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ABSTRACT

Fluidized beds offer efficient solutions for segregation of clay and bitumen pellets

in the oil production industry. However, the hydrodynamics of these systems is

not well-known and they are mostly operated as “black box”. The removal of clay

pellets in the mechanical separation of oil sands method, requires an efficient method

of separation of the pellets. By using computational fluid dynamics (CFD), the

hydrodynamics of these equipments can be studied and the affecting parameters on

the flow behavior be identified. In this thesis challenges in preparation of a validated

CFD model are addressed and the effects of design and operating parameters on the

efficiency of the method are studied. The Eulerian-Lagrangian approach is used in

the CFD simulations of a slice of the bed and results are compared to a 3D full size

bed and to results from literature for validation. The first study is dedicated to the

analysis of the fluidization process in a fluidized bed formed with mono-dispersed

sand particles. Results of the simulations are compared against experimental data

and empirical solutions. A validated and grid-converged numerical model which can

present the hydrodynamics of the fluidized bed is the outcome of this study. Later,

bitumen pellets are added to the fluidized bed simulations, as the third phase, to

study the segregation process. Results of simulations are compared to the published

experimental and analytical works. To study the effect of design and operating

parameters of the fluidized bed on the segregation of particles, the density ratio of

the particles is decreased to increase the sensitivity of the problem. The results of

the simulations showed that the carrier phase properties, as well as the width and
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the height of the bed, are not affecting the final degree of the mixture. However, the

rate of segregation of particles is increased by reducing the static height of the bed.

Also, the model showed that there should be an optimum inlet velocity at which

the rate of segregation of particles is fastest and which produces the best level of

segregation of particles, as expected. Among the tested values in the current study

the inlet velocity of 1.25 times the minimum fluidization velocity of the jetsam was

the fastest rate of segregation and most segregated state of the mixture.
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Chapter 1

Introduction

Canada has the world’s third-largest proved reserves of crude oil, ninety percent

of which, or 169 billion barrels, are found in the tar sands. Considering the daily

production rate of oil from the Alberta’s tar sands, 2.3 million bpd in 2014 [Alberta,

2016], it is imperative to develop new methods of oil extraction to reduce the cost of

the production and the footprint on the landscape [Honarvar et al., 2011].

Current methods of extraction of oil from tar sands, surface mining, steam as-

sisted gravity drainage (SAGD), cyclic steam stimulation (CSS) or vapor extraction

(VAPEX), require tremendous amounts of water, up to ten times the produced oil,

energy and sometimes solvents. The Energy Returned On Energy Invested “EROEI”

of these methods is about 5 to 6 [Board, 2006], which increases the total production

cost and has serious effects on the environment. Also, residual hydrocarbons along

with the clay are disposed of in oil sand tailing ponds, which are another concern

of environmentalists. A new approach with a higher EROEI, which consumes fewer

resources, while producing less pollution, is required to turn oil sands business into

an efficient and green business.
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A novel method was proposed and patented by Duma [2012] for mechanical pro-

cessing of tar sands. In this process pellets of tar sands are formed by grinding

oil sands and cooling down below the transition temperature, -25 °F, so that they

do not aggregate and remain as distinct units. Because of impurities in the ore, a

fraction of the pellets will unavoidably contain only clay, instead of oil sands. After

pelletization, the clay pellets are separated from the oil sand pellets by means of a

fluidized bed. Later, pellets are fractured using mechanical methods, e.g. by a ball

mill or a hammer mill, to separate the bitumen from the sand.

A key point in this process is an efficient method of separation of clay and bitumen

pellets in the fluidized bed. This will remove clay in the early stages of the process.

This thesis aims to examine the process of separation of oil sand pellets from clay

pellets in the fluidized bed of the mechanical processing of tar sands method.

It was early 1930’s that the fluidization process and fluidized beds were intro-

duced to the industry and they were developed more after World War II when a

group of companies, Standard Oil New Jersey, M.W. Kellogg, Shell and Universal

Oil Products designed the catalytic cracking method for gasoline [Yates, 2013]. “Fine

solid particles are transformed into a fluid-like state, when they are in contact with

a flow of gas, and they possess the behavior of a fluid” [Kunii and Levenspiel, 1997].

Researchers have performed numerous investigations on the operating parameters

of a fluidized bed, such as the inlet velocity, density of particles, mass flux, and their

mutual interactions, due to the extensive applications of fluidized-beds nowadays in

industry [Cheremisinoff and Cheremisinoff, 1984].

The scale-up of the pilot-scale device to the full size and commercial device de-

pends on many factors, which will be discussed in the following chapters. Even with

the most conservative approaches, final designs do not always fulfill the expecta-

tions. This is because, although the hydrodynamics of these systems have been well
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studied, unified equations and models to describe the bubble formation and particle

interactions have not yet been developed. Without a real knowledge of the fluidiza-

tion process, it is not possible to design an optimized fluidized bed. This requires the

investigation of the fluidization process in depth by considering fundamentals of mass

transfer, momentum transfer, heat transfer and chemical reaction [Cheremisinoff and

Cheremisinoff, 1984].

With the improved computational power and algorithms, it is possible to model

fluidized beds in pilot size and also industrial size as well [Staněk, 1994].

The literature review, to be discussed in next chapter, revealed that factors, such

as carrier phase properties, particles size ratio and density ratio, and operating con-

ditions of the bed are significant factors of the fluidization and separation processes.

The objective of this thesis is to employ computational fluid dynamics (CFD)

techniques to produce a validated and grid-converged numerical model for fluidization

and segregation processes and analyze the effect of bed operating parameters on the

quality of the mixture. A literature review on experimental and numerical works

on gas-solid fluidization and utilization of fluidized beds is presented in Chapter

2. Principles of gas-solid fluidized beds, classification of particles and fluidization

regimes, physical approaches and governing equations of the fluidized beds, principles

of mixing and segregation of particles and available methods of assessing the quality

of mixtures are discussed in Chapter 3. Numerical algorithms and the software,

materials, model setup and the methodology are discussed in details in Chapter

4. Results of the simulation of fluidization process and analysis of the results are

presented in Chapter 5. Chapter 6 is dedicated to the simulation of the segregation

process, and results of simulations are discussed and analyzed. Finally, conclusions

and recommendations are given in Chapter 7.
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Chapter 2

Review of fluidization and

segregation processes

2.1 Literature review

The first large-scale, industrial fluidized bed was designed for coal gasification by

Fritz Winkler and patented in 1922 (D.R.P. 437,970). Fluidized beds are widely

used in industrial applications due to their unique and unusual but useful, behavior.

The advantages of fluidized beds can be summarized as below [Kunii and Levenspiel,

1997]:

• Ease of operating control in continuous processes due to the smooth and fluid

like flow of particles.

• Rapid preparation of a homogeneous mixture or of a segregated mixture of

particles due to their density or size ratio.

• High rates of gas - solid mass and heat transfer, compared to other contacting
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methods.

Mixing of fine powders, segregation of particles, heat exchange and gasification of

powders, drying, coating, agglomeration and sizing of particles, and many other

processes can be named as industrial applications of fluidized beds which benefit from

the advantages of the fluidization process. However, their complex hydrodynamics

can lead to the faulty design of a fluidization process. Formation of big bubbles or

slug flows are some of the issues that can affect the performance of the fluidized bed.

[Kunii and Levenspiel, 1997]

The high rate of heat transfer and sensitivity of mixture to density and size ratio

in fluidized beds can have significant desirable effects on the separation of bitumen

pellets from clay in mechanical processing of oil sands.

2.1.1 Fluidization

Fluidization refers to transforming fine solid particles, that are initially at rest in a

cylinder, to a fluid state using an upward flow [Kunii and Levenspiel, 1997]. The

hydrodynamics of fluidized beds at minimum fluidization conditions and equations of

minimum fluidization velocity and pressure drop in bed were studied and developed

by Ergun [1952]. The physics and regimes of the fluidized beds are described in

Chapter 3.

Geldart [1973] and Geldart and Abrahamsen [1978] classified particles into four

major groups (A, B, C and D) based on their behavior, when they are suspended

in gas, to study the fluidization process. Kunii and Levenspiel [1997] classified flu-

idization regimes in fluidized beds into packed bed, bubbling fluidized bed or spouted

fluidized bed, and circulating fluidized bed regimes which contain turbulent fluidized,

fast fluidized, and pneumatic transport sub-regimes. These experimental classifica-
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tions will help identify the flow regime applicable to the present study, which is

essential to the selection of the numerical approach, as will be described next.

There are two main approaches to multiphase flow analysis and simulation of

fluidization process, namely the Eulerian - Eulerian approach, which is also known

as two-fluid model (TFM), and the Eulerian - Lagrangian approach, also known as

discrete element method (CFD-DEM). The Eulerian - Eulerian approach was used

to analyze the hydrodynamics of large-scale fluidized bed by many researchers. In

this method [Crowe et al., 2011], the solid phase is treated as a continuous phase

with equivalent properties of a fluid. Empirical and semi-empirical models have been

developed to describe the equivalent dispersed phase properties. In the constant vis-

cosity model, the solid phase viscosity is assumed to be a constant and the solid phase

pressure is considered to be only a function of the local solid porosity and viscosity.

The kinetic theory of dense gasses later was developed to model the properties of

the solid phase in the Eulerian approach. Equations of granular temperature, solid

pressure and viscosity, and particles drag model in particles cloud were developed

and reviewed by Gidaspow [2012]. The hydrodynamics of fluidized beds have been

widely studied and analyzed using the Eulerian - Eulerian approach in computational

fluid dynamics method by many researchers [Gidaspow, 2012].

Van der Hoef et al. [2006] reviewed the developments on multiscale modeling of

gas-solid fluidized beds at that time. This report covered Eulerian - Eulerian and

Eulerian - Lagrangian approaches. The result of TFM simulations might be grid

independent, if the size of the grid is on the order of few particle diameters (≈ 10).

As the Eulerian approach requires a fine grid to produce accurate results, time steps

of the order of 10−5 s should be used in a simulation, which is not feasible for

simulation of commercial size fluidized bed. To overcome this problem, commercial

scale fluidized beds are simulated over coarse spatial grids. In these coarse grids,
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small-scale spatial structures are not resolved. The effect of these small-scale spatial

structures are added to the system by modification of the closure equations. A proper

method of modification of the closure problems is still an open topic in research

[Van der Hoef et al., 2006].

A review of the developments of multiscale CFD of modeling gas-solid circulating

fluidized bed (CFB) modeling byWang et al. [2010] shows that, although the Eulerian

- Eulerian approach might reach grid independent solution with conventional drag

models in periodic domains, the drag force is overestimated and it fails to predict

the S-shape of the axial voidage profile [Wang et al., 2010].

Mortier et al. [2011] reviewed the research works on granules drying application of

fluidized beds. The authors reviewed both TFM and Lagrangian approaches in CFD

modeling of fluidized beds. Using the TFM approach, physical characteristics of the

dispersed phase, such as size and shape, are included through empirical relations and

particles are not modeled as distinct particles. Comparing results of numerical studies

and experimental works, the Lagrangian approach results are in better agreement

with experimental data [Chiesa et al., 2005, Mortier et al., 2011].

Singh et al. [2013] reviewed the CFD modeling of combustion and gasification

of fuels in fluidized beds. Simulation of gasification and combustion in commercial

fluidized beds is still an open topic of research. The TFM approach is not suitable

for simulation of fluidized bed with particle size variation unless extensive approxi-

mations are chosen. In addition in thermo-chemical reactions there is no appropriate

model to describe the mechanism of reactions in commercial fluidized beds using

the Eulerian approach. The Eulerian - Lagrangian approach seems to predict better

results in thermo-chemical reactions. However, this approach is computationally ex-

pensive compared to TFM method, which makes it not to be suitable for commercial

size fluidized beds [Singh et al., 2013].
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Azimi [2014] reviewed the research works on coal separation in Air Dense Medium

Fluidized Beds (ADMFB). Comparing results of simulations and experimental work

for separation of coal and sand, poor results were achieved in most preliminary 2D

simulations due to the inaccuracy and incapability of Eulerian - Eulerian approach

in predicting interactions in the transient regime, at the stage of developing bubbles.

However, the predictability of the model was significantly improved by modification

of the drag model, coefficient of restitution and using a 3D domain in the simulation

[Azimi, 2014].

Zhong et al. [2016] published a comprehensive review of the developments in the

CFD simulation of fluidized beds and dense particulate systems using Eulerian -

Eulerian approach. Particle size changes, shrinkage or agglomeration, are not ad-

dressed adequately in Eulerian - Eulerian approach, and sub-models are required to

be developed in this approach [Zhong et al., 2016].

A review of the significant applications and advances in discrete particle simula-

tion of particulate systems was done by Zhu et al. [2008]. The report covers particle

packing, particle flow, and particle-fluid flows. The theoretical developments in dis-

crete particle simulation of particular systems are addressed in another article by

Zhu et al. [2007]. This review covers research works and developments on modeling

particle-particle and particle-fluid interactions and coupling discrete element method

with CFD in particle-fluid flows. The simulation of local average method of the gas

phase coupled with the discrete element method (DEM) simulation of the solid phase

can describe the characteristics of particle-fluid flows without any general assump-

tion. This method produces results which can be used for a better understanding of

granular materials and particulate systems and it could be used to study the micro-

properties of granular materials to test continuum approaches in granular materials

[Zhu et al., 2007].
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The performance of particulate systems and multiphase processes mostly falls

under 60% of the designed capacity, despite their wide industrial application [Zhu

et al., 2008]. Many of multiphase processes are operated as “black box” reactors.

This is mainly due to the complex dynamics of particles interactions. The bulk

behavior of a reactor depends on the collective outcome of particles interactions.

The DEM approach can reveal the underlying fundamentals of particulate system,

that make it suitable for detailed studies of such systems [Zhu et al., 2008].

The DEM approach was first proposed by Cundall and Strack [1979] for geome-

chanics research to describe the behavior of assemblies of discs and spheres. The

DEM was later coupled to the CFD to model a two-dimensional fluidized bed by

Tsuji et al. [1993]. In this method, the discrete phase is modeled by using the DEM

approach, that is based on Newton’s laws of motion, and the carrier phase is modeled

by the locally averaged variables method, first introduced by Anderson and Jackson

[1967]. Due to the high demand of computational power by the DEM approach,

progress in this area has been slow in the past. With the currently available compu-

tational power, the coupled CFD and DEM has been used in many pieces of research

to describe the particle-fluid flow [Zhu et al., 2008].

Zhou et al. [2010] assessed and verified available formulations of momentum equa-

tion sets for the particle phase and fluid phase, namely set I, set II and set III, which

will be reviewed in Chapter 3. Comparing results of simulations for different par-

ticulate systems, they recommended set II, and set I for future work in CFD-DEM

simulation of particulate systems. However, the third set of equations conditionally

can be used when the fluid flow is steady and uniform or the residual force acting on

particles is zero [Zhou et al., 2010].

Xu and Yu [1997] studied the hydrodynamics of fluidized bed by using a coupled

CFD and DEM approach. Plots of bed pressure drop versus superficial inlet velocity
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were created for both increasing and decreasing inlet velocity cases. Results are in

good agreement with measured pressure drop values from experimental works and

the same trends were observed.

