
Statistics and Computing (2021) 31:38
https://doi.org/10.1007/s11222-021-10012-y

A robust and efficient algorithm to find profile likelihood confidence
intervals

Samuel M. Fischer1,2 ·Mark A. Lewis2,3

Received: 31 March 2020 / Accepted: 9 January 2021 / Published online: 7 May 2021
© The Author(s) 2021

Abstract
Profile likelihood confidence intervals are a robust alternative to Wald’s method if the asymptotic properties of the maximum
likelihood estimator are not met. However, the constrained optimization problem defining profile likelihood confidence
intervals can be difficult to solve in these situations, because the likelihood function may exhibit unfavorable properties. As a
result, existing methods may be inefficient and yield misleading results. In this paper, we address this problem by computing
profile likelihood confidence intervals via a trust-region approach, where steps computed based on local approximations are
constrained to regions where these approximations are sufficiently precise. As our algorithm also accounts for numerical
issues arising if the likelihood function is strongly non-linear or parameters are not estimable, the method is applicable in
many scenarios where earlier approaches are shown to be unreliable. To demonstrate its potential in applications, we apply
our algorithm to benchmark problems and compare it with 6 existing approaches to compute profile likelihood confidence
intervals. Our algorithm consistently achieved higher success rates than any competitor while also being among the quickest
methods. As our algorithm can be applied to compute both confidence intervals of parameters and model predictions, it is
useful in a wide range of scenarios.

Keywords Computer algorithm · Constrained optimization · Parameter estimation · Estimability · Identifiability

1 Introduction

1.1 Profile likelihood confidence intervals

Confidence intervals are an important tool for statistical infer-
ence, used not only to assess the range of predictions that
are supported by a model and data but also to detect poten-
tial estimability issues (Raue et al. 2009). These estimability

The primary work for this article was conducted at the University of
Alberta.

B Samuel M. Fischer
samuel.fischer@ufz.de

1 UFZ - Helmholtz Centre for Environmental Research,
Department of Ecological Modelling, Permoserstraße 15,
04318 Leipzig, Germany

2 Department of Mathematical and Statistical Sciences,
University of Alberta, 632 Central Academic Building,
Edmonton, AB T6G 2G1, Canada

3 Department of Biological Sciences, University of Alberta,
CW 405, Biological Sciences Building, Edmonton, AB T6G
2E9, Canada

issues occur if not enough data are available to infer a sta-
tistical parameter on the desired confidence level, and the
corresponding confidence intervals are infinite (Raue et al.
2009). Due to the broad range of applications, confidence
intervals are an integral part of statistical model analysis and
widely used across disciplines.

Often, confidence intervals are constructed via Wald’s
method, which exploits the asymptotic normality of themax-
imum likelihood estimator (MLE). ThoughWald’s method is
accurate in “benign” use cases, the approach can be imprecise
or fail if not enough data are available to reach the asymptotic
properties of the MLE. This will be the case, in particular, if
the MLE is not unique, i.e. parameters are not identifiable,
or if the likelihood is very sensitive to parameter changes
beyond some threshold, e.g. in dynamical systems undergo-
ing bifurcations (see e.g. Ramsay et al. 2007). Therefore,
other methods, such as profile likelihood techniques (Cox
and Snell 1989), are favorable in many use cases.

Both Wald-type and profile likelihood confidence inter-
vals are constructed by inverting the likelihood ratio test. That
is, the confidence interval for a parameter θ0 encompasses all
values θ̄0 that might suit as acceptable null hypotheses if the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-021-10012-y&domain=pdf
http://orcid.org/0000-0001-8913-9575

38 Page 2 of 17 Statistics and Computing (2021) 31 :38

parameter were to be fixed; i.e. H0: θ0 = θ̄0 could not be
rejected versus the alternative H1: θ0 �= θ̄0. As the likelihood
ratio statistic is, under regularity conditions, approximately
χ2 distributed under the null hypothesis, the confidence inter-
val is given by

I =
[
θ̄0

∣∣∣ 2
(
max
θ∈Θ

�(θ) − max
θ∈Θ: θ0=θ̄0

�(θ)

)
≤ χ2

1,1−α

]
, (1)

where θ ∈ (θ0, . . . , θn−1)
� is a parameter vector in the

parameter space Θ , � denotes the log-likelihood function,
α is the desired confidence level, and χ2

k,1−α is the (1 − α)th

quantile of the χ2 distribution with k degrees of freedom.We
assume without loss of generality that we seek a confidence
interval for the first entry of the parameter vector.

The function that maps θ̄0 to the constrained maximum

�PL
(
θ̄0

) := max
θ∈Θ : θ0=θ̄0

�(θ) (2)

is called the profile log-likelihood. While Wald’s method
approximates � and �PL as quadratic functions, profile
likelihood confidence intervals are constructed by exact com-
putation of the profile log-likelihood �PL. This makes this
method more accurate but also computationally challenging.

1.2 Existing approaches

Conceptually, the task of identifying the end points θmin
0 and

θmax
0 of the confidence interval I is equivalent to finding the
maximal (or minimal) value for θ0 with

�PL(θ0) = �∗ := �
(
θ̂
)

− 1

2
χ2
1,1−α, (3)

Here, θ̂ denotes the MLE; the value �∗ follows from rear-
ranging the terms in the inequality characterizing I [see Eq.
(1)].

There are two major perspectives to address this problem.
It could either be understood as a one-dimensional root find-
ing problem on �PL or as the constrained maximization (or
minimization) problem

θmax
0 = max

θ∈Θ: �(θ)≥�∗θ0 (4)

(θmin
0 analog). Approaches developed from either perspective

face the challenge of balancing efficiency against robustness,
the ability to return correct results even for difficult problems.

The root finding perspective (Cook and Weisberg 1990;
DiCiccio and Tibshirani 1991; Stryhn and Christensen 2003;
Moerbeek et al. 2004; Ren and Xia 2019) is robust if small
steps are taken and solutions of themaximization problem (2)
are good initial guesses for the maximizations in later steps.

Nonetheless, the step size should be variable if the confidence
intervals might be large or parameters might be inestimable,
i.e. the profile log-likelihood �PL never falls below the thresh-
old �∗. At the same time, care must be taken with large steps,
as solving (2) can be difficult if the initial guesses are poor,
and algorithms may fail to converge. Therefore, conserva-
tive step choices are often advisable even though they may
decrease the overall efficiency of the approaches.

The constrained maximization perspective (Neale and
Miller 1997; Wu and Neale 2012) has the advantage that
efficient solvers for such problems are readily implemented
in many optimization packages. If the likelihood function is
“well behaved”, these methods converge very quickly. How-
ever, in practical problems, the likelihood function may have
local extrema, e.g. due to lack of data, or steep “cliffs” that
may hinder these algorithms from converging to a feasible
solution. Furthermore, general algorithms are typically not
optimized for problems like (4), in which the target function
is simple and the major challenge is in ensuring that the con-
straint is met. Therefore, an approach would be desirable that
is specifically tailored to solve the constrained maximization
(4) in a robust and efficient manner.

A first step in this direction is the algorithm by Ven-
zon and Moolgavkar (1988), which solves (4) by repeated
quadratic approximations of the likelihood surface. As the
method is of Newton–Raphson type, it is very efficient as
long as the local approximations are accurate. Therefore, the
algorithm is fast if enough data are available to make the
considered model locally approximately normal. Otherwise,
the algorithm relies heavily on good initial guesses. Though
methods to determine accurate initial guesses exist (Gimenez
et al. 2005), the algorithm byVenzon andMoolgavkar (1988)
(below abbreviated as VM) can get stuck in local extrema or
fail to converge if the likelihood surface is non-convex, has
sudden jumps, or other unfavorable properties (see e.g. Ren
and Xia 2019). Moreover, the algorithm will break down if
parameters are not identifiable. Thus, VM cannot be applied
in some important use cases of profile likelihood confidence
intervals.

1.3 Our contributions

In this paper, we address the issues of VM by introducing
an algorithm extending the ideas of Venzon and Mool-
gavkar (1988). Our algorithm, which we will call Robust
Venzon–Moolgavkar Algorithm (RVM) below combines the
original procedure with a trust region approach (Conn et al.
2000; Yuan 2015). That is, the algorithm never steps out-
side of the region in which the likelihood approximation is
sufficiently precise. Furthermore, RVM accounts for uniden-
tifiable parameters, local minima and maxima, and sharp
changes in the likelihood surface. The algorithm is imple-

123

Statistics and Computing (2021) 31 :38 Page 3 of 17 38

mented in the Python package ci-rvm that can be retrieved
from thePython package index (see pypi.org/project/ci-rvm).

The approach byVenzon andMoolgavkar (1988) has been
criticized for not being directly applicable to construct con-
fidence intervals for functions of parameters (Pek and Wu
2015). Often the main research interest is not in identifying
specific model parameters but in obtaining model predic-
tions, which can be expressed as a function of the parameters.
We show how RVM—and other methods, including VM—
can also be applied to determine confidence intervals for
functions of parameters.

This paper is structured as follows: in the first section,
we start by outlining the main ideas behind RVM before we
provide details of the applied procedures. Furthermore, we
briefly describe how the algorithm can be used to determine
confidence intervals of functions of parameters. In the second
section, we apply RVMand alternative algorithms to amodel
fitting problemwith empirical data and a range of benchmark
problems with simulated data. We conclude this paper with a
discussion of the test results and the benefits and limitations
of RVM in comparison to earlier methods.

