strength, in a fast manner 

without convergence problems. 

 

5.2 Conclusions 

The following conclusions can be drawn from the work presented in this thesis: 

1. Current concrete models implemented in FEA are not suitable for the analysis at 

the system level of complex RC structures subjected to extreme loading without 

numerical-convergence problems. 

2. The new Mazars concrete damage model is a rational and appropriate model 

capable of predicting the behaviour of concrete plane stress elements, using simple 

calculations that do not require complex solution algorithms within the element 

formulations. 

3. Concrete compressive and tensile stress-strain response can be accurately described 

with the model by adjusting the material parameters (Ec, εD0, Ac, Bc, At, Bt). 
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4. Open-source, finite element analysis programs are useful tools for the 

implementation of material models that are simple, yet accurate in the 

representation of the behaviour of RC structures at the system level.  

5. The response of the FEA model of a RC beam showed satisfactory agreement with 

the test results.  The failure load and deflection of the beam were predicted 

successfully. However, the dependency of the tensile and compressive behaviour 

in the same variable (εD0) makes the model overestimate the cracking and yielding 

moment. 

6. The maximum strength and displacement at each cycle of a RC shear wall under 

reverse-cyclic loading were calculated with the FEA model, showing moderate 

agreement with the measured response.  The model failed to predict the energy 

dissipation capacity and residual displacement of the specimen. 

7. The overall response of the RC building subjected to earthquake loading was 

predicted with reasonable accuracy.  The shear force and roof displacements 

resemble the measured ones throughout the loading history.  

8. The damage in the model affects the stiffness of the material exclusively, not 

considering residual (plastic) strains, nor it attempts to describe the cracking 

mechanism.  Therefore, cyclic behaviour of the material fails to represent energy 

dissipation that would be characteristic of a concrete material. 

9. The overall behaviour of concrete is well represented with the new Mazars model 

in OpenSees for analysis at the system level of RC structures, without numerical-

convergence problems.  Detailed information at every stage, such as crack 

mechanisms or energy dissipation, is not very well represented.  
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5.3 Future Work 

Several ideas for future studies could be suggested based on the work presented in this 

research. 

1. Currently, the material model is not capable of representing residual (plastic) 

strains.  A damage model that separates the “elastic” and “plastic” parts of the 

compressive concrete curve can address this issue. 

2. An explicit relationship to represent better the behaviour of the material when is 

subjected to shear, instead of exclusively using the β factor. 

3. The complete separation of the tensile behaviour from the compressive behaviour 

by defining two damage-strain thresholds (εD0). 

4. A study of the correlation of the parameters necessary to model the concrete curves 

using the Mazars model (Ec, εD0, Ac, Bc, At, Bt), with the parameters commonly 

obtained from concrete tests (f’c, ε0, ft). 



90 

 

REFERENCES 

 

Abaqus FEA. (2009, May). Abaqus Analysis User's Manual. 

http://abaqusdoc.ucalgary.ca/v6.9/books/usb/default.htm?startat=pt05ch19s06abm

38.html. Retrieved from 

http://abaqusdoc.ucalgary.ca/v6.9/books/usb/default.htm?startat=pt05ch19s06abm

38.html 

Ahmed, A. (2014). Modelling of a reinforced concrete beam subjected to impact 

vibration using ABAQUS. International Journal of Civil and Structural 

Engineering, 4(3). 

AIJ. (1990). Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings 

Based on the Inelastic Displacement Concept. Tokyo, Japan: Architectural 

Institute of Japan. 

AIJ. (2010). Standard for Structural Calculation of Reinforced Concrete Structures. 

Tokyo, Japan: Architectural Institute of Japan. 

Ali, A., Kim, D., & Cho, S. (2013, February). Modeling of nonlinear cyclic load behavior 

of I-shaped composite steel-concrete shear walls of nuclear power plants. Nuclear 

Engineering and Technology, 45(1), 89-98. 

Attard, M., & Mendis, P. (1993). Ductility of High Strength Concrete Columns. 

