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Abstract

Syntactic text simplification, the task of reducing the grammatical complexity

of text while preserving the content, can be useful for non-native speakers,

text summarization, and other downstream natural language processing tasks.

Many traditional methods are rule-based and do not generalize, while meth-

ods that rely on modern large language models often are limited by prohibitive

computational requirements or data privacy concerns. We present a text sim-

plification pipeline based on Abstract Meaning Representation which can run

on modest hardware, and report on intrinsic and extrinsic evaluations of its

performance. We find that our method achieves comparable performance to

GPT-3.5, at a fraction of the cost, and without any privacy concerns. Addi-

tionally, it outperforms a best in class rule based text simplifier. To see if our

simplified text preserves the semantics of the original text, we evaluate our

simplified text in two downstream tasks: relation extraction, and entity link-

ing. We find that our syntactic simplification pipeline has limited or no impact

on the performance of the methods we evaluate for these tasks, indicating that

our pipeline preserves the information in the original text.
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Chapter 1

Introduction

1.1 Problem Definition

Syntactic text simplification is the task of reducing the grammatical com-

plexity of text while preserving the content [14], [34]. In practice, this of-

ten amounts to replacing long multi-clause sentences with multiple, simpler

and shorter sentences that convey the same information as the original text.

There is a complementary task, text simplification, which involves both syn-

tactic simplification and lexical simplification – replacing different words with

synonyms that are easier to understand [35]. Text summarization is another

form of simplification which also involves removing superfluous information or

unnecessary details [2].

We focus specifically on syntactic simplification in this work. The objective

is to simplify complex multi-clause sentences by splitting them into multiple

syntactically simpler sentences with no dependent clauses. These syntactically

simpler sentences should have the same information as the original sentence.

Specifically, we aim to preserve the semantics of the original sentence. As an

example of syntactic simplification, consider the following sentence:

In 1935 they moved back to Chaldon, to live in a primitive stone

cottage known as 24 West Chaldon.

Our method simplifies the sentence into the following three sentences:

• They lived in primitive stone cottages.
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• They moved back to Chaldon to live in 1935.

• The primitive stone cottages were known as 24 West Chaldon.

The method we propose relies on Abstract Meaning Representation (AMR)

as an intermediate hierarchical representation which we use to select sub-

sentences. All of the sentences in the example are extracted from the AMR

graph of the original sentence, which can be seen in Figure 1.1. We are not

overly concerned about the fluency of the sub-sentences we extract (how well

they read), and we do not consider the order of the sentences. These things are

out of scope, and they are not captured well by the metrics we use to evaluate

our system. One practical consequence of this is that the sub-sentences we

extract may be ordered in a way that makes the simplified text less clear. In

the example above, the sub-sentences are not necessarily in the same order

as the ideas from the original sentence, but in this case it doesn’t seriously

impact the meaning. Additionally, due to limitations in AMR, which we will

discuss later, it may not always be possible to preserve all of the semantics of

the original sentence.

1.2 Motivation

Syntactic text simplification is important because it can help humans under-

stand complicated language, and it has also been used as a pre-processing step

for other downstream NLP tasks.

Syntactic text simplification is a part of the broader task of text simplifica-

tion, which includes lexical simplification. Text simplification can be useful for

language learners, non-native speakers, or those with low literacy levels trying

to understand text [14], [31]. It can also be helpful to those with disabili-

ties; Niklaus et al. [35] cite works describing its utility to people with aphasia,

dyslexia, or deafness.

In the past text simplification was used for a multitude of downstream NLP

tasks. Other works which do text simplification (syntactic, lexical, or both)

cite the following use cases: summarization, parsing, semantic role labeling, in-
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Figure 1.1: AMR graph for the sentence “In 1935 they moved back to Chaldon,
to live in a primitive stone cottage known as 24 West Chaldon.”
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formation extraction, and machine translation [14], [31], [32], [36]. Admittedly,

these papers cite works which show text simplification to be useful mostly for

more traditional NLP methods, which are unlike modern methods that use

large models as end-to-end solutions. In this thesis we will examine whether

our syntactic simplification is useful as a preprocessing step for two relatively

modern methods on two different NLP tasks.

1.3 Overview of Thesis Work

There are many previous approaches to text simplification [2], and they can

broadly be categorized into methods which are: supervised [30], [59], unsuper-

vised [50], [54], those which depend on some kind of parse tree [34], [49], [54],

and those which use handwritten rules [34]. Note that these categories are not

mutually exclusive. Supervised neural methods often frame text simplification

as a translation task where gold labelled data is required. Both the creation

of such a dataset and model training can be costly. Rule-based methods can

be effective, but may suffer from a lack of generality and may require a lot of

human effort to develop good rules.

We introduce an unsupervised syntactic text simplification method based

on AMR, which does not suffer from these problems. Our approach does not

require gold data, and we only do some finetuning of a pre-trained model.

We only have one algorithm for generating simplified sentences from an AMR

representation, but our method depends on having a good AMR parser and

AMR-to-text model.

One reason why syntactic text simplification (and the broader task of text

simplification) is challenging is that it is hard to formally describe how the

simplified text should look in general, and therefore it is hard to evaluate

the quality of the simplifications. In Section 2.5 we will discuss how there is

no consensus about which metrics should be used to evaluate proposed text

simplification implementations. There are many papers which are critical of

commonly used metrics, and those which propose new metrics. Given the

diversity of tasks and approaches related to text simplification, it is difficult
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to rely on a single metric to evaluate the quality of the simplified text. We

follow the practice reported in recent papers of using multiple metrics for our

intrinsic evaluation [14], [30], [50], [54].

1.4 Research Questions

We aim to address the following research questions:

• How can we build a syntactic simplification system using AMR?

• Can such a system be competitive with modern large language models?

• How useful is our syntactically simpler text in downstream natural lan-

guage processing tasks?

Regarding the first question: there are other approaches to text simplifica-

tion which use intermediate semantic representations [21], [31], [32], [49], so it

is certainly possible to build text simplification systems using semantic repre-

sentations in general. We believe that the structure of AMR makes extracting

syntactically simpler sentences very convenient, and we present a simple and

intuitive algorithm for doing so in Section 4.4.

The idea behind the second research question is to investigate whether it

is worth the effort to build systems like ours, when there are large language

models (LLMs) available that can already simplify text. Recent LLMs have

demonstrated the ability to achieve state of the art performance in many nat-

ural language processing (NLP) tasks as zero-shot methods [9]. Feng et al. [17]

show that modern LLMs already outperform previous text simplification meth-

ods. We show our method is comparable to the performance of ChatGPT-3.5

for the task of syntactic sentence simplification. Our method is outperformed

by some metrics, but we will discuss some other merits of our approach versus

LLMs.

For the third research question, we want to know if our simplified text is

still useful for modern NLP systems, since syntactic simplification was used as

a pre-processing step for NLP tasks in the past. Additionally, we would like
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our system to preserve the meaning of the sentences it simplifies. Whether or

not a system preserves meaning is difficult to capture with standard metrics

(though in Section 2.5 we describe how some metrics, like BERTScore, might

do this) so we test our method on two downstream NLP tasks to see if the

same information can be extracted from the original text can be extracted

from our simplified text. We show that our method does not really improve

the performance of the systems we test on the downstream NLP tasks, but does

not necessarily degrade performance either, suggesting it preserves information

in the original text.

1.5 Outline

In Chapter 2 we go into more detail about AMR, as well as the metrics we

use for evaluation. We also discuss the transformer architecture and BERT

specifically, which is the foundation of many methods we use in our extrinsic

evaluation. Finally, we describe AMRBART [4], the model we use for AMR

parsing and AMR-to-text generation.

Chapter 3 introduces other related methods which do syntactic simplifica-

tion. Like we have mentioned before, the methods are broadly neural methods

(supervised or unsupervised) or they make use of hand-written rules. A num-

ber of the methods use some type of intermediate hierarchical representation,

like a dependency parse. We also discuss methods similar to ours which use

different semantic representations.

In Chapter 4 we fully describe our syntactic simplification pipeline, includ-

ing the role of AMR parsing, how we use AMRBART for our purposes, and

how to extract sub-sentences from AMR.

We perform an intrinsic and extrinsic evaluation in Chapter 5. During

the intrinsic evaluation we compare our approach against two other methods,

ChatGPT-3.5 and DisSim [34] on two standard datasets. In terms of SARI,

likely the most relevant metric, we achieve better performance than DisSim,

and comparable performance to ChatGPT-3.5. For the extrinsic evaluation

we use our simplified text for two downstream NLP tasks: entity linking, and

6



relation extraction. By achieving comparable results to the original text in

these experiments, we show that our simplified text does not lose very much

information.

Overall, our results indicate that our text simplification method is compet-

itive. Unlike ChatGPT, it can be hosted locally and without the data privacy

concerns of depending on a third party API. The model can be run on fairly

modest hardware, and the cost of electricity to do inference is much cheaper

than ChatGPT API access.

7



Chapter 2

Background

2.1 Syntactic Text Simplification

Syntactic text simplification is the task of reducing the grammatical complex-

ity of text while preserving the original meaning. Syntactic text simplifica-

tion is a type of text simplification, which is the broader problem of reducing

the linguistic complexity of text while preserving the original meaning. Al-

Thanyyan and Azmi [2] categorize text simplification into two types: lexical

simplification, and syntactic simplification. Lexical simplification is the pro-

cess of replacing complex words with simpler synonyms, whereas syntactic

simplification is the process of reducing the grammatical complexity of text.

A related problem is text summarization, which tries to reduce the length of

the text while preserving the important information. Summarization can also

involve both lexical and syntactic simplification.

In the past, text simplification was a pre-processing step for some NLP

tasks, such as parsing, question generation, information extraction, fact re-

trieval, semantic role labelling, machine translation, relation extraction, and

summarization [2], [49]. Text simplification might still be useful for some NLP

tasks today, but it seems less likely with the prevalence of large language mod-

els (LLMs) which can be finetuned to provide an end-to-end solution for many

NLP tasks. Even if the utility of text simplifiction as a pre-processing step is

limited, syntactic text simplification can still help humans understand gram-

matically complex text. In this case, computationally expensive LLMs may

not be necessary to generate high quality syntactically simpler sentences.
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In this thesis, we focus specifically on syntactic text simplification. Our ap-

proach involves simplifying the grammatical complexity by splitting a sentence

into multiple shorter and less grammatically complex ones.