Goldschmidt et al. [2004] compared simulation results from DEM using a hard

sphere approach simulation results and TFM simulation results with experimental

results of a fluidized bed. They showed that the DEM approach results were in

better agreement with experimental results compared to TFM approach. Complex

structures such as formation of small bubbles near the bottom of the bed and strings

of particles within larger bubbles were captured using the DEM approach. Compar-

ing results of both CFD models, the kinetic theory of granular flow was capable of

giving a meaningful estimate of particles’ fluctuating velocities. However, regarding

bed expansion dynamics, their simulations results did not follow their experiments.

The deviation is mainly due to the formation of densely packed regions in which

particles movements approach zero. CFD models were not able to capture these re-

gions. Using the hard sphere discrete particle method, it is not possible to model the

long-term particle contacts and multi-particle interactions. Also in TFM approach,

when kinetic theory of granular flows is used for closure problems, these contacts are

neglected [Goldschmidt et al., 2004].

Müller et al. [2009] validated results of DEM simulations of a fluidized bed against

experimental data extracted by magnetic resonance measurements technique. They

showed that simulation results are insensitive to the value of restitution coefficient

and coefficient of friction, as long as particle-particle and particle-wall collisions

energies are dissipated by some routes in the simulations [Müller et al., 2009].

Goniva et al. [2012] studied the influence of rolling friction on a single spout flu-

idized bed. An open source code was developed based on their work, CFDEM®coupling

[Goniva et al., 2012], which couples the CFD solver, OpenFOAM [Weller et al., 1998],
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with DEM solver, LIGGGHTS [Kloss et al., 2012] (based on LAMMPS [Plimpton,

1995]). By applying a rolling frictional model, the angle of the response of a granular

material can be predicted more accurately. In a 2D spouted fluidized bed, the rolling

friction can play a significant role in the results of simulations, especially in regions

close to the side walls. The wall effect increases by increasing the rolling coefficient.

The particle velocity is affected by the wall at the regions close to wall [Goniva et al.,

2012].

Deb and Tafti [2012] used DEM coupled with their in-house developed CFD code,

GenIDLEST, to simulate a 2D fluidized bed with a single jet at the inlet. Later, they

extended the work to model the fluidized bed with multiple jets at the inlet. Results

of numerical simulations are in good agreement with their experimental work in the

region close to the distributor plate. However, the code was not able to capture three-

dimensional structures at the free surface of the bed which resulted in deviation of

simulation results and experimental work results [Deb and Tafti, 2012].

He et al. [2009] studied the hydrodynamics of fluidized beds by comparing results

of DEM simulations of a 3D fluidized bed with experiments using PIV technique.

They showed that the superficial inlet velocity had a significant effect on the verti-

cal solid velocity and the extent of solids downflow. Also comparing results of the

mean time averaged vertical solid velocity, they confirmed, that for averaging pe-

riods longer than 12.5 s, the results of the mean and RMS velocity changes with

changing/increasing the averaging period slightly [He et al., 2009].

Traoré et al. [2014] simulated 2.7 millions of particles for 1 s on a cluster with 246

Opteron processors. Evolution of a single bubble from its formation until its explosion

at the bed surface, the formation of “worm-like-shaped” structures as displayed by

Tsuji et al. [2008], and occurrence of the bubbly regime were simulated using an

efficient 4-way coupling CFD-DEM approach [Traoré et al., 2014].
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2.1.2 Mixing and segregation

In bubbling fluidized bed, if solid particles with different physical properties, such

as density, diameter, shape, are simultaneously fluidized, their different fluidization

behavior leads to inhomogeneity of solid composition along the bed height. Particles

which are accumulated at the bottom of the bed are referred to jetsam, while the

other component, that occupies the top portion of the bed, is referred to flotsam

[Rowe et al., 1972].

Mixing and segregation of particles have been studied by many researchers in

experiments [Palappan and Sai, 2008a,b, Rao et al., 2011], analytical approaches

[Daw and Frazier, 1988, Di Maio et al., 2013, Gibilaro and Rowe, 1974], and numer-

ical studies [Di Renzo et al., 2008, Huilin et al., 2007]. Gibilaro and Rowe [1974]

used simplified partial differential equations to model analytically a segregating gas

fluidized bed. Based on their proposed models, four physical mechanisms exist in

segregation of particles in a fluidized bed, namely overall particle circulation, an in-

terchange between wake and bulk phases, axial spreading and a relative segregating

flow rate. The model was successful in predicting the equilibrium segregation pro-

files in a gas fluidized bed for three segregation patterns, namely strongly segregating

systems, perfect mixing, and intermediate case [Gibilaro and Rowe, 1974].

On another attempt Daw and Frazier [1988] studied the segregation of large

particles (d ∼ 3 mm) in gas fluidized bed and correlated the mixing index, which

will be explained in Section 3.6.3, to particles size ratio, density ratio, static height

of the bed, and the superficial inlet velocity. However, correlations for small particles

and different geometries of fluidized beds were not covered in their report [Daw and

Frazier, 1988].

Rao et al. [2011] reviewed the investigations on segregation of a binary mixture of
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particles comprehensively. A new classification scheme for the minimum fluidization

velocity ratio, pressure drop profiles, and segregation behavior of binary fluidized

mixtures was proposed by comparison of published data and experiments. This

classification is based on particles size and density ratio and consists of seven mixture

types [Rao et al., 2011].

The experimental values and models, as described before, can be applied to val-

idate the numerical works. CFD has been used by many researchers to study hy-

drodynamics of mixing and segregation of particles in fluidized beds numerically

[Bokkers et al., 2004, Di Renzo et al., 2008, 2012, Feng and Yu, 2004, 2007, 2009,

Huilin et al., 2007, Luo et al., 2015, Moon et al., 2007, Rhodes et al., 2001, Wang

et al., 2015].

In 2004, Feng and Yu [2004] used a DEM approach to model segregation and

mixing of particles in a fluidized bed. Two models are introduced in the literature

for momentum conservation equations by using the available models for treatment

of the pressure drop term, coupling schemes, and particle-fluid interaction forces,

namely Model A and Model B. Due to the differences in the formulation of these two

models, the accuracy of each model is still an open topic. A significant difference

was observed between Model A and Model B in comparison of simulation results

with experiment results. Verification of results against experiments, comparison of

pressure drop and concentration of mixture components in height, showed that the

Model B is favorable in the formulation of CFD-DEM modeling of fluidized bed

[Feng and Yu, 2004]. In another study by Feng et al. [2004], they showed that the

stable state of mixing and segregation of particles is strongly affected by the gas

velocity. Later, Feng and Yu [2007] showed that the maximum degree of segregation

of particles can be achieved at a specified gas velocity for a binary mixture of particles.

They suggested that both particle-particle and particle-fluid forces play a significant
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role in the separation and mixing of particles. These forces vary both spatially and

temporally, which makes their behavior complicated. In another work, Feng and Yu

[2009] showed that in a bi-sized mixture of particles the density ratio of the jetsam

and flotsam is the dominant parameter that controls the degree of mixing of particles.

Bokkers et al. [2004] studied the mixing of particles of same size and density in a

fluidized bed, which are marked by color difference only. They examined the effect

of drag model on the formation of bubbles and degree of mixing and compared the

results with experimental results. They showed that the Koch and Hill [Hill et al.,

2001a] drag model predicted better results than the Ergun [Ergun, 1952] equation

combined with Wen and Yu closures [Wen and Yu, 2013]. Besides, they showed that

soft sphere and hard sphere models predict the same bubble size and shape.

Luo et al. [2015] studied mixing of particles of same size and density in a fluidized

bed using the DEM approach. The CFD-DEM approach was successful in predicting

the solid circulation pattern and formation of bubbles. The superficial inlet gas

velocity has affects the bubble size that controls the rate of solid mixing.

Moon et al. [2007] used an equation-free coarse-grained approach to accelerate the

simulation of segregation process. The method was able to speed up the simulation

by a factor of two to ten. This method can be used to describe the stable state of

the bed.

Di Renzo et al. [2012] compared results of experiments with CFD-DEM simula-

tions of segregation of particles in a fluidized bed and proposed a model to predict

the flotsam component in a binary mixture at equilibrium state. However, the model

is not capable of describing the mixing degree at the macroscopically stable state of

the bed.

Wang et al. [2015] implemented a hybrid TFM-DEM approach to analyze the

segregation of particles in a fluidized bed. The dense solid phase and continuous
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carrier phase were modeled by TFM approach, while the dilute solid phase was sim-

ulated by DEM approach. Results of simulation were validated against experiments.

They showed that the model is capable of producing similar results as those of ex-

periments. The particle size strongly affects the quality of mixture and segregation

of particles. Particles’ mean height was used to analyze the kinetics of segregation

process. The drag force from the gas phase and continuum solid phase influences the

particles behavior. The segregation of particles is controlled by the summation of

upward drag forces, which is larger than the gravity force on flotsam particles [Wang

et al., 2015].

Rhodes et al. [2001] studied numerically the mixing of particles of same size and

density in a fluidized bed. They used the Lacey mixing index to quantify the quality

of the mixture. The Lacey mixing index was developed based on statistical analysis

of the mixture and it compares the quality of the achieved mixture with the quality of

a completely random mixture. Standard deviation of the volume fraction of mixture

components at different locations of the bed is used in this comparison. Samples at

different locations of the bed are required to estimate the standard deviation of the

volume fraction of mixture components. The DEM approach enables sampling of the

bed without disturbing the mixture. Also, it is possible to change the sample size at

each time step. In experimental works, sampling methods suffer from a transition of

fluidized bed state to fixed bed state. This transition can be avoided in the DEM

approach. They used rectangular boxes to obtain samples. The widths of these boxes

were fixed, and their heights were set according to the number of particles in each

sample box. This method helps to set the level of scrutiny in the estimation of the

mixing index [Rhodes et al., 2001].
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2.2 Statement of the problem

Considering the increasing demand for low-cost energy and environmental issues

with current oil extraction methods, an economic and green method of oil extraction

should be developed. The mechanical process of tar sands, as described in Chapter

1, may overcome environmental and economic issues related to current processes

of oil extraction. The separation of bitumen and clay in the fluidized bed is a

key point for an efficient method. Although there have been extensive studies on

fluidized beds, valuable information about the hydrodynamics of separation and effect

of operating parameters on the quality of the mixture is not available. It is vital to

analyze the impact of significant factors on the process to design the fluidized bed

at optimum condition. With the available computational power nowadays, it is

possible to simulate the process using the DEM approach. The DEM approach can

increase the accuracy of the results. As it was mentioned in the literature survey,

many researchers up to now have studied the feasibility of implementation of DEM

approach in CFD modeling of fluidized beds. However, the effect of parameters

on the accuracy of results have not been addressed, and there is no general rule

to model the fluidized bed using the DEM approach. It is necessary to study the

effect of parameters on the simulation results to create an accurate numerical model.

Later, the numerical model will be used to examine the effect of design parameters

and operating parameters of the bed on mixing and segregation of particles in the

fluidized bed.
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2.3 Objectives of the study

Following the discussion of the need for producing a numerical model for fluidized

beds, the objective of this research work is to analyze the effect of significant factors

of a numerical model, such as grid size, boundary conditions, drag coefficient model

and momentum exchange models on simulation results. Then, the numerical model

will be used to study the segregation process in a fluidized bed, and analyze the

effect of design and operating parameters of a fluidized bed, such as superficial inlet

velocity, particles’ density ratio, the physical properties of the carrier phase and the

bed size, on the fluidization and segregation process.

2.4 Scope of the study

One of the significant factors in numerical methods is the size of the grid. The

accuracy of the simulation results using different size of grids is investigated to find

the optimum grid size on which results of simulations are independent of the grid

size. The grid size analysis is based on the fluidization process and the pressure drop

in the bed, as a characteristic quantity, is estimated for this purpose.

In gas-solid fluidized beds, the drag force is a dominant factor. The application

of different drag models could introduce errors on bed expansion, pressure drop and

particles concentration. In the current work, available drag models are examined

and evaluated to obtain an accurate numerical model.

As it was discussed in the literature review, the DEM is a computationally ex-

pensive method. In most of the simulations a slice of the bed is considered as the

simulation domain to reduce the required computational power and time. This as-

sumption affects the results of simulations. The effect of a sliced domain is studied
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and verified so that a true representation of the 3D fluidized bed is achieved.

The momentum exchange term in the simulation of gas-solid flow is the key

point in the coupling of phases. The effect of the momentum exchange term on the

hydrodynamics of fluidization process is considered using available models, Model A

and Model B [Gidaspow, 2012]. The effect of models on the hydrodynamics of the

fluidization process is examined by comparing the calculated pressure drop with the

value of analytical and empirical solutions.

Further investigations are performed on the segregation of a binary mixture of

spherical particles. At the first step a binary mixture of sand and bitumen at -50℃

with a density ratio of 2.5 is fluidized to be segregated. The effect of front and

back planes is studied, and results are compared with a 3D case. The momentum

exchange model is investigated, and results are compared with literature.

The results of the fluidization process and segregation of particles with density

ratio of 2.5 are used to produce a numerical model for segregation of particles with

a smaller density ratio. The numerical model is used to examine the effect of the

carrier phase and the bed aspect ratio on the rate of segregation and the stable state

of this mixture.
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Chapter 3

The physics of the problem

3.1 Principles of gas-solid fluidization

Fluidization refers to transforming fine solid particles, that are initially at rest in

a cylinder, to a fluid state using an upward flow. The total pressure loss of the

fluid throughout the bed increases by increasing the superficial inlet velocity from

zero. The pressure drop increases because frictional resistance increases. By further

increase of the gas velocity, particles start to vibrate. At this stage, the weight of

particles is counterbalanced by the frictional force between particles and the fluid

and the pressure drop in the flow field at each height is equal to the overhead weight

of fluid and particles. This state is called minimum fluidization state where particles

are lifted in the flow and are supported by the flow field [Kunii and Levenspiel, 1969].

The dense-phase of particles, when it is fluidized by gas, looks like a boiling liquid.

This fluidized dense phase has some unusual but useful properties of the system.

Some of the behaviors of a solid-gas fluidized bed can be described as follows [Kunii

and Levenspiel, 1969]:
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• Light objects float on it, while heavy ones sink;

• The free surface of a fluidized bed remains horizontal even if the cylinder is

tilted;

• Inter-connected cylinders share the same height by transfer of particles;

• Particles leave the cylinder if there is a hole on the side of it, and;

• The pressure difference between two points can be related to the static head.

3.2 Determination of minimum fluidization veloc-

ity

3.2.1 Experimental and empirical methods

Minimum fluidization condition of a bed can be obtained by monitoring the pressure

drop while increasing the inlet velocity. Figure 3.1 presents pressure drop (4p) versus

the inlet velocity (U). The pressure drop in the bed proportionally increases as the

inlet velocity increases. The pressure drop increases from zero at the static condition

of the bed to the maximum pressure drop at minimum fluidization condition. At this

point, the bed expands, and the drag force on particles equalizes the gravitational

force on them. By further increasing the inlet velocity the bed suddenly unlocks,

and the pressure drop falls slightly. This peak is mostly a result of inter-particles

frictional force. After this stage, the bed expands and bubbles are formed in the

bed, and the pressure drop remains practically unchanged in the bed even if the

inlet velocity increases. A slight increase of the pressure drop is observed by further
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increasing the inlet velocity, that is mostly as a result of the increase in wall-fluid

friction force.

