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Abstract

Monitoring systems are indispensable parts of industries that are responsible

to guarantee the safe and proficient operation of plants. As a part of monitor-

ing systems, alarm management systems are deployed to prevent damage to

components, and improve safety and quality of products. The main concern

in alarm system design is to provide a mechanism for the accurate announce-

ment of abnormal behavior of plants. However, in reality, numerous false and

missed alarms could compromise the overall proficiency.

In this thesis the effect of control systems, as a missing (but significant)

actor, on the performance of alarm systems is studied. The interplay of con-

trol and alarm performance is justified and it is shown that a controller that

is designed to achieve a good quality-of-control (in terms of minimum output

variance) has either desirable or undesirable consequences on the performance

of alarm systems. To pave the path for finding a robust controller design, a

new alarm index is introduced and an analytical expression is derived to eval-

uate the performance of signals, known systems and systems with parameter

uncertainties. A set of linear matrix inequalities (LMIs) is proposed for the

controller design to satisfy the required control and alarm performance. Then,

we propose a new method to obtain optimal alarm filters by incorporating

the knowledge of plant and control systems. In the last part of the thesis,

we propose an analytical framework to design and evaluate the performance

of two types of non-linear alarm filters. Moreover, in industrial environments,

many process variables are acquired. So one challenge is to identify the process

ii



variable that provides the best alarm performance after filtering. We derive

an analytical solution to this problem considering specific types of non-linear

filters.

iii



Preface

The research presented in Chapter 2 was a result of collaboration with Dr.

Iman Izadi from Isfahan University of Technology, Iran. The research con-

ducted in Chapter 3 were my original ideas. The work presented in Chapter 4

was a result of discussions with Dr. Zhe Guan who was with the University of

Alberta as a visiting scholar at the time of this work and Dr. Toru Yamamoto

from Hiroshima University.

• Chapter 2 has been published as: Roohi, M. H., Chen, T., Izadi, I.,

“H2 Controller Synthesis with an Alarm Performance Constraint”, IEEE

International Symposium on Industrial Electronics (ISIE), pages 533–

538, Vancouver, Canada, 2019.

• Chapter 3 has been published as: Roohi, M. H., Chen, T., Izadi, I.,

“Control and Alarm Interplay and Robust State-feedback Synthesis with

an Alarm Performance Constraint”, Journal of Industrial & Engineering

Chemistry Research, 59(38), 16708–16719, 2020.

• Chapter 4 has been submitted for publication as: Roohi, M. H., Chen,

T., Guan, Z., Yamamoto, T., “A New Approach to Design Alarm Filters

Using the Plant and Controller Knowledge”, Journal of Industrial &

Engineering Chemistry Research.

• Chapter 5 has been published as: Roohi, M. H., Chen, T., “General-

ized Moving Variance Filters for Industrial Alarm Systems”, Journal of

Process Control, 95, 75–85, 2020.

• Chapter 6 has been published as: Roohi, M. H., Chen, T., “Perfor-

mance Assessment and Design of Quadratic Alarm Filters”, IFAC World

iv



Congress, Berlin, Germany, 2020.

v



To my beloved wife, parents and teachers.

vi



He is a Being, but not through phenomenon of coming into being. He exists

but not from non-existence. He is with everything but not in nearness. He is

different from everything but not in separation.

– Ali ibn Abi Talib (p.b.u.h.)

vii



Acknowledgements

I express my utmost gratitude to my supervisor Dr. Tongwen Chen for his

continuous support, patience and exceptional guidance throughout my entire

PhD program. He always encouraged me to have the wonderful sense of free-

dom for exploring new research ideas. It is truly a blessing for a researcher to

have been trained by such a top-notch scholar. I also thank my supervisory

committee members Drs. Qing Zhao and Mahdi Tavakoli for their insightful

comments and constructive suggestions. My sincere thanks to Dr. Iman Izadi

for his valuable comments on my work.

I would also like to thank my mother, father and my only brother for their

endless love, support and encouragement, not only during the course of this

work but throughout my life. No words can describe how wonderful they are

and how grateful I am for their kindness.

I also extend my appreciation to my in-laws for their love and support.

Finally, I can not be more grateful to have my beloved wife for her consistent

trust and patience ever since we met. It was her sacrifice, moral support and

compassion that made this dissertation possible.

viii



Contents

1 Introduction 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . 1

1.2 Alarm Performance Measures . . . . . . . . . . . . . . . . . . 2

1.3 Alarm System Improvement Methods . . . . . . . . . . . . . . 3

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Controller Synthesis with an Alarm Performance Constraint 11

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 PD Controller . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Alarm Performance Index . . . . . . . . . . . . . . . . 13

2.2 Controller Synthesis . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Control and Alarm Interplay and Robust State-feedback De-

sign with an Alarm Performance Constraint 25

3.1 Alarm Performance Index . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Alarm Index for Signals . . . . . . . . . . . . . . . . . 28

3.1.2 Alarm Index for Systems . . . . . . . . . . . . . . . . . 30

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 State-feedback Controller . . . . . . . . . . . . . . . . . 34

3.2.2 Design Objectives . . . . . . . . . . . . . . . . . . . . . 35

3.3 Controller Synthesis . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Design of Alarm Filters Based on the Plant and Controller

Knowledge 49

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Optimal Alarm Filter Design . . . . . . . . . . . . . . . . . . . 52

4.2.1 Optimal Alarm Trip-point . . . . . . . . . . . . . . . . 56

4.2.2 Optimal Solution of λu and λy . . . . . . . . . . . . . 56

4.3 Notes on Online Application of the Method . . . . . . . . . . 61

4.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Generalized Moving Variance Filters for Industrial Alarm Sys-

tems 68

5.1 Alarm System Performance Assessment . . . . . . . . . . . . . 69

5.1.1 Rates of False and Missed Alarms . . . . . . . . . . . . 69

5.1.2 Fisher’s Linear Discriminant Analysis . . . . . . . . . . 70

5.2 Generalized Moving Average Filter . . . . . . . . . . . . . . . 71

5.3 Generalized Moving Variance Filter . . . . . . . . . . . . . . . 73

5.4 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.1 Case I: Numerical Case Study . . . . . . . . . . . . . . 80

5.5.2 Case II: Study of the Tennessee Eastman process . . . 82

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Performance Assessment and Design of Quadratic Alarm Fil-

ters 95

6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Case I: Diagonal Q . . . . . . . . . . . . . . . . . . . . 97

6.1.2 Case II: a More General Case . . . . . . . . . . . . . . 97

6.2 Performance Assessment of Case I . . . . . . . . . . . . . . . . 98

6.3 Performance Assessment of Case II . . . . . . . . . . . . . . . 100

6.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 104

x



6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusions and Future Work 110

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References 114

xi



List of Tables

5.1 Simulation scenarios of GMVF . . . . . . . . . . . . . . . . . . 80

5.2 Comparison of accuracy for different constraints on average de-

tection delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Fault descriptions of the Tennessee Eastman process. . . . . . 86

5.4 Process measurements of Tennessee Eastman process (measure-

ments corresponding to flow rate, temperature, level, and pres-

sure are indicated by blue, red, yellow, and green colors, respec-

tively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Alarm score of process variables . . . . . . . . . . . . . . . . . 105

6.2 Simulation scenarios . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Optimal α for process variables . . . . . . . . . . . . . . . . . 106

xii



List of Figures

2.1 Closed-loop diagram . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 ROC curves and different trip-points . . . . . . . . . . . . . . 14

2.3 Simulation result for η = 0.5 and ψ = 5 . . . . . . . . . . . . . 22

2.4 Simulation result for η = 1.2 and ψ = 1 . . . . . . . . . . . . . 23

2.5 ROC curves for two sets of η and ψ . . . . . . . . . . . . . . . 24

3.1 Comparison of ROC curves and different thresholds. . . . . . . 28

3.2 An alarm variable with a large |µv1 − µ̄v1 | and a small σ2
v1
+ σ̄2

v1
.

The solid green line indicates the alarm threshold and the green

dotted line shows the time of occurrence of abnormality. . . . 30

3.3 An alarm variable with a small |µv2 − µ̄v2 | and a large σ2
v2
+ σ̄2

v2
.

The solid green line indicates the alarm threshold and the green

dotted line shows the time of occurrence of abnormality. . . . 31

3.4 Diagram of the system. . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Counter-current shell-and-tube heat exchanger network consist-

ing of three heat exchangers connected in cascade. . . . . . . . 44

3.6 Trade-off between control and alarm performance (p1 and p2 are

corresponding to better control and alarm performance, respec-

tively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Simulation result of the design for better control performance

(point p1 in Fig. 3.6). . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Simulation result of the design for better alarm performance

(point p2 in Fig. 3.6). . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 ROC curves of two design scenarios. . . . . . . . . . . . . . . . 48

4.1 Diagram of the proposed system. . . . . . . . . . . . . . . . . 52

xiii



4.2 Two water tanks system . . . . . . . . . . . . . . . . . . . . . 63

4.3 ROC curves of various alarm filter configurations where r = 5 64

4.4 ROC curves of various alarm filter configurations where r = 35 65

4.5 Time trends of alarm signals and the corresponding alarm states

(highlighted green and red areas show the normal and abnormal

operation modes, respectively, and dotted lines show the alarm

trip-point) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Comparison of the AUC that is evaluated analytically, and the

AUC that is determined by Monte Carlo simulation. . . . . . . 81

5.2 ROC curves of three different methods. . . . . . . . . . . . . . 83

5.3 Comparison of accuracy in terms of FAR+MAR for various

alarm trip-points. . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Comparison of average detection delays for various alarm trip-

points. Solid red lines show the constraints on detection delays

and dotted black lines indicate the corresponding bound on trip-

point to achieve the appropriate detection delay. . . . . . . . . 84

5.5 A diagram of the Tennessee Eastman process [4]. . . . . . . . 85

5.6 Raw data of XMEAS (22). . . . . . . . . . . . . . . . . . . . . 88

5.7 Filtered data and its distribution corresponding to XMEAS

(22), considering random filter coefficients where N = 2. . . . 88

5.8 Filtered data and its distribution corresponding to XMEAS

(22), considering random filter coefficients where N = 12. . . . 89

5.9 Original ROC (blue) and analytically evaluated ROC (black)

of filtered data XMEAS (22), considering random coefficients

where N = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.10 Original ROC (blue) and analytically evaluated ROC (black)

of filtered data XMEAS (22), considering random coefficients

where N = 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.11 Comparison of ROC curves for two conventional and two gen-

eralized moving variance filters. . . . . . . . . . . . . . . . . . 92

xiv



5.12 Comparison of average detection delays for conventional and

generalized moving variance filters. . . . . . . . . . . . . . . . 93

6.1 Simulation results for various filter orders, where qi = 1, ∀i ∈

{1, 2, · · · , N − 1}, and α = αopt. . . . . . . . . . . . . . . . . . 105

6.2 Simulation result of A(y) where qi’s are selected according to

Table 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Analytically evaluated optimal α (using the equation in (6.27))

and simulation result for various choices of α with N = 3. . . . 107

6.4 Time trend and histogram of x2. . . . . . . . . . . . . . . . . . 108

6.5 Time trend and histogram of y2 (filtered version of x2 according

to the scenario 1 with N = 3). . . . . . . . . . . . . . . . . . . 108

xv



List of Symbols

R Set of Real Numbers

N Normal (Gaussian) Distribution

X 2 Chi-square Distribution

Γ(., .) Gamma Distribution

Γ(.) Gamma Function

ψ(.) Digamma Function

erf(.) Error Function

Subscript “n” Indicates the Normal Operation Modes

Subscript “ab” Indicates the Abnormal Operation Modes

∝ (∝∼) Proportionality (Approximately Proportionality)

I Identity Matrix

0 Zero Matrix or Zero Vector

1 One Matrix or One Vector

MT Transpose of Matrix M or Vector M

M−1 Inverse of Matrix M

diag(.) Diagonalization Operator of a Matrix

∥.∥ Euclidean-based Norm

≺ (⪯) Negative Definiteness (Semi-definiteness) of a Matrix

≻ (⪰) Positive Definiteness (Semi-definiteness) of a Matrix

(.)T Transposed Elements in the Symmetric Position of
a Matrix

xvi



List of Acronyms

ADD Average Detection Delay

ARX Auto-Regressive Exogenous

AUC Area Under the Curve

CDF Cumulative Distribution Function

EWMA Exponentially Moving Average Filter

FAR False Alarm Rate

FIR Finite Impulse Response

GMAF Generalized Moving Average Filter

GMVF Generalized Moving Variance Filter

HE Heat Exchanger

HEN Heat Exchanger Network

IID Independently and Identically Distributed

ISA International Society of Automation

LLR Log-Likelihood Ratio

LMI Linear Matrix Inequality

LTI Linear Time-Invariant

MAR Missed Alarm Rate

PDF Probability Density Function

PID Proportional–Integral–Derivative

ROC Receiver Operating Characteristic

TEP Tennessee Eastman Process

xvii



Chapter 1

Introduction

In this chapter, first we introduce fundamental concepts of abnormality detec-

tion systems. Then, we demonstrate current advances in abnormality detection

systems, as well as the contributions of this thesis.

1.1 Motivation and Background

Safety and reliability are of great importance in industrial processes. However,

they are prone to various faults and abnormal operations. To reduce failures

of industrial plants, alarm systems are developed to notify operators of any

possible abnormal operations or equipment malfunctions. Based on industrial

standard ANSI/ISA-18.2 [92], an alarm system is the “collection of hardware

and software that detects an alarm state, communicates the indication of that

state to operators, and records changes in the alarm state”. Detection of

abnormalities is one of the most challenging tasks for alarm systems, and

thus attracted the attention of practitioners as well as researchers where they

utilized various methods to generate alarm signals from process variables. In

an ordinary alarm system, the process variables are compared with some fixed

trip-points and if they exceed that, an alarm is raised. In an ideal situation, for

each abnormality, one and only one alarm should be raised. However, this is

not the case in almost all industrial applications which led to the development

of more sophisticated alarm detection methods. A recent study reports several

company losses for up to $3.4 billion each, all incidents relating to alarm

management issues [39]. The possible consequences of a defective alarm system
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are not limited to financial losses or even environmental issues. In the Piper

Alpha Oil rig disaster, 167 men died due to an incapacitated alarm system

[13].

Aside from the advanced and automated control and monitoring systems,

it is the human role to indicate whether the plant works normally or not.

According to the industrial alarm standards introduced by the Engineering

Equipment and Materials User Association (EEMUA) [36], human limitations

should be taken into account when designing alarm management systems.

Nevertheless, routinely, plant operators are exposed to overwhelming numbers

of alarms to deal with [48], [82]. This may hinder a prompt and accurate

reaction. It is worth noting that in practice alarms are not always notifying of

a real abnormality which is referred to as the “cry wolf” effect (or false alarms)

[66]. The problem of unnecessary alarms is not only limited to industries; a

study conducted by [63] surprisingly shows that over 94% of alarm warnings in

intensive care units are clinically worthless. Ref. [41] reported that false alarms

impede clinical care in anesthesia environments. Ref. [18] stated the problem

of false alarms in forest-fire detection. Ref. [1] conducted some experiments to

explore the effects of missed alarms on a driver’s trust in alarm systems. This

phenomenon, in addition to distracting the plant operators, can also attenuate

the trust of operators to alarm systems. Besides, the worst part is regarding

the alarms that should have been raised but are missed. Inspired by this great

demand to improve alarm systems, researchers have proposed statistical tools

and data analysis methods to improve alarm systems [39], [99]. A satisfactory

alarm system should reduce false alarms while announcing every abnormal

situation [53].