At this point, we need to address some potential ambiguity with the termi-

nology used in the literature: what is really syntactic simplification is some-

times called sentence splitting in the relevant literature, with slight changes

to the task definition. For example, Narayan et al. [33] introduce the “Split

and Rephrase” task, which they describe as splitting a complex sentence into

a meaning-preserving sequence of shorter sentences. The paper distinguishes

split and rephrase from simplification by saying that simplification is not neces-

sarily meaning preserving, and that deletions are allowed in split and rephrase.

Other work simply introduces sentence splitting as a type of syntactic simplifi-

cation [25]. Surya et al. [50] describe text simplification in general as consisting

of three major types of operations: splitting, deletion/compression, and para-

phrasing. Lee and Don [25] note the existence of previous works dating back to

1996 which also do sentence splitting, but acknowledge it as a form of syntactic

simplification. Niklaus et al. [34] present a rule-based approach to syntactic

simplification, and describe the problem as we do.

We argue that sentence splitting is simply a type of syntactic simplification

because it is one way to reduce the grammatical complexity of text. This

position is supported by previous literature which does not attempt to re-

define the task. Finally, it is worth mentioning that there are ways of doing

sentence-level syntactic simplification without splitting sentences, for example

by shortening sentences or deleting clauses [50]. However, we will show in the

related work that most approaches involve sentence splitting.

2.2 Abstract Meaning Representation

Abstract meaning representation (AMR), first introduced by Langkilde and

Knight [24], is a language representation that aims to capture the semantics

of text. For the purposes of this thesis, AMR can be thought of as a sentence

representation similar to a dependency parse or a constituency parse. Unlike

9



a dependency parse or a constituency parse, an AMR representation does not

necessarily depend on the precise grammatical structure of a sentence. Two

syntactically different sentences could have a similar AMR representation if

they have similar semantics. AMR has gained popularity since Banarescu et

al. [5] proposed using it for statistical language understanding, with the idea

that it would encourage work in the field like Penn Treebank did for statistical

parsing. Indeed, as Bai et al. [4] points out, AMR has been shown to be useful

for NLP tasks such as text summarization, machine translation, information

extraction, and dialogue systems.

Banarescu et al. [5] describe AMRs as rooted, directed, edge-labeled, leaf-

labeled graphs. AMR graphs are represented in a format called PENMAN

notation [6]. In PENMAN, each node has an associated variable, a concept,

and potentially multiple arguments or attribute relations associated with the

concept. A variable is like a name, which can be used to refer to a node

elsewhere in the graph. A concept is either a word from the sentence being

represented, a PropBank frameset [39], or a special keyword. In PropBank, an

annotated corpus of semantic roles, a frameset refers to a distinct usage of a

verb in a particular role, which is a way of using the verb. A triple consisting of

a concept, its associated argument, and the subject of the argument (which can

be either another variable or a literal) forms a relation. Figure 2.1 shows the

PENMAN representation for the AMR parse of a sentence, and Figure 2.2 the

corresponding graph representation. The first node, move-01 is a concept. It

has both arguments (ARG0, ARG1) and attributes (direction, time, purpose).

Some nodes have attributes that point directly to literals, like the triple (city,

name, "Chaldon").

2.3 BERT and the Transformer

BERT, or Bidirectional Encoder Representations from Transformers, is a lan-

guage model based on the transformer architecture [15], [53]. Shortly after

its release, BERT became ubiquitous in NLP. Many researchers practiced

BERTology, where they just applied BERT to various problems in NLP (often
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(z0 / move-01
  :ARG0 (z1 / they)
  :ARG1 (z2 / city
    :name (z3 / name
      :op1 "Chaldon"))
  :direction (z4 / back)
  :time (z5 / date-entity
    :year 1935)
  :purpose (z6 / live-01
    :ARG0 z1
    :location (z7 / cottage
      :consist-of (z8 / stone)
      :mod (z9 / primitive)
      :ARG1-of (z10 / know-02
        :ARG2 (z11 / location
          :name (z12 / name
            :op1 24
            :op2 "West"
            :op3 "Chaldon))))))

Figure 2.1: PENMAN representation of the AMR parse for the sentence “In
1935 they moved back to Chaldon, to live in a primitive stone cottage known
as 24 West Chaldon.”

move-01
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"24 West Chaldon"
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:mod

Figure 2.2: AMR graph for the sentence “In 1935 they moved back to Chaldon,
to live in a primitive stone cottage known as 24 West Chaldon.” This figure is
a repeat of Figure 1.1 for convenience.
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with state of the art results) [42]. Suffice to say, BERT and the transformer

architecture are very important. In this thesis we use some methods which are

based on BERT in our experiments, so in this section we briefly discuss BERT

and the transformer.

Vaswani et al. [53] propose the transformer as a replacement to recurrent

models, which used to be very popular for NLP. Recurrent models were state of

the art in many NLP tasks prior to the transformer. However, recurrent models

had their problems: their computation was difficult to parallelize due to their

sequential nature [53], learning long-range dependencies was a challenge [53],

they often experienced deteriorated performance on old tasks when acquiring

new knowledge (known as catastrophic forgetting) [13], and they suffered from

the vanishing or exploding gradients problem [41]. The main innovation of

the transformer is that it completely replaces recurrence with the attention

function, which Vaswani et al. [53] describe as mapping a query and a set of

key-value pairs to an output, where the query, key-value pairs, and output are

all vectors. Intuitively, attention adds trainable parameters which weight the

importance of parts of the input to the output. The transformer described

in Vaswani et al. [53] has an encoder-decoder architecture, following previous

successes in NLP [12]. The encoder component of the architecture encodes a

variable length input into a fixed length vector representation, and the decoder

attempts to decode the vector to recover the original sequence.

The main innovation of BERT is that it is just the bidirectional encoder

(the B in BERT). The architecture proposed by Vaswani et al. [53] has a

unidirectional transformer decoder, meaning the model only considers outputs

at positions less than i when making a prediction for position i in a sequence.

BERT uses a “masked language model” pre-training objective where some

tokens from the input are randomly masked, and the objective is to predict

the masked token based on the context to its left and right, making BERT

a bidirectional transformer. Otherwise, BERT’s architecture is so similar to

the original transformer that the authors of BERT simply refer the reader to

Vaswani et al. [53]. Devlin et al. [15] empirically demonstrate the effectiveness

of their architecture by fine-tuning BERT to obtain state of the art results on

12



11 NLP tasks.

2.4 AMRBART

AMRBART is a model capable of AMR parsing and AMR-to-text generation

[4]. AMR parsing is the task of transforming a sentence into its corresponding

AMR graph, and AMR-to-text is the opposite task of generating text from an

AMR graph. The syntactic sentence simplification method described in this

thesis relies on AMRBART for both tasks.

AMRBART is based on the Seq2Seq model BART [28], [51], which is a

denoising autoencoder based on the transformer architecture. BART is like

BERT, but it also has a decoder, making it more suitable for text generation.

BART’s pre-training objective is similar to BERT’s, but instead of just mask-

ing input tokens, BART is trained to reconstruct “corrupted” input sequences.

The corruption involves token masking, but also token deletion, text infill-

ing (multiple tokens replaced by one token), sentence permutation (shuffling

sentences), and document rotation (shifting tokens). These transformations

make the model better at generalizing. BART is particularly effective at text

generation, which is useful here since AMRBART treats AMR parsing and

AMR-to-text as Seq2Seq text generation tasks.

AMRBART treats the AMR-to-text and AMR parsing problems as Seq2Seq

problems by linearizing AMR graphs into a format not so different than PEN-

MAN, but with special tokens to handle co-referring nodes and to mark the

beginning and end of graphs. Bai et al. [4] pre-train BART on these linearized

AMR graphs, before pre-training further with something they call the unified

pre-training framework. The pre-training method combines the text sequences

and AMR sequences passed as input to the model, and the objective is to re-

construct the corrupted sequence of graph or text, depending on whether we

are doing AMR-to-text or text-to-AMR. Bai et al. [4] say that this way the

model can benefit from training on both the text and the AMR by enforcing

learning the correspondence between the two. Pre-training and finetuning also

share the same input format, but the finetuning will have an empty text or
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graph – Bai et al. [4] claim this helps to facilitate knowledge transfer between

pre-training and finetuning.

As far as we know, AMRBART still achieves the best performance on a

number of datasets for which the authors report results in both AMR parsing

and AMR-to-text. AMRBART is slightly outperformed by other methods on

a few datasets for the AMR parsing task; those methods do not do AMR-to-

text [23], [26]. In the AMR-to-text task, one method has slightly better per-

formance on some datasets, but not others [11]. Given that no other method

convincingly beats AMRBART across multiple datasets in neither AMR pars-

ing nor AMR-to-text generation, we believe it is a good choice for both tasks.

2.5 Metrics

In this thesis we use several different metrics to evaluate syntactic simplifica-

tion methods. This is because there is no consensus in the literature about

what metric is the most appropriate, and there are multiple papers criticizing

existing commonly used metrics [48], [52], [57]. The metrics we consider are:

bilignual evaluation understudy (BLEU) [40], SARI [57], BERTScore [58], and

Flesch-Kincaid Grade Level (FKGL) [22]. We also discuss SAMSA [48] and

why we do not use it. Of the metrics discussed here, BLEU and SARI are the

most commonly reported, with SARI being the preferred metric because it was

specifically developed for text simplification. Nonetheless, the other metrics

are still seen in the literature.

BLEU is an extremely popular metric for evaluating machine translation

tasks, but it is also a popular choice for text simplification. BLEU measures

the similarity between a candidate text (such as a translation, or in this thesis

a simplified sentence) and potentially many reference text. BLEU is calculated

as:

BLEU = BP× exp(
N∑

n=1

wn log(pn))

where N is the number of reference strings, n ∈ {1, ..., N}, pn is the mod-

ified n-gram precision, wn are typically uniform weights, and BP is a brevity
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penalty term which can be set to penalize overly short strings.

