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Abstract

In the process industry, process variables are continuously monitored to ensure safety,

reliability and efficiency of plant operations. Due to the advancement of the modern

communication and computer technology, it is now possible to incorporate alarms

to every process variable at little or no cost. As a result, operators are flooded

with too many alarms beyond their capacity to respond accordingly. Many of these

alarms are false or nuisance alarms. Therefore an efficient and dependable alarm

system is needed for greater safety and productivity. Motivated by this, this thesis

focuses on the application of a class of nonlinear filters, namely rank order filters,

on process data and develops quantitative relationship among filter parameters and

alarm performance indices.

In industries, filtering is a widely used alarm design technique. Moving average

filters are most commonly applied filters in the industry because of their simplicity

and ease of implementation. However, nonlinear filters have not been able to draw

industrial attention due to nonlinearity and unknown relationship with alarm per-

formance indices. Hence, we investigated the applicability of rank order filters and

compared the performance with moving average filters under different input distri-

butions. We established analytical relationships between filter order with different

ranks and detection delay. Then we proposed a method to design filter order meeting
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the performance requirements.

We obtained significant improvements in terms of reducing false and missed alarm

rates and detection delay by applying rank order filters. The performance curve of a

rank order filter lies between the performance curves of the moving average filter and

the general optimal filter with the corresponding order. In the end, all the theoretical

development and design techniques have been validated through numerical simulation

and some industrial case study.
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Chapter 1

Introduction

1.1 Motivation and Background

In any industrial setup, smooth and uninterrupted operation is desired to gain maxi-

mum productivity and profitability. To ensure this, modern industries are monitored

by hundreds or thousands of sensors. These sensors are installed in different locations

throughout the plant to monitor the actual condition. There are communications

and interactions going on among these sensors as well. When the process operation

is under normal operating conditions, process operators take routine actions. The

emergence of alarm systems in process industry comes from the occurrence of faults

or abnormality. The message that abnormality has occurred in some part of the plant

is conveyed by alarms on the operator panel. Operators then take necessary control

actions promptly to ensure cost efficiency, product quality, and safety of the work-

ers and plants. Failure to take timely actions may result in serious consequences,

even human injuries and casualties. So, alarm systems play a critical role in process

industry.
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2

The International Society of Automation (ISA) provides standards for process

industry. In 2008, an online survey conducted by ISA indicated that “what automa-

tion industry observers and practitioners felt that near-term trends were going to be

showed that alarm management and security scored at 14%, one of the top 5 tech-

nologies that the facility would rely on” [64]. In process industry, alarms are defined

in [13]: “an alarm is some signal designed to alert, inform, guide or confirm, and an

alarm system is a system for generating and processing alarms and presenting them

to users”. Detailed description of an alarm system is provided in ISA 18.2 Standards

and EEMUA guidelines. According to [38], basic parts of an alarm system may in-

clude an alarm generating part in the basic process control system (BPCS) and safety

instrumented system (SIS), the alarm log, and a human machine interface (HMI) for

communicating with operator. Alarm historian is also important to store the alarm

log files. In Figure 1.1, basic parts of an alarm system is shown.

Due to modern day Distributed Control Systems (DCS) and communication tech-

nology, it has become very easy to access thousands of process variables and support

interaction among them. It has been found that, faults generated at one process

variable propagate through the plant and affects other process variables. As a result,

cascaded faults occur and may end up with plant upset. According to the Abnor-

mal Situation Monitoring (ASM) Consortium [35], petrochemical plants on average

suffer a major accident once every three years. Moreover, the US petrochemical in-

dustry alone loses 10-20 billion dollars annually because of abnormalities related to

equipment failure, environmental damage and human casualties [40].

DCS systems have made it even easier to configure alarms than previous hard

wired systems at little or no cost. As a result, alarms are configured at almost every

point in a plant without proper analysis and rationalization. Too many alarms make
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Figure 1.1: Alarm system dataflow [38]

the alarm system complex and operators experience difficulties during abnormal situ-

ations. Most of these alarms are false or nuisance alarms, generated due to interaction

and fault propagation. Operators face floods of alarms and cannot respond promptly

and effectively. This situation is defined as an alarm flood. According to EEMUA

191 [26], under normal conditions, an operator needs about 10 minutes to process and

respond to an alarm, so an operator should not receive more than 6 alarms per hour.

Alarm performance metrics suggested by EEMUA are given in Table 1.1. From the

table, it is visible that there is a large gap between standard and observed industrial

counts. There are a lot of room for improvement of alarm performance to comply

with the standards.

Fault detection and identification (FDI) is closely related to alarm annunciation.

In alarm systems, a fault is detected at first then operator is informed about the oc-
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EEMUA Oil and Gas Petrochemical Power

average alarms/hour ≤ 6 36 54 48

average standing alarms 9 50 100 65

peak alarms/hour 60 1320 1080 2100

distribution % (low/med/high) 80/15/5 25/40/35 25/40/35 24/40/35

Table 1.1: EEMUA benchmark and average values received in industries

currence of fault by raising an alarm. There are two approaches in FDI: model based

and signal based [1]. Due to mathematical complexity and implementation issues

in DCS, the signal based approach is widely accepted in industry. In signal based

methods, alarm system design can be classified in two ways: univariate and multi-

variate. In univariate design, alarm threshold and processing techniques (deadband,

delay timer, filter etc.) are configured for individual process variable [24,39]. In case

of multivariate design, alarms are designed for a latent variable which is usually a

linear combination of several process variables. Several multivariate design of alarm

rationalization have been discussed in [7, 44, 54, 68]. In this thesis, we focus on the

univariate alarm design approach for selecting filters that balance false alarm rate,

missed alarm rate and detection delay.

In process industry, filtering is an accepted method for suppressing noise from

the process data [17]. In signal based alarm design methods, each process variable is

compared with an alarm threshold which depends on process specification, produc-

tivity and operating conditions [41]. In process plants, noises are present in process

variables during regular operation. Such noise propagates and affects other variables

as well. The process variables operating close to the alarm threshold may cross and

come below the threshold within a very short time and keep doing that throughout

the operation of the plant. This results in unwanted alarm annunciation to the oper-

ators repeatedly. If hundreds of process variables are configured this way, thousands
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of alarms will be raised and cleared within a short time. Due to this continuous on

and off mode, these alarms are referred to as chattering alarms. It has been observed

that chattering alarms are one of the main contributors for alarm floods. By applying

filters we can reduce noise which in turn reduce chattering alarms and alarm floods.

In industry, the performance measurement of different alarm processing techniques

(deadband, delay timer, filter) is an important concern. Due to poor design of alarm

threshold and improper filtering of process data, false and missed alarms may be

annunciated. On the other hand, applying filter may result in delay in the activation

of alarms. The false alarm rate (FAR) and the missed alarm rate (MAR) quan-

tify alarm accuracy; and the expected detection delay (EDD), which is the average

time required to activate an alarm quantifies alarm system latency [40]. The exact

quantitative relationship between performance specifications and design methods is

a comparatively new area of research. This thesis focuses on obtaining quantita-

tive expressions that relate filter parameters to the performance indices. Using these

expressions, a practical alarm system design method is carried on in later chapters.

1.2 Literature Survey

Alarm management has drawn recent attraction in academia as a potential sector for

research due to industrial demand. The complexity in process industries has increased

many folds with the advancement of communication and computer technologies. In-

dustries now try to monitor thousands of process variables to maximize their plant

reliability, efficiency, quality of products and profitability. The negative side of all

these improvements is that, there are hundreds or thousands of configured alarms

and the operators are lost in a sea of information. Several techniques (filters, dead-
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bands and delay timers) have been applied to manage these numerous alarms. In this

section, we review existing and current trends in literature regarding alarm systems

design and performance improvement.

Rank Order Filters

The main topic of this thesis is the application of nonlinear filters in the process in-

dustry. Due to complexity and nonlinearity, these filters were not applied in industry.

Among all the nonlienar filters, a rank order filter is chosen due to two inherent prop-

erties: edge preservation and effective noise attenuation with robustness to impulsive

noise [73]. Preserving edge of signals are very important in image processing and

biomedical signal processing as well. In addition, rank order filters can effectively

suppress impulsive noise in communication systems [43,57]. Median filters, a special

case of rank order filters, have been proven to be optimal filters for biexponential

noise like moving average filters for Gaussian noise [17]. Rank order filters are the

simplest form of nonlinear filters and easily implementable in DCS systems without

any computational burden. For a selected window, a rank order filter organizes the

data according to their rank and produces, e.g., the ith maximum, as output specified

by design. These filters only use rank information of the input data which makes it

implementable. Two widely applied rank order filters are maximum and minimum

filters which output the maximum and minimum values in the window respectively.

In image processing, they are also known as erosion and dilation as well [28, 47, 60].

Since frequency and impulse responses are not relevant in rank order filters, the prop-

erties of such nonlinear filters are characterized statistically [73]. Different types of

rank order filters have been developed depending on applications. Some of them

are FIR-median hybrid (FMH) filters [32, 37, 53], log-likelihood (Ll) filters [46, 56],
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weighted median (WM) and weighted order statistics (WOS) filters [11,15,33,69,71]

and stack filters [21, 66, 72, 74]. In this work, we mainly focus on rank order filters

with different maximum as output and their application to alarm systems [73].

Alarm Design and Filtering

The most popular method in alarm system design is the univariate design method.