1.2 Alarm Performance Measures

There are two generally accepted indices to quantify the accuracy of alarm

systems, the false alarm rate (FAR) and missed alarm rate (MAR). False

alarms happen when the plant is working normally, but the alarm system

raises an alarm which can distract and mislead operators. Missed alarms
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are the potential alarms that should have notified the abnormal operation of

the plant but have not been raised, which can cause serious damage to the

equipment. So an important design consideration of an alarm management

system is to reduce false and missed alarms. To this aim, receiver operating

characteristic (ROC) curves have been widely used in many publications as a

metric for the accuracy of alarm systems [8], [26], [107]. An ROC curve is a plot

of the missed alarms rate versus the false alarms rate when the corresponding

trip-point spans over all possible values. The area under the curve (AUC) is

another metric that was developed based on ROC curves [68]. The AUC is

an integral measure of FAR and MAR for all trip-points. So minimizing AUC

results in the minimization of FAR and MAR regardless of trip-points. In

[69] the author studied an optimal alarm trip-point design problem based on

a state-space model of the system and the AUC.

The aforementioned alarm performance indices (FAR, MAR and AUC) are

related to the accuracy of alarm systems, However, promptness of an alarm

system is also an important factor [67]. In [7], [8] an average detection delay

(ADD) is considered and the trade-off among FAR, MAR and ADD is justified.

The authors also proposed a method to compromise among these three indices.

1.3 Alarm System Improvement Methods

For the improvement of alarm systems many configurations have been pro-

posed by researchers that can be categorized as basic and advanced methods.

Basic methods are:

• Filters: Moving average [7], moving variance [54], quadratic [26], rank-

order [90], etc.

• Deadbands: Measurement-Deadbands [49] and time-deadbands [10], [72].

• Delay-timers: On and off delay-timers [59], [111] and generalized delay-

timers [6].

Advanced methods are: dynamic alarming [98], predictive alarming [51], [55],

state-based alarming [73], etc.
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A common issue in alarm systems is several alarms raised during a short time

for a single variable which is called alarm chattering [49]. This phenomenon is

related to random noise and/or disturbances on process variables that are used

for alarming, mainly if values of process variables are close to the associated

alarm trip-points [36]. Moreover, repeated on-off actions of control loops can

cause chattering alarms by making a frequent transition between alarm and

non-alarm states [97]. To tackle chattering alarms it is crucial to first detect

their existence. In Ref. [74] the balance of alarm occurrences and operator

response was used as an index to identify alarm chattering. Another index

based on the alarm run lengths was introduced and an efficient redesign of

alarm systems based on that index was proposed in [60]. In [72] the relationship

of the deadband, chattering and alarm limit was discussed. Alarm shelving

mechanisms are also exploited to reduce alarm chattering [12], [88].

An alarm flood is another problem which is the situation that more than

10 alarms occur during 10 or less minutes [36]. This huge amount of alarms

can cause emergency plant shutdown to prevent potential damages. Similar to

this benchmark, a human performance modeling study justified that operators

could effectively manage at most 11 alarms per 10 minutes [78]. To solve this

problem, similarity analysis [11], pattern mining [28], [62], and causal analy-

sis [79] were introduced to reduce alarm floods. The focus of these methods

was on the application of data-driven techniques to reduce alarm floods. Ac-

cording to Ref. [39], alarm floods could occur due to improper configurations

of alarm variables, unnecessary alarms assigned for single equipment, or too

many alarms configured on various process variables. In light of these major

causes, instead of exploiting new techniques to reduce alarm floods, a promis-

ing solution is by improving the current alarm systems to raise less false and

redundant alarms. This includes (but is not limited to) revisit of problems of

alarm filter design and combining alarm signals that are set for single equip-

ment. These points are considered in the proposed method of this thesis.

Furthermore, numerous process variables are measured by deployed sensors in

the plants. So it is crucial to determine the process variable that is the best

representative in case of fault occurrence. As an example, Ref. [38] addressed
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this problem by ranking alarm variables based on a fuzzy clustering algorithm.

We also need an analytical solution to identify the optimal process variable for

filtering. In the proposed analysis of this thesis, this problem is also addressed

for special classes of nonlinear alarm filters.

Industrial plants are highly interconnected systems where an abnormality

can propagate through the whole system and raise many alarms. So another

technique to increase the efficiency of alarm systems is to investigate the re-

lationship of raised alarms, which is called alarm root cause analysis [47],

[79], [104]. According to this relationship, alarms can be categorized in some

groups and the operator will receive the name of the groups instead of the

whole alarms. Ref. [2] presented an approach to construct Bayesian networks

for root cause analysis based on learning techniques and knowledge of plants.

Bayesian networks also were used in [100] to investigate root causes of alarms

in thermal power plants in a special case where alarm variables took binary

values.

Owing to the large volume of industrial process data, learning based tools

are also exploited to detect abnormalities. A two stage algorithm based on

symbolic aggregate approximations and hidden Markov models was explored

in [108]. This approach only used normal operation mode data to detect ab-

normalities. In [25], a random forest algorithm was suggested for the early

abnormality detection of photovoltaic arrays. Ref. [56] proposed a method

based on convolutional neural networks to monitor the conditions of a wind

turbine gearbox. Deep belief networks were established in [109], [110] to ex-

tract some abstract information from process data for detection of abnormal-

ities. Although these learning based methods show significant improvements

in some cases, it is not straightforward to analytically determine their alarm

performance. Furthermore, due to their complex structures, they should be

tuned mostly based on data. Hence, the possibility of obtaining analytical

performance is an advantage of classical alarm filtering methods over learning

based approaches.

In this thesis, our focus is on the alarm filters and their relationship with

control systems. Moving average and moving variance filters are two important
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and widely used alarm filters in industrial applications. An abnormality may

appear in the mean change or the variation change of some process variable,

which can be detected by moving average and moving variance filters, respec-

tively. Without imposing any constraint on the filter structure, the optimal

filter is the log-likelihood ratio (LLR) filter (see [64]). However, in process

industries, these filters are not as popular as moving average and variance fil-

ters. In [27], it has been proved that among all linear finite impulse response

(FIR) filters with similar complexity (namely, filter order), the moving aver-

age filter is the optimal one to detect mean changes. However, the effect of

filter size and coefficients on the efficiency of the alarm system was not ad-

dressed explicitly. [77] addressed the problem of mean change detection in

non-stationary environments. They developed a learning-based method to ob-

tain the optimal setting for an exponentially moving average filter (EMWA).

Their proposed method could reduce the rates of false alarms and the delay

of abnormality detection. Nevertheless, no calculation or estimation of the

rates of false and missed alarms was given in the paper. In most situations, an

abnormality changes the operating points of some process variables, which can

be captured as a change in the mean value. However, there are some cases that

the abnormality only affects variations of some process variables. By perform-

ing a survey, the major causes of oscillations in plants are changes in product

variability [16], process interactions, aggressive controller setting, disturbances

[87], and sticky behavior of control valves [29]. A moving variance filter can

be used to detect this kind of abnormality. Although in some papers such

filters are designed by proposing optimization algorithms (see [26], [27]), there

is no explicit solution, especially for the cases that the filter coefficients are

selected heterogeneously. In [44], a method for detecting variance changes was

introduced, considering that the nominal variance is unknown. [58] proposed

a method based on the Kantorovich distance of some principal components to

detect changes of variance. Despite Kantorovich distance based filters, moving

window based filters provide more intuition about the process operation for

plant operators.

Some alarms may also occur due to some changes in the plant. Regarding
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that, [114] improved the alarm system during the plant start-up by suppressing

the alarm system. Ref. [22] introduced a method for automatic adaptation of

alarm trip-points to deal with the varying process situations. A geometric pro-

cess control method was proposed in [23] to obtain dynamic alarm trip-points

from the best operating zones using historical data. Mode-based alarming

strategies are also suggested for this issue. These methods rely on proficient

knowledge of the process to avoid alarm overloading [20], [45], [46]. Inspired

by the uncertainty in the models of a plant, all of these methods are either

data-driven or use just a limited knowledge from the plant. As a result, the

role of the physical plant and especially the controller has attracted some at-

tention. Ref. [15] proposed a model-based approach based on particle filtering

for stochastic systems, but the controller was not addressed in the paper. Ref.

[35] proposed an optimization algorithm to balance the fault detectability and

the closed-loop control performance by tuning the controller. The interplay of

fault detectability and control performance has already been pointed out [84],

[113]. The focus of these references was on the fault detection part; they either

did not use any alarm performance or consider some deterministic metrics. So

there is still a need for a method that utilizes statistical metrics such as FAR

and MAR.

Alarm system design has already been investigated for uncorrelated pro-

cess variables. But the real plants are known to be interconnected dynamical

systems which result in the correlated process data even in open-loop con-

ditions. This is definitely true for a plant when it works in the closed-loop

mode. A limited number of publications proposed some techniques to attain

some solutions for this problem [94], [95], [101]. These work are devoted to

alarms systems with either deadbands or delay timers, and the one with filter

is still an open problem. Moreover, according to the ISA standard, there are

other factors outside alarm systems that are important to the effectiveness of

alarm systems [52]. In addition to plant behavior, the controller dynamics

can influence the overall performance of alarm systems. This motivated us to

study alarm filters while taking into account plant and controller dynamics.
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1.4 Thesis Contributions

The focus of this thesis is model based and data driven methods for the im-

provement of alarm systems. Design and analysis of this thesis are in the field

of control and alarm systems, and the contributions are listed as follows. In

Chapter 2, the effect of PID controllers on the performance of alarm systems

is studied and a design method based on linear matrix inequalities (LMIs)

is proposed. In particular, the following are the major contributions of this

chapter:

• A new index for alarm signals based on FAR and MAR is introduced.

• A new approach is introduced to design a controller which guarantees a

bound for the control performance as well as the alarm performance.

• It is shown that there is a trade-off between control and alarm perfor-

mance.

Chapter 3 presents a new approach to design a state-feedback controller to

satisfy specific requirements on control and alarm performance in the presence

of model uncertainty. This chapter has the following major contributions:

• The alarm signal of the previous chapter is extended to measure the

alarm performance of known systems and systems with parameter un-

certainties.

• A set of LMIs is proposed for the state-space controller design to satisfy

the required control and alarm performance in a robust manner.

The previous two chapters study the controller design problem. In Chapter

4 the problem of alarm filter design is studied. Major contributions of this

chapter are as follows:

• A new method for obtaining optimal filter coefficients by incorporating

the knowledge of plant and control systems while relaxing the indepen-

dence assumption.
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• It is justified that the conventional moving average filter is not optimal

for the detection of mean changes when the independence assumption

on process measurements is relaxed.

The rest of this thesis is devoted to data driven techniques. In the next two

chapters, application of the proposed alarm index in Chapter 1 for second

order alarm filters is illustrated. The major contributions of Chapter 5 are

listed in what follows:

• A Gaussian approximation is derived for the output of generalized mov-

ing variance filters.

• Based on this approximation, an explicit relationship of filter parameters

and the optimal solution is provided.

• It is proved that the conventional moving variance filter is the optimal

configuration if only the detection accuracy is considered. But in the

case study, via a counter-example, we show that this statement does not

hold if we also take the detection delay into account.

Chapter 6 has the following major contributions:

• An analytic result for the alarm performance of quadratic alarm filters

is derived; then the optimal solution is obtained.

• A new score is introduced, which helps the plant operators to determine

an appropriate process variable for alarm purposes.

• It is demonstrated that for different filter structures, the efficient choice

of process variables might be different.

1.5 Thesis Organization

The remaining of the thesis is organized as follows. Chapter 2 is on design and

analysis of the PID controllers on alarm systems. In Chapter 3 a robust state-

feedback controller design method is introduced by taking alarm performance

into account. Chapter 4 introduces a new method to design alarm filters by
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using the information from the plant and controller. In Chapter 5 a method for

optimal design of the generalized moving variance filters is proposed. Chapter

6 deals with the performance evaluation and design of quadratic alarm fil-

ters. Finally, Chapter 7 provides some concluding remarks and possible future

research directions.
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Chapter 2

Controller Synthesis with an
Alarm Performance Constraint

In this chapter, the influence of PID controllers on alarm systems will be

studied in case of actuator faults. A set of linear matrix inequalities (LMIs) will

be introduced to solve the problem. The LMI conditions will be obtained to

achieve an H2 gain criterion from the control point of view and a bound for the

alarm performance based on the new index. There are two parameters in the

LMIs which are related to the control performance and the alarm performance.

We will illustrate the effect and the trade-off of these two parameters by a

numerical example.

2.1 Problem Statement

Consider a discrete-time linear time-invariant plant P , described as

xpk+1 = Axpk +Buuk +Bwwk,

yk = Cxpk, (2.1)

where xpk ∈ Rn is the state vector, uk ∈ R is the control input, yk ∈ R

is the measurement, wk ∈ R is the external disturbance to the system and

A, Bu, Bw, and C are matrices with appropriate dimensions. It is not possible

to measure wk but it is assumed to have Gaussian distributions. Furthermore,

in the normal and abnormal cases it follows N (µn, σ
2
w) and N (µab, σ

2
w), respec-

tively. In other words, a fault will change the mean values of the distributions.
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Controller Plant

wk

ukrk ek yk

−

Figure 2.1: Closed-loop diagram

2.1.1 PD Controller

A discrete-time PD controller C is described as:

ek = rk − yk,

uk = kpek + kd(ek − ek−1),

where, ek is the error between a reference signal rk and the measurement yk,

kp and kd are proportional and differential gains of the controller, respectively.

We reformulate the equations to find a state space model of the controller. A

state space realization of the controller can be obtained as

xck+1 = ek,

uk = −kdxck + (kp + kd)ek, (2.2)

where xck ∈ R is the state variable of the controller.

The diagram of the control loop that is studied in this chapter is shown in

Fig. 2.1. Now assuming rk ≡ 0 and combining (2.1) and (2.2), the closed-loop

system from disturbance input wk to yk can be formulated as

xck+1 = −Cxpk,

xpk+1 = (A− (kp + kd)BuC)x
p
k − kdBux

c
k +Bwwk,

yk = Cxpk.

Let x̄k denote

[︄
xck

xpk

]︄
,

x̄k+1 =

[︃
0 −C

−kdBu A− (kp + kd)BuC

]︃
x̄k +

[︃
0
Bw

]︃
wk,

yk =
[︁
0 C

]︁
x̄k. (2.3)
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One of our aims in designing the controller is to achieve a good quality-

of-control. As the external disturbance to the system is considered to be

Gaussian, to quantify the control performance we consider an upper bound η

for the H2 norm of the plant from wk to yk. Let Gyw(z) denote the transfer

function of the closed-loop system from wk to yk. So one of our goals is to

satisfy

∥Gyw(z)∥2H2
≤ η. (2.4)

Another goal in designing the controller is to satisfy a bound on the alarm

performance. For this aim, in the next subsection a new alarm index for the

system is introduced.