The modified n-gram precision is simply the fraction of n-grams from the

candidate text which appear in the reference texts. Since this definition of

the modified n-gram precision gives an excessively high score to the shortest

string which contains all of the reference n-grams, the brevity penalty is often

set to penalize short candidate texts. BLEU is always between 0 and 1, but

a candidate text will not achieve a BLEU score of 1 unless it is identical (in

terms of n-grams) to the reference text.

Since BLEU is based on n-gram precision relative to the reference text,

it has some limitations. First of all, BLEU is highly dependent on having

good references to compare to. Secondly, BLEU does not account for lexical

substitutions or paraphrasing, causing semantically similar texts to receive a

lower score than they should. These are not necessarily major obstacles for

syntactic simplification, though other work has shown that BLEU might not

be the most appropriate metric for text simplification. Sulem et al. [47] shows

that BLEU can negatively correlate with human judgements of simplicity,

arguing that it is a particularly bad metric for sentence splitting. Instead, the

authors advocate for their own metric, SAMSA [48]. Xu et al. [57] show that

although BLEU correlates strongly with meaning and grammaticality, it does

not correlate well with simplicity.

SARI is a metric which compares System output Against References and

against the Input sentence. Like BLEU, SARI is computed from n-grams,

however SARI is designed specifically for evaluating sentence simplification.

Xu et al. [57] describe it as a metric which explicitly measures the goodness

of words that are added, deleted, and kept by the systems. The formula for

SARI is:

SARI =
Fadd + Fkeep + Pdel

3

with
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Poperation =
1

k

k∑
n=1

poperation(n)

Roperation =
1

k

k∑
n=1

roperation(n)

Foperation =
2× Poperation ×Roperation

Poperation +Roperation

where k is the highest n-gram order, and poperation(n) and roperation(n) are a

special precision and recall between the candidate text and the reference text.

They are defined differently for each of the three operations (add, keep, delete)

– for more details, see the paper Xu et al. [57]. The authors show that SARI is

highly correlated with human judgements of simplicity, and that BLEU does

not correlate well with simplicity. Based on their findings, the authors argue

that BLEU is insufficient for evaluating text simplification.

BERTScore is an automatic evaluation metric for text generation based

on contextual embeddings from the language representation model BERT [15],

[58]. Unlike BLEU and SARI, which just consider exact n-gram precision or

recall, BERTScore computes the similarity as a sum of cosine similarities be-

tween the token embeddings of the sentences being compared. One advantage

of this approach is that BERTScore can capture paraphrases. The authors

show that BERTScore has a higher correlation to human judgements on vari-

ous tasks compared to BLEU and some other metrics. The authors also claim

their metric is task agnostic, which should make it suitable for text simplifi-

cation (though they do not specifically evaluate text simplification).

BERTScore can be calculated from a reference sentence x = ⟨x1, ..., xn⟩

and a candidate sentence x̂ = ⟨x̂1, ..., x̂m⟩. For the calculation, tokens are rep-

resented as contextual embeddings generated by BERT. With pre-normalized

vectors, the cosine similarity of a reference token xi and candidate token x̂j

can be computed as x⊤
i x̂j. The full BERTScore calculation matches each to-

ken in x to a token in x̂ to compute recall, and it also matches each token in

x̂ to a token in x to compute precision, and tokens are matched greedily. The

formula for recall is:
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RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

x⊤
i x̂j

and the formula for precision is:

PBERT =
1

|x̂|
∑
x̂j∈x̂

max
xi∈x

x⊤
i x̂j

In this thesis we report BERTScore F1, which is computed from the pre-

cision and recall as:

FBERT = 2
RBERT × PBERT

RBERT + PBERT

BLEURT [44] is another BERT-based metric similar to BERTScore which

is used to compare a candidate sentence and reference sentence. Unlike BERTScore,

BLEURT passes both the candidate and reference sentences to a single model

which computes a score indicative of how well the candidate sentence relates

to the reference sentence. BLEURT is not commonly used in literature for

text simplification evaluations, so we do not report it.

FKGL is a simple formula to measure the readability of text. It is based

on the total number of words, the number of syllables in the words, and the

total numbers of sentences in a text. This is the formula:

FKGL = 0.39(
total words

total sentences
) + 11.8(

total syllables

total words
)− 15.59

It is also easy to interpret; an FKGL of 8 indicates that an 8th grade

U.S. student can easily read the text. Although FKGL has been used to

evaluate text simplification systems, Tanprasert and Kauchak [52] argue that

it should not be used based on the findings that very basic post-processing can

drastically improve FKGL while having minimal impact on BLEU and SARI.

The analysis is compelling, so we use other metrics in this thesis, but we keep

FKGL anyway like the previous literature in the field.

SAMSA is an acronym for Simplification Automatic evaluation Measure

through Semantic Annotation. It is another text simplification metric which
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aims to address the structural aspects of the task [48]. SAMSA is based

on the Universal Cognitive Conceptual Annotation (UCCA) [1]. UCCA is a

semantic annotation scheme similar to AMR. The main reason why we do not

use SAMSA is because we believe it is overly tuned for a simplification method

based on UCCA by the same authors as SAMSA [49]. In particular, SAMSA

penalizes simplifications (by assigning them a score of zero) which have more

output sentences than the number of scenes (semantic units) in the UCCA

parse.
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Chapter 3

Related Work

The literature on text simplification is vast, and dates back decades [2]. To

keep the literature review relevant, we focus only on relatively recent meth-

ods which have an emphasis on syntactic text simplification. Among those

methods, we cannot fully compare against all of them due to slightly different

problem definitions; for example, a number of the methods we discuss also do

lexical simplification, but they are still relevant due to their contributions to

syntactic simplification.

Broadly speaking, contemporary approaches are either rule-based or neu-

ral methods. The neural methods can be classified as either supervised or

unsupervised. The rule-based methods sometimes take advantage of neural

networks somewhere in the process, like to generate an intermediate repre-

sentation or parse the text, but ultimately the syntactic simplification comes

from handwritten rules. Both methods often take advantage of some interme-

diate representation, like a dependency parse. We separately discuss syntactic

simplification methods based on semantic representations like ours.

3.1 Rule based Methods

Rule based methods for text simplification are those which rely on a number

of rules, usually hand-written by humans, to simplify text. Rule based meth-

ods were some of the earliest ways of doing syntactic simplification. Some

disadvantages are that they typically require labor from humans to create the

rules, validating these rules for correctness can be difficult, and the rules likely
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will not generalize to other languages. Despite this, rule-based methods could

achieve state of the art performance at least until until Niklaus et al. [35].

Early methods used rules written for chunked text (e.g. words) and parts-

of-speech tags, but later methods usually used hierarchical representations

of text like constituency or dependency parses [10], [46]. The method by

Glavaš and Štajner [20] is a relatively recent example of syntactic simplification

which still uses rules over text, though they also make use of some dependency

relations. Siddharthan and Mandya [46] present a rule-based method over

dependency parses which uses 111 handcrafted rules for sentence splitting, and

they also automatically derive thousands of rules for lexical simplifications and

deletion operations. Most notably, there is DisSim [35] which is a fairly recent

rule-based method with 35 rules that achieved state of the art performance at

the time of publication.

3.2 Neural Methods

Neural methods use a neural network to simplify text. After the publication

of Sutskever et al. [51], there were supervised methods which treated text sim-

plification as a machine translation task and just used a Seq2Seq model as-is

[38]. Due to the way these methods were trained and implemented, they did

full text simplification (lexical and syntactic). Zhang and Lapata [59] outper-

formed competitive methods at the time by augmenting an encoder-decoder

architecture with reinforcement learning. Their method does syntactic simpli-

fication, though they also present a version which can do lexical simplification.

Martin et al. [30] also use a supervised Seq2Seq model, and they introduce a

way to parameterize the model to control several aspects of the simplified text,

like the amount of compression, paraphrasing, and the lexical and syntactic

complexity.

Surya et al. [50] present the earliest unsupervised system we could find that

outperforms previous supervised text simplification systems at the time, and

they do lexical simplification as well. Some recent unsupervised neural meth-

ods make use of dependency trees to tackle the task of syntactic simplification
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[14], [54].

We would be remiss not to mention large language models (LLMs), which

have shown strong or even state of the art performance in many NLP tasks [9].

Feng et al. [17] perform an analysis of the performance of ChatGPT and GPT-

3.5 compared to more traditional supervised and unsupervised neural meth-

ods on the sentence simplification task. Sentence simplification is a broader

problem than syntactic simplification, as it includes lexical simplification, but

syntactic simplification is still involved. They find that not only are previously

state of the art methods outperformed by LLMs on standard metrics like SARI

and FKGL, but also humans prefer the LLM outputs. The human evaluation

is based on subjective measures of simplicity, adequacy, fluency, as well as rank

relative to other samples, and is performed by 3 non-native English speakers

described as having medium language ability.

3.3 Methods based on Semantic Representa-

tions

The earliest syntactic simplification method based on a semantic representa-

tion that we were able to find is Narayan and Gardent [31]. The method is

based on a type of representation called Discourse Representation Structure

(DRS), and sentences are simplified according to a combination of several pre-

trained probabilistic models. The same authors later develop an unsupervised

approach based on the same semantic representation [32].

Sulem et al. [49] present a text simplification method based on the semantic

representation UCCA [1]. It is a hybrid approach, which does rule-based

sentence splitting based on the UCCA representation, the output of which is

passed to a neural component for further simplification.

Finally, there is GRASS (GRAph-based Semantic represenation for syn-

tactic Simplification) [21] which is a rule-based method built on top of yet

another semantic representation.
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Chapter 4

Method

In this chapter we describe how we use AMR and AMRBART to do unsuper-

vised syntactic sentence simplification.

At a high level, our method parses sentences into AMR graphs, extracts

sub-sentences from the AMR graphs, and then converts them back into text.