It can be noticed in Figure 3.1 that the pressure drop does not follow the same

pattern at the minimum fluidization condition when decreasing the inlet velocity. In

this figure, W is the weight of the bed and A is the cross-sectional area of the bed.

Figure 3.1: Pressure drop in a bed versus fluid velocity. Adapted from [Kunii and
Levenspiel, 1969]

3.2.2 Theoretical method

Particles are supported by the flow field in the fluidization process. This means that

the gravitational forces of particles are balanced by the drag force acting on particles

due to the flow. Thus, the pressure drop in the bed can be quantified as below:
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(3.1) 4 pA = H(1− εg)(ρs − ρg)g

Where 4p is the pressure drop, A is the cross-sectional area of the bed, H is

the bed height, εg is the bed porosity, and ρs and ρg are the solid density and fluid

density, respectively.

Ergun [1952] suggested that the pressure drop in a bed can be estimated as below:

(3.2)
4p

4L
= 150

(1− εg)
2µgU

ε3gd
2
s

+ 1.75
(1− εg)ρgU

2

ε3gds

In this equation µg is the gas viscosity and ds is the diameter of the particle.

Kunii and Levenspiel [1969] replaced the minimum fluidization condition pa-

rameters in the Ergun equation and derived Equation 3.3 for minimum fluidization

condition:

(3.3)
1.75

φsε3g,mf

Re2mf +
150(1− εg,mf )

φ2
sε

3
g,mf

Remf =
d3sρg(ρs − ρg)g

µ2
g

(3.4) Remf =
dsUmfρg

µg

where subscript mf refers to minimum fluidization condition, and φs is the

sphericity of the particle which is defined as below:
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(3.5) φs =

(
surface of sphere

surface of particle

)
both of same volume

3.3 Solid particles classification

There are many factors affecting the solids behaviour in a fluidized bed, of which the

most important are:

1. Carrier phase density, ρg, and viscosity, µg;

2. Solid phase density, ρs;

3. Mean diameter of the particles, dp, and;

4. Particle shape, φs.

Figure 3.2 shows the classification of solid powders behavior (fluidized by gas)

based on the mean particles diameter and solid-gas density difference, which can be

described as follows [Geldart, 1973]:

1. Group A, aeratable particles

When a packed bed is formed by particles of group A, the bed expands, and

bubbles are formed later. Solids of the category are mixed vigorously.

2. Group B, sand-like particles

In a bed formed by particles of group B, large bubbles grow in the bed. The

size of these bubbles is controlled by the internal forces in the bed.
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idized bed behavior into bubbling or spout fluidized bed, later to turbulent fluidized

bed and finally to pneumatic conveying of particles. Various attempts have been

made to plot this behavior and plot flow regimes for gas-solid suspensions. A brief

description of the regimes is as follows [Bi and Grace, 1995, Kunii and Levenspiel,

1997]:

• Fixed bed

The superficial inlet velocity is less than the minimum fluidization condition.

Particles are motionless, and the fluid percolates through the void space be-

tween particles. At minimum fluidization condition, the pressure drop across

the bed equals the weight per unit area of particles and the bed height start to

increase.

• Particulate fluidization

The bed may continue expanding by increasing the superficial inlet velocity.

This type of fluidization is also known as homogenous fluidization and mostly

occurs in liquid fluidization beds.

• Aggressive fluidization

This type of fluidization is also known as aggregative or heterogeneous or bub-

bling fluidization. Bubbling, slugging flow, and turbulent fluidized bed are

under this category. Two separate solid phases are made up in this regime,

namely dense phase and the discontinuous phase.

• Fast fluidization and pneumatic conveying regimes

Increasing the fluid velocity, the bed turns to fast fluidization and pneumatic

conveying regimes. In a fast fluidization bed, a dilute region exists with the
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dense phase. Particles are carried by the fluid in the center and form the dilute

region while the dense regions are formed on the walls of the bed. Increas-

ing the inlet velocity, pneumatic conveying of particles starts, which can be

distinguished from the fast fluidization regime as the dense regions disappear,

replaced by a vertically uniform distribution of particles.

Figure 3.3 presents the model developed to describe the flow behavior based on

the particles size, density, sphericity, and fluid phase density and viscosity [Kunii

and Levenspiel, 1997]. This map of fluidization regimes will be useful to classify the

type of flow behavior of the simulations in this study.
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Where

(3.6) d∗s = ds

[
ρg(ρs − ρg)g

µ2
g

]1/3

(3.7) u∗ = u

[
ρ2g

µg(ρs − ρg)g

]1/3

and g is the gravity.

3.5 Multiphase modelling approaches

There are two main approaches to model the mixture behavior. One considers the

dispersed phase as a continuous phase and derives the equations based on a fluid

characteristic. This approach is called the Eulerian perspective and requires empirical

equations to model the behavior of the dispersed phase. On the other hand, the

Lagrangian perspective considers every single particle and derives the equations of

motions of the particles based on mass and velocity of the particles using Newton’s

laws of motion. The carrier phase in both approaches is treated as a continuous

phase, and locally averaged variables are utilized in the governing equations of the

carrier phase [Crowe et al., 2011].

3.5.1 Carrier phase governing equations

The carrier phase in Eulerian - Eulerian and Eulerian - Lagrangian approach is

treated as a continuous phase and equations of conservation of mass, momentum,

and energy for this phase are solved to model the carrier phase. A review of the
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governing equations from the multiphase flows textbook by Crowe et al. [2011] is

presented here.

Continuity equation

According to the conservation of mass, summation of the rate of mass accumulation

and the net out-flux of mass should be zero.

Assuming there is no mass transfer and the fluid is incompressible the continuity

equation can be written in differential form for a multidimensional flow as below:

(3.8)
∂

∂t
(εgρg) +∇ · (εgρgu) = 0

Where u is the gas velocity.

Momentum equations

The conservation of momentum can be expressed as the summation of the rate of

change of momentum in the control volume and net out-flux of momentum from the

control volume, which is equal to the force on the fluid in the control volume.

For multidimensional flows, assuming there is no mass transfer, the momentum

equations can be rewritten in the following form:

(3.9)
∂

∂t
(εgρgu) +∇ · (εgρguu) = −εg∇pg +∇Tg + εgρgg + β(v − u)

In this equation β is the fluid-particle friction coefficient, v is the solid velocity

and the gas phase stress tensor, Tg, can be represented as:

29



(3.10) Tg = 2εgµgτg

Where τg represents the shear stress tensor that can be evaluated using the com-

mon methods for a single phase flow:

(3.11) τg =
1

2

(
∇·u+ (∇·u)T

)
− 1

3
(∇·u)I

Turbulence models can be used to calculate the effective viscosity. A description

of common turbulence modeling approaches can be found in a book by Wilcox et al.

[1998].

3.5.2 Dispersed phase governing equations

Eulerian approach

The Eulerian - Eulerian approach, which can be called as the two-fluid model (TFM),

treats the dispersed phase as a continuous phase. The conservation equations of mass,

momentum, and energy of a fluid are solved to model the behavior of the phase.

Equivalent properties of a fluid, such as viscosity or density, should be defined to

solve the conservation equations.

The continuity equation of the dispersed phase can be derived by summing the

conservation equations for individual particles over all particles in the control volume

by using the volume fraction of the dispersed phase as below:
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(3.12)
∂

∂t
(εsρs) +∇ · (εsρsv) = 0

The momentum equation for a cloud of particles can be derived by summing

conservation equations for individual particles in the control volume.

(3.13)
∂(εsρsv)

∂t
+∇ · (εsρsvv) = −εs∇Ps +∇Ts + εsρsg − β(v − u)

The solid phase stress tensor can be represented as below:

(3.14) Ts = (−Ps + ξs∇ · v)I + 2µsτs

In this equation PS is the solid phase pressure, ξs is the bulk viscosity, and µs

represents the shear viscosity. These variables can be defined as functions of the

granular temperature as well as the particle restitution coefficient, particle diameter,

material density, and particles volume fraction.

The granular temperature, Θ, is based on the kinetic theory of dense gasses, which

was first introduced by Bagnold [1954]. Later, Gidaspow [2012] used the granular

temperature of the dense flows to describe the particles’ velocity fluctuations, C, as

below:

(3.15) Θ =
1

3
〈C2〉
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The conservation equation of the granular temperature is given as below:

(3.16)
3

2

[
∂

∂t
(εsρsΘ) +∇ · (εsρsv ·Θ)

]
= Ts : ∇v +∇ · v +∇ · k∇Θ− γ

where Ts : ∇v is the generation of the fluctuation energy due the work of the

shear stress in the particle phase, ∇·∇Θ is the conduction of the fluctuating energy

and γ is the dissipation of due to inelastic collisions. For more information about

TFM approach and kinetic theory, please refer to Gidaspow [2012].

As there is no need to consider every single particle dynamics in the two-fluid

model large systems can be modeled, which is the main advantage of this approach.

However, in a particular system with particle size distribution, a new phase should be

considered for each particle size or empirical models should be used, which increases

the complexity of the problem [Crowe et al., 2011].

Lagrangian approach

Governing equations

In the Eulerian - Lagrangian approach, the carrier phase is treated as a continuous

fluid, and the conservation equations are used to model it. Particles in the dispersed

phase are tracked individually or as parcels of particles in the flow field. Locally aver-

aged variables are employed in the conservation equations to be solved. Momentum

and mass transfer between the phases are permitted in these equations. Two mod-

els are proposed in the literature for the momentum equations formulation, namely

Model A and B [Gidaspow, 2012]. The Model A assumes that the pressure drop is

shared between the gas and solid phase, and the Model B assumes that the pressure
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drop is applied to the gas phase only [Feng and Yu, 2004].

The continuity equation can be written as below:

(3.17)
∂εg
∂t

+∇· (εgu) = 0

The set of momentum conservation equations can be written as below:

• Model A

(3.18)
∂ρgεgu

∂t
+∇· (ρgεguu) = −εg∇P − FA +∇· (εgτ) + ρgεgg

• Model B

(3.19)
∂ρgεgu

∂t
+∇· (ρgεguu) = −∇P − FB +∇· (εgτ) + ρgεgg

In these sets of equations, FA and FB are the volumetric particle - fluid interaction

forces for the two models, and they are interchangeable using the following equation:

(3.20) FB =
FA

εg
− ρgεsg

On the dispersed phase side, the force acting on each particle is the summation

of the forces due to the contact force of particles, fc,ij + fd,ij , the force imposed by

the carrier phase, fp−f,i, and the gravity force as below:
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(3.21) mi
dup,i

dt
= fp−f,i +

ki∑

j=1

(fc,ij + fd,ij) + ρp,iVp,ig

where Vp,i is the volume of the particle i and fp−f,i is the total particle - fluid

interaction force on the particle and is the summation of the drag force, the buoyancy

force, lifting force, the virtual mass force, Basset force, and others. fc,ij and fd,ij are

the contact force and the viscous contact damping forces respectively

The rotational momentum can be written as below:

(3.22) Ii
dωi

dt
=

ki∑

j=1

Tij

Tij is the torque between particles i and j.

According to the models introduced for momentum equations of the carrier phase,

two models can be used to describe the particle - fluid interaction force, namely Model

A and B. Considering only the pressure drop and buoyancy terms these models can

be written as below:

Model A fp−f,i = −Vp,i∇pi + fA(3.23)

Model B fp−f,i = ρgVp,ig + fB(3.24)

In Model A, the buoyancy force is related to the pressure drop term, ∇pi, and

the other part, fA, is linked to the fluid drag force multiplied by the fluid volume

fraction, εgfdrag,i. In Model B the buoyancy force is related to the static pressure
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drop, ∇p0, and the fluid drag force. It is good to notice that the total pressure drop,

∇P , consists of three factors in a bed [Feng and Yu, 2004]:

• The hydrostatic pressure drop, ∇p0, which is due to the gravity force of the

gas.

• The hydrodynamic pressure drop, ∇pd, which is due to the relative motion

between the gas and particles.

• The pressure drop due to the friction of the gas and the walls, ∇pw. This term

can be neglected compared to other terms of the total pressure drop.

Equations 3.23 and 3.24 can be rewritten in the following forms:

Model A fp−f,i = −Vp,iρgg + Vp,i∇pd,i + εgfdrag,i(3.25)

Model B fp−f,i = −Vp,iρgg + εsfdrag,i + εgfdrag,i(3.26)

When forming a uniform bed of mono-sized particles, where there is no accelera-

tion in either phase, the pressure drop is the summation of the static pressure drop,

∇p0, and the dynamic pressure drop, ∇pd. In this system, the point-wise values of

the pressure drop around each particle, ∇pd,i, are identical and can be replaced with

the locally averaged pressure drop value, ∇pd. The particle volume, Vp,i, is equal to

εs/n and the relation between the hydrodynamic pressure drop and the particle drag

force can be written as below[Feng and Yu, 2004] :

(3.27) ∇pd = nfdrag,i

The second term on the right hand side of Equation 3.25 can be written as below:
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(3.28) Vp,i∇pd,i =
εs
n
nfdrag,i

The Model A and B predict the same results for a packed bed of monosized

particles. However, this concept is not applicable in the fluidization process, and

Model A and B predict different results. This difference is because in Model A a

point-wise value of the pressure drop around each particle is needed, ∇pd,i, while

just locally averaged pressure drop value can be obtained through the continuum

approach. In the fluidization process particles are not uniformly distributed in space

and their velocity and trajectories are not the same. The non-uniform particle cloud

results in a difference between the locally averaged pressure drop and the point-wise

value of the pressure drop around each particle [Feng and Yu, 2004].

Particle - fluid interactions

The coupling of the forces between the dispersed phase and the carrier phase can be

derived according to the Newton’s third law of motion. The force of the dispersed

phase acting on the gas phase should be equal to the force of the gas phase working

on the dispersed phase but in the opposite direction. To achieve this relation three

schemes are presented in the literature [Feng and Yu, 2004, Gidaspow, 2012]:

• The first scheme calculates the forces from particles to the gas phase by the

local average method, and forces from the gas phase to the solid phase are cal-

culated separately according to the individual particle velocity. The conditions

of Newton’s third law of motion are not guaranteed in this scheme.

• The second scheme calculates forces from particles to the gas phase at local-
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average scale as used in scheme one, and then distributes the estimated values

between individual particles according to certain averaging rules. For a mono-

sized particle system the following relation can be derived according to this

scheme:

(3.29) f =
F∇V

kc

where kc is the number of particles in the computational cell, ∇V is the volume

of the CV and F is the volumetric particle-fluid interaction force.

This scheme can satisfy the Newton’s third law of motion. However, this

method distributes the interaction force between the particles uniformly, and

does not consider the different trajectories and velocities of the particles. Be-

sides, it is necessary to use a mean particles’ velocities to calculate the inter-

action force, F. The appropriate method of estimation of the mean particles’

velocities is still an open topic.

• Xu and Yu [1997] introduced the third scheme, which calculates the particle -

fluid interaction force at each time step on individual particles in a computa-

tional cell, and then calculates the summation of these values to produce the

particle - fluid interaction force at the cell scale. The following equation can

be used for this scheme:

(3.30) F =

∑kc
i=1 f

∇V
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This scheme can overcome problems mentioned for scheme 1 and 2, and is

widely used by researchers [Feng and Yu, 2004] .