Australian Civil Engineering Transactions, 295-306. 



91 

 

Ayoub, A., & Filippou, F. (1998, March). Nonlinear Finite-Element Analysis of RC 

Shear Panels and Walls. Journal of Structural Engineering, ASCE, 124(3), 298-

308. 

Dvorkin, E., Pantuso, D., & Repetto, E. (1995). A formulation of the MITC4 shell 

element for finite strain elasto-plastic analysis. Comput. Methods Appl. Mec. Eng., 

125(1), 17-40. 

Ebead, U., & Neale, K. (2005). Interfacial behaviour of FRP-concrete joints subjected to 

direct shear. Proceedings, Annual Conference - Canadian Society for Civil 

Engineering.  

Fenves, G. (2001). Annual Workshop on Open System for Earthquake Engineering 

Simulation. (P. E. Center, Ed.) Retrieved from http://opensees.berkeley.edu/ 

Genikomsou, A., & Polak, M. (2014). Finite Element Analysis of a Reinforced Concrete 

Slab-Column Connection using ABAQUS. Structures Congress, ASCE.  

Hamon, F. (2013). Code Aster: Mazars Damage Model Revision 10461. Retrieved from 

http://www.code-aster.org/doc/v11/en/man_r/r7/r7.01.08.pdf 

Han, J., Li, Z., & Song, J. (2010). The application of finite element analysis software 

(ABAQUS) in structural analysis. International Conference on Computational 

and Information Sciences. Chengdu, China. 

Hiotakis, S. (2004). Repair and Strengthening of Reinforced Concrete Shear Walls for 

Earthquake Resistance Using Externally Bonded Carbon Fibre Sheets and a Novel 



92 

 

Anchor System. Master's thesis, Department of Civil and Environmental 

Engineering. 

Hognestad, E. (1951). A study on combined bending and axial load in reinforced concrete 

members. University of Illinois Engineering Experiment Station, 43-46. 

Hsu, T., & Mo, Y. (2010). Unified Theory of Concrete Structures. Houston: John Wiley 

and Sons Ltd. 

Hsu, T., & Zhu, R. (2002). Softened Membrane Model for Reinforced Concrete Elements 

in Shear. Structural Journal of the American Concrete Institute, 99(4), 460-469. 

Izumo, J., Shin, H., Maekawa, K., & Okamura, H. (1992). An Analyitical Model for RC 

Panels Subjected to In-plane Stresses. Proceedings of the International Workshop 

on Concrete Shear in Earthquake (pp. 206-215). Houston: Elsevier Science 

Publishers, Inc. 

Kachanov, L. (1958). Time of the rupture process under creep conditions. Izv. Akad. 

Nauk SSR Otd., 8, 26-31. 

Karsan, P., & Jirsa, J. (1969, December). Behavior of Concrete under Compressive 

Loading. Journal of Structural Division, ASCE, 95(ST12), 2543-2563. 

Kent, D., & Park, R. (1971). Flexural members with confined concrete. Journal of the 

Structural Division, ASCE, 97(ST7), 1969-1990. 

Lee, H., & Kuchma, D. (2007). Seismic overstrength of shear walls in parking structures 

with flexible diaphragms. Journal of Earthquake Engineering, 11(1), 86-109. 

doi:10.1080/13632460601033488 



93 

 

Legeron, F., Paultre, P., & Mazars, J. (2005). Damage Mechanics Modeling of Nonlinear 

Seismic Behavior of Concrete Structures. Journal of Structural Engineering, 

ASCE, 131(6), 946-955. 

Lemaitre, J. (1992). A Course on Damage Mechanics. Springer-Verlag. 

Li, Z. (2011). Advanced Concrete Technology. John Wiley and Sons Ltd. 

Loland, K. (1980). Continuous damage model for load-response estimation of concrete. 

Cement. Concr. Res., 10(3), 395-402. 

Lu, X., Xie, L., Guan, H., & Lu, X. (2015, June). A Shear Wall Element for Nonlinear 

Seismic Analysis of Super-Tall Buildings Using OpenSees. Finite Element in 

Analysis and Design, 98, 14-25. 