To better preserve entities, we replace mentions to entities with special tokens

when the sub-graphs are selected, and place the entities back in the text after

the AMR-to-text step. This entire process is described by Figure 4.1.

The method we present is unsupervised; we do not explicitly train our

model to learn any kind of correspondence between unsimplified and simplified

text. We do, however, finetune AMRBART to improve the quality of its

translations.

In a preliminary qualitative evaluation of AMRBART, we noticed that

the AMR-to-text step produced strange artifacts in the output text. After

parsing a sentence to AMR and then running the text-to-AMR, the output

would sometimes have HTML tags or special characters which were not in the

original text. This is likely due to the data that was used to train the model;

AMRBART is trained on the LDC2017T10 and LDC2020T02 datasets, which

were created manually and should not have any HTML or special characters.

However, BART, the base for AMRBART, is trained on a combination of news,

books, stories, and web text [28]. It is likely that the web text was not fully

sanitized. For an example of this, see Table 4.2. Additionally, AMRBART

would sometimes drop entities (proper nouns) or replace them with entirely
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sentence

AMR parsing
Sub-graph selection

+
Entity masking

AMR-to-text
+

Entity unmasking

syntactically
simpler text

Figure 4.1: Syntactic simplification pipeline. The entity masking happens
after the sub-graph selection, and the entities are unmasked after the AMR-
to-text model is run on the sub-graphs. For more details on this, see Section
4.3.

different entities. To address these issues, we finetune the model and introduce

a masking step.

Finally, we describe our algorithm for extracting multiple syntactically

simpler sentences from the AMR parse of a complex sentence, and the full

syntactic simplification pipeline using finetuned AMRBART.

4.1 AMR Parsing

We use AMRBART as-is for AMR parsing. It works well, but sometimes

the AMR graph it generates is invalid. Recall from Chapter 2 that AMR is

represented in PENMAN notation. When AMRBART does AMR parsing, it

is supposed to produce a valid AMR graph in PENMAN notation. What we

mean when we say that the AMR is invalid is that the PENMAN produced

by AMRBART cannot be read into a graph data structure unambiguously

because of problems with the PENMAN representation. Since AMRBART is

a neural method, it is not guaranteed to always generate a syntactically correct

AMR graph. In two specific cases there is an easy fix, which we apply during

the pipeline:

1. There is a cycle in the graph. AMR graphs with cycles are invalid. To

fix this, we simply break the last-seen edge which causes the cycle.

2. There is a reference to a non-existent node. In these cases we just remove
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the reference.

In other cases it is difficult to determine what is wrong with the graph.

When AMRBART cannot generate a valid AMR graph for a sentence, we

simply output the un-simplified sentence as-is. The reason we do not pass the

malformed AMR graph to the AMR-to-text model (which will likely produce

okay text) is that our simplification pipeline is based on the AMR graph, as

we will describe in this section. Of course, outputting un-simplified sentences

can lower the performance of our pipeline according to our metrics, but AM-

RBART fails to parse sentences extremely infrequently. On the Simplewiki

dataset of 1,900,948 sentences, which we describe in the next section, AMR-

BART fails to parse only 592 sentences or about 0.03%.

4.2 Finetuning AMRBART

To address the problem of strange artifacts in the output resulting from run-

ning AMR parsing on the text and then running the AMR-to-text model on the

AMR graphs, we finetune AMRBART on a subset of Simple English Wikipedia

(Simplewiki) using a dump from Jan 1, 2023. More recent dumps are available

on the Wikimedia website1. The idea behind using Simplewiki sentences for

finetuning is that the AMR graphs of the sentences should already be relatively

small because the sentences are short and simple, and therefore the graphs will

be representative of the AMR graphs we will be passing to the AMR-to-text

model. Our sample of Simplewiki has an FKGL of only 6.38, which means

that the text should be easily readable by a U.S. sixth grader, and suggests

that the sentences are short and the words have few syllables.

From the Simplewiki dump, we extract approximately 1.9 million sentences

and create train/validation/test splits of size 1,894,356/3,000/3,000. Since we

do not observe any major issues with the AMR parser, we use it to create

training data for the finetuning. This way we can still prepare the model

for syntactic simplification in an unsupervised way. We use AMRBART to

1https://dumps.wikimedia.org/
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Original sentence AMRBART sentence
Stoford is a village in the county of
Somerset, England.

<b>Stoford</b>is a village in Somer-
set, England.

In 546 BCE, Achaemenid Persians was
in control of Ankara (approximated
date).

<b>Ankara</b>(Armenian:
<i>Ankara</i>) was controlled
by the Iranian Armenians in approxi-
mately 546 BC.

Kidman was then in more movies like
Flirting, Billy Bathgate, Far and Away,
Malice, My Life and To Die For.

Then Kidman was in more movies like
Flirting (f3000 ) , Billy Bathgate (f3001
) , Far and Away (f3002 ) , Malice
(f3003 ) , My Life (f3004 ) and To Die
For (f3005 )

The Serengeti lion: a study of preda-
tor–prey relations.

<a href=””>Serengeti lions - Study of
predator- prey relation</a>

In music, E is a note, sometimes re-
ferred to as “Mi”.

<a href=””>is a musical note some-
times referred to as Mi.

Table 4.1: Selected outputs from AMRBART on sentences from the Simplewiki
dataset which demonstrate how AMRBART (without finetuning) sometimes
inserts HTML tags or unusual characters. The original sentences are run
though the AMR parser and then the output through AMR-to-text. To save
space, the full URLs in the hrefs are omitted. The URLs were Wikipedia
links, and Simplewiki dataset also comes from Wikipedia, but we observed
this behavior in other datasets as well.

generate the AMR graphs, and we use the original sentences as the gold data

for AMR-to-text.

We use the training scripts (with their default hyper-parameters) provided

in the AMRBART Github repository2 to finetune the model for 30 epochs on

the training data. The task is to generate the original Simplewiki sentence

given the AMR graph for that sentence. After finetuning, the finetuned model

achieves a BLEU of 46.23 on the test set, whereas the base model has a BLEU

of 39.53. In addition to the improved BLEU, we do not observe HTML or

special characters when manually checking the output.

2https://github.com/goodbai-nlp/AMRBART
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4.3 Entity Masking

We handle the issue of AMRBART dropping entities or replacing them with

entirely different entities by introducing a masking step. The entity masking

happens outside of the model. After AMRBART generates the AMR graph

for a sentence, we can identify any entities in the AMR graph by checking

for nodes in the AMR graph which have the name attribute. For each AMR

graph, we replace the name of each entity with a special numbered ENTITYN

token, where N is the Nth entity occurring in the graph. Figure 4.4 shows how

the two entity names "Chaldon" and "24 West Chaldon" are replaced with

"ENTITY1" and "ENTITY2" during the masking step. After the AMR-to-text

step we replace occurrences of each ENTITYN with the original name of the

entity. AMRBART had to be finetuned again to keep the ENTITYN tokens in

the text during the AMR-to-text step. The finetuned model with masking

achieves a BLEU of 59.36 on the Simplewiki data, higher than the finetuned

model with no masking. This model was again finetuned for 30 epochs which

was enough for the BLEU and loss to begin to plateau; see Figure 4.2 and

Figure 4.3.

On the Simplewiki test data, the masked model keeps 5,386 entities from

the original text (based on exact matches) compared to the 4,776 entities kept

by the base model – a nearly 13% improvement.

Alhough our approach of entity masking by replacing text directly from

the inputs and outputs rather than using a special token in the model might

seem a little unprincipled, empirically it works very well and it is easy to

implement. The reason why our approach works well for AMRBART but

perhaps might not for more traditional probabilistic language models comes

down to the tokenizer. AMRBART, being based on BART, uses a Byte-Pair

Encoding (BPE) tokenizer. BPE was originally proposed as a text compression

algorithm [18], but Sennrich et al. [45] demonstrate its utility as a simple and

effective tokenizer which can help address the problem of out-of-vocabulary

(OOV) words. BPE has been used in many popular transformer models like

GPT, GPT-2, and of course BART. To create a character-level BPE, start
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Figure 4.2: Best BLEU per epoch of finetuning AMRBART on AMR-to-text
with masking. BLEU begins to plateau towards epoch 30. Note the y-axis
does not start at 0.

Figure 4.3: Best loss per epoch of finetuning AMRBART on AMR-to-text
with masking. Loss begins to plateau towards epoch 30. The loss function is
− logP (t|t, g), as defined in Bai et al. [4]. t is the text, and g is the AMR
graph. In the finetuning setting, t is an empty string. Note the y-axis does
not start at 0.
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(z0 / move-01
  :ARG0 (z1 / they)
  :ARG1 (z2 / city
    :name (z3 / name
      :op1 "Chaldon"))
  :direction (z4 / back)
  :time (z5 / date-entity
    :year 1935)
  :purpose (z6 / live-01
    :ARG0 z1
    :location (z7 / cottage
      :consist-of (z8 / stone)
      :mod (z9 / primitive)
      :ARG1-of (z10 / know-02
        :ARG2 (z11 / location
          :name (z12 / name
            :op1 24
            :op2 "West"
            :op3 "Chaldon))))))

(z0 / move-01
  :ARG0 (z1 / they)
  :ARG1 (z2 / city
    :name (z3 / name
      :op1 "ENTITY1"))
  :direction (z4 / back)
  :time (z5 / date-entity
    :year 1935)
  :purpose (z6 / live-01
    :ARG0 z1
    :location (z7 / cottage
      :consist-of (z8 / stone)
      :mod (z9 / primitive)
      :ARG1-of (z10 / know-02
        :ARG2 (z11 / location
          :name (z12 / name
            :op1 "ENTITY2"))))))

Figure 4.4: Example of how entity masking looks on the PENMAN represen-
tation. The entity “Chaldon” is replaced with “ENTITY1” and the entity “24
West Chaldon”, which is represented as multiple attributes, is replaced with
“ENTITY2”.

with the vocabulary of characters and iteratively merge the most frequent

pairs from a text until a vocabulary of the desired size is reached. Common

n-grams resulting from the merge operation may also be merged. This creates

a final vocabulary of all of the starting characters, plus all subword units

resulting from the merge operations. With this encoding there is no possible

way to have OOV words as long as the character vocabulary is comprehensive.