The effect of particle cloud on the drag coefficient is still an open topic. Numerical

methods such as Direct Numerical Simulation (DNS) and Lattice Boltzmann (LB)

have been used to quantify the drag force from fluid to a particle in a particle cloud.

However, these studies are mostly limited to simple geometries and cases due to their

high demand of computational power. Therefore, calculation of the interaction force

of the fluid to the particles, f, in the current work is based on the calculation of

pressure drop using available models in the literature, namely Model A and B [Feng

and Yu, 2004, Gidaspow, 2012].

The hydrodynamic pressure drop is assumed to be shared uniformly between

particles in Model A and B. The following models can be derived for each set of

momentum equation [Feng and Yu, 2004]:

1. Model A

(3.31) fA =
εg
n
∇pd =

π

6
d3i

εg
εs
∇pd

2. Model B

(3.32) fB =
∇pd
n

=
π

6
d3i

1

εs
∇pd

The drag force is the main interaction force in a gas-solid system. The drag force

on an isolated particle in a flow field can be written as below Crowe et al. [2011]:
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(3.33) F =
1

2
ρgCDAp|u− v|(u− v)

Where CD is the drag coefficient, and Ap is the area of the particle. The drag

factor is the ratio of the drag coefficient to the Stokes drag, which is introduced as:

(3.34) f =
CDRer
24

and

(3.35) Rer =
ρg|u− v|r

µg

The drag force on an isolated sphere in the flow is a well-known problem. Re-

searchers have developed many models to quantify drag on a sphere [Haider and

Levenspiel, 1989, Putnam, 1961, Schiller and Naumann, 1935]. However, there is not

enough information on the effect of the particle cloud on the drag coefficient. Numer-

ical and experimental works have been done to study the effect of particle cloud on

the drag coefficient. The drag force on particles in a bed formed of multi-sized parti-

cles is still and open topic [Feng and Yu, 2004]. However, equations of pressure drop

and drag force for monosized systems are used for multi-sized beds as well. Different

models are presented in the literature for the drag force of a particle in particle cloud

as the friction coefficient as explained next [Crowe et al., 2011, Gidaspow, 2012]:

According to Darcy’s law the pressure drop can be related to the friction coeffi-

cient, β, as below Gidaspow [2012]:
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(3.36) − εg
∂p

∂x
− β(u− v) = 0

• Ergun [1952]

Based on the Ergun equation of pressure drop, Equation 3.2, the friction coef-

ficient can be written as below:

(3.37) β = 150
ε2sµg

εg(dφs)2
+ 1.75

ρg|u− v|εs
φsd

• Wen and Yu [1966]

Wen and Yu [1966] suggested a correction to Richardson and Zaki [1954] equa-

tion of the pressure drop, when the porosity is greater than 0.8 and derived the

following equation for the friction coefficient:

(3.38) β =
3

4
CD

εgεs|u− v|ρg
d

f(εg)

where CD is the drag coefficient of an isolated particle as below:

CD =
24

Res

(
1 + 0.15(Res)

0.687
)
, Res < 1000

CD = 0.44, Res ≥ 1000(3.39)
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where Res is as follows:

(3.40) Res =
εgρg(|u− v|)d

µg

and f(εg) is a correction for presence of the particle cloud and is given as below:

(3.41) f(εg) = ε3.7g

• Gidaspow [2012]

Gidaspow [2012] suggested that the drag model proposed by Ergun [1952],

Equation 3.37, is valid for dense flows, when εg < 0.8, and to use Wen and Yu

[1966] drag model, Equation 3.38, for dilute flows, when εg is greater than 0.8,

with a correction as below:

(3.42) f(εg) = ε−2.65
g

• Di Felice [1994]

Di Felice [1994] found by analysis of published data a correction for f(εg) and

suggested the following equation:

(3.43) f(εg) = ε−ξ
g

41



where ξ is the following empirical equation:

(3.44) ξ = 3.7− 0.65 exp

[
−(1.5− log(Rer))

2

2

]
, 10−2 < Rer < 104

• Koch and Hill [2001]

Koch and Hill [2001] developed a model for drag coefficient of a particle in

particle cloud based on Lattice - Boltzmann method as below:

F0 =





1+3
√

εs/2+(135/64)εsln(εs)+16.14εs

1+0.681εs−8.48ε2s+8.16ε3s
, εs < 0.4

10εs
(1−ε3s)

, εs > 0.4
(3.45)

(3.46) F3 = 0.0673 + 0.212εs +
0.0232

(1− εs)5

(3.47) F = F0 +
F3Re

2

(3.48) βp =
18µg(1− εs)

2ε2sF

d2s
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(3.49) Re =
ρgεs|u− v|ds

µg

(3.50) Fp,f =
Vpβp

εs
(u− v)

Particle - particle interactions

The Hard Sphere Model (HSM) or the Soft Sphere Model (SSM) can be used to

model the total particles’ interactions forces in Lagrangian approach. An overview

of the models is presented below. Further explanation of the models can be found

in [Crowe et al., 2011].

1. Hard Sphere Model (HSM)

HSM is based on the impulsive forces, which are defined by the integral of the

forces acting on a particle versus time. In this approach particles are assumed

to be rigid without any deformation.

Three assumptions are made for HSM:

(a) particle deformation is negligible;

(b) the friction on sliding particles obeys Coulomb’s friction law;

(c) once a particle stops sliding there is no further sliding.

2. Soft Sphere Model (SSM)

The soft-sphere model assumes an overlap displacement δ to consider the de-

formation of the particles as they collide. This displacement distance is shown
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in Figure 3.4. A frictional force is resulted when particles collide and are de-

formed. This force is generated because of the presence of the normal collision

force. Particles’ tangential and normal forces of the collisions are calculated

by using the spring, dashpot and friction slider mechanical elements. Figure

3.5 presents a schematic of these elements. In this model, the relation between

pre-collision and post-collision velocities can be obtained. Also, forces acting

on particles during the contact period are calculated.

Figure 3.4: Displacement of two particles in contact. Adapted from [Crowe et al.,
2011]

Forces acting on particles can be calculated using Equation 3.51 for the normal

force and Equation 3.52 for the tangential force.
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The normal component of the contact force is the summation of the spring and

the dashpot forces:

(3.51) Fnij = (knδn − ηnjG · n)n

And the tangential component of the contact force is the summation of the

slider, spring and the dash-pot forces:

(3.52) Ftij = −ktδt − ηtjGct

where G is the relative velocity of the particles and defined as below:

(3.53) G = vi − vj

and Gct is the slip velocity at the contact point, which is given by:

(3.54) Gct = G− (G · n)n+R∗(ωi + ωj)× n

By assuming the second particle’s diameter to be infinite, particle - wall colli-

sion equations can be derived.

Three parameters should be defined for this model:
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Figure 3.5: Contact forces in particle collision. Adapted from [Crowe et al., 2011]

• Stiffness k

Stiffness can be calculated using Hertzian contact theory by using physical

properties of particles as below:

(3.55) kt = 8G∗
√

R∗δn

(3.56) kn =
4

3
Y ∗

√
R∗δn

• Damping coefficient η

Damping coefficient is deduced from the stiffness as below:
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(3.57) ηn = −2

√
5

6
β
√
Snm∗

(3.58) ηt = −2

√
5

6
β
√
Stm∗

• friction coefficient f

Friction coefficient is measurable and can be described by an empirical

value.

In these equations Y ∗, G∗, R∗, β and S are defined as below:

(3.59)
1

Y ∗
=

1− ν2
1

Y1

+
1− ν2

2

Y2

(3.60)
1

G∗
=

2(2 + ν1)(1− ν1)

Y1

+
2(2 + ν2)(1− ν2)

Y2

(3.61)
1

R∗
=

1

r1
+

1

r2
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(3.62) β =
ln(e)√

ln2(e) + π2

(3.63) Sn = 2Y ∗
√

R∗δn

(3.64) St = 8G∗
√

R∗δn

In the above equations, Y is the Young modulus of the particle, G is the shear

modulus, ν is the Poisson ratio, e is the coefficient of restitution, m is the mass

of the particle, and r is the radius of the particle.

The total force acting on particle i is the summation of the tangential and normal

forces of particles which are in contact with particle i and is written as below:

(3.65) Fi =
∑

j

(Fnij + Ftij)

And the torque can be calculated using summation of torques imposed to the

particle i by tangential component of the contact force:

(3.66) Ti =
∑

j

(Rin× Ftij)
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• Trajectory segregation

According to the drag force on a sphere the retarding force on a particle is pro-

portional to the square of its diameter, f = 1
2
ρgU

2Cd(π
d2s
4
), and the deceleration

of the particle can be calculated as below:

(3.67) Deceleration of the particle =
retarding force

mass of particle

The travel distance of a particle to settle is proportional to the square of its

diameter. Therefore, a particle of twice the diameter would move four times

the distance to settle, which results in segregation of particles with different

size. This method is used in a conveying belt mostly.

• Percolation of particles

Particles of the same size tend to aggregate in a moving mass of particles.

This movement trend leads to creation of a gap between the particles so that a

smaller particle moves downward while a larger one moves upward. This mech-

anism mostly occurs in hoppers during charging and discharging of particles.

• Rise of coarse particles due to vibrations

Vibrations in a mixture of particles of different size can cause segregation.

Larger particles would travel upward while smaller particles move downward.

• Elutration segregation

At the presence of an upward flow in a cylinder, particles with terminal ve-

locities lower than the upward flow velocity are carried upward and heavier

particles are settled.
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3.6.3 Assessing the mixture

There have been many investigations to assess the quality of a mixture. While some

of these studies consider the exchange coefficient between the bubble wake and the

particles, others analyze the mixing indices based on statistical approaches. Over

forty mixing indices have been developed to quantify the mixture quality. Poux

et al. [1991] reviewed and compared mixing indices published in the literature. Some

of the mixing indices are presented in Table 3.1.

Table 3.1: Mixing indices. Adapted from [Poux et al., 1991].

Index
no.

Author Mixing Index Range

1 Lacey M = (σ2
0 − S2)/(σ2

0 − σ2
R) 0 to 1

2 Kramer M = (σ0 − S)/(σ0 − σR) 0 to 1

3
Lacey,
Weidendam
and Bonilla

M = σR/S < 1 to 1

4
Ashton
and Valentin

M2 = (log σ2
0 − log S2)/

(log σ2
0 − logσ2

R)
0 to 1

5
Poole,
Taylor
and Wall

M = S/σR � 1 to 1

6
Carely
Macauley
and Donald

M = (S2 − σ2
R)/(1− (1/n)) � 0 to 0

For simplicity the Lacey mixing index [Lacey, 1954] is selected as a tool in this

study to measure the quality of the mixture and to compare with the published data

for validation purposes.

The Lacey mixing index is the ratio of the achieved mixture to the b best possible

mixture, and the range is from zero to one for a segregating mixture and a random

mixture, respectively. This index is based on statistical approach and measures the
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degree of the mixture using the variation of compositions among samples drawn out

of the mixture, σ2.

The standard deviation of a completely random mixture, composed of particles

of the same size, σ2
R, is calculated as below:

(3.68) σ2
R =

P (1− P )

n

where P is the overall portion of any component of the mixture and n is the

number of particles in each sample.

The standard deviation of a segregating mixture, composed of mono-sized parti-

cles, can be estimated as below:

(3.69) σ2
0 = P (1− P )

which is independent of the sample size.

The standard deviation of a mixture samples can be estimated as below:

(3.70) S2 =
1

n

n∑

i=1

(xi − x̄)2

where x̄ is the sample arithmetic mean defined as below:

(3.71) x̄ =
1

n

n∑

i=1

xi
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Chapter 4

Numerical method

The name CFD refers to the use of numerical methods and a computer, or comput-

ers, to model the fluid dynamics of a desired flow. In this method partial differential

equations (PDE) and ordinary differential equations (ODE) forming the governing

equations are approximated and numerical schemes are used to solve them. Dis-

cretization methods should be used to approximate the solution of differential equa-

tions by use of an equivalent system of algebraic equations. Three main methods

are introduced in the literature for the discretization procedure [Ferziger and Perić,

2002]:

1. Finite difference method (FDM)

FDM discretizes the domain into nodes and solves the differential equations for

each node based on the neighboring nodes. The method is very straightforward

and efficient on structured grids. However, the implementation of the method

to complex flows and geometries is complex and conservation in not enforced

unless special care is taken [Ferziger and Perić, 2002].

2. Finite element method (FEM)
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FEM breaks the domain into a set of discrete volumes or finite elements, which

are mostly unstructured. The differential equations are multiplied by weight

functions before they are integrated over the entire domain. One of the simplest

approximations to the solution over each element is the linear approximation

constructed from the value of the boundaries. This approximation guarantees

the continuity. This estimate is then multiplied by a weight function, which is

mostly the same form of the solution. This approximation is then submitted

into the weighted integral of the conservation law and by selecting the best

solution from the set of allowed functions, which corresponds to the one with

minimum residual, the final solution is found. This method satisfies the con-

servation and can be used for complex geometries by using unstructured grids

[Ferziger and Perić, 2002].

3. Finite volume method (FVM)

FVM divides the domain into a finite number of contiguous control volumes

(CV) and solves the integral form of the conservation equations at the centroid

of each CV. Interpolation methods are used to calculate the variables at the

surface of each CV. The method uses both structured and unstructured grids,

so it is suitable for complex geometries. Also, this method is conservative by

considering the in-flux and out-flux of variables at the boundaries, and the

rate of changes inside each CV. However, it is difficult to develop methods of

orders higher than second for 3D domains compared to FEM, because FVM

requires three levels of approximation: interpolation and integration [Ferziger

and Perić, 2002].

A non-linear algebraic system of equations can be developed by using any of the

methods mentioned above. Then, iterative methods are used to solve the system of
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equations as below [Ferziger and Perić, 2002]:

Ax = b(4.1)

ε = Ax− b(4.2)

where A is the matrix of coefficients, x is the variable vector, b is the source term

vector and ε is the vector of iterations residual.

Following software packages are used to solve the discretized equations derived

in Chapter 3:

• OpenFOAM ® 2-3-0

OpenFOAM ® (Open Field Operation and Manipulation) is a free, open source

CFD package developed by OpenCFD Ltd. at ESI Group and is distributed

by the OpenFOAM Foundation. The software is coded in C++ programming

language and benefits from the modularity and object oriented features of

C++. This feature enables the software to the development of customized

numerical solvers and pre-/post processing utilities for CFD [Weller et al.,

1998]. OpenFOAM is based on FVM and solves PDEs and ODEs.

• LIGGGHTS® - Public

LIGGGHTS® (LAMMPS Improved for General Granular and Granular Heat

Transfer Simulations) is an open source software package for modeling granu-

lar material by the implementation of discrete element method (DEM) [Kloss

et al., 2012]. LIGGGHTS® is based on LAMMPS® (Large Atomic and Molec-

ular Massively Parallel Simulator), which is an open source software package

developed by Sandia National Laboratories for Molecular dynamics simulations
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on distributed memory machines [Plimpton, 1995]. LIGGGHTS is based on

FDM and solves ODEs.