Generally, a process variable is continuously monitored and compared with a threshold

in a signal-processing based method. However, an incorrect setting of the alarm

threshold may result in false, missed and redundant alarms and may cause delay in

alarm activation [5,6,8,40,41]. A more conventional approach in alarm design is listing

down top ten alarms and setting a 3σ limit on each process variable [40]. In [41,42], a

general framework for univariate alarm design is introduced. The performance of the

alarm system is evaluated in terms of three metrics, namely, false alarm rate (FAR),

missed alarm rate (MAR) and expected detection delay (EDD). Receiver Operating

Characteristics (ROC) curve is introduced to visualize the trade-off on FAR and MAR

with respect to the alarm threshold. In [41], a threshold design process is presented

for different signal processing techniques (filter, delay timer and deadband) based

on ROC curves by balancing FAR and MAR. Detection delay for a moving average

filter has been formulated in [4]. A 4-step alarm design method is presented using

moving average filters and meeting performance requirements on FAR, MAR and

EDD. In [17], authors designed optimal filters and proposed differential evolution

(DE) based algorithm to estimate the PDF of the filtered output. They have also

derived sufficient condition for a moving average filter to be the optimal linear filter.
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Delay in Alarm Activation

The success of a fault detection method depends on how fast it can detect the abrupt

change in the process [48]. Estimating the detection delay is very important for alarm

system design. A designer is supposed to have a clear idea about detection delay

for activating an alarm depending on a particular design scheme. This idea allows

the designer to take preventive measures for compensating activation delay. The

CUSUM type algorithm has been discussed as a mean of quantifying detection delay

in [12, 75]. In [75], the probability distribution for detection delay and time between

false alarms have been analytically and numerically proven. Analytical probability

distribution for sequential fault detection schemes (CUSUM and GLR based methods)

have been discussed in [70]. In [5,6] detection delays caused by simple limit checking,

delay timers, deadbands and filters have been formulated. By using an estimate of

the detection delay, a step-by-step alarm design method is also presented here by

balancing false and missed alarm rates. The ISA 18.2 Standards [38] and EEMUA

191 publication [26] described alarm limits, delay timers and deadbands for alarm

design for process industry for the first time. Wald’s test [12,61] discusses sequential

hypothesis testing for detection of change. Above all, with expert process knowledge,

fault occurrence and point of change can easily be identified using historical process

data [2, 3].

Chattering and Nuisance Alarms

Chattering and repeating alarms are the most common form of nuisance alarms in

industry. When several alarms are raised in a short period of time for a single process

variable, then it is termed as chattering alarms [36]. In [51], a chattering index is
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calculated on the basis of statistical properties of the process variable. A chattering

index based on run length distribution has been proposed in [45]. A modified chatter-

ing index has also been introduced in [62,63] where instead of run length, total data

length is considered. Filters, delay timers and deadbands [26, 34, 38, 41] are effective

methods to reduce chattering and repeating alarms but there are some trade-offs in

each method [40, 41]. Application of deadband in reducing chattering alarms is dis-

cussed in [52] where the authors mentioned that for a fixed alarm threshold, increasing

deadband is less effective in reducing alarm chatter. In [63], an online method for

removing chattering alarms has been proposed based on alarm duration and alarm

interval. Application of filters in reducing chattering alarms has been proven effective

in [4]. Filters reduce noise which in turn reduce chattering alarms for a single process

variable. At the same time it introduces delay in alarm activation. In [4,67] detection

delay for a moving average filter has been formulated; and the relation of detection

delay with filter order and alarm threshold has also been established in [4].

Alarm Flood and Causality Analysis

An alarm flood is a serious issue in today’s process industry. It is defined as a situ-

ation where more than 10 alarms per 10 minutes arrive at the operators panel [26].

Indecision and delay in identifying actions to be taken often lead to emergency plant

shutdown or major plant upset. Recently, similarity investigation and pattern anal-

ysis of alarm sequences have drawn attention to academia with the application of

machine learning and artificial intelligence techniques. In [7], a nonlinear time align-

ment method named dynamic time warping (DTW) has been discussed to group time

stamped alarm floods. According to [7], root cause analysis of historical alarm floods

can be used to take necessary actions in advance to prevent plant upset. Applica-
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tion of the Smith Waterman algorithm in alarm pattern sequencing and similarity

measurement has been discussed in [18]. The algorithm is modified for application

to alarm systems by including time-stamp information in calculating the similarity

index. [27] proposed an automatic alarm data analyzer (AADA) algorithm consider-

ing causal dependencies in alarm data. A high density alarm plot is a handy tool to

visualize top bad actors on the same plot and identify alarm floods from the color

density discussed in [9]. Another important visualization tool is the alarm similarity

color map mentioned in [9] where similar and redundant alarms are highlighted. Sev-

eral industrial applications have been presented in [9] to show the usefulness of the

visualization tool. Data driven Granger causality [29] and transfer entropy [25, 29]

have been proposed in [9] to capture process connectivity. Though the results are not

that reliable yet, they can be verified using the P&ID of the plant.

After reviewing literature on alarm system design and existing signal processing

techniques, we find that there is plenty of room for univariate alarm system per-

formance improvement. The scale of improvement varies depending on the specific

industry. Moreover, filtering techniques have not been explored widely since most

optimal filters are nonlinear. This is why, a simplest nonlinear filter, the rank order

filter, has been introduced in this thesis for alarm system design. To the knowledge

of the author, there has been no application of the filter in alarm systems. In this

thesis an attempt has been made to formulate performance metrics for rank order

filters and apply on industrial data to show the effectiveness of the proposed filter.
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1.3 Thesis Contributions

The research on performance indices of alarm systems and filter design is relatively a

new area. As a result, the relation among performance indices and filter parameters

is not well known. The main goal of this thesis is to develop quantitative relationship

between filter parameters and performance indices for alarm systems. So, the major

contributions in this thesis are enlisted here:

1. Visualize the performance of rank order filters in terms of ROC curves in com-

parison with moving average filters and LLR-based general optimal filters con-

sidering both Gaussian and non-Gaussian distributions.

2. Propose a method to compute the expected detection delay for rank order filters,

and compare with moving average filters with the same window size.

3. Utilize the expected detection delay information in alarm systems design. The

design provided in this thesis balanced the false alarm rate and missed alarm

rate while meeting detection delay requirements.

4. Finally, both simulation and industrial case studies have been demonstrated to

show the application of developed design methods and derived equations.

1.4 Thesis Outline

This thesis has been prepared according to the guidelines from the Faculty of Gradu-

ate Studies and Research (FGSR) at the University of Alberta. The rest of the thesis

is organized as follows.
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In Chapter 2, basics of rank order filters have been discussed. A rank order

filter is a non-linear filter which gives ith maximum value as output from a specific

window. The PDFs of rank order filters with 1st maximum, 1st minimum and median

as outputs have been formulated and verified by Monte-Carlo simulations. Some

data driven tests have also been run on filtered data in order to verify that rank order

filtered data are not i.i.d. (independently and identically distributed).

Chapter 3 is concerned with the accuracy of the univariate alarm design based

on rank order filters. Accuracy of alarms is measured in terms of the false alarm

rate (FAR) and missed alarm rate (MAR). The ROC curve is a visualization plot to

show the trade-off between FAR and MAR. The design of an optimal alarm filter by

minimizing a weighted sum of false and missed alarm rates (probabilities) have been

presented. In this chapter, the performance of a rank order filter with ith maximum as

output has been compared with the moving average filter of the same order in terms

of ROC curves for Gaussian distributed input data. The performance of the rank

order filter is also compared with the optimal alarm filter, the LLR filter, considering

both Gaussian and non-Gaussian distributions. Performance comparison in terms of

ROC curves allow us to visualize the effectiveness of the rank order filter in reducing

false and missed alarm rates.

Chapter 4 focuses on swiftness or latency of alarm activation, namely, detection

delay calculation for rank order filtering. Filtering has been applied widely in the

industry to suppress noise from process data. The only downside of applying filter is

the delay introduced by filters due to processing signals. An attempt has been made

to formulate the detection delay for the rank order filter with ith maximum as output.

Numerical examples have been presented to validate the analytical result.

Chapter 5 includes application of rank order filter design to both simulated and
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industrial data. At first, a step-by-step univariate alarm design method has been

presented to show the application of the proposed method based on simulated data.

Since filtering is only applicable to process data, historical process data from oil-sand

plants have been analysed and the proposed filtering technique has been applied to

show the applicability of the filtering method in designing alarm systems.

Finally, Chapter 6 discusses on conclusion and future work. A summary of work

presented in the thesis is given, and possible scopes for future extension are also

discussed.



Chapter 2

Rank Order Filters

2.1 Introduction to Rank Order Filters

Filtering is a widely accepted method for reducing noise, smoothing the curves and

changing distribution; it is applied in signal and image processing, time series analysis

and process industries [34]. In process industry, with the advancement in distributed

control systems (DCS), it has become much easier to monitor as many process vari-

ables as needed. To maintain normal operations of plants, process variables are

continuously compared with some thresholds also known as alarm limits. When a

variable crosses a limit, an alarm is raised announcing the occurrence of an abnor-

mality. But, the alarms that are generated are not always correct ones, there are

several false or nuisance alarms annunciated, which is due to poor configuration of

the trip point, noise or oscillation in the process variables. For the process variables

operating close to their trip points, a small noise can introduce chattering effect. To

get rid of these situations, filtering has already been employed in process industry [1].

Moving average filters are the most common filters deployed in the industry due

14
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to its easy implementation and relatively better performance. Many variations of the

median filter have also been proven applicable in achieving better performance; these

include recursive medians, weighted medians and per-mutated medians. The most

important characteristics of these filters is the robustness to outliers. Unlike moving

average filters, the outlier would be removed and the rest of the output signals would

be relatively smooth [59].