What this means for our entity masking approach is that AMRBART can

just learn to copy instances of ENTITYN from the input to the output rather

than relying on other information from the AMR graph to copy various dif-

ferent subword units representing arbitrary entity names. The BPE used by

AMRBART probably represents the ENTITYN tokens as several subword units,

which is not ideal. It may be better to have each possible ENTITYN as a seperate

token in the vocabulary.
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4.4 Sub-graph Selection Algorithm

Our method does syntactic simplification by splitting a sentence into smaller

and less complex sentences. We do the sentence splitting by generating an

AMR graph for a sentence and then splitting the AMR graph into smaller

sub-graphs which later become separate sentences.

The sub-graph selection works by first finding all of the nodes correspond-

ing to verbs in the AMR graph. This information is available through the

AMR parse. Each verb becomes the parent of its own sub-graph. The argu-

ments of the verb are added to the sub-graph, along with any attributes of

those arguments. If any sub-graph (or node) has less than 3 nodes after this

procedure and is not yet part of any other sub-graph, it is added to its largest

parent sub-graph instead of becoming a separate sentence.

Figure 4.4 illustrates this process. The verbs in the AMR graph in the

example are move-01, live-01, and know-02. We create a sub-graph for each

verb and all ARG edges are added to the graph, along with any attributes like

time, direction, or purpose in the case of the verb move-01. Note that

the know-02 verb is actually the parent of its graph because cottage is an

argument of know-02 through the edge label ARG1-of. The last step is to add

the attributes of any arguments to the sub-graph. For example, move-01 has

the argument city with attribute name which needs to be added to the graph.

4.5 Syntactic Simplification Pipeline

Finally we can describe the full end-to-end pipeline for simplifying a document.

Although our method simplifies text at the sentence level, we can simplify an

entire document by splitting it into sentences, simplifying those sentences, and

then combining them.

The complete pipeline to simplify a document follows these steps, also

shown in Figure 4.1:

1. Segment the document into sentences using pySBD3 [43]

3https://github.com/nipunsadvilkar/pySBD
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2. Parse the sentences into AMR graphs (left side Figure 4.5)

3. Mask the entities

4. Select sub-graphs according to the sub-graph selection algorithm

5. Translate sub-graphs into text using AMRBART (right side Figure 4.5)

6. Unmask the entities
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live-01
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cottage
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know-02
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:ARG1:direction

:ARG0
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back
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city:time:time
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:ARG0:ARG0

:ARG1:direction
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:name
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:ARG0:year
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:ARG1-of:ARG1-of

:consist-of:mod

know-02

location

:ARG2:ARG2

"24 West Chaldon"

:consist-of:consist-of

Entity Masking and 
AMR-to-text

They lived in primitive stone 
cottages.

They moved back to Chaldon 
to live in 1935.
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were known as 24 West 

Chaldon.

Figure 4.5: Visualization of the sub-graph selection algorithm. The AMR
parsing and sub-graph extraction is depicted on the left. After the sentence
is parsed into an AMR graph, sub-graphs are extracted from the AMR parse
based on the verbs. Entity masking is done before running AMR-to-text on
each sub-graph. AMR-to-text is run on each sub-graph to get the new sen-
tences.
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Chapter 5

Results

We conduct intrinsic and extrinsic evaluations to demonstrate the effectiveness

of our method. The purpose of the intrinsic evaluation is to compare perfor-

mance against other strong simplification methods using metrics discussed in

Chapter 2. Our intention with the extrinsic evaluation is demonstrate that our

syntactic simplification pipeline does not lose very much information by using

it for downstream NLP tasks, in the sense that the performance of downstream

NLP tasks run on the simplified text is not significantly degraded compared

to the original text.

5.1 Intrinsic Evaluation

5.1.1 Experimental Setting

We benchmark our syntactic simplification method against ChatGPT-3.51,

and DisSim [34]. DisSim is the strongest rule-based syntactic simplification

method that we are aware of, and at the time of publication it outperformed

state of the art supervised and unsupervised neural methods [34]. Since then

superior neural methods have been developed, but Feng et al. [17] show that

LLMs outperform current state of the art sentence simplification methods

according to both standard automatic evaluation metrics as well as human

judgements, making ChatGPT-3.5 a very strong benchmark.

When we evaluate ChatGPT-3.5, we use the gpt-3.5-turbo-0301 model with

the following system prompt: “You are a helpful assistant that simplifies syn-

1https://openai.com/blog/chatgpt
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tactic structures. You do not use any clauses or conjunctions.” and the fol-

lowing user prompt: “Rewrite the following paragraph using simple sentence

structures and no clauses or conjunctions:”, followed by the text. We arrived

at this prompt by following some common prompt engineering techniques.

We manually examined the output resulting from this prompt to ensure that

ChatGPT-3.5 was simplifying text in the way described.

We use two common datasets for evaluating sentence simplification: Web-

Split [33], and MinWikiSplit [37]. MinWikiSplit was created by running Dis-

Sim on the WikiSplit dataset [7], a dataset created from Wikipedia edit his-

tory. MinWikiSplit consists of sentences broken down into minimal proposi-

tions, and their corresponding original sentence. WebSplit is derived from the

WebNLG dataset [19], a dataset which maps relational triples (from a knowl-

edge base called DBPedia) to text. Table 5.1.1 shows some examples from the

MinWikiSplit dataset. The WebSplit dataset looks similar, but it has more

reference sentences with different variations in the form of re-phrasings or dif-

ferent ways of splitting the original sentence. This is useful for the purpose of

computing reference-based metrics like BLEU.

For each dataset we report the following standard metrics which we dis-

cussed in the background section: BLEU, SARI, BERTScore F1, and FKGL.

We report the corpus-level results for each metric, in accordance with other

work [34], [54], [57]. We use the Easier Automatic Sentence Simplification

Evaluation (EASSE) Python library for computing all of the standard metrics

[3]. In addition to the standard metrics, we report the compression ratio and

the number of splits. The compression ratio is the length of the simplified

text divided by the length of the original text. The number of splits is how

many sentences are in the simplified text. For all of our experiments we report

the results for our pipeline with AMRBART finetuned (f), masked (m), both

(mf), and neither.

Note that compression ratio does not necessarily measure syntactic com-

plexity; a higher or lower compression is not necessarily indicative of text

which has a higher or lower syntactic complexity. We include compression

ratio as a metric for those curious about how much more text we produce to
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Original sentence Reference sentences
It eventually developed into the Music
House Museum and opened the entire
display in May 1984.

It eventually developed into the Music
House Museum. It eventually opened
the entire display in May 1984.

Gandhi lives in Mumbai with his wife
and two children, and runs the Ma-
hatma Gandhi Foundation.

Gandhi lives in Mumbai with his wife.
Gandhi lives in Mumbai with two chil-
dren. Gandhi runs the Mahatma
Gandhi Foundation.

After attending local schools, he went
to the Royal Naval College, Greenwich,
and in 1942 joined the Fleet Air Arm.

He went to the Royal Naval College. He
in 1942 joined the Fleet Air Arm. He
was attending local schools. The Royal
Naval College was Greenwich.

Leber was sentenced to death, and exe-
cuted on 5 January 1945 at Plötzensee
Prison in Berlin.

Leber was sentenced to death. Leber
was executed on 5 January 1945 at
Plötzensee Prison in Berlin.

Table 5.1: Some shorter examples from the MinWikiSplit dataset. The original
sentences are on the left, and on the right are the reference sentences used for
computing metrics.

simplify a sentence. In fact, we expect the compression ratio for our method

to be greater than 1, because splitting one sentence into multiple may involve

repeating other words, like connectives or modifiers.

5.1.2 Experiments

The results of the evaluation on WebSplit are in Table 5.2. Our pipeline with

finetuned AMRBART has higher SARI than DisSim, and has a comparable

BERTScore, but worse BLEU and FKGL. All of our models generate less text

than DisSim, indicated by the lower compression ratio. Both DisSim and our

method is outperformed by ChatGPT-3.5 on this dataset across all metrics.

The results of the evaluation on MinWikiSplit are in Table 5.3. Our

pipeline using AMRBART with finetuning and masking achieves high SARI,

only slightly lower than ChatGPT-3.5, and outperforms ChatGPT-3.5 in BLEU,

but generates more text and has lower BERTScore.
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Model BLEU SARI FKGL BERTScore Compression Ratio Splits
AMR pipeline (mf) 49.54 46.09 6.83 0.47 1.04 1.36
AMR pipeline (m) 29.07 42.69 7.01 0.52 1.07 1.34
AMR pipeline (f) 26.82 46.51 7.29 0.48 1.14 1.38
AMR pipeline 46.55 45.59 6.08 0.49 1.13 1.39
ChatGPT-3.5 77.37 50.53 4.19 0.61 1.05 2.15
DisSim 58.85 42.91 4.75 0.50 1.20 2.33
Exact Copy 50.48 20.16 8.52 0.54 1.00 1.00
Gold 100.00 72.85 5.32 1.00 1.32 1.00

Table 5.2: Intrinsic evaluation results for WebSplit corpus.

Model BLEU SARI FKGL BERTScore Compression Ratio Splits
AMR pipeline (mf) 47.83 36.96 7.50 0.59 1.12 2.18
AMR pipeline (m) 37.46 32.73 7.12 0.50 1.11 2.17
AMR pipeline (f) 53.46 36.66 7.66 0.51 1.19 2.22
AMR pipeline 46.63 35.20 7.08 0.51 1.14 2.17
ChatGPT-3.5 47.11 38.06 5.28 0.68 0.98 2.52
DisSim - - - - - -
Exact Copy 79.16 28.06 13.27 0.79 1.00 1.00
Gold 100.00 100.00 5.15 1.00 1.26 3.49

Table 5.3: Intrinsic evaluation results for MinWikiSplit corpus. The gold data
is from DisSim, which is why we omit the metrics for DisSim.