2.1.2 Alarm Performance Index

We start with the ROC curves and the area under these curves. Two ROC

curves are shown in Fig. 2.2. It is desired to have ROC curves as close

as it is possible to the origin. To quantify these statement we can consider

the area under these curves. So the smaller AUC means the better alarm

performance. In Fig. 2.2, the curve ROCa has a better alarm performance

in comparison with the curve ROCb. It means that for a fixed MAR (FAR),

ROCa has smaller FAR (MAR) than ROCb. But, if an operator chooses the

trip-point to achieve b1 instead of a3, he will get a lower FAR but a very

larger MAR. A similar situation can happen for a1 and b3 points. However,

if the operator wants to compromise between FAR and MAR, it is better

to choose a2 instead of b2. It is worth noting that using this concept, we

can make a separation between controller design problem and alarm system

design problem. It means that the controller can be designed to achieve a

small AUC (according to the alarm requirements) and then the alarm design

problem is to choose the corresponding trip-point. The area under an ROC

curve corresponding to the signal yk with Gaussian distribution can be found

by modifying a result presented in [70] as

AUC = 1− Φ

(︄
|µyab − µyn |√︁
σ2
yab

+ σ2
yn

)︄
, (2.5)
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Figure 2.2: ROC curves and different trip-points

where µyab and µyn are the expected values of the signal in abnormal and nor-

mal cases, respectively, σ2
yab

and σ2
yn are the variances of the signal in abnormal

and normal cases, respectively, and the function Φ is defined as

Φ(x) =
1√
2π

∫︂ x

−∞
e−

1
2
z2dz. (2.6)

According to the fact that Φ is a strictly increasing function and supx Φ(x) = 1,

we can conclude that AUC is a strictly decreasing function of |µyab − µyn |(︁
σ2
yab

+ σ2
yn)

−1
2 . Thus, to minimize the AUC we need to maximize |µyab − µyn |(︁

σ2
yab

+ σ2
yn)

−1
2 . An intuition for this is that when |µyab − µyn | is large and

σ2
yab

+ σ2
yn is small it is easier to differentiate between normal and abnormal

operations of the system. So the greater this |µyab − µyn |
(︁
σ2
yab

+ σ2
yn)

−1
2 value,

the better alarm performance; and vice versa. Thus, to have a lower bound

on the alarm performance, the following condition should be satisfied:√︁
σ2
yab

+ σ2
yn

|µyab − µyn |
< ϕ, (2.7)

where ϕ is a design parameter corresponding to the alarm performance. A

smaller ϕ results in a better alarm performance and vice versa. To add con-
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dition (2.7) into the controller synthesis problem we need to reformulate it as

(µyab − µyn)
−2(σ2

yab
+ σ2

yn) < ϕ2. (2.8)

Let σ2
wab

and σ2
wn

denote the variance of input noise w(k) for abnormal and

normal cases, respectively. For a linear single-input single output system we

know that

σ2
yab

= σ2
wab
σ2
y , σ

2
yn = σ2

wn
σ2
y , (2.9)

where σ2
y is the output variance of the system in response to a white Gaussian

noise. Furthermore, for the closed-loop system we have

Gyw(z) =
Pyw(z)

1 + Cue(z)Pyu(z)
. (2.10)

Now let us define g ≜ Gyw(1) as the DC gain of the closed-loop system. Fur-

thermore, let µwab
and µwn denote the expected values of input noise w(k)

for abnormal and normal cases, respectively. The relationship of the expected

value of yk and wk for abnormal and normal cases can be described as

µyab = gµwab
, µyn = gµwn . (2.11)

Using (2.9) and (2.11), the equation in (2.8) can be modified as

σ2
yg

−2 < ψ2, (2.12)

where

ψ =
|µw

ab − µw
n |ϕ

(σ2
wab

+ σ2
wn
)
.

Now the controller synthesis problem is to design a stabilizing PD controller

C to guarantee an upper bound for the H2 norm of the system from wk to yk

with the constraint of (2.12).

Remark 1 Based on the new alarm index we can claim that the integral term

in the classical PID controller can decrease the alarm performance signifi-

cantly. Due to the integral term, the DC gain of a PID controller approaches

infinity. So if we choose the PID controller structure for C, according to (2.10)
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we can realize that Gyw(1) = 0 when Pyw(1) and Pyu(1) are bounded. So in view

of (2.7) the alarm index approaches infinity regardless of the variance of the

system. To gain more intuition, if the expected values for process data are the

same for both normal and abnormal cases, then it is very hard to differentiate

between these two cases with the trip-point.

2.2 Controller Synthesis

In this section a set of LMIs will be introduced to solve the optimization

problem. First let us find the relationship of g−1 from the constraint in (2.12)

and system matrices. We know that g = Gyw(1) so from (2.10) we have

g−1 =
1 + Cue(1)Pyu(1)

Pyw(1)
.

Using the state space realization of P and C we can find the DC gains as

Pyu(1) = C(I − A)−1Bu,

Pyw(1) = C(I − A)−1Bw,

and

Cue(1) = kp.

Thus, for a known plant, Pyu and Pyw are known and fixed. So we have

g−1 = α + βkp, (2.13)

where α ≜ P−1
yw (1) and β ≜ Pyu(1)P−1

yw (1).

Now we reform the closed-loop equation in (2.3) as

x̄k+1 = (A0 +B0KC0)x̄k + B̄wk

yk = C̄x̄k. (2.14)
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where

A0 ≜

[︃
0 −C
0 A

]︃
,

B0 ≜

[︃
0
Bu

]︃
,

C0 ≜

[︃
I 0
0 −C

]︃
,

B̄ ≜

[︃
0
Bw

]︃
,

C̄ ≜
[︁
0 C

]︁
,

and

K =
[︁
−kd kp + kd

]︁
. (2.15)

Before proceeding to the controller synthesis method, another modification

should be done on (2.14). We know that for a nonzero C matrix, C0 is of rank

2. So we can always find a transformation matrix T such that C0T = [I 0].

Then the new system matrices can be found as

A0 ≜ T−1A0T, B0 ≜ T−1B0,

B̄ ≜ T−1B̄, C̄ ≜ C̄T.

So (2.14) is converted to

x̄k+1 = (A0 + B0K[I 0])x̄k + B̄wk, (2.16)

yk = C̄x̄k. (2.17)

The main result of this chapter can be summarized as in the following theorem.

Theorem 2.2.1 Consider a plant described by (2.1) controlled by a PD con-

troller in (2.2) and assume that wk is a stochastic white noise with σw = 1.

The controller is stabilizing and guarantees the control and alarm performances

described by (2.4) and (2.7) if P ≻ 0, X1, X2 and L can be found that satisfies

the following LMIs ⎡⎣ P A0X + B0L B̄
(.)T X +XT − P 0
(.)T (.)T 1

⎤⎦ ≻ 0, (2.18)
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[︃
η C̄X

(.)T X +XT − P

]︃
≻ 0, (2.19)⎡⎢⎢⎣ψ2η−1 α + βL

⎡⎣11
0

⎤⎦
(.)T 1

⎤⎥⎥⎦ ≻ 0, (2.20)

where

L ≜ [K 0], (2.21)

and

X ≜

[︃
I 0
X1 X2

]︃
. (2.22)

Proof. First we introduce two lemmas which are used in the proof. The first

lemma presents a set of inequalities to guarantee the stability and a bound on

the output variance. The second lemma helps us to convert our inequalities

to a set of LMIs.

Lemma 2.2.2 Consider a linear time-invariant system described by (2.16)

and (2.17), where wk is a stochastic white noise. The system is asymptotically

stable and σ2
yg

−2 < ψ2 if there exists a matrix P ≻ 0 such that

(A0 + B0K[I 0])P (A0 + B0K[I 0])T + B̄B̄T ≺ P, (2.23)

g−2C̄P C̄T
< ψ2. (2.24)

Proof. According to a theorem from [85] for output covariance of linear

time invariant systems we know that a system is asymptotically stable if

(2.23) holds and further more we have σ2
y < C̄P C̄T

. Also we have g−2 > 0

so σ2
yg

−2 < g−2C̄P C̄T
. Thus, σ2

yg
−2 < ψ2 holds if (2.24) holds. □

The closed-loop equation of the system in (2.16) can be viewed as a static

output-feedback design problem. The following lemma is a result from [33]

where the author introduced a new structure for the LMIs to increase degrees

of freedom.
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Lemma 2.2.3 For the system described by (2.16) and (2.17) a static output-

feedback controller K exists such that ∥Gyw(z)∥2H2
≤ η from wk to yk if LMIs⎡⎣ P A0X + B0L B̄

(.)T X + X T − P 0
(.)T (.)T 1

⎤⎦ ≻ 0, (2.25)

[︃
η C̄X

(.)T X + X T − P

]︃
≻ 0, (2.26)

hold for variable matrices P ≻ 0, X , and L with following structures:

L ≜
[︁
L1 0

]︁
,

X ≜

[︃
X11 0
X21 X22

]︃
. (2.27)

Then a static output-feedback can be obtained as

K = L1X−1
11 . (2.28)

To use this lemma we impose structure of (2.22) on (2.27) so X11 is set to be I

in (2.27). Now we observe that (2.18) and (2.19) are equivalent to (2.25) and

(2.26), respectively, where X = X L = L.

The matrix P is positive definite; so

(P −X)TP−1(P −X) ⪰ 0.

Hence

XTP−1X ⪰ X +XT − P. (2.29)

From (2.18) by using Schur’s complement lemma [30], we can conclude that

X +XT − P−1 ≻ 0; so X should be non-singular because P ≻ 0. Combining

this fact with (2.29) yields

X−1P (XT )−1 ⪯ (X +XT − P )−1,

or

P ⪯ X(X +XT − P )−1XT . (2.30)

Again by using Schur’s complement lemma, the inequality (2.18) can be writ-

ten as

P −
[︁
A0X + B0L B̄

]︁ [︃(X +XT − P )−1 0
0 1

]︃ [︃
(A0X + B0L)

T

B̄T

]︃
≻ 0.
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Now using (2.21) and doing a simple matrix calculation we have

P ≻ (A0 + B0K[I 0])X(X +XT − P )−1XT (A0 + B0K[I 0])T + B̄B̄T
. (2.31)

Combining (2.30) and (2.31) satisfies (2.23). Again by applying Schur’s com-

plement lemma on (2.19) we can obtain

η > C̄X(X +XT − P )−1XT C̄. (2.32)

By comparing (2.30) and (2.32) we have

η > C̄P C̄T
. (2.33)

Plugging (2.21) into (2.20) and applying Schur’s complement lemma yields

ψ2η−1 −

(︄
α + β[K 0]

⎡⎣11
0

⎤⎦)︄(︄α + β[K 0]

⎡⎣11
0

⎤⎦)︄T

> 0, (2.34)

By recalling (2.15), (2.34) can be written as

ψ2η−1 − (α + βkp)(α + βkp)
T > 0, (2.35)

where α + βkp is a scalar. (2.13) and (2.35) together yield

ψ2 > g−2η. (2.36)

Finally, combining (2.33) and (2.36) proves (2.24), which concludes the proof.

□

2.3 Simulation Result

In this section we illustrate the effectiveness of our method and the effects of

η and ψ on the control and alarm performances. Consider a plant described

by (2.1) where

A =

[︃
−0.25 0
0.3 1.18

]︃
,

Bu =

[︃
0.9
−0.7

]︃
,
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Bw =

[︃
0.3
0.1

]︃
,

C =
[︁
0.8 0.6

]︁
.

We assume that for the normal and abnormal cases wk follows N (0, 1) and

N (2, 1), respectively. First we design the controller such that we have a good

control performance. So we set η = 0.5 and ψ = 5. By solving the LMIs

(2.18), (2.19), and (2.20) the variable matrix K can be obtained as

K =
[︁
−0.012 −0.708

]︁
.

So recalling (2.15), the PD controller can be designed as

uk = −0.72ek + 0.012(ek − ek−1).

The simulation result is shown in Fig. 2.3. The top plot indicates the pro-

cess data yk for 2000 samples where an abnormality happened at the 1000’th

sample. The trip-point is designed based on the available data to minimize

the summation of FAR and MAR. The bottom plot shows the alarm signal

generated from the aforementioned process data. When the process data is

greater than the trip-point, an alarm is raised and the alarm signal is set to

1; when it is smaller than the trip-point, the alarm signal is set back to 0.

According to this figure, before the time that the abnormality happened, we

have many alarms raised. These are considered as false alarms which are un-

desirable. From the other side, when the abnormality happened and stayed,

the alarm signal should remain raised. However, due to the noise we can see

that it is turning off and on; hence there are missed alarms.

Now let us set η = 1.2 and ψ = 1 to have a good alarm performance this

time. By doing the same procedure we have

K =
[︁
0.088 −0.712

]︁
,

and the PD controller is obtained as

uk = −0.624ek − 0.088(ek − ek−1).

Result of the simulation for this case is shown in Fig. 2.4. As we expected, a

better alarm performance is achieved with this controller. Before happening
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Figure 2.3: Simulation result for η = 0.5 and ψ = 5

of the abnormality, we have a fewer number of false alarms and also after it,

we have fewer missed alarms.

We can compare two scenarios from both control and alarm points of view.

Fig. 2.5 gives the ROC curves of two scenarios. The dotted line corresponds to

the scenario that we designed the controller for a better control performance

and the solid line is corresponding to the scenario that we wanted a better

alarm performance. As a result, the AUC of the solid curve is smaller than

that of the dotted curve. However, the amplitude of process data in Fig. 2.4 is

smaller than Fig. 2.3 which means the controller of the first scenario rejected

the effect of disturbance better than the controller of the second scenario.

It is important to note that the H2 controller reduces the variance of out-

put signal which is desired both for the control and alarm systems. However,

it also rejects the effect of disturbance; so the trip-point is designed with a

lower magnitude. In fact, if we want a good control performance, the sta-

tistical parameters of process data for both the normal and abnormal cases
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Figure 2.4: Simulation result for η = 1.2 and ψ = 1

will be similar; so it is harder to differentiate them. When the controller is

designed to have a good alarm performance, the effect of disturbance can be

seen in the process data and it is easier to differentiate between normal and

abnormal cases. Thus, as a drawback we have a lower control performance

in this scenario. So we can conclude that there is a trade-off for control and

alarm performance.

2.4 Summary

In this chapter, we proposed a new approach to tune a PD controller which

compromises both the control performance and alarm performance. The con-

trol performance is measured based on the H2 norm of the system. For the

alarm performance, we introduced a new alarm index based on the area under

ROC curves. This chapter also introduced a new framework for co-design of

the control system and alarm system. A sub-optimal solution for this co-design
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Figure 2.5: ROC curves for two sets of η and ψ

problem is given based on sufficient LMI conditions. Furthermore, the trade-

off between control performance and alarm performance is illustrated using a

numerical example.
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Chapter 3

Control and Alarm Interplay
and Robust State-feedback
Design with an Alarm
Performance Constraint

In this chapter, we propose a new approach to design a state-feedback con-

troller to satisfy specific requirements on control and alarm performance in the

presence of model uncertainty. The control performance is measured based on

an H2-norm of the system. For the alarm performance, FAR and MAR are not

appropriate to be used in the control design problem as a constraint. However,

we use a new alarm performance index based on these two metrics, which can

be either added in the cost function or as a new constraint in the controller

design problem. We introduced a preliminary version of this index in Chapter

2 by exploiting area under a receiver operating characteristic (ROC) curve

which is a popular measurement for efficiency of classifiers. The index pro-

posed in Chapter 2 could only be utilized to measure alarm performance of

signals. In the current chapter, we extend it to evaluate the effect of linear

systems on the alarm performance of signals. This index eventually is used as

an alarm performance constraint for our controller design problem. We also

show how this index can be used in the presence of model uncertainty. An-

other contribution of this chapter is to justify the interplay of state-feedback

controllers and alarm systems in case of actuator fault. Intuitively, we know

that a good controller compensates the effect of abnormalities in the output
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which impedes distinguishability of normal and abnormal situations. So we

propose a linear matrix inequality (LMI) based solution to compromise the

control and alarm performance.

