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ABSTRACT 

The objective of this thesis is to develop, implement and verify a theoretical framework based 

on detailed analyses and simulation of truck and shovel cycle times in open pit mining, placing 

an emphasis on the hauling component of the cycle. The goal is to improve the generation of 

accurate and reliable cycle time estimates to aid in the production planning stages and ongoing 

performance evaluation. The literature review showed that there is a void in this area of 

research. In order to achieve this, analyses on a major oil sands operation in Northern Alberta 

were performed, identifying the source of variability within the cycle time as the truck hauling 

component. The shortcomings of current commercially available estimating tools are mostly 

attributed to their overly simplistic assumptions in using truck manufacturers’ performance 

data, which indicated operating parameters under ideal conditions that are not indicative of 

those in practice. In addition, most digital models of mine haul road networks are overly 

simplistic and lack detail. The main factors affecting the performance of the haul trucks are 

over or under loading (payload variability), total resistance due to gradients and road 

conditions, and other hindrances in the haulage such as traffic interactions. This framework 

introduces two methods for producing cycle time estimates; one that mimics the currently 

available software packages which solely use manufacturer-supplied data and serves as a 

benchmark, and another method that is probabilistic and historical data-driven. The main data 

requirements are outlined and include a detailed model of the mine’s road network, dispatch 

production records, truck velocity data and other operational parameters such as operating 

guidelines and rolling resistance values. The concept of EFH is introduced due to a need to 

categorize different haul routes of equal distances based on how inclined or declined they are, 
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and how rolling resistance varies; which affect truck performance. A computer program was 

generated using MATLAB, and the algorithm is thoroughly explained. Efforts were made to 

ensure the flexibility and wide-ranging applicability of this framework to other mining 

operations. A case study is presented in order to validate the model, and a more advanced 

application of this new approach is displayed. The data acquisition activities for the mine in the 

case study are outlined. The framework is validated on four haulage profiles of varying 

lengths, showing accurate predictions of cycle times. The more advanced application of the 

framework shown in the case study consists of a productivity and production rate estimate for a 

period of three months at the oil sands operation. The results are compared to the database in 

order to assess the framework’s prediction accuracy, and to the old method adopted by the staff 

at the mine to show the superiority of this approach. This framework generates TPGOH 

productivity estimates that are within 0.1% accuracy of the database records, while the old 

method generated estimates that were up to 18% off. Due to the probabilistic nature of this 

simulation method, several replications are run. The program in this thesis is found to achieve 

desired accuracy and confidence levels for complex scenarios in a matter of seconds. Using 

EFH, a planning tool similar to the old method is produced, and yields results with an error of 

less than 4%. Recommendations for future work are provided, and center around two topics: 

properly characterizing the details of mine advancement within bench faces and movement of 

dump locations, as well as properly characterizing the dispatch logic in order to be able to 

correctly predict empty truck travel times. 
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GLOSSARY OF TERMS 

LOM: Life of mine, a term used to refer to long-term planning that spawns for several years 

and may approach the entire productive term of a mine. 

EFH: effective flat haul or equivalent flat haul, a distance measure that accounts for the time 

effects of gradients and rolling resistance in truck hauling. 

TPGOH_A: tonnes of material produced per equipment gross operating hour. This the includes 

empty haul time from the calculation 

TPGOH_B: tonnes of material produced per equipment gross operating hour. This excludes 

empty haul time in the calculation 

Cycle time: refers to the conventional truck cycle time in mining, composed of loading, loaded 

hauling, dumping and empty hauling. 

Loading: first component of the truck cycle time where a shovel transfers material from a 

source such as the ground (or stockpile) onto a haul truck. 

Dump location: place where the third component of the truck cycle time occurs, and material 

is transferred from the truck to usually a crusher, a stockpile or others.  

Loaded haul: the second component of the truck cycle time, it occurs after the truck has been 

loaded at a material source, and heads towards the dump location 

Empty haul: the last component of the truck cycle time, it occurs after the truck dumps a load 

at the destination, and heads towards a new source of material 
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Cycle delay: a field in the mine dispatch system that records the extra time in the cycle time 

caused by unexpected factors or circumstances. 

Rolling resistance: force exerted against the tire of a vehicle by the conditions of the surface 

on which it travels. 

Total resistance: rolling resistance plus gradient resistance, expressed as a percentage. 

Rim pull: the measurable mechanical force applied through the wheels and tires of a truck, 

based on payload and other factors. 

Oil sands: refers to the unconventional petroleum deposits in the Athabasca region of northern 

Alberta, in Canada. 

Segments: parts between two points within the road network, of predefined and constant 

length. 

Path: the route selected by the program as being the shortest and defined by the intersections 

which it crosses. 

Distribution: refers almost exclusively to a probability distribution fitted to a set of data. 

KPI: key performance indicator. A quantity or measure that represents the performance of a 

specific area of the operation. 
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1. INTRODUCTION 

1.1 INTRODUCTION 

Open pit mining is the most widely used method of mineral extraction in the world due to 

its associated low operational and capital costs, when compared to underground mining 

methods. While the selection of mining and processing methods is very much dependent on the 

characteristics of the orebody (dimensions, grade, geology and depth), lower costs in open pit 

mining are possible due to the highly-mechanized nature of its operations. In addition, open pit 

mines are generally less operationally complex, and therefore safer and less capital intensive 

(on a per-ton basis) than underground mines.  

In open pit mining, cash flows are generated much earlier in the life of the project due to 

shorter development and ramp-up periods, and the fact that the mineralization can be reached 

faster due to its proximity to the surface. The operating cost advantages attributed to open pit 

mining are achieved, in part, through economies of scale. Open pit mining is well suited to 

massive ore deposits, with high tonnages and production rates, which in turn makes lower 

grade deposits economically feasible to mine. 

Some of the core elements to consider when planning an open pit mining operation are the 

mine sequencing and equipment selection. These elements are highly correlated, leading 

mining engineers to iteratively search for the optimal plan. Of special importance is the correct 

selection of a materials-handling system. The most commonly used system is, by and large, the 

use of mobile excavators (also referred to as shovels) and haul trucks. These two types of 

equipment result in low operating costs but more importantly, their performance is predictable 
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and highly reliable. This is due in part to the fact that excavators and trucks, as a combination, 

have been used extensively in the construction industry. In addition, the underlying 

mechanisms of shovels (usually hydraulic machines) and haul trucks (mostly diesel internal 

combustion engines) are mature technologies that have been extensively studied, researched 

and improved over several decades. It is because of the reasons outlined in the above 

paragraphs that the near-surface volume of the economically extractable oil in the Western 

Canadian Sedimentary Basin is extracted via open pit mining, using truck and shovel 

operations.  

However, the extractive/natural resources sector is highly cyclical due to the variable nature of 

commodity prices. This variability in prices can be attributed to factors such as speculative 

investors in an unstable markets environment around the globe, uncertainty in economic 

growth in developing countries, and irregular supply and demand of various commodities. As 

such, it is important for mining companies to be able to reliably plan near-optimal schedules, 

and strive achieve said targets, so that their overall solvency and liquidity remain unthreatened. 

The prices of crude oil fluctuate significantly on a daily basis, and there have been some wild 

price cycles and adjustments in the last 10 years that have seen the benchmark WTI price on 

the NYMEX at a high of over $140US/barrel in July of 2008 plummet to just over 

$30US/barrel a short six months later, in December of the same year. The WTI then climbed to 

a high of over $110US/barrel in Q2 2011, to then plunge heavily to just over $26US/barrel in 

February of 2016 (NASDAQ). 

These oil price fluctuations have posed significant risk to Canadian oil sands producers and, by 

extension, the economy of the country. With other types of conventional oil having lower unit 
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costs of production, there is currently an oversupply that has kept prices relatively low. 

Therefore, there has been a significant drive for cost cutting in the industry to keep operations 

profitable. This has been exacerbated in recent years as overall costs to mining companies have 

risen due to increasing environmental regulations, taxation regimes, royalties and public 

scrutiny. Cost cutting by making the operation leaner has a practical limit, and therefore 

investing in research and development of better planning strategies, and more advanced data 

analysis is important, as it ensures the long-term sustainability, and prepares companies to take 

advantage of the next upcycle in prices. 

One area that differentiates oil sands mining in Northern Alberta to conventional hard-rock 

mining is the environment in which they operate in. Due to the characteristics of the ground, 

producers in the region experience very high rolling resistance values that, in turn, negatively 

affect haul truck performance, and greatly increase their fuel consumption and emissions. Oil 

sands mining companies employ some of the largest and most capable haul trucks in the world. 

In addition, oil sands mines are much more extensive in area than hard rock pits, therefore 

introducing much longer haul distances on roads of comparatively viscous material.  

A review of available literature (detailed in later sections of this thesis) suggests that there is an 

opportunity to improve operational efficiency in the truck-shovel activities of mining 

operations. At the center of this opportunity for improvement, is the accurate prediction of 

production rates – which is entirely dependent on the accurate prediction of cycle times. 
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1.2 PROBLEM STATEMENT 

The proposed research lies squarely in the areas of operations research, optimization and 

simulation. More specifically, the research presented in this thesis has intended direct 

applications in the areas of optimization and planning of mining operations. 

There have been insufficient advances in the research area of shovel-truck simulation or 

estimation methods that produce reliable results. While there are various software packages 

dedicated to this purpose, they are limited in their level of detail, as they solely rely on 

equipment manufacturers’ performance data that is usually not representative of the complex 

nature of a large-scale, real-world mining operation. As such, many companies have ceased 

using these programs, and have developed other site-specific “in-house” methods for 

predicting productivity through cycle times (the essence of productivity in shovel-truck 

operations), often with unreliable results due to the low-detail, fast-paced nature of their 

development.  

For this particular case study, the “in house” method involved relating the loaded haul distance 

to a productivity performance indicator, Tonnes Per Gross Operating Hour (TPGOH) through a 

line of best fit. TPGOH is calculated as follows: 

 

𝑇𝑃𝐺𝑂𝐻 =  
𝑇𝑜𝑛𝑛𝑎𝑔𝑒 𝑜𝑓 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑀𝑜𝑣𝑒𝑑

𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒 + 𝐶𝑦𝑐𝑙𝑒 𝐷𝑒𝑙𝑎𝑦𝑠
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There are several time items or activities that make up Cycle Time: 

 Idling at dump 

 Dumping 

 Loading 

 Time in queue 

 Spotting 

 Waiting to spot 

 Loaded hauling 

 Empty hauling 

 A simple plot of TPGOH versus loaded haul distance in Figure 1 reveals how inadequate the 

line of best fit method is. The data in this and other figures has been normalized. 

 

Figure 1: TPGOH vs Haul Distance variability (normalized) 
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Cycle time is the single most important parameter of a mining operation, as it dictates the 

maximum achievable production rate. Cycle time is dependent on the type and capability of 

equipment used, but is also controlled by other controllable and external factors. Controllable 

factors influencing cycle times include the mining sequence (schedule), road design, road 

construction, safety guidelines, maintenance of roads and equipment, as well as operator 

proficiency and behavior. External factors include unexpected equipment downtime and 

weather events that affect the characteristics of the road and performance of the equipment.  

Weather events such as large amounts of rainfall or thawing snow make the material on oil 

sands haul roads even softer and can create ruts on the surface that increase rolling resistance 

and therefore cycle times. Similarly, but to a lower extent, typical Northern Albertan low 

temperatures during winter can harden the oil sands, making it harder for shovels to retrieve 

material from the mine benches.  

The reliable estimation of shovel-truck cycle times is also essential for future production 

planning and definition of equipment requirements. In addition, a reliable estimate of cycle 

times can be used to assess the relative performance of a mining operation against a theoretical 

ideal value. As a planning tool, a link needs to be established between productivity and a 

parameter that is known in the planning stage; such as the estimated haul distance from a new 

dig location to a specified source. Figure 2 below shows how much variability there is in terms 

of haul time for specific loaded haul distances. This variability is, as described above, due to a 

combination of complex factors. 
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Figure 2: Loaded Haul Distance vs. Loaded Haul Time variability (normalized)  
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1.3 SUMMARY OF LITERATURE REVIEW 

Table 1 features a summary of some of the relevant and available literature in the field of 

production planning, equipment selection, operations research and simulation of mining 

operations. In addition, a review of literature pertaining to rolling resistance in Canadian oil 

sands operations was performed. Lastly, papers in the area of EFH (effective flat haul) were 

evaluated.  

These papers range widely in scope and in how relevant they are to this thesis and to the type 

of mining operation presented in the case study. Chapter 2 presents a more complete review of 

the literature, outlining their relation to this thesis. 

Table 1. Key points of literature review 

Author(s) Summary/Key Points 

(Chanda & Gardiner, 2010) 

Compare three methods for cycle time estimation 

(TALPAC simulation, artificial neural networks and 

multiple regressions). Simulation tends to underestimate 

short hauls and overestimate longer ones. The other two 

methods are more complex. One of the shortcomings of 

TALPAC is that the performance of the trucks is based 

on manufacturer data, and it doesn’t account for random 

events during the cycle. 

(Bozorgebrahimi, Hall, & 

Blackwell, 2003) 

Loading machine selection affects selectivity, hauling 

machine influences mine layout and design, both should 

be appropriately matched. Capital and operating costs of 

hauling equipment are much greater than loading 

equipment. Roads are one of the most important 

infrastructure elements at the mine since they affect the 

operation of trucks. 
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(Hardy, 2007) 

Outlines the effect of external factors in the overall 

wellbeing and efficiency of the mine. It provides a 

thorough review of performance characteristics of 

loading and hauling machines. Mechanical (diesel) are 

therefore relatively more reliable and predictable. 

Equipment selection and productivity estimates are 

entirely dependent on the truck cycle time; for which 

loading and travel are the most variable elements. 

Looked at truck travel time case studies using CAT FPC 

and outlined factors affecting it such as road conditions 

and operator efficiency, Study did not consider bunching, 

traffic and queueing. Productivity tends to increase with 

truck size. Author notes that return hauls (empty hauls) 

are more variable due to operators. Payload variation has 

significant effects on truck performance. Overloading 

increases productivity but decreases performance.  The 

paper provides guidelines on equipment selection and 

matching, based mostly for hard rock, open pit mines that 

may not be entirely applicable to oil sands mining. 

(Burt & Caccetta, 2013) 

A paper relating to equipment selection. States that the 

truck cycle time is particularly important and variable, 

since this is where factors external to the fleet can affect 

the operation. Considering the variability in cycle times 

is required, since it affects the feasibility of the fleet and 

the match factor. 

(Burt C. N., 2008) 

The number of trucks can affect cycle time due to 

bunching and queueing. Gives an overview of other 

techniques for equipment selection, including 

heterogeneous and homogeneous fleets. The study 

focused on minimizing costs. For this study, it was 

assumed that truck cycle time was constant, since there 
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was only one source and one destination. To make study 

more realistic, the author assumed that truck cycle times 

increased linearly with time and proportionally to bench 

depth. The author concludes that variability comes from 

two main sources: cycle time and loss in performance 

from ageing equipment. This thesis is focused heavily on 

the former. 

(Doig & Kizil, 2013) 

A study that outlines the importance and complexity of 

detailed haulage analyses in coal mining operations. 

More specifically, the impact on budgets and production 

planning. It was found that total distance had a greater 

effect on cycle times than elevation changes. This study 

used average cycle times; results were unsatisfactory due 

to limited data and numerous assumptions. 

(Manyele, 2017) 

Finds that small improvements in truck cycle time can 

result in significant productivity and efficiency gains. 

Recommends “stringent control of driver behavior” to 

ensure efficiency. As expected, loaded hauls are longer 

than empty hauls because of payload effects on 

performance, and road conditions affect hauling times 

greatly. Empty haul times were more variable than 

loaded haul ones due to dispatching logic. 

(Ta, Kresta, Forbes, & Marquez, 

2005) 

Stochastic approach to truck allocation and dispatch 

problems, it features a probabilistic simulation of haulage 

times; not detailed enough. Also outlines the increased 

complexity of dispatching and how it adds variability to 

cycle times. 

(Kaboli & Carmichael, 2014) 

Conducted an analysis that outlines the effects of varying 

grades along hauling routes on dozer fuel consumption 

and emissions. Finds distance and resistance as the main 
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factors that adversely affect them. 

(Carmichael, Bartlett, & Kaboli, 

2014) 

Formulated an analysis that examined and quantified the 

influence of various operational parameters (including 

cycle time) on unit costs and emissions. However, it uses 

average travel times. 

(Hargroves, Gockowiak, 

McKeague, & Desha, 2014) 

EEERE project in Australia, Explains the use of EFH as a 

normalizing metric to accurately measure energy 

requirements. 

(Sheremeta, 2015) 

MBA Thesis, talks about increasing productivity and its 

importance in the oil sands industry. Identifies recent 

trends of increasing distances and uses EFH and talks 

about the impact of road conditions and cycle times from 

a cost perspective. 