2 Algorithm

2.1 Basic ideas

Suppose we consider a model with an n-dimensional param-
eter vector θ := (θ0, . . . , θn−1)

� and a twice continuously
differentiable log-likelihood function �. Assumewithout loss
of generality that we seek to construct a level-α confidence
interval for the parameter θ0, and let θ̃ := (θ1, . . . , θn−1)

�
be the vector of all remaining parameters, called nuisance
parameters. For convenience, we may write � = �(θ) as a
function of the complete parameter vector or � = �

(
θ0, θ̃

)
as a function of the parameter of interest and the nuisance
parameters.

The algorithm RVM introduced in this paper searches the
right end point θmax

0 (equation (4)) of the confidence interval
I . The left end point can be identifiedwith the same approach
if a modified model is considered in which � is flipped in θ0.
As RVM builds on the method by Venzon and Moolgavkar
(1988), we start by recapitulating their algorithm VM below.

Let θ∗ ∈ Θ be the parameter vector atwhich the parameter
of interest is maximal, θ∗

0 = θmax
0 , and �

(
θ∗) ≥ �∗. Venzon

and Moolgavkar (1988) note that θ∗ satisfies the following
necessary conditions:

1. �
(
θ∗) = �∗ and

2. � is in a local maximum with respect to the nuisance
parameters, which implies ∂�

∂ θ̃
(θ∗) = 0.

The algorithmVMsearches for θ∗ byminimizing both the
log-likelihood distance to the threshold |�(θ) − �∗| and the
magnitude of the gradient of the nuisance parameters | ∂�

∂ θ̃
|.

To this end, the algorithm repeatedly approximates the log-
likelihood surface � with second order Taylor expansions
�̂. If θ (i) is the parameter vector in the i th iteration of the
algorithm, expanding � around θ (i) yields

�̂(θ) := �
(
θ (i)

)
+ g� (

θ − θ (i)
)

+ 1

2

(
θ − θ (i)

)�
H

(
θ − θ (i)

)

= �̄ + g̃�δ̃ + g0δ0 + 1

2
δ̃
�
H̃̃δ + δ0H̃

�
0 δ̃ + 1

2
δ0H00δ0

=: �̂δ
(
δ0, δ̃

)
. (5)

Here, δ := θ − θ (i), �̄ := �
(
θ (i)

)
; g := ∂�

∂θ

(
θ (i)

)
is the

gradient and H := ∂2�

∂θ2

(
θ (i)

)
the Hessian matrix of � at θ (i).

Analogously to notation used above, we split δ into its first
entry δ0 and the remainder δ̃, g into g0 and g̃, and write H0

for the first column of H, H̃ for H without its first column
and row, and split H0 into H00 and H̃0.

In each iteration, VM seeks δ∗
0 and δ̃∗ that satisfy condi-

tions 1 and 2. Applying condition 2 to the approximation �̂δ

[Eq. (5)] yields

δ̃∗ = −H̃
−1 (

H̃0δ0 + g̃
)
. (6)

Inserting (5) and (6) into condition 1 gives us

�∗ = 1

2

(
H00 − H̃

�
0 H̃

−1
H̃0

)
δ∗2
0

+
(
g0 − g̃�H̃−1

H̃0

)
δ∗
0 + �̄ − 1

2
g̃�H̃−1

g̃, (7)

which can be solved for δ∗
0 if H is negative definite. If Eq.

(7) has multiple solutions, Venzon and Moolgavkar (1988)
choose the one thatminimizes δ according to some norm.Our
algorithmRVMapplies a different procedure and chooses the
root thatminimizes the distance to θmax

0 without stepping into
a region inwhich the approximation (5) is inaccurate. In Sect.
2.5, we provide further details and discuss the case in which
Eq. (7) has no real solutions.

After each iteration, θ is updated according to the above
results:

θ (i+1) = θ (i) + δ∗. (8)

If �
(
θ (i+1)

)
≈ �∗ and ∂�

∂ θ̃

(
θ (i+1)

)
≈ 0 up to the desired

precision, the search is terminated and θ (i+1) is returned.
The need to extend the original algorithm VM outlined

above comes from the following issues: (1) The quadratic

123

https://pypi.org/project/ci-rvm

38 Page 4 of 17 Statistics and Computing (2021) 31 :38

Fig. 1 Flow chart for RVM. The procedure is repeated until the termi-
nation criterion is met and the result is returned

approximation �̂ may be imprecise far from the approxima-
tion point. In extreme cases, updating θ as suggested could
take us farther away from the target θ∗ rather than closer to it.
(2) The approximation �̂ may be constant in some directions
or be unbounded above. In these cases, we may not be able
to identify unique solutions for δ0 and δ̃, and the gradient
criterion in condition 2 may not characterize a maximum but
a saddle point or a minimum. (3) The limited precision of
numerical operations can result in discontinuities corrupting
the results of VM and hinder the algorithm from terminating.

To circumvent these problems, we introduce a number of
extensions to VM. First, we address the limited precision
of the Taylor approximation �̂ with a trust region approach
(Conn et al. 2000). That is, we constrain our search for δ∗ to a
region in which the approximation �̂ is sufficiently accurate.
Second, we choose some parameters freely if �̂ is constant in
some directions and solve constrained maximization prob-
lems if �̂ is not bounded above. In particular, we detect
cases in which �PL approaches an asymptote above �∗, which
means that θ0 is not estimable. Lastly, we introduce a method
to identify and jump over discontinuities as appropriate. An
overview of the algorithm is depicted as flow chart in Fig. 1.
Below, we describe each of our extensions in detail.

2.2 The trust region

In practice, the quadratic approximation (5) may not be good
enough to reach a point close to θ∗ within one step. In fact,
since � may be very “non-quadratic”, we might obtain a
parameter vector for which � and ∂�

∂ θ̃
are farther from �∗ and 0

than in the previous iteration. Therefore, we accept changes
in θ only if the approximation is sufficiently accurate in the
new point.

In each iteration i , we compute the new parameter vector,
compare the values of �̂ and � at the obtained point θ (i) +

δ∗, and accept the step if, and only if, �̂ and � are close
together with respect to a given distance measure. If �̄ is
near the target �∗, we may also check the precision of the

gradient approximation ∂�̂

∂ θ̃
to enforce timely convergence of

the algorithm.
If we reject a step, we decrease the magnitude of the value∣∣δ∗

0

∣∣ obtained before, reduce the maximal admissible length
r of the nuisance parameter vector and solve the constrained
maximization problem

δ̃∗ = argmax
δ̃: ∣∣̃δ∣∣≤r

�̂δ
(
δ0, δ̃

)
. (9)

As the quadratic subproblem (9) appears in classical trust-
region algorithms, efficient solvers are available (Conn et al.
2000) and implemented in optimization software, such as in
the Python package Scipy (Jones et al. 2001).

We check the accuracy of the approximation at the result-
ing point θ (i) + δ∗, decrease the search radius if necessary,
and continue with this procedure until the approximation is
sufficiently precise. The metric and the tolerance applied to
measure the approximation’s precision may depend on how
far the current log-likelihood �̄ is from the target �∗. We sug-
gest suitable precision measures in Sect. 2.8.

Since it is typically computationally expensive to compute
the HessianH, we desire to take as large steps δ0 as possible.
However, it is also inefficient to adjust the search radius very
often to find themaximal admissible δ∗

0 . Therefore, RVMfirst
attempts to make the unconstrained step given by Eqs. (6)
and (7). If this step is rejected, RVM determines the search
radius with a log-scale binary search between the radius of
the unconstrained step and the search radius accepted in the
previous iteration. If even the latter radius does not lead to
a sufficiently precise result, we update δ∗

0 and r by factors
β0, β1 ∈ (0, 1) so that δ∗

0 ← β0δ
∗
0 and r ← β1r .

2.3 Linearly dependent parameters

The right hand side of Eq. (6) is defined only if the nuisance
Hessian H̃ is invertible. If H̃ is singular, the maximum with
respect to the nuisance parameters is not uniquely defined or
does not exist at all. We will consider the second case in the
next section and focus on the first case here.

If �̂ has infinitely many maxima in the nuisance param-
eters, we can choose some nuisance parameters freely and
consider a reduced system including the remaining indepen-
dent parameters only. To that end, we check H̃ for linear
dependencies at the beginning of each iteration.We are inter-
ested in a minimal set S containing indices of rows and
columns whose removal from H̃ would make the matrix
invertible. To compute S, we iteratively determine the ranks
of sub-matrices of H̃ using singular value decompositions
(SVMs). SVMs are a well-known tool to identify the rank of

123

Statistics and Computing (2021) 31 :38 Page 5 of 17 38

a matrix and have also been applied to determine the number
of identifiable parameters in a model (Eubank and Webster
1985; Viallefont et al. 1998).

We proceed as follows: first, we consider one row of H̃
and determine its rank. Then, we continue by adding a sec-
ond row, determine the rank of the new matrix and repeat the
procedure until all rows, i.e. the full matrix H̃, are consid-
ered. Whenever the matrix rank increases after addition of a
row, this row is linearly independent from the previous rows.
Conversely, the rows that do not increase the matrix rank are
linearly dependent on other rows of H̃. The indices of these
rows form the set S. In general, the set of linearly depen-
dent rows is not unique. Therefore, we consider the rows of
H̃ in descending order of the magnitudes of the correspond-
ing gradient entries. This can help the algorithm to converge
faster.