3.1 Alarm Performance Index

In process industries, the most popular strategy for detecting abnormalities

is based on comparing the value of a process variable with a constant alarm

threshold [99]. Then the alarm triggered based on that process variable, which

is referred to as an alarm variable. Let v(k) and vth denote the alarm variable

and the associated alarm threshold, a high (low) alarm state is expressed as{︄
alarm, v(k) > (<) vth,

no alarm, otherwise.
(3.1)

A large class of abnormalities that appear as operation point shifts of some

alarm variables can be captured by this mechanism. Various alarm indices

are introduced to evaluate the capability of alarm systems for distinguishing

between normal and abnormal operation modes. Following the preliminary

result for the new alarm performance index (or simply alarm index) that we

introduced in Ref. [80], we will extend and study the alarm index in depth. The

alarm index can be adopted for Gaussian alarm variables as well as systems

driven by Gaussian alarm variables. In both cases it has a close relation to the

classification problems where various thresholds are considered to classify a set

of raw data into two categories. We start with the concept of area under the

curves (AUC) for receiver operating characteristics (ROC) curves. ROC plots

show the relation of the missed alarm rate (MAR) and false alarm rate (FAR)

at various alarm thresholds. Then we introduce an appropriate measure for

linear time-invariant (LTI) systems which can eventually lead us to design a

controller that guarantees a desired level of performance for the alarm system.

Suppose that fv,ab(·) and fv,n(·) represent the probability density function

(PDF) of v in the abnormal and normal operation modes, respectively. For
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high alarms (c.f. (3.1)), MAR and FAR are obtained as follows:

MAR =

∫︂ vth

−∞
fv,ab(τ) dτ,

FAR =

∫︂ ∞

vth

fv,n(τ) dτ.

Here, fv,ab(·) and fv,n(·) can be estimated from historical process data. Now

the ROC curve can be found as the plot of MAR versus FAR when the thresh-

old vth spans all real numbers. Although this formulation only holds for high

alarms, a similar one can be obtained for low alarms. Likewise, the correspond-

ing ROC curve can be plotted, thus, the AUC analysis can be applied to this

case as well. For simplicity, the focus of our derivations is on high alarms. But

with some slight modifications, the final result remains valid for the case of low

alarms. In Fig. 3.1 the curve with closer points to the origin, corresponds

to better alarm performance. Here we can measure the closeness by AUC.

The AUC is classification-threshold-invariant as it measures the classification

quality irrespective of what value is chosen as the threshold. Hence, it is not

capable of prioritizing the minimization of FAR of MAR, which might be of

interest in different applications (usually minimization of MAR is more impor-

tant but some other consideration may arise due to the “cry wolf” effect [99]).

However, after tuning the controller to achieve the desirable classification, the

designer can make a compromise by selecting the threshold according to the

design requirements. As an example, in Fig. 3.1, with no more details about

the application, the design which results in the ROCa is more desirable than

the one with ROCb. The reason is that for a particular MAR (resp. FAR),

ROCa has s smaller FAR (resp. MAR) than ROCb. However, one may realize

that b1 (resp. b3) has a lower FAR (resp. MAR) than a3 (resp. a1); but as a

drawback, b1 (resp. b3) has a significantly greater MAR (resp. FAR) in com-

parison with a3 (resp. a1). In this example, the middle point of a curve with

the lower AUC (a2) yields a better performance than b2. In this figure, ROCc

corresponds to the case that the mean values of the normal and abnormal cases

are very close. This curve confirms that under this condition, separating these

two modes can not be done with a constant threshold. It is worth emphasizing
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Figure 3.1: Comparison of ROC curves and different thresholds.

that using AUC made it possible to separate controller synthesis and alarm

system design problems. The controller is chosen to produce a smaller AUC

for the alarm system, and in the next step, the threshold of the alarm system

is set to achieve the desired MAR and FAR.

3.1.1 Alarm Index for Signals

Consider a discrete-time alarm variable v(k) ∈ R with a Gaussian distribution

compared with a threshold to generate an alarm signal. Let µv and µ̄v de-

note the expected values of v(k) in normal and abnormal cases, respectively.

Furthermore, σv and σ̄v correspond to the square root of variance of v(k) in

normal and abnormal cases, respectively. The occurrence of abnormality can

be represented as

v(k) ∼

{︄
N (µv, σv

2), normal,

N (µ̄v, σ̄v
2), abnormal.

(3.2)
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Without loss of generality, we assume that µ̄v > µv. Now the rates of false

and missed alarms are obtained as

MAR =

∫︂ vth

−∞

1√
2πσ̄v

e
− (τ−µ̄v)

2

2σ̄2
v dτ,

FAR =

∫︂ ∞

vth

1√
2πσv

e
− (τ−µv)

2

2σ2
v dτ.

The AUC for the corresponding ROC curve is given by Ref. [70] as

AUC = 1− Φ(
|µv − µ̄v|√︁
σ2
v + σ̄2

v

), (3.3)

where

Φ(x) ≜
1√
2π

∫︂ x

−∞
e−

1
2
z2dz. (3.4)

The function Φ(x) is strictly increasing and supx(Φ(x)) = 1; so according to

the equation in (5.2), AUC is a strictly decreasing function of

√
σ2
v+σ̄2

v

|µv−µ̄v |
. We

define the alarm performance index for the alarm variable v(k) by

A
(︁
v
)︁
≜

√︁
σ2
v + σ̄2

v

|µv − µ̄v|
. (3.5)

This result, in comparison with FAR and MAR, simplifies the design problem

and also provides more intuition about the impact of the statistical parameters

of a alarm variable on the detectability of normal and abnormal operation

modes. As an example, consider two alarm variables v1(k) and v2(k) in the

view of (4.7) which are compared by some thresholds to generate alarm signals.

We also assume that |µv1 − µ̄v1 | > |µv2 − µ̄v2 | and σ
2
v1
+ σ̄2

v1
< σ2

v2
+ σ̄2

v2
. The

alarm variables and the generated alarms for v1 and v2 are shown in Fig. 3.2

and Fig. 3.3, respectively. For both cases, the abnormality happens after

50 samples; so any alarm before this time is a false alarm and any alarm

that should have occurred after that but have not occurred is a missed alarm.

According to Fig. 3.2, classification of v1(k) into normal and abnormal cases

results in a lower MAR and FAR and hence a better alarm performance in

comparison with the one in Fig. 3.3. This is due to the fact that variations

of v1(k) is small in comparison with the magnitude of abnormality. For v2(k),

however, MAR and FAR are worse, because the distributions of normal and
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Figure 3.2: An alarm variable with a large |µv1 − µ̄v1 | and a small σ2
v1
+ σ̄2

v1
.

The solid green line indicates the alarm threshold and the green dotted line
shows the time of occurrence of abnormality.

abnormal data have more overlap than the previous case, i.e., the two sets of

data are more similar. The proposed alarm index can be thought of as a map

between the area under the curve (which should be between 0 and 0.5) and real

positive numbers. Thus, if the abnormality does not significantly change the

mean value (i.e., µv ≈ µ̄v) the proposed index approaches infinity. Also, the

index is not defined when µv = µ̄v. Here, even though the variance may change

due to the abnormality, the area under the curve remains to 0.5. Furthermore,

as the considered control system and the plant together are assumed to be LTI,

the controller is not able to make the classification any better, which is aligned

with the view of the proposed index and the AUC index. But still, the plant

operator may choose a constant threshold and notice the fault occurrence by

observing the continuous switching of the alarm signal. A drawback of this

method is experiencing a high rate of either false or missed alarms (or more

precisely, chattering alarms). A solution to this problem is by utilizing some

nonlinear filters such as those proposed by Ref. [27], [58], [81].

3.1.2 Alarm Index for Systems

We introduce the alarm index for a discrete-time LTI system Gyaw(z
−1), where

w(k) ∈ R denotes the input signal and ya(k) ∈ R denotes the output of G
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Figure 3.3: An alarm variable with a small |µv2 − µ̄v2 | and a large σ2
v2
+ σ̄2

v2
.

The solid green line indicates the alarm threshold and the green dotted line
shows the time of occurrence of abnormality.

which is used to generate the alarm. Here, w(k) and ya(k) follow the same

distribution as (4.7). It is important to note that FAR and MAR are defined

with respect to the stationary operation of the system (see for example Ref.

[106]). In alarm systems, the transient behavior is captured by the average

alarm detection delay (ADD). In this chapter, we focus on the accuracy of

the alarm system (measured as FAR and MAR); and so we only study the

stationary mode of abnormalities.

The alarm index for this system is defined as

A(Gyaw) ≜
A(ya)

A(w)
. (3.6)

The relation between the expected value of input and output of an LTI system

driven by a Gaussian signal is given by

µya = Gyaw(1)µw,

µ̄ya = Gyaw(1)µ̄w.

Moreover, the H2-norm of a system, represents the steady-state covariance of

the output in response to a white Gaussian noise [32]. Hence

σ2
ya = ∥Gyaw∥2H2

σ2
w,

σ̄2
ya = ∥Gyaw∥2H2

σ̄2
w,
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where ∥Gyaw∥H2 denotes the H2-norm of Gyaw. Now, (3.6) can be rewritten as

A(Gyaw) =
∥Gyaw∥H2

|Gyaw(1)|
. (3.7)

The proposed method results in reducing both FAR and MAR. However in

most real applications, MAR is more important than FAR. To make a com-

promise, plant operators can manipulate the alarm threshold to achieve a

lower number of missed alarms. The solution to this problem was addressed

in existing work such as Ref. [106].

Remark 2 For an LTI plant driven by w(k) in the form of (4.7) and regard-

less of the distribution parameters, we can design the controller so that for

the overall system, the alarm performance of the output ya(k) is improved in

comparison with that of the input w(k). So we use (3.7) as a design constraint

in the control design problem.

Remark 3 We can clearly observe that minimizing the numerator of A(Gyaw),

improves the alarm performance and is also desired from control perspective.

However, this minimization can also affect the denominator of A(Gyaw). So

there should be an optimal solution for the controller which compromises both

the alarm and control performance. But without considering this point, one

can realize that a minimum variance controller may work well in terms of

alarm performance.

Remark 4 This index is also aligned with the optimal solution of Fisher’s

linear discriminant classification for Gaussian distributions [21]. In this clas-

sifier, the ratio of between-class and within-class covariances is maximized.

Remark 5 It is straightforward to prove that for a series connection of LTI

systems Gi, i = 1, · · · , n, the introduced alarm performance has the following

property:

A(G1G2 · · ·Gn) = A(G1)A(G2) · · · A(Gn).
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Figure 3.4: Diagram of the system.

3.2 Problem Statement

Consider a discrete-time LTI plant G with two outputs y(k) ∈ R and ya(k) ∈

R and an input u(k) ∈ R which is corrupted by w(k) ∈ R. Here, w(k),

which is in the form of (4.7), is used to model the abnormality in the plant’s

actuator. Furthermore, y(k) is to evaluate the control performance, and ya(k)

is to generate the alarm signal. We denote the state of the plant by x(k) ∈ Rn.

A diagram of the system is shown in Fig. 3.4. The controllable canonical state-

space representation of the plant is given by⎧⎪⎨⎪⎩
x(k + 1) = (A+∆A)x(k) + B

(︁
u(k) + w(k)

)︁
,

y(k) = (C +∆C)x(k),

ya(k) = Cax(k),

(3.8)

(3.9)

(3.10)

where ∆A and ∆C represent parameter uncertainties. Furthermore, A, ∆A,

and B are given by

A =

⎡⎣
−a

0 I

⎤⎦ , ∆A ≜

⎡⎣
−δa

0 I

⎤⎦ , B =
[︁
0 0 · · · 1

]︁T
.

Let us define ā ≜ a + δa and C̄ ≜ C + ∆C. In real-world applications, Ca

is chosen by a designer, so it is accurately known. However, ā and C̄ are

found using a system identification method, so they may have uncertainty. It

is worth noting that, although Ca is accurately known, the uncertainty of ā

affects the alarm index.

Let δai and δci, i ∈ {1, · · ·n}, denote the ith elements of δa and ∆C, respec-

tively. It is reasonable to assume that

|δai| < δ̄ai , (3.11)

|δci| < δ̄ci , (3.12)
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where δ̄ai and δ̄ci are uncertainty bounds corresponding to the ith element of

δa and ∆C, respectively and are positive. Now we find the following norm-

bounded uncertainty structures:

∆A =MaFa, (3.13)

and

∆C =McFc, (3.14)

where

Ma =

⎡⎢⎢⎢⎣
0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
δ̄an δ̄an−1 . . . δ̄a1

⎤⎥⎥⎥⎦ , Fa =

⎡⎢⎢⎢⎣
fan 0 . . . 0
0 fan−1 . . . 0
...

...
. . .

...
0 0 . . . fa1

⎤⎥⎥⎥⎦ ,
and

Mc =
[︁
δ̄cn δ̄cn−1 . . . δ̄c1

]︁
, Fc =

⎡⎢⎢⎢⎣
fcn 0 . . . 0
0 fcn−1 . . . 0
...

...
. . .

...
0 0 . . . fc1

⎤⎥⎥⎥⎦ .
Here |fai | < 1, i = {1, 2, · · · , n} and |fci | < 1, i = {1, 2, · · · , n}; so we have

FaF
T
a ≺ I and FcF

T
c ≺ I.

3.2.1 State-feedback Controller

A full information state-feedback controller will be designed to stabilize the

system as well as to satisfy the control and alarm performance requirements.

The control signal is given by

u(k) = Kx(k). (3.15)

Combining (3.8) by (3.15) we can write the closed-loop equation of the system

as

x(k + 1) = (A+∆A+BK)x(k) + Bw(k), (3.16)
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3.2.2 Design Objectives

Our aim is to design a state-feedback controller to stabilize the plant G de-

scribed by equations in (3.8), (3.9), and (3.10) which also satisfies the following

conditions on the control and alarm performance:

∥Gyw∥2H2
< η, (3.17)

A2(Gyaw) < ψ, (3.18)

where ∥Gyw∥H2 is the H2 norm from w to y and A(Gyaw) is the alarm index

from w to ya.

3.3 Controller Synthesis

In this section, a set of LMIs is given to solve the robust optimization problem.

We design a state-feedback controller K for the system described in equations

(3.8) to (3.10) with constraints (3.17) and (3.18). The control performance has

been studied in many other publications, but to add the alarm performance

constraint we need to find a unified framework to address both the control

and alarm performance. We can consider the H2 problem as a bounded state

covariance problem driven by a white Gaussian noise. Let X(k) denote the

covariance of the state in (3.16). Similar to the result presented in Ref. [102],

X(k) should satisfy

X(k + 1) = (A+∆A+BK)X(k)(A+∆A+BK)T +BBT . (3.19)

Now we define the steady-state covariances X as

X ≜ lim
k→∞

X(k).