Luu, H., Ghorbanirenani, I., Leger, P., & Tremblay, R. (2013). Numerical Modeling of 

Slender Reinforced Concrete Shear Wall Shaking Table Tests Under High-

Frequency Ground Motions. Journal of Earthquake Engineering, 17(4), 517-542. 

doi:10.1080/13632469.2012.767759 

Mander, J., Priestly, M., & Park, R. (1988). Theoretical Stress-strain Model of Confined 

Concrete. Journal of Structural Engineering, 114(8), 1804-1826. 

Mansour, M., & Hsu, T. (2005). Behavior of Reinforced Concrete Elements under Cyclic 

Shear: Part 2 - Theoretical Model. Journal of Structural Engineering, ASCE, 

131(1), 54-65. 



94 

 

Mazars, J. (1984). Application de la mecanique de l'endommangement au compportement 

non lineaire et a la ruptura du beton de structure. These de Doctorate d'Etat, 

L.M.T., Universite Paris, France. 

Mazars, J., Hamon, F., & Grange, S. (2015). A new 3D damage model for concrete under 

monotonic, cyclic and dynamic loading. Materials and Structures, 48, 3779-3793. 

Mazars, J., Kotronis, P., & Davenne, L. (2002). A new modelling strategy for the 

behaviour of shear walls dynamic loading. Earthquake Engineering and 

Structural Dynamics, 31, 937-954. 

Menegotto, M., & Pinto, P. (1973). Method of Analysis for Cyclically Loaded Reinforced 

Concrete Plane Frames Including Changes in Geometry and Nonelastic Behavior 

of Elements under Combined Normal Forced and Bending. IABSE Symposium on 

Resistance and Ultimate Deformability of Structres Acted on by Well-Defined 

Repetead Loads. Lisbon, Portugal. 

Mergos, P., & Beyer, K. (2013). Modelling shear-flexure interaction in equivalent frame 

models of slender reinforced concrete walls. In Struct. Design Tall Spec. Build. 

Wiley Library. doi:10.1002/TAL.1114 

Nagae, T., Ghannoum, W., Kwon, J., Tahara, K., Fukuyama, K., Matsumori, T., . . . 

Moehle, J. (2015, March-April). Design Implications of Large-Scale Shake-Table 

Test on Four-Story Reinforced Concrete Building. ACI Structural Journal , 

112(S12), 135-146. 

Nagae, T., Tahara, K., Fukuyama, K., Matsumori, T., Shiohara, H., Kabeyasawa, T., . . . 

Nishiyama, I. (2011a). Large-Scale Shaking Table Tests on A Four-Story RC 



95 

 

Building. Journal of Structural and Construction Engineering, 76(669), 1961-

1970. 

Nagae, T., Tahara, K., Taiso, M., Shiohara, H., Kabeyasawa, T., Kono, S., . . . Tuna, Z. 

(2011b). Design and Instrumentation of the 2010 E-Defense Four-Story 

Reinforced Concrete and Post-Tensioned Concrete Buildings. PEER Report, 104, 

261. 

Palermo, D., & Vecchio, F. (2003, Sept.-Oct.). Compression Field Modeling of 

Reinforced Concrete Subjected to Reversed Loading: Formulation. ACI Structural 

Journal, 100(5), 616-625. 

Pang, B., & Hsu, T. (1996). Fixed Angle Softened Truss Model for Reinforced Concrete. 

ACI Structural Journal, 93(2), 197-207. 

Scott, B., Park, R., & Priestly, M. (1982). Stress-strain Behavior of Concrete Confined by 

Overlapping Hoops at Low and High Strain Rates. ACI Journal, 79(1), 13-27. 

Scott, M., & Fenves, G. (2003). A Krylov Subspace Accelerated Newton Algorithm. 

ASCE Structures Congress. Seattle, WA. 

Tasuji, M., Slate, F., & Nilson, A. (1978, December). Stress-Strain Response and 

Fracture of Concrete in Biaxial Loading. Proc. Am. Concr. Inst., 69(12), 758-764. 