Median filters are a subclass of rank order filters [22, 23] where the median value

in the window is selected as output. Rank order filters are obtained by putting the ith

largest sample as the output in a window length N . Two specially applied rank order

filters are the minimum and maximum filters where minimum and maximum values

in the window, respectively, are chosen as output [10]. In image processing [58], these

are also mentioned as erosion and dilation filters. Frequency analysis and impulse

response don’t have any meaning in rank order filtering due to non-linearity. Output

distribution properties are the basic descriptor of rank order filters [73]. In the next

sections, mathematical formulation has been developed and verified for the rank order

filters along with statistical property analysis.
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2.2 Mathematical Formulation

Let X1, X2, ..., XN represent a set of i.i.d. random samples. If these samples are

sorted in ascending order such that X(1) ≤ X(2) ≤ ... ≤ X(N), then X(i) represents

the ith order statistic. Rank order (causal) filter of rank i at point n in the output

sequence with window size N [23, 50,73] :

Y (n) = ith largest value in {X(n−N + 1), ..., X(n− 1), X(n)} (2.1)

So, the ith rank selection probability can be denoted by P(Y = X(i)), 1 ≤ i ≤ N and

is the probability that the output Y = X(i). Assume that the input variable X(n) has

PDF fX(t) and CDF FX(t), and the output variable Y (n) has PDF fY i(t) and CDF

FY i(t), (i = 1, ..., N), then the density and distribution functions of the ith ranked

sample respectively are given as follows:

fY i(t) = i

(
N

i

)
FX(t)i−1(1− FX(t))N−ifX(t)

FY i(t) =
N∑
k=i

(
N

k

)
FX(t)k(1− FX(t))N−k (2.2)

Let us assume that Yi are statistics (they are functions of random sample (X1, X2, ...,

XN) and Y1 ≤ Y2 ≤ ... ≤ YN . Unlike the random sample itself, the order statistics

are clearly not independent, for if Yj ≥ y, then Yj+1 ≥ y. Several data driven tests

are run on the filtered data to verify dependency later in this chapter.

Let Y1 ≤ Y2 ≤ ... ≤ YN represent the order statistics from a cumulative dis-

tribution function F (·). The marginal cumulative distribution function of Yα, α =

1, 2, ..., N , can be obtained from [50]:

FY α =
N∑
k=α

(
N

k

)
[F (y)]k[1− F (y)]N−k (2.3)
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In the next section, we validate Eqn.2.2 considering different distributions for

input data. We try to select different samples from the window and show that the

simulated result is following the analytical one.

2.3 Verification of PDFs

A rank order filter has two design parameters: filter order, N , and ordered position

in the window, i [73]. Though any ith ranked maximum value in the window can

be selected, for simplicity, only the 1st maximum, 1st minimum and median values

in the selected window are considered here. At first, we have tried to show that the

estimate of the probability density function [31, 55] of the rank order filtered data

matches with that of the corresponding analytic pdf equation given in Eqn.(2.2).

2.3.1 Gaussian input data

For the numeric simulation, normally distributed random data with mean, µn= 0

and variance, σn= 1 has been generated as normal data. Abnormality occurred in

the sense of change in mean and variance. As a result, normally distributed data with

mean, µab=1 and variance, σab= 2 is generated as abnormal segment of the data. Each

normal and abnormal segment has 2000 samples totalling to 4000 samples shown in

Figure 2.1.
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Figure 2.1: Normal and abnormal segment of data

To estimate the distribution of the input raw data and the filtered data, kernel

density based estimation has been applied. For each density estimation 1000 Monte-

Carlo simulations are run. The density estimate of the input signal with the trip

point, ytp is shown in Figure 2.2:

Figure 2.2: PDF of normal and abnormal data
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Through numerical simulation, it has been shown below that for a fixed order, N

with 1st maximum, 1st minimum and median value as output, the estimated densities

of the filtered data match exactly with the corresponding analytical densities in Figure

2.3 (b)-(d).

(a) (b)

(c) (d)

Figure 2.3: (a) PDF estimate of the normal and abnormal data, (b) verification of

PDF with N=7, i=7 (1st maximum), (c) verification of PDF with N=7, i=1 (1st

minimum), (d) verification of PDF with N=7, i=4 (median output)
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We can also visualize the effect of filtering data with different order of the rank

order filter. The main goal of filtering data for alarm design is to reduce noise and

also reduce the overlapping region of the distribution of normal and abnormal data.

In this part, we change filter order with 1st maximum as output and estimate the pdf

of the filtered data. The estimated PDF’s are shown is Figure 2.4.

(a) (b)

(c) (d)

Figure 2.4: (a) Verification of PDF with N=3, i=3, (b) verification of PDF with N=5,

i=5, (c) verification of PDF with N=6, i=6, (d) verification of PDF with N=8, i=8

From the figures above, it is visible that with the increment of filter order, the
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mean of density plot is shifting and the overlapping region under the normal and

abnormal density curves is getting smaller. Hence, the purpose of applying filter is

served. An optimal trip point can be set for each filter order that would give minimum

false and missed alarm rates for the given distribution.

2.3.2 Exponential input data

We now consider exponentially distributed [55] data as an input to the rank order

filter to verify the PDF Eqn.(2.2). Normal data is assumed to be distributed with

mean, βn = 2 and abnormal data is distributed with mean, βab = 4. We filter the

data with a fixed order filter but with ith maximum as output. The filtered PDF is

shown in Figure 2.5 which matches exactly with the analytical PDF.
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(a) (b)

(c) (d)

Figure 2.5: (a) PDF estimate of the normal and abnormal data, (b) verification of

PDF with N=7, i=7 (1st maximum), (c) verification of PDF with N=7, i=1 (1st

minimum), (d) verification of PDF with N=7, i=4 (median output)
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2.3.3 Logistic input data

(a) (b)

(c) (d)

Figure 2.6: (a) PDF estimate of the normal and abnormal data, (b) verification of

PDF with N=7, i=7 (1st maximum), (c) verification of PDF with N=7, i=1 (1st

minimum), (d) verification of PDF with N=7, i=4 (median output)

For this section we use logistic distributed [55] data to validate the PDF Eqn.(2.2).

The parameters for logistic distribution are the mean, µ, and the scaling parameter,

s. So, for normal distribution we assume µn = 0 and sn = 1. For the abnormal

segment of the data, we consider µab = 2 and sab = 2. The input data distribution
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is shown in Figure 2.6(a), whereas the estimated PDFs are verified for a fixed order

filter with different outputs in Figure 2.6(b)-(d).

2.4 I.I.D. Hypothesis

In this section, several data based methods [19,30] have been applied to check whether

the rank order filtered data is independent and identically distributed (i.i.d.) or not.

The advantage of proving i.i.d. data is that it will allow us to use the pre-derived

analytic relationships for calculating false and missed alarm rates. To do so, it is

assumed that we have an i.i.d. time series {x1, x2, ..., xT} as input to the filter.

2.4.1 Correlogram

This is a simple method where autocorrelation is checked for the data under test.

The null hypothesis is assumed that autocorrelation would be zero [30].

H0 : ρk = 0

If we consider the following time series xt ∼ N(0, 1), from the autocorrelation plots, it

is visible that, for the raw data, the correlation is within the interval shown in Figure

2.7 (b). So, the null hypothesis is valid for unfiltered data, i.e., the input raw data

is i.i.d., which is obvious. However, for the filtered data, sample autocorrelation in

Figure 2.8 (b) crosses the interval at lag 1-lag 7, a relevant time lag. Thus, we reject

the i.i.d. hypothesis for the filtered data. From this test result, it can be concluded

that the filtered data is not independently distributed.
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(a)

(b)

Figure 2.7: (a) Raw data, (b) correlogram of raw data

(a)

(b)

Figure 2.8: (a) Rank order filtered data, (b) correlogram of filtered data



26

2.4.2 QQ plot

In statistics, the QQ plot is a graphical method to plot quantiles of two probability

distributions against each other for comparing their distributions. A point (X, Y)

on the plot displays a quantile-quantile plot [20,49] of two samples coming from two

distributions. The plot will be a linear one, if the samples come from the same

distribution. The sample data is displayed with the plot symbol ’+’ in a QQ plot.

A line that joins the first and third quartiles of each distribution is superimposed on

the plot. This line is extrapolated out to the ends of the sample to help evaluate the

linearity of the data.

Figure 2.9: QQ plot of filtered data

The plot in Figure 2.9 shows a linear relationship between two samples which

implies that they come from the same distribution. So, from this plot, it can be
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concluded that the filtered data is identically distributed.

2.4.3 Difference-sign test

The difference sign test is a test for randomness check. It is a non-parametric test [14,

65] which is used to test the null hypothesis that the inputs are values of independent

and identically distributed random variables. We count the number of values of i

such that y(i) > y(i− 1) or y(i− 1) > y(i).

The test statistic can be given as [14]:

S = |{i : Yi > Yi−1| = |{i : (∇Y )i > 0}| (2.4)

ES =
n− 1

2

It can be shown that S ∼ AN(n/2, n/12), where n is the length of the data set.

Reject (at 5% level) the hypothesis that the series is i.i.d. if∣∣∣S − n

2

∣∣∣ > 1.96

√
n

12
(2.5)

or

∣∣S − n
2

∣∣√
n
12

> 1.96

For the input data, the test statistic was found 1.4781 which is less than 1.96. We

fail to reject the null hypothesis. For the filtered data, the test statistic was found

42.3178 which is greater than 1.96. We are convinced to reject the null hypothesis,

i.e., the filtered data is not i.i.d.