• CFDEM® coupling - 2.3.0

CFDEM® coupling (Computational Fluid Dynamics - Discrete Elements Method

coupling) is an open source software package developed mainly by DCS Com-

puting and is a modular framework which couples and transfers data between

CFD code and the DEM code using the particle - fluid interactions and volume

fraction [Goniva et al., 2012].

4.1 Solver: cfdemSolverPiso

cfdemSolverPiso is a coupled CFD-DEM solver, which couples the CFD solver, piso-

Foam, to the DEM engine, LIGGGHTS. The CFD solver uses the volume averaged

Navier-Stokes equations for the continuous phase and the DEM engine solves New-

ton’s equations of motion for the dispersed phase. The coupling code calculates

forces on the particles due to the flow field and transfers them to the DEM engine,

LIGGGHTS, where the trajectory and position of particles are calculated and up-

dated in the CFD solver. The pisoFoam is a finite volume based solver for unsteady,

incompressible, and turbulent flows, which uses the PISO algorithm, first introduced

by Issa [1986].

4.1.1 Governing equations

Following the description of the physics of the problem in Chapter 3.5.2, a summary

of the equations which are used in this study are presented in Table 4.1.
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Table 4.1: Governing equations used in Eulerian - Lagrangian approach for simula-
tion of fluidization process and segregation process

Mass conservation
for gas phase

∂εg
∂t

+∇· (εgu) = 0

Momentum conservation
for gas phase - Model A

∂ρgεgu

∂t
+∇· (ρgεguu) = −εg∇P − FA +∇· (εgτ) + ρgεgg

fp−f,i = −Vp,iρgg + Vp,i∇pd,i + εgfdrag,i
Momentum conservation
for gas phase - Model B

∂ρgεgu

∂t
+∇· (ρgεguu) = −∇P − FB +∇· (εgτ) + ρgεgg

fp−f,i = −Vp,iρgg + εsfdrag,i + εgfdrag,i
Stress tensor τg =

1
2

(
∇·u+ (∇·u)T

)

Particle momentum
Equation

mi
dup,i

dt
= fp−f,i +

∑ki
j=1(fc,ij + fd,ij) + ρp,iVp,ig

Coupling scheme F =
∑kc

i=1
fp−f,i

∇V
[Xu and Yu, 1997]

Drag models
Gidaspow [2012]
Di Felice [1994]
Koch and Hill [2001]

Particle - particle interactions Soft sphere approach. See Section 3.5.2.

4.1.2 Solution algorithm

The algorithm for the solution of the problem is as follows [Goniva et al., 2012]:

1. Particles’ positions and velocities are calculated in the DEM solver.

2. Particles’ positions, velocities, and other necessary data are transferred to the

CFD solver.

3. The corresponding control volume of each particle is determined based on its

location in the domain.

4. Volume fraction and a mean velocity are determined for particles in the respec-

tive computational cell.

5. Fluid forces which are acting on each particle are calculated.
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6. Particle - fluid interaction forces and momentum exchange are assembled by

using the ensemble averaging method over all particles in a CFD cell.

7. Forces on the particles due to the flow field are transferred to the DEM solver

to be used in the next time step.

8. Fluid velocity and pressure are calculated in CFD cells and particles are rep-

resented by the volume fraction and momentum exchange term.

9. Additional equations are solved for both phases, such as heat transfer and

species transfer.

10. The routine is repeated from (1).

The gas phase solver, pisoFoam, is based on the pressure implicit with splitting

of operator (PISO) algorithm first introduced by Issa [1986], which is as below:

1. Set the boundary conditions.

2. Use the velocity and pressure fields from the previous time step, (un) and (pn),

or initial condition as an immediate estimate for the current time step.

3. Calculate an estimate for the current time step velocity (um∗) field by solving

the linearized momentum equation.

4. Solve the pressure correction equation to obtain the pressure correction term

(p′).

5. Correct the velocity and pressure fields by using the pressure correction term

and find the velocity (um) and pressure (pm) fields which satisfy the continuity

equation.
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6. Solve the second pressure correction equation and correct the velocity (um) and

pressure (pm) fields again.

7. Repeat from 3 using the corrected velocity (um) and pressure (pm) fields as the

improved estimations until all corrections are negligible and store the latest

values for velocity and pressure fields as (un+1) and (pn+1) respectively.

8. Increase the time step and repeat from step 1 [Ferziger and Perić, 2002].

Particles’ force balances and their trajectories are calculated using Newton’s law

of motion in LIGGGHTS. LIGGGHTS is based on LAMMMPS, which uses the fast

parallel algorithm for short-range molecular dynamics developed by Plimpton [1995]

as below:

1. A list of non-zero interacting neighboring pairwise particles is generated.

2. Interaction forces, Fx are calculated for each pairwise particles and summations

of the forces are stored in the force matrix, fx.

3. New position of particles are computed by using the force balance of each

particle, fx, and then they are stored in the position matrix, xx.

4.1.3 File structure

CFDEM ® coupling and OpenFOAM ® use the dictionary files to define the param-

eters of the simulation. Dictionary files are created in the simulation run folder under

two main sub-folders, namely CFD and DEM. The CFD folder contains information

related to the gas phase, geometry and the grid of the gas phase simulation, and the

DEM folder includes information required by LIGGGHTS for calculation of parti-

cles’ force balance and positions, such as particle diameter, density, properties and
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simulation domain properties. Figure 4.1 presents a schematic of the file structure

of the simulation setup.

4.2 Model setup

The workbench experiment developed by Feng and Yu [2004] is used in the current

work to model the fluidization and segregation process in the fluidized bed. Re-

sults are compared for verification and validation purposes. Figure 4.2 presents a

schematic of the geometry, mesh and initial conditions of the model.

4.2.1 Geometry

A rectangular bed, width = 65 mm, height = 260 mm and depth = 8.1 mm, is used

in the simulation to study the fluidization and segregation process in the fluidized

bed.

4.2.2 Mesh

The domain is discretized into structured hexahedral control volumes. Grid sensi-

tivity analysis is performed to study the effect of the grid size on the simulations’

results.

4.2.3 Boundary conditions

Velocity inlet boundary condition is used for the inlet considering the volume fraction

of the gas phase to be one and for particles to be zero, so that just air is injected

at the inlet. The effect of the inlet velocity is studied by considering different inlet

velocities and comparing to the minimum fluidization velocity of the jetsam particles.
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Figure 4.1: CFDEM ® coupling file structure.
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Figure 4.2: Schematic of the geometry, mesh, and initial conditions of the model.
(a) Preparation of the initial condition of the bed by inserting particles at random
positions in domain.
(b) Initial condition of fluidization process.
(c) Initial condition of the segregation process - mixed.
(d) Initial condition of the segregation process - segregated.
(e) Side view of the bed.
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Pressure outlet is used at the outlet, using a value of zero relative pressure.

Particle volume fractions at the outlet are set to zero, so that particles cannot leave

the domain.

Slip wall is used for the gas phase on the side walls. The implementation of

locally averaged variables does not allow the no-slip boundary conditions for walls

[Anderson and Jackson, 1967]. Hertzian walls with the coefficient of restitution of

0.9 are considered for the solid phase.

The effect of front and back planes on the results of simulations is studied by

considering periodic and slip wall boundary conditions for the gas phase and periodic,

frictional wall, and ideal wall for the dispersed phase.

4.2.4 Materials

Air at -50℃ is used as the gas phase and sand is used as the particles. Later, bitumen

pellets at -50℃ are added to study the segregation process. Properties of phases are

set according to suggested values in the literature. See Table 5.1 for an overview of

properties.

4.2.5 Numerical schemes

The numerical schemes used in a simulation play an important role in the results of

the simulations. Following schemes are used for discretization of equations terms:

• First order implicit Euler is used for temporal discretization.

• The divergence terms are estimated by Gaussian scheme with limited linear

interpolation scheme.

• The Laplacian terms are estimated by Gaussian scheme with linear correction.
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• The linear interpolation scheme is used as default for all terms, otherwise men-

tioned.

See Appendix A for the complete dictionary of the numerical schemes and explana-

tions.

4.2.6 Initial conditions

The packed bed is formed by inserting 40,000 particles at random positions without

overlap in the whole domain when the internal fluid velocity is set to zero. The

particles are settled down due to the gravity force.

To study the effect of the initial condition on the segregation process, two dif-

ferent initial conditions are considered namely, initially mixed and initially inverse

segregated. In the initially mixed case, flotsam and jetsam particles are inserted at

random positions simultaneously to create a fully mixed bed as the initial condition,

and a packed bed with Lacey mixing index of one is generated (see Figure 4.2c). The

inverse segregated packed bed is formed by adding flotsam particles in a box lower

than the jetsam. A packed bed containing two distinct layers of flotsam and jetsam

is formed of which the Lacey mixing index is estimated to be zero (see Figure 4.2d).

4.2.7 Computational method

CFDEM ® coupling uses domain decomposition method for parallelization. The

domain is transferred to OpenFOAM for simulation of the continuous phase where

it is decomposed into sub-domains. Each CPU core is dedicated to one of the sub-

domains for calculations. The DEM engine is responsible for calculations of the

dispersed phase by using the fast parallel algorithm for short-range molecular dy-
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namics to decompose the domain and calculate the force balance and position of

particles.

Simulations are performed using a local computer and a cluster on WestGrid and

ComputeCanada for parallelization and speed up purposes.

High performance computing

DEM is a resource intensive computational method and it is necessary to use multi-

CPU core systems to speed up the process.

A parallel efficiency test is conducted to evaluate the feasibility and efficiency of

the parallelization of the solver. The test is performed both on the local server and

on the Jasper server at WestGrid facilities. The local server is an Intel Core i7 system

with six physical cores at 3.2 GHz clock and 32 GB of RAM. The Jasper server is an

SGI Altix XE cluster with an aggregated total of 400 nodes containing 4160 cores

and 8320 GB of memory. Jasper nodes consist of Xeon X5676 processors, 12 CPU

cores (2 CPUs and 6 cores on each CPU) and 24 GB of memory. The domain is

decomposed horizontally and vertically into sub-domains.

Table 4.2: Parallel efficiency test results on Jasper server.

Vertical × Horizontal decomposition
= Number of CPU cores

Efficiency Speed-up
Clock time for 1 s
of simulated time

Ref. 2 × 1 = 2 100 � 2 12837
2 × 2 = 4 70.8 � 2.83 9057
4 × 1 = 4 65.3 � 2.61 9829
4 × 2 = 8 100 � 8 3209
8 × 1 = 8 99.5 � 7.92 3240
6 × 2 = 12 94.4 � 11.33 2267
12 × 1 = 12 92.8 � 11.13 2306
12 × 2 = 24 64.9 � 15.59 1646
24 × 1 = 24 59.9 � 14.37 1786
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The CFDEM®coupling is designed based on Message Passing Interface (MPI),

and at least two CPU cores are required to run in parallel mode. The simulation

time of a run with two CPU cores is used as the reference and simulation times are

compared with it. Table 4.2 shows parallel efficiency test results. The Jasper sever

uses the qsub and torque softwares to schedule jobs. According to their policy CPU

cores and nodes are assigned to the jobs based on the job request. A node consisted

of Intel Xeon L5420 might be assigned to a job which requests less than 8 CPU

cores. As it can be observed in Table 4.2 the efficiency of cases with four CPU cores,

a linear speed up was not gained. However, a good scaling was achieved up to 12

CPU cores. For the simulations with 24 CPU cores the speed up of the simulation

did not increase linearly. This is mainly because of running simulations on two nodes

rather than one node.

The speed-up for the reference test is considered to be 2 and for the other cases

the speed-up is defined as below:

(4.3) Speed-up =
Clock time for the Reference test

Clock time for the case
× 2

The efficiency of the reference test in considered to be 100% and for the other

cases the efficiency is defined as below:

(4.4) Efficiency =
Speed-up

Number of CPU cores
× 100
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Chapter 5

Simulation of fluidization process

Air-sand fluidization is simulated as the first step to ensure the model is capturing

the hydrodynamics of the fluidized bed. Results of these two-phase simulations are

compared with published data. The third phase, bitumen, will be added later to

study the segregation process. The pressure drop is estimated along the bed as a

response variable and the particles’ mean velocity is used as the second response

variable. Both response variables are sensitive to the entire flow field within the

fluidized bed and, therefore, are good solution indicators.

As it was discussed in Chapter 2, proper grid size is a significant factor in pre-

diction of the bed hydrodynamics. To satisfy the volume average continuity and

momentum equations which are introduced by Anderson and Jackson [1967], the

minimum grid size is limited to be larger than the particles diameter in each direc-

tion [Müller et al., 2009].

Proper boundary conditions are required for a well-posed problem. Periodic and

wall boundary conditions are considered to study the effect of the boundary condi-

tions on the flow behavior.
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The effect of drag models and momentum exchange models on the simulation

results are examined and the simulation settings are set accordingly. The response

variables (pressure drop along the bed and particles’ mean velocity) are used to

compare results with the results of previous works.

5.1 Reference simulation run

The reference simulation properties and settings are presented in Table 5.1.

Table 5.1: Reference simulation run setup

Description Value Comment

Gas density (kg m−3) 1.534 Air at -50℃

Gas viscosity (m2s−1 ) 9.55e-6 Air at -50℃

Particle density (kg m−3) 2500 Sand density

Particle diameter (mm) 1 Constant

Particle Young’s modulus (Nm−2) 1.0 × 107 Feng and Yu [2004]

Particle Poisson ratio (N m−1) 0.33 Feng and Yu [2004]

Particle restitution coefficient 0.9 Feng and Yu [2004]

Particle friction coefficient 0.3 Feng and Yu [2004]

Bed size (w × h × d (m)) 0.065 × 0.26 × 0.0081 Feng and Yu [2004]

Static bed height (m) 0.065 40,000 particles

Inlet conditions

ug = 0.9 m s−1

us = 0 m s−1

∂
∂n
p = 0

εg = 1

Velocity inlet

ug ∼ 1.5 umf
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Outlet conditions

∂
∂n
ug = 0

∂
∂n
us = 0

prelative = 0 Pa

εg = 1

Pressure outlet

Side walls

∂
∂n
ug = 0

∂
∂n
us = 0

∂
∂n
p = 0

∂
∂n
ε = 0

Slip walls

Front and back planes

∂
∂n
ug|front = ∂

∂n
ug|back

∂
∂n
us|front = ∂

∂n
us|back

∂
∂n
p|front = ∂

∂n
p|back

∂
∂n
ε|front = ∂

∂n
ε|back

Periodic

Drag function Koch & Hill Hill et al. [2001b]

Numerical scheme Central differencing scheme See Appendix A

Convergence criteria
p: 1e-6

u, ε: 1e-5
L2 norm, see Appendix A

Timestep
CFD: 5e-5 s

DEM: 1e-5 s

In this table n represents the normal vector of the boundary. A complete dictio-

nary of numerical schemes, equation solvers, tolerance and algorithms can be found

in Appendix A.
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Table 5.2: 2D grid sensitivity analysis, grid size and statistical information

Case No.
Number of CVs in

width × height × depth
Maximum nominal

cell size (mm)
Number
of nodes

∆L
dp

Case 1 15 × 60 × 1 8.1 900 8.1
Case 2 22 × 88 × 1 8.1 1936 8.1
Case 3 33 × 132 × 1 8.1 4356 8.1
Case 4 50 × 200 × 1 8.1 10000 8.1

5.2 Grid sensitivity analysis

A rectangular box with dimensions defined in Table 5.1 is created as the simulation

domain. The domain is discretized into orthogonal hexahedral uniform size control

volumes. 2D and 3D grid sensitivity analyses are performed by using four different

grids for each case to study the effect of grid size on the simulation results. The grid

is generated using the blockMesh command for grid generation in OpenFOAM.