Tuna, Z., Gavridou, S., Wallace, J., Nagae, T., & Matsumori, T. (2012). 2010 E-Defense 

Four-Story Reinforced Concrete and Post-Tensioned Buildings - Preliminary 

Comparative Study of Experimental and Analytical Results. 15 WCEE. Lisbon, 

Portugal. 



96 

 

Vecchio, F. (2000). Disturbed stress field model for reinforced concrete: Formulation. J. 

Struct. Engrg., ASCE, 126(9), 1070-1077. 

Vecchio, F., & Collins, M. (1982). Response of Reinforced Concrete to In-Plane Shear 

and Normal Stresses. Toronto, Canada: University of Toronto. 

Vecchio, F., & Collins, M. (1986, Mar.-Apr.). The Modified Compression-Field Theory 

for Reinforced Concrete Elements Subjected to Shear. ACI Journal, 

Proceedings(83), 219-231. 

Vecchio, F., Lai, D., Sim, W., & Ng, J. (2001, April). Disturbed Stress Field Model for 

Reinforced Concrete: Validation. Journal of Structural Engineering, ASCE, 

127(4), 350-358. 

Wehbe, N., Saiidi, M., & Sanders, D. (1997, September). Effect of Confinement and 

Faires on the Seismic Performance of Reinforced Concrete Bridge Columns. Civil 

Engineering Department, Report No. CCEER-97-2. 

Wischers, G. (1978). Application of Effects of Compressive Loads on Concrete. 

Bentotech. Ber.(2 and 3). 

Wong, P., Vecchio, F., & Trommels, H. (2013). VecTor2 & FormWorks user's manual. 

Second Edition.  

Zhang, H., & Li, H. (2012). Shaking table test and dynamic response analysis of 

reinforced concrete structure. 15 WCEE. Lisbon. 

Zhong, J. (2005). Model-Based Simulation of Reinforced Concrete Plane Stress 

Structures. PhD Thesis Dissertation. University of Houston. 



97 

 

APPENDIX A – ‘MAZARS’ SOURCE CODE 

A.1 Header File (Mazars.h) 

#include <stdio.h>  
#include <stdlib.h>  
#include <math.h>  
#include <Vector.h> 
#include <Matrix.h> 
#include <ID.h>  
#include <NDMaterial.h> 
 
 
 
class Mazars: public NDMaterial{ 
  public :  
    Mazars( ) ; 
    Mazars(int tag, double _Ec, double _epsD0, double _Ac, double _Bc, double _At, 
           double _Bt, double _nu) ; 
 
    virtual ~Mazars( ) ; 
 
    void setInitials( ) ; 
 
    //make a clone of this material 
    NDMaterial *getCopy( ) ; 
    NDMaterial *getCopy( const char *type ) ; 
 
    //send back order of strain in vector form 
    int getOrder( ) const ; 
 
    //send back order of strain in vector form 
    const char *getType( ) const ; 
 
    //swap history variables 
    int commitState( ) ;  
 
    //revert to last saved state 
    int revertToLastCommit( ) ; 
 
    //revert to start 
    int revertToStart( ) ; 
 
    //get the strain  
    int setTrialStrain( const Vector &strainFromElement ) ; 
 
    //send back the strain 
    const Vector& getStrain( ) ; 
 
    //send back the stress  
    const Vector& getStress( ) ; 
 
    //send back the tangent  
    const Matrix& getTangent( ) ; 
 
    const Matrix& getInitialTangent( ) ; 
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    //print out data 
    void Print( OPS_Stream &s, int flag ) ; 
 
    int sendSelf(int commitTag, Channel &theChannel); 
    int recvSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker &theBroker); 
 
private : 
    Matrix iniTangent, tTangent, cTangent, iniSmallTangent, tangent; 
    Matrix iniTangentInv, tTangentInv, cTangentInv; 
    Vector tStrain, cStrain, strain, tStress, cStress, stress; 
    double nu, Ec, epsD0, Ac, Bc, At, Bt, Beta; 
    double fac, tDam, cDam, tepseq, cepseq; 
 