From different data based test results, we come to a conclusion that, the rank

order filtered data is not i.i.d. As a result, we can not apply pre-derived equations

for false and missed alarm rate calculation.
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2.5 Summary

In this chapter, basics of rank order filters have been discussed. The density functions

for 1st maximum, 1st minimum and median of the window as outputs have been

simplified and verified for different orders of the filter using numerical simulation and

analytical expressions. Different input distributions for the input data have also been

considered and verified. In the end, different data based methods have been applied to

test whether the rank order filtered data is independently and identically distributed

(i.i.d.) or not. A conclusion is drawn based on these tests that rank order filtered

data is not i.i.d., which matches with statistical inference.



Chapter 3

Performance Evaluation of Rank

Order Filters

3.1 Alarm Performance: FAR and MAR

In industry, the overall performance of alarm systems is evaluated by the average

annunciated alarm rate per operator, peak alarm rates, alarm floods, chattering or

fleeting alarms, and priority distributions [34]. However, in design level, individual

alarm tags play significant roles as a few poorly configured alarm tags may degrade

the overall performance. For this reason, a systematic approach to address individual

tags is more important. If alarms are well-configured at the individual level, the

overall performance of the alarm system improves significantly. In this chapter a

bottom-up approach is followed to improve accuracy of alarm systems [1, 16].

In designing univariate alarm systems, the accuracy of the alarm system depends

on two performance indices, namely, the False Alarm Rate (FAR) and the Missed

Alarm Rate (MAR) [41]. These two quantities can be discussed from the perspective

29
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of a two-class classification problem. If P and N are number of positive and negative

instances with outcomes p (positive) and n (negative) respectively, then there are

four possible outcomes namely, true positive, false positive, false negative, and true

negative. The outcomes are summarized by a 2× 2 confusion matrix (also known as

contingency table) shown in Figure 3.1 [1].

Figure 3.1: Confusion matrix for a two-class classification problem

If both the predicted and the actual outcomes are true (p), then it is a true positive

instance. On the other hand, if the actual one is false (n) and the predicted one is

true, then it is a false positive instance. In alarm systems, the false positive is defined

as the false alarm. So, a false alarm is an alarm that is raised when the process

variable is behaving normally or under normal operating region. The false alarms

may lead to losing the trustworthy of alarm systems due to the so-called “cry wolf”

effect.
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On the other hand, if the predicted outcome is n and the actual outcome is p then

it is a false negative instance. In alarm systems, it is defined as the missed alarm. So,

missed alarms occur when the process variable is behaving abnormally but no alarm

is raised. The designed functionality of alarm systems is severely degraded due to

missed alarms. As shown in the Figure 3.3(a), for a configured high alarm, in the

normal region, any signal lying above the trip point will generate false alarms; and in

the abnormal region, samples lying below the trip point will generate missed alarms.

One of the main goals of a well-designed alarm system is to reduce the false alarm

rate (FAR) and the missed alarm rate (MAR). The higher the accuracy, the lower the

FAR and MAR are. The accuracy of alarm can be well-represented by the receiver

operating characteristics (ROC) curve. This concept of ROC curve is adapted from

signal detection theory and the axes are interchanged for better visualization in alarm

systems [41]. An ROC curve is a plot of the false alarm rate vs the missed alarm rate

as presented in Figure 3.2. If minimizing both false alarm rate and missed alarm rate

is the only objective, then the point closest to the origin on the ROC curve will give

the optimum trip point for which FAR and MAR will be the minimum. The shape of

the ROC curve and optimum point varies depending on the alarm design method used

and assigned weights to both FAR and MAR, respectively, in the objective function

mentioned in Chapter 2.

In the subsequent sections, false and missed alarms are discussed in detail. Per-

formance of rank order filters is compared with widely applied moving average filters

to better understand the applicability of rank order filters. Moreover, several case

studies have been presented considering different distributions of the data.
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Figure 3.2: Receiver operating characteristic (ROC) curve

3.2 Problem Formulation

Let us assume that the PDFs of the process variable x in both normal and abnormal

conditions are known a-priori with probability distribution function fXn and fXab

respectively. For example, we consider that both the normal and abnormal segment

of the process data are Gaussian distributed. Normal data has distribution N(0, 1)

whereas abnormal data has distribution N(1, 2). Abnormality occurs in the sense of

mean and variance change as depicted from the distribution properties. Figure 3.3

shows the distributions of the normal and abnormal regions along with the trip point

ytp and fault occurrence.

The FAR as the probability of false alarms can be computed [40] as the area under

the normal PDF for the values of x greater than the trip point, ytp. It is denoted by
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(a) (b)

Figure 3.3: (a) Process data with normal and abnormal region, (b) PDF of the normal
and abnormal region

p1 on the Figure 3.3. Mathematically,

FAR =

∫ +∞

ytp

fXn(x)dx (3.1)

Likewise, the MAR as the probability of missed alarms can be computed [40] as the

area under abnormal PDF from −∞ to ytp. This is denoted as q1 in Figure 3.3.

Mathematically,

MAR =

∫ ytp

−∞
fXab(x)dx (3.2)

Rank order filter are non-linear filters which have already been implemented widely

for image processing [58]. If the PDFs of the filtered data for normal and abnormal

data are known, then the equations above can be utilized to find the FAR and MAR

directly. Let the PDF of the rank order filtered data be denoted as fY n and fY ab under

normal and abnormal conditions respectively. Then from Eqn.(3.1) and Eqn.(3.2) it

can be extended as:
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FAR =

∫ +∞

ytp

fY n(x)dx

=

∫ +∞

ytp

N !

(i− 1)!(N − i)!
FX

(i−1)
n (1− FXn)(N−i)fXndx (3.3)

MAR =

∫ ytp

−∞
fY ab(x)dx

=

∫ ytp

−∞

N !

(i− 1)!(N − i)!
FX

(i−1)
ab (1− FXab)(N−i)fXabdx (3.4)

From the definition of rank order filters, we found that there are two parameters N

and i. If we take the 1st maximum value as output, we can simplify Eqn.(3.3) and

Eqn.(3.4) by putting i = N . Then the simplified form of FAR and MAR can be

presented as:

FAR =

∫ +∞

ytp

NFX
(N−1)
n fXndx

= N

∫ +∞

ytp

FX
(N−1)
n fXndx (3.5)

MAR =

∫ ytp

−∞
NFX

(N−1)
ab fXabdx

= N

∫ ytp

−∞
FX

(N−1)
ab fXabdx (3.6)

where fXn and FXn denote the PDF and CDF of the normal data respectively, and

fXab and FXab represent the PDF and CDF of the abnormal data respectively. There

are no closed form solutions for Eqn.(3.5) and Eqn.(3.6). Rather these equations are

solved numerically.
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3.3 Optimal Trip Point Design

Assume PDF (CDF) of normal data is fXn(x)(FXn(x)), PDF (CDF) of abnormal data

is fXab(x)(FXab(x)); and PDF (CDF) of the filtered normal data is fY n(x)(FY n(x)),

and PDF (CDF) of the filtered abnormal data is fY ab(x)(FY ab(x)). Then the objective

function for quantifying alarm accuracy can be chosen as a weighted sum of FAR and

MAR:

min J(x) = c1

∫ +∞

x

fY n(x)dx+ c2

∫ x

−∞
fY ab(x)dx

= c1(1− FY n(x)) + c2FY ab(x) (3.7)

where c1 and c2 are two positive weights. To find the optimal trip point, let

∂J

∂x
= −c1fY n(x) + c2fY ab(x) = 0 (3.8)

So, the optimal trip point is such that

fY ab(x)

fY n(x)
=
c1
c2

(3.9)

For rank order with window size N and rank i, PDF equations for both normal and

abnormal data are given below:

fY n(x) =
N !

(i− 1)!(N − i)!
FXn(x)i−1(1− FXn(x))N−ifXn(x)

fY ab(x) =
N !

(i− 1)!(N − i)!
FXab(x)i−1(1− FXab(x))N−ifXab(x) (3.10)

If equal weights are assigned to both FAR and MAR, then c1 = c2. The optimal

trip point that would give minimum J can be found by solving following equation:

fY ab(x)

fY n(x)
= 1 (3.11)
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Assigning equal weights means choosing the closest point to the origin on the

ROC curve [17]. Eqn.(3.11) is then solved numerically. The results obtained from

numerical solutions for different filter orders with maximum output is given in Table

3.1.

Filter Order Trip Point
3 1.679
4 1.950
5 2.038
6 2.109
7 2.167
8 2.217

Table 3.1: Trip point for different filter lengths

3.4 Performance Comparison of Rank Order Fil-

ters

Rank order filters are the simplest non-linear filters. Though industries demand

simple and easily implementable filters like moving average filters, non-linear filters

like rank order filters in the sense of performance are also worth studying. In this

section the accuracy performance of the rank order filter with ith maximum as output

is compared with the moving average filter and general optimal filter of the same

order.
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ROC Curves

As mentioned earlier, the concept of ROC curve is taken from signal detection theory

to visualize the hit and miss rates. The same thing is modified in alarm systems to

evaluate the performance of alarm systems [40]. The ROC curve, which is plot of false

alarm rate vs missed alarm rate, is a performance evaluation method when filtering

process data. The closer the curve is to the origin, the better the performance is.

False alarms are generated in the normal segment of the data, whereas missed alarms

are generated in the abnormal region of the data. Since there is no analytical forms

of FAR and MAR in terms of filter parameters, false and missed alarm rates are

calculated by varying the trip point and counting the numbers of points above and

below that trip point, then dividing by the total lengths of the normal and abnormal

data respectively. Then for each trip point FAR and MAR are plotted which forms

the ROC curve after connecting those points.