(RungePincockMinarco, 2015) 

TALPAC is one of the most widely used commercially 

available haul fleet planning applications. It calculates 

productivity metrics based on manufacturers’ equipment 

data. It carries out calculations for single haulage routes. 

It can incorporate some variability for parameters like 

bucket cycle time and bucket payload, travel time, 

dumping time and availability. It is assumed that road 

segments are homogenous. 

(Campbell & Hagan, 2012) 

Study that uses an EFH-based equipment selection. It 

notes that EFH is helpful in planning since it relates 

directly to road gradient and conditions. Their study used 

average factor ranges for different scenarios thus 

eliminating detail in calculations. 

(Vasquez Coronado, 2014) 

Master’s thesis that presents a novel alert system for 

truck/shovel inactivity. Characterization of hauling 

activities was performed using arena input analyzer and 

arena for simulation – proving sufficient and adequate for 
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distribution fitting. 

(Krzyzanowska, 2007) 

Studied impact of a heterogeneous mine fleet at hard rock 

mine, and the impact on cycle times from road 

conditions. Cycle times were calculated using TALPAC 

but are oversimplified. 

(Soofastaei, 2016) 

Investigates the effects of loading performance in trucks, 

which in turn affects hauling, from an energy perspective. 

Also highlights effect of payload variance on 

maintenance requirements. Did not need retarding. Also 

investigates explores effects of rolling resistance on 

performance. 

(Choi, Park, Sunwoo, & Clarke, 

2009) 

Developed an algorithm for optimal route selection – find 

that distance is usually main controlling factor, but high 

gradients can have even greater effects. 

(Hui, 2012) 

Identifies load distribution and road conditions as a 

parameter that increases haulage costs. Provides 

operational guidelines to keep these under control. 

(Alarie & Gamache, 2002) 

Provide an overview of truck dispatching solutions. They 

highlight that the common goal is to try to maximize 

production and minimize downtime, yet everything 

depends on the hauling conditions. 

(Krause A. J., 2006) 

Provides an overview of cycle time simulation and 

analysis tools. Distributions are given for hauling times. 

A case study is presented. Probability distributions for 

elements of the cycle time vary in time. Case study 

calculates TPH to match requirements. Three main 

components that affect productivity are: payload, cycle 

time and operator proficiency (8% decrease). 

(Kecojevic & Komljenovic, 2010) 
Correlate higher CO2 emissions and fuel consumption to 

higher engine load factors originated from higher 
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resistance. Overloading leads to significantly higher fuel 

consumption. 

(Awhua-Offei, Osei, & Askari-

Nasab, 2011) 

Simulation study on truck energy usage. Recommends 

shortening haul distances – and controlling road 

conditions for better truck performance. 

(Upadhyay & Askari-Nasab, 

2012) 

Simulation study on the detailed behavior of haul trucks 

in mines. It identifies and characterizes the behavior of 

truck interaction (bunching) in mining operations. Case 

study assumed flat roads of fixed length only. Shows 

MATLAB can be appropriate and matches output with 

TALPAC. 

(Ercelebi & Bascetin, 2009) 

They present a linear programming approach to the 

optimization of truck and shovel systems. They identify 

hauling as one of the major cost items in mining. 

(Edwards & Holt, 2000) 

Developed a regression model for predicting productivity 

and costs for excavators. Cycle times were estimated 

using geometric operational parameters as inputs. They 

found correlation between these input variables and cycle 

times. Considered not user-friendly nor flexible. 

(Alhasan & White, 2016) 

Conduct a cycle time analysis and assess productivity at 

an earthmoving operation. Somewhat difficult since they 

did not have a dispatching system and had to define 

geographical boundaries to mark the start and end of the 

cycle. Cycle times were assumed not to experience any 

delays. Equipment interaction is documented as having 

significant effects on productivity. 

(Thomas, et al., 1990) 

Describe various methods for measuring productivity in 

heavy industries. The Activity model is the one that 

measures output/hours and is proven to be an appropriate 

metric for productivity. Direct working hours can’t be a 
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measure of productivity since it ignores the quantification 

of output. 

(Krause & Musingwini, 2007) 

Simulated shovel-truck system using the machine repair 

model. Describes various methods of simulation: iterative 

models, regressive models, stochastic Monte Carlo 

simulation and stochastic graphical, identifying 

simulation as being superior. It used exponential 

distributions for all fields. 

(Curi, Schmidt Felsch, Cunha 

Rodovalho, & Prado Meireles, 

2013) 

Used EFH to quantify and describe the characteristics of 

particular haul routes in an open pit mine. 

(Newmont, 2014) 
They adopted EFH in their main KPIs, as “tonnesEFH” 

to better categorize and describe their production data. 

(Dotto, 2014) 

Graduate thesis investigates the relative impact of haul 

truck size in mine planning. Of special relevance to this 

thesis, the author states that the progression of rolling 

resistance through road usage is minimal (when inside of 

regular maintenance intervals). 

(Thompson & Visser, 2003) 
Found that reducing rolling resistance has significant 

effects on operating costs as well as capital costs. 

(Tannant & Regensburg, 2001) 

Give a range of road design parameters for rolling 

resistance of 1 to 10+%. It states that at Syncrude 

operations, the rolling resistance is approximately 5% or 

more during the winter. Also characterizes the effects of 

increased resistance on tire life. 

(Morton, 2017) 

A research journalistic article that examines the need and 

use for extremely large haul trucks in mining. Identifies 

high rolling resistances in oil sands mining as one of the 

reasons why these trucks need to be overdesigned. 

(Firmin, 2012) Oil sands mining historically has experienced very high 
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rolling resistance values, and road conditions usually put 

a lot of strain on the trucks causing failure. 

(Topf, 2010) 

Mentions that operating in the oil sands is tough on 

equipment. Describes oil sands roads as being very soft 

and malleable, leading to high rolling resistance. 

(Adair, Soofastaei, 

Aminossadati, Kizil, & Knights, 

2015) 

Describe various factors that control rolling resistance 

and its variance. These factors are put into four main 

categories: design, construction, operational and 

maintenance. 

(Kuo, 2004) 

Provides a thorough explanation and delineation of 

factors affecting productivity in excavations, which is 

directly applicable to open pit mining and especially oil 

sands mining. 

(Thompson & Visser, 1997) 

Presents an overview on principles for road material 

selection and developed a maintenance system that 

optimizes equipment efficiency and cost. 

(Joseph, Curley, & Anand, 2017) 

A very detailed study finds that rolling resistance is a 

material property independent of truck size. Main haul 

roads in Canadian oil sands operations range from 5.5% 

in winter to 11% in summer. Off main roads it is as high 

as 13.5%. 

(Anand, 2012) 
Conducted scaled test to find rolling resistance values in 

oil sands, agrees with above. 

(Joseph & Szymanski, 2013) 

Describe the importance of reducing rolling resistance, 

and its impact on fuel usage; fuel efficiency is not 

linearly proportional. Also mentions that under certain 

conditions, roads can become nearly liquefied. Quantifies 

costs savings from reducing rolling resistance. 

(Bonates, 1996) 
Examines the effect of rolling resistance and gradient on 

productivity. Its objective is to estimate the performance 
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of a truck along a single route. States that there are many 

assumptions and simplifications, reducing its flexibility. 

Assumed one single value for mechanical efficiency. 

Calculates speed for each segment through a formula 

rather than with rim pull curves. 

(Dindarloo, Osanloo, & 

Frimpong, 2015) 

A stochastic discrete event simulation was successfully 

developed and implemented at a large open pit mine in 

Iran. It also provides excellent guidelines for simulation 

model developments to which the model in this thesis 

adheres. 

(Dindarloo & Siami-Irdemoosa, 

2016) 

Delineate some advantages of simulation: allows for test 

and analysis of changes without spending capital 

resources. It also allows for the detailed study of 

processes that may be too short, or too long to observe in 

reality. Disadvantages include: simulation results may be 

difficult to interpret since they are based on random 

variables, thus it may be hard to determine if an 

observation is a result of the randomness or some more 

complex system trait. 

(Moradi Afrapoli, Upadhyay, & 

Askari-Nasab, 2017) 

Present a novel dispatch logic model that is linked to a 

simulation model, where probabilistic distributions of 

truck velocity and other parameters are used. 

(Ben-Awuah & Hosseini, 2017) 

A comparative study between truck hauling and conveyor 

material handling at a bauxite mine. Features the use of 

rim pull curve velocity values. Average gradients and 

average distances between source and destination are 

used. 

(De Werk, Ozdemir, Ragoub, 

Dunbrack, & Kumral, 2017) 

Comparative analysis and simulation study of 

truck/shovel operations vs. in-pit crushers and conveyor 

systems for materials handling. Find in-pit crushers and 
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conveyors more cost effective.  

Used single values for operational parameters, and 

simulation is used as a sensitivity analysis of certain 

parameters, where they find the project to be most 

sensitive to production rate. 

(Tabesh, Upadhyay, & Askari-

Nasab, 2016) 

Present a simulation model where the speed of the trucks 

at each segment is adjusted based on rim pull curves, 

with the total resistance as the controlling parameter. It 

incorporates safety parameters and traffic interactions 

(using guided transporter modules in Arena) making it a 

better characterization of reality. Like this thesis, it builds 

confidence intervals around the output of several 

simulation replications. 

(Sturgul & Harrison, 1987) 

Presents some of the early applications of simulation in 

mining, in the late 60s FORTRAN was used but was 

impractical. It outlines the advantages of simulation: 

programs can be quickly written, easily modified, are 

inexpensive. The case studies presented express their 

main data requirement were the cycle time records. 

(Vagenas, 1999) 

A review of simulation applications in the Canadian 

mining industry in the 1990s. Simulation has been 

primarily focused on materials handling systems (for 

open pit), whereas underground mines focuses also on 

extraction rates. The author touts the potential of 

simulation in the mining industry. 

(Askari-Nasab, Frimpong, & 

Szymanski, 2007) 

Present a simulation model applied to pit expansion 

geometry (and the Lerchs Grossman algorithm), not to 

haulage systems. It is a precedent for other uses of 

simulation. Finds production rate as one of the most 

important parameters. 
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In conclusion, the literature review indicates that there is an existing gap in current research to 

solve the problem of inaccurate cycle time estimations. Since the cycle time is one of the 

central and most important parameters of any mining operation, any gaps and insufficiencies 

within the realm of cycle time prediction and simulation have an aggregated effect on the 

estimation and simulation of productivity and other performance indicators.  

Since oil sands mines are more extensive in area than other traditional (hard-rock) mines, the 

haul times represent a greater portion of the cycle time. This thesis will focus on accurately 

predicting this specific component of the cycle time.  

The literature review also points out that the current problem is partly rooted in the lack of 

models that are driven by operational data, therefore relying on ideal-conditions performance 

parameters such as those provided by the equipment manufacturers. 

 

1.4 OBJECTIVES 

The objective of this research is to develop a framework that can accurately and reliably 

produce estimates of the truck-shovel cycle time through simulation, at an oil sands mining 

operation, so that productivity figures, such as TPGOH (tonne per gross operating hour) can be 

calculated. 
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 In addition, this framework must be validated and verified to prove its superiority to the 

current method used at the mine in the case study. Other detailed objectives in the development 

of this thesis include: 

 Adequately analyze the operation to properly characterize its behavior and identify the 

main sources of data that will be used as inputs 

  To define the sources of data and the level of detail needed to achieve satisfactory 

results. In addition, the road characteristics and resulting truck performance will be 

analyzed in detail 

 To develop a simulation framework that is data-driven, so that it serves as an accurate 

predictor of cycle times 

 To use the simulation model to define realistic ideal levels of productivity by 

identifying potential areas of improvement 

 To use the simulated cycle times for more practical and advanced applications such as 

short- and long-term planning 

 To use the simulation model framework as a tool that will allow for testing other types 

of equipment and will correctly predict the reaction of the mining operation 

 To use the simulation as a tool that will allow for the analysis of changes to other 

operational parameters 

 To compare the results of this framework to those produced by the alternative current 

method (based on a line of best fit on a plot of TPGOH vs haul distance), and to 

evaluate the accuracy of both estimates by comparing them to real production data 

 To achieve the above objectives by using widely-available development tools and 

software such as MATLAB, creating a computer program that is user-friendly, yet 
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robust enough to handle large amounts of data, and is flexible so that it can be applied 

at most open pit mines 

 To achieve these objectives in relatively short run-times and with user-defined levels of 

detail 

 To provide a “theoretical” estimate that mimics the currently available cycle time 

estimation tools, which use equipment manufacturers’ data and allows for the 

comparison of the more realistic simulated output versus ideal values, thereby 

quantifying opportunities for improvement 

 To provide outputs that are easy to interpret. To achieve this, the output will be 

manipulated so that this framework results in a TPGOH vs distance relationship, same 

as the in-house method in the case study  

 

1.5 SCOPE AND LIMITATIONS 

The scope of this study is mainly restricted by the availability of data to correctly 

characterize the mining operation. This framework was developed with the availability of 

dispatch system production data that had detailed information of every cycle within a two-year 

period. While this is a very significant amount of data, much of the time and effort in this 

research was spent making sure that all the errors in the database were corrected and omitted 

from further use in the model.  

There were also instances where large portions of dispatch data were incorrectly recorded, 

which required supplementation with other data sources Another limitation is the inability to 
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ensure the proper calibration of GPS trackers in the mobile equipment, which record important 

cycle time data as well as velocities. 

In general, it is hard to characterize the individual components of a complex operation such as 

a mine, therefore this study is heavily focused in the analysis of haul-truck behavior, and as 

such, there is a disproportionate amount of detail in this area compared to others such as shovel 

movement, equipment matching, etc. With this in mind, it is worth mentioning that a very 

detailed virtual surface of the mine was provided, and this made the characterization of road 

features, such as lengths and gradients, possible. 

One important consideration that was revealed during the development of this framework was 

that one component of the truck-shovel cycle time is very hard to validate/verify for 

correctness. This is the empty haul time of the truck after dumping its payload at a dump 

location. While the simulation could assume that it goes back to the same shovel or dig 

location, in practice this is not the case. Dispatching techniques are very well researched and a 

very complex area of mining operations, and is therefore outside the scope of this study. 

Therefore, when generating simulations for TPGOH, and trying to validate them against the 

production/dispatch database, it is hard to know that the dispatch logic was for assigning routes 

to trucks after dumping, especially considering that at any given time there are more than 10 

active shovels, as well as stockpile locations.  

Another limitation was the fact that the dispatch data did not categorize the mine areas in the 

classical method of other open pit mines, by polygons, with defined boundaries and locations. 

Instead, these were categorized by benches that varied greatly in location from record to 

record, due to the advancement of mining. Therefore, advanced manipulation using coordinates 
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in the records was necessary, and it resulted in a very flexible program. This entire framework 

was developed using generally available software such as MATLAB, Excel GEMS and 

AutoCAD, among others. Data requirements are more thoroughly discussed in Chapter 3. This 

framework works best when applied to existing mines for which operational data records exist, 

but its use is also applicable in the planning of new mines. In its simplest form, the framework 

in this thesis generates estimates for components of the cycle time between distinct sources and 

destinations within the mine’s haul road network. 

 

1.6 RESEARCH METHODOLOGY 

Seeing as the objective of this study was well-established since the beginning, and 

reinforced due to a review of the literature, the focus shifted towards developing a robust 

framework that would solve the problem(s) in a reasonable computer run-time. During the 

development of this research, one theme was kept constant: only generalist software and 

applications were used, in order to ensure the future flexibility and application capabilities of 

the framework. The steps taken in the development of this research and in the achievement of 

the above goals can be categorized into three main areas: 

1. Careful and detailed analysis of dispatch data from the mine in the case study, and 

subsequent review of relevant literature 

 Site visits to the mine in the case study were made, in order to become familiar 

with the operation and understand the basic logic in its processes, namely the 

shovel and truck behavior and utilization 
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 The dispatch data was analyzed extensively to characterize the overall behavior 

of the mine and identify trends that would pinpoint the areas with the most 

potential improvement 

 Having identified these areas, a thorough review of available solutions and 

literature was performed, revealing a gap in research and an opportunity to 

innovate and improve in this field 

 The performance of the available solutions was evaluated and studied so that a 

comparison could be made between those and the outputs generated by this 

framework. This program can generate estimates like those obtained in 

TALPAC and CAT FPC, which are based on manufacturers’ performance data 

 

2. Definition and delineation of data requirements, as well as manipulation of the 

available data to generate the model 

 The most important input to the framework and program is a digital model of 

the mine’s road network. The accuracy of the estimates is dependent on the 

quality of the network model – namely the correct distances and gradients 

 Other main data inputs needed for hauling simulation were identified as velocity 

records from GPS trackers in the haul trucks, and manufacturers’ performance 

data such as rim-pull curves for the desired model of truck 

 For complete cycle time simulation, dispatch data with detailed timestamps 

delineating loading, spotting, queueing, dumping and delay times are necessary, 

as well as a defined dispatch logic for assigning empty trucks from dump 

locations to new dig locations 
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 For productivity parameter estimation, such as TPGOH, payload measurements 

within the dispatch records are necessary, so that the variance in weight can be 

accounted for. The weight is a direct component that affects truck performance 

 Fitting probability distributions to the aforementioned parameters, using 

statistical methods and goodness-of-fit tests is imperative for simulation 

 Accurate coordinates for mining polygons are necessary 

 Other miscellaneous pieces of information within the operation were needed, 

such as general traffic rules like speed limits, or behavior at intersections. These 

were noted by communicating with the mine staff. It is important to accurately 

model the small-scale behavior of the equipment within the network for 

increased certainty 

 The implementation of the EFH parameter is explored and analyzed, and is deemed 

useful in properly categorizing haul data based on the effects of gradients and 

rolling resistance 

 

3. Development, validation, verification and application of the framework 

 Several algorithms and functions in MATLAB were developed, starting with 

one that would import and read the characteristics of the network, and prepare it 

for subsequent calculations 

 A method that uses manufacturer performance data to calculate cycle times was 

developed, yielding results like those of widely used commercially available 

software, to establish a baseline and for calibration purposes 
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 A more advanced simulation method that is more data-driven is developed, and 

its outputs are compared to the records in the database for validation and 

verification 

 A complex case study is presented, showcasing a more advanced application of 

this framework. The outputs are compared to the records in the production 

database, and compared to the predictions generated by the old method 

 The implementation of EFH allows for the simplification of this program’s 

output, by maintaining the operators’ desire to establish a relationship between 

TPGOH and a distance metric 

While these main steps are in chronological order, some of the steps in the first category, and 

most of those within the second and third categories occurred concurrently, since the 

development of this framework was mostly driven and shaped by the constraints presented due 

to the form of the available data and the desired outputs, of which the characteristics were not 

initially revealed. 