5.1.3 Discussion

Overall, our approach leads to high SARI scores which are better than Dis-

Sim. ChatGPT-3.5 achieves better SARI than our model on both WebSplit

and MinWikiSplit, but our SARI is comparable on the MinWikiSplit dataset.

We generate less text than DisSim with a comparable BERTScore on the

WebSplit dataset. Our method does not reduce FKGL as much as DisSim and

ChatGPT-3.5. As mentioned earlier, FKGL is calculated from syllable count,

word count, and sentence count. Since we do not do any deliberate lexical sim-

plification, we mainly just see improvements in FKGL from shorter sentences.

However, it is possible that the AMR-to-text model does some unintentional

lexical simplification.

As mentioned earlier, the metrics we compute are corpus-level (in line with

the literature). For metrics like BLEU and SARI, this means computing n-

gram statistics using candidate and reference text pairs, and then computing

the metric for the entire corpus using the overall n-gram statistics. This is

different from computing BLEU or SARI for each pair of candidate and ref-

erence sentence and averaging them, which would give shorter sentences a
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disproportionate contribution to the final metrics relative to their length.

5.1.4 Cost Analysis

In terms of hardware, all inference is done on a single NVIDIA A40 GPU. Our

method takes 30 minutes on an NVIDIA A40 GPU to fully process approxi-

mately 500k characters. This cost about $0.02 USD in electricty at the time of

the experiment. These 500k characters correspond approximately to 128k to-

kens, and with the output from ChatGPT being similar in length to the input,

ChatGPT has to process roughly 256k tokens to simplify the same amount

of data. Using the ChatGPT-3.5 pricing2 at the time of the experiment for

the number of input/output tokens required, the cost of using ChatGPT-3.5 is

approximately $0.45 USD, making our model many times more cost effective

for comparable performance on the task of syntactic simplification.

5.2 Extrinsic Evaluation

To demonstrate that our simplification method preserves the information in

the original text, we perform an extrinsic evaluation on two separate tasks:

relation extraction, and entity linking.

5.2.1 Relation Extraction

For our first extrinsic evaluation task we evaluate how our syntactic sentence

simplification pipeline effects the performance of a relation extraction system.

Relation extraction is the task of determining whether text expresses a rela-

tionship between entities in the real world, and if so, the relation expressed.

For this experiment we use the Orlando dataset [8], which we chose for its

high syntactic complexity in the hopes that our simplification pipeline would

improve the performance of the relation extraction system we chose. Orlando

has an FKGL of 23.78; although FKGL is not necessarily a good indicator of

syntactic complexity, such a high FKGL does indicate that the sentences are

2https://openai.com/pricing#language-models
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generally quite long. For comparison, Time magazine has an FKGL some-

where between 10 and 12.

We use the Princeton University Relation Extraction System (PURE) [60]

on both the original and simplified versions of Orlando text. PURE does

relation extraction in two stages: first it recognizes named entities, and then

it extracts the relations between them. For each of these steps PURE uses a

pre-trained BERT model [15]. We use PURE primarily because it has only 6

different types of relations and 7 different types of entities. This is convenient

because the output of PURE needs to be reviewed manually since Orlando

does not have the kind of annotations we need, but also because we would

need to resort to manual alignment between the simplified and non-simplified

text regardless of our choice of dataset. A small number of relations and

entities makes the output of PURE easier to label.

We pre-process Orlando into the appropriate format for PURE and then

use the scripts provided in the PURE GitHub repository3 to run the system

on the simplified and non-simplified Orlando data. Afterwards, a student

manually labelled 100 relations (as correct or incorrect) extracted by PURE

from the same simplified and non-simplified Orlando documents. Another

student reviewed the labels and found them to be agreeable. In the non-

simplified dataset 68 relations were correct, and in the simplified dataset 72

correct relations were found. Using Fisher’s exact test, we find no statistically

significant difference between the number of correct relations in both samples

at the 0.01 significance level (p=0.64). We conclude that our AMR pipeline

neither improves nor worsens the performance of PURE. It is unfortunate that

our method did not improve performance on the relation extraction task, but

it also seems that we do not lose any information which would prevent relation

extraction, which is desirable.

5.2.2 Entity Linking

Our second extrinsic evaluation task is entity linking. The objective of entity

linking is to disambiguate entities from unstructured text to known entities

3https://github.com/princeton-nlp/PURE
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Figure 5.1: Description of BLINK entity linking procedure from Wu et al. [56]

in a knowledge base. For this evaluation we use the BLINK zero-shot entity

linking solution which uses Wikipedia as the target knowledge base [56].

BLINK is yet another two-stage method which is based on BERT models.

Figure 5.1, taken from the BLINK paper, depicts the overall approach. First,

a biencoder based on BERT encodes all of the entities in the knowledge base

into a dense space. Any new input is encoded with the same biencoder and

the k nearest neighbors to the new entity are retrieved as candidate entities.

Afterwards a cross-encoder (also based on BERT) ranks each of the candidate

entities and selects the best match. This two-stage approach makes BLINK

very fast; it would take a long time to compare a new entity to every entity

in the knowledge base with a cross-encoder, but the biencoder with nearest

neighbor search can narrow down the selection to just k candidates.

We use the same datasets as BLINK in our evaluation so that we can easily

compare results. Additionally, the repository4 contains scripts to download

and pre-process all of the datasets except for one (the proprietary TAC-KBP

2010), which we exclude from the evaluation. Table 5.4 contains the list of

datasets we use and the number of documents in each dataset. For each dataset

we process every document with the AMR simplification pipeline and convert

them to the appropriate input format for BLINK. We use the evaluation scripts

in the BLINK repository to run the entity linker and generate results for the

simplified text.

4https://github.com/facebookresearch/BLINK/
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Dataset Support
AIDA-YAGO2a 4766
AIDA-YAGO2b 4446
ACE 2004 244
aquaint 680
msnbc 617
WNED-WIKI 6383

Table 5.4: Size of the datasets used in BLINK evaluation.

biencoder
acc.

recall
cross-encoder

normalized acc.
overall

unnormalized acc.
Dataset base AMR base AMR base AMR base AMR
AIDA-YAGO2a 0.81 0.82 0.98 0.99 0.87 0.82 0.82 0.81
AIDA-YAGO2b 0.8 0.81 0.97 0.99 0.87 0.81 0.8 0.8
ACE 2004 0.84 0.82 0.98 0.96 0.89 0.88 0.87 0.85
aquaint 0.87 0.87 0.99 0.98 0.89 0.87 0.86 0.85
msnbc 0.84 0.84 0.97 0.98 0.9 0.81 0.85 0.89
WNED-WIKI 0.8 0.78 0.98 0.97 0.86 0.81 0.81 0.79

Table 5.5: BLINK entity linking results. Each metric is reported from running
BLINK on the base datasets and the text processed with the AMR pipeline.

The results with all the metrics produced by the evaluation script are

in Table 5.5. For each metric, BLINK’s performance on the original text

is in the “base” column, and the performance on the simplified text is in

the “AMR” column. The most important metric for this experiment is the

overall unnormalized accuracy, found in the last column of Table 5.5. The

unnormalized accuracy is just counting the number of entities correctly linked

divided by the total number of entities. This is not the same as the number of

documents correctly linked because every document can have multiple entities.

Comparing BLINK’s performance on the simplified text to the original text,

we find that there is no statistically significant difference at the 0.01 signifi-

cance level in the overall accuracy achieved by BLINK between the two types of

text on all datasets except for one. On the WNED-WIKI dataset BLINK has

a slightly lower accuracy which is statistically significant (p=0.005). We con-

clude that there may be some degradation in the performance of BLINK from

using AMR-simplified text, but it is slight. This indicates that our simplified

text does not lose very much information that is useful for entity linking.

After seeing that BLINK’s performance did not significantly degrade from
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biencoder
acc.

recall
cross-encoder

normalized acc.
overall

unnormalized acc.
Dataset base AMR base AMR base AMR base AMR
AIDA-YAGO2a 0.81 0.56 0.98 0.68 0.87 0.83 0.82 0.56
AIDA-YAGO2b 0.8 0.56 0.97 0.67 0.87 0.84 0.8 0.56
ACE 2004 0.84 0.67 0.98 0.78 0.89 0.91 0.87 0.71
aquaint 0.87 0.62 0.99 0.72 0.89 0.87 0.86 0.63
msnbc 0.84 0.63 0.97 0.73 0.9 0.88 0.85 0.64
WNED-WIKI 0.8 0.53 0.98 0.67 0.86 0.83 0.81 0.56

Table 5.6: BLINK entity linking results with target knowledge base embed-
dings based on text simplified with our AMR pipeline. Each metric is reported
from running BLINK on the base datasets and the text processed with the
AMR pipeline.

linking entities from our simplified text, we wondered whether we could im-

prove BLINK’s performance by also simplifying the entity descriptions that

are used by the biencoder to create embeddings and by the cross-encoder to

compare pairs of entities. The idea is that if the input text is more similar

to the entity descriptions in the knowledge base, performance could improve.

BLINK’s target knowledge base consists of 5.9 million entities from a full

Wikipedia dump. We ran the AMR simplification pipeline on all 5.9 million

entity descriptions, which took approximately two weeks on 8 NVIDIA A40

GPUs. Afterwards, we re-ran BLINK’s biencoder on the simplified text to

create new embeddings for the entities, which took another few days. The re-

sult is that the biencoder is now embedding new simplified inputs into a dense

space generated from simplified text, rather than trying to embed simplified

text into a dense space created from standard Wikipedia descriptions. We run

the BLINK evaluation again with the new embeddings; the results are in Table

5.6.

Unfortunately, we found that the overall accuracy is significantly worse

when using the simplified embeddings compared to the standard embeddings.