After S is determined, we need to check whether there is
a parameter vector θ∗ satisfying requirements 1 and 2 from
Sect. 2.1 for the approximation �̂. Let H̃dd (“d” for “depen-
dent”) be the submatrix of H that remains if all rows and
columns corresponding to indices in S are removed from H̃.
Similarly, let H̃ff (“f” for “free”) be the submatrix of H̃ con-
taining only the rows and columns corresponding to indices

in S, and let H̃df = H̃
�
fd be the matrix containing the rows

whose indices are not in S and the columns whose indices
are in S. Let us define g̃d, g̃f , δ̃d, and δ̃f accordingly. If H̃dd
is not negative definite, �̂ is unbounded, and requirement 2
cannot be satisfied. Otherwise, we may attempt to solve

0 = ∂

∂ δ̃
�̂δ (10)

⇐⇒
0 = H̃ddδ̃

∗
d + H̃df δ̃

∗
f + H̃0dδ

∗
0 + g̃d (11)

0 = H̃
�
df δ̃

∗
d + H̃ff δ̃

∗
f + H̃0fδ

∗
0 + g̃f . (12)

If equation system (11)–(12) has a solution, we can choose
δ̃∗
f freely. Setting δ̃∗

f ← 0 makes Eq. (11) equivalent to

δ̃∗
d = −H̃

−1
dd

(
H̃0dδ0 + g̃d

)
. (13)

That is, we may set H̃ ← H̃dd, g̃ ← g̃d, δ̃∗ ← δ̃∗
d for the

remainder of the current iteration and proceed as usual, but
leaving the free nuisance parameters unchanged: δ̃∗

f = 0.
With the resulting δ∗

0 , we check whether (12) holds approx-
imately. If not, the log-likelihood is unbounded above. We
consider this case in the next section.

An alternative way to proceed when H̃ is singular is to
apply a generalized matrix inverse in Eq. (6). For example,
we could apply the Moore–Penrose inverse (Penrose 1955),
which is well defined even for singular matrices. In tests,
however, this approach appeared to be sensitive to a threshold

parameter, and we obtained better results with the procedure
described above. We present the alternative approach based
on the Moore-Penrose inverse along with test results in Sup-
plementary Appendix A.

2.4 Solving unbounded subproblems

In each iteration, we seek the nuisance parameters θ̃ that
maximize � for the computed value of θ0. The log-likelihood
� is bounded above if the MLE exists, which we pre-
sume. Nonetheless, the approximate log-likelihood �̂ could
be unbounded at times, which would imply that the approxi-
mation is imprecise for large steps. Since we cannot identify
a global maximum of �̂ if it is unbounded, we instead seek
the point maximizing �̂ in the range where �̂ is sufficiently
accurate.

If testing Eq. (12) in the previous section has not shown
that �̂ is unbounded above, we test the boundedness of �̂

via a Cholesky decomposition on −H̃. The decomposition
succeeds if, and only if, H̃ is negative definite, implying
that �̂ is bounded in the nuisance parameters. Otherwise,
�̂ is unbounded, since free parameters have been fixed and
removed in the previous section, guaranteeing that H̃ is non-
singular.

If �̂ is unbounded, we set δ∗
0 ← r0, r ← r1 for some

parameters r0, r1 > 0 and solve the maximization problem
(9). The parameters r0 and r1 can be adjusted along with
the trust region and saved for future iterations to efficiently
identify the maximal admissible step. That is, we increase
(or reduce) δ∗

0 and r as long as (or until) �̂ is sufficiently
precise. In particular, we adjust the ratio of δ∗

0 and r so that

the likelihood increases: �̂δ
(
δ∗
0 , δ̃

∗) > �̄. At the end of the

iteration, we set r0 ← δ∗
0 , r1 ← r to start later iterations with

appropriate step sizes.

2.5 Step choice for the parameter of interest

Whenever �̂ has a unique maximum in the nuisance param-
eters, we compute δ∗

0 by solving Eq. (7). This equation can
have one, two, or no roots. To discuss how δ∗

0 should be
chosen in either of these cases, we introduce some helpful

notation. First,wewrite �̂PL(θ0) := max
θ̃

�̂
(
θ0, θ̃

)
for the pro-

file log-likelihood function of the quadratic approximation.
Furthermore, we write in accordance with previous notation

�̂δ
PL(δ0) := �̂PL

(
θ

(i)
0 + δ0

)
= aδ20 + pδ0 + q + �∗ (14)

with a := 1
2

(
H00 − H̃0H̃

−1
H̃0

)
, p := g0 − g̃�H̃−1

H̃0, and

q := �̄ − 1
2 g̃

�H̃−1
g̃ − �∗ [see Eq. (7)].

Our choices of δ∗
0 attempt to increase θ0 as much as pos-

sible while staying in a region in which the approximation

123

38 Page 6 of 17 Statistics and Computing (2021) 31 :38

(a) (b) (c)

Fig. 2 Step choice for θ0 in special cases. The figures depict the pro-
file likelihood function �PL (solid black), quadratic approximation �̂PL
(dashed parabola), and the threshold log-likelihood �∗. a The approxi-
mation has two roots δ∗

0 and δ′
0. Though the largest root of � is searched,

the smaller root of �̂ is closest to the desired result. In fact, consistently

choosing the larger root would let the algorithm diverge. b If �PL is
decreasing but �̂PL does not assume the threshold value �∗, we “jump”
over the local minimum. c If �PL is increasing but �̂PL does not assume
the threshold value �∗, we reset the target value to an increased value
�∗′

�̂ is reasonably accurate. The specific step choice depends
on the slope of the profile likelihood �̂δ

PL and on whether we
have already exceeded θmax

0 according to our approximation,
i.e. �̂δ

PL(0) < �∗. In Sects. 2.5.1–2.5.3 below, we assume that
�̂δ
PL(0) > �∗. We discuss the opposite case in Sect. 2.5.4.

2.5.1 Case 1: decreasing profile likelihood

If the profile likelihood decreases at the approximation point,
i.e. p < 0, we select the smallest positive root:

δ∗
0 =

⎧⎨
⎩

− q
p if a = 0

− 1
2a

(
p + √

p2 − 4aq
)

else.
(15)

Choosing δ∗
0 > 0 ensures that the distance to the end point

θmax
0 decreases in this iteration. Choosing the smaller positive
root increases our trust in the accuracy of the approximation
and prevents potential convergence issues (see Fig. 2a).

If �̂δ
PL has a localminimumabove the threshold �∗, Eq. (14)

does not have a solution, and we may attempt to decrease
the distance between �̂δ

PL and �∗ instead. This procedure,
however, may let RVM converge to a local minimum in �̂δ

PL

rather than to a point with �̂δ
PL = �∗. Therefore, we “jump”

over the extreme point by doubling the value of δ∗
0 . That is,

we choose

δ∗
0 = − p

a
(16)

if p2 < 4aq (see Fig. 2b). This choice of δ∗
0 ensures that

we quickly return to a range where the profile likelihood
function decreases while at the same time accounting for
the scale of the problem by considering the curvature of the
profile likelihood.

2.5.2 Case 2: increasing profile likelihood

If the profile likelihood increases at the approximation point,
i.e. p > 0, Eq. (14) has a positive root if, and only if, �̂PL
is concave down; a < 0. We choose this root whenever it
exists:

δ∗
0 = − 1

2a

(
p +

√
p2 − 4aq

)
. (17)

However, if �̂PL grows unboundedly, Eq. (14) does not have
a positive root. In this case, we change the threshold value �∗
temporarily to a value �∗′ chosen so that Eq. (14) has a solu-
tion with the updated threshold (see Fig. 2c). For example,
we may set

�∗′ := max

⎧⎨
⎩�̂δ

PL(0) + 1,
�̄ + �

(
θ̂
)

2

⎫⎬
⎭ . (18)

The first term in themaximum expression in (18) ensures that
a solution exists; setting the threshold 1 unit higher than the
current approximate value of the profile log-likelihood seems
reasonable given thatwe typically consider the log-likelihood
surface in a range where it isO(1) units below its maximum.
The second term in the maximum expression permits us to
take larger steps if we are far below the likelihoodmaximum.
Thatway,wemay reach local likelihoodmaxima faster. After
resetting the threshold, we proceed as usual.

Tomemorize that we have changed the threshold value �∗,
we set a flag maximizing ← True. In future iterations
j > i , we set the threshold �∗ back to its initial value and

maximizing ← False as soon as �
(
θ (j)

)
falls below the

initial threshold or �̂PL is concave down at the approximation
point θ (j).

123

Statistics and Computing (2021) 31 :38 Page 7 of 17 38

2.5.3 Case 3: constant profile likelihood

If the profile likelihood has a local extremum at the approx-
imation point, i.e. p = 0, a �= 0, we proceed as in cases 1
and 2: if a > 0, we proceed as if �̂PL were increasing, and
if a < 0, we proceed as if �̂PL were decreasing. However,
the approximate profile likelihood could also be constant,
a = p = 0. In this case, we attempt to make a very large step
to check whether we can push θ0 arbitrarily far. In Sect. 2.6,
we discuss this procedure in greater detail.