 

1.7 INDUSTRIAL SIGNIFICANCE OF THE RESEARCH 

It is important to note that this research was directly driven by a real necessity in the 

industry (and more specifically, the mining operation to which the case study refers) for a more 

accurate method of estimating productivity, in order to better plan in both short- and long- 

terms, as well as define equipment requirements in the future.  
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This is also a conclusion drawn from the literature review in the following chapter. As such, 

the development of the program presented in this thesis was initially well suited exclusively to 

this operation, but at later stages, efforts were made to ensure that it is flexible and general 

enough so that it can be applied at other oil sands mining operations, and almost any open pit 

mine where trucks are used as the main hauling unit. 

The direct effects of improved cycle time estimation are parallel to those of optimization in any 

heavy industry; reduced operational uncertainty leads to lower risk of unexpected inefficiency 

in the short and long-term plans. Similarly, by utilizing a prediction method that is more 

detailed than what is currently available, optimal solutions can be achieved, therefore 

minimizing costs.  

These costs are both operational and capital. Operational costs can be optimized with this tool 

by selecting the most fuel-efficient routes, for example, also leading to reduced emissions, 

which is a very important goal. In addition, capital costs can be mitigated by selecting routes 

that are less punitive on the trucks, therefore delaying the need for replacement or costly 

repairs of equipment. 

 

1.8 ORGANIZATION OF THESIS 

The main sections in this thesis, after this first and introductory chapter, are in the 

following order: Chapter 2 provides a thorough review of the available literature pertaining to 

the central topics to this project, outlining the need for a tool like the one presented in this 

thesis. The chapter starts by examining the uses of simulation in the mining industry 
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chronologically and continues to review more recent studies in other areas of mining and in 

material transport systems.  

The shortcomings in the approaches in some of these studies are explicitly noted to create a 

contrast that highlights the merits of this thesis.  

In Chapter 3, the theoretical framework of the approach and the program is outlined, and a 

detailed step-by-step explanation is provided. The general data requirements are outlined, 

showing the flexibility of this approach. Several alternate uses and potential applications of the 

program are then proposed.  

Then, in Chapter 4, the results from the application of this approach at a major Canadian oil 

sands mining operation are presented as a case study. The real-world data acquisition tasks 

performed are outlined. The model was validated against the mine’s production and dispatch 

data using several scenarios. Lastly, a more advanced application of this program and 

framework is presented, comparing its outputs and estimates to those of previous methods used 

at the operation, and to the records in the database.  

In Chapter 5, a summary and a few conclusions are offered, outlining the key findings and 

valuable insights revealed through the development of this study. In addition, 

recommendations for future work and advancement in this area of research are provided. The 

code is shown in the appendices.  
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2. LITERATURE REVIEW 

This chapter presents a comprehensive review of the available literature relevant to the 

areas of research that are central to this project. More specifically, the chapter starts by 

reviewing some of the published applications of simulation in the mining industry, further 

sorting these based on their intended area of use within the operation, all while identifying their 

significance and shortcomings.  

Then, an overview of published research on analyses and simulation relating to productivity 

and efficiency of shovel and truck operations in mining is presented, highlighting the 

importance and necessity of a framework that can lead to more accurate estimates of cycle 

times, such as the one presented in this thesis.  

Simultaneously, the literature points to rolling resistance as one of the main parameters 

affecting truck performance, and several papers investigating and quantifying the high rolling 

resistances in the Athabasca oil sands mining operations are reviewed. Lastly, literature and 

documentation relating to the concept of equivalent (or effective) flat haul (EFH) is reviewed 

and summarized. 

 

2.1 SIMULATION IN THE MINING INDUSTRY 

While simulation in mining has been around for several years now, it is still one of the 

most recent and promising tools in the industry, and presently, its full potential remains 
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unexplored. In addition to its ample current capabilities, simulation methods benefit directly 

from the relentless technological advancement in the computing and software industry.  

Sturgul and Harrison (1987) mention and review some of the earliest practical applications of 

simulation in mining. In their paper, the authors mention that the FORTRAN coding language 

was used for most simulation studies starting in the late 1960s, noting that the resulting codes 

were quite long, and thus impractical when considering that their intended use was for rather 

simple simulations. At the time of writing, two decades after the first applications, the authors 

mention that the GPSS (general purpose simulation system) coding language is comparatively 

superior than what was previously used, resulting in worthwhile simulation efforts. 

Sturgul and Harrison (1987) elaborate further, stating that since its earliest applications in the 

industry, the intended uses of simulation models have always been, essentially, the 

determination of optimal parameters at the mine. For example, by correctly simulating the 

operation, one could generate production estimates for new mine zones, or assess the behavior 

of the operation using different equipment, amongst many other applications. They proceed to 

mention that the main advantage of simulation is that codes can be written quickly, 

inexpensively and can be easily modified and further refined.  

Vagenas (1999) presents a thorough review of the applications of simulation in the Canadian 

mining industry in the 1990s, stating that it has been primarily focused on materials handling 

systems for open pit mines, whereas applications in underground mines focus also on 

extraction rates. Vagenas (1999) agrees with Sturgul and Harrison (1987), touting the use of 

computer simulation in the industry by emphasizing that its main advantage is rooted in that 

the virtual model “…allows rapid manipulation of the major parameters of functions of system 
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without the need of real-life experimentation”. Due to this, the correct application of simulation 

directly yields operational improvements (and thus, advantages over rival companies), and 

therefore many of its more advanced and substantial applications are not publicly available. In 

his concluding remarks, Vagenas (1999) correctly predicts that “…simulation analysis will be 

an indispensable scientific methodology for mine engineers in the coming decade”. 

Dindarloo and Siami-Idermoosa (2016) echo the thoughts of Vagenas (1999) nearly two 

decades later, identifying  simulation in mining as a tool that allows for the testing, 

implementation and analysis of the effects of major changes on the operation, but without the 

need to commit significant capital or resources. In other words, the value of simulation comes 

from the fact that it allows operators to explore the inherent behavior of their operation at a 

miniscule fraction of the cost of making that change, therefore minimizing operational risk. 

Another important advantage of simulation outlined in Dindarloo and Siami-Idermoosa (2016) 

is that it also allows the detailed study of processes that may be too short or too long to observe 

in real life, in a time that is appropriate for decision making. They also identify one major 

potential disadvantage: since this method involves the use of random variables, the 

interpretation of simulation results may be hard to properly interpret; it is often difficult to 

discern between normal variability from the random inputs, and inherent behavior of the 

complex system. 

Dindarloo, Osanloo, & Frimpong (2015) describe mining operations as a series of random 

discrete events. This is particularly true when considering the truck cycle. It consists of 

sequential activities, namely loading, hauling, dumping and travelling to a new destination. 

Their paper presents a stochastic discrete event simulation study that was developed and 
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implemented at a large open pit mine in Iran. The goal of this study, like many others and 

including this thesis, was to generate productivity estimates that would allow for the optimal 

selection of equipment. The authors state that a 10% improvement in productivity was 

achieved upon the implementation of their model. They provide an overview of other methods 

for achieving this, and mention that other researchers have tried using linear, non-linear and 

mixed integer programming, queuing theory, analytical hierarchy processes, genetic 

algorithms, as well as simple calculations based on manufacturer-supplied equipment 

performance data. However, the authors say that simulation in general is a superior method due 

to its relative ease of use and accuracy. In addition, they also provide a set of excellent 

guidelines for simulation modeling, chief among which is making sure that the input data is a 

result of detailed observation (or recording) and careful analysis of field parameters in loading 

and haulage operations, so that interrelated processes can be characterized. They also present 

different sets of guidelines for new mines and for existing mines, based on the availability of 

field data. The model in this thesis follows, to a certain extent, the best practices proposed for 

existing mines by Dindarloo, Osanloo, & Frimpong (2015).  

An example of an alternative to simulation for productivity estimation is presented by Edwards 

& Holt (2000), as they developed a regression model called ESTIVATE, with the goal of 

predicting productivity and cost parameters for excavators in the construction industry in the 

United Kingdom. Machine cycle times were estimated using equipment manufacturer’s 

equipment operational parameters (namely machine weight, digging depth and swing angle) as 

inputs to the model, and multiple regression as the specific calculation method. In the model, 

they were able to determine and quantify the correlation between these input variables and the 

geometry of the desired operation, and use it to predict the cycle times. While the authors 
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conclude that their regression model is robust and yields acceptable results, they also mention 

that, due to its complex mathematical nature, it is not user friendly nor flexible.  

Askari-Nasab, Frimpong, & Szymanski (2007) present an example of an advanced application 

of simulation in the mining industry, as they developed a predictive stochastic model for the 

expansion of open pit mines, founded on geometrical calculations based on an elliptical 

frustum. One of the main goals of the model is to try and correctly characterize the randomness 

and behavior of the operations at the mine and then use these as inputs to try to define the 

newly expanded pit limits. As such, one of the main data inputs into the model is the 

production rate, which is almost entirely dependent on the selection of equipment and therefore 

their capacity and resulting cycle times. In the 2007 paper, these production rates were 

obtained deterministically by using the outputs generated in Whittle, one of the most widely 

used mine optimization programs. In contrast, this thesis recognizes and stresses the 

importance of accurate estimates of cycle times as, and thus generates them in a more detailed 

manner by focusing in the intricacies of truck activity. 

De Werk et al (2017) conducted a comparative cost analysis that investigates in-pit crusher and 

conveyor systems versus traditional truck and shovel operations for materials handling at open 

pit mines. They present a case study for an open pit iron ore mine, applying their framework 

and concluding that, for that specific scenario, in-pit crushers and conveyors more cost 

effective than trucks and shovels. This conclusion was reached by using single and average 

values for cycle times and other important operational parameters, which may be an 

oversimplification. The authors, however, do conduct a sensitivity analysis through Monte 

Carlo simulation of some parameters, namely the prices of both fuel (for trucks and shovels) 
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and electricity (for crushers and conveyors), as well as equipment availability. The results of 

the sensitivity analysis show that both methods are most significantly affected by variations in 

production rates. By extension, production rates in typical truck/shovel operations are governed 

by cycle times, the estimation of which is the focus of this thesis. 

Alarie & Gamache (2002) provide an excellent overview of various truck dispatching solutions 

in open pit mining, also outlining the common problems encountered in the industry. They 

highlight that operators and planners, in essence, all aim to maximize production and minimize 

downtime. However, it is stressed that the productivity and performance of the system is 

significantly dependent on the hauling conditions in which the trucks operate. 

Ta et al (2005) present a stochastic approach to remediating truck allocation and dispatch 

problems, and it features a probabilistic simulation of cycle times and payloads, which is not 

detailed enough and identified to be a potential area of improvement of their proposed 

approach. The authors also mention that the cycle times can be greatly affected by the 

decision-making process in dispatch, more specifically, the time haul trucks spend travelling 

empty after dumping material to a new destination. Since this thesis is not focused on 

developing a better dispatch solution, some of the productivity indicators in the case study do 

not include that component of the truck cycle time.  

Moradi Afrapoli, Upadhyay, & Askari-Nasab (2017) developed a novel fleet management 

system  for open pit mines which minimzes deviations from the original mine plan. The new 

system was validated by linking it to an Arena simulation model. In order to correctly simulate 

the major uncertain variables at the operation, they fit probability distributions to field data for 

spotting, loading and dumping times, separately. In addition, they fit probabiltiy distributions 
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to the data for the loaded velocity of trucks. It is important to mention that they fit individual 

distributions for every combination in their heterogeneous fleet. The simulation framework 

presented in this thesis is similar in approach to Moradi Afrapoli, Upadhyay, & Askari-Nasab 

(2017) in that it tries to capture the randomness of the original system variables in the 

operation to generate estimates that are closer to reality. 

Vasquez Coronado (2014) presents  an approach to improving productivity via a novel system 

that alerts operators of truck/shovel inactivity. In his model, he characterized and modelled the 

operation’s hauling activities by fitting distributions and using the Arena input analyzer, which 

allows for statistical hypotheiss testing, and Arena for simulation. This sets one of the only 

precedents for data analysis and probability distribution fitting using that specific program. 

This thesis employs the same technique and software for statistical modeling. However, the 

case study presented in his dissertation is simplistic in that there are only a couple of sources 

and destinations, requiring only a few distributions for travel times between them. While it sets 

a good precedent for simulation of cycle times, it is not flexible, nor is it intended to be a tool 

that can easily be applied elsewhere. 

Krzyzanowska (2007) uses the widely popular haulage simulation program, TALPAC (which 

will be discussed more in detail below), to simulate haul times for a study that characterizes the 

relative disadvantage of using  mixed (or heterogeneous) fleets in open pit mining operations. 

The author recognizes truck performance and road conditions as the main parameters affecting 

overall productivity, but also describes the negative effects of poor equipment matching in a 

case study. It is concluded that using trucks and shovels of varying capacity and performance 

results in increased delays, poor matching and bunching within the mine’s road network. The 
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inputs used in  Krzyzanowska’s study assume ideal (uninterruped) hauling conditions. Such 

assumption must not be made when the focus of the study is to quantify productivity, rather 

than measure relative performance in two mining scenarios. 

Awhua-Offei, Osei, & Askari-Nasab (2011) conducted a study on truck energy usage at a 

mining operation. The inputs to their simulation were probability distributions for shovel and 

truck activities, separately. The authors recommend increasing shovel size slightly while 

maintaining compatibility in the system, and identify haul distance and road gradient as very 

important elements. They recommend shortening haul distances and maintaining gradients to 

relatively low levels to achieve maximum efficiency levels. This thesis agrees with those 

recommendations in most cases, as it implements a shortest-path algorithm to minimize travel 

distances and recognizes resistance (both rolling and gradient) as a factor that should be kept to 

a minimum through proper design and maintenance of the road network. 

In one of the most interesting truck-shovel simulation approaches is presented by Krause & 

Musingwini (2007). These authors modelled a mining operation using an adaptation of the 

Machine Repair model in Arena. Cycle times were represented as inputs using exponential 

distributions within their model, and the authors were able to generate similar productivity 

outputs to that of TALPAC and other widely used tools. The authors note that the differences 

in the outputs from the various methods in their study are rooted in how the input data is 

manipulated in each approach, and therefore suggests that proper statistical analysis and 

probability distribution fitting is paramount in simulation. 

Bonates (1996) presents one of the earliest haul-time simulation models. The author examines 

the effects of rolling resistance and gradient on productivity. The core objective of his study is 
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to estimate the performance of a truck along a single haul route. He states that many 

assumptions were made to make the model simpler and thus cannot be universally applicable. 

Some of these assumptions include assuming one single value for mechanical efficiency and 

calculating truck speed for each road segment via a power/weight formula rather than with rim 

pull curves that take into account the mechanical characteristics of the truck’s drivetrain. 

Ben-Awuah & Hosseini (2017), much like De Werk et al (2017) conducted a comparative 

analysis between truck and shovel hauling and in pit crushers with conveyors, this time at a 

bauxite mine. In this paper, Ben-Awuah & Hosseini utilize a single assumed value for rolling 

resistance, and average values for gradients along selected routes of fixed length. With this 

information, they use the truck manufacturer’s rim pull performance curve to determine the 

speed (and thus, the time) that it will take to haul from point to point. The authors also find that 

major cost savings are possible using the conveyor system, but point out that truck and shovel 

operations are better understood in the industry as a more mature technology. 