} ; 
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A.2 C++ File (Mazars.cpp) 

#include <elementAPI.h> 
#include <Mazars.h> 
#include <Channel.h> 
#include <FEM_ObjectBroker.h> 
#include <MaterialResponse.h> 
 
#include <OPS_Globals.h> 
#include <Information.h> 
#include <Parameter.h> 
#include <string.h> 
#include <Vector.h> 
#include <math.h> 
#include <float.h> 
#include <Matrix.h> 
 
#include <iostream> 
 
  void * 
OPS_Mazars(void) 
{ 
  NDMaterial *theMaterial = 0; 
   
  int numArgs = OPS_GetNumRemainingInputArgs(); 
   
  if (numArgs != 8) { 
    opserr << "Want: nDMaterial Mazars tag? Ec? epsD0? Ac? Bc? At? Bt? nu?" << endln; 
    return 0;  
  } 
   
  int iData[1]; 
  double dData[7]; 
   
  int numData = 1; 
  if (OPS_GetInt(&numData, iData) != 0) { 
    opserr << "WARNING invalid integer tag: nDMaterial Mazars \n"; 
    return 0; 
  } 
   
  numData = 7; 
     
  if (OPS_GetDouble(&numData, dData) != 0) { 
    opserr << "WARNING invalid data: nDMaterial Mazars : " << iData[0] <<"\n"; 
    return 0; 
  }   
   
  theMaterial = new Mazars(iData[0], dData[0], dData[1], dData[2], dData[3], dData[4],   
                           dData[5], dData[6]); 
   
  return theMaterial; 
} 
 
//null constructor 
Mazars::Mazars( ) :  
NDMaterial(0, ND_TAG_Mazars ),   
tStrain(6), cStrain(6), tStress(6), cStress(6), strain(3), stress(3), 
tTangent(6,6), cTangent(6,6), tangent(3,3), tTangentInv(6,6), cTangentInv(6,6), 
iniTangent(6,6), iniSmallTangent(3,3), iniTangentInv(6,6) 
{ } 
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//full constructor 
Mazars::Mazars(int tag, double _Ec, double _epsD0, double _Ac, double _Bc, double _At,  
               double _Bt, double _nu) : 
 
NDMaterial( tag, ND_TAG_Mazars ), 
tStrain(6), cStrain(6), tStress(6), cStress(6), strain(3), stress(3), 
tTangent(6,6), cTangent(6,6), tangent(3,3), tTangentInv(6,6), cTangentInv(6,6), 
iniTangent(6,6), iniSmallTangent(3,3), iniTangentInv(6,6), 
Ec(_Ec), epsD0(_epsD0), Ac(_Ac), Bc(_Bc), At(_At), Bt(_Bt), nu(_nu) 
{ 
  setInitials(); 
} 
 
//destructor 
Mazars::~Mazars( )  
{  
 
}  
 
void Mazars::setInitials() 
{ 
 
 if (Ec < 0.0) 
  Ec = -Ec; 
 if (epsD0 < 0.0) 
  epsD0 = -epsD0; 
 Beta = 1.06; 
 
 tStrain.Zero(); 
 cStrain = tStrain; 
 strain.Zero(); 
 
 tStress.Zero(); 
 cStress = tStress; 
 stress.Zero(); 
 
 iniTangent.Zero(); 
 iniTangent(0,0) = 1.0 - nu; 
       iniTangent(0,1) = nu; 
 iniTangent(0,2) = nu; 
 iniTangent(1,0) = nu; 
       iniTangent(1,1) = 1.0 - nu; 
 iniTangent(1,2) = nu; 
 iniTangent(2,0) = nu; 
       iniTangent(2,1) = nu; 
 iniTangent(2,2) = 1.0 - nu; 
 iniTangent(3,3) = (1.0 - 2.0 * nu) / 2.0; 
 iniTangent(4,4) = (1.0 - 2.0 * nu) / 2.0; 
 iniTangent(5,5) = (1.0 - 2.0 * nu) / 2.0; 
 fac = Ec / ((1.0 + nu) * (1.0 - 2.0 * nu)); 
 iniTangent *= fac; 
  