2.5.4 Profile likelihood below the threshold

If the profile likelihood at the approximation point is below
the threshold, �̂δ

PL(0) < �∗, we always choose the smallest
possible step:

δ∗
0 =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2a

(
p + √

p2 − 4aq
)

if a �= 0, p < 0

− q
p if a = 0, p �= 0

− 1
2a

(
p − √

p2 − 4aq
)

if a �= 0, p > 0.

(19)

This shall bring us to the admissible parameter region as
quickly as possible.

As RVM rarely steps far beyond the admissible region in
practice, Eq. (19) usually suffices to define δ∗

0 . Nonetheless,
if we find that �̂δ

PL has a local maximum below the thresh-
old, i.e. p2 < 4qa, we may instead maximize �̂δ

PL as far as
possible:

δ∗
0 = − p

2a
. (20)

If we have already reached a local maximum (p ≈ 0), we
cannot make a sensible choice for δ0. In this case, we may
recall the iteration k := argmax

j : �(θ(j))≥�∗
θ

(j)
0 , in which the largest

admissible θ0 value with �
(
θ(k)

) ≥ �∗ has been found so far,
and conduct a binary search between θ(i) and θ(k) until we
find a point θ(i+1) with �

(
θ(i+1)

) ≥ �∗.

2.6 Identifying inestimable parameters

If the considered parameter is not estimable and the pro-
file log-likelihood �PL never falls below the threshold �∗,
RVM may not converge. However, often it is possible to
identify inestimable parameters by introducing a step size
limit δmax

0 . If the computed step exceeds the maximal step
size, δ∗

0 > δmax
0 and the current function value exceeds the

threshold value, i.e. �̄ ≥ �∗, we set δ∗
0 := δmax

0 and compute
the corresponding nuisance parameters. If the resulting log-
likelihood �

(
θ(i) + δ∗) is not below the threshold �∗, we let

the algorithm terminate, raising a warning that the parameter

θ0 is not estimable. If �
(
θ(i) + δ∗) < �∗, however, we can-

not draw this conclusion and decrease the step size until the
approximation is sufficiently close to the original function.

The criterion suggested above may not always suffice to
identify inestimable parameters. For example, if the profile
likelihood is constant but the nuisance parameters maximiz-
ing the likelihood change non-linearly, RVM may not halt.
For this reason, and also to prevent unexpected convergence
issues, it is advisable to introduce an iteration limit to the
algorithm. If the iteration limit is exceeded, potential estima-
bility issues may be investigated further.

2.7 Discontinuities

RVM is based on quadratic approximations and requires
therefore that � is differentiable twice. Nonetheless, discon-
tinuities can occur due to numerical imprecision even if the
likelihood function is continuous in theory. Though we may
still be able to compute the gradient g and the Hessian H
in these cases, the resulting quadratic approximation will be
inaccurate even if we take very small steps. Therefore, these
discontinuities could hinder the algorithm from terminating.

To identify discontinuities, we define a minimal step
size εstep, which may depend on the gradient g. If we
reject a step with small length

∣∣δ∗∣∣ ≤ εstep, we may
conclude that � is discontinuous at the current approxi-
mation point θ (i). To determine the set D of parameters
responsible for the issue, we decompose δ∗ into its com-
ponents. We initialize D ← ∅ and consider, with the
j th unit vector e j , the step δ∗′ := ∑

j≤k, j �=D e jδ∗
j until

�̂δ
(
δ∗′) �≈ �δ

(
δ∗′) for some k < n. When we identify such

a component, we add it to the set D and continue the proce-
dure.

If we find that � is discontinuous in θ0, we check whether
the current nuisance parameters maximize the likelihood,
i.e. � is bounded above and g̃ is approximately 0. If the
nuisance parameters are not optimal, we hold θ0 constant
and maximize � with respect to the nuisance parameters.
Otherwise, we conclude that the profile likelihood func-
tion has a jump discontinuity. In this case, our action
depends on the current log-likelihood value �̄, the value of
� at the other end of the discontinuity, and the threshold
�∗.

– If �
(
θ (i) + e0δ∗

0

)
≥ �∗ or �

(
θ (i)

)
< �

(
θ (i) + e0δ∗

0

)
, we

accept the step regardless of the undesirably large error.

– If �
(
θ (i) + e0δ∗

0

)
< �∗ and �

(
θ (i)

)
≥ �∗, we terminate

and return θ
(i)
0 as the bound of the confidence interval.

– Otherwise, we cannot make a sensible step and try to get
back into the admissible region by conducting the binary
search procedure we have described in Sect. 2.5.4.

123

38 Page 8 of 17 Statistics and Computing (2021) 31 :38

If � is discontinuous in variables other than θ0, we hold
the variables constant whose change decreases the likeli-
hood and repeat the iteration with a reduced system. After
a given number of iterations, we release these parame-
ters again, as θ may have left the point of discontinu-
ity.

Since we may require that not only �̂ but also its gradi-
ent are well approximated, a robust implementation of RVM
should also handle potential gradient discontinuities. The
nuisance parameters causing the issues can be identified anal-
ogously to the procedure outlined above. All components in
which the gradient changes its sign from positive to nega-
tive should be held constant, as the likelihood appears to be
in a local maximum in these components. The step in the
remaining components may be accepted regardless of the
large error.

2.8 Suitable parameters and distancemeasures

The efficiency of RVM depends on the distance measures
and parameters applied when assessing the accuracy of the
approximation and updating the search radius of the con-
strained optimization problems (9). If the precisionmeasures
are overly conservative, then many steps will be needed to
find θ∗. If the precision measure is too liberal, in turn, RVM
may take detrimental steps and might not even converge.

We suggest the following procedure: (1) we always accept
forward steps with δ∗

0 ≥ 0 if the true likelihood is larger
than the approximate likelihood: �δ

(
δ∗) ≥ �̂δ

(
δ∗). (2) If the

approximate likelihood function is unbounded, we require
that the likelihood increases: �δ

(
δ∗) ≥ �̄. This require-

ment helps RVM to return quickly to a region in which the
approximation is bounded. However, if the step size falls
below the threshold used to detect discontinuities, we may
accept satisfactory precise steps even when the likelihood
does not increase. This prevents the algorithm from seek-
ing potential discontinuities even though the approximation
is precise. (3) If we are outside the admissible region, i.e.
�̄ < �∗, we enforce that we get closer to the target like-
lihood:

∣∣�δ
(
δ∗) − �∗∣∣ <

∣∣�̄ − �∗∣∣. This reduces potential
convergence issues. (4) We require that

∣∣∣�̂δ
(
δ∗) − �δ

(
δ∗)∣∣∣∣∣�̄ − �∗∣∣ ≤ γ (21)

for a constant γ . That is, the required precision depends on
how close we are to the target. This facilitates fast conver-
gence of the algorithm. The constant γ ∈ (0, 1) controls how
strict the precision requirement is. In tests, γ = 1

2 appeared to
be a good choice. (5) Ifwe are close to the target, �δ

(
δ∗) ≈ �∗,

we also require that the gradient estimate is precise:

∣∣∣ ∂�̂δ

∂θ̃

(
δ∗) − ∂�δ

∂θ̃

(
δ∗)∣∣∣

|g| ≤ γ. (22)

This constraint helps us to get closer to a maximum in the
nuisance parameters. Here, we use the L2 norm.

When we reject a step because the approximation is not
sufficiently accurate, we adjust δ∗

0 and solve the constrained
maximization problem (9) requiring

∣∣̃δ∣∣ ≤ r . To ensure that
the resulting step does not push the log-likelihood below the
target �∗, the radius r should not be decreased more strongly
than δ∗

0 . In tests, adjusting r by a factor β1 := 2
3 whenever δ∗

0
is adjustedby factorβ0 := 1

2 yieldedgood results.Aside from
accepting or rejecting proposed steps, the algorithmevaluates
the accuracy of various equations with some tolerance. We
suggest to introduce a single tuning parameter εtol to control
the accuracy requirement. In tests, we found that a generous
bound of εtol = 0.001 makes the algorithm robust against
errors arising, for example, if almost singular matrices are
inverted.

The optimal value for the minimal step size εstep, used
to detect discontinuities due to numerical errors, depends on
the expected accuracy of the gradient and Hessian of the
log-likelihood function. We suggest a default value of 10−5.
The maximal step size δmax

0 , used to classify parameters as
inestimable, should be chosen as large as possible without
leading to numerical issues. That way, the criterion becomes
less dependent on the scale of the parameter. We suggest a
value of δmax

0 = 1010, as it is far beyond the typical range of
parameters in practical problems.Nonetheless, the parameter
needs to be adjusted if very large parameter values may be
expected.

The distance measures and parameters given above are
meant to be applicable in a wide range of problems without
further fine tuning. We list the tuning parameters along with
the suggested values in Table 1.