Doig & Kizil (2013) present a haulage analysis study that aims to identify the value drivers of 

materials handling operations using trucks and shovels. It outlines the importance and 

complexity of detailed haulage analyses in coal mining operations. More specifically, it 

analyzes the impact of hauling on budgets and variability in production planning. The study 

found that total distance had a greater effect on cycle times than elevation changes at their 

analyzed mine. The authors express that increasing detail in haulage analysis is crucial, calling 

for a program such as the one in this thesis. The authors’ study used average cycle times and 

yielded unsatisfactory results which were attributed to a lack of data and numerous 

assumptions in the methodology. 
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In an excellent paper that has been cited by many in this area of research, Chanda & Gardiner 

(2010) compare three existing methods for cycle time estimation: TALPAC simulation, 

artificial neural networks and multiple regressions. After a thorough review, they conclude that 

simulation is the most commonly used method. The authors also find that this method, in 

general, underestimates short hauls and overestimates long ones. They also find that artificial 

neural networks and regression are more complex methods that require greater levels of effort 

and data and are not as flexible. The paper states that one of the shortcomings of TALPAC 

simulation is that the behavior and performance of the trucks is solely based on manufacturer 

data (i.e. rim-pull curves) which are assumed to be under ideal conditions; it doesn’t account 

for random events during the cycle. The framework presented in this thesis does, as it 

incorporates distributions that are representative of said events. The authors also found 

abnormally low variation in cycle times with TALPAC, due to the nature and form of its 

inputs. This is overcome in this thesis’ proposed framework by using full probability 

distributions and true random number generation, as opposed to a “spread” of values as used in 

TALPAC. 

TALPAC (RungePincockMinarco, 2015) is one of the most widely used commercially 

available haul fleet planning applications. It calculates productivity metrics based on 

manufacturers’ equipment performance data, both for loading and hauling equipment, either 

separately or working in conjunction. It extends its estimates into costing and economic areas 

that are quite important in the planning stage. It features a massive equipment library with 

many models of trucks and shovels. It carries out time calculations for single haulage routes. 

TALPAC can incorporate variability for a few operational parameters such as bucket cycle 

time, bucket payload, travel time, dumping time and availability. It is assumed that road 
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segments are homogenous. Thanks to this, there is the possibility to simulate and generate 

variable output travel times, but as mentioned earlier in this chapter, TALPAC does not allow 

users to fully capture the variability of factors. The framework in this thesis is comparatively 

more detailed yet flexible. Both TALPAC and the program in this thesis vary the payload and 

adjust performance accordingly. 

Hardy (2007) outlines the importance of other mine elements and external factors in the overall 

efficiency of the mine. In his paper, he provides a thorough review of performance 

characteristics of loading and hauling machines. He also notes that mechanical (diesel-

powered) haul trucks present very mature technology and are therefore relatively more reliable 

and their operation is more predictable. He states that equipment selection and productivity 

estimates are entirely dependent on the truck cycle time; for which loading and travel times are 

the most variable elements. He conducted research on case studies in deep pits using CAT FPC 

software, and outlined the main factors affecting productivity, such as road conditions and 

operator efficiency. The framework in this thesis accounts for both, as well as speed limits by 

fitting distributions as opposed to assuming best-case values. Hardy did not consider the effects 

of bunching, traffic and queueing. The case study in this thesis does, since its data-driven. 

Hardy states that productivity tends to increase with truck size, thus the recent preference for 

using larger trucks when possible. He notes that return hauls (empty hauls) are more variable 

due to operator behavior, even when eliminating the variability of dispatching systems. He also 

mentions that variations in payload have significant effects on truck performance. He then 

investigates the effect of truck overloading, finding that it increases productivity but decreases 

performance and efficiency. He also mentions that haul road maintenance at mining operations 

is essential, since resistance affects the trucks’ ability to perform, but maintenance often results 
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in traffic interactions that slow trucks down. This was found to be true in this thesis and case 

study. 

Tabesh, Upadhyay, & Askari-Nasab (2016) present a truck-shovel simulation model, in which, 

like this thesis, the speed of the trucks at each segment is adjusted based on the rim pull curves, 

with the sum of rolling resistance and gradient as the controlling parameter. The simulation 

study goes a step beyond others, as it incorporates and models behavior at the mine that brings 

the simulation to a closer representation of reality. These include safety parameters (such 

maintaining minimum following distances between trucks), yielding the right of way at 

intersections, and traffic interactions (slower trucks holding faster ones, possible thanks to the 

guided transporter modules in Arena). Like the framework in this thesis, it builds confidence 

intervals around the output of several replications, yielding a probabilistic estimate of the KPI 

of interest. 

Continuing within the topic of detailed simulation of haulage systems, Upadhyay & Askari-

Nasab (2012) provide a simulation study on the detailed behavior of haul trucks in mines, 

accounting for the acceleration, deceleration and other traits of the system. It identifies and 

quantifies the behavior of truck interaction (bunching) in mining operations. Their case study 

assumes flat roads of fixed length only. Their study is carried out in MATLAB and shows that 

it can be an appropriate tool for simulation coding by matching its output with the one 

determined in TALPAC. The program presented in this thesis was coded in MATLAB. 

In summary, one can observe that one of the most important inputs to the model has always 

been properly fitted probability distributions for cycle time data, as well as a detailed profile of 
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the haul route(s), regardless of the intended goal of the simulation study. Therein lies the 

motivation to develop a framework that accurately predicts this. 

2.2 PRODUCTIVITY ANALYSES 

Maximizing productivity in the mining industry is of paramount importance and is the 

second greatest value driver after increased resource discoveries, and the one that operators can 

control. Thomas et al (1990) provide a thorough overview and description of various methods 

for measuring productivity in heavy industries. The authors note that working hours cannot 

alone be a measure of productivity, since it ignores the quantification of output. The “activity 

model” is an approach that measures productivity as a desired unit of measurable output, 

normalized by the working hours put in to achieve said production. As the authors mention, it 

is proven to be an appropriate metric for productivity in industries like mining.  

The cost of using trucks to haul material in open pit mines is the highest operating expense, 

representing approximately 50 to 60% of the total, according to Ercelebi & Bascetin (2009). 

This fact motivated them to develop a linear programming approach to optimizing their 

operations and to increase productivity. When considering these high operating costs, one must 

also take into account the very high capital costs associated with the purchase of mining 

equipment, such as shovels, trucks, dozers and other auxiliary equipment. The push for peak 

productivity at mines around the glove is easily justified.  

Alhasan & White (2016) present a study of an earthmoving operation where GPS records were 

used to conduct cycle time analysis and assess productivity. The analysis of cycle times in the 

case study was difficult since they did not have a dispatching system on site, and thus had to 

define geographical boundaries to mark the start and end of cycle times. The cycle times were 
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calculated by removing the delays from the records – this may not be ideal since there are 

ramifications and interrelations on the entire cycle due to these delays, and thus should have 

been accounted for. Equipment interactions such as bunching and traffic is documented as 

having significant effects on productivity. The authors note that more refined systems for 

monitoring truck activity would be useful in properly capturing other factors that affect 

productivity. 

Kuo (2004) provides a very detailed look at the factors that can affect productivity in 

excavations and earthworks, and how they are interrelated. These are directly applicable to 

open pit mining and especially oil sands mining. Kuo lists project complexity, traffic flow, 

accessibility, road/soil condition, gradient, rolling resistance, size of equipment, match factor, 

operator competency, weather and disruptions and as some of the main factors that ultimately 

affect production rates. The framework in this thesis successfully encompasses data from all of 

the aforementioned sources to produce accurate estimates of productivity. 

Burt & Caccetta (2013) wrote what is one of the most complete papers relating to equipment 

selection and the calculation of the match factor. The authors state that the truck-shovel cycle 

time is extremely important, and usually quite variable. It is variable, according to the authors, 

because it is at the shovel-truck operating cycle where factors that external to the fleet and 

inherent performance can affect the operation. It is therefore necessary to appropriately 

represent the variability in cycle times during calculations, or simulation, since it affects the 

feasibility of the fleet and the match factor. Along the same lines, Burt (2008) states that the 

number of haul trucks can affect cycle time, due to bunching and excessive queueing. She also 

provides an overview of techniques to select equipment with heterogeneous and homogeneous 
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truck fleets. For this study, it was assumed that truck cycle time was semi-constant since the 

trucks left the centroid of the mine and went to a single dump location. In order to make her 

study more realistic, the author assumed that truck cycle times increased linearly with time as 

mining progressed, since the pit deepened. The author identifies two main sources of 

variability in productivity estimates: loss of performance from ageing equipment, and 

variations in cycle time due to external factors and the respective responses in equipment 

performance. This thesis is focused heavily on the latter. 

Bozorgebrahimi, Hall, & Blackwell (2003) reached the conclusion that loading machine 

selection (such as shovels and excavators) affects mining selectivity, while hauling equipment 

mainly influences mine layout and design, and both should be appropriately matched. 

However, capital and operating cost of hauling equipment are often much greater than those of 

loading equipment, and often the highest single-cost item at a mining operation. They go on to 

say that haul roads are one of the most important infrastructure elements at the mine, since they 

directly affect the performance of trucks. 

This has motivated studies like the one presented by Choi, Park, Sunwoo, & Clarke (2009) 

who developed an algorithm for optimal route selection in which they focused to minimize 

costs. They found that distance is usually the main controlling factor for cost, but recognize 

that extreme gradients can have even greater effects. 

Kaboli & Carmichael (2014) conducted an analysis that described the effects of varying grades 

along hauling routes on fuel consumption and emissions. While this study did not look at haul 

trucks specifically, it examined dozers, and the principle is the same. They indicate that the 
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cycle time and emissions are very sensitive to the hauling distance and resistance. They express 

the need for further studies into hauling analysis and simulation, which this thesis answers. 

Kecojevic and Komljenovic (2010) characterized the effects of positive gradient resistance on 

fuel consumption and emissions. In their study, they set out to investigate variation in these 

parameters under various engine load conditions. Higher gradients and rolling resistance values 

result in greater engine loads and, as expected, they are correlated to higher CO2 emissions and 

fuel costs. These authors also mention the effect of overloading, which leads to much higher 

than expected fuel consumption, in line with the conclusions from other literature. 

Carmichael, Bartlett, & Kaboli (2014) formulated an analysis that examined and quantified the 

influence of various operational parameters (including cycle time) on operating costs and truck 

emissions. Longer cycle times due to longer distances or higher resistances were directly 

associated with higher costs and emissions. However, the analysis uses average travel times. 

The authors revealed that the optimal point in unit costs is, theoretically, coincident with 

optimum unit emissions, both relating to lower resistances. 

Manyele (2017) conducted a material flow data analysis study at an open pit mine. He found 

that even minute improvements in truck cycle time can result in significant positive effects on 

the operation and its productivity levels. Manyele strongly recommends “stringent control of 

driver behavior” to ensure that the mine adheres to the planned production levels. As expected, 

loaded haul times were longer than empty hauls because of the effect of weight on truck 

performance. The author also mentions that poor road conditions and high gradient affect times 

greatly. Haul times are considered by Manyele to be the most important components of the 
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cycle time. Empty haul times were found to be more variable due to the dispatching logic at the 

site.  

Krause (2006) provides an investigation into the factors that control cycle times in mining 

operations, presenting also an overview of various simulation and analysis tools. A case study 

is presented, where probability distributions for elements of the cycle time are used for 

simulation. The KPI of the case study is TPH (tonnes per hour) and is used to calculate 

equipment requirements. Three main components that affect productivity are identified: 

payload variance, cycle time and operator proficiency. Krause finds that operator proficiency is 

a factor that decreases optimal productivity by approximately 8%.  

Hui (2012) identifies two aspects of truck hauling that affect performance and drive up 

operating and maintenance costs: load distribution and road conditions Hui provides 

operational guidelines to control and avoid unnecessary costs. Soofastaei (2016) investigates 

the effects of variable loading performance from shovels to trucks, which has a chain reaction, 

as affects the payload distribution of the truck, which in turn affects its performance during 

hauling. Soofastaei’s doctoral dissertation analyses the system from an energy (rather than 

productivity) perspective. In his dissertation, the author also highlights effect of payload 

variance on maintenance requirements. Like the approach in this thesis, simulation is used to 

generate samples of payload tonnages, and they are then used to determine the performance of 

the truck based on manufacturers’ rim pull curves. The author did not use retarder curves for 

truck performance calculations, and examines the effects of rolling resistance on hauling 

energy 
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Adair et al (2015) investigate the origin and mechanisms involved in rolling resistance in haul 

truck operations. They recognize it as a major hindrance to productivity and safety. The 

authors categorize these factors into four main categories: design, construction, operational and 

maintenance. They cross-examine them against four major components of an operation, based 

on where they originate: road, tire, system and weather. Most factors are of the operational 

kind, meaning that they can be corrected and rolling resistance can be somewhat avoided. 

Dotto (2014) investigates and reports the relative impact of haul truck size in mine planning. 

Of special relevance to this thesis, the author states that the progression of rolling resistance 

through road usage is minimal (when inside of regular maintenance intervals). Dotto states that 

the increase in rolling resistance due to use-related road degradation is minimal, if the road 

maintenance intervals are kept to under 12 days. Thompson & Visser (1997) present an 

overview on principles for road material selection and developed a maintenance system that 

optimizes equipment efficiency and cost. These guidelines center around minimizing rolling 

resistance and high gradients. Thompson & Visser (2003) also found that reducing rolling 

resistance has significant effects on operating costs as well as capital costs. Trucks incur in 

more wear and therefore mine operators need to look into replacing the equipment before their 

expected service life. 

Several companies have pioneered research into the area of mine haul road maintenance and 

design, claiming that a limestone cap layer can reduce rolling resistance by up to 55% 

(Hammerstone Corporation), thus reducing fuel costs and increasing tire and frame life. Joseph 

& Szymanski (2013) describe the importance of reducing rolling resistance and its impact on 

fuel usage.  
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The authors determine that fuel efficiency is not linearly related to rolling resistance. They also 

mention that under certain conditions, such as the summer months in North America, the road 

material can become nearly liquefied. The authors quantified the average costs savings 

stemming from reductions in rolling resistance and provide a figure of $350 per shift, per 400-

tonne truck. This figure results in very significant savings through LOM when considering the 

scale of some of the major mining operations, and the number of trucks they employ. 

2.3 ROLLING RESISTANCE IN OIL SANDS MINING OPERATIONS  

Oil sands mining operations in Northern Alberta have, historically, experienced very high 

rolling resistance values. Since trucks often operate on sand-like surfaces, held together by 

bitumen, the addition of moisture in the form of rain or melting snow makes the ground and 

roads turn very soft. According to Firmin (2012), during the early days of oil sands mining, the 

commercially available trucks were designed for hard rock mining, and when tried at the very 

soft ground, they were not sufficient. The problem was that the rolling resistances were much 

higher than those experienced in hard rock mining, so modifications had to be made; much 

larger and more powerful engines were fitted to overcome the resistance. Another issue that 

presented itself, apart than larger engine requirements, was that the roads in oil sands mines 

induced a lot more stresses and caused more flex on the bodies of the trucks, which motivated 

the application of finite element analysis for more durable chassis design (Firmin, 2012). 

Morton (2017) investigates the need and the current use of extremely large haul trucks in 

mining.  The author identifies high rolling resistances in oil sands mining as one of the reasons 

why these trucks need to be overdesigned, and the parallel growing concern for fuel efficiency 

and emissions control.  



47 

 

Joseph, Curley, & Anand (2017) conducted a very detailed study, and found that rolling 

resistance is a material property, and therefore independent of truck size. The authors mention 

that the rolling resistance values of main haul roads in Canadian oil sands operations range 

from 5.5% in winter to 11% in summer, while the values off the main roads is as high as 

13.5%. These estimates are in line with the scale-test research performed by Anand (2012). 

These values agree also with the estimates generated by Tannant and Regensburg (2001), 

which state that rolling resistances of 5% or more are present at Syncrude operations. They 

also mention that tire life is diminished due to such high resistance levels. 

Topf (2010) describes overall operating conditions in oilsands mining as being unforgiving, 

which require truck manufacturers to design equipment that can withstand high stresses. The 

author also comments on the consistency of the roads being very soft, therefore leading to high 

rolling resitance vaues. Therefore, in the oil sands mining industry, it is essential to accurately 

predict cycle times by accounting for these high resistance values and their effects on 

performance. 

2.4 EFFECTIVE FLAT HAUL (EFH)  

Sheremeta (2015) mentions that the oil sands mining industry has experienced rapid growth 

in the past, and now that mines are starting to become more mature, average haul distances 

have been increasing, along with costs and recent shrinking profits due to depressed 

commodity prices. The author also comments on the effects of increased costs due to poor road 

conditions. Sheremeta suggests using the often-overlooked metric of EFH, or effective flat 

haul, to better analyze and categorize haul data.  
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As Curi et al (2013) put it, EFH is a “calculated parameter that accounts for both the distance 

from the source to the destination, and the elevation change from the source to the destination. 