5.2.1 2D grid sensitivity analysis

The height and width of the bed are discretized into parallel control volumes while

the depth of the bed is fixed to be one control volume for the preliminary runs. Table

5.2 presents different grid sizes and statistical information of the grids used in the

simulations.

The reference simulation setup values are used for the grid independence analysis.

The pressure drop in the system as a global response variable is used to compare

results of different simulations with the Ergun analytical equation of the pressure

drop. Plots of average normalized solid velocity (ANSV) versus normalized run time

(NRT) are used for comparison of results of different cases. The ANSV and NRT

are defined as [Azimi et al., 2015]:
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(5.1) ANSV =
Average absolute solid velocity

Inlet air velocity

(5.2) NRT =
Simulation time (s)

Plug flow residence time (s)
=

Simulation time (s)[
Static bed height (m)

Superficial air velocity (ms−1)

]

Figure 5.1 shows the ANSV in NRT. It can be observed that the average ANSV

increases as the size of control volumes are decreasing. The oscillations in ANSV

are signs of presence of bubbles in the bed [Azimi et al., 2015]. The amplitudes of

oscillations are constant and solutions are stable.

Figure 5.1: ANSV of 2D grid sensitivity analysis

Figure 5.2(a) shows the time averaged ANSV versus number of nodes and Figure

5.2(b) shows the time averaged pressure drop of the bed versus the number of nodes

used in simulations. It can be observed that the ANSV and the pressure drop values
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are increasing but an asymptotic behavior is not achieved. This lack of asymptotic

behavior could be mainly due to the presence of the third direction gradients in the

fluidized bed. These gradients are not captured by using a single control volume

in that direction. To capture the third direction gradients and approach a grid

independent solution, the domain is discretized in the third direction. The result of

third dimension refinement is given in the next section.

(a) ANSV versus number of nodes. (b) Pressure drop versus number of nodes.

Figure 5.2: Pressure drop and ANSV versus number of nodes - 2D refinement of a
slice of the bed.

5.2.2 3D grid sensitivity analysis

The 2D refinement of the simulation box suggested the presence of gradients in the

third direction. These gradients are not captured by using one single control volume

in that direction. The domain is now discretized in the third direction to capture the

gradients of the flow in the third direction. Table 5.3 shows the different mesh size

and statistical information of grids used in the simulation for the grid refinement in

the third direction.
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Table 5.3: 3D grid sensitivity analysis, grid size and statistical information.

Case No.
Number of divisions in

X × Y × Z
Maximum nominal

cell size
Number
of nodes

∆L
dp

Case 1 15 × 60 × 1 8.1 900 8.1
Case 2 22 × 88 × 2 4.05 3,872 4.05
Case 3 33 × 132 × 3 2.7 13,068 2.7
Case 4 50 × 200 × 4 2.025 40,000 2.025

Figure 5.3 shows the ANSV in NRT of the bed for the 3D refined cases. The

oscillation of the ANSV implies the presence of bubbles in the bed. It can be observed

that the amplitude of oscillations are fixed, and the solution is stable.

Figure 5.3: ANSV of 3D grid sensitivity analysis

Figure 5.4(a) shows the time averaged ANSV versus number of nodes and Figure

5.4(b) shows the time averaged pressure drop of the bed versus the number of nodes

used in simulations. An asymptotic behavior can be observed for the ANSV and

pressure drop values. The pressure drop value is approaching the constant values of

1091.25 kPa, which can be calculated using the Ergun equation. The error order of
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the simulations, p-value, is estimated by the Richardson’s extrapolation equation on

results of the last three pressure drop values, and it was found to be to be 1.32. The

estimated error order is in good agreement with the order of linear discretization

scheme which is 2. The exact pressure drop value is estimated to be 1091.26 Pa by

the Richardson’s extrapolation which is in good agreement with the predicted value

of the Erqun equation, 1084.22 Pa and the error is about 0.65%.

(a) ANSV versus number of nodes. (b) Pressure drop versus number of nodes.

Figure 5.4: Pressure drop and ANSV versus number of nodes - 3D refinement of a
slice of the bed.

Hence, the grid generated by using 13068 (33×132×3) control volumes produces

grid independent results, while the size of each CV is greater than two diameters of

the particles, as discussed in Chapter 2. Because it shows the best performance and

accuracy compromise, this grid will be used for the analysis from here.

5.3 Effect of the drag coefficient

Among all the forces in a fluidized bed, the drag forces of the flow on particles are

the most significant forces. Different drag models are available in the literature to

calculate the drag force on a particle in a particle cloud as discussed in Section 3.5.2.
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The available drag models in the CFDEM® coupling are Gidaspow [Gidaspow, 2012],

DiFelice [Di Felice, 1994], and Koch & Hill [Hill et al., 2001b] models.

The pressure drop along the bed is used as an integral quantity to show the effects

of drag models on the simulations results. Figure 5.5 shows computed instantaneous

pressure drop in the bed versus NRT. The Gidaspow drag model predicts lower

time averaged pressure drop in time compared to the two other drag models. Both

DiFelice and Koch & Hill drag models estimate the same time averaged pressure

drop values. All models converge to steady state and fluctuations in all cases are

a sign of presence of large bubbles or slugging in the bed, a poorly fluidized bed,

[Kunii and Levenspiel, 1969]. Kunii and Levenspiel [1969] predicted that the pressure

drop versus inlet velocity in a poorly fluidized bed might fluctuate up to 10% of the

mean value of the pressure drop. Figure 5.6 shows the diagram of pressure drop in a

poorly fluidized bed, where large bubbles are formed and slugging might happen in

the bed [Kunii and Levenspiel, 1969]. According to Equation 3.2 and Equation 3.1

the maximum and operating pressure drop of a bed with specifications of Table 6.3

are estimated to be 1130 Pa and 975 Pa, respectively.
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Figure 5.5: Bed pressure drop versus NRT of three different drag models
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Figure 5.6: Pressure drop in a poorly fluidized beds. Adapted from [Kunii and
Levenspiel, 1969]

Screenshots of the bed confirm the presence of large bubbles and slugging in the
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Figure 5.8: ANSV versus NRT for three different drag models.

Figure 5.9 (a) shows the time-averaged void fraction at z=0.02 m. As expected,

the void fraction in the center of the bed is higher than at the side walls [Müller

et al., 2009]. The void fraction in the center of the bed increases as bubbles are

formed at the distributor plate and move rapidly to the center of the bed. These

bubbles move towards the surface of the bed, where they erupt. Figure 5.9(b) shows

the void fraction of the bed at z=0.05 m in the upper part of thebed. The Gidaspow

drag model trend does not follow the bell shape of the void fraction proposed by Xu

et al. [2004]. This error could be mainly due to the presence of a discontinuity in

Gidaspow drag model at ε = 0.8.
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which could be caused by dissipation of particles’ kinetic energy and formation of

dense zones in the bed.

Figure 5.12: Bed pressure drop versus NRT for frictional wall and periodic boundary
conditions.

Figure 5.13 presents the ANSV versus NRT comparison for these cases. It can

be observed that the time averaged ANSV for the frictional wall condition is 52%

less than the periodic boundary condition. The different calculated values of ANSV

confirms the idea of dissipation of particles’ kinetic energy when colliding with the

walls.
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Figure 5.13: ANSV versus NRT for frictional wall and periodic boundary conditions.

Figure 5.14 (a) and Figure 5.14 (b) present time averaged void fraction of the bed

at the height of z = 0.02 m and z = 0.05 m, respectively. It can be observed that the

void fraction at the height of z = 0.02 m is not affected by the boundary condition

setup and the value of the void fraction is equal for both boundary condition types.

However, at the height of z = 0.05 m, the void fraction is lower in the simulation with

frictional wall boundary conditions compared to the periodic boundary condition.

Because of dissipation of kinetic energy in the particle-wall collisions, the particles

are not moved to the higher elevation of the bed and the void fraction decreases.
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(a) At z=0.02 m (b) At z=0.05 m

Figure 5.14: Time averaged void fraction of the bed of frictional wall and periodic
boundary conditions at z = 0.02 m (a) and z=0.05 m (b).

5.5 Model A and Model B

The treatment of the momentum exchange term, as discussed in Section 3.5.2, plays

a significant role in the result of simulations of gas-solid flows. There has been

extensive research on the effect of the treatment of momentum exchange term on

the flow field in fluidization process. The objective of the current analysis is to

demonstrate differences in the results of simulations using the momentum exchange

term models. The pressure drop of the bed in time and ANSV versus NRT are

considered to study the effect of the momentum exchange term on the results of the

simulations.

Table 5.4 presents the treatment of momentum exchange term and forces which

are included in each case.
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Table 5.4: Momentum exchange term models and forces

Forces Model A Model B
Pressure gradient force X -
Viscous force X -
Archimedes force - X

Figure 5.15 shows the pressure drop versus time for Model A and Model B. It

can be observed that Model B predicts a lower pressure drop in the bed compared

to Model A. The time mean value of the pressure drop predicted by Model B is

12% less than predicted value by Model A. The pressure drop in a fluidized bed

with parameters of Table 5.1 is calculated to be 975 kPa according to the analytical

equation of pressure drop in bed, Equation 3.1. It can be observed that Model B

pressure drop is predicting 6% smaller than the analytical estimated value while

model predicts 7% greater. Figure 5.16 shows ANSV versus NRT of the bed. Model

A calculated smaller mean time ANSV compared to Model B. Further investigation

is required to analyze the effect o the momentum exchange term model on the results

of the simulations. However, [Feng and Yu, 2004] suggested that the Model B is more

favorable for simulation of fluidization process.
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Figure 5.15: Bed pressure drop using Model A and Model B for momentum exchange
term.

Figure 5.16: ANSV versus NRT, Model A and Model B for momentum exchange
term.
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Chapter 6

Simulation of segregation of

particles in fluidized bed

The Discrete Element Method (DEM) is used to study the segregation of particles

in a fluidized bed. Following results of the fluidization process in Chapter 5, the

simulation settings, such as mesh size and numerical schemes, are set. The Lacey

mixing index is used to quantify the quality of the mixture and provide a statistical

picture of it. The affecting parameters on the mixing index are studied to analyze

the sensitivity of the mixing index and provide an accurate picture of the mixture.

The segregation process is analyzed in a bed formed by a binary mixture of

particles with a high density ratio (2.5) at the first step to analyze the effect of

boundary conditions and momentum exchange model. The effect of superficial inlet

velocity on the final quality of the mixture and rate of segregation of particles is

explained.

Later, the density ratio of the mixture components is decreased to 1.33 in order to

increase the sensitivity of the segregation process and analyze the effect of different
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parameters on the quality of the mixture. The effect of carrier phase properties and

the aspect ratio of the bed on the final quality of mixture and rate of segregation is

analyzed.

6.1 Lacey mixing index

The Lacey mixing index [Lacey, 1954], as described in Section 3.6.3, can be used to

quantify the quality of the mixture. The Lacey mixing index compares the achieved

mixing to the possible mixture, which is based on statistical analysis. Based on this

statistical approach, the following parameters should be considered in the calcula-

tion of the mixing index: box width and the sample size. Both are investigated to

determine their optimal values. The value of the mixing index is substituted by the

average of the ten neighboring points in time to remove the noise from the plots of

the Lacey mixing index.

6.1.1 Box width

The DEM method uses an adjustable sample size and a proper sample size needs to

be determined which represents an accurate statistical picture of the mixture. Rect-

angular boxes are used to discretize the domain and obtain samples of the mixture.

Once the width of the boxes are fixed, the height of the boxes are changed so that

the total number of particles in each sample is the same and the scale of scrutiny

is fixed. A Matlab code was developed for this purpose, which can be reached at

Appendix B.

Table 6.1 shows for all the test cases the number of particles in each sample box

and the number of divisions in the width of the bed to measure the mixing index.
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The bed properties are taken from Table 6.3(p. 95) with frictional wall boundary

conditions for front and back planes and Model A for the momentum exchange term.

Table 6.1: Sample size

Case Divisions in width Sample size
2×20000 2 20000
2×10000 2 10000
10×200 10 200
10×400 10 400
10×1000 10 1000
20×200 20 200
20×2000 20 2000
100×200 100 200

Figure 6.1 and Figure 6.2 show particles’ mean elevation and their elevation

standard deviation in time, respectively. It can be observed that the average height of

jetsam particles decreases, while the average height of the flotsam particles increases.

Also, the standard deviation of particles’ heights is decreasing for both components of

mixture. This statistical analysis of the bed suggests that flotsam particles aggregate

at the top, and jetsam particles aggregate at the bottom of the bed, as expected.
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Figure 6.1: Particles’ mean height in time.

Figure 6.2: Standard deviation of particles’ height in time.

Figure 6.3 shows the mixing index in time for different box widths, represented

by the number of horizontal divisions of the bed. It can be concluded that the

bed should be divided into a reasonable number of horizontal divisions, as it can
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be observed that the extreme levels of divisions, 2 and 100, produce poor statistical

pictures of the mixture. A number of divisions above 10 does not seem required to

improve the results.

Figure 6.3: Effect of sample size on the Lacey mixing index in time.

6.1.2 Sample size

The sample size can affect the mixing index. In the current work, the total area of

the bed is scanned so that the required number of samples are provided to represent

the bed.

Figure 6.3 shows the mixing index in time using different sample size for the

same bed in time. It can be observed that the mixing index estimated based on

the sample size of 200 to 400 is independent of the sample size and represents the

mixture statistically.

Following these results of mixing index analysis, the sample size of 200 and num-

ber of divisions in the width of 10 will be used for analysis of the mixture in next
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sections.

6.2 Validation

Feng and Yu [2004] analyzed segregation of a binary mixture of particles in a fluidized

bed by performing numerical simulations and experiments. A binary mixture of

particles with the same density and different diameters was fluidized for enough time

to be segregated. They compared results of the numerical simulations to experiments.

A series of simulations with same conditions as their work is considered to validate the

CFDEM® coupling software. A rectangular box with the same dimensions of their

work is used as the simulation domain which is discretized into orthogonal hexahedral

control volumes, as described in Section 5.2. Description of the simulation settings

can be found in Table 5.1. Table 6.2 presents the solid phase properties.

Table 6.2: Parameters used for the validation case adapted from Feng and Yu [2004]

Description Particle Value Comment
Particle density
(kg m−3)

Flotsam 2500 Sand
Jetsam 2500 Sand

Particle diameter
(mm)

Flotsam 1 Constant
Jetsam 2 Constant

Number
of particles

Flotsam 22,223 50% mass fraction
Jetsam 2,777 50% mass fraction

For a fluidized bed formed from particles described in Table 6.2, the maximum

pressure drop of the bed is calculated to be 1083 Pa using Equations 3.1. Figure

6.4 presents the variation of pressure drop in time using Model A for momentum

exchange model, when the superficial gas velocity is 1.2 m s−1. The mean value of

the numerical pressure drop in the study by Feng and Yu [2004] using Model A is
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estimated to be 1043 Pa, while it is estimated to be 1022 Pa in the current work,

which is 2% less.