In this section, rank order filters are applied on both the normal and abnormal

segments of the process data shown in Figure 3.3(a). Then numerical simulation is

run to obtain ROC curves for different orders, N , and the 1st maximum value in the

window. One of the output distributions for the filter with order N = 8, i = 8 is

shown in Figure 3.4(d) which clearly indicates the reduction in MAR by comparing

it with unfiltered PDF in Figure 3.4(b).
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(a) (b)

(c) (d)

Figure 3.4: (a) Unfiltered data, (b) unfiltered data PDF, (c) rank order filtered data

with N=8, i=8, (d) rank order filtered PDF with N=8, i=8

By changing the filter order, we change the output distribution. As a result, for

the same trip point we may end up with different FAR and MAR from the unfiltered

case. From the Figure 3.5 it is visible that with the increment of the filter order,

the ROC curves are shifting toward the origin, i.e., less FAR and MAR are achieved.

On the other hand, for a fixed filter order, e.g., N = 7, with different maximums as

output, e.g., i = 1, 2, ..., 7, ROC curves have been plotted in Figure 3.6. The figure

shows that with i = 7 (1st maximum), the ROC curve is closer to origin compared
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to i = 1 (1st minimum). The downside of increasing filter order is the increment

of detection delay which is discussed in Chapter 4. As a result, we can not keep

increasing filter order, N to achieve lower FAR and MAR.

Figure 3.5: ROC curves for different orders of the rank order filter



40

Figure 3.6: ROC curves for the rank order filter with N=7 and different outputs

3.4.1 Comparison with moving average filters

A moving average filter is a causal linear filter which takes an average of the previous

m samples defined by the filter order m. It has only one design parameter, namely, the

filter order m. As mentioned in [17], under some conditions, moving average filters

are the optimal filters among all FIR filters. Moreover, it has got wide industry

application due to its simplicity and ease of application. This is why it is important

to compare the performance of rank order filters with moving average filters.
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A moving average filter can be represented mathematically as [4]:

Yi =
1

m
(Xi−m+1 + · · ·+Xi−1 +Xi) (3.12)

where m is the order of the filter and X is the unfiltered process data.

(a) (b)

Figure 3.7: (a) Moving average filtered data with m=8, (b) moving average filtered

PDF with m=8

To understand the performance of rank order filters better, a comparison in terms

of ROC curves has been presented in this section. If the ROC curve of the rank order

filter of the same order as the moving average filter lies below the ROC curve of the

moving average filter, it can be said that the rank order filter is performing better.

The normal and abnormal segments of the input data are considered the same as

before in Figure 3.3. Moving average filtered data for m = 8 and the distribution

of the filtered data are shown in Figure 3.7(a) and Figure 3.7(b), respectively. By

observation, we can directly say that for the same trip point as unfiltered case in

Figure 3.4(b), FAR has improved significantly but MAR is still high.
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(a) (b)

(c) (d)

Figure 3.8: (a) ROC curves for rank order filter (N=3 and i=3) and moving average

filter(m=3), (b) ROC curves for rank order filter (N=5 and i=5) and moving average

filter(m=5), (c) ROC curves for rank order filter (N=7 and i=7) and moving average

filter(m=7), (d) ROC curves for rank order filter (N=8 and i=8) and moving average

filter(m=8)

By varying the trip point, ytp, from the minimum to the maximum of the process

data for both the rank order and moving average filtered data and running 1000

simulations for each trip point, we came across these ROC curves. In Figure 3.8, we

compared ROC curves for rank order filters with N = 3, 5, 7, 8 and i = N and moving
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average filters with m = 3, 5, 7, 8, where we can see that the ROC curve for the rank

order filter is lying below than the ROC curve of the moving average filter. This

is indicating better alarm accuracy, i.e., lower FAR and MAR for rank order filters.

We can come to a conclusion that, for Gaussian distributed data where abnormality

occurs in the sense of mean and variance changes, rank order filters with 1st maximum

as output have shown better performance compared to moving average filters of the

same order.

3.4.2 Performance comparison with exponential distribution

The input data may not always follow the Gaussian distribution. If the distribution

of the input data is changed, we may derive some important conditions about the

applicability of rank order filters. For example, if the normal and abnormal parts are

assumed to be exponentially distributed with mean 2 and 4 respectively, the PDF

of the input data, rank order filtered data and moving average filtered data can be

easily estimated by the kernel method. In Figure 3.9(b), the PDF of the exponentially

distributed data is shown. The change in output PDF is achieved by applying the

rank order filter of order N = 7, i = 7 and moving average filter of order m = 7 in

Figures 3.9(d) and 3.9(f), respectively. But the performance of the rank order filter

is more visible when ROC curves are plotted and compared with the moving average

filter.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: (a) Unfiltered data, (b) unfiltered data PDF, (c) rank order filtered data

with N=7, i=7, (d) rank order filtered PDF with N=7, i=7, (e) moving average

filtered data with m=7, (f) moving average filtered PDF with m=7
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(a)

Figure 3.10: ROC curve comparison among different filters of same order on expo-

nential distributed data

In Figure 3.10 ROC curves for rank order and moving average filters for expo-

nentially distributed input data are compared. It is visible that the ROC curve for

moving average filter is more closer to the origin compared to the ROC curves of rank

order filters of the same order with different outputs.

3.4.3 Comparison with general optimal filters

The optimization problem of reducing false and missed alarm rates while varying

the trip point is a classic classification problem. This optimal classification can be

obtained by log-likelihood ratio (LLR) filters as discussed in [17]. The general optimal
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LLR filter is as follows:

y[k] =
k∑

i=k−N+1

ln
pab(x[i])

pn(x[i])
(3.13)

ytp = ln(
c1
c2

)

where pn and pab are the normal and abnormal PDFs of the input data.

Exapmple#1: If normal and abnormal data follow Gaussian distribution with

N(0, 1) and N(µ, σ2) respectively, then according to Eqn.(3.14), the optimal filter is

obtained as follows [17]:

y[k] =
k∑

i=k−N+1

(
σ2 − 1

2σ2
x[i]2 +

µ

σ2
x[i]−

(
µ2

2σ2
+ lnσ

))
(3.14)

ytp = ln(
c1
c2

)

Now, for the the same parameters µ = 1 and σ = 2, the application of general

optimal filters reduces the overlapping of the normal and abnormal region of the

PDFs. The performance is compared with the same order rank order filter and

moving average filter in Figures 3.11.
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(a) (b)

(c) (d)

Figure 3.11: (a) Unfiltered data PDF, (b) rank order filtered data PDF with N=8,

i=8, (c) general optimal filtered data PDF with N=8, (d) ROC curve comparison

with general optimal filter

From the ROC curves, the performance of filters can be easily visualized. Appli-

cation of filters bring the ROC curves close to the ideal point (0, 0). The rank order

filter performs in between general optimal filter and moving average filter for the same

distribution. One advantage of using rank order filters over general optimal filters

is that the rank order filtered data variance does not change significantly, whereas

general optimal filtered data has wide variance. In cases where wide variance of the
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data can cause other problems, rank order filters can be easily used for achieving

better performance.

Example#2: Let, the normal and abnormal data follow logistic distributions

respectively as follows [17]:

pn(x) =
e−x

(1 + e−x)2
(3.15)

pab(x) =
e−(x−2)/2

2(1 + e−(x−2)/2)2

By putting these equations in Eqn.(3.14), we get the general optimal filter for the

distribution:

y[k] =
k∑

i=k−N+1

(
0.5x[i] + 2ln

1 + e−x[i]

1 + e−(x[i]−2)/2
+ ln2 + 1

)
(3.16)

with the trip point ytp = ln( c1
c2

)

In Figure 3.12(a)-(c), the PDFs of the unfiltered data, general optimal data and

rank order filtered data are shown. The performance of the rank order filter with

N = 8, i = 8 is compared with the general optimal filter and moving average filter of

the same order in terms of ROC curves as visible from Figure 3.12 (d). In this case,

the performance of the rank order filter lies in between the moving average filter and

general optimal filter as well.
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(a) (b)

(c) (d)

Figure 3.12: (a) Unfiltered data PDF, (b) rank order filtered data PDF with N=8,

i=8 (c) general optimal filtered data PDF with N=8, (d) ROC curve comparison with

general optimal filter
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Example#3: If we assume discrete distributions for the normal and abnormal

data like:

pn(x) =


0.01 x ∈ (−11,−1) ∪ (1, 11)

0.40 x ∈ [−1, 1]

0 elsewhere

pab(x) =


0.01 x ∈ (−9, 1) ∪ (3, 13)

0.40 x ∈ [1, 3]

0 elsewhere

(3.17)

After applying the optimal filter from Eqn.(3.14), the ROC curves are compared

in Figure 3.13(b). Here we considered the filter order N = 5. In Figure 3.13(b), it

is visible that the ROC curve obtained using raw data is performing better than the

moving average filter for some portions, but worse in other portions. On the other

hand, applying a rank order filter allowed us to achieve performance curve closer to

the optimal ROC curve. The ROC curve using the general optimal filter can almost

reach the origin (0,0) while the rank order filter is performing in between the general

optimal and moving average filter.
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(a)

(b)

Figure 3.13: (a) Unfiltered data PDF, (b) ROC curve comparison with general optimal

filter
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Conditions for better performance

Through simulations, rank order filters perform better than moving average filters

under these conditions:

• if both normal and abnormal data are Gaussian distributed,

• if the means of the normal data and abnormal data are close.

3.5 Summary

False and missed alarm rates are two important parameters for accurate alarm design.

Even though we could not achieve any analytical solution for FAR and MAR for

rank order filters, we have made justification by running numerical simulations. The

optimal filter design method is presented as an optimization problem. In this chapter,

the performance of rank order filters is visualized by comparing the ROC curve with

moving average filters considering both Gaussian and non-Gaussian distributions.