2.9 Confidence intervals for functions of parameters

Often, modelers are interested in confidence intervals for
functions f (θ) of the parameters. A limitation of VM and
RVM is that such confidence intervals cannot be computed
directly with these algorithms. However, this problem can
be solved approximately by considering a slightly changed
likelihood function. We aim to find

φmax = max
θ∈Θ: �(θ)≥�∗ f (θ) (23)

123

Statistics and Computing (2021) 31 :38 Page 9 of 17 38

Table 1 Tuning parameters along with suggested values that typically yield good results in practice

Parameter Explanation Suggested value

γ Accepted error of the approximate log-likelihood relative to the remaining distance
to the target

1
2

εtol Tolerance for equations 10−3

εstep Minimal step size; used to detect discontinuities due to numerical errors 10−5

β0 Update factor for the step in the parameter of interest if a step is rejected 1
2

β1 Update factor for the trust region radius if a step is rejected 2
3

δmax
0 Maximal step size δmax

0 ; used to classify parameters as inestimable 1010

or the respective minimum. Define

�̌(φ, θ) := �(θ) − 1

2

(
f (θ) − φ

ε

)2

χ2
1,1−α, (24)

with a small constant ε. Consider the altered maximization
problem

φ̌max = max
θ∈Θ: �̌(φ,θ)≥�∗

φ, (25)

which can be solved with VM or RVM.
We argue that a solution to (25) is an approximate solution

to (23), with an error bounded by ε. Let
(
φmax, θ∗) be a solu-

tion to problem (23) and
(
φ̌max, θ̌

∗)
a solution to problem

(25). Since φmax = f
(
θ∗), it is �̌

(
φmax, θ∗) = �

(
θ∗) ≥ �∗.

Therefore,
(
φmax, θ∗) is also a feasible solution to (25), and it

follows that φ̌max ≥ φmax. At the same time, �̌(φ, θ) ≤ �(θ),

which implies that f
(
θ̌

∗) ≤ f
(
θ∗), since θ∗ maximizes f

over a domain larger than the feasibility domain of (25). In

conclusion, f
(
θ̌

∗) ≤ f
(
θ∗) = φmax ≤ φ̌max. Lastly,

�∗ = �
(
θ̂
)

− 1

2
χ2
1,1−α ≤ �̌

(
φ̌max, θ̌

∗)

= �
(
θ̌

∗) − 1

2

⎛
⎝ f

(
θ̌

∗) − φ̌max

ε

⎞
⎠

2

χ2
1,1−α. (26)

Simplifying (26) yields
∣∣∣ f (θ̌

∗) − φ̌max
∣∣∣ ≤ ε. Thus,∣∣∣φmax − φ̌max

∣∣∣ ≤ ε.

Though it is possible to bound the error by an arbitrarily
small constant ε in theory, care must be taken if the function
f (θ) is not well-behaved, i.e. strongly nonlinear. In these
cases, overly small values for ε may slow down convergence.
Clearly, considering an objective function with an added
parameter increases the computational effort to compute the
Hessian matrix required for RVM. Note, however, that the
Hessian of the altered likelihood �̌ can be computed easily
if the Hessian of the original likelihood �̌ and the derivatives

of the function f are known. Therefore, determining confi-
dence intervals for functions of parameters via solving the
altered problem (4) may not be computationally harder than
determining confidence intervals for parameters.

Observe that the suggested procedure may seem to resem-
ble the approach of Neale and Miller (1997), who also
account for constraints by adding the squared error to the tar-
get function. However, unlike Neale and Miller (1997), the
approach suggested above bounds the error in the confidence
interval bound, not the error of the constraint. Furthermore,
we do not square the log-likelihood function, which would
worsen nonlinearities and could thus make optimization dif-
ficult. Therefore, our approach is less error-prone than the
method by Neale and Miller (1997).

3 Tests

To compare the presented algorithm to existing methods,
we applied RVM (with the suggested tuning parameters),
the classic VM, and five other algorithms to benchmark
problems and compared the robustness and performance of
the approaches. Below we review the implemented meth-
ods. Then we introduce the benchmark problems, before we
finally present the benchmark results.

3.1 Methods implemented for comparison

Besides RVM and VM, we implemented three methods
that repeatedly evaluate the profile likelihood function (grid
search, quadratic bisection, and binary search) and two
methods that search for the confidence intervals directly
(sequential least squares programming and the method by
Neale and Miller). We implemented all methods in the pro-
gramming language Python version 3.7 and made use of
different optimization routines implemented or wrapped in
the scientific computing library Scipy (Jones et al. 2001).

First, we implemented a grid search for the confidence
bounds. The approach uses repeated Lagrangian constrained
optimizations and may resemble the method by DiCiccio

123

38 Page 10 of 17 Statistics and Computing (2021) 31 :38

and Tibshirani (1991); however, rather than implementing
the algorithm by DiCiccio and Tibshirani (1991), we applied
the constrained optimization algorithmbyLalee et al. (1998),
which is a trust-region approach andmay thus bemore robust
than the method by DiCiccio and Tibshirani (1991). Fur-
thermore, the algorithm by Lalee et al. (1998) was readily
implemented in Scipy.

We conducted the grid search with a naive step size of
0.2, which we repeatedly reduced by factor 2 close to the
threshold log-likelihood �∗ until the desired precision was
achieved. In practical applications, modelers may have prior
knowledge of the scale of the parameter and could choose
the step size accordingly. To test the general applicability of
the algorithm, however, we assumed that no prior knowledge
is available and held the step size constant. To account for
unidentifiable parameters, we attempted one large step (1000
units) if the algorithm did not terminate in the given iteration
limit. We considered a parameter as unidentifiable if this step
yielded a log-likelihood above the target value �∗.

Second, we implemented a quadratic bisectionmethod for
root finding on �PL (cf. Ren andXia 2019). Initially we chose
a step size of 1. Afterwards, we computed the step of θ0 based
on a quadratic interpolation between the MLE θ̂0, the max-
imal value of θ0 for which we found �PL(θ0) > �∗ and the
smallest identified value of θ0 with �PL(θ0) < �∗. Until a
point θ0 with �PL(θ0) < �∗ was identified, we interpolated
�PL between θ̂0 and the two largest evaluated values θ0.When
only two points were available or the approximation of �PL
did not assume the target value, we introduced the additional

constraint d2�PL
dθ20

= 0. Using a quadratic rather than a linear

interpolation for bisection has the advantage that the algo-
rithm converges faster if the profile log-likelihood function
is convex or quadratic. To evaluate �PL, we applied sequential
least squares programming (Kraft 1988), which is the default
method for constrained optimization in Scipy.

Third, we implemented a binary search with an initial
step of 1. Until a value θ0 with �PL(θ0) < �∗ was found,
we increased the step δ0 by factor 10. This preserves the
logarithmic runtime of the algorithm if the problem has a
solution. To broaden the range of tested internal optimiza-
tion routines, we used a different method to evaluate �PL
than in the bisection method: we fixed θ0 at the desired value
and performed an unconstrained optimization on the nui-
sance parameters. Here, we used the quasi-Newton method
by Broyden, Fletcher, Goldfarb, and Shanno (BFGS; see
Nocedal et al. 2006, p. 136).

To test methods that search for the confidence interval end
points directly, we solved problem (4) with sequential least
squares programming (Kraft 1988). Furthermore, we imple-
mented the approximate method by Neale andMiller (1997).
They transform the constrained maximization problem (9)
to an unconstrained problem by considering the sum of the

parameter of interest θ0 and the squared error between the
target �∗ and the log-likelihood. Minimization of this target
function yields a point in which the target log-likelihood is
reached approximately and the parameter of interest is mini-
mal. Again, we used themethod BFGS for minimization (see
above).

Finally, we implementedWald’smethod to assess the need
to apply any profile likelihood method.

3.2 Test problemwith empirical data set

To test the applicability of RVM in real-world problems,
we considered a model for in-cell dynamics of the protein
histone H1.2. The model, a dynamical system with 6 free
parameters, was developed by Contreras et al. (2018), who
fitted the model to laboratory data (Raghuram et al. 2010)
via least squares, supposing normally distributed errors. The
data set consists of 59 observations. Contreras et al. (2018)
constrained the parameters to the positive range, as negative
parameter values were not biologically reasonable. In the
admissible parameter range, the likelihood function exhibits
four local maxima with equal likelihood, each correspond-
ing to a parameter vector with two zero entries. As a result,
Wald’s method does not yield useful confidence intervals
at either of the likelihood maxima, and Contreras et al.
(2018) report parameter estimates for simplifiedmodels only,
in which zero-parameters were fixed. Though considering
reduced models is an appropriate response to zero estimates,
it remains unclear which of the four model candidates should
be chosen (Contreras et al. 2018). In light of this uncertainty,
it is of interest to compute confidence intervals for the param-
eters without choosing any of the four model candidates a
priori.

We applied all described algorithms to the histone H1.2
model and computed confidence intervals for the parame-
ters. To constrain the parameters to the positive range, we
considered the log-transformed parameter space. We initial-
ized the algorithms close to one of the MLEs reported by
Contreras et al. (2018), replacing zeros with small positive
values (e−10). For the algorithms that repeatedly evaluate
the profile likelihood function (grid search, quadratic bisec-
tion, and binary search), we set the desired result accuracy
to 10−5. Furthermore, we let these algorithms terminate if
they found a lower confidence interval bound below − 1000
in the log-space. Whenever necessary, we computed gradi-
ents and Hessian matrices with the central difference method
implemented in the Python package numdifftools (Brodtkorb
and D’Errico 2019). We collected the computed confidence
intervals and recorded how many likelihood evaluations the
algorithms needed.