 iniTangentInv.Zero(); 
 iniTangentInv(0,0) = 1.0 / Ec; 
       iniTangentInv(0,1) = - nu / Ec; 
 iniTangentInv(0,2) = - nu / Ec; 
 iniTangentInv(1,0) = - nu / Ec; 
       iniTangentInv(1,1) = 1.0 / Ec; 
 iniTangentInv(1,2) = - nu / Ec; 
 iniTangentInv(2,0) = - nu / Ec; 
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       iniTangentInv(2,1) = - nu / Ec; 
 iniTangentInv(2,2) = 1.0 / Ec; 
 iniTangentInv(3,3) = (2 * (1 + nu)) / Ec; 
 iniTangentInv(4,4) = (2 * (1 + nu)) / Ec; 
 iniTangentInv(5,5) = (2 * (1 + nu)) / Ec; 
 
 iniSmallTangent.Zero(); 
 iniSmallTangent(0,0) = iniTangent(0,0); 
 iniSmallTangent(0,1) = iniTangent(0,1); 
 iniSmallTangent(1,0) = iniTangent(1,0); 
 iniSmallTangent(1,1) = iniTangent(1,1); 
 iniSmallTangent(2,2) = iniTangent(3,3); 
  
 tDam = 0; 
 cDam = 0; 
 tepseq = 0; 
 cepseq = 0; 
 tTangent = iniTangent; 
 cTangent = tTangent; 
 tTangentInv = iniTangentInv; 
 cTangentInv = tTangentInv; 
 tangent = iniSmallTangent; 
 
} 
 
//make a clone of this material 
NDMaterial* 
Mazars::getCopy( )  
{ 
  Mazars *clone ;   //new instance of this class 
 
  clone = new Mazars( this->getTag(), Ec, epsD0, Ac, Bc, At, Bt, nu); 
 
  return clone ; 
} 
 
//make a clone of this material 
NDMaterial*  
Mazars::getCopy( const char *type )  
{ 
 
  return this->getCopy( ) ; 
} 
 
//send back order of strain in vector form 
int  
Mazars::getOrder( ) const 
{ 
  return 3 ; 
} 
 
const char* 
Mazars::getType( ) const  
{ 
  return "Mazars" ;  
} 
 
//swap history variables 
int  
Mazars::commitState( )  
{ 
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  cStress = tStress; 
  cStrain = tStrain; 
  cTangent = tTangent; 
  cTangentInv = tTangentInv; 
  cDam = tDam;  
  cepseq = tepseq; 
 
  return 0; 
} 
 
//revert to last saved state 
int  
Mazars::revertToLastCommit( ) 
{ 
  return 0; 
} 
 
//revert to start 
int 
Mazars::revertToStart( ) 
{ 
  cStrain.Zero(); 
  tStrain.Zero(); 
  strain.Zero(); 
  cStress.Zero(); 
  tStress.Zero(); 
  stress.Zero(); 
 
  setInitials(); 
 
  return 0; 
} 
 
//receive the strain 
int  
Mazars::setTrialStrain( const Vector &strainFromElement ) 
{ 
  double psi, epsL1, epsL2, epsL3, epseq2 ; 
  double H1, H2, H3, alphat, alphac, DamT, DamC  ; 
  static Vector epsp(6), sigep(6), sigpos(6), signeg(6), epst(6), epsc(6), sigp(6) ; 
 
  tStrain(0) = strainFromElement(0) ; 
  tStrain(1) = strainFromElement(1) ; 
  tStrain(3) = strainFromElement(2) ; 
 
  tStrain(2) = (- nu / Ec) * (tStress(0) + tStress(1)) ;  
 
  tTangent = cTangent ; 
  tTangentInv = cTangentInv; 
 