Moreover, examples have been shown to prove that the performance of the rank order

filter lies between the general optimal filter and moving average filter (optimal linear

filter for Gaussian distributions). The limitation of applying rank order filters are,

they change the mean of the distribution. In cases where the mean of the distribution

can not be changed, rank order filters can not be applied. In the end, based on

our observation of ROC curves and data distributions, we have come up with some

conditions under which rank order filters with the maximum value as output perform

better. Based on these conditions we can apply rank order filters specially in those

process tags where these conditions are visible.



Chapter 4

Expected Detection Delay

4.1 Detection Delay

One of the main goals of a reliable alarm system is that it should raise the alarm

instantly at the moment a fault occurs and notify the operators. In reality, this is

not the case. The activation of the alarm may be delayed due to network delays, bad

implementation, hardware malfunction, sensor failure, data loss, etc. [1]. In addition

to those, processing process and alarm data (filtering, delay timer, or deadband) may

cause delay in alarm activation [5,6]. Detection delay is the difference in time/sample

between the instant an actual fault occurs and the instant an alarm is raised. If a

process variable moves from normal operating region to faulty region of operation at

the instant tf and alarm is raised at the instant ta, then the detection delay (DD) is

given by

DD = ta − tf

Due to different delays it is hardly seen that a fault is detected instantly at the

time it occurs. Practically, the problem is to detect the occurrence of the change as

53
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soon as possible [12]. To improve the effectiveness of the limit checking/comparison

method, several techniques like delay-timers, deadbands, and filters are widely used

in alarm systems; even though these increase detection delay. However, there has

been very limited study on the performance evaluation of different filtering methods.

The analytic relationships between filter parameters and performance indices are not

well established [67].

An interesting observation is that, even if no delay-timer, deadband or filter is

used, the position of alarm trip point or threshold limit may cause some detection

delays. In the next section, an example is presented to show the dependency of

detection delay on the alarm threshold configuration.

In process industry, discrete time random variables are monitored to raise or clear

an alarm. For any process tag, suppose an independent random variable {Xi}i≥1
is collected. We assume that random variables X1, X2, X3, . . . , Xtf−1 are distributed

according to probability distribution function (PDF) pn known a-priori. Also, random

variables Xtf , Xtf+1, Xtf+2, . . . belong to a PDF, pab. Here, pn and pab denotes the

PDF of Xi under normal and abnormal operating conditions respectively. Depending

on alarm generation techniques, process variables Xi’s are processed and compared

with pre-set alarm trip point.

Under the normal operating region, let the probability of one sample exceeding

the trip point (ytp) be p1 and the probability of one sample falling within the trip

point is p2. Similarly under the abnormal operating region, the probability of one

sample falling within trip point is q1 and, q2 is the probability of one sample lying

above the trip point. Therefore, p2 = 1−p1 and q2 = 1−q1 as visible from the Figure

4.1 (b).
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Figure 4.1: Process data with trip point and occurrence instance (left); corresponding

distributions of the normal and abnormal data with the same trip point(right)

Detection delay being zero indicates that the alarm is raised instantly at the time

fault occurs. Detection delay of one sample means the alarm is raised after one sample

of fault occurrence. Likewise, n sample delay means the activation of the alarms is

delayed by n samples from the fault instance. If we assume, fault arrived at time

t = tf , the probability of zero detection delay is the probability of raising an alarm

at the tf
th instant.
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P(DD = 0) = P(Alarm at time t = tf ) = q2

P(DD = 1) = P(Alarm at time t = tf + 1 & no alarm at

t = tf ) = q2q1

...

P(DD = n) = P(Alarm at time t = tf + n & no alarm at

t = tf + n− 1 . . .& no alarm at t = tf + 1

& no alarm at t = tf )

= q2q1
n (4.1)

Though detection delay has been represented in terms of samples, it can easily be

converted to time since sampling time is constant. From the above equations it is also

visible that the probability of detection delay is solely dependent on the distribution

of abnormal data. Normal data distribution has no effect in activating/ deactivating

alarms. As it is a discrete event, the expected value of detection delay is expressed

in terms of summation as

EDD = E(DD) =
∞∑
n=0

(nP(DD)) =
∞∑
n=0

nq2q1
n = q1/q2 (4.2)

Given the distribution of abnormal data, the probabilities q1 and q2 are the areas

under the abnormal distribution depending on the position of the trip point (ytp). So

without pre-processing the data, the expected detection delay is dependent on the

position of the trip point. Changing the trip point will result in a different detection

delays. For example, if the normal data is Gaussian distributed with mean 0 and

variance 1 and abnormal data is Gaussian distributed with mean 1 and variance 2,
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then setting different trip points (ytp) result in different detection delays as shown in

Figure 4.2.

Figure 4.2: Effect of trip point on expected detection delay

Swiftness of alarm activation is an important performance evaluation parameter

measured by expected detection delay as it indicates the average time it takes to

raise an alarm when fault occurs. To design an effective alarm system, it is always

desirable to reduce expected detection delay and keep it within a minimum value.

Step by step procedure for alarm system design with the performance requirements

will be presented in Chapter 5.
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4.2 Detection Delay for Rank Order Filters

In this section, detection delay for rank order filters with ith maximum as output has

been formulated. Considering same probabilities for normal and abnormal distribu-

tions mentioned in Section 4.1, we will try to calculate the detection delay for the

rank order filter of order 2 , 1st maximum (i = N) and then discuss the general case

for filter length N , rank i. Assume that the fault occurs at time tf . For the rank

order filter of order 2, the probability of alarm being raised at time (tf + 1) (i.e.,

detection delay (DD) equals one) is given by:

P(DD = 1) = P{max[Xtf−1, Xtf ] ≤ ytp & max[Xtf , Xtf+1] > ytp}

= P{Xtf−1 ≤ ytp} & P{Xtf ≤ ytp} & P{Xtf+1 ≥ ytp}

= p2q1q2 (4.3)

P(DD = 2) = P{max[Xtf−1, Xtf ] ≤ ytp & max[Xtf , Xtf+1] ≤ ytp &

max[Xtf+1, Xtf+2] > ytp}

= P{Xtf−1 ≤ ytp} & P{Xtf ≤ ytp} & P{Xtf+1 ≤ ytp} &

P{Xtf+2 > ytp}

= p2.q1.q1.q2

= p2q1
2q2 (4.4)

...

P(DD = k) = p2q1
kq2 (4.5)

Likewise, for the rank order filter of order N , an alarm being raised at time (tf+k),
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k-sample detection delay can be formulated as:

P(DD = k) = p2
N−1q1

kq2 (4.6)

The expected detection delay can be calculated as:

EDD =
∞∑
k=0

(kP(DD))

=
∞∑
k=1

(kp2
N−1q1

kq2)

= p2
N−1q2

∞∑
k=1

(kq1
k)

= p2
N−1q2

q1
(1− q1)2

= p2
N−1 q1

q2
(4.7)

General case

The analytical relation developed earlier is extended here for other ranks. Due to

insufficient conditions, we try to calculate the probability of k sample detection delay

in an iterative way. Let us consider the general case with window size N and rank i.

Let Q(k) denote the probability that there is no alarm (NA) up to time (tf + k)

(i.e., sample k). Suppose we know the probability Q(k − 1) at k − 1th instant, then

at sample k, an iteration can be found for Q(k) as

Q(k) = α1Q(k − 1) + α2Q(k − 2) + · · ·+ αNQ(k −N) (4.8)

where αi’s are to be determined below.
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Let

x(k) =


Q(k)

Q(k − 1)

...

Q(k −N + 1)


(4.9)

then

x(k) = Ax(k − 1), (k ≥ N) (4.10)

where

A =



α1 α2 · · · αN−1 αN

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


(4.11)

with initial condition

x(N) =


Q(N)

Q(N − 1)

...

Q(1)


Let P (k) denote the probability that the delay is exactly of sample k for the rank

order filter, i.e.,

P (k) = P(DD = k)
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then it is easy to show that

P (k) = Q(k − 1)−Q(k)

= Cx(k)

= CAk−Nx(N) (4.12)

where

C =
[
−1 1 0 · · · 0

]
thus the expected delay (EDD) will be

EDD =
∞∑
k=0

kP(DD = k)

=
N−1∑
k=0

k(Q(k − 1)−Q(k)) +
∞∑
k=N

kCAk−Nx(N)

=
N−1∑
k=0

Q(k) + CA(I − A)−2x(N) (4.13)

The problem to compute EDD for rank order filters thus reduces to finding the prob-

ability (Q(k)) of NA at k by iteration, and the initial probabilities at the first N − 1

samples.

4.2.1 Case i = N

With i = N , the largest elements of the past N data will be selected. In this case,

the probability that there is NA at k will be

Q(k) = pN−12 qk+1
1

or in iterative form

Q(k) = q1Q(k − 1)
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The probability that the delay is exactly k will be

P (k) = Q(k − 1)−Q(k)

= Q(k − 1)− q1Q(k − 1)

= (1− q1)Q(k − 1) = q2Q(k − 1)

= pN−12 qk1q2 (4.14)

EDD =
∞∑
k=0

kP(DD = k)

=
∞∑
k=0

kpN−12 qk1q2

= pN−12 q1/q2 (4.15)

So, Eqn.(4.15) matches exactly with Eqn.(4.7), the one developed earlier for the

maximum case. Now we can proceed with other cases in iterative way.