From Ref. [102] and Ref. [85] we know that the system in (3.16) is stable

and X exists and is bounded if it satisfies the following discrete-time modified

Lyapunov inequality:

(A+∆A+BK)X(A+∆A+BK)T +BBT ≺ X. (3.20)
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According to the equation in (3.10), the variance of the alarm output ya is

given by

σ2
ya = CaXC

T
a . (3.21)

For the alarm performance constraint, we need to find the relation between

G−1
yaw(1) and the state-feedback gain K. The equations in (3.16) and (3.10)

imply that

G−1
yaw(z) =

(︂
Ca

(︁
zI − (A+∆A+BK)

)︁−1
B
)︂−1

. (3.22)

We only need to consider the case when z = 1. Define the matrix S ≜

I − (A+∆A+BK) and let Sij denote the ijth block of S. We have

[︄
S11 S12

S21 S22

]︄
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · 1 −1 0
0 0 · · · 0 1 −1

ān − kn · · · ā2 − k2 ā1 − k1 1 + ā0 − k0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where āi and ki are the ith elements of ā and K, respectively. By using Ref.

[75], the inverse of S can be expressed as

S−1 =

[︃
∗ −S−1

11 S12(S22 − S21S
−1
11 S12)

−1

∗ (S22 − S21S
−1
11 S12)

−1

]︃
,

where the symbol ‘∗’ represents a matrix block that eventually will be elimi-

nated by multiplying with a zero element of B in (3.22). By performing some

algebraic operations we obtain

S−1 =
(︂
1 +

n∑︂
i=1

āi − ki

)︂−1
[︃
∗ 1̄
∗ 1

]︃
.

Plugging this expression in the equation in (3.22) and setting z = 1 yields

G−1
yaw(1) =

(︄(︂
1 +

n∑︂
i=1

āi − ki

)︂−1

Ca

[︃
∗ 1̄
∗ 1

]︃
B

)︄−1

.

Hence

G−1
yaw(1) =

(︄(︂
1 +

n∑︂
i=1

āi − ki

)︂−1

Ca1

)︄−1

,
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which implies

G−1
yaw(1) =

1 +
n∑︁

i=1

āi − ki

n∑︁
i=1

cai

, (3.23)

where cai is the ith element of Ca. The following lemma helps us to simplify

the choice of Ca.

Lemma 3.3.1 Let G(z−1) and G̃(z−1) be two plants described in (3.8) to

(3.10) with the same parameters except for Ca where Ca and C̃a are associated

with G and G̃, respectively. If C̃a = κCa, κ ∈ R it holds that

A(G1) = A(G2).

Proof. Based on the assumptions, the state-covariances of both plants are

the same. According to the definition we have A(G1)
A(G2)

= A(ya)
A(ỹa)

, where ya and ỹa

are the alarm variable outputs corresponding to G and G̃, respectively. Let

Xw and Xw̄ denote the steady-state covariance corresponding to the normal

and abnormal cases, respectively. Combining (6.3), (3.21) and (3.23) yields

A(ya)

A(ỹa)
=

√︁
Ca(Xw +Xw̄)CT

a

⃓⃓⃓
κ

n∑︁
i=1

cai

⃓⃓⃓
√︁
κ2Ca(Xw +Xw̄)CT

a

⃓⃓⃓ n∑︁
i=1

cai

⃓⃓⃓ = 1.

Thus, A(G1) = A(G2) and the proof is complete. □

Remark 6 Based on the result of lemma 3.3.1, without loss of generality we

can always normalize Ca such that
n∑︁

i=1

cai = 1.

According to this remark the equation in (3.23) can be rewritten as

G−1
yaw(1) = 1 +

n∑︂
i=1

āi − ki,

and due to the uncertainty we have

G−1
yaw(1) = 1 +

n∑︂
i=1

ai + δai − ki, (3.24)

where ai is the i
th element of a. Now we are ready to present the main result

of this chapter.
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Theorem 3.3.2 Consider a plant described by (3.8), (3.9) and (3.10) con-

trolled by a state-feedback controller in (3.15) and assume that wk is a stochas-

tic signal in view of (4.7). If there exist a positive definite matrix P ≺ 2I and

positive scalars ζ, ϵa, ϵc and ϵca that satisfy the following LMIs⎡⎢⎢⎣
−ϵaI 0 I 0
(.)T −ϵaI 0 ϵaM

T
a

(.)T (.)T P − 2I (A+BK)T

(.)T (.)T (.)T 2ζBBT − P

⎤⎥⎥⎦ ≺ 0, (3.25)

⎡⎢⎢⎣
−ϵcI 0 I 0
(.)T −ϵcI 0 ϵcM

T
c

(.)T (.)T −P PCT

(.)T (.)T (.)T −2ζη

⎤⎥⎥⎦ ≺ 0, (3.26)

⎡⎢⎢⎣−ϵcaI
n∑︁

i=1

δ̄aiϵcaI CT
a

(.)T P − 2I
(︁
1 + (a−K)1

)︁
CT

a

(.)T (.)T −2ζψ

⎤⎥⎥⎦ ≺ 0, (3.27)

then the controller is stabilizing and guarantees the control and alarm perfor-

mance described by (3.17) and (3.18).

We first need the following lems to establish the proof.

Lemma 3.3.3 For a matrix P where 0 ≺ P ≺ 2I, the following inequality

holds:

P ⪯ (2I − P )−1.

Proof. As P ≻ 0 we have 0 ⪯ (P − I)P−1(P − I)T , so

2I − P ⪯ P−1. (3.28)

As P ≺ 2I, (2I−P )−1 exists and is positive definite. By multiplying (2I−P )−1

to both sides of the expression in (3.28) we have

I ⪯ P−1(2I − P )−1.

P is positive definite so by multiplying it to the above inequality we can infer

that P ⪯ (2I − P )−1, and the proof is complete. □
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Lemma 3.3.4 (see Ref. [105]) Given matrices Q, E, F , and H all of ap-

propriate dimensions with Q symmetric and FF T ≺ I, the inequality

Q+ EFH +HTF TET ≺ 0

holds if and only if there exists some ϵ > 0 such that

Q+ ϵEET + ϵ−1HTH ≺ 0

Proof. [Proof of Theorem 3.3.2] A positive (small enough) ζ exists such that

X ≺ ζ−1I. Multiplying both sides of the inequality in (3.20) by 2ζ and setting

P = 2ζX yields

(A+∆A+BK)P (A+∆A+BK)T + 2ζBBT ≺ P. (3.29)

By applying lemma 3.3.3 we conclude that if it holds that

(A+∆A+BK)(2I − P )−1(A+∆A+BK)T + 2ζBBT ≺ P,

then (3.29) is satisfied. Using Schur’s complement lemma (see Ref. [112]) we

have [︃
P − 2I (A+∆A+BK)T

A+∆A+BK 2ζBBT − P

]︃
≺ 0.

According to the norm-bounded property of the uncertainty and using the

equation in (3.13) we have[︃
P − 2I (A+BK)T

A+BK 2ζBBT − P

]︃
+

[︃
0 (MaFa)

T

MaFa 0

]︃
≺ 0,

which holds if[︃
P − 2I (A+BK)T

A+BK 2ζBBT − P

]︃
+

[︃
0
Ma

]︃
Fa

[︁
I 0

]︁
+

[︃
I
0

]︃
F T
a

[︁
0 MT

a

]︁
≺ 0.

Based on lemma 3.3.4, for some ϵa we have[︃
P − 2I (A+BK)T

A+BK 2ζBBT − P

]︃
+ ϵa

[︃
0
Ma

]︃ [︁
0 MT

a

]︁
+ ϵ−1

a

[︁
I 0

]︁ [︃I
0

]︃
≺ 0.

This condition is satisfied if[︃
P − 2I (A+BK)T

A+BK 2ζBBT − P

]︃
+

[︃
I 0
0 ϵaMa

]︃ [︃
ϵ−1
a 0
0 ϵ−1

a

]︃ [︃
I 0
0 ϵaM

T
a

]︃
≺ 0.
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By applying Schur’s complement lemma we prove that if the LMI in (3.25) is

satisfied, the inequality in (3.20) is also satisfied.

Now to have a bound for the control performance constraint as in (3.17),

C̄XC̄
T
< η should be satisfied, thus

(C +∆C)X(C +∆C)T < η.

Multiplying both sides by 2ζ and setting P = 2ζX yields

(C +∆C)P (C +∆C)T < 2ζη.

By using Schur’s complement lemma we can convert it to[︃
−P−1 (C +∆C)T

C +∆C −2ζη

]︃
≺ 0.

For the uncertainty ∆C we know that ∆C =McFc, hence[︃
−P−1 CT

C −2ζη

]︃
+

[︃
0
Ma

]︃
Fa

[︁
I 0

]︁
+

[︃
I
0

]︃
F T
a

[︁
0 MT

a

]︁
≺ 0,

so according to lemma 3.3.4 for some ϵc we have[︃
−P−1 CT

C −2ζη

]︃
+ ϵc

[︃
0
Mc

]︃ [︁
0 MT

c

]︁
+ ϵ−1

c

[︁
I 0

]︁ [︃I
0

]︃
≺ 0,

which is satisfied if[︃
−P−1 CT

C −2ζη

]︃
+

[︃
I 0
0 ϵaMa

]︃ [︃
ϵ−1
a 0
0 ϵ−1

a

]︃ [︃
I 0
0 ϵaM

T
a

]︃
≺ 0.

Applying Schur’s complement lemma yields⎡⎢⎢⎣
−ϵcI 0 I 0
0 −ϵcI 0 ϵcM

T
c

P 0 −P−1 CT

0 ϵcMc C −2ζη

⎤⎥⎥⎦ ≺ 0.

Multiplying the diagonal matrix diag{I, I, P, I} from left and right to the

previous inequality results in the LMI in (3.26). Now to satisfy the alarm

performance constraint given by (3.18) we reform the equation in (3.7) to

A2(Gyaw) = G−2
yaw(1)CaXC

T
a .
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Plugging (3.24) in the previous equation yields

A2(Gyaw) =
(︂
1 +

n∑︂
i=1

ai + δai − ki

)︂2
CaXC

T
a .

Now we multiply both sides of this equation by 2ζ and we set P = 2ζX. The

alarm constraint in (3.18) is satisfied if the following condition holds:(︂
1 +

n∑︂
i=1

ai + δai − ki

)︂2
CaPC

T
a < 2ζψ.

Based on lemma 3.3.3 we know that this inequality holds if(︂
1 +

n∑︂
i=1

ai + δai − ki

)︂2
Ca(2I − P )−1CT

a < 2ζψ.

We use Schur’s complement lemma to convert it to⎡⎢⎣ −(2I − P )
(︂
1 +

n∑︁
i=1

ai + δai − ki

)︂
CT

a(︂
1 +

n∑︁
i=1

ai + δai − ki

)︂
Ca −2ζψ

⎤⎥⎦ ≺ 0.

. (3.30)

According to the assumption in (3.11), for some scalar ρ, ρ2 < 1 it holds that

n∑︂
i=1

δai =
n∑︂

i=1

δ̄aiρ,

so the inequality in (3.30) can be rewritten as⎡⎢⎣ −(2I − P )
(︂
1 +

n∑︁
i=1

ai − ki

)︂
CT

a(︂
1 +

n∑︁
i=1

ai − ki

)︂
Ca −2ζψ

⎤⎥⎦+

⎡⎣ n∑︁
i=1

δ̄aiI

0

⎤⎦ ρ [︁0 CT
a

]︁
+

[︃
0
Ca

]︃
ρ

[︃
n∑︁

i=1

δ̄aiI 0

]︃
≺ 0.

Based on lemma 3.3.4, this inequality holds if we can find a ϵca such that⎡⎢⎣ −(2I − P )
(︂
1 +

n∑︁
i=1

ai − ki

)︂
CT

a(︂
1 +

n∑︁
i=1

ai − ki

)︂
Ca −2ζψ

⎤⎥⎦+

ϵca

⎡⎣ n∑︁
i=1

δ̄aiI

0

⎤⎦[︃ n∑︁
i=1

δ̄aiI 0

]︃
+ ϵ−1

ca

[︃
0
Ca

]︃ [︁
0 CT

a

]︁
≺ 0,
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which is satisfied if the following holds:⎡⎢⎣ −(2I − P )
(︂
1 +

n∑︁
i=1

ai − ki

)︂
CT

a(︂
1 +

n∑︁
i=1

ai − ki

)︂
Ca −2ζψ

⎤⎥⎦+

⎡⎣ n∑︁
i=1

δ̄aiϵcaI

Ca

⎤⎦ ϵ−1
ca

[︃
n∑︁

i=1

δ̄aiϵcaI CT
a

]︃
≺ 0.

Finally, applying Schur’s complement lemma and converting
n∑︁

i=1

ai − ki to the

matrix form we have the LMI in (3.27) and the proof is complete. □

The LMIs of this Theorem can be used to design the controller to satisfy

bounds for the performance of control and alarm systems. The LMIs are not

feasible for all choices of parameters η and ψ. This is due to the trade-off

between control and alarm performance. Thus, η and ψ are considered as

design parameters and should be determined by a trial-and-error procedure.

Furthermore, based on the LMIs in Theorem 3.3.2, one can also consider Ca

as a variable to obtain a better choice of Ca. However, it leads to a bilinear

matrix inequality (BMI). Unlike LMIs, there is no off-the-shelf algorithm to

solve BMI problems (see Ref. [96]). On the other side, plant operators select

a combination of process measurements to capture abnormality; to do that,

they consider safety-related constraints and the plant’s operation constraints.

So it is rational to assume that in some real applications, Ca is provided by

plant operators.

3.4 Case Study

We study a simulated plant model consisting of a counter-current shell-and-

tube heat exchanger (HE) which is the most common type of heat exchanger

in oil refineries as well as many other large chemical processes[40]. A shell-

and-tube type of HE is composed of a vessel (the shell) which surrounds a

tube (or a bundle of tubes). The purpose is to transfer heat from a liquid

inside the shell to a liquid that flows over the tube. We consider the case
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that three HEs are connected in series known as a heat exchanger network

(HEN). This process is frequently used in refineries where the goal is to cool

hot petroleum coming from distillation. Fig. 3.5 shows a schematic of the

plant where high-temperature petroleum flows into the inner tube of the first

HE and exits from the third HE with a lower temperature. The cooling water,

however, flows through the shell of the third HE and exits from the shell of the

first HE. The temperatures of the petroleum inlet and water streams to each

HE are measured by temperature sensors. So there are 6 temperature sensors

deployed in the HEN. The flow of the water stream is controlled by a control

valve, and we consider the volumetric flow rate of the water fed to the shell

as the manipulated value. Our aim is to design a state-feedback controller

for this process to keep the temperature of the petroleum that exits from the

third HE around a desired reference value which also satisfies a good alarm

performance for the overall system. Starting by the discrete-time equations

proposed by Ref. [19], the nominal model of the system can be found in the

canonical form. According to the equations in (3.8) and (3.9) we have

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−0.225 −0.0186 −0.0007 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

C =
[︁
0 −0.48 −0.0778 −0.0043 −0.0001 0

]︁
.