123

Statistics and Computing (2021) 31 :38 Page 11 of 17 38

3.3 Benchmark problems with simulated data

Though the performance of the algorithms in a specific
use case is a valuable benchmark, a single example may
not suffice to draw general conclusions. To test the imple-
mented methods under a broader range of scenarios and
investigate how model characteristics affect the algorithms’
performances, we applied them to a class of benchmark
problems with variable parameter number and data set size.
We considered a logistic regression problem with n count
data covariates ci j , j ∈ {1, . . . , n} for each data point
i ∈ {1, . . . , N }. We assumed that the impact of each
covariate levels off at high values and considered there-
fore the transformed covariates c

α j
i j with α ∈ (0, 1). This

is not only reasonable in many real world problems but
also makes likelihood maximization a computationally chal-
lenging problem if not enough data are available to make
the model locally approximately normal. Hence, this sce-
nario gives insights into the performance of the implemented
methods in challenging realistic problems. The benchmark
model’s probability mass function for a data point Xi was
thus given by

P(Xi = 1) =
⎛
⎝1 + exp

⎛
⎝−β0 −

∑
j

β j c
α j
i j

⎞
⎠

⎞
⎠

−1

(27)

and P(Xi = 0) = 1 − P(Xi = 1).
We drew the covariate values randomly from a negative

binomial distribution with mean 5 and variance 10. The neg-
ative binomial distribution is commonly used to model count
data (Gardner et al. 1995) and thus suited to represent count
covariates. To simulate the common case that covariates are
correlated, we furthermore drew the value for every second
covariate from a binomial distribution with the respective
preceding covariate as count parameter. That is, for uneven
j ,

ci, j+1 ∼ Binomial
(
ci, j , p

)
, (28)

with p = 0.2 in our simulations. To avoid numerical prob-
lems arising when covariates with value 0 are raised to the
power 0, we added a small positive perturbation to the count
values. That way, we achieved that 00 was defined to be 1.
We chose the parameters α j and β j so that the data were
balanced, i.e. the frequency of 0s and 1s was approximately
even. Refer to Supplementary Appendix B for the parameter
values we used.

3.4 Benchmark procedure

We considered three classes of the benchmark problem
described above: models with 1 covariate (3 parameters),

models with 5 covariates (11 parameters), and generalized
linear models (GLM) with 10 covariates, in which the pow-
ers α j were set to 1 (11 parameters). Furthermore, we varied
the sizes of the simulated data sets, rangingbetween N = 500
and N = 10,000 for the models with transformed covariates
and N = 50 and N = 1000 for the GLM. In Fig. 3, we depict
the impact of N on the shape of the likelihood function and
thus the difficulty of the problem.

For each considered set of parameters, we generated 200
realizations of covariates and training data from the model
described in the previous section. We determined the maxi-
mum likelihood estimator by maximizing the log-likelihood
with themethod BFGS and refined the estimate with an exact
trust region optimizer (Conn et al. 2000). Then, we applied
each of the implemented algorithms to find confidence inter-
vals for all parameters for each data set and determined the
algorithms’ success rates and efficiencies.

As the likelihood functions of the tested models decrease
drastically at α j = 0, potentially causing some algorithms
to fail, we constrained the α j to non-negative values. To
that end, we considered transformed parameters α′

j :=
ln

(
exp

(
α j

) − 1
)
. Nonetheless, we evaluated the results of

the tested algorithms based on the back-transformed param-
eters α j .

Wemeasured the algorithms’ success basedon their ability
to solve problem (4) rather than their capability to deter-
mine the true confidence intervals for the parameters. Though
profile likelihood confidence intervals are usually highly
accurate, they rely on the limiting distribution of the likeli-
hood ratio statistic. Therefore, algorithms could fail to solve
optimization problem (4) but, by coincidence, return a result
close to the true confidence interval bound and vice versa.
To exclude such effects and circumvent the high computa-
tional effort required to determine highly precise confidence
intervals with sampling methods, we determined the “true”
confidence interval bound by choosing the widest confidence
interval bound obtained by either of the tested methods pro-
vided it was admissible, i.e. �(θmax) ≥ �∗ up to a permissible
error of 0.001.

We considered an algorithm successful if (1) the returned
result was within a±5% range of the true confidence interval
bound or had an error below 0.001, and (2) the algorithm
reported convergence. That is, to be deemed successful, an
algorithm had to both return the correct result and also claim
that it found the correct solution. The latter constraint ensures
that if none of the algorithms converges successfully, even
the one with the best result is not considered successful.

As many of the tested methods rely on general optimizers
without specific routines to identify situations with diver-
gent solutions, we considered parameters with confidence
interval bounds exceeding [−1000, 1000] in the transformed
parameter space as unbounded. Consequently, all algorithms

123

38 Page 12 of 17 Statistics and Computing (2021) 31 :38

returning a larger confidence interval were considered suc-
cessful.

We limited the runtime of all methods except the pre-
implemented optimizers by introducing a step limit of 200.
If convergence was not reached within this number of steps,
the algorithms were viewed unsuccessful except for the case
with inestimable parameters.

To test whether some methods tend to return misleading
results, we determined the mean absolute error between the
returned and the true confidence interval bounds when algo-
rithms reported success. As this quantity can be dominated
by outliers, we also determined the mean of all errors below
10 and the frequency of errors beyond 10, below called “large
errors”.

We measured the computational speed of the different
methods by recording the number of function evaluations
required until termination. This provides us with precise
benchmark results independent of hardware and imple-
mentation details. To display a potential trade-off between
robustness (success rate) and speed (number of function eval-
uations), we did not consider cases inwhich convergencewas
not reached. Thatway, internal stopping criteria did not affect
the results.

The specific advantage of some optimization algorithms is
in not requiring knowledge of the Hessian matrix. As com-
puting the Hessian is necessary for RVM and may reduce
the algorithm’s performance compared to other methods,
we included the number of function evaluations required to
determine the Hessian and the gradient in the recorded count
of function evaluations. We computed gradients and Hessian
matrices with a complex step method (Lai et al. 2005) imple-
mented in the Python package numdifftools (Brodtkorb and
D’Errico 2019).

3.5 Results

To provide an impression of how RVM acts in practice, we
plotted the trajectory of RVM along with ancillary function
evaluations for one of the benchmark models in Fig. 3. It is
visible that the algorithm stays on the “ridge” of the likeli-
hood surface even if the admissible region is strongly curved.

A summary of the results for the histone H1.2 model is
given inTable 2. The algorithmsRVM,grid search, andbisec-
tion successfully identified all confidence interval bounds up
to the desired precision.Out of these algorithms, the bisection
method was the most efficient with less than 80,000 required
likelihood evaluations, followed by RVM with almost three
times as many likelihood evaluations. The binary search and
the method by Neale and Miller failed to identify 1 and 2
interval bounds, respectively. The latter, requiring little more
than 70,000 likelihood evaluations, was the most efficient
method with more than 10 out of 12 correctly identified
confidence interval bounds. The constrained maximization

Table 2 Success and efficiency of the tested methods for the histone
H1.2 model

Method Successes Likelihood evaluations

RVM 12 (100%) 214,818

VM 1 (8%) 199,556

Grid search 12 (100%) 1,527,067

Bisection 12 (100%) 75,696

Binary search 11 (92%) 399,680

Neale–Miller 10 (83%) 73,727

Constr. max. 7 (58%) 71,993

Wald 0 (0%) 0

“Successes” refers to the number of confidence interval bounds for
which the algorithms returned resultswithin a±5% tolerance around the
correct values, respectively. Note that Wald’s method does not require
any likelihood evaluations if the observed information matrix is known

algorithm identified only 7 bounds correctly; VM andWald’s
method had very low successwith 1 and 0 correctly identified
bounds, respectively. The specific confidence interval bounds
computed via the methods can be found in Supplementary
Appendix C.

For the benchmark problems, the best results were often
obtained via RVM (see Fig. 4). In all considered scenarios,
RVMwas the algorithm with the highest success rate, which
never fell below 90% (second best: binary search, 52%). In
scenarios with small data sets, the success rate of RVM was
up to 37 percent points higher than that of any other method.
At the same time, RVMwas among the fastest algorithms. In
scenarios with large data sets, RVM often converged within
three iterations. Furthermore, RVMwas quick in the 3 param-
eter model, in which the Hessian matrix is easy to compute.
In the scenario with transformed covariates and 11 param-
eters, RVM required about three times as many likelihood
evaluations as the fastest algorithm but had a more than 56%
higher success rate. The error in the results returned by RVM
was consistently low compared to other methods. The pro-
portion of large errors was always below 1%, and the mean
error excluding these outliers never exceeded 0.05.