4.2.2 Case i = 1

With i = 1, the smallest elements of the past N data will be selected. In this case,

the probability that there is NA at k will be

Q(k) = q1Q(k − 1) + q1q2Q(k − 2) + q1q
2
2Q(k − 3) + · · ·+ q1q

N−1
2 Q(k −N) (4.16)

or

αj = q1q
j−1
2 , (j = 1, · · · , N)
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thus

EDD =
∞∑
k=0

kP(DD = k)

=
N−1∑
k=0

Q(k) + CA(I − A)−2x(N) (4.17)

with initial conditions

Q(0) = 1− pN−11 q2

Q(k) = 1− pN−11 q2 − p2pN−21 q22 − · · · − p2pN−k−11 qk+1
2

(k = 1, · · · , N − 1)

Q(N) = Q(N − 1)− q1qN2 (4.18)

4.2.3 Case i = N − 1

With i = N − 1, the second largest elements of the past N data will be selected. In

this case, the probability that there is NA at k will be

Q(k) = q1Q(k − 1) + q2q
N−1
1 Q(k −N) (4.19)

or

α1 = q1;αl = 0(l = 2, · · · , N − 1);αN = q2q
N−1
1

thus

EDD =
∞∑
k=0

kP(DD = k)

=
N−1∑
k=0

Q(k) + CA(I − A)−2x(N) (4.20)
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with initial conditions

Q(0) = pN−12 + (N − 1)pN−22 p1q1 (4.21)

Q(k) = q1Q(k − 1) + q2q
k
1p

N−k−1
2 (pk−12 + (k − 1)p1p

k−1
2 ) (4.22)

(k = 1, · · · , N − 1)

Q(N) = q1Q(N − 1) + q2q
N−1
1 Q(0) (4.23)

4.3 Validation and Comparison

To validate the general equation of probability of detection delay given in Eqn.(4.6),

we are considering Gaussian distributed normal and abnormal data. Let normal

data follow Gaussian distribution with N(0, 1) and abnormal data follow Gaussian

distribution with N(1, 2). The sampling period is kept at 1 sec. We ran 5000 Monte

Carlo simulations for different filter orders from N = 2 to 4. The trip point was fixed

at ytp = 0.7 throughout the simulation. We count the number of occurrence of each

delay and take average to get a single estimate for P(DD). In Figure 4.3, simulation

outcome is presented for different delays along with theoretical value obtained from

Eqn.(4.6). Since, Eqn.(4.6) gives a single estimate, for consistency we multiplied this

value with the number of Monte Carlo simulations. From Figure 4.3 it is visible

that for different orders of the filter, the analytical solution exactly matches with the

numerical results, which validates the Eqn.(4.6).
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(a) Filter Order, N=2

(b) Filter Order, N=3

(c) Filter Order, N=4

Figure 4.3: Validation of analytical solution by Monte-Carlo simulation for different

filter orders
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For the same input distribution, the effect of changing filter order with 1st max-

imum (i = N) on EDD is visualized from Figure 4.4. In each case, the simulation

result is validated by the theoretical result obtained from Eqn.(4.7).

Figure 4.4: Expected detection delay for different filter order and i = N validated by

Monte-Carlo simulation
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Expected detection delays for rank order filters with i = N − 1 (2nd maximum)

and i = 1 (1st minimum) are simulated again for validation purpose. Eqn.(4.20) and

Eqn.(4.17) are used to estimate the expected detection delays analytically. These re-

sults are validated by Monte Carlo simulations. In Figure 4.5 (a)-(b), both theoretical

and simulation results are shown for filter orders 4 and 5 with rank i = N − 1 (2nd

maximum). Again in Figure 4.5 (c)-(d), EDD has been plotted against trip point for

rank order filters with orders 4 and 5 with i = 1 (1st minimum).

(a) (b)

(c) (d)

Figure 4.5: Expected detection delays for (a) N = 4, i = 3, (b) N = 5, i = 4, (c)

N = 4, i = 1, (d) N = 5, i = 1
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Comparison of Expected Detection Delay

The closed form solution for expected detection delays is obtained in Eqn.(4.7). In

Figure 4.6, expected detection delay are plotted against the trip point for different

filter orders. Each plot is validated by Monte Carlo simulation where for each trip

point 5000 simulations are run. From Figure 4.6, we conclude that the theoretical

and simulation results are consistent. For rank order filters with window size N and

order i, if i is fixed, the expected detection delay is decreased with the increment of

window size (N). With the same distributions of normal and abnormal data, expected

detection delays for moving average filters are plotted in Figure 4.7 to compare the

performance with rank order filters. We observe that, for the same trip point with

higher filter order, detection delay for the rank order filter is smaller than that of the

moving average filter.

Figure 4.6: Comparison of expected detection delay for different filter orders
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Figure 4.7: Expected detection delay for different filters compared with the moving

average filter

4.4 Summary

Expected detection delay is an important parameter for designing alarm systems.

Longer delay in alarm activation may lead to serious consequences. In this chap-

ter, detection delay for rank order filters with 1st maximum, 2nd maximum and 1st

minimum as outputs have been formulated and validated through numerical simula-

tions for Gaussian distributions of the data. A comparative performance overview for

rank order filters is presented with respect to moving average filters (widely applied

method in the process industry). We have derived some important conclusion based

on observation of the performance comparison.



Chapter 5

Case Study

5.1 Overview

In this chapter, the proposed rank order filters have been applied to an actual in-

dustrial alarm data set. The alarm data has been taken from an oil-sand extraction

plant. This is part of the ongoing alarm rationalization project where univariate

alarm tags have been identified and rationalized. In the project the overall work

for alarm rationalization has been done in several stages such as: selecting alarm to

rationalize, justification and prioritization, operator decision support, classification,

setting alarm limits, alarm tuning and advanced alarming, and safety analysis [16].

This is a step by step process of evaluating all alarm settings to check for legitimacy,

accuracy and rationale. The goal of alarm rationalization is to meet the requirements

of ISA 18.2 [38] and reduce burden on the operators. To efficiently rationalize alarms,

knowledge and collaboration from control engineering team, operations, maintenance

and other disciplines are required.

However, this chapter focuses on possible applications of rank order filters on
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identified top bad actors from the industrial data. Since filter design and alarm

limit tuning are dependent on process data, the availability of normal and abnormal

historical data is of concern. Even if the abnormal data is not present for some of

the tags, we can apply our filter design approach based on normal data distribution

and a required false alarm rate. Generally flow and level tags are noisier compared to

pressure and temperature. As a result, a flow tag is analyzed in the following section.

The original tag names of the industrial data are masked due to confidentiality.

5.2 Alarm System Design

The accurate and efficient design of an alarm system depends on three performance

indices, namely, the false alarm rate, the missed alarm rate, and the expected detec-

tion delay [41]. For optimal configuration, we need to balance among these indices.

In this section, an attempt has been made to demonstrate the step-by-step procedure

for designing optimum alarm setting satisfying requirements of FAR, MAR and EDD.

This configuration would be optimal in the sense that it would reduce FAR and MAR

i.e., increase the accuracy, and also reduce EDD, i.e., increase the efficiency of alarm

activation. The objective function proposed in Chapter 2 with these constraints can

be described by minimizing

J(x) = c1

∫ +∞

x

fY n(x)dx+ c2

∫ x

−∞
fY ab(x)dx

s.t. EDD ≤ κ (5.1)

Where fY n and fY ab are the probability density functions of normal and abnormal

data respectively; κ is the maximum delay we can consider. The two integrals rep-

resent FAR and MAR, and c1 and c2 are the weights assigned to FAR and MAR

respectively.
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The objective function is plotted in terms of ROC curves in Chapter 3. The ROC

curve is the plot of FAR vs MAR while the trip point ytp is varied from minimum to

the maximum of the process data. For a high alarm configuration, lower trip point

results in higher FAR whereas changing trip point to higher points results in lower

FAR but higher MAR. The weights (c1, c2) assigned to FAR and MAR change the

optimal region for selecting trip points. In this case, we assigned equal weights to both

FAR and MAR. As a result, the optimal point would be the one closest to the origin

for a specific filter order [17, 41]. The other constraint in the objective function is

expected detection delay. So, the objective function should be computed considering

maximum allowable delay [4].

Simulated Data Case Study

In this work, a four step alarm design method is demonstrated for rank order filters

with 1st maximum as output similar to the method presented in [4]. The design

parameters for rank order filters are the filter order, N , and the ith maximum value.

We fix the value of i to be N , i.e., taking the 1st maximum. So, for designing the

alarm system, the design parameters are the filter order, N , and the trip point, ytp.

We consider N(0, 1) and N(1, 2) for the normal and abnormal segment of the data

respectively. Process data and corresponding PDF’s are shown in Section 4.1.

For this example, we are considering to design an alarm system with FAR ≤ 15%,

MAR ≤ 15% and EDD ≤ 2 seconds. Rank order filter orders are changed from N =

2 to 8 and corresponding ROC curves are plotted in Figure 5.1. It is visible that with

the increment of the filter order, the ROC curves move closer to the origin. Expected

detection delay for different filter orders are also plotted in Figure 5.3. The trip point

for equal FAR and MAR can be estimated from Figure 5.2.



73

Figure 5.1: ROC curves when the filter order is changed

Step 1

At first, we address the accuracy of the alarm system. The filter order is selected

from the ROC curves that lies below our specification i.e., FAR ≤ 15% and MAR

≤ 15%. The smallest filter order N1 is selected that satisfies the above criteria from

Figure 5.1. Any filter order N ≥ N1 would meet the selection criteria. For this case,

rank order filter of order 5 or more meet the design requirements of FAR and MAR.
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Step 2

The second step is to find the optimal operating limit or trip point (ytp) for the

selected orders of rank order filters. Since, FAR and MAR are calculated by varying

the trip point, plotting both FAR and MAR against the trip point on the same plot

would allow us to estimate the trip point for equal FAR and MAR. In Figure 5.2,

FAR and MAR are plotted against the trip point where plots from the upper left

are FAR curves and from upper rights are MAR curves. By observing the plots, trip

points with equal FAR and MAR are estimated from the intersection of these two

curves. The result is summarized in Table 5.1.