The EFH normalises the elevation changes and distance travelled” which then “enables a 

comparison of the energy consumed and tonnage moved for a mining activity.” 

Campbell & Hagan (2012) developed an equipment selection model based on the 

characterization of the road network and EFH. Several ranges for EFH values were assigned to 

different gradient ranges as modifying factors. Because these values were assigned as averages, 

lots of potential detail was lost but it made the approach easier to understand and implement. 

Hargroves et al (2014) have also mentioned the use of EFH in order to normalize elevation 

changes and account for large impacts on fuel/energy consumption. 

EFH has been proven useful, and some large mining companies have found ways to benefit 

from such a metric, like Newmont mining has implemented it as one of their KPIs in order to 

better categorize and account for their production and equipment usage figures. (Newmont, 

2014) 

2.5 SUMMARY OF LITERATURE REVIEW 

A review of literature in the areas of simulation, productivity, operational parameters and 

EFH was performed. The chapter started by reviewing some of the published applications of 

simulation in the mining industry, further sorting these based on their intended area of use 

within the operation. The literature review indicates that there is an existing gap in current 

research to solve the problem of inaccurate cycle time estimations. Then, an overview of 

published research on analyses and simulation relating to productivity and efficiency of shovel 

and truck operations in mining is presented, highlighting the importance and necessity of a 
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framework that can lead to more accurate estimates of cycle times, such as the one presented in 

this thesis.  

The literature review also points out that the current problem is partly rooted in the lack of 

models that are driven by operational data, therefore relying on ideal-conditions performance 

parameters such as those provided by the equipment manufacturers. Since the cycle time is one 

of the central and most important parameters of any mining operation, any gaps and 

insufficiencies within the realm of cycle time prediction and simulation have an aggregated 

effect on the estimation and simulation of productivity and other performance indicators.  

Since oil sands mines are more extensive in area than other traditional (hard-rock) mines, the 

haul times represent a greater portion of the cycle time. This thesis will focus on accurately 

predicting this specific component of the cycle time. Simultaneously, the literature points to 

rolling resistance as one of the main parameters affecting truck performance, and several 

papers investigating and quantifying the high rolling resistances in the Athabasca oil sands 

mining operations are reviewed. Lastly, literature and documentation relating to EFH is 

summarized.  
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3. THEORETICAL FRAMEWORK 

The main goal of the approach presented in this thesis, and thoroughly described below, is 

to accurately generate estimates of cycle times by capturing the operational characteristics of 

the mine’s material handling systems, namely those of the shovels, trucks and their interaction 

with the road network. By appropriately doing so, the framework can then result in a 

simulation tool that mimics the behavior of the operation, allowing planners to examine the 

outcomes of proposed changes to the mine schedule. In addition, the correct application of this 

framework can result in a very useful tool for production forecasting, planning and ongoing 

performance evaluation. 

This program, at its most basic level, generates estimates for cycle times between discreet pairs 

of sources (dig locations where the shovel is extracting material) to destinations (a crusher, 

processing facility, stockpile or other dump type). After careful review of the dispatch data of 

the mine within the case study, it was determined that a disproportionate amount of variability 

within the cycle time comes from the loaded haulage component. In turn, there are three main 

factors that contribute to said variability in the haul time. From most to least influential:  

1. The trucks’ variable performance in relation to the changing characteristics of the road 

(gradients and rolling resistance) 

2. Hindrances in the haulage of material, attributed to the microscopic behavior of the 

operation (traffic, bunching, operator proficiency, equipment malfunctions and loss of 

performance due to age) 

3. The trucks’ variable performance in relation to the inconsistency in payload quantities 

(loading variability and its effects on rim pull) 
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Having identified the haulage component as being the culprit of inaccuracy, this framework 

places relatively more weight into the correct analysis and simulation of haul times than the 

rest of the other parameters within the cycle time. This is reasonable since there are many more 

varying parameters in truck performance and road interactions than within shovel performance 

and operations, which are fairly constant. The non-haul factors of the cycle time, however, are 

stochastically simulated from probability distributions fitted to dispatch data, therefore 

generating very reliable estimates. 

The superiority of this framework’s outputs and subsequent applications over other 

commercially available or in-house estimation tools is rooted in the fact that this model is data-

driven, meaning that most of its inputs come from operational records from the mine. As 

expected, this leads to results that more closely resemble the reality of the operation, whereas 

other approaches are simplistic in that they rely on manufacturers’ performance data, which 

assumes ideal working conditions. In an environment as complex as a mining operation, this is 

an oversimplification. 

The sections within this chapter outline the data requirements for the application of this 

framework, followed by a thorough explanation of the logic implemented to produce quality 

results. Since this is a probabilistic approach, confidence intervals are built around the mean 

value of several replications. This is beneficial since it helps establish the quality of the outputs 

and can be easily compared to historical data for validation and verification. It is in Chapter 4 

where this framework is applied, validated and verified with actual data from a mining 

operation. 
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3.1 DATA REQUIREMENTS 

3.1.1 Road Network 

A digital model of the mine’s haul road network is required for the use of this framework. The 

accuracy in the outputs produced by this program is, to a large extent, dependent on the 

accuracy and precision of the road network model. The proper characterization of distances 

within segments is important, but properly capturing the changes in elevation is essential, since 

these directly affect the performance of the truck. 

For use within the proposed framework, individual roads are called segments, and intersecting 

roads should have a common node. In addition, if two or more roads come together to form a 

single road, these should all end or begin at the intersecting node (see Figure 3).  

Efforts should also be made to avoid sharp turns (which is often unrealistic), and model the 

actual curvature of non-straight roads (see Figure 4). 

 

Figure 3: Node and segment logic 
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Figure 4: Curvature detail 

 

In addition to the above, both main and temporary roads should be modelled to make sure that 

sources and destinations are located on the network itself, or in close proximity to a node 

within a segment so as to not have any gaps in detail (see Figure 5). 

 

 

Figure 5: Proximity of sources/destinations to road network 
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3.1.2 Dispatch Data 

Mine dispatch systems record vital information that is necessary in this framework, pertaining 

to the individual elements of cycle time as well as payload. This framework features full 

integration with SQL databases, so it is beneficial to link dispatch records to a local database.  

To provide an estimate of the complete cycle time, probability distributions will be fitted to the 

following: 

 Payload (tonnage) 

 Spotting time 

 Wait to spot time 

 Time in queue 

 Loading time 

 Idle time at dump 

 Dumping time 

 Other delays 

 Empty haul time (this parameter can be simulated using the program, but historical 

averages are used when no information about dispatching logic is available) 

In addition, it is useful if the records for every cycle include information such as dates, load 

and dump coordinates, distances travelled and identifiers pertaining to specific dig and dump 

locations. Other potentially useful information includes operator ID, equipment ID (both for 

excavators and trucks) and a timestamp (or shift number).  
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Other more advanced applications of the framework may require additional data to the listed 

above and varies case by case. In the absence of the above data, such as the case of planning 

for new mines, distributions can be theorized or adopted from similar mines (benchmarking). 

 

3.1.3 GPS velocity records 

Usually separate from database records, but almost always readily available, are records from 

GPS trackers in the trucks. Often, these data logs include latitude, longitude and elevation 

coordinates, along with an instantaneous velocity. These parameters are usually recorded 

periodically at specific time intervals. 

It is important for these records to differentiate between loaded and empty trucks, since they 

behave differently because of payload effects on performance. In this case study, the records 

were not explicitly segregated, so further manipulation using the timestamps and shift 

identifiers was performed to accomplish this. 

Having obtained said records, it is imperative to find a long section of haul road that is mostly 

flat, and extract those records, while differentiating between loaded and empty. Once extracted, 

a probability distribution will be fitted to the data sets for subsequent calculations in the 

algorithm. This ensures that the variability and characteristics of the truck/network interactions 

are captured. 
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3.1.4 Manufacturer performance data  

To be able to mimic the changes in truck speed with varying resistance values, the rim-pull 

curves for the specific truck type(s) should be obtained and put into table format, with one 

column being total rim pull force and the other being the corresponding speed.  

For the main method of cycle time simulation in this thesis, this information will not be used to 

assign speeds like in TALPAC, but rather to examine the relative changes in velocity between 

rim pull values encountered when varying payload and total resistance in the simulation.  

Knowing the weight and dimensions of the truck is also necessary information that is readily 

available from manufacturers’ literature and specifications. The rimpull curve for a CAT797F 

mining truck is presented below (Caterpillar Inc., 2013): 
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Figure 6: Gradeability/Speed/Rimpull curve for CAT797F (Caterpillar Inc., 2013) 

 

Note that the use of retarder curves is not necessary within this framework. 



58 

 

3.1.5 Mine-specific operational parameters 

Mine-specific parameters should be defined, as they have significant effects on the truck-

shovel system. These include safety guidelines such as: 

 Imposed speed limits (often lower than the truck’s maximum achievable speed) 

 Actions at intersections 

 Actions in proximity of other equipment 

 Actions in proximity of workers on foot 

 Minimum safe following distances on various road features like sharp turns, or 

downhill 

In addition, the proper characterization of rolling resistance values within the mine’s roads 

should be performed. Joseph, Curley and Anand (2017) provide excellent guidelines and 

insights into rolling resistance measurements and typical values within oil sands mining 

operations, stressing that seasonal weather changes affect RR significantly.  

This framework allows for the assignment of individual RR values to specific segments of 

roads, and for changing values for different seasons (when water creates ruts and increases 

resistance). 
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3.2 STRUCTURE AND LOGIC 

The following code was written in MATLAB and consists of a main script (aptly called 

‘MAIN’) that prompts the user for various parameters necessary for calculations, and then calls 

other functions that perform specific tasks in the overall logic of the algorithm.  

This framework has two distinct methods of calculating haul times. ‘Method 1’ is based 

entirely on performance data from the trucks’ manufacturer – similar to TALPAC and CAT 

FPC, serving as a benchmark for comparison with the second method. ‘Method 2’ is a data-

driven simulation of haul times that incorporates data from the site and dispatch, yielding much 

more accurate and realistic outputs. The remaining parameters of the complete cycle time are 

calculated in the same manner, regardless of the method. 

In addition, there is another important distinction in the algorithm. This code was developed 

with high integration ability to a database through direct querying, operating under the 

assumption that the intended application of this framework is for an existing operation with a 

significant amount of dispatch data recorded and available within the database.  

In addition, this was performed in order to avoid ‘hard-coding’ and making it more flexible 

with changing outputs. However, this framework also allows users to explicitly feed data into 

the model in the absence of historical dispatch data – using benchmarking from other 

operations, which is often the case with new mines. 

Figure 7 below provides an overview of the entire framework, showing the order in which the 

sub-functions are called and a summary of what they do. The following subsections of this 

chapter go into more detail. 
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Figure 7: High-level algorithm flowchart  
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3.2.1 Main  

This is the primary script of the code, since most of the initial input parameters and data 

sources are defined here. In addition, this main function calls, controls and receives output 

from other sub-functions. The main inputs that are asked of the user in MAIN are:  

 File path or location of the digital model of the road network 

 Locations of Sources/Destinations, or time period to be used for querying into the 

database 

 Desired output: complete cycle time simulations, haul times only, or more advanced 

KPI’s (user defined) 

 Desired segment length for subsequent calculation (also a control for 

resolution/precision and directly related to run time) 

 Truck type(s) 

 Rolling resistance values (if using a single value for desired analysis) 

 Number of replications and desired confidence intervals 

Additionally, the final outputs and results from the simulation are recorded here in the user’s 

preferred format. Other more advanced applications of the framework can also happen here, as 

illustrated in the case study. 
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3.2.2 Load Road Network 

This is the first sub-function called from MAIN, and its main purpose is to read the .DXF file 

containing the digital model of the network. In addition, it manipulates the read data and places 

it into table/matrix format by assigning it an individual node identifier at the network’s original 

resolution. This initial table contains information of all the points in the network model; it 

stores its 3D coordinates and node IDs in separate columns. 

The next step within this function is to logically re-arrange the individual points into segments, 

maintaining the raw resolution. The table gets altered based on the points’ coordinates and the 

code identifies nodes within the same lines (as explained in chapter 3.1), ultimately defining 

the road network’s segments, within the native resolution – which means that often these are 

uneven in length.  

At this point, the data matrix has twice the number of columns, containing information of the 

‘From’ node, and the ‘To’ node, each with unique identifiers. Having this information, the 

Euclidean distance of each segment between points is calculated using the coordinates in 3D, 

yielding a new column for segment length. Similarly, the gradients between points are 

calculated in 3D, and put into a new column for each segment. 

The final step within this sub-function involves checking the gradient values of each and every 

segment and capping it to user-defined limits. This step is necessary to make sure that errors in 

the digital model are eliminated, especially at native resolution before further manipulation. 

Often times, there may be a very short segment (for example, of no more than a couple of 

meters in length) with a gradient value that is unreasonable (i.e. 20%). This scenario is 

common when, as in the case study in the next chapter, the surface of the roads was scanned by 
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laser and the digital line representing the road goes over imperfections or other features. This 

function also allows users to establish limits on the relative change of gradients from one 

segment to the next and requires a more advanced knowledge of the characteristics of the 

mine’s road network. 

The flow chart in Figure 8 below shows a summary this function’s main actions. 

 

 

Figure 8: LoadRoadNetwork function flowchart 
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3.2.3 Get Sources/Destination 

If the user’s routes of interest already exist and are in operation, using the user inputs from 

MAIN, this sub-function can connect to the database and retrieve the dispatch records for a 

number of source and destination combinations either based on coordinate ranges, time 

periods, or by polygon IDs and dump locations. Having extracted the desired data, the code can 

then call a subsequent function for further manipulation. 

In the absence of historical data, which is the case of new proposed haul routes or new mines, 

this function allows users to select specific coordinates in proximity to the network. Both cases 

above lead to the CENTROID CALCULATOR function. Figure 9 below outlines this 

function’s logic. 

 

Figure 9: Get Source/Dest Combinations function flowchart 
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3.2.4 Centroid Calculator 

This function receives the dispatch records extracted from the database in the previous function 

and, using the coordinate for every record, defines the sources’ centroids by calculating the 

arithmetic mean of its coordinates. For new routes, the coordinates that were input in the 

previous step are brought over. In both cases, the centroids or the user-defined locations 

undergo a ‘nearest-neighbor search’ that identifies the closes point to the network from these 

locations. In addition, the distance from centroid to the node on the network is recorded.  

It is important to note that this nearest-neighbor search algorithm is aware of changes in 

elevation coordinates from the centroids to the nodes in the network. This ensures correctness 

in choosing a nearest network node. Problems could arise if changes in elevation are ignored, 

as the roads are often in select benches that may not be accessible from all areas. Figure 10 

below shows this function’s logic: 

 

Figure 10: Centroid Calculator function flowchart 
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3.2.5 Get Path 

Having established a source and a destination within the network in the previous step, an 

algorithm that finds the shortest possible path between these is implemented. All possible paths 

are evaluated, and one is selected based on shortest distance. A more advanced version of this 

algorithm can also add an elevation change criterion in selecting an optimal route, but is very 

site-specific. 

Once the optimal route is selected and delineated, all the data relating to these segments is 

extracted from the main matrix and put into a new table, conserving the native resolution from 

the original .DXF file. The lengths of all these segments are added and compared to the 

distance found by the shortest-path algorithm as a check for correctness. This new matrix will 

go on to subsequent functions and calculations, and serves as one of the main elements within 

this framework. 

The next step within this function is to merge (or divide) the segments of native resolution to 

create segments of the user-defined length (in MAIN). In order to preserve the characteristics 

of the original file, the gradient and length of each original segment is used in a weighted 

average calculation, in order to obtain a correct gradient in the newly merged segment of 

predefined length. This “smoothens” the variability of the gradients within the selected path 

and establishes the desired resolution for subsequent calculations.  

As a rule of thumb, the user defined segment length is the minimum allowable following 

distance between two trucks in a haul cycle. In the mining industry, this is often a multiple of 

the overall truck length. Merging and smoothening cuts down significantly on run time while 
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preserving the original behavior of the network. Figure 11 shows the order in which these 

actions are performed: 

 

Figure 11: GetPath function flowchart 

 

3.2.6 Fit Distributions 

In preparation to calculate haul and cycle times, an SQL query with user-defined parameters is 

performed, extracting data relating to the following fields: 

 Payload tonnage 

 Flat haul velocity 
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And, if performing a complete cycle time simulation,  

 Cycle time elements 

Having extracted the desired historical data, the code then fits various probability distributions 

to the data, finding the one that best represents each parameter. A probability distribution 

element is created in MATLAB, allowing for random sampling in later steps. The user can 

implement other more advanced criteria into this step, such as capping values or handling the 

SQL query. 