Figure 6.4: Comparison of pressure drop in bed using Model A when superficial gas
velocity is 1.2 m s−1.

Figure 6.5 presents the variation of the pressure drop in time using Model B for

momentum exchange model, when superficial gas velocity is 1.2 m s−1. The mean

value of the numerical pressure drop in the study by Feng and Yu [2004] using Model

B is estimated to be 1042 Pa, and it is estimated to be 1021 Pa in the current run

with Model B, which is 2% less.
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Figure 6.5: Comparison of pressure drop in bed using Model B when superficial gas
velocity is 1.2 m s−1.

The quality of the mixture is quantified by the Lacey mixing index which was

described in Section 6.1. Figure 6.6 presents variation of Lacey mixing index in time

for a fluidized bed formed from particles with physical properties of Table 6.2. Similar

trends can be observed for both momentum exchange terms in the current simulations

and the study by Feng and Yu [2004]. However, differences can be observed in

comparison with the current work and their results. These differences could be

mainly due to the sampling method used for the Lacey mixing index. Feng and Yu

[2004] used fixed sample cell size, in which case the variance of particles’ volume

fraction is weighted according to the equivalent number of particles to estimate the

Lacey mixing index. In that method, the number of particles in each sample cell

is not fixed, which affects the scale of scrutiny. Besides, it should be noticed that

the Lacey mixing index is influenced by the number of particles in each sample [Fan

et al., 1970]. This could explain the differences between the Lacey indices from Feng

and Yu [2004] and from the present results. But we notice that the trend of Model
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A and Model B in both simulations is the same.

Figure 6.6: Comparison of Lacey mixing index from simulations with results from
Feng and Yu [2004].

Therefore, the present model can be considered validated by comparison with

Feng and Yu [2004] numerical results, which in turn were validated by them with

experiment.

6.3 Sand and bitumen

The third phase is considered to be pellets of bitumen at a very low temperature

of -50℃, and is added to the sand particles to study the segregation process in the

fluidized bed. The domain is considered to be the same size of the study performed

by Feng et al. [2004] and is discretized into 13,068 orthogonal hexahedral control

volumes as described in Section 5.2.2. Table 5.1 shows the reference simulation

setup and the third phase properties are shown in Table 6.3 below.
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Table 6.3: Reference simulation settings

Description Particle Value Comment
Particle density
(kg m−3)

Flotsam 1000 Bitumen at -50℃
Jetsam 2500 Sand at -50℃

Particle diameter
(mm)

Flotsam 1 Constant
Jetsam 1 Constant

Number
of particles

Flotsam 20,000 50% volume fraction
Jetsam 20,000 50% volume fraction

The packed bed is formed by inserting particles at random positions in the bed

without overlapping, when there is no gas injected to the inlet at the presence of the

gravity field for 0.5 s. Particles are settled and a packed bed of random mixture is

formed. Then, the gas is uniformly injected at the inlet and particles are fluidized.

The pressure drop of the bed is considered a charectiristic quantity to compare with

Equation 3.1, the analytical solution of pressure drop for validation of the results.

Averaged normalized solid velocity (ANSV) versus normalized run time (NRT) is

plotted to study the hydrodynamics of the bed.

Lacey mixing index is used as a tool to quantify the quality of mixture and to

compare the simulation results with published data.

6.3.1 Effect of the boundary conditions and momentum ex-

change model

Comparison with 3D case

Following results of simulations of fluidization process in Section 5.4 the front and

back planes condition can affect the hydrodynamics of the fluidized bed. Here, the

effect of boundary conditions applied to these planes on the results of segregation

process simulation is studied carefully to increase the accuracy of the results. Peri-
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odic, frictional wall, and reflective walls are considered for this purpose, and results

of the narrow channel case are compared with the simulation of a bed with a square

(0.065×0.065 m) cross-section, referred to as the 3D case. The total number of par-

ticles is changed to 321,000 particles to keep the height of the bed the same as the

narrow channel case. The bed is discretized into 143,748 (33×33×132) orthogonal

hexahedral control volumes. Models A and B of momentum exchange are considered

separately. Table 6.4 presents front and back planes setup used in the simulations.

Table 6.4: Different boundary conditions used in simulation models.

Description Phase Value

Periodic
Gas phase Periodic boundary condition
Particles Periodic boundary condition

Frictional wall
Gas phase Slip wall
Particles Frictional wall, e=0.9

Reflective wall
Gas phase Slip wall
Particles Reflective wall

3D case
Gas phase Slip wall
Particles Frictional wall, e=0.9
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Figure 6.7: Effect of discrete phase boundary condition on Lacey mixing index -
Model A.

Figure 6.8: Effect of discrete phase boundary condition on Lacey mixing index -
Model B.

Figure 6.7 and Figure 6.8 a show comparison of Lacey mixing index versus time for

different boundary conditions applied to the narrow channel and the 3D case using
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Model A and Model B for particle-fluid momentum exchange model, respectively.

For both momentum exchange models, the frictional wall condition for the front

and back planes clearly approaches the mixing index predicted by the 3D case in the

macroscopically stable state condition of the bed better than the other two boundary

conditions. Figure 6.9(a-d) shows detailed comparisons of the effect of boundary

conditions on ANSV in NRT. The frictional wall boundary condition shows the best

agreement with the 3D case for both Model A and Model B. The dissipation of

kinetic energy in the particles - wall collision may be the source of the differences

in the results. The idea that the dissipation of particles’ kinetic energy is the cause

for the differences between these boundary conditions can be further confirmed by

considering the reflective wall case. Regardless of the momentum exchange model,

the ANSV values of both mixture components have higher value for the reflective

wall cases compared to the other two cases.
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(a) Model A - Sand (b) Model A - Bitumen

(c) Model B - Sand (d) Model B - Bitumen

Figure 6.9: Comparison of effect of boundary conditions on ANSV versus NRT for
sand and bitumen using Model A and B.
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Initial condition of the bed

The effect of the initial condition of the bed on the segregation process is examined by

considering two different scenarios: an initially randomly mixed bed and an initially

inversely segregated bed. The formation of the randomly mixed bed was discussed

in Section 6.3. The inversely segregated bed is formed by inserting particles in two

separate boxes at different elevations. The flotsam particles are inserted in the lower

half of the bed height, and jetsam particles are inserted in the top portion of the

bed. Particles are settled in the presence of gravity when there is no gas injected at

the inlet for 0.5 s.

Figure 6.10 shows the Lacey mixing index in time using periodic boundary con-

dition for the front and back planes. It can be observed that at the macroscopically

stable state of the bed, the Lacey mixing index is independent of the initial condition

of the bed for both momentum exchange models. In an initially segregated packed

bed with periodic boundary conditions for front and back planes, particles are lifted

and moved upward when the gas is injected to the inlet, then mixing starts after a

very short period with Model A or after a significant period with the Model B type

of momentum exchange, as explained next.
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Figure 6.10: Effect of initial condition on Lacey mixing index - Periodic boundary
condition.

Figure 6.11 and Figure 6.12 show snapshots of the bed at different time steps

using periodic boundary conditions for the front and back planes, and Model A and

Model B. For the initially inverse segregated packed bed, particles are lifted and

moved to the outlet, where they block the outlet for 18 seconds, if Model A is used

for momentum exchange and periodic boundary condition is set for front and back

planes. Same results can be observed when Model B is used for the momentum

exchange term in an inverse segregated packed bed. However, in this case, the

particle cloud at the outlet collapses in less than 2 seconds.
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Figure 6.13 again shows the Lacey mixing index in time, but now using frictional

wall boundary condition for the front and back planes. It can be observed that at

the macroscopically stable state of the bed, the Lacey mixing index is independent

of the initial condition for both boundary conditions (frictional, as well as periodic)

and both momentum exchange models. However, a big difference can be observed

between the predicted values by Model A and Model B in the case of the frictional

boundaries. As it was described in Section 3.5.2, pointwise pressure drop values are

needed to calculate the particle - fluid interaction forces. However, by using the local

average method pointwise pressure values are not available and only mean values are

calculated. This results in differences between the results of Model A and B [Feng

and Yu, 2004]. Feng and Yu [2004] verified results of the simulation of a fluidized

bed using Model A and Model B for momentum conservation equation set against

experiments quantitatively and qualitatively and suggested that results of Model B

are more favorable.

Figure 6.13: Effect of initial condition on Lacey mixing index - frictional wall bound-
ary condition.
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Table 6.5: Superficial inlet velocities.

Inlet velocity (m s−1) Comment
0.55 0.91Umf,jetsam

0.6 1.00Umf,jetsam

0.75 1.25Umf,jetsam

0.9 1.50Umf,jetsam

1.05 1.75Umf,jetsam

Figure 6.16 (a) shows the Lacey mixing index in time for different inlet velocities

when Model A is used for the momentum exchange term. For the inlet velocities lower

than the minimum fluidization velocity of jetsam, the bed expands, but fluidization

does not happen and the mixing index remains constant around one, which means

that particles remain mixed. Particle fluidization is expected at minimum fluidization

velocity of the jetsam particles. However, it can be observed that even at this

condition the bed is expanded without any fluidization and segregation of particles,

which can be confirmed by the constant mixing index in the bed. This makes it clear

that Model A, which assumes a highly resolved pressure field in each control volume,

instead of the average pressure used in the current carrier phase model, is not ideal

for this model combination and Model B should be preferred.

Further increase of the inlet velocity, as exemplified by the gas velocity of 1.25Umf,jetsam,

causes the Lacey mixing index to decrease in time and particles to be segregated.

The fastest rate of segregation and the most stable state of the bed is observed in

this particular case. Further increase of the inlet velocity, increases the instability

of the bed. As a consequence, the Lacey mixing index at the macroscopically stable

condition of the bed is higher and fluctuates around the mean value.
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(a) Model A (b) Model B

Figure 6.16: Effect of superficial inlet velocity on Lacey mixing index (a) Model A
and (b) Model B.

Figure 6.16 (b) shows the Lacey mixing index in time for different inlet veloci-

ties, when Model B is used for the momentum exchange term. At the inlet velocities

up to the minimum fluidization velocity of jetsam the bed expands, but there is no

fluidization. However, in contrast with Model A, when the inlet velocity is equal to

the minimum fluidization velocity of jetsam, fluidization and segregation of particles

start. This reveals the effect of momentum exchange model on the results of simula-

tions. Increasing the inlet velocity to 1.25Umf,jetsam increases the rate of segregation

of particles, while the Lacey mixing index at the macroscopically stable state of the

bed reaches its minimum value. Further increase of the inlet velocity leads to increase

of Lacey index at the macroscopically stable state of the bed and to its fluctuation,

as also shown in the case of Model A.

Summary of comparisons

Comparison of boundary conditions with the 3D case, and results produced by com-

parison of initial conditions with the results of the inlet velocity analysis suggests

that the frictional wall boundary condition for the front and back planes and Model
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B for the momentum exchange term produce better qualitative and quantitative re-

sults. Model B can be used to study the segregation process in a bed formed from

clay and bitumen pellets.

Results of inlet velocity comparison show that when the gas velocity is set to 1.25

times the minimum fluidization velocity of jetsam, the rate of segregation of partici-

ples is the highest, and the mixing index has a lower value at the macroscopically

stable state of the bed.

6.4 Clay and bitumen

In addition to the inlet velocity, the other factor which has a significant effect on the

segregation process is the density ratio of the mixture components. A smaller density

ratio is considered to increase the sensitivity of the problem. The density ratio is

changed from 2.5 in the previous section to 1.33. Two different types of particles

are considered. It is assumed that the jetsam particles are made of a mixture of

bitumen and sand with a density of 1600 kg m−3 and the flotsam particles are pellets

of clay with the density of 1200 kg m−3. Following results of Section 6.3, the Model

B is used for the momentum exchange term, the frictional wall boundary condition

is used on the front and back planes, and the superficial inlet velocity is set to be

1.25Umf,jetsam.

The effects of the carrier phase properties and of the bed aspect ratio on the

mixture quality are studied in the following sections.
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6.4.1 Aspect ratio of the bed

Four different cases are considered to study the effect of the bed aspect ratio on the

segregation quality. In the first three cases, the width of the bed is set to be the

same, and for the forth case the width of the bed is changed to study the effect on the

mixing index of scaling the bed. Air is used as the carrier phase, and the superficial

inlet velocity is set to be 1.25Umf,jetsam. Table 6.6 presents the bed dimensions used

in the simulations.

Table 6.6: Bed dimensions.

Case Bed width (m) Static bed height (m) Aspect ratio
Air 0.065:0.065 0.065 0.065 1:1
Air 0.065:0.05 0.065 0.05 1.3:1
Air 0.065:0.032 0.065 0.032 2:1
Air 0.13:0.05 0.13 0.05 2.6:1

Figure 6.17 shows the Lacey mixing index in time for different aspect ratios of

the bed. It can be observed that by decreasing the height of the bed the rate of

segregation of particles increases and the fastest segregation of particles occurs in a

bed with the least static height. By comparing the mixing index of the cases 2 and

4, i.e. with the same bed height but different bed width, it can be seen that the

segregation process is not affected by the width of the bed.

It can be concluded that the rate of particles’ segregation is not affected by

the width of the bed, but it is a significant function of the static height of the

bed. However, at the macroscopically stable state of the bed, the mixing index is

independent of the aspect ratio of the bed.
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Figure 6.17: Effect of bed aspect ratio on Lacey mixing index.

6.4.2 Carrier phase

Three gasses are considered to study the effect of the carrier phase properties on

the segregation of particles. Table 6.7 presents parameters used in the study of the

effect of the carrier phase properties on the segregation quality. The bed aspect ratio

of 0.065:0.032 is used to minimize the segregation time and reach the stable state

condition faster.

Table 6.7: Carrier phase properties.

Variable
Carrier phase

He Air CO2

Density (kg m−3) 0.222 1.534 2.403
Viscosity (kg m−1s−1) 1.603e-5 1.465e-5 1.122e-5
Superficial inlet velocity (m s−1) 0.825 0.57 0.5
Particles’ Stokes number (-) 11 60 107
Particles’ Reynolds number (-) 70 53 61
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Figure 6.18 shows the Lacey mixing index in time for the three different carrier

phases. Although all simulations were stopped at the physical time of 30 s, the trend

of the curves clearly indicates that at the macroscopically stable state of the mixture,

segregation of particles can be identical if the inlet velocity of the carrier phase is

set properly. Also, it can be observed that the rate of segregation of particles is

independent of the carrier phase properties.

Figure 6.18: Effect of carrier phase properties on Lacey mixing index.
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Chapter 7

Conclusion and future work

7.1 Conclusion

The open source CFDEM® coupling was used as the software to develop a model for

the process of fluidization and segregation of particles. The Average Normalized Solid

Velocity (ANSV) and the pressure drop versus Normalized Run Time (NRT) were

used to verify and validate the model. Results of simulations suggest the following

conclusions an recommendations for model setup.

• A slice of the bed could be used to represent a full bed, if the slice grid is

discretized in the depth to capture the gradients of the flow.

• The frictional wall boundary condition for the front and back planes of the

bed slice predicts more accurate results compared to the periodic boundary

condition, as it represents better the full size bed.