Thus

a =
[︁
0.225 0.0186 0.0007 0 0 0

]︁
.

The state of the system is given by

θ(k) = θm(k)− θs(k),

where θm is a vector composed of temperature measurements and θs was the

steady state value of θm. Here, the elements of θ are given by

θ(k) =
[︁
θ1w(k) θ1p(k) θ2w(k) θ2p(k) θ3w(k) θ3p(k)

]︁T
(3.31)
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Figure 3.5: Counter-current shell-and-tube heat exchanger network consisting
of three heat exchangers connected in cascade.

where the subscripts ‘w’ and ‘p’ are corresponding to the water and petroleum

temperatures, respectively, and the superscripts indicate corresponding heat

exchangers in Fig. 3.5.

Furthermore, we assume that the uncertainty bounds in view of (3.11) and

(3.12) are given by

δ̄a1 = 0.03, δ̄a2 = 0.002, δ̄a3 = 0.0001, δ̄a4 = δ̄a5 = δ̄a6 = 0.0001,

and

δ̄c1 = 0, δ̄c2 = 0.048, δ̄c3 = 0.008, δ̄c4 = 0.0004, δ̄c5 = 0.0001, δ̄c6 = 0.

Inspired by Ref. [19], we assume that the state is measured directly from

the plant using temperature sensors. To generate the alarm signal, based on

the knowledge of the process the operator can choose a linear combination of

these measurements which is captured by Ca. According to remark 6 we also

know that only the relative weights of the measurements are important. We

consider the following setting for Ca which satisfies Ca1 = 1 as

Ca =
[︁
0.19 0.048 0.238 0.095 0.286 0.143

]︁
.

The rationale behind the selection of these weights is that, as we want to detect

the abnormality faster, we assign greater weights to the water temperature

measurements in comparison with the one for petroleum (c.f. (3.31)). Our

assumption here is that the valve abnormality will be reflected faster on the
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water temperature compared with the petroleum temperature. Moreover, the

weights are sorted in descending order from the measurements of the heat

exchanger that is close to the source of abnormality to the one that is far from

it. Now ya can be expressed with respect to the temperature measurements as

ya(k) = CaTθ(k) where T denotes the transformation matrix that converts the

original state-space model to the controllable canonical form. In Ref. [93], the

authors presented a realistic stirred tank heater benchmark where a fault was

introduced in a control valve of the process. As follow-up to this work, Ref.

[9] proposed a data-driven alarm filter to detect the abnormality presented

in the control valve. They modeled the operation of the control valve by

two Gaussian random variables (corresponding to the normal and abnormal

operation modes) where the mean and variance of the one corresponding to

the abnormal situation was greater than the one for the normal situation.

Moreover, in many other real-world applications, abnormalities appear as shifts

in the operation point and variation of some process variables. Inspired by Ref.

[9], we assume that w(k) for normal and abnormal operation modes is given

by

w(k) ∼

{︄
N (1, 0.2), normal,

N (2.5, 0.6), abnormal.

Here, w(k) represents normal and abnormal operation modes of the control

valve. The abnormality corresponding to the change in the valve position

is modeled as the mean change in w(k) after the occurrence of abnormality.

Furthermore, the variance change can capture a change in the sticky behavior

of the control valve or just noise.

Now we use Theorem 1 to design the controller gain K for various values

of η and ψ. The achieved control and alarm performance is showed in Fig.

3.6. This figure shows the trade-off between these two indices. Now we choose

two points p1 and p2 of this curve where p1 corresponds to a better control

performance and can be achieved by

K1 =
[︁
0.435 0.086 0.031 0.014 0.003 −0.027

]︁
,

45



0.245 0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29 0.295

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Figure 3.6: Trade-off between control and alarm performance (p1 and p2 are
corresponding to better control and alarm performance, respectively).

and p2 results in a better alarm performance and corresponds to

K2 =
[︁
0.61 0.112 0.036 0.014 −0.003 −0.051

]︁
.

The simulation result of these two scenarios are shown in Fig. 3.7 (for point p1)

and Fig. 3.8 (for point p2) respectively. In both figures, the process variable

is corresponding to the plant output in terms of (9), and the alarm variable

shows the signal that is used for raising alarms which is represented by (10).

Furthermore, the lower plots in both figures show the high alarms which are

generated by comparing the alarm variable with some constant thresholds.

These thresholds are not equal for both scenarios and are chosen offline, and

set to a value that yields equal MAR and FAR (compromising to have low

MAR and FAR at the same time). According to the simulation results, both

MAR and FAR are improved in scenario p2 by just loosing a negligible control

performance. To compare the result for various thresholds, Fig. 3.9 show a

part of the ROC curves of both scenarios where the curve corresponding to p2

is closer to the origin and has a smaller area under the curve, which means a

better alarm performance.

46



-3

-2

-1

0

0

2

4

0 100 200 300 400 500 600 700 800 900 1000

Sample

No alarm

Alarm

495 500 505

Figure 3.7: Simulation result of the design for better control performance
(point p1 in Fig. 3.6).
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Figure 3.8: Simulation result of the design for better alarm performance (point
p2 in Fig. 3.6).
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Figure 3.9: ROC curves of two design scenarios.

3.5 Summary

In this chapter, a state-feedback controller synthesis problem considering both

control and alarm performance has been studied. Inspired by the presence of

model uncertainty in most of industrial applications, the controller has been

designed to be robust against norm-bounded uncertainty of model parameters.

A new alarm index has been introduced by utilizing the concept of the area

under a ROC curve. This alarm index is shown to be applicable for controller

design even for uncertain systems. It also has been justified that there is

an interplay between control and alarm performance for a certain type of

performance indices. An LMI based method has been proposed to compromise

the control and alarm performance.

*minimize

*minimize

48



Chapter 4

Design of Alarm Filters Based
on the Plant and Controller
Knowledge

In this chapter, we study the linear alarm filter design problem to detect

abnormal actuator operations while the independence assumption does not

hold. This is aligned with the fact that the raw data is usually acquired from a

closed-loop system and are very likely to be statistically correlated. Assuming

the independence assumption, the conventional moving average filter (where

all filter coefficients are equal) is the optimal solution. We prove that this

result can not be generalized for correlated data. We also propose a method

to explicitly determine the optimal solution based on the plant and controller

dynamics and the FAR/MAR design requirements. We consider a single input,

single output (SISO) plant, and assume that an auto-regressive exogenous

(ARX) model of the plant is available. This, together with the controller

model (which is always known) and the alarm filter formulation, allows us to

determine the correlation of data after filtering. The proposed method can

be thought of as a multivariate alarm filter as it combines the control input

and plant output to detect an abnormality. This prevents the occurrence of

multiple alarms in case of an actuator fault as we have one alarm output

instead of having separate ones for the input and output.
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4.1 Problem Statement

In this chapter, we assume that an auto-regressive exogenous (ARX) model is

available for the plant. Also, we consider a stabilizing linear controller which

is precisely known and described by a transfer function. We also assume that

the plant operates in two modes called normal and abnormal modes. In the

abnormal operation mode, a fault occurs in the actuator. The following is the

plant model:

α(z−1)y(k) = β(z−1)û(k) + ν(k), (4.1)

where y(k) ∈ R denotes the plant output and û(k) corresponds to the cor-

rupted version of u(k) (which is the manipulated value) due to the actuator

fault. Furthermore, ν(k) is the associated measurement noise that follows the

Gaussian distribution N (0, σ2
ν) where σ

2
ν > 0. Moreover,

α(z−1) = α1 + α2z
−1 + · · ·+ αpz

−p+1,

β(z−1) = β1 + β2z
−1 + · · ·+ βqz

−q+1.

Here β1 = 0, but we keep it as it stands for the ease of notation throughout

the chapter. We also define the vectors α =
[︁
α1, α2, · · · , αp

]︁
and β =[︁

β1, β2, · · · , βq
]︁
. The controller is formulated as

u(k) =
g(z−1)

f(z−1)
y(k), (4.2)

where

g(z−1) = g1 + g2z
−1 + · · ·+ gnz

−n+1,

f(z−1) = f1 + f2z
−1 + · · ·+ fmz

−m+1.

To simplify the subsequent analysis, we further define f ≜
[︁
f1, f2, · · · , fm, fm+1

, · · · , fl
]︁
and g ≜

[︁
g1, g2, · · · , gn, gn+1, · · · , gl

]︁
. Here, fm+1 = · · · = fl =

gn+1 = · · · = gl = 0, which are added to the vectors to make them have the

same length l. Thus, l is equal to the maximum of n and m. Due to the

actuator fault we have

û(k) = u(k) + b, (4.3)
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where

b =

{︃
0, normal mode,
b̄, abnormal mode.

(4.4)

For this model, b̄ can be identified from the historical process data or the plant

knowledge. As an example, the above expression can model a partial valve

closure or a deviation in pump driver voltage [91]. For the sake of simplicity,

we assume that b̄ > 0 but a similar result can be derived for b̄ < 0. In

many industrial applications, û(k) is not available (or even it is not possible to

measure it) so the alarm signal should be constructed by using other variables.

Now let w(k) denote the alarm signal which is compared to a fixed alarm trip-

point wtp. As long as w(k) falls short of the associated trip-point, no alarm

is raised; otherwise, the system announces an alarm state. More formally, the

normal and abnormal operation modes of the plant are distinguished as{︃
alarm, w(k) ≥ wtp;
no alarm, otherwise.

Considering the above mechanism and the inevitable measurement noise, the

plant may work healthy but an alarm raises which is referred to as a false

alarm. Another shortcoming is when some faults occur but the alarm system

does not announce it which is called a missed alarm. We use the false and

missed alarm rates (FAR/MAR) as the two commonly accepted measures for

the performance of alarm systems. Suppose that fwab
and fwn represent the

probability density functions (PDF) of w corresponding to the abnormal and

normal operation modes, respectively. MAR and FAR are obtained as follows:

MAR =

∫︂ wtp

−∞
fwab

(τ)dτ, (4.5)

FAR =

∫︂ ∞

wtp

fwn(τ)dτ. (4.6)

Inspired by the popularity of moving average alarm filters in industries, we

apply a generalized version of it on an augmented vector composed of y(k)

and u(k) samples. More specifically, the alarm signal is obtained as

w(k) = λyy
T (k) + λuu

T (k), (4.7)
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Figure 4.1: Diagram of the proposed system.

where

λy =
[︁
λy1 , λy2 , · · · , λyr

]︁
,

λu =
[︁
λu1 , λu2 , · · · , λur

]︁
,

y(k) =
[︁
y(k), y(k − 1), · · · , y(k − r + 1)

]︁
,

u(k) =
[︁
u(k), u(k − 1), · · · , u(k − r + 1)

]︁
.

We define the cost function as J(λy,λu, wtp) = ηmMAR + ηfFAR, where

ηm > 0 and ηf > 0 are design parameters to make a compromise between the

rates of false and missed alarms. Typically, these parameters are selected by

process safety engineers; so in this chapter we assume that they are known a

priori. Finally, the design objective is expressed as

λy ,λu,wtp J(λy,λu, wtp). (4.8)

4.2 Optimal Alarm Filter Design

In this section, we introduce the main result of this chapter which is to design

optimal linear alarm filters by taking the closed-loop system dynamics into

account. The proposed framework is shown in Fig. 4.1. The diagram con-

sists of a typical control loop in which the actuator is subject to some faults.

In real industrial applications, alarm filters are deployed to improve the fault

distinguishability of all process variables; then the result is compared with a

trip-point to check the healthy operation of the system. Considering the fact

that these process variables are generated from an interconnected system we

expect that they are statistically correlated. This point, however, is usually
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neglected by simplifying assumptions such as the independence of the input

raw data to the alarm filters. In this work, we combine the filtered version

of control input u(k) and plant output y(k) and determine the optimal filter

coefficients for this setup. It is worth noting that based on the independence

assumption, the optimal filter configuration was proved to be the case that

all coefficients are equal [26]. Nevertheless, by relaxing this assumption, it

is essential to revisit the problem. In the problem formulation, we justified

that the system of interest, in each operation mode, is driven by a Gaussian

signal and a constant bias. As the closed-loop system and the alarm filters

are linear, the alarm signal also follows Gaussian distribution. To determine

the statistical parameters of w(k) we need to obtain the closed form represen-

tation of y(k) and u(k). Considering the regulation problem where r(k) ≡ 0,

and by combining the equations in (4.1), (4.2) and (4.3), after doing some

manipulation we obtain

y(z−1) =
f(z−1)

α(z−1)f(z−1)− β(z−1)g(z−1)
ν(z−1) +

f(z−1)β(z−1)

α(z−1)f(z−1)− β(z−1)g(z−1)
b,

(4.9)

and

u(z−1) =
g(z−1)

α(z−1)f(z−1)− β(z−1)g(z−1)
ν(z−1) +

g(z−1)β(z−1)

α(z−1)f(z−1)− β(z−1)g(z−1)
b.

(4.10)

According to the filter formulation, the expected value of the alarm signal in

the abnormal operation mode is given by µw = E(λyy
T +λuu

T ). Substitution

of the controller formulation in this equation yields

µw = E
(︂(λy1 + · · ·+ λyrz

−r+1)f(z−1) + (λu1 + · · ·+ λurz
−r+1)g(z−1)

α(z−1)f(z−1)− β(z−1)g(z−1)
ν
)︂

+ E
(︂(︁(λy1 + · · ·+ λyrz

−r+1)f(z−1) + (λu1 + · · ·+ λurz
−r+1)g(z−1)

)︁
β(z−1)

α(z−1)f(z−1)− β(z−1)g(z−1)
b̄
)︂
.

ν is a zero-mean Gaussian noise, so the first term in the above equation cancels

out and we have

µw =

(︂(︁ r∑︁
i=1

λyi
)︁(︁ m∑︁

i=1

fi
)︁
+
(︁ r∑︁
i=1

λui

)︁(︁ n∑︁
i=1

gi
)︁)︂ q∑︁

i=1

βi(︁ m∑︁
i=1

fi
)︁(︁ p∑︁

i=1

αi

)︁
−
(︁ q∑︁
i=1

βi
)︁(︁ n∑︁

i=1

gi
)︁ b̄. (4.11)
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In our analysis, we assume that
q∑︁

i=1

βi ̸= 0. Otherwise, the abnormality does

not appear as a mean change and can not be captured by the limit-checking

mechanism. We also assume that
m∑︁
i=1

fi ̸= 0 and
n∑︁

i=1

gi ̸= 0. If not, there is no

reason to design the associated filter coefficients (i.e., either λyi ’s or λui
’s) as

they will be canceled out. Furthermore, by design,
r∑︁

i=1

λui
̸= 0 and

r∑︁
i=1

λyi ̸= 0.

These statements together, ensure that µw ̸= 0. As we have already discussed,

alarm signal w(k) follows a Gaussian distribution in each operation mode.

So the only parameters left to fully describe its statistical behavior is the

corresponding variance that is determined by the following lemma.