This is primarily because the biencoder does not generate an embedding for

new entities which is close to the true entity in the knowledge base. The recall

(second column Table 5.6) indicates how frequently the correct entity is in the

top k=100 nearest entities to the embedding generated by the biencoder, and

it is significantly lower for all of the datasets compared to the recall in Table
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cross-encoder accuracy
Dataset regular embeddings simplified embeddings
AIDA-YAGO2a 0.82 0.83
AIDA-YAGO2b 0.81 0.84
ACE 2004 0.88 0.91
aquaint 0.87 0.87
msnbc 0.81 0.88
WNED-WIKI 0.81 0.83

Table 5.7: BLINK cross-encoder accuracy comparison between entity linking
experiments with the original knowledge base and a knowledge base based on
simplified text. These are the same cross-encoder numbers from Table 5.5 and
Table 5.6.

5.5. Despite worse performance from the biencoder, the cross-encoder actually

performs slightly better. Table 5.7 compares the cross-encoder accuracy when

using the regular embeddings to our simplified embeddings. The cross-encoder

accuracy is how often the cross-encoder chooses the correct enitity from the

top k selected by nearest neighbor search. These results support the idea that

the decreased performance is due to the biencoder, though we do not know

exactly why. Perhaps the performance could be improved by finetuning the

biencoder or using a different model altogether.

Overall, we believe the entity linking results indicate that our simplified

text does not lose very much information compared to the un-simplified text.

In the first experiment, where we only simplified the input text, there was no

statistically significant decrease in BLINK’s overall accuracy except for one

dataset where the decrease was small. In the second experiment we simplified

the entire knowledge base there was a large and statistically significant decrease

in accuracy. However, the decrease can be explained by the biencoder’s de-

graded performance. The fact that the cross-encoder performed slightly better

suggests that the simplified text is still useful for linking, but the embeddings

from the biencoder seem to be low quality.
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Chapter 6

Limitations & Threats to
Validity

In this chapter we examine factors that may contribute to our method pro-

ducing bad results. We also discuss threats to the validity of our conclusions,

claims resulting from our methods, and procedures.

6.1 Limitations of AMR

The foundation of this work is AMR, and like Banarescu et al. [5] mention,

AMR is designed for English and is not interlingua. Nonetheless, there is work

on adapting AMR to different languages [29], [55], but much of the AMR work

is still biased towards English. Fan and Gardent [16] shows promising results in

using AMR for multilingual AMR-to-text generation, albeit with diminished

performance in languages other than English. Our impression is that our

method may also work for other languages, but perhaps not as well as for

English. If there were competitive AMR parsers and AMR-to-text models for

other languages, it is possible our method may work well, and perhaps without

any changes to the sub-graph selection algorithm.

The AMR specification comes with its own limitations which may hinder

the effectiveness AMR-to-text models. Banarescu et al. [5] mention several:

1. AMR does not represent inflectional morphology for tense and number.

Inflectional morphemes are short segments of language added to words

to give them some grammatical property, like tense, possession, or com-
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parison. The absence of inflectional morphology for tense might mean

that text generated from AMR could have awkward or incorrect use of

tense.

2. AMR omits articles, though the AMR-to-text model seems to handle

this well.

3. AMR has no universal quantifier.

4. There may be some ambiguity introduced by using PropBank framesets

to represent all verbs.

Banarescu et al. [5] suggest that the lack of inflectional morphology for

tense and number and the lack of articles could be addressed by layering in

a lightweight syntactic-style representation, but to our knowledge there are

aren’t any implementations of such a thing, and if there are then AMR parsers

and AMR-to-text models which support the standard AMR specification would

need to be retrained to support these additions.

6.2 Other Limitations

Consider again the following sentence:

In 1935 they moved back to Chaldon, to live in a primitive stone

cottage known as 24 West Chaldon.

Which our method simplifies into the following three sentences:

• They lived in primitive stone cottages.

• They moved back to Chaldon to live in 1935.

• The primitive stone cottages were known as 24 West Chaldon.

There is some information in the original sentence which is lost in the

simplification. Specifically, the cardinality of the cottage is wrong (it should

be singular, not plural), and there is some ambiguity about when the subject

43



moved and lived in Chaldon. In the original sentence, the subject lived in

Chaldon after 1935, but the simplified sentences may give the impression that

the subject only lived there in 1935. These issues may have to do with the

underlying AMR representation.

Another practical limitation of our method is that our notion of simplifi-

cation is purely syntactical. We simplify complicated sentences into smaller

sentences based on the verbs. However, it may sometimes be advantageous

(for fluency) to not simplify sentences which are already relatively simple, and

where splitting would break causal or temporal dependencies in the text. Al-

ternatively, the sentences could be simplified, but some information could be

repeated in the sub-sentences (maybe even as a simple dependent clause) to

preserve dependencies. We speculate that this alternative approach may pro-

duce better text from the perspective of humans, and also help NLP systems

that look for local dependencies in text, such as pre-LLM question answering

systems.

6.3 Threats to Validity

We have discussed how there is no consensus about which metrics to use for

syntactic text simplification, and even commonly used metrics have been crit-

icized. This may raise questions about the conclusions we draw from the

intrinsic evaluation, but we believe the metrics we use are sufficient based on

the fact that they are well-represented in the relevant literature. One thing

that is absent from our experiments is a human evaluation of our simplifica-

tions, which many text simplification papers have. With a human evaluation,

we might be able to make stronger conclusions about our method.

At the same time, human evaluations can introduce bias and human error.

Our extrinsic evaluation on relation extraction in Section 5.2.1 presents results

that depend on human-annotated data. We believe the results to be accurate,

but there is the possibility that other human annotators might disagree with

our annotations. Additionally, the relation extraction experiment might ben-

efit from using a relation extraction system with more relations and entity
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types; the relations extracted by PURE, while seemingly correct, are overly

generic and not always very informative. A system with a more expressive set

of relations has greater potential to uncover issues with our method.

In Section 5.2.2 we evaluate the performance of BLINK with the original

knowledge base as well as the same knowledge base but with its text simplified

using our method. The biencoder performs significantly worse on the simplified

text, while the crossencoder performs better. We have a hard time explaining

these results, and a satisfactory explanation might change our conclusions.

One of the baselines we compare to in Section 5.1 is ChatGPT-3.5. We

manually experimented with some prompts that seemed to work, although

admittedly we do not have a thorough quantitative evaluation of different

prompts and how they change the quality and nature of the simplifications

produced by ChatGPT-3.5. We believe the prompts we chose are fine, but it is

possible that there are better prompts which could produce even higher quality

simplifications. If this is the case, our method would be less competitive.

While we evaluate our method on downstream NLP tasks, we did not evalu-

ate the output of ChatGPT-3.5 on these tasks. It is possible that BERT-based

methods like the ones we test are not sensitive to the syntactic complexity of

text, and the output of our method may be comparable to ChatGPT-3.5 for

the purposes of downstream NLP tasks.
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Chapter 7

Conclusion & Future Work

7.1 Future Work

Currently, our method only does syntactic simplification, but it could be ex-

tended to function as a full text text simplification pipeline with the addition

of a lexical simplification component. Lexical simplification could be added as

another step during the pipeline; other text simplification methods, both rule-

based and neural, have had success with this approach [46], [59]. Another way

to add lexical simplification might be to follow other neural methods which

treat text simplification as a Seq2Seq task and use a single model end to end

[30], [38]. In this case, AMRBART could be finetuned to learn a correspon-

dence between AMR graphs and simplified text directly, though this approach

might require a lot of training data.

The sub-graph selection algorithm we describe in Section 4.4 could be

thought of as a type of rule which we use to simplify sentences. It is pos-

sible that our sentence splitting rule is not general enough, or that there are

better ways to split sentences. One way to improve the sub-graph selection

could be to train a model to select the splits instead of using our rule. For this

task, reinforcement learning might be a good approach. Zhang and Lapata [59]

use reinforcement learning to help with syntactic simplification, however the

method they describe uses a model that learns token-level operations rather

than operations over a hierarchical structure. To augment our method one

could formulate the sub-graph selection problem as a reinforcement learning

problem, and learn actions like when to split the AMR graph or add nodes to
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a split.

Our syntactic simplification method currently depends on AMRBART for

both AMR parsing and AMR-to-text generation. As the state of the art im-

proves, either the AMR parser we use, or the AMR-to-text model, or both,

could be replaced to potentially improve the performance of our pipeline. Lee

et al. [27] introduce an AMR parser which outperforms AMRBART on some

datasets, but also achieves state of the art performance for cross-lingual AMR

parsing. Although strong AMR-to-text methods currently focus on English,

eventually it could be worthwhile to experiment with using our method for

other languages with the release of better models.

7.2 Conclusion

We present an AMR-based method for simplifying text and demonstrate its

efficacy with an intrinsic and extrinsic evaluation. In the intrinsic evaluation

we compare our method to DisSim, a best in class rule-based method, and

ChatGPT-3.5, a strong LLM. We outperform DisSim and achieve performance

comparable to ChatGPT-3.5 across various metrics. Unlike ChatGPT-3.5, our

method has relatively low computational requirements. Our method can be

hosted locally with modest hardware requirements, which has the advantage

of reducing dependency on a third party service and preempting any privacy

concerns associated with sending data to a model hosted off-site.

We perform an extrinsic evaluation on two downstream NLP tasks: entity

linking and relation extraction. Using the text produced by our simplification

pipeline for these downstream does not significantly degrade the performance

of the methods we use for the evaluations. The extrinsic evaluation shows that

our method does not lose very much information from the original text, and

that the output is still suitable for downstream NLP tasks.

Overall, our intention is not to claim state of the art performance. There

are currently stronger LLMs than ChatGPT-3.5 (like ChatGPT-4), which may

have better performance on syntactic text simplification, though we could not

find any literature explicitly investigating this. Additionally, the advantages
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of our method could be short-lived; open source LLMs are catching up rapidly,

and soon it may be possible to locally host models which can achieve com-

parable performance to ChatGPT variants across various NLP tasks, perhaps

with relatively lower computational requirements, but likely still higher com-

putational requirements than our method.
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[38] S. Nisioi, S. Štajner, S. P. Ponzetto, and L. P. Dinu, “Exploring neural
text simplification models,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers),
R. Barzilay and M.-Y. Kan, Eds., Vancouver, Canada: Association for
Computational Linguistics, Jul. 2017, pp. 85–91. doi: 10.18653/v1/
P17-2014. [Online]. Available: https://aclanthology.org/P17-2014.