  psi = (atan (2 * tStrain(3) / (tStrain(0) - tStrain(1) + 1e-20))) / 2; 
 
  epsp.Zero(); 
  epsp(0) = ((tStrain(0) + tStrain(1)) / 2) + (((tStrain(0) - tStrain(1)) / 2) * cos (2  
            * psi)) + (tStrain(3) * sin (2 * psi)) ; 
  epsp(1) = ((tStrain(0) + tStrain(1)) / 2) - (((tStrain(0) - tStrain(1)) / 2) * cos (2  
            * psi)) - (tStrain(3) * sin (2 * psi)) ; 
  epsp(2) = tStrain(2) ; 
 
  if (epsp(0) >= 0) 
   epsL1 = epsp(0); 
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  else 
   epsL1 = 0; 
   
  if (epsp(1) >= 0) 
   epsL2 = epsp(1); 
  else 
   epsL2 = 0; 
   
  if (epsp(2) >= 0) 
   epsL3 = epsp(2); 
  else 
   epsL3 = 0; 
 
  epseq2 = pow(epsL1, 2) + pow(epsL2, 2) + pow(epsL3, 2) ; 
  tepseq = sqrt(epseq2) ; 
  epseq2 += 1e-20 ; // Avoids dividing by zero 
 
  if ( tepseq > cepseq ) 
  {  
   sigep = tTangent * epsp ; 
 
   
   sigpos.Zero(); 
     signeg.Zero(); 
 
  if (sigep(0) >= 0) 
   { 
    sigpos(0) = sigep(0); 
    signeg(0) = 0; 
   } 
   else 
   { 
    sigpos(0) = 0; 
    signeg(0) = sigep(0); 
   } 
 
  if (sigep(1) >= 0) 
   { 
    sigpos(1) = sigep(1); 
    signeg(1) = 0; 
   } 
   else 
   { 
    sigpos(1) = 0; 
    signeg(1) = sigep(1); 
   } 
 
  if (sigep(2) >= 0) 
   { 
    sigpos(2) = sigep(2); 
    signeg(2) = 0; 
   } 
   else 
   { 
    sigpos(2) = 0; 
    signeg(2) = sigep(2); 
   } 
     
  epst = tTangentInv * sigpos ; 
  epsc = tTangentInv * signeg ; 
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  if (epst(0) + epsc(0) >= 0) 
    H1 = 1; 
  else  
    H1 = 0; 
 
  if (epst(1) + epsc(1) >= 0) 
    H2 = 1; 
  else  
    H2 = 0; 
 
  if (epst(2) + epsc(2) >= 0) 
    H3 = 1; 
  else  
    H3 = 0; 
   
  alphat = (H1 * epst(0) * (epst(0) + epsc(0)) / epseq2) + (H2 * epst(1) *  
                 (epst(1) + epsc(1)) / epseq2) + (H3 * epst(2) * (epst(2) + epsc(2)) /  
                  epseq2) ; 
  alphac = (H1 * epsc(0) * (epst(0) + epsc(0)) / epseq2) + (H2 * epsc(1) *  
                 (epst(1) + epsc(1)) / epseq2) + (H3 * epsc(2) * (epst(2) + epsc(2)) /  
                  epseq2) ;  
   
  if ( tepseq > epsD0 ) 
  { 
    DamC = 1.0 - (epsD0 * (1.0 - Ac) / tepseq) - Ac * exp(-Bc * (tepseq –  
                       epsD0)) ; 
    DamT = 1.0 - (epsD0 * (1.0 - At) / tepseq) - At * exp(-Bt * (tepseq –  
                       epsD0)) ; 
 
    tDam = pow(alphat, Beta) * DamT + pow(alphac, Beta) * DamC ; 
  }  
  } 
 
  if ( tDam < 0.0 ) 
   tDam = 0.0; 
  if ( tDam > 0.9999 ) 
   tDam = 0.9999; 
  if ( tDam < cDam ) 
   tDam = cDam; 
 
  tTangent = (1.0 - tDam) * iniTangent ; 
  tTangentInv = (1.0 / (1.0 - tDam)) * iniTangentInv ;  
  sigp = tTangent * epsp ;  
 