The code also allows users to upload external files, or explicitly feed the code distribution 

parameters, in the absence of historical data. Figure 12 below shows the steps within this 

function: 
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Figure 12: FitDistributions function flowchart 

3.2.6.1 Dispatch fields 

For complete cycle time distributions, data relating to the complete cycle time activities is 

extracted. These vary from operation to operation, but in general include loading time, 

dumping time, spotting time, time in queue, idle time, delays, etc.  

Both for haul time simulation and complete cycle time simulation, the variability in the 

payload tonnage must be captured. This can be included in the original SQL query, uploaded 
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externally, or explicitly input as a distribution or a fixed value. The payload tonnage affects the 

performance of the truck directly. 

 

3.2.6.2 Flat haul velocity 

These records are based on instantaneous velocity records situated within coordinates near 

known road segments with flat roads. This eliminates the variability of gradient resistance and 

captures the behavior of trucks within the system.  

An effort should be made to record these data points excluding areas where the truck may be 

accelerating, or decelerating – this is accomplished by selecting coordinates well within the flat 

section of road, choosing limits that are not close to where the flat road starts or ends. A 

probability distribution that is capped at a known top speed must be fitted in order to avoid 

unrealistically high velocity samples which would, in turn, lead to underestimating the haul 

time. 

 

3.2.7 Run Methods 

This framework presents two methods of calculating haul times (the complete cycle time 

calculation is the same for both). The first method, ‘Method 1’ is, in its entirety, based on truck 

manufacturers’ performance data, which assumes ideal conditions and some other simplifying 

assumptions. As such, Method 1 serves as a benchmark to evaluate the historical performance 

against what could be considered a theoretical maximum. In contrast, ‘Method 2’ is data-driven 
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and it captures the variability and behavior of the trucks within the mine and their interactions 

within the network. In general, Method 1 underestimates the haul times, and Method 2 

provides much more accurate and realistic estimates. Figure 13 and Figure 14 show their 

overall logic. 

3.2.7.1 Method 1 - Benchmark 

This method evaluates the total resistance at each segment, by adding the previously defined 

rolling resistance to the gradient of each segment. Then, a random sample is generated from the 

payload tonnage distribution (if available), and calculates the rim pull force -  which is based 

on the total weight of the loaded truck.  

Having calculated a rim pull value for each segment, the algorithm then performs an 

interpolation of the manufacturer’s rim pull data to assign a speed to each segment. This 

manufacturer-supplied data assumes ideal conditions. The segment length is then divided by 

this corresponding speed in order to find the time it takes to travel through said segment. The 

sum of all segment times results in the total hauling time between source and destination.  

This method then calculates the time it takes for the loaded truck to travel the total path 

distance, assuming it is flat. The EFH factor is found by and dividing the actual rim pull 

estimate by this. 



72 

 

 

Figure 13: Method 1 flowchart 
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3.2.7.2 Method 2 - Simulation 

This method is very similar to Method 1, with the exception that instead of using the 

manufacturer-defined performance specifications, this method uses data from the operation 

itself, and focuses on finding the relative behavior of the truck with changing resistance values. 

 Instead of finding the speed corresponding to a rim pull value for every segment, this method 

generates a random sample from the velocity probability distribution. This value is then used to 

normalize all the velocity values within the manufacturer’s rim pull curve – instead focusing 

on the relative velocity change with each increment or decrement in rim pull force (in this case, 

varies due to total resistance). The algorithm then continues to apply the appropriate changes to 

the originally sampled velocity for every segment. Time at each segment is calculated in the 

same manner as Method 1, and total time is the sum of time at every segment within the route 

or path. The EFH factor is calculated in the same manner as in Method 1, but instead of 

assuming the manufacturers’ top speed, the initially sampled flat haul velocity is used.  

Using data from the operation ensures that the variability in performance of the trucks within 

the network, due to weather events, road conditions, traffic or other hindrances is accounted 

for, leading to more accurate estimates of haul and cycle times. In addition, users can 

implement time penalties to account for acceleration, deceleration and other truck behavior. 

The haul time estimates and outputs generated from this simulation are, generally, higher than 

those of Method 1 due to the incorporation of real-world behavior, moving away from ideal 

conditions and other such assumptions.  
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Figure 14: Method 2 flowchart 
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3.3 REPLICATIONS 

Due to the probabilistic nature of these simulation methods, several replications must be 

generated in order to quantify the variability of the outputs. From these replications, a half 

width is defined at a desired confidence interval. This helps in the validation/verification stages 

and for comparing different proposed operational changes. The code is capable of 

automatically sending queries to the database to automatically compare outputs from the 

simulation to historical averages. 

If only the haul time is desired, Method 1 does not need to generate replications as the inputs 

are fixed and are deterministic. However, for complete cycle time determination, the variability 

in the other fields will be captured and will require multiple replications. 

 

3.4 OTHER USES 

The cycle time is the essential parameter of all mining operations. Having simulated these 

accurately, many other applications can be developed. Apart from helping planners assess the 

impact of changes to the system, this simulation framework can serve in estimating and 

predicting productivity measures that relate to production rates and equipment utilization.  

The case study in the following chapter presents a more advanced application of this 

framework that focuses on long-range planning and estimation of various KPIs, all rooted 

within the appropriate estimation and simulation of cycle times. 
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4. CASE STUDY AND DISCUSSION OF RESULTS 

4.1 OVERVIEW 

The framework presented in this thesis was developed using data from a major oil sands 

mining operation in Northern Alberta. This section presents the results of applying the 

framework to said operation, which utilizes several CAT 797F trucks and multiple excavators. 

This operation operates year-round and is very extensive in area, and the range in hauling 

distance is quite wide. 

The current method for estimating productivity was developed ‘in-house’ and is, in its most 

basic form, implementing a line of best fit on a graph containing loaded haul distance in the 

abscissa, and TPGOH_A (tonnes per gross operating hour, including empty hauls) in the 

ordinate. Figure 1 shows how unreliable this method can be. Figure 2 shows that there is not a 

reliable relationship between cycle time and haul distance.  

This was the motivation for the development of this framework – a new method for calculating 

cycle times that accurately accounts for all sources of variability within the operation.  

 

4.2 DATA ACQUISITION 

Two years’ worth of dispatch data were made available for this study, but the data in the first 

year was not entirely useful due to the fact that this was a development-heavy period that 

introduced unusual variability to the operation. 
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Similarly, weekly velocity reports for trucks, shovels, dozers and other auxiliary equipment 

from year 2 were made available, although the records did not differentiate between loaded and 

unloaded trucks. In order to solve this, the timestamps from these records were cross-

referenced to the dispatch records in order to differentiate between loaded and unloaded trucks, 

also taking their direction of travel in consideration. 

The most important piece of information in this framework, the digital haul road network, was 

not explicitly available as the mine planning teams use different methods. However, a laser 

scan of the entire property was made available in the form of a digital three-dimensional 

surface. This file contained extreme detail of the gradients, features and relief of an extensive 

area.  

In order to define where the roads were, the velocity records were overlain onto this surface, 

and the lines were drawn manually in GEMS. Since the velocity records did not contain an 

elevation coordinate, the manually drawn network was ‘pressed’ onto the detailed surface, thus 

capturing the gradients and elevations in great detail. 

 Figure 15 shows the GPS records from the trucks, which were used to obtain the rough shape 

of the network. Figure 16 shows the provided surface file with the correct and detailed 

elevations, and Figure 17 shows the finalized version of the road network model, which was 

based on a combination of the velocity records for X and Y coordinates, and the surface for the 

Z coordinates. 
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Figure 15: GPS velocity points  
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Figure 16: Topographic surface 
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Figure 17: Resulting road network model 
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In this specific case study, mine polygons were not available as such, since the mine planners 

defined their ore sources as benches, resulting in high variability in hauling distances for the 

records within the same “bench ID”. In order to account for this variability correctly, extensive 

manipulation of the coordinates in the dispatch records was necessary. The centroids for every 

individual group of dig and dump locations (possessing the same Dig/Dump Location ID) were 

found and used, making the calculations simpler but maintaining the original characteristics of 

the operation. Figure 18 shows what a typical cluster of records within the same dig location 

ID looks like. 

 

Figure 18: Dig Locations 

 

A significant effort and amount of time was spent working around these deficiencies in data 

sources, but ultimately allowed for the identification of important data sources for future 

applications. 
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4.3 INPUTS TO MODEL 

A quarterly simulation is presented in chapter 4.5. The rolling resistance varies in different 

areas of the mine, but for simplicity, a weighted average value was used and produced correct 

results: 5.5%. This value is in line with available literature. The segment length was defined as 

35 metres. The road network consists of 47 separate lines that represent more than 35 total 

kilometers of haul roads. The distributions used in this specific case study are listed in Table 2 

below. 

Table 2: Probability distributions for quarterly simulation  

 

One of the most important distributions input to this model is the one for loaded flat haul 

velocity. Several thousands of records were available to use and were extracted from a portion 

of road network that is several kilometers long and remarkably flat. The histogram is shown in 

Figure 19. 
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Figure 19: Loaded Flat Haul Velocity distribution 

4.4 VALIDATION 

The validation and verification of the model was performed by examining the haul time 

estimates produced by this framework over several haul routes that vary in distance. During the 

literature review stage of this study, it was identified that one of the shortcomings of available 

programs was that the estimates were not accurate for either short hauls or long hauls.  

A short haul of 1.3 km, a short/medium haul of 2.6 km, a medium length haul of 4 km and a 

long haul of 8 km are presented below. The outputs from both Method 1 and Method 2 are 

compared against the records in the database.  
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As predicted earlier, Method 2 is much more accurate since it is data-driven, while Method 1 

serves as a benchmark value where all conditions are ideal. The difference between Method 1 

and the data records or the estimates produced by Method 2 can be thought of as how much the 

operation can be optimized. 

For each of these cases, a table summarizing the statistics and accuracy of all methods is 

shown, along with histograms presenting the records in the database, and the outputs of the 

Method 2 simulation. It is important to note that the minimum haul time value in the Method 2 

output histogram is equal to the unique estimate generated by Method 1 – as it is the best-case 

scenario.  

The database records histogram shows that there are values smaller than this theoretical value, 

and it can be attributed to recording errors within the dispatch system. 500 replications were 

performed for each of these cases – taking only a few seconds of run time. 

Table 3: Short Haul output summary 

Short Haul 

(1.3 km average) 
Database Method 2 Difference Method 1 Difference 

Mean 5.58 5.52 

-1% 

4.19 -24.9% 

CI 0.11 0.12 

UB 5.69 5.64 

LB 5.48 5.40 

Median 5.27 5.16 -2.1% 

Std. Dev. 1.67 1.35 -19.2% 

Variance 2.80 1.82 -35% 
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Figure 20: Short Haul database histogram 

 

Figure 21: Short Haul simulation output histogram  
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Table 4: Short/Medium Haul output summary 

Short/Medium Haul 

(2.6 km average) 
Database Method 2 Difference Method 1 Difference 

Mean 8.96 9.08 

+1.3% 

6.86 -23.4% 

CI 0.14 0.21 

UB 8.99 9.29 

LB 8.92 8.87 

Median 8.83 8.50 -3.7% 

Std. Dev. 2.10 2.40 +14.3% 

Variance 4.42 5.61 +26.9% 
 

 

Figure 22: Short/Medium database histogram 

 

 

Figure 23: Short/Medium simulation output histogram 
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Table 5: Medium Haul output summary 

Medium Haul 

(4 km average) 
Database Method 2 Difference Method 1 Difference 

Mean 15.62 15.60 

-0.12% 

11.59 -25.8% 

CI 0.09 0.37 

UB 15.71 15.97 

LB 15.52 15.23 

Median 15.58 14.38 -7.7% 

Std. Dev. 3.24 4.20 +29.6% 

Variance 10.21 18.01 +71% 

 

 

Figure 24: Medium Haul database histogram 

 

Figure 25: Medium Haul simulation output histogram 
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Table 6: Long Haul output summary 

Long Haul 

(8 km average) 
Database Method 2 Difference Method 1 Difference 

Mean 23.20 23.09 

-0.5% 

17.2 -25.9% 

CI 0.22 0.37 

UB 23.42 23.46 

LB 22.98 22.72 

Median 22.78 21.41 -6.0% 

Std. Dev. 4.5 6.0 +33.3% 

Variance 20.0 36.5 +82.5% 

 

 

Figure 26: Long Haul database histogram 

 

Figure 27: Long Haul simulation output histogram 
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Even with a relatively low number of replications (500), excellent results were achieved by 

Method 2. All scenarios presented above are within 1.5% of accuracy compared to the 

database, and their confidence intervals are very close. As expected, Method 1 overestimates 

the performance of the trucks by underestimating the haul times, consistently, by about 25%. 

Comparing the output in the histograms suggests that the model is simulating the operation 

correctly. Each 500-replication process took the program no longer than 20 seconds to produce.  

4.5 ADVANCED APPLICATIONS 

In order to display the potential of this framework, a more advance application was 

developed. A quarterly (3-month) simulation of TPGOH was performed, and the outputs were 

compared to the records in the database. The outputs are divided in the following subsections 

based on the metric they compare. TPGOH was calculated by using the same sample for 

payload tonnage and dividing it by the cycle time. Within the cycle time, the loaded haul time 

is simulated with Method 1 and 2, and the rest of the parameters are simulated from probability 

distributions. Since the dispatch logic at the mine is unknown, it was incorrect to assume that 

the trucks travelled empty back to the same dig locations they came from. 

Chapter 4.5.1 compares a variation of TPGOH, where the return travel time is not included. In 

chapter 4.5.2 the return travel was simulated from a probability distribution generated with data 

from those months. Excellent results were obtained in both cases. The correctness of the 

TPGOH (with return times) can be rooted in the fact that the data used in the probability 

distribution for return travel time was specific to those months only – meaning that trucks 

would only go to the specific polygons of that quarter rather than to other mine locations.  
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During these three months of production, 11 distinct dig locations were identified, with most of 

the material going to the crusher for further processing, and only a small fraction going to 

waste dumps. This finite number of source and destination combinations were assigned 

weights based on their available material tonnage, and then several replications were 

performed for each. After establishing the TPGOH values for each source/destination 

combination, these were multiplied by the aforementioned weights, yielding a single value 

within a 95% confidence interval that could be compared to the database. 

For both TPGOH cases, a table summarizing the output and comparing to the database for 

validation is included, along with histograms for the database records, and for Methods 1 and 2 

in raw resolution (all outputs without calculating the weighted average) and a weighted average 

value. During the development of these results, it was noted that there is a 2% difference in 

productivity (TPGOH_A) in the day and night shifts – with the night shift being more 

productive. This may be attributed to the fact that some of the auxiliary equipment in the road 

network is usually operated by contractors, who mostly work during the day. Without them 

creating traffic interactions with the trucks, cycle times are shorter and the operation more 

productive. 

4.5.1 TPGOH no return 

Table 7: Quarterly Simulation output summary – no empty haul time 

 Database Method 2 Difference Method 1 Difference 

Mean 0.52877 0.53188 0.58% 0.60813 15.1% 

95% CI 0.00577 0.00238 -58% 0.00272 -52.8% 

Median 0.5365 0.5399 0.63% 0.6068 13.1% 

Std. Dev. 0.1744 0.0857 -50.9% 0.0981 -43.6% 
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Figure 28: Quarterly TPGOH database histogram – no empty travel 
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Figure 29: Quarterly TPGOH Method 1 output – no empty travel 
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Figure 30:Quarterly TPGOH Method 2 output – no empty travel 
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Std. Dev. 0.1139 0.0491 -56.8% 0.0547 -52% 
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Figure 31: Quarterly TPGOH database histogram – with empty travel 

 

Figure 32: Quarterly TPGOH Method 1 averaged output – with empty travel 
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Figure 33: Quarterly TPGOH Method 1 raw output – with empty travel 

 

Figure 34: Quarterly TPGOH Method 2 averaged output – with empty travel 
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Figure 35: Quarterly TPGOH Method 2 raw output – with empty travel 

 

As expected, the outputs from Method 1 overestimate the productivity by underestimating the 

cycle times, compared to Method 2, which results in extremely accurate outputs.  

The summary statistics are very close to those of the database, and the histograms show that 

the output is extremely similar to the records in the database – suggesting that the model is not 

only well-calibrated, but is correct. 
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4.5.3 Comparison to Old Method 

The old ‘in house’ method consists in fitting a negative exponential line of best fit to 

the distance-sorted historical data, by minimizing the squared error (distance from line to 

points). This line of best fit is in the following form: 

𝐴𝑥−𝐵  

Where A and B are varied non-linearly to minimize the squared error from the line to the data 

points. Three scenarios were generated and differ only on the data used: case A utilizes data 

from the entire year of operation. Case B uses two years’ worth of data and case C uses data 

from the specific quarter which this study simulates. Table 9: Comparison of Old Methods 

presents a summary of these cases and their comparison to the records in the database. 