The algorithms that require repeated evaluations of the
profile likelihood function performed second best in terms of
the success rate. Except for the GLMwith 50 data points, the
binary search, the grid search, and the bisection method con-
sistently had success rates above 70%, and the success rate
increased with the size of the considered data set. However,
these algorithms also requiredmore function evaluations than
other methods. In fact, the grid search was more than 5
times slower than any other algorithm. The binary search
was slightly less efficient than the bisection method, which
exploits the approximately quadratic shape of the profile
likelihood function if many data are available. In scenar-
ios with large data sets, the bisection method was among

123

Statistics and Computing (2021) 31 :38 Page 13 of 17 38

(a) (b) (c)

Fig. 3 Likelihood surface of the 3-parameter benchmark model with
different data set sizes N . As N increases, the confidence region
becomes smaller and closer to an elliptic shape. The orange dots depict
the accepted (large dots) and rejected (small dots) steps of RVM search-
ing for a confidence interval for β1. RVM follows the ridge of the

likelihood surface. The red dot shows the location of the MLE θ̂ . The
background color depicts the respective maximal log-likelihood for the
given α1 and β1 ranging from ≤ �̂ − 50 (dark blue) to �̂ (yellow). The
solid blue line denotes the target log-likelihood �∗ for a 95% confidence
interval. a N = 500; b N = 1000; c N = 10,000

the most efficient algorithms. The errors of the three root
finding methods decreased the more data became available
to fit the models. However, while the binary search had a
consistently low error, both the grid search and the bisection
method were more prone to large errors than all other tested
methods.

The algorithms developed from the constrained maxi-
mization perspective (the method by Neale and Miller and
direct constrained maximization) had success rates ranging
between 45% and 85% in problems with transformed covari-
ates. In the GLM scenario, the success rate was smaller with
50 data points and higher with more data. The constrained
maximization procedure was slightly more successful than
the method by Neale and Miller (1997). Both methods
required relatively few function evaluations, but direct con-
strained maximization performed better. Both methods were
less prone to large errors than the grid search and the bisection
method. However, the outlier-reduced error was on average
more than twice as large than with any other method except
RVM (Neale and Miller: 0.16, constrained maximum 0.09,
RVM: 0.07).

The success of the algorithm VM depended highly
on the properties of the likelihood function. In scenar-
ios with few data and transformed covariates, VM had
very low success rates (as low as 10%). When more data
were added, VM became as successful as the method
by Neale and Miller and direct constrained maximization.
VM was highly efficient whenever results were obtained
successfully. Similar to the success rate, the mean error
of VM decreased strongly as more data were consid-
ered.

Wald’s method had very low success rates and large errors
except for the GLM with large data sets. In the models with

transformed covariates, Wald’s method never had a success
rate above 17%.

4 Discussion

We presented an algorithm that determines the end points
of profile likelihood confidence intervals both of parame-
ters and functions of parameters with high robustness and
efficiency. We tested the algorithm on a dynamical system
fitted to empirical data and on benchmark problems varying
in parameter number, size of the data set, and complexity of
the likelihood function. In the tests, our algorithm RVMwas
more robust than any other considered method. At the same
time, RVMwas among the fastest algorithms in most scenar-
ios. This is remarkable, because there is typically a trade-off
between robustness and computational speed of optimiza-
tion algorithms. RVM achieves this result by exploiting the
approximately quadratic form of the log-likelihood surface
in “benign” cases while maintaining high robustness with the
trust-region approach. Consequently, RVMnaturally extends
the algorithm VM (Venzon and Moolgavkar 1988), which
appeared to be highly efficient but lacking robustness in our
tests.

Surprisingly, RVM turned out to be even more robust than
methods based on repeated evaluations of the profile likeli-
hood. For the bisection method and the binary search, this
may be due to failures of internal optimization routines, as
initial guesses far from the solution can hinder accurate con-
vergence. The grid search method, in turn, was often aborted
in the benchmark scenarios due to the limited step size, which
precluded the method from identifying confidence bounds
farther than 40 units away from the respective MLE. This,

123

38 Page 14 of 17 Statistics and Computing (2021) 31 :38

3 parameters,

transformed covariates

11 parameters, transformed

covariates

11 parameters, GLM

Su
cc

es
s

ra
te

M
ea

n
er

ro
r

Fu
nc

ti
on

ev
al

ua
ti
on

s

Size of the data set Size of the data set Size of the data set

Fig. 4 Benchmark results. The success rate, the mean error, and the
number of function evaluations are plotted against the size of the data
set for the 3 parameter and the 11 parameter model with transformed
covariates and for the 11 parameter GLM. Throughout the simulations,
our algorithm RVM had the highest success rate. At the same time,
RVM had a low mean error and required only few likelihood function

evaluations compared to the considered alternative methods. The local
minimum in the success rate for the 3 parameter model at N = 1000 is
caused by the difficulty to compute confidence intervals for parameters
that are on the verge of being estimable. The parameter values used to
generate the Figures are given in Supplementary Appendix B

however, does not explain the comparatively high error in the
results of the grid search, as only successful runs were con-
sidered. We therefore hypothesize that internal optimization
issues were responsible for some failures.

As expected, the algorithms that searched for the confi-
dence interval end points directly were more efficient but
less robust than algorithms that repeatedly evaluate the
profile likelihood. Remarkably, a “standard” algorithm for
constrained optimization performed slightly better in the
benchmark problems than an unconstrained optimizer oper-
ating on the modified target function suggested by Neale and
Miller (1997). This indicates that the approximation intro-
duced byNeale andMiller (1997)might not be necessary and
could even be of disadvantage. For the histone H1.2 model,

however, the method by Neale and Miller (1997) provided
more accurate results than simple constrained maximization.

All methods implemented in this study (except RVM and
VM) rely on general optimizers. Consequently, the perfor-
mance of these methods depends on the chosen optimizers
both in terms of computational speed and robustness. Careful
adjustment of optimization parameters might make some of
the implemented algorithms more efficient and thus more
competitive in benchmark tests. Though we attempted to
reduce potential bias by applying a variety of different meth-
ods, an exhaustive test of optimization routines was beyond
the scope of this study. Nonetheless, the consistently good
performance of RVM throughout our benchmark tests sug-
gests that RVM is a good choice in many applications.

123

Statistics and Computing (2021) 31 :38 Page 15 of 17 38

Though RVM performed well in our tests, there are
instances in which the algorithm is not applicable or suf-
ficiently efficient. This are scenarios in which (1) the
log-likelihood cannot be computed directly, (2) the Hessian
matrix of the log-likelihood function is hard to compute, (3)
the dimension of the parameter space is very large, or (4)
there are multiple points in the parameter space in which
problem (4) is solved locally. Below, we briefly discuss each
of these limitations.

1. In hierarchical models, the likelihood function may not
be known. As RVM needs to evaluate the log-likelihood,
its gradient, and its Hessian matrix, the algorithm is not
applicable in these instances. Consequently, sampling-
based methods, such as parametric bootstrap (Efron
1981), Monte Carlo methods (Buckland 1984), or data
cloning (Ponciano et al. 2009) may then be the only fea-
sible method to determine confidence intervals.

2. Especially in problems with a large parameter space, it
is computationally expensive to compute the Hessian
matrix with finite difference methods, as the number
of function calls increases in quadratic order with the
length of the parameter vector. Though alternative dif-
ferentiation methods, such as analytical or automatic
differentiation (Griewank 1989), are often applicable,
there may be some instances in which finite difference
methods are the only feasible alternative. In these scenar-
ios, optimization routines that do not require knowledge
of the Hessian matrix may be faster than RVM. However,
higher computational speed may come with decreased
robustness, and sampling-based methods might be the
only remaining option if application of RVM is infeasi-
ble. Furthermore, libraries for automatic differentiation
are widely available and easy to use (e.g. Albertsen et al.
2015), making RVM applicable to complex models (see
Fischer et al. 2020, for such an application of RVM).

3. If the parameter space has a very high dimension (exceed-
ing 1000), internal routines, such as inversion of the
Hessian matrix, may become the dominant factor deter-
mining the speed of RVM. Though it may be possible
in future to make RVM more efficient, sampling-based
methods or algorithms that do not use the Hessian matrix
may be better suited in these scenarios.

4. RVM as well as all other methods implemented in this
study are local optimization algorithms. Therefore, the
algorithms may converge to wrong results if maximiza-
tion problem (4) has multiple local solutions. This is in
particular the case if the confidence set {θ0: �PL(θ0) ≥ �∗}
is not connected and thus no interval. RVM reduces the
issue of local extreme points by choosing steps carefully
and ensuring that the point of convergence is indeed a
maximum. This contrasts with VM, which could con-
verge to the wrong confidence interval end point (e.g.

maximum instead of minimum) if the initial guesses are
not chosen with care. Nonetheless, stochastic optimiza-
tion routines, such as genetic algorithms (Akrami et al.
2010), and sampling methods may be better suited if a
local search is insufficient.

Despite these caveats, RVM is applicable to a broad
class of systems. In models containing more parameters than
required, such as the histone H1.2 model considered in this
study, Wald’s method does often not return useful results
even though the results might be of scientific interest. For
the histone H1.2 model, we were able to identify confi-
dence intervals without choosing any of the reduced models
with constrained parameters. The resulting confidence inter-
vals facilitate model interpretation on a more general level
than confidence intervals obtained after constraining some
parameters. Though the bisection method was more efficient
than RVM in the histone H1.2 example, bisection was sig-
nificantly less performant in the other, broader classes of
benchmark problems we considered.

Our tests showed that commonly used methods, such
as VM or grid search techniques, can break down or be
highly inefficient in applications—especially when ines-
timable parameters are present.Optimization failures are also
commonly observed if not enough data are available to make
themodel locally approximately normal (Ren andXia 2019).
RVMis a particularly valuable tool in these instances. IfRVM
does not converge in time, the tuning parameters (Table 1)
may be adjusted to achieve more careful step choices. Con-
vergence issues may be caused by imprecise gradient and
Hessian approximations or occur if the likelihood function
is sensitive to the parameter of interest even though its confi-
dence interval is wide. If RVM and comparable methods do
not yield satisfactory results, alternative approaches, such as
sampling-based methods, may need to be used.