Figure 5.2: Estimation of trip points when FAR = MAR
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Step 3

In this step, the expected detection delay is estimated for the trip points obtained

in step 2. These trip points correspond to equal FAR and MAR for different filter

orders. The largest value of the filter order N2 for EDD ≤ 2 seconds is selected from

Figure 5.3. The summary of the results is presented in Table 5.1. For this design, we

found N2 = 5.

Figure 5.3: Expected detection delays for different filter orders with optimal trip

points obtained from Step 2

Step 4

Once N1 and N2 are obtained, the last step is to select the rank order filter order.

From step 1, we found that filter order 5 or more satisfy our accuracy design criteria,

whereas from step 3, we found that filter order 5 or less satisfy out efficiency criteria.
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If N2 ≥ N1, then any order between N1 ≤ N ≤ N2 would satisfy the design criteria.

For this example, we select filter order 5 with FAR and MAR of 13.85% and EDD

1.84 seconds respectively.

On the other hand, if no filter order N is found in the range N1 ≤ N ≤ N2 then

we need to change the design requirements. For this case, the requirements may be

too strict for achieving our goal. In a nutshell, we can say that this method not only

provides us with steps for selecting filter order but also allows us to check whether

we can achieve performance requirements or not.

Filter order (N) Trip Point (ytp) FAR = MAR (%) EDD
2 1.07 26.38 0.93
3 1.448 20.46 1.221
4 1.703 16.56 1.549
5 1.892 13.85 1.842
6 2.043 11.74 2.075
7 2.163 10.07 2.28
8 2.271 8.86 2.583

Table 5.1: Design summary for rank order filters

5.3 Industrial Case Study

In this section, an industrial case study has been presented where univariate alarm

tags have been configured based on three performance requirements on FAR, MAR

and EDD. Since filtering is applied on process data, process tags have been selected

from corresponding alarm tags that are the top bad actors.
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Case Study

For this case study, we have considered an actual flow variable from a Hydrogen

generation plant in an oil-sand processing facility for high alarm configuration. The

sampling time is 15 sec, so the data represents 24 hours data starting from 14 August

2014 in Fugure 5.4. As visible from the figure, fault occurrence is identified from the

abrupt change in variance. In Figure 5.6, histograms of the corresponding normal and

abnormal segment of the data is presented. If the rank order filter of order 8 and 1st

maximum is applied on the data, the plotted ROC curve then allows us to visualize

the trade-off between FAR and MAR. Figure 5.5 compares ROC curves filtered using

rank order filter and moving average filter of order 8.

Figure 5.4: Flow variable from an oil-sand industry
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Figure 5.5: ROC curve comparison of rank order filter (N=8, i=8) with moving

average filter (m=8)

In the next segment, we plan to choose the filter order for alarm system design

based on empirical assumption on FAR and MAR. In this case, we follow the same

four-step procedure mentioned earlier. The design requirements for the case study

here are: FAR ≤ 50%, MAR ≤ 50% and EDD ≤ 30 samples. The first step is

to identify the filter order from Figure 5.7. Rank order filters with order 4 and

above satisfy the design criteria. We have selected the smallest order, N1 of the

identified filter orders that satisfies FAR=MAR=50%. Then, thresholds that satisfy

FAR=MAR are obtained from Figure 5.7 for different filter orders and the results are



79

(a) (b)

Figure 5.6: Histograms of the normal and abnormal segments of the data

listed in Table 5.2. In the third step, we narrow down the filter orders from Figure

5.8 that satisfy EDD ≤ 30 samples and enlist them in Table 5.2.

Filter order (N) Trip Point (ytp) FAR = MAR EDD

2 270.053 0.516 23.8

3 270.063 0.5032 24.44

4 270.074 0.4924 25.11

5 270.09 0.4849 34.3

6 270.093 0.4729 39.2

7 270.109 0.4640 40

8 270.127 0.4575 40.5

Table 5.2: Design summary for rank order filters

From the list, we select the largest order N2. The last step is selecting the order

of the filter, N . From the earlier example, we have decided that any N satisfying

N1 ≤ N ≤ N2 can be used for alarm design. For our case N = 4 (shaded in the Table
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5.2). The threshold for this filter is 270.0736.

Figure 5.7: Estimation of thresholds when FAR=MAR

Figure 5.8: Effect of EDD on different filter orders
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The result obtained here can be compared with the Shewhart chart where upper

limit is set on 3σ interval. The mean of the normal data is 270.0209 and standard

deviation is 0.2030. Setting 3-sigma limit sets the upper threshold to 270.6299. For

this setting, the alarm generates 3151 missed alarms. By using the rank order filter

and proposed threshold, the number of missed alarms reduces 50% to 1556 alarms.

5.4 Summary

The alarm design and rationalization procedure followed here is solely dependent

on historical process data. Process behaves differently due to different operating

conditions. Case studies presented here represent only a segment of the big picture.

In practice, changing alarm configuration requires thorough process knowledge and

needs proper safety analysis before any change is made. On the other hand, there

is no general filter to be applied on all the process variables. Depending on the

distribution of the data and process behaviour, a specific filter may perform better

than others. However, the main goal of the study was to show the effectiveness of

the nonlinear rank order filters over linear moving average filters. With simulated

examples and industrial case studies, we can come to a conclusion that rank order

filters can effectively reduce false and missed alarms and meet the detection delay

limitation. In the future, further studies can be made by selecting different windows

and comparing them to validate the effectiveness.



Chapter 6

Concluding Remarks

6.1 Contribution of the Thesis

Chattering and nuisance alarms are serious concerns in process industry where thou-

sands of alarms are annunciated due to easily configurable modern DCS systems. For

some cases, chattering alarms flood the operator panel, making it difficult for the op-

erators to take necessary action in a timely manner. Many major accidents occurred

in the past only because operators were misled by the overwhelming information.

For this reason, chattering and nuisance alarms causing alarm floods are a major

safety concern in process industry. The ISA 18.2 [38] and EEMUA 191 [26] guidelines

for alarm management mention some standards for operators to handle efficiently.

Though industries are still far away from the standard recommended numbers, they

are trying to comply with these standards by initiating plant wide systematic alarm

system design and rationalization. Several studies have been made to reduce the

effect of chattering alarms; among them filtering and delay timers are most effective

ones. As a result, properly designed filters and delay timers contribute significantly
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in alarm management and rationalization.

Filters are mainly applied in process industry for suppressing noises. Process vari-

ables operating close to the trip point are more vulnerable to noise as they may cross

the trip point and activate or deactivate nuisance/chattering alarms. To alleviate

this problem filters of different orders are applied directly on process variables before

comparing with thresholds. However, like delay timers, filters introduce delay in the

activation of the alarms when a fault occurs. In this thesis, an attempt has been made

to build quantitative relationship among the rank order filter order and performance

indices. In Chapter 2, the basics of rank order filter has been discussed and the PDF

equation of the rank order filters have been verified by Monte Carlo simulation con-

sidering different input distributions. Several statistical tests have been conducted

on filtered data to verify that the filtered data is not i.i.d..

In Chapter 3, accuracy of alarm annunciation, i.e., FAR and MAR have been

calculated numerically for rank order filters with the ith maximum value as output.

An optimal solution to design rank order filters has been formulated mathematically.

Then the performance of the rank order filter has been compared with moving av-

erage filters for different input data distributions. Moreover, it has been shown that

the performance curve of the rank order filter lies between the corresponding mov-

ing average filter and general log likelihood based optimal filter considering different

input distributions. In the end, some conditions have been proposed based on the

observations where rank order filters are suitable.

The major contribution of the thesis is presented in Chapter 4 where detection

delay for rank order filters with 1st maximum, 1st minimum and N − 1th maximum

values as outputs have been analytically developed and verified by Monte Carlo sim-

ulations. Expected detection delays (EDD) of the rank order filters are compared
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with EDD of the moving average filters of the same order. For rank order filters with

window size N and order i, if i is fixed, the expected detection delay is decreased

with the increment of window size (N).

The developed method is applied on simulated and industrial data to show the

effectiveness of the developed method in Chapter 5. A step-by-step univariate alarm

design method has been presented to visualize the overall method based on simulated

data. An industrial case study has been presented and the step-by-step alarm design

method has been implemented. It has been shown that properly selected filter order

can increase the accuracy and effectiveness of the alarm system.

6.2 Scope for the Future Work

In this work, analytical relations of expected detection delays have been established

for rank order filters with 1st maximum, 1st minimum and N − 1th maximum values as

outputs. Analytical relations for other maximums in the window may be established

as well. These theoretical analysis on rank order filters are more difficult due to non-

linearity. The effectiveness of rank order filtering in reducing chattering/nuisance

alarms can be compared to that of moving average filters. This in turn may give an

idea on what kind of filters need to be used to prevent alarm flood situation since

it is related to chattering alarms. Window based data selection and filtering are

solely dependent on historical process data. So, it is a great source for effective alarm

design. The data distribution is assumed to be known a-priori and data is assumed to

be independent and identically distributed (i.i.d.). The i.i.d. assumption in detection

delay calculation makes the application of the proposed method somewhat restrictive.

The issue with i.i.d. distribution can be addressed in the future work. In addition to
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that, rank order filters can be incorporated in the Alarm Management Toolbox as an

introduction of non-linear filtering in the toolbox.
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