[39] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An
annotated corpus of semantic roles,” Comput. Linguist., vol. 31, no. 1,
pp. 71–106, Mar. 2005, issn: 0891-2017. doi: 10.1162/0891201053630264.
[Online]. Available: https://doi.org/10.1162/0891201053630264.

53

https://doi.org/10.18653/v1/D17-1064
https://doi.org/10.18653/v1/D17-1064
https://aclanthology.org/D17-1064
https://doi.org/10.18653/v1/W19-8662
https://aclanthology.org/W19-8662
https://doi.org/10.18653/v1/P19-1333
https://doi.org/10.18653/v1/P19-1333
https://aclanthology.org/P19-1333
https://aclanthology.org/P19-1333
https://doi.org/10.18653/v1/P19-1333
https://aclanthology.org/P19-1333
https://aclanthology.org/P19-1333
https://doi.org/10.18653/v1/W19-8615
https://aclanthology.org/W19-8615
https://aclanthology.org/W19-8615
https://doi.org/10.18653/v1/P17-2014
https://doi.org/10.18653/v1/P17-2014
https://aclanthology.org/P17-2014
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264


[40] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method
for automatic evaluation of machine translation,” in Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA: Association for Computational Lin-
guistics, Jul. 2002, pp. 311–318. doi: 10.3115/1073083.1073135. [On-
line]. Available: https://aclanthology.org/P02-1040.

[41] R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training
recurrent neural networks, 2013. arXiv: 1211.5063 [cs.LG].

[42] A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer in BERTology:
What we know about how BERT works,” Transactions of the Associa-
tion for Computational Linguistics, vol. 8, M. Johnson, B. Roark, and
A. Nenkova, Eds., pp. 842–866, 2020. doi: 10.1162/tacl_a_00349.
[Online]. Available: https://aclanthology.org/2020.tacl-1.54.

[43] N. Sadvilkar and M. Neumann, “PySBD: Pragmatic sentence bound-
ary disambiguation,” in Proceedings of Second Workshop for NLP Open
Source Software (NLP-OSS), Online: Association for Computational Lin-
guistics, Nov. 2020, pp. 110–114. [Online]. Available: https://www.
aclweb.org/anthology/2020.nlposs-1.15.

[44] T. Sellam, D. Das, and A. P. Parikh, “Bleurt: Learning robust metrics
for text generation,” in Proceedings of ACL, 2020.

[45] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” CoRR, vol. abs/1508.07909, 2015.
arXiv: 1508.07909. [Online]. Available: http://arxiv.org/abs/1508.
07909.

[46] A. Siddharthan and A. Mandya, “Hybrid text simplification using syn-
chronous dependency grammars with hand-written and automatically
harvested rules,” in Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguistics, S. Wintner,
S. Goldwater, and S. Riezler, Eds., Gothenburg, Sweden: Association for
Computational Linguistics, Apr. 2014, pp. 722–731. doi: 10.3115/v1/
E14-1076. [Online]. Available: https://aclanthology.org/E14-1076.

[47] E. Sulem, O. Abend, and A. Rappoport, “BLEU is not suitable for the
evaluation of text simplification,” in Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, E. Riloff, D. Chiang, J. Hock-
enmaier, and J. Tsujii, Eds., Association for Computational Linguistics,
2018, pp. 738–744. doi: 10.18653/v1/d18-1081. [Online]. Available:
https://doi.org/10.18653/v1/d18-1081.

[48] E. Sulem, O. Abend, and A. Rappoport, “Semantic structural evalua-
tion for text simplification,” in Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long Papers), New Or-

54

https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://arxiv.org/abs/1211.5063
https://doi.org/10.1162/tacl_a_00349
https://aclanthology.org/2020.tacl-1.54
https://www.aclweb.org/anthology/2020.nlposs-1.15
https://www.aclweb.org/anthology/2020.nlposs-1.15
https://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
https://doi.org/10.3115/v1/E14-1076
https://doi.org/10.3115/v1/E14-1076
https://aclanthology.org/E14-1076
https://doi.org/10.18653/v1/d18-1081
https://doi.org/10.18653/v1/d18-1081


leans, Louisiana: Association for Computational Linguistics, Jun. 2018,
pp. 685–696. doi: 10.18653/v1/N18-1063. [Online]. Available: https:
//aclanthology.org/N18-1063.

[49] E. Sulem, O. Abend, and A. Rappoport, “Simple and effective text sim-
plification using semantic and neural methods,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Melbourne, Australia: Association for Com-
putational Linguistics, Jul. 2018, pp. 162–173. doi: 10.18653/v1/P18-
1016. [Online]. Available: https://aclanthology.org/P18-1016.

[50] S. Surya, A. Mishra, A. Laha, P. Jain, and K. Sankaranarayanan, “Un-
supervised neural text simplification,” in Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics, Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp. 2058–
2068. doi: 10.18653/v1/P19- 1198. [Online]. Available: https://
aclanthology.org/P19-1198.

[51] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” CoRR, vol. abs/1409.3215, 2014. arXiv: 1409.
3215. [Online]. Available: http://arxiv.org/abs/1409.3215.

[52] T. Tanprasert and D. Kauchak, “Flesch-kincaid is not a text simplifica-
tion evaluation metric,” in Proceedings of the 1st Workshop on Natural
Language Generation, Evaluation, and Metrics (GEM 2021), A. Bosse-
lut, E. Durmus, V. P. Gangal, et al., Eds., Online: Association for Com-
putational Linguistics, Aug. 2021, pp. 1–14. doi: 10.18653/v1/2021.
gem-1.1. [Online]. Available: https://aclanthology.org/2021.gem-
1.1.

[53] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
CoRR, vol. abs/1706.03762, 2017. arXiv: 1706.03762. [Online]. Avail-
able: http://arxiv.org/abs/1706.03762.

[54] V. Vo, W. Wang, and W. L. Buntine, “Unsupervised sentence simplifi-
cation via dependency parsing,” CoRR, vol. abs/2206.12261, 2022. doi:
10.48550/arXiv.2206.12261. arXiv: 2206.12261. [Online]. Available:
https://doi.org/10.48550/arXiv.2206.12261.

[55] S. Wein, L. Donatelli, E. Ricker, et al., “Spanish Abstract Meaning
Representation: Annotation of a general corpus,” in Northern Euro-
pean Journal of Language Technology, Volume 8, Copenhagen, Den-
mark: Northern European Association of Language Technology, 2022.
doi: https://doi.org/10.3384/nejlt.2000- 1533.2022.4462.
[Online]. Available: https://aclanthology.org/2022.nejlt-1.6.

[56] L. Wu, F. Petroni, M. Josifoski, S. Riedel, and L. Zettlemoyer, “Zero-shot
entity linking with dense entity retrieval,” in EMNLP, 2020.

55

https://doi.org/10.18653/v1/N18-1063
https://aclanthology.org/N18-1063
https://aclanthology.org/N18-1063
https://doi.org/10.18653/v1/P18-1016
https://doi.org/10.18653/v1/P18-1016
https://aclanthology.org/P18-1016
https://doi.org/10.18653/v1/P19-1198
https://aclanthology.org/P19-1198
https://aclanthology.org/P19-1198
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://doi.org/10.18653/v1/2021.gem-1.1
https://doi.org/10.18653/v1/2021.gem-1.1
https://aclanthology.org/2021.gem-1.1
https://aclanthology.org/2021.gem-1.1
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.2206.12261
https://arxiv.org/abs/2206.12261
https://doi.org/10.48550/arXiv.2206.12261
https://doi.org/https://doi.org/10.3384/nejlt.2000-1533.2022.4462
https://aclanthology.org/2022.nejlt-1.6


[57] W. Xu, C. Napoles, E. Pavlick, Q. Chen, and C. Callison-Burch, “Opti-
mizing statistical machine translation for text simplification,” Transac-
tions of the Association for Computational Linguistics, vol. 4, pp. 401–
415, 2016. doi: 10.1162/tacl_a_00107. [Online]. Available: https:
//aclanthology.org/Q16-1029.

[58] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with BERT,” CoRR, vol. abs/1904.09675,
2019. arXiv: 1904.09675. [Online]. Available: http://arxiv.org/abs/
1904.09675.

[59] X. Zhang and M. Lapata, “Sentence simplification with deep reinforce-
ment learning,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9-11, 2017, M. Palmer, R. Hwa, and S. Riedel,
Eds., Association for Computational Linguistics, 2017, pp. 584–594. doi:
10.18653/v1/d17-1062. [Online]. Available: https://doi.org/10.
18653/v1/d17-1062.

[60] Z. Zhong and D. Chen, “A frustratingly easy approach for entity and
relation extraction,” in North American Association for Computational
Linguistics (NAACL), 2021.

56

https://doi.org/10.1162/tacl_a_00107
https://aclanthology.org/Q16-1029
https://aclanthology.org/Q16-1029
https://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://doi.org/10.18653/v1/d17-1062
https://doi.org/10.18653/v1/d17-1062
https://doi.org/10.18653/v1/d17-1062

	Introduction
	Problem Definition
	Motivation
	Overview of Thesis Work
	Research Questions
	Outline

	Background
	Syntactic Text Simplification
	Abstract Meaning Representation
	BERT and the Transformer
	AMRBART
	Metrics

	Related Work
	Rule based Methods
	Neural Methods
	Methods based on Semantic Representations

	Method
	AMR Parsing
	Finetuning AMRBART
	Entity Masking
	Sub-graph Selection Algorithm
	Syntactic Simplification Pipeline

	Results
	Intrinsic Evaluation
	Experimental Setting
	Experiments
	Discussion
	Cost Analysis

	Extrinsic Evaluation
	Relation Extraction
	Entity Linking


	Limitations & Threats to Validity
	Limitations of AMR
	Other Limitations
	Threats to Validity

	Conclusion & Future Work
	Future Work
	Conclusion

	References