• The cell size of 2.7 times the particle diameter was found to be suitable to

predict the correct pressure drop and grid independent solution.

112



• The set of Model A momentum conservation equations and also the set of

Model B momentum conservation equations predict the same pressure drop

values. However, comparison of the results of the Lacey mixing index for both

models and also comparison of the results of different inlet velocities suggest

that Model B is more favorable to be used to model the fluidized bed, as

mentioned by Feng and Yu [2004].

• Koch & Hill, DeFelice and Gidaspow drag models were used to study the effect

of drag model on simulations results. The Gidaspow drag model predicted the

least pressure drop in the bed compared to DeFelice, and Koch & Hill drag

models. The Gidaspow drag model did not follow the bell shape of the void

fraction profile proposed by Xu et al. [2004]. The Koch & Hill drag model

predicted higher drag at volume fractions compared to DiFelice, which is most

likely to happen in a dense fluidized bed.

• The solution of the numerical model, after reaching the macroscopically stable

state of the bed, should be independent of the initial conditions, if the boundary

conditions and the momentum conservation equations are set properly.

The developed numerical model in the CFDEM® coupling was used to study the

effect of the operating conditions of the bed on the segregation process. Particles

of the same size and density ratios of 2.5 and 1.33 were considered to examine the

segregation process. The ANSV versus NRT and Lacey mixing index versus time

were considered to analyze the results, and quantify the quality of the mixture.

Results of simulations suggest the following conclusions and recommendations.

• There is an optimum superficial inlet velocity for the segregation of particles in

a fluidized bed as it was suggested by Feng and Yu [2007]. The inlet velocity

113



of 1.25Umf,jetsam was found to segregate particles with the highest rate among

the tested velocities. This means that the lowest Lacey mixing index at the

macroscopically stable state of the bed was observed at this inlet velocity. Also

the fastest rate of segregation was found at this same inlet velocity.

• The static height of the bed is inversely correlated with the rate of segregation of

particles. However, the macroscopically stable state of the bed is independent

of the static height of the bed.

• The rate of segregation of particles and the final state of the bed are indepen-

dent of the width of the bed.

• The carrier phase thermo-physical properties do not affect the macroscopically

stable state of the bed.

7.2 Future work

The current analysis of the segregation process considers a batch of the mixture.

However, in the industrial applications of the fluidized bed, the process is mostly a

continuous process. The continuous process of segregation of particles can be studied

using Eulerian - Lagrangian approach by the CFDEM® coupling software.

The jetsam and flotsam are considered to be the same size. However, the size

ratio is one of the dominant factors in segregation of particles. It is necessary to

study segregation of particles considering the size ratio of the particles.

In the current work the particles’ size is considered to be uniform, and particle

size distribution is neglected. However, particles’ sizes are mostly distributed about

a mean value. It is necessary to study the segregation of particles considering the
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size distribution. The Lagrangian approach allows to introduce the size distribution

without increasing the complexity of the problem.

The current work assumes particles to be spherical and the shape factor of parti-

cles is neglected. However, the shape factor can affect the initial packing of the bed

and the drag forces on the particles. It is necessary to study the effect of particles

shape factor on the fluidization and segregation processes.

Due to limitations on the available computational power, the size of the bed

was considered to be relatively small in the current work. It is necessary to study

the scaling process on the fluidization and segregation processes and identify sig-

nificant factors in the scaling procedure. Discrete Particle Method (DPM) can be

implemented to analyze the fluidization and segregation processes in industrial size

fluidized beds by considering parcels of particles.

Cooling of particles was one of the objectives of segregation of particles in a

fluidized bed in the proposed mechanical separation of bitumen and clay method.

However in the current work, the heat transfer was not considered, and it is necessary

to consider the heat transfer in the fluidization and segregation processes as one of

the objectives of the proposed method.
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Appendix A

Dictionary files

Numerical schemes:

fvSchemes

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 1.6 |

5 | \\ / A nd | Web: www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSchemes;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 ddtSchemes

19 {

20 default Euler;

21 }

22

23 gradSchemes

24 {

25 default Gauss linear;

26 grad(p) Gauss linear;

27 grad(U) Gauss linear;

28 }

29

30 divSchemes

31 {
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32 default Gauss linear;

33 div(R) Gauss linear;

34 div(phi ,U) Gauss limitedLinearV 1;

35 div(phi ,k) Gauss limitedLinear 1;

36 div(phi ,epsilon) Gauss limitedLinear 1;

37 div(phi ,R) Gauss limitedLinear 1;

38 div(phi ,nuTilda) Gauss limitedLinear 1;

39 div(( viscousTerm*dev(grad(U).T()))) Gauss linear;

40 div((nu*dev(grad(U).T()))) Gauss linear;

41 div(( nuEff*dev(grad(U).T()))) Gauss linear;

42 }

43

44 laplacianSchemes

45 {

46 default Gauss linear corrected;

47 laplacian(viscousTerm ,U) Gauss linear corrected;

48 laplacian(nu ,U) Gauss linear corrected;

49 laplacian(nuEff ,U) Gauss linear corrected;

50 laplacian ((1|A(U)),p) Gauss linear corrected;

51 laplacian (( voidfraction2|A(U)),p) Gauss linear corrected;

52 laplacian(DkEff ,k) Gauss linear corrected;

53 laplacian(DepsilonEff ,epsilon) Gauss linear corrected;

54 laplacian(DREff ,R) Gauss linear corrected;

55 laplacian(DnuTildaEff ,nuTilda) Gauss linear corrected;

56 }

57

58 interpolationSchemes

59 {

60 default linear;

61 interpolate(U) linear;

62 }

63

64 snGradSchemes

65 {

66 default corrected;

67 }

68

69 fluxRequired

70 {

71 default no;

72 p ;

73 }

74

75

76 // ************************************************************************* //

The ddtSchemes is the temporal numerical scheme (∂φ
∂t
, ∂ρφ

∂t
) and the keyword

Euler represents the first order implicit Euler scheme.

The gradSchemes is used to define the numerical scheme for gradient terms. The

default value is set to Gauss integration with linear (central difference scheme (CDS))

interpolation scheme. The pressure and velocity gradient terms are defined.
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The divSchemes is used to define the numerical schemes for the divergence terms.

The divergence scheme for the default value and Reynolds stress terms (∇·R), div(R),

are set to Gauss integration with linear (CDS) interpolation scheme. The convection

term of the velocity (∇ · (φU)), div(phi,U), is estimated with Gaussian integration

with limitedLinearV interpolation scheme. The limitedLinearV is an improved ver-

sion of limited linear differencing interpolation scheme for vectors, which take into

account the direction of the field. The convection term for the kinetic turbulence

energy, div(phi,k), turbulence dissipation, div(phi,epsilon), Reynolds stress term,

div(phi,R) and the kinematic turbulence viscosity, div(phi,nuTilda), are estimated

by the Gaussian integration with limitedLinear interpolation scheme. The divergence

of the viscous term, ∇·(τ+τT ), is represented by ((viscousTerm*dev(grad(U).T()))),

div((nu*dev(grad(U).T()))), div((nuEff*dev(grad(U).T()))) entries and each term is

used based on the applied turbulence model.

The laplacianSchemes is used to define the numerical schemes for the lapla-

cian terms. The default keyword is set to Gauss integration with linear corrected

numerical scheme. The keyword linear represents the linear (central difference

scheme(CDS)) and corrected is used for unbounded, first order and conservative

numerical behaviour. for this scheme the terms represent as below:

laplacian(viscousTerm,U) ∇ · τ∇U
laplacian(nu,U) ∇ · ν∇U
laplacian(nuEff,U) ∇ · νeff∇U
laplacian((1| A(U)),p) ∇A−1 · ∇p
laplacian((voidfraction2| A(U)),p) ∇ · εgA−1∇p

laplacian(DkEff,k) ∇ ·D(k̃)∇k̃
laplacian(DepsilonEff,epsilon) ∇ ·Dε∇ε

laplacian(DREff,R) ∇ ·DR̃∇R̃
laplacian(DnuTildaEff,nuTilda ∇ ·Dνt∇νt
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• A−1 is the inverse of the diagonal elements in the discretised momentum equa-

tion.

• D(k̃) is the diffusion coefficient of the turbulence kinetic energy.

• Dε is the diffusion coefficient of the turbulence kinetic energy dissipation.

• DR̃ is the diffusion coefficient of the Reynolds stress tensor.

• Dνt is the diffusion coefficient of the turbulence viscosity.

The snGradSchemes is used to define the surface normal gradients and the corrected

scheme is used , which represents an explicit non orthogonal correction for the surface

normal gradients.

The fluxRequired is used to define fields which are required to generate the flux.

The pressure field flux is define to be generated.
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Equation solvers, tolerance and algorithms:

fvSolution
1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 1.6 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSolution;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17

18 solvers
19 {
20 "(p)"
21 {
22 solver PCG;
23 preconditioner DIC;
24 tolerance 1e-06;
25 relTol 0.1;
26 }
27

28 pFinal
29 {
30 solver PCG;
31 preconditioner DIC;
32 tolerance 1e-06;
33 relTol 0;
34 }
35

36 "(U|k|epsilon|R|nuTilda)"
37 {
38 solver PBiCG;
39 preconditioner DILU;
40 tolerance 1e-05;
41 relTol 0;
42 }
43

44 "(voidfraction|Us|Ksl|dSmoothing|UsNext|voidfractionNext)"
45 {
46 solver PCG;
47 preconditioner DIC;
48 tolerance 1e-05;
49 relTol 0;
50 }
51 }
52

53 PISO
54 {
55 nCorrectors 4;
56 nNonOrthogonalCorrectors 1;
57 pRefCell 0;
58 pRefValue 0;
59 }
60
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61

62 // ************************************************************************* //
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Appendix B

Mixing index code

1

2 clc;

3 clear all;

4 close all;

5 fclose all;

6 format long

7

8 Stime=input(’Start time = ’);

9 Ftime=input(’End time = ’);

10 DeltaT=input(’Time step = ’);

11

12 W=input(’Domain width = ’);

13 H=input(’Domain height = ’);

14

15 Nx=input(’Divisions in X = ’);

16 Nsample=input(’Number of particles in cells = ’);

17

18 rA=input(’Paricle A radius in m = ’);

19 rB=input(’Particle B radius in m = ’);

20

21 RuA=input(’Particle A density = ’);

22 RuB=input(’Particle B density = ’);

23

24 VA =4/3* pi*rA^3;% Volume of particle A

25 VB =4/3* pi*rB^3;

26

27 x=linspace(0,W,Nx);

28 time=[ Stime:DeltaT:Ftime ];

29

30

31 % Defining the mesh in x coordinate

32

33

34 for i=1:1: length(time)

35 cd([’./CFD/’ num2str(time(i)) ’/lagrangian/particleCloud ’]);

36

37 fidpos=fopen(’positions ’,’r’);

38 for j=1:1:17

39 temp=fgets(fidpos );
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40 end

41 temp=textscan(fidpos ,’%f\n’ ,1);

42 TotPar(i)=temp {1};

43 temp=fgets(fidpos );

44 temp=textscan(fidpos ,’%1s %f %f %f %1s %f\n’);

45 Pos{i}=[ temp {2}(1:end -1,1) temp {3}(1:end -1,1) temp {4}(1:end -1 ,1)];

46

47

48 fidr=fopen(’r’,’r’);

49 for j=1:1:18

50 temp=fgets(fidr);

51 end

52 temp=fgets(fidr);

53 temp=fgets(fidr);

54 temp=textscan(fidr ,’%f\n’);

55 r{i}=temp {1};

56

57

58

59 sampN=TotPar ./ Nsample;

60

61

62

63

64 for j=1:1: length(x)-2

65 ParIndx{i}{j}= find(Pos{i}(:,1)>=x(j) & Pos{i}(:,1)<x(j+1));

66 ParIndxCount(i,j)= length(ParIndx{i}{j});

67 end

68 j=length(x)-1;

69 ParIndx{i}{j}= find(Pos{i}(:,1)>=x(j) & Pos{i}(:,1)<x(j+1));

70 ParIndxCount(i,j)= length(ParIndx{i}{j});

71

72

73 Ny=floor(ParIndxCount/Nsample );

74

75

76

77

78 for j=1:1: length(x)-1

79 [yValue ParIndy{i}{j}]= sort(Pos{i}( ParIndx{i}{j} ,2));

80 end

81

82

83

84 for j=1:1: length(x)-1

85 for k=1:1: Ny(i,j)

86 Cell{i}{j}(:,k)= ParIndx{i}{j}( ParIndy{i}{j}...

87 ((k-1)* Nsample +1:k*Nsample ));

88 end

89 end

90

91

92

93 for j=1:1: length(x)-1

94 for k=1:1: Ny(i,j)

95 NA{i}{j}(k)=sum(r{i}(Cell{i}{j}(:,k))==rA);

96 NB{i}{j}(k)=sum(r{i}(Cell{i}{j}(:,k))==rB);

97 end
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98 end

99

100

101

102 for j=1:1: length(x)-1

103 for k=1:1: Ny(i,j)

104 temp=NA{i}{j}(k)+NB{i}{j}(k);

105 fracA{i}{j}(k)= NA{i}{j}(k)/temp;

106 fracB{i}{j}(k)=NB{i}{j}(k)/temp;

107 end

108 end

109

110

111

112 meanfracA(i)=0;

113 meanfracB(i)=0;

114 for j=1:1: length(x)-1

115 for k=1:1: Ny(i,j)

116 meanfracA(i)= meanfracA(i)+ fracA{i}{j}(k);

117 meanfracB(i)= meanfracB(i)+ fracB{i}{j}(k);

118 end

119 end

120 meanfracA(i)= meanfracA(i)/sum(Ny(i ,:));

121 meanfracB(i)= meanfracB(i)/sum(Ny(i ,:));

122

123

124

125 stdfracA(i)=0;

126 stdfracB(i)=0;

127 for j=1:1: length(x)-1

128 for k=1:1: Ny(i,j)

129 stdfracA(i)= stdfracA(i)+( fracA{i}{j}(k)-meanfracA(i)).^2;

130 stdfracB(i)= stdfracB(i)+( fracB{i}{j}(k)-meanfracB(i)).^2;

131 end

132 end

133 stdfracA(i)= stdfracA(i)/sum(Ny(i ,:));

134 stdfracB(i)= stdfracB(i)/sum(Ny(i ,:));

135

136

137

138 clear Pos r yValue Ny ParIndx ParIndxCount ...

139 ParIndy fracA fracB temp NA NB Cell

140 fclose all;

141 cd ../../../..

142 end

143

144 sigr=meanfracA .*(1- meanfracA )./ Nsample;

145 sig0=meanfracA .*(1- meanfracA );

146 sigA=stdfracA;

147 sigB=stdfracB;

148

149

150

151 MIA=(sig0 -sigA )./(sig0 -sigr);

152

153

154 figure;

155 hold on;
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156 plot(time ,MIA ,’k-o’)

157 title(’Lacey mixing index in time’)

158 xlabel(’Time s’)

159 ylabel(’Lacey Mixing Index ’)

160 print(’MI_’,’-depsc ’)

161 CSV=[time ’,MIA ’]

162 csvwrite(’MI’,CSV)
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