  tStress(0) = 0.5 * (sigp(0) + sigp(1)) + 0.5 * (sigp(0) - sigp(1)) * cos(2.0 * (- 
               psi)) ; 
  tStress(1) = 0.5 * (sigp(0) + sigp(1)) - 0.5 * (sigp(0) - sigp(1)) * cos(2.0 * (- 
               psi)) ; 
  tStress(3) = -0.5 * (sigp(0) - sigp(1)) * sin(2.0 * (-psi)) ; 
 
  tangent(0,0) = tTangent(0,0);  
  tangent(0,1) = tTangent(0,1); 
  tangent(1,0) = tTangent(1,0); 
  tangent(1,1) = tTangent(1,1); 
  tangent(2,2) = tTangent(3,3); 
 
  strain(0) = tStrain(0); 
  strain(1) = tStrain(1); 
  strain(2) = tStrain(3); 
 
  stress(0) = tStress(0); 
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  stress(1) = tStress(1); 
  stress(2) = tStress(3);   
 
  return 0; 
} 
 
//send back the strain 
const Vector&  
Mazars::getStrain( ) 
{ 
  return strain ; 
} 
 
//send back the stress  
const Vector&   
Mazars::getStress( ) 
{ 
  return stress ; 
} 
 
//send back the tangent  
const Matrix&   
Mazars::getTangent( ) 
{ 
  return tangent ; 
} 
 
const Matrix&   
Mazars::getInitialTangent 
( ) 
{ 
  return iniSmallTangent ; 
} 
 
//print out data 
void   
Mazars::Print( OPS_Stream &s, int flag ) 
{ 
  s << "Mazars Material tag: " << this->getTag() << endln ;  
  s << "  Ec: " << Ec << " "; 
  s << "  epsD0: " << epsD0 << " "; 
  s << "  Ac: " << Ac << " "; 
  s << "  Bc: " << Bc << " "; 
  s << "  At: " << At << " "; 
  s << "  Bt: " << Bt << " "; 
  s << "  nu: " << nu << " "; 
} 
 
int  
Mazars::sendSelf(int commitTag, Channel &theChannel)  
{ 
  int res = 0, cnt = 0; 
 
  static Vector data(21); 
 
  data(cnt++) = this->getTag(); 
  data(cnt++) = Ec; 
  data(cnt++) = epsD0; 
  data(cnt++) = Ac; 
  data(cnt++) = Bc; 
  data(cnt++) = At; 
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  data(cnt++) = Bt; 
  data(cnt++) = nu; 
  data(cnt++) = cDam; 
 
  int i; 
  for (i = 0; i < 6; i++)  
    data(cnt++) = cStrain(i); 
 
  for (i = 0; i < 6; i++)  
    data(cnt++) = cStress(i); 
 
   res = theChannel.sendVector(this->getDbTag(), commitTag, data); 
   if (res < 0)  
      opserr << "Mazars::sendSelf() - failed to send data" << endln; 
    
   return res; 
} 
 
int  
Mazars::recvSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker &theBroker) 
{ 
  int res = 0, cnt = 0; 
 
  static Vector data(21); 
 
  res = theChannel.recvVector(this->getDbTag(), commitTag, data); 
  if (res < 0) { 
   opserr << "Mazars::recvSelf -- could not recv Vector" << endln; 
   return res; 
  } 
 
  this->setTag(int(data(cnt++))); 
  Ec = data(cnt++); 
  epsD0 = data(cnt++); 
  Ac = data(cnt++); 
  Bc = data(cnt++); 
  At = data(cnt++); 
  Bt = data(cnt++); 
  nu = data(cnt++); 
  cDam = data(cnt++); 
 
  setInitials(); 
 
  int i; 
  for (i = 0; i < 6; i++) 
    cStrain(i) = data(cnt++); 
 
  for (i = 0; i < 6; i++) 
    cStress(i) = data(cnt++); 
 
  return res; 
} 