5 Conclusion

We developed and presented an algorithm to determine pro-
file likelihood confidence intervals. In contrast to many
earlier methods, our algorithm is robust in scenarios in which
lack of data or a complicated likelihood function make it
difficult to find the bounds of profile likelihood confidence
intervals. In particular, our methods is applicable in instances
in which parameters are not estimable and in cases in which
the likelihood function has strong nonlinearities. At the same
time, ourmethod efficiently exploits the local asymptotic nor-
mality of models if enough data are available.

We tested our method on an empirical dataset and bench-
mark problems with different difficulty. Throughout these
problem sets, our method was the most robust while also
being among the fastest algorithms.We therefore believe that

123

38 Page 16 of 17 Statistics and Computing (2021) 31 :38

RVM can be helpful to researchers and modelers across dis-
ciplines.

Acknowledgements The authors would like to thank Carlos Contreras
for his assistancewith the histoneH1.2model and data set. Furthermore,
the authors would like to give thanks to the members of the Lewis
Research Group at the University of Alberta for helpful feedback and
discussions.

Author contributions Samuel M. Fischer and Mark A. Lewis jointly
conceived the project; Samuel M. Fischer conceived the algorithm,
conducted the mathematical analysis, implemented the algorithm, and
wrote the manuscript. Mark A. Lewis revised the manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Code availability A Python implementation of the described algorithm
and the test procedures can be retrieved from the python package index
as package ci-rvm (see https://pypi.org/project/ci-rvm).

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Akrami, Y., Scott, P., Edsjö, J., Conrad, J., Bergström, L.: A profile like-
lihood analysis of the constrainedMSSMwith genetic algorithms.
J. High Energy Phys. 2010(4), 57 (2010)

Albertsen, C.M.,Whoriskey,K.,Yurkowski,D.,Nielsen,A., Flemming,
J.M.: Fast fitting of non-Gaussian state-space models to animal
movement data via Template Model Builder. Ecology 96(10),
2598–2604 (2015)

Brodtkorb, P.A., D’Errico, J.: numdifftools 0.9.39. Retrieved from
https://github.com/pbrod/numdifftools (2019)

Buckland, S.T.: Monte Carlo confidence intervals. Biometrics 40(3),
811 (1984)

Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS-
SIAM series on optimization. Society for Industrial and Applied
Mathematics, Philadelphia (2000)

Contreras, C., Villasana, M., Hendzel, M.J., Carrero, G.: Using a model
comparison approach to describe the assembly pathway for histone
H1. PLOS ONE 13(1), e0191562 (2018)

Cook, R.D., Weisberg, S.: Confidence curves in nonlinear regression.
J. Am. Stat. Assoc. 85(410), 544–551 (1990)

Cox, D.R., Snell, E.J.: Analysis of Binary Data. Number 32 in Mono-
graphs on Statistics and Applied Probability, 2nd edn. Routledge,
Boca Raton (1989)

DiCiccio, T.J., Tibshirani, R.: On the Implementation of Profile Like-
lihood Methods. Technical report, University of Toronto, Depart-
ment of Statistics (1991)

Efron, B.: Nonparametric standard errors and confidence intervals. Can.
J. Stat. 9(2), 139–158 (1981)

Eubank, R.L.,Webster, J.T.: The singular-value decomposition as a tool
for solving estimability problems. Am. Stat. 39(1), 64 (1985)

Fischer, S.M., Beck,M., Herborg, L.-M., Lewis,M.A.: A hybrid gravity
and route choice model to assess vector traffic in large-scale road
networks. R. Soc. Open Sci., 1–26 (2020)

Gardner, W., Mulvey, E.P., Shaw, E.C.: Regression analyses of counts
and rates: Poisson, overdispersed Poisson, and negative binomial
models. Psychol. Bull. 118(3), 392–404 (1995)

Gimenez, O., Choquet, R., Lamor, L., Scofield, P., Fletcher, D.,
Lebreton, J.-D., Pradel, R.: Efficient profile-likelihood confidence
intervals for capture-recapture models. J. Agric. Biol. Environ.
Stat. 10(2), 184–196 (2005)

Griewank, A.: On automatic differentiation. Math. Programm. Recent
Dev. Appl. 6(6), 83–107 (1989)

Jones, E., Oliphant, T., Peterson, P.: SciPy: open source scientific tools
for Python. Retrieved from (2001). https://scipy.org/

Kraft, D.: A Software Package for Sequential Quadratic Programming.
Technical Report DFVLR-FB 88-28, DLR German Aerospace
Center—Institute for Flight Mechanics, Köln (1988)

Lai, K.-L., Crassidis, J., Cheng, Y., Kim, J.: New complex-step deriva-
tive approximations with application to second-order Kalman
filtering. In: AIAA Guidance, Navigation, and Control Confer-
ence and Exhibit, San Francisco, California. American Institute of
Aeronautics and Astronautics (2005)

Lalee, M., Nocedal, J., Plantenga, T.: On the implementation of an
algorithm for large-scale equality constrained optimization. SIAM
J. Optim. 8(3), 682–706 (1998)

Moerbeek,M., Piersma, A.H., Slob,W.: A comparison of threemethods
for calculating confidence intervals for the benchmark dose. Risk
Anal. 24(1), 31–40 (2004)

Neale,M.C.,Miller,M.B.: The use of likelihood-based confidence inter-
vals in genetic models. Behav. Genet. 27(2), 113–120 (1997)

Nocedal, J., Wright, S.J.: Numerical Optimization. Springer series in
operations research, 2nd edn. Springer, New York (2006)

Pek, J., Wu, H.: Profile likelihood-based confidence intervals and
regions for structural equation models. Psychometrika 80(4),
1123–1145 (2015)

Penrose, R.: A generalized inverse for matrices. Math. Proc. Camb.
Philos. Soc. 51(3), 406–413 (1955)

Ponciano, J.M., Taper,M.L.,Dennis,B., Lele, S.R.:Hierarchicalmodels
in ecology: confidence intervals, hypothesis testing, and model
selection using data cloning. Ecology 90(2), 356–362 (2009)

Raghuram, N., Carrero, G., Stasevich, T.J., McNally, J.G., Th’ng, J.,
Hendzel, M.J.: Core histone hyperacetylation impacts cooperative
behavior and high-affinity binding of histone H1 to chromatin.
Biochemistry 49(21), 4420–4431 (2010)

Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estima-
tion for differential equations: a generalized smoothing approach:
parameter estimation for differential equations. J. R. Stat. Soc. Ser.
B (Stat. Methodol.) 69(5), 741–796 (2007)

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Kling-
müller, U., Timmer, J.: Structural and practical identifiability
analysis of partially observed dynamical models by exploiting the
profile likelihood. Bioinformatics 25(15), 1923–1929 (2009)

Ren, X., Xia, J.: An algorithm for computing profile likelihood based
pointwise confidence intervals for nonlinear dose-response mod-
els. PLOS ONE 14(1), e0210953 (2019)

123

https://pypi.org/project/ci-rvm
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/pbrod/numdifftools
https://scipy.org/

Statistics and Computing (2021) 31 :38 Page 17 of 17 38

Stryhn, H., Christensen, J.: Confidence Intervals by the Profile Likeli-
hoodMethod, withApplications inVeterinary Epidemiology. Vina
del Mar (2003)

Venzon, D.J., Moolgavkar, S.H.: A method for computing profile-
likelihood-based confidence intervals. Appl. Stat. 37(1), 87 (1988)

Viallefont, A., Lebreton, J.-D., Reboulet, A.-M., Gory, G.: Parameter
identifiability and model selection in capture-recapture models: a
numerical approach. Biometr. J. J. Math. Methods Biosci. 40(3),
313–325 (1998)

Wu, H., Neale, M.C.: Adjusted confidence intervals for a bounded
parameter. Behav. Genet. 42(6), 886–898 (2012)

Yuan,Y.-X.:Recent advances in trust region algorithms.Math. Program.
151(1), 249–281 (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A robust and efficient algorithm to find profile likelihood confidence intervals
	Abstract
	1 Introduction
	1.1 Profile likelihood confidence intervals
	1.2 Existing approaches
	1.3 Our contributions

	2 Algorithm
	2.1 Basic ideas
	2.2 The trust region
	2.3 Linearly dependent parameters
	2.4 Solving unbounded subproblems
	2.5 Step choice for the parameter of interest
	2.5.1 Case 1: decreasing profile likelihood
	2.5.2 Case 2: increasing profile likelihood
	2.5.3 Case 3: constant profile likelihood
	2.5.4 Profile likelihood below the threshold

	2.6 Identifying inestimable parameters
	2.7 Discontinuities
	2.8 Suitable parameters and distance measures
	2.9 Confidence intervals for functions of parameters

	3 Tests
	3.1 Methods implemented for comparison
	3.2 Test problem with empirical data set
	3.3 Benchmark problems with simulated data
	3.4 Benchmark procedure
	3.5 Results

	4 Discussion
	5 Conclusion
	Acknowledgements
	References