Lemma 4.2.1 Consider the plant described by (4.1) which is driven by the

controller in (4.2). The variance of alarm signal that is expressed by the equa-

tion in (4.7) is given by

σ2
w = (λy ∗ f + λu ∗ g)Ψ(λy ∗ f + λu ∗ g)T , (4.12)

where,

Ψ =
∞∑︂
i=0

Ai
[︁
0 1

]︁T [︁
0 1

]︁
(AT )iσ2

ν , (4.13)

and

A =

⎡⎢⎢⎣
[0ζ β ∗ g −α ∗ f ]

0T I

⎤⎥⎥⎦ .
Here, 0ζ is a row vector of length ζ ≜ r −max(p, q), with all elements set to

zero.

Proof. From the alarm signal formulation (see (4.7)) we obtain

w(z−1) = λy(z
−1)y(z−1) + λu(z

−1)u(z−1),

where λy(z
−1) = λy1 + λy2z

−1 + · · · + λyrz
−r+1 and λu(z

−1) = λu1 + λu2z
−1 +

· · ·+ λurz
−r+1. Substituting (4.10) and (4.9) in the above equation yields

w(z−1) =
λy(z

−1)f(z−1) + λu(z
−1)g(z−1)(︁

α(z−1)f(z−1)− β(z−1)g(z−1)
)︁
z−ζ

ν(z−1), (4.14)
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where z−ζ is added in the denominator to make the transfer function proper.

The numerator degree of transfer function in (4.14) is r+ l−2 and the denom-

inator degree is l+max(p, q)−2. So we set ζ = r−max(p, q) to have a proper

transfer function. For derivation of (4.14), the terms that are associated with

b are excluded as they are constant in the steady-state and do not affect the

variance. This transfer function can be represented in the state-space form

where the system matrices are

A =

⎡⎢⎢⎣
[0ζ β ∗ g −α ∗ f ]

0T I

⎤⎥⎥⎦ ,
B =

[︁
0 1

]︁T
,

C = λy ∗ f + λu ∗ g,

D = 0.

According to Ref. [24], the state covariance of this system can be found by

solving the following Lyapunov equation

AΨAT −Ψ+ BBT = 0.

As we have assumed that the controller is stabilizing, the solution can be found

as

Ψ =
∞∑︂
i=0

AiBTB(AT )i.

Finally, the output variance is given by σ2
w = CΨCTσ2

ν , which completes the

proof. □

To summarize the above derivations, we can express the distribution of alarm

signal w(k) as

w(k) ∼
{︃

N (0, σ2
w), normal mode,

N (µw, σ
2
w), abnormal mode.

where µw and σ2
w are given by the equations in (4.11) and (4.12). Now we are

ready to determine the optimal configuration of the alarm filters.

Remark 7 In our analysis, we assume that σ2
w ̸= 0. The rationale is that in

the very rare cases of σ2
w = 0 and µw ̸= 0, the abnormal and normal operation
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modes can be distinguished perfectly (i.e., FAR = MAR = 0) and there is no

reason to use any alarm filter.

4.2.1 Optimal Alarm Trip-point

The optimal trip-point can be obtained by setting derivative of the objective

function (see the equation in (4.8)) with respect to the trip-point to zero. More

formally
∂

∂wtp

(ηmMAR+ ηfFAR) = 0.

Substituting (4.5) and (4.6) in the above equation yields

ηm
∂

∂wtp

∫︂ wtp

−∞

1√
2πσw

e
− (τ−µw)2

2σ2
w dτ + ηf

∂

∂wtp

∫︂ ∞

wtp

1√
2πσw

e
− τ2

2σ2
w dτ = 0.

Then we have

ηm
1√
2πσw

e
− (wtp−µw)2

2σ2
w − ηf

1√
2πσw

e
−

w2
tp

2σ2
w = 0, (4.15)

which can be simplified as

(wtp − µw)
2 − w2

tp − 2σ2
w ln

(︂ ηf
ηm

)︂
= 0.

So the optimal alarm trip-point can be determined as

w∗
tp =

µw

2
− σ2

w

µw

ln
(︂ ηf
ηm

)︂
. (4.16)

We still need to determine parameters µw and σw corresponding to the optimal

filter, which will be given subsequently.

4.2.2 Optimal Solution of λu and λy

In this section, we obtain the vectors λu and λy corresponding to the optimal

alarm filter. Starting with λu, we have

∂

∂λu

(ηmMAR+ ηfFAR) = 0. (4.17)

Using (4.5), the derivative of MAR with respect to λu is given by

∂

∂λu

MAR =

∫︂ wtp

−∞

∂

∂λu

1√︁
2πσ2

w

e
− (τ−λy1T µy−λu1T µu)2

2σ2
w dτ,
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where µy and µu indicate the expected value of y and u, respectively, in the

abnormal operation mode. In the above equation we have used the vector

forms of
r∑︁

i=1

λyi and
r∑︁

i=1

λui
. Carrying out some manipulation yields

∂

∂λu

MAR =

∫︂ wtp

−∞

(︃
−

∂
∂λu

σ2
w

2
√
2πσ3

w

+

(︁
∂

∂λu
σ2
w

)︁
(τ − λy1

Tµy − λu1
Tµu)

2

2
√
2πσ5

w

+
1Tµu(τ − λy1

Tµy − λu1
Tµu)√

2πσ3
w

)︃
e
− (τ−λy1T µy−λu1T µu)2

2σ2
w dτ.

After applying Lemma 4.2.2 we have

∂

∂λu

MAR =

−
2σ2

w1
Tµu +

(︁
∂

∂λu
σ2
w

)︁
(wtp − λy1

Tµy − λu1
Tµu)

2
√
2πσ3

w

e
− (wtp−λy1T µy−λu1T µu)2

2σ2
w .

(4.18)

Considering the optimal trip-point, and by replacing µw with its expanded

form (i.e., λy1
Tµy − λu1

Tµu) in (4.15) we obtain

e
−

(w∗
tp−λy1T µy−λu1T µu)2

2σ2
w =

ηf
ηm
e
−

w∗
tp

2

2σ2
w .

Combining this equation with the one in (4.18) yields

∂

∂λu

MAR = −
2σ2

w1
Tµu +

(︁
∂

∂λu
σ2
w

)︁
(wtp − λy1

Tµy − λu1
Tµu)

2
√
2πσ3

w

ηf
ηm
e
−

w∗
tp

2

2σ2
w .

(4.19)

Now let us keep the above derivation for MAR in this form for now. Having

in mind that the expected value of y and u are equal to zero in the normal

operation mode, by applying a similar procedure on FAR we have

∂

∂λu

FAR =

∫︂ ∞

wtp

∂

∂λu

1√︁
2πσ2

w

e
− τ2

2σ2
w dτ.

Hence

∂

∂λu

FAR =

∫︂ ∞

wtp

(︃(︁ ∂
∂λu

σ2
w

)︁
τ 2

2
√
2πσ5

w

−
(︁

∂
∂λu

σ2
w

)︁
2
√
2πσ3

w

)︃
e
− τ2

2σ2
w dτ.

We introduce the following lemma to calculate the above integral.
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Lemma 4.2.2 For vectors θi and scalars κi, if θ1 = −θ3 it holds that∫︂ (︃
θ1 + θ2(κ1 + τ)

κ32
+

θ3(κ1 + τ)2

κ25

)︃
e
− (κ1+τ)2

2κ22 dτ =

− θ2κ
2
2 + θ3(κ1 + τ)

κ32
e
− (κ1+τ)2

2κ22 + c.

Proof. The integral is evaluated as

√
π√
2κ22

(θ1 + θ3)erf

(︄
κ1 + τ√

2κ2

)︄
− θ2κ

2
2 + θ3(κ1 + τ)

κ23
e
− (κ1+τ)2

2κ22 + c,

where erf(.) indicates the error function. As θ1 = −θ3, the proof is complete.

□

Using this lemma the integral is determined as

∂

∂λu

FAR = −
wtp

(︁
∂

∂λu
σ2
w

)︁
2
√
2πσ3

w

e
w2
tp

−2σ3
w . (4.20)

By plugging equations (4.19) and (4.20) into equation (4.17) and substituting

the optimal trip-point (see (4.16)), we obtain(︂ ∂

∂λu

σ2
w

)︂
(λy1

Tµy + λu1
Tµu)− 2σ2

w1
Tµu = 0. (4.21)

To calculate the derivative of σ2
w we need to rewrite the convolution terms in

(4.12) as

σ2
w = (λyHf + λuHg)Ψ(λyHf + λuHg)

Tσ2
ν , (4.22)

where

Hf ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1 f2 · · · fl 0 0 0 · · · 0
0 f1 f2 · · · fl 0 0 · · · 0
0 0 f1 f2 . . . fl 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 f1 · · · fl−2 fl−1 fl 0
0 · · · 0 0 f1 · · · fl−2 fl−1 fl

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The above matrix has r rows and l+r−1 columns and Hg is defined similarly.

We have
∂

∂λu

σ2
w = 2(λyHf + λuHg)

T
g σ

2
ν .

Furthermore, µy =

m∑︁
i=1

fi

n∑︁
i=1

gi

µu; after some simplification, (5.21) can be reformu-

lated as

λHΨHT
g

(︁
λ1T

fg

)︁
−
(︁
λHΨHTλT

)︁
1 = 0, (4.23)
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where

λ ≜
[︁
λy λu

]︁
,

H ≜

[︃
Hf

Hg

]︃
,

and

1fg ≜

[︄ m∑︁
i=1

fi

n∑︁
i=1

gi

1 1

]︄
.

By conducting a similar derivation, for ∂
∂λy

(ηmMAR + ηfFAR) = 0 one can

show that

λHΨHT
g

(︁
λ1T

gf

)︁
−
(︁
λHΨHTλT

)︁
1 = 0, (4.24)

where 1gf ≜
[︂
1

n∑︁
i=1

gi

m∑︁
i=1

fi

1
]︂
. Now we combine equations (4.24) and (4.23) and

write them in the following matrix form:[︁
λHΨHT

f

(︁
λ1T

gf

)︁
λHΨHT

g

(︁
λ1T

fg

)︁]︁
−
[︁(︁
λHΨHTλT

)︁
1
(︁
λHΨHTλT

)︁
1
]︁
= 0.

Multiplying the above equation by matrix

⎡⎢⎣
m∑︁
i=1

fi

n∑︁
i=1

gi

I 0

0 I

⎤⎥⎦ yields

[︁
λHΨHT

f

(︁
λ1T

fg

)︁
λHΨHT

g

(︁
λ1T

fg

)︁]︁
−⎡⎣(︁λHΨHTλT

)︁(︄ m∑︁
i=1

fi

n∑︁
i=1

gi

)︄
1
(︁
λHΨHTλT

)︁
1

⎤⎦ = 0,

Note that λ1T
fg is a scalar, so we can further simplify the above equation as

λHΨ
[︁
HT

f HT
g

]︁ (︁
λ1T

fg

)︁
−
(︁
λHΨHTλT

)︁⎡⎣(︄ m∑︁
i=1

fi

n∑︁
i=1

gi

)︄
1 1

⎤⎦ = 0,

Thus

λHΨHT
(︁
λ1T

fg

)︁
−
(︁
λHΨHTλT

)︁
1fg = 0. (4.25)

By defining H̄ ≜ HΨHT and after excluding the trivial solution λ = 0, the

above equation can be written as

λ
1fgλ

T

λH̄λT
H̄ = 1fg.
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Here,
1fgλ

T

λH̄λT is a non-zero scalar and H̄ is a full rank square matrix, so the

unique form of the answer is expressed as

λ∗ = c1fgH̄
−1
, (4.26)

where c ∈ R\{0}. Here, c = 0 results in λ = 0, hence, w(k) ≡ 0, which is not a

valid answer. Furthermore, c is a free parameter and for simplicity we consider

c = 1. Selecting any other non-zero c results in the same filter performance

because it is compensated by the modification of alarm trip-point.

Now we need to show that this answer indeed is a minimum. After some

math operation, the second derivative of the cost function is obtained as

∂2J

∂λ∗ =
(︁
H̄λ∗1T

fg + 1T
fgλ

∗H̄ − 2H̄λ∗T1fg

)︁ e
−

w∗
tp

2

2σ2
w

2
√
2πσ3

w

. (4.27)

Here, the term e
−

w∗
tp

2

2σ2
w

2
√
2πσ3

w
is non-negative. Substituting the optimal answer in

H̄λ∗1T
fg − 1T

fgλ
∗H̄ − 2H̄λ∗T1fg yields H̄(1fgH̄

−1
1T
fg) − 1T

fg1fg. To show

that this is positive semi-definite we use Schur’s complement lemma (see Ref.

[112]). According to this lemma we need to prove that the following statement

holds [︃
H̄(1fgH̄

−1
1T
fg) 1T

fg

1fg 1

]︃
⪰ 0. (4.28)

Let us define Φ ≜ H̄(1fgH̄
−1
1T
fg). As H̄ is positive definite, so is H̄

−1
, which

yields 1fgH̄
−1
1T
fg > 0. Hence, Φ is positive definite and invertible. The matrix

in (4.28) can be decomposed as[︃
Φ 1T

fg

1fg 1

]︃
=

[︃
I

1fgΦ
−1

]︃
Φ
[︁
I Φ−11T

fg

]︁
+

[︃
0 0
0 1− 1fgΦ

−11T
fg

]︃
.

It can be verified that 1−1fgΦ
−11T

fg = 0. Considering the positive definiteness

of Φ and based on the above equation we conclude that (4.28) holds.

It is important to note that for some configurations, the matrix H̄ may be

rank deficient (i.e., has eigenvalues equal to zero). A solution to this problem is

by adding some small perturbation to replace the eigenvalues. More formally,[︁
λ∗

y λ∗
u

]︁
= (H̄ + ϵI)

−1
1T
fg, (4.29)
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where ϵ is a small number. Now we can obtain the optimal trip-point by

manipulating the equation in (4.16). By substituting the optimal answer λ∗,

equation (4.11) can be written as

µ∗
w =

1fg(H̄ + ϵI)−11T
fg

m∑︁
i=1

gi
p∑︁

i=1

βi

m∑︁
i=1

fi
p∑︁

i=1

αi −
m∑︁
i=1

gi
p∑︁

i=1

βi

b̄.

From (4.22), we can find σ2
w
∗
which is the variance of the alarm signal consid-

ering the optimal filter coefficients. Finally, by plugging µ∗
w and σ2

w
∗
in (4.16)

and after some simplification we have

w∗
tp = µ∗

w −

m∑︁
i=1

fi
p∑︁

i=1

αi −
m∑︁
i=1

gi
p∑︁

i=1

βi

b̄
m∑︁
i=1

gi
p∑︁

i=1

βi

σ2
ν ln

(︂ ηf
ηm

)︂
. (4.30)

It is straightforward to verify that for the moving average filters of order

1, the optimal optimal coefficients are obtained as

λ∗u =

gΨ
(︂
gT

m∑︁
i=1

fi

n∑︁
i=1

gi

− fT
)︂

fΨ
(︂
fT − gT

m∑︁
i=1

fi

n∑︁
i=1

gi

)︂c,
λ∗y = c.

Remark 8 It is a common assumption that the distribution of normal and

abnormal data are known. Then using the historical data we can find the

expected value of u(k) and y(k) and identify b̄ using the closed-loop model of

the system.