Table 9: Comparison of Old Methods 

 TPGOH Difference from Database 

Database 0.3654 - 

Old Method A 0.3278 -10.28% 

Old Method B 0.3206 -12.27% 

Old Method C 0.2988 -18.24% 

 

The framework presented in this thesis proves to be superior. In addition, due to the old 

method’s form, the only way to quantify its overall intrinsic error is to look at the distances 

from the line of best fit to the data points (standardized squared error) which does not translate 

to a particularly usable parameter. In contrast, this new framework produces an output that 

establishes a half width at 95% confidence interval of TPGOH units itself. 
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Having calculated EFH factors for every source and destination combination, it is then possible 

to compare the TPGOH plots. The old method plots TPGOH against loaded haul distance and 

fits a line of best fit. Having used the framework in this thesis, the loaded haul distance gets 

replaced by EFH (which accounts for the effects of changing gradients and rolling resistances). 

Figure 36 below shows a series of boxplots using loaded haul distance. The bulk of the data 

occurs in the area indicated by the yellow rectangle: 

 

Figure 36: BoxPlots for Old Method 

 

Figure 37 below shows a plot of the same data but is categorized based on the records’ 

corresponding EFH values instead of loaded haul distance. The bulk of the data is within the 

range shown by the orange rectangle: 
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Figure 37: EFH BoxPlots 

 

The standard deviation for both curves was calculated by estimating a weighted average of 

each bin. The EFH categorization of the data showed a reduction in standard deviation of 

25.3%. The ‘Old Method’ was performed using the TPGOH vs EFH data, and yielded a 

quarterly TPGOH estimate of 0.3797, which is an overestimation of 4% over the database 

records. While this figure is not as accurate as the simulation in this framework, it is a very 

significant improvement over the old method. In addition, it is in the same form of the old 

method, which involves relating productivity levels to a measure or function of distance via a 

line of best fit.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

The framework presented in this thesis has proven to be a definite improvement over 

existing methods for estimating truck/shovel cycle times at operating mines, which were 

identified as insufficient during the literature review.  

This improvement is rooted in the fact that the framework is driven by operational data within 

historical records, instead of relying only on standardized and simplified performance 

parameters. This approach also allows for the evaluation of operational performance, since it is 

able to produce reliable estimates through simulation and the comparison to historical 

production records. This is of great value for mine planning staff in order to detect trends and 

identify opportunities for improvement. 

In addition to these advantages, there are other potential uses within this framework. In its 

current form, the optimal path selection algorithm is based on the criterion of shortest distance, 

but for specific applications, this objective could be altered to find the most fuel-efficient route, 

perhaps to the detriment of production rates. In any case, a cost-benefit analysis should be 

performed in order to maximize NPV. 

This framework also allows for more advanced applications, such as the productivity analysis 

shown in the case study. This may be a helpful tool for mine planners in aiding their estimates 

of production both in the short- and long-term. In addition, it solves the problem of estimating 

future equipment requirements, as the TPGOH metric is a production rate which is directly 

related to the number of shovels and trucks operating at any one time. 
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The algorithm presented within is the result of thorough investigation of the oil sands mine in 

the case study. A great effort was made to ensure that the proposed framework is flexible and 

easy to implement at other operations. During the development of this approach, the main data 

sources were identified and limited to being readily available at almost every mine, since they 

come from the dispatch system. Very tight half widths and high confidence intervals were 

achieved in short computation times in the validation/verification and case study, adding to the 

positive features of this framework. 

There are two areas of improvement possible within this framework: linking it to the dispatch 

logic for more accurate simulation, and conducting a more thorough simulation study where 

the rim pull curves are not used, instead obtaining velocity records for every increment of 

gradient or rolling resistance and sampling from each. This was not possible in this case study 

due to a lack of data, and it would involve making this framework inflexible and very specific 

to this operation. 

In addition, another area for future work and improvements over the framework presented in 

this thesis would be to accurately capture the advancement of the bench face in order to avoid 

having to calculate a centroid for each dig location. The same should be performed for dump 

locations. Both of these actions would result in more accurate and realistic results. 
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APPENDIX I 

Main 

[Nodes, Segments, Lines] = LoadRoadNetwork(); 
%Segments: 1.LineID, 2.x1,3.y1,4.z1,5.NodeID1,6.x2,7.y2,8.z2,9.NodeID2, 

10.Length, 11.Gradient 
%Lines:    1.LineID, 2.NodeID1,3.NodeID2, 4.Length 
%Nodes:    1.LineID, 2.X, 3.Y, 4.Z, 5.NodeID 
% SmoothPathMat columns: 1= LineID, 2=FromNode, 3=ToNode, 4=SegmentLength, 
    % 5=Gradient, 6=EffectiveGrade, 7=Rimpull (if flat or uphill), 
    % 8=SegmentVelocityRimpull 

     

     
% % %%%%%%%%%%%%%%%%                             Plot RoadNetwork raw % 
% for iLoop=1:size(Segments,1) 
% p1=plot([Segments(iLoop,2),Segments(iLoop,6)], 

[Segments(iLoop,3),Segments(iLoop,7)]); 
% p1.Color='b'; 
% hold on 
% end 
% % 

  
%% Get all the source destination combinations querying database % 
[Source, Dest] = GetSourceDestCombinations(); 

  
TPGOHsim = cell(size(Source,1),1); 
EFHFactor = cell(size(Source,1),1); 
FullHaulTime=[]; 

  
for rLoop=1:size(Source,1) %for all the paths 
    [PathMat, PathDistance] = 

GetPath(Source(rLoop),Dest(rLoop),Lines,Segments); 

     
    PathMat(:, 12) = PathMat(:,10) .* PathMat(:, 11); %length weighted 

gradient value for average gradient in SmoothPathMat 

     
    % % %%%%%%%%%%%%%%%%%                             Plot RoadNetwork route 

% 
    % for iLoop=1:size(PathMat,1) 
    % p2=plot([PathMat(iLoop,2),PathMat(iLoop,6)], 

[PathMat(iLoop,3),PathMat(iLoop,7)]); 
    % p2.Marker='.'; 
    % p2.Color='r'; 
    % % xlabel(['Haul Length: ' num2str(PathDistance) ' m']); 
    % hold on 
    % end 

     

     
    %%%%%%%%%%%%%%%%%%                             Smooth/Merge Route 

Information % 
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    SmoothPathMat=[]; 
    toldist= 35; 
%     tolgrad=7; 

     
    row=1; 
    

SmoothPathMat(row,:)=[PathMat(1,1),PathMat(1,5),PathMat(1,9),PathMat(1,10), 

1]; 
    for iLoop=2:size(PathMat,1) 
        if PathMat(iLoop,1)==SmoothPathMat(row,1) && SmoothPathMat(row,4) < 

toldist 
            SmoothPathMat(row,3)=PathMat(iLoop,9); 
            SmoothPathMat(row,4)=SmoothPathMat(row,4) + PathMat(iLoop,10); 
            SmoothPathMat(row,5)=iLoop; 
        else 
            row=row+1; 
            

SmoothPathMat(row,:)=[PathMat(iLoop,1),PathMat(iLoop,5),PathMat(iLoop,9),Pat

hMat(iLoop,10),iLoop]; 
        end 
    end 

     
    %%%%%%%%%%%%%%%%%%                             Calculate and add 

weighted average gradient to SmoothPathMat % 
    SmoothPathMat(1, 6) = sum(PathMat(1:SmoothPathMat(1, 5), 

12))/(SmoothPathMat(1, 4)); 
    for iLoop=2:size(SmoothPathMat,1) 
        SmoothPathMat(iLoop, 6) = (sum(PathMat(SmoothPathMat(iLoop-1, 

5)+1:SmoothPathMat(iLoop, 5), 12)))/(SmoothPathMat(iLoop, 4)); 
    end 
    SmoothPathMat(:,5) =[]; %clear indexing 

     
    %%%%%%%%%%%%%%%%%%                             Calculate Effective grade 

and Rimpull Value for flat and uphill % 
    LoadedWeight = 623690; 
    RollingRes = 5.5; 

     

     

     

     
    for iLoop=1:size(SmoothPathMat,1) 
        SmoothPathMat(iLoop,6) = (SmoothPathMat(iLoop,5) + RollingRes); 
        if SmoothPathMat(iLoop,6) >= 0    % checks if uphill or flat 
            SmoothPathMat(iLoop,7) = ((SmoothPathMat(iLoop,6)/100) * 

LoadedWeight); 
        else 
        end 
    end 

     

    

     
    %% ------------------------------- Travel Time Estimations -------------

-----------------%% 
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    % Determine Rimpull Velocities for each segment based on the gradient 
    RimpullData = xlsread('RimpullRetardCurves.xlsx', 'Rimpull-Cat 797B', 

'B4:C75'); 

     
    FlatSpeed_Rimpull =RimpullData(find(RimpullData(:,1)==0,1),2); %at zero 

TR, rimpull=0 

     
    InterpolateMat = []; 
    for iLoop=1:size(SmoothPathMat,1) 
        if SmoothPathMat(iLoop,7) >= 10000 
            InterpolateMat=RimpullData(find(SmoothPathMat(iLoop,7)>= 

RimpullData(:,1),2)-1,1:2); 
            SmoothPathMat(iLoop,8) = 

(((InterpolateMat(2,2))*(InterpolateMat(1,1)-

SmoothPathMat(iLoop,7)))+((InterpolateMat(1,2))*(SmoothPathMat(iLoop,7) - 

InterpolateMat(2,1))))/ (InterpolateMat(1,1) - InterpolateMat(2,1)); 
            clear InterpolateMat; 

             
        else SmoothPathMat(iLoop,8) = FlatSpeed_Rimpull; 
        end 
    end 

     

     
    %% Run Methods 
    NRep=1; % number of replications 
    TPGOHmean=[];  

     
    for repLoop=1:NRep 
        [TPGOHsim{rLoop}(repLoop,:), EFHFactor{rLoop}(repLoop,:)] = 

RunMethods(SmoothPathMat, PathDistance, FlatSpeed_Rimpull); 
        %[FullHaulTime{rLoop}(repLoop, 1), FullHaulTime{rLoop}(repLoop,2)] = 

RunMethods(SmoothPathMat, PathDistance, FlatSpeed_Rimpull); 
    end 

     
%     for mLoop=1:11 
%          
%     TPGOHmean(mLoop,  1:3) = mean(TPGOHsim{mLoop}); 
%     end  
%      

   
end 
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APPENDIX II 

Run Methods 

function [TPGOHsim, EFHFactor] = RunMethods(SmoothPathMat, PathDistance, 

FlatSpeed_Rimpull) 

  

  

  

  
%% Velocity Distribution Sampling 
VelocitySamplesVector = VelocityDistGrad(); 

  

  
%% METHOD1 
[PathTravelTime1, EFHFactor1] = HaulTime_Full_Method_1(SmoothPathMat, 

PathDistance, FlatSpeed_Rimpull); 

  
%% METHOD2 
NormalizingVel= FlatSpeed_Rimpull; 
SampledVelocity = VelocitySamplesVector(1); %flat haul  velocity 
[PathTravelTime2, EFHFactor2] = HaulTime_Full_Method_2(SmoothPathMat, 

PathDistance, SampledVelocity, NormalizingVel); 

  
%% METHOD3 
if SmoothPathMat(1,6) >= 1.5 
    SampledVelocity = VelocitySamplesVector(round(SmoothPathMat(1,6))+1); 
    NormalizingVel= SmoothPathMat(1,8); 
else SampledVelocity = VelocitySamplesVector(1); %flat haul velocity 
     NormalizingVel=  VelocitySamplesVector(1); 
end 

  
[PathTravelTime3, EFHFactor3] = HaulTime_Full_Method_3(SmoothPathMat, 

PathDistance, SampledVelocity, NormalizingVel); 

  
%%%%%%%%%%%%%%%%%% TPGOH Simulation%%%%%%%%%%%%%%%%%%%%%%%%% 
[tCycleTimes, rMeasuredTonnage] = CycleTimeDistributions(); 
TPGOHsim(1)= (rMeasuredTonnage * 60)/(PathTravelTime1  + tCycleTimes); 
TPGOHsim(2)= (rMeasuredTonnage * 60)/(PathTravelTime2 + tCycleTimes); 
TPGOHsim(3)= (rMeasuredTonnage * 60)/(PathTravelTime3 + tCycleTimes); 

  
EFHFactor = [EFHFactor1,EFHFactor2,EFHFactor3]; 

  
end 
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APPENDIX III 

Distributions  
 

function [tCycleTimes, rMeasuredTonnage] = CycleTimeDistributions() 

  

  
%%%%MeasuredTonnage%%%%%% 
pdMeasuredTonnage = ProbDistUnivParam('Normal', [380, 21.9]); 
rMeasuredTonnage  = random(pdMeasuredTonnage); 

  
%%%%CycleDelay%%%%%%% 
pdCycleDelay = ProbDistUnivParam('Beta', [0.0923, 1.73]); 
tCycleDelay = 60 * random(pdCycleDelay); 

  
%%%%DumpIdle%%%%%%% 
pdDumpIdle = ProbDistUnivParam('Exponential', [0.869]); 
tDumpIdle = random(pdDumpIdle); 

  
%%%%DumpingTime%%%%%%% 
pdDumpingTime = makedist('Triangular','a', 0, 'b', 1.43, 'c', 1.5); 
tDumpingTime = random(pdDumpingTime); 

  
%%%%LoadingTime%%%%%%% 
pdLoadingTime = ProbDistUnivParam('Gamma', [0.935, 3.93]); 
tLoadingTime = random(pdLoadingTime); 

  
%%%%QueueTime%%%%%%% 
pdQueueTime = ProbDistUnivParam('Beta', [0.168, 2.69]); 
tQueueTime = 60 * random(pdQueueTime); 

  
%%%%SpotTime%%%%%%% 
pdSpotTime = ProbDistUnivParam('Beta', [1.63, 26.3]); 
tSpotTime = 20 * random(pdSpotTime); 

  
%%%%WaitToSpot%%%%%%% 
pdWaitToSpot = ProbDistUnivParam('weibull', [0.0542, 0.81]); 
tWaitToSpot = random(pdWaitToSpot); 

  
%%%%%%%%%%%EMPTY HAUL%%%%%%%% 
pdEmptyHaul = ProbDistUnivParam('Gamma', [4.2, 1.85]);  

%ProbDistUnivParam('BETA', [5.03, 14.5]); 
tEmptyHaul =  random(pdEmptyHaul);                  %30 * 

random(pdEmptyHaul); 

  
tCycleTimes = tCycleDelay + tDumpIdle + tDumpingTime + tLoadingTime + 

tQueueTime + tSpotTime + tWaitToSpot + tEmptyHaul; 
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APPENDIX IV 

DXF read 

function [poly3dlines] = dxfRead() 

[filename, pathname] = uigetfile('*.dxf'); % choose file to open 
% addpath(pathname); % add path to the matlab search path 
fid=fopen(strcat(pathname,filename));%('JPMRoadNetq678ore.dxf'); % open file 
C=textscan(fid,'%s'); % read dxf file as cell array of strings C 
fclose(fid); % close file to accelerate further computation 
C=C{1,1}; % reshape array 

  
% %%%%%%%%%%%%%%%%%%%%%%%%%% case point 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%get some markers and help variables 
indpoint=strcmp('AcDbPoint', C); % get line no. of points 
pointnum=sum(indpoint); % get total number of lines 
indpoint=find(indpoint == 1); % get line no. of lines 
points=zeros(pointnum,4); % preallocate variable to increase speed 

  
for i=1:pointnum 
    points(i,1)=i; % id of line  
    points(i,2)=str2double(C(indpoint(i)+2)); % x start 
    points(i,3)=str2double(C(indpoint(i)+4)); % y start 
    points(i,4)=str2double(C(indpoint(i)+6)); % z start    
end 
clear indpoint pointnum  % delete garbage from workspace 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% end case point %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%% case line %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%get some markers and help variables 
indline=strcmp('AcDbLine', C); % get line no. of LW polylines 
linenum=sum(indline); % get total number of lines 
indline=find(indline == 1); % get line no. of lines 
lines=zeros(2*linenum,4); % preallocate variable to increase speed 

  
for i=1:linenum % some funny indexing 
    ten=strcmp('10',C(indline(i):indline(i)+2)); 
    ten=find(ten == 1); 
    lines(i+(i-1),1)=i; 
    lines(i+(i-1),2)=str2double(C(indline(i)+ten)); % x start 
    lines(i+(i-1),3)=str2double(C(indline(i)+ten+2)); % y start 
    lines(i+(i-1),4)=str2double(C(indline(i)+ten+4)); % z start 
    ten=strcmp('10',C(indline(i):indline(i)+2)); 
    ten=find(ten == 1); 
    lines(i+i,1)=i; 
    lines(i+i,2)=str2double(C(indline(i)+ten+6)); % x end 
    lines(i+i,3)=str2double(C(indline(i)+ten+8)); % y end 
    lines(i+i,4)=str2double(C(indline(i)+ten+10)); % z end 
end 
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clear cont indline indnum ten k linenum % delete garbage from workspace 
%%%%%%%%%%%%%%%%%%%%%%%%%% end case line %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%% case polyline %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%get some markers and help variables 
indpoly=strcmp('AcDbPolyline', C); % get line no. of LW polylines 
polynum=sum(indpoly); % get total number of polylines 
indpoly=find(indpoly == 1); % get line no. of polylines  
vertices=zeros(polynum,1); % detto 
vertices=str2double(C(indpoly+2)); % the number of vertices is 2 lines after 

'AcDbPolyline' 
polylines=zeros(sum(vertices),4); % preallocate variable to increase speed, 

closed polys excluded    
    for i=1:polynum % begin coordinate extraction for every single polyline, 

see !readme.m or dxf reference for details and group codes 
        clear id xpoly ypoly zpoly  % clear to avoid error        
        null=strcmp('0',C(indpoly(i):(indpoly(i)+(4*vertices(i)+10)))); % 

find next 0 after last 10...=end of entity 
        null=max(find(null == 1)); % max(null)=end of entity polyline(i) 
        ten=strcmp('10',C((indpoly(i)+4):(indpoly(i)+null))); % find 10 in C 

(10 is group code for x-coords) 
        ten=find(ten==1); % reshape ten 
        NUM=str2double(C(indpoly(i):(indpoly(i)+null-1))); % get subset of 

numeric values of entity polyline(i), strings are nan's  
        xpoly=NUM(ten+5);ypoly=NUM(ten+7); % x- & y- coords 
        threight=find(NUM(4:10)==38); % find '38' in NUM (38 is group code 

for z-coords)  
            if isempty(threight) % check out elevation 
                zpoly=zeros(vertices(i),1); % elevation =0 
            elseif threight~=0 
                zpoly(1:vertices(i))=NUM(threight+4);zpoly=zpoly'; % get 

elevation if exists 
            end           
        id(1:vertices(i))=i; % id of polyline 
        polyline=[id' xpoly ypoly zpoly]; % create polylinesubset     
        seventy=find(NUM(3:6)==70); % find 70 (70 is group code for closed 

polylines)        
            if NUM(seventy+3)==1 % if polyline is closed... 
                polyline(vertices(i)+1,:)=polyline(1,:); % ... add first row 

as last one 
            end         
        [posin(i),z]=size(polyline);         
        posout=cumsum(posin);              
                if i==1 % save subset to matrix 'polylines' 
                    polylines(1:posin(i),:)=polyline;  
                else 
                    polylines(posout(i)-posin(i)+1:posout(i),:)=polyline; 
                end 

  
        clear polyline % clear to avoid error 
    end % end case polyline 
clear i id indpoly null polynum seventy ten threight vertices  
clear xpoly ypoly zpoly NUM posin posout z % delete garbage 
%%%%%%%%%%%%%%%%%%%%%% end case polyline %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%% case 3d polyline %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%get some markers and help variables 
indpoly3d=strcmp('AcDb3dPolyline', C); % get line no. of 3d polylines 
poly3dnum=sum(indpoly3d); % get total number of 3d polylines 
indpoly3d=find(indpoly3d == 1); % detto  
vert3d=strcmp('AcDb3dPolylineVertex', C); % get line no. of vertices of 3d 

polylines 
verttotal=sum(vert3d); % total amount of vertices 
vert3d=find(vert3d == 1); % detto 
poly3dlines=zeros(verttotal,4); % preallocate 3dpolys 

  
    for i=1:poly3dnum % begin coordinate extraction for every 3d polyline 
        if i<poly3dnum 
            idmax=max(find(vert3d<indpoly3d(i+1))); 
        else   
            idmax=find(vert3d==max(vert3d)); 
        end             
            idmin=min(find(vert3d>indpoly3d(i))); 
            sub=vert3d(idmin:1:idmax); % get indices of coords 
            x3d=str2double(C(sub+2)); 
            y3d=str2double(C(sub+4)); 
            z3d=str2double(C(sub+6)); 
            id=zeros(1,length(x3d)); % to avoid error 
            id(1:length(x3d))=i; 
            ddpoly=zeros(length(sub),4); 
            ddpoly=[id' x3d y3d z3d];             
            seventy=strcmp('70',C(indpoly3d+6:indpoly3d+11)); % find out if 

polyline is closed 
            seventy=find(seventy==1); 

             
            closed=str2double(C(indpoly3d(i)+seventy+6)); % get value of 

'70'+1 line 
            closed=dec2bin(closed,8);closed=closed(:);closed=closed(8); % 

because group code '70' is binary coded 

                         
            if closed=='1' % if polyline is closed  
                [x,y]=size(ddpoly); 
                ddpoly(x+1,:)=ddpoly(1,:); % ... add first row as last one 
            end 

             
            [posin(i),z]=size(ddpoly); % find out positions to save         
            posout=cumsum(posin); 

                 
            if i==1 % save subset to matrix 'polylines' 
                poly3dlines(1:posin(i),:)=ddpoly;  
            else 
                poly3dlines(posout(i)-posin(i)+1:posout(i),:)=ddpoly; 
            end 

  
    end 

  
clear closed ddpoly i id idmax idmin indpoly3d poly3dnum x3d y3d z3d 
clear posin posout seventy sub vert3d verttotal x y z % delete garbage 

  
%%%%%%%%%%%%%%%%%%%%%%%%%% end case 3d polyline %%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%% case 3d faces %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%get some markers and help variables 
face3d=strcmp('AcDbFace', C); % get line no. of 3d faces 
face3dnum=sum(face3d); % get total number of 3d faces 
face3d=find(face3d == 1); % detto 
faces3d=zeros(4*face3dnum+1,4); % preallocate, +1 to enable resizing at the 

end 

  
for i=1:face3dnum 
    fac3d=zeros(4,4); 
    fac3d(1,1)=i; % again(id,x-coord,y-coord,z_coords) 
    fac3d(1,2)=str2double(C(face3d(i)+2)); 
    fac3d(1,3)=str2double(C(face3d(i)+4)); 
    fac3d(1,4)=str2double(C(face3d(i)+6)); 
    fac3d(2,1)=i; 
    fac3d(2,2)=str2double(C(face3d(i)+8)); 
    fac3d(2,3)=str2double(C(face3d(i)+10)); 
    fac3d(2,4)=str2double(C(face3d(i)+12)); 
    fac3d(3,1)=i; 
    fac3d(3,2)=str2double(C(face3d(i)+14)); 
    fac3d(3,3)=str2double(C(face3d(i)+16)); 
    fac3d(3,4)=str2double(C(face3d(i)+18)); 
    fac3d(4,1)=i; 
    fac3d(4,2)=str2double(C(face3d(i)+20)); 
    fac3d(4,3)=str2double(C(face3d(i)+22)); 
    fac3d(4,4)=str2double(C(face3d(i)+24)); 

     
        if fac3d(4,2)==fac3d(3,2) % find out if 4th coord pair == 3rd 
            fac3d=fac3d(1:3,:); % if so, delete 4th coord pair 
        end 

         
    [posin(i),z]=size(fac3d); % find out positions to save         
    posout=cumsum(posin); 

     
        if i==1 % save subset to matrix 'polylines' 
            faces3d(1:posin(i),:)=fac3d;  
        else 
            faces3d(posout(i)-posin(i)+1:posout(i),:)=fac3d; 
        end     
end 

  
faces3d=faces3d(1:min(find(faces3d(:,1)==0))-1,:); % resize face3dmatrix 
clear posin posout face3d face3dnum fac3d i z % finished so far 
%%%%%%%%%%%%%%%%%%%%%%%%%% end case 3d faces %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%% case circles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%get some markers and help variables 
cir=strcmp('AcDbCircle', C); % get line no. of 3d faces 
cirnum=sum(cir); % get total number of 3d faces 
cir=find(cir == 1); % detto 
circles=zeros(cirnum,5); % preallocate (id x y z radius) 

  
for i=1:cirnum 
    circ=zeros(1,5); 
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    threenine=strcmp('39',(C(cir(i):cir(i)+1))); % '39' is the group code of 

entity thickness 
    threenine=find(threenine==1); 
        if isempty (threenine) % get coordinates and radii 
            circ=zeros(1,5); 
            circ(1,1)=i; 
            circ(1,2)=str2double(C(cir(i)+2)); % x-coord of center 
            circ(1,3)=str2double(C(cir(i)+4)); % y-coord of center 
            circ(1,4)=str2double(C(cir(i)+6)); % z-coord of center 
            circ(1,5)=str2double(C(cir(i)+8)); % radius of circle 
        else 
            circ=zeros(1,5); 
            circ(1,1)=i; 
            circ(1,2)=str2double(C(cir(i)+4)); % x-coord of center 
            circ(1,3)=str2double(C(cir(i)+6)); % y-coord of center 
            circ(1,4)=str2double(C(cir(i)+8)); % z-coord of center 
            circ(1,5)=str2double(C(cir(i)+10)); % radius of circle 
        end 

  
    circles(i,:)=circ; % save to matrix 

     
end 

  
clear threenine i cirnum circ cir  % delete garbage 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%% end case circles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX V 

Get Path 

%Segments: 1.LineID, 2.x1,3.y1,4.z1,5.NodeID1,6.x2,7.y2,8.z2,9.NodeID2, 

10.Length, 11.Gradient 
%Lines:    1.LineID, 2.NodeID1,3.NodeID2, 4.Length 
%Nodes:    1.LineID, 2.X, 3.Y, 4.Z, 5.NodeID 

  

  
function [PathMat, PathDistance] = GetPath(Source,Dest,Lines,Segments) 

  
% G=graph(Lines(:,2),Lines(:,3),Lines(:,4)); 
% [PathNodes, PathDistance] = shortestpath(G,Source,Dest); 

  
G=graph(Segments(:,5),Segments(:,9),Segments(:,10)); 
[PathNodes, PathDistance] = shortestpath(G,Source,Dest); 

  
PathMat=[]; 
for kLoop=1:size(PathNodes,2)-1 
%     if~isempty(find(Lines(:, 2) == PathNodes(kLoop) & Lines(:,3) == 

PathNodes(kLoop + 1))) 
%         LineID(kLoop) = Lines(find(Lines(:, 2) == PathNodes(kLoop) & 

Lines(:,3) == PathNodes(kLoop + 1)), 1); 
%         temp=find(Segments(:,1)==LineID(kLoop)); 
%         PathMat_temp=Segments(temp,:); 
%     else       
%         LineID(kLoop) = Lines(find(Lines(:, 3)==PathNodes(kLoop) & 

Lines(:, 2)==PathNodes(kLoop+1)), 1); 
%         temp=find(Segments(:,1)==LineID(kLoop)); 
%         PathMat_temp = [Segments(temp(end:-1:1),1),Segments(temp(end:-

1:1),6:9),Segments(temp(end:-1:1),2:5),Segments(temp(end:-1:1),10:11)]; 
%     end 
%      
    if~isempty(find(Segments(:, 5) == PathNodes(kLoop) & Segments(:,9) == 

PathNodes(kLoop + 1))) 
        temp = find(Segments(:, 5) == PathNodes(kLoop) & Segments(:,9) == 

PathNodes(kLoop + 1)); 
        PathMat_temp=Segments(temp,:); 
    else         
        temp = find(Segments(:, 9) == PathNodes(kLoop) & Segments(:,5) == 

PathNodes(kLoop + 1));         
        PathMat_temp = 

[Segments(temp,1),Segments(temp,6:9),Segments(temp,2:5),Segments(temp,10), -

Segments(temp,11)]; 
    end 

     
    PathMat=[PathMat;PathMat_temp]; 
end 

  
end 



121 

 

APPENDIX VI 

Load Road Network 

function [Data, Segments, Lines] = LoadRoadNetwork() 
%Data/Nodes: LineID, X, Y, Z, NodeID 
%Segments: 1.LineID, 2.x1,3.y1,4.z1,5.NodeID1,6.x2,7.y2,8.z2,9.NodeID2, 

10.Length, 11.Gradient 
%Lines:    1.LineID, 2.NodeID1,3.NodeID2, 4.Length 

  
Data =dxfRead();  
Data(:,2:4) = round(Data(:,2:4),2); 

  
Nodes=unique(Data(:,2:4),'rows'); %Nodes: x, y, z 
Data(1,5)=find(Nodes(:,1)==Data(1,2)& Nodes(:,2)==Data(1,3) & 

Nodes(:,3)==Data(1,4)); 
for iLoop=2:size(Data,1) 
    Data(iLoop,5)=find(Nodes(:,1)==Data(iLoop,2)& Nodes(:,2)==Data(iLoop,3) 

& Nodes(:,3)==Data(iLoop,4)); 
end 

  

  
% Set up matrix  
Segments = [Data(1:end-1, :) , Data(2:end,:)]; 
Segments(Segments(:,1) ~= Segments(:,6),:)=[]; 

  

  
Segments(:,6)=[];  
% Calculate distance using difference matrix 
diffMat=Segments(:,6:8)-Segments(:,2:4); 
Segments(:,10)= sqrt(diag(diffMat*diffMat')); 

  
clear diffMat 
diffMat=Segments(:,6:7)-Segments(:,2:3); 
Segments(:,11)= 100*(Segments(:,8)-

Segments(:,4))./sqrt(diag(diffMat*diffMat')); 

  
%%%%%%%%%%%%%%%%%% Cap Gradients of segments within route to 

GradientUpperCap and GradientLowerCap 

  
GradientUpperCap = 15; 
GradientLowerCap = -15; 

  
Segments(Segments(:, 11) > GradientUpperCap,11)=GradientUpperCap; 
Segments(Segments(:, 11) < GradientLowerCap,11)=GradientLowerCap; 

  

  
%%%%%%%%%%%%%%%%%%                             Plot RoadNetwork raw % 
% for iLoop=1:size(Segments,1) 
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% 

plot([Segments(iLoop,2),Segments(iLoop,6)],[Segments(iLoop,3),Segments(iLoop

,7)]); 
% hold on 
% end 

  

  
%%%%%%%%%%%%%%%%%%       Simplify network for Paths, by removing segments. 
%%%%%%%%%%%%%%%%%%       Lines are one segment between junctions 

  
row=1; 
Lines(row,:)=[Segments(1,1),Segments(1,5),Segments(1,9),Segments(1,10)]; 
for iLoop=2:size(Segments,1) 
    if Segments(iLoop,1)==Lines(row,1) 
        Lines(row,3)=Segments(iLoop,9); 
        Lines(row,4)=Lines(row,4) + Segments(iLoop,10); 
    else 
        row=row+1; 
        

Lines(row,:)=[Segments(iLoop,1),Segments(iLoop,5),Segments(iLoop,9),Segments

(iLoop,10)]; 
    end 
end 

  

  
%%%%%%%%%%%%%%%                              Plot simplified RoadNetwork %  
%  for iLoop=1:size(Lines,1) 
%  

plot([Nodes(Lines(iLoop,2),1),Nodes(Lines(iLoop,3),1)],[Nodes(Lines(iLoop,2)

,2),Nodes(Lines(iLoop,3),2)]); 
%  hold on 
%  end 
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APPENDIX VII 

Run Methods  

function [PathTravelTime, EFHFactor] = HaulTime_Full_Method_1(SmoothPathMat, 

PathDistance, FlatSpeed_Rimpull) 

  

  

  
%%%%%               Determine Time Elapsed per segment and total %%%%%%% 

  
PathTravelTime = (60/1000)*sum(SmoothPathMat(:,4)./SmoothPathMat(:,8)); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%mean(FlatSpeedSamples) or topspeed rimpull 

  
FlatTravelTime = 60*PathDistance/(FlatSpeed_Rimpull*1000); 

  
%%%%%%% Calculate EFH Factor 
EFHFactor = PathTravelTime/FlatTravelTime; 

  
end 

 

function [PathTravelTime, EFHFactor] = HaulTime_Full_Method_2(SmoothPathMat, 

PathDistance, rflat, NormalizingVel) 

  

  
temp_Factors = SmoothPathMat(:,8)/NormalizingVel; 
temp_Velocities = rflat*temp_Factors; 

  

  
PathTravelTime = sum((60/1000)*SmoothPathMat(:,4)./temp_Velocities); 

  
%%%%%               Calculate EFH %%%%%%% 

  
FlatTravelTime = 60*PathDistance/(rflat*1000); 

  
%%%%%%% Calculate EFH Factor 
EFHFactor = PathTravelTime/FlatTravelTime; 

  
end 

 

function [PathTravelTime, EFHFactor] = HaulTime_Full_Method_3(SmoothPathMat, 

PathDistance, SampledVelocity, NormalizingVel) 
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temp_Factors = SmoothPathMat(:,8)/NormalizingVel; 
temp_Velocities = SampledVelocity*temp_Factors; 

  

  
PathTravelTime = sum((60/1000)*SmoothPathMat(:,4)./temp_Velocities); 

  
%%%%%               Calculate EFH %%%%%%% 

  
FlatTravelTime = 60*PathDistance/(SampledVelocity*1000); 

  
%%%%%%% Calculate EFH Factor 
EFHFactor = PathTravelTime/FlatTravelTime; 

  
end 

 