4.3 Notes on Online Application of the Method

In process industries, drift in plant characteristics or set-point adjustment

usually causes performance degradation [86]. Similarly, the efficiency of the

proposed alarm filter may also deteriorate due to the new condition. It was

also clearly mentioned in the ISA standard that changing the controller re-

quires the revision of the alarm system. Considering the simple form of the
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final optimal solution, one may further extend it to an adaptive version. The

proposed method can be used along with an adaptive controller introduced in

the literature such as Ref. [57], [71]. In this case, using (4.29), the alarm filter

coefficients are updated each time that the adaptive mechanism re-identifies

the plant and re-tunes the controller. In light of the equation in (4.29), the

optimal filter coefficients can be selected regardless of the abnormality ampli-

tude b̄ (see (4.4)). It means that the updated version of the plant model and

the controller setting are enough to determine the new optimal alarm filter.

Thus, the overall evaluation of FAR/MAR remains constant. This, however, is

not true for each of FAR or MAR exclusively. From (4.30), we can verify that

b̄ has influence on the optimal trip-point. So if b̄ deviates from its historical

value, the optimal trip-point will be changed. It is worth emphasizing that by

the selection of the trip-point we can adjust tradeoff between FAR and MAR.

So the original design requirements of FAR and MAR may not be satisfied

anymore (c.f., the ln
(︁ ηf
ηm

)︁
term in (4.30)). A robust solution to this problem

is by obtaining the admissible range for b̄ as b̄min < b̄ < b̄max; and finding the

trip-point in (4.30) that guarantees the required MAR for the whole range of

b̄.

4.4 Case Study

In this section, we present the simulation result and illustrate superiority of

the proposed method over the conventional version. We use the plant model

that was introduced and implemented in Ref. [91]. The plant is shown in Fig.

4.2 which is composed of two tanks, a pump, a control valve, and a level meter.

One of the tanks is considered as the water source. The control purpose is to

maintain the water level of the second tank at a certain level. The pump and

the control valve let the water flow from the source tank to the second one.

This is a SISO plant where the input u and the output y are corresponding

to the water flow and the water level. Inspired by the real abnormal scenarios

introduced in Ref. [91], we study the valve closure fault. Our result is likewise

valid for the faults corresponding to the voltage increase in the pump drive
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Figure 4.2: Two water tanks system

circuit. The plant model was identified in the reference as

y(s) =
1.19

1 + 132.80s
e−35su(s).

By applying the first order Padé approximation and discretizing the plant

with the sampling rate of 1 second we obtain

y(z−1) = 10−3 −8.426z−1 + 8.922z−2

1− 1.937z−1 + 0.937z−2
u(z−1).

Here, the modeling error ν(k) follows N (0, 0.052). Furthermore, we assume

that the following controller is used

u(z−1) =
−3 + 3.9z−1 − 1.2z−2

1− 1.3z−1 + 0.42z−2
y(z−1).

For b̄ = 20, the normal and abnormal operation modes are represented by

b =

{︃
0, normal mode,
20, abnormal mode.

Using (4.29), where ϵ = 0.001, for filter length r = 5 we determine

λu = [0.11, 0.03, 0.05, 0.01,−0.18],

λy = [0.20, 0.22, 0.15,−0.04,−0.48].
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Figure 4.3: ROC curves of various alarm filter configurations where r = 5

A common practice to evaluate alarm filter performance is to use receiver op-

erating characteristic (ROC) curves. An ROC curve is a plot of MAR versus

FAR while the alarm trip-point spans over all possible values of its range. Us-

ing this concept, we can compare various alarm filters regardless of the alarm

trip-point. Fig. 4.3 displays the simulation results for five different alarm

signals. The first two signals are generated from the raw process data and

are indicated as the solid blue and black curves. The dashed curves are corre-

sponding to the filtered version of the first two signals. Here, the conventional

filter that was proposed in Ref. [27] is used (where all filter coefficients are

equal). The solid magenta curve shows the result of the proposed method.

According to this figure, although the filter length of the conventional method

and the proposed method are the same, our method outperforms the conven-

tional filters. Furthermore, it can be seen that the alarm signals which are

generated from the raw data and the conventional filter have approximately

similar performance. Next, we conduct the simulation for the same closed-

loop setup except that we increase the length of all filters to 35. The ROC

curves for this case are shown in Fig. 4.4 We can verify the improvement of

all filter configurations owing to the larger filter length. However, the con-

ventional filter still does not show a notable improvement. Finally, the time
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Figure 4.4: ROC curves of various alarm filter configurations where r = 35

trends of all alarm signals for the filter length of 35 are presented in the left

part of Fig. 4.5. The alarm trip-points are obtained considering ηm = ηf .

The right part of this figure shows the alarm states for the associated alarm

signals. The alarm signal corresponding to the proposed method has a rela-

tively higher oscillation. It may seems to be counter-intuitive at first glance

as the expectation from an alarm filter is to decrease the variation. But this

is only one contributing factor to the performance of an alarm filter. In fact,

an alarm filter should manipulate the raw data to magnify the amplitude of

the abnormality and decrease the variation at the same time.

4.5 Summary

The design problem of generalized moving average alarm filters for statisti-

cally correlated process variables has been addressed in this chapter. First,

considering the ARX representation of a plant, mathematical expressions for

the rates of false and missed alarms have been derived. Then, closed form so-

lutions for the optimal design of the alarm filter and alarm trip-point has been

determined. Also it have been justified that the conventional moving average

filter is not the optimal answer when relaxing the independence assumption

on process measurements. Furthermore, into the case of actuator faults, it has
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Figure 4.5: Time trends of alarm signals and the corresponding alarm states
(highlighted green and red areas show the normal and abnormal operation
modes, respectively, and dotted lines show the alarm trip-point)
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been shown that the optimal filter coefficients can be obtained regardless of

the abnormality amplitude. This result paves the path for online utilization

of the proposed method.
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Chapter 5

Generalized Moving Variance
Filters for Industrial Alarm
Systems

In this chapter, we study generalized moving average filters (GMAF) and gen-

eralized moving variance filters (GMVF). Although conventional moving vari-

ance filters have already been introduced and used, whether they are optimal

was an open question. So we develop a framework for the so called generalized

filters where the filter coefficients are allowed to be different. We prove that

if the only performance measure of interest is detection accuracy, then indeed

the conventional filters are the optimal ones. Our result explicitly shows how

the filter performance changes with respect to the filter weights. Nevertheless,

if instead, detection delay is also of interest, employing a counter-example,

we show that conventional filters are outperformed by some generalized filter

configurations. Considering this case, our result gives a straightforward formu-

lation for the assessment of generalized moving variance filters. This opens the

possibility for future research on finding the optimal coefficients for generalized

filters that incorporate other performance indices (including but not limited

to detection delay). Another contribution of this chapter is the suggestion of

a measure for the impact of statistical parameters of process variables on the

distinguishability of faults after filtering. Via a case study on the Tennessee

Eastman process, we show that for the same level of accuracy, the generalized

configuration can provide faster detection of variance changes compared to the
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conventional version.

5.1 Alarm System Performance Assessment

In this section, we investigate two indices that have been regularly used by

researchers as well as practitioners to evaluate the performance of alarm sys-

tems. As the alarm system design can be regarded as a classification problem,

we also study the Fisher’s linear discriminant classification.

5.1.1 Rates of False and Missed Alarms

Here, we introduce the performance indices from the literature. In a plant,

assume that a process variable is measured and denoted by a discrete-time

signal w[k], k ∈ {1, 2, · · · }. To detect the faulty operation of the plant, w[k]

is compared with a fixed alarm trip-point wtp; and an alarm is raised if the

signal exceeds this trip-point. In this scenario, some alarms may be raised

while the plant works normally, which are called false alarms. Moreover, some

alarms may be missed while the plant works abnormally. These two concepts

have been manipulated to introduce the false alarm rate (FAR) and the missed

alarm rate (MAR). Assuming that w[k]’s are independent and identically dis-

tributed (IID) in each operation modes (i.e., normal and abnormal modes),

MAR and FAR are calculated as follows:

MAR =

∫︂ wtp

−∞
fw,ab(u)du,

FAR =

∫︂ ∞

wtp

fw,n(u)du,

where, fw,ab (resp. fw,n) represents the PDF of process variable w in the

abnormal (resp. normal) operation mode. One of the main objectives in

alarm filter design is to have low MAR and FAR. However, reducing FAR

(resp. MAR) causes increment of MAR (resp. FAR) in most cases. Thus,

the receiver operating characteristic (ROC) curve is introduced, which is a

plot of MAR versus FAR as the trip-point spans all real numbers. It can

be immediately concluded that if the ROC curve is close to the origin, the

associated alarm performance is desirable. For quantifying this statement, the

69



area under curve (AUC) has been introduced. Thus, instead of working with

FAR and MAR, we can exploit AUC. It has two advantages. First, the problem

is simplified to optimization with respect to one performance index (instead of

two indices). Second, it splits the problem into two steps: designing an alarm

filter and designing a threshold/trip-point.

For the present, assume that the probability density function of w[k] are

given a priori for both operation modes. Later, we will prove that for Gaussian

distributions, the performance of moving average and moving variance filters

can be assessed regardless of the input signal’s statistical parameters. Let Tab

denotes the time of abnormality occurrence and assume that the distribution

of w[k]’s are given by

W ∼

{︄
N (µw,n, σ

2
w,n) k < Tab,

N (µw,ab, σ
2
w,ab) k ≥ Tab.

(5.1)

The AUC is calculated by [70] as

AUC(w) = 1− Φ

(︄
|µw,ab − µw,n|√︂
σ2
w,ab + σ2

w,n

)︄
, (5.2)

where

Φ(v) ≜
1√
2π

∫︂ v

−∞
e−

1
2
τ2dτ. (5.3)

Here, Φ has two interesting features that facilitate analysis. First, Φ(v) is an

strictly increasing function of v. Second, Φ(v) is bounded from top by 1. Thus,

AUC is a strictly decreasing function of
|µw,ab−µw,n|√
σ2
w,ab+σ2

w,n

. Similar to Chapter 2, for

a process variable w[k] in the form of (5.1), the alarm performance is defined

as

A(w) ≜
σ2
w,ab + σ2

w,n

(µw,ab − µw,n)2
. (5.4)

In the next subsection, we prove that this index is aligned with the view of a

special case of Fisher’s linear discriminant analysis.

5.1.2 Fisher’s Linear Discriminant Analysis

Now we show that the performance index considered in the Fisher’s linear

discriminant method in a special case is proportional to the inverse of index

70



A that we introduced to minimize the MAR and FAR performance indices.

Given two classes of data, Fisher’s linear discriminant classification (see [21])

is introduced for performing a separation between these classes. Let PB and

PW denote the between-class and within-class covariance matrices; the idea is

to maximize J(z) with respect to the vector z, where

J(z) =
zTPBz

zTPW z
. (5.5)

Let wn and wab denote the collected data in normal and abnormal operation

modes, and ln and lab denote the length of associated data, respectively. Ac-

cording to [21], for the special case where PB and PW are scalar, one can

obtain

PB = (µw,ab − µw,n)
2, (5.6)

PW =

lab∑︂
k=1

(︁
wab[k]− µw,ab

)︁2
+

ln∑︂
k=1

(︁
wn[k]− µw,n

)︁2
. (5.7)

Considering this specialization, we have J(z) ≡ J̄ , where J̄ denotes the maxi-

mum of J(z). From (5.7) we can see that PW = labσ
2
w,ab+ lnσ

2
w,n. By substitut-

ing this equation and the equation in (5.7) into (5.5), we infer that A ∝ J̄
−1

if

lab = ln. This represents that the view of Fisher’s linear discriminant analysis

is aligned with the alarm index defined in (6.3) if the length of normal and

abnormal data are the same.

5.2 Generalized Moving Average Filter

Two methods have been provided in the literature for finding the optimal

weights of moving average filters ([14], [27]). However, they do not reveal the

relationship between the filter coefficients and its performance. In this section,

we provide an intuitive method for finding the weights that explicitly reveals

the influence of the weights on the alarm performance. This result can be

served as a tool for plant operators to tune the alarm filters while having an

intuition about the role of filter weights in the abnormality detection accuracy.

A generalized moving average filter of order N with non-negative coefficients
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θi’s is described as

y[k] =
N−1∑︂
i=0

θix[k − i], k = N,N + 1, · · · . (5.8)

where x and y are corresponding to the raw and filtered data, respectively. Let

Tab denote the time of abnormality occurrence and assume that all samples of

the raw data are independent and identically distributed and follow

X ∼

{︄
N (µx,n, σ

2
x,n), k < Tab,

N (µx,ab, σ
2
x,ab), k ≥ Tab.

(5.9)

To obtain filter performance, we only need to focus on the steady state (i.e.,

when the samples of the moving average filter correspond to either normal or

abnormal operation mode, not both). Note that this is a standard assumption

in almost all previous works in this area (e.g. [5], [27] and [42]). The goal is to

estimate the number of missed alarms while the system is working normally

for a long time. Hence, the effect of the first few samples can be neglected

in the analysis. It follows that Y =
N−1∑︁
i=0

θiX, where Y is a random variable

corresponding to the filtered data. As the filter is linear and time-invariant,

we have

Y ∼

⎧⎪⎪⎨⎪⎪⎩
N
(︂
µx,n

N−1∑︁
i=0

θi, σ
2
x,n

N−1∑︁
i=0

θ2i

)︂
, N ≤ k < Tab,

N
(︂
µx,ab

N−1∑︁
i=0

θi, σ
2
x,ab

N−1∑︁
i=0

θ2i

)︂
, k ≥ Tab +N.

Now the alarm index of filtered data is expressed as

AGMAF(y) =

(σ2
x,ab + σ2

x,n)
N−1∑︁
i=0

θ2i

(µx,ab − µx,n)2
(︂N−1∑︁

i=0

θi

)︂2 . (5.10)

According to the above expression, we conclude that the alarm index is related

to the statistical parameters of process variable as

AGMAF(y) ∝
σ2
x,ab + σ2

x,n

(µx,ab − µx,n)2
, (5.11)

and to the parameters of filter as

AGMAF(y) ∝

N−1∑︁
i=0

θ2i(︂N−1∑︁
i=0

θi

)︂2 ≜ AF
GMAF. (5.12)
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One may also realize that when θi = θj, ∀i, j, the performance of moving

average filter affected by the filter order as AGMAF(y) ∝ 1
N
. Moreover, the

AUC corresponding to the filtered data is determined as

AUC(y) = 1− Φ
(︂
A−1

GMAF(y)
)︂
. (5.13)

According to the above results, the problem of minimizing AGMAF(y) is equiv-

alent to the following problem:

min
θ0,...,θN−1

N−1∑︂
i=0

θ2i , s.t.,

N−1∑︂
i=0

θi = 1.

So we only need to consider the filter configurations that satisfy
N−1∑︁
i=0

θi = 1.

Then,
N−1∑︁
i=0

θ2i can easily be considered as the performance index for generalized

moving average filters.

5.3 Generalized Moving Variance Filter

The generalized moving variance filter of orderN with non-negative coefficients

θi is described by

y[k] =
N−1∑︂
i=0

θi(x[k − i]− µx)
2, k = N,N + 1, · · · . (5.14)

This representation is different from the one in (5.9) as here only the variance is

changed after the occurrence of abnormality and the mean remains unchanged.

We assume that all samples of the raw data are independent and identically

distributed. This is a standard simplifying assumption in the literature (see,

for example, [89], [106]). However, in some cases, this simplification can be

argued as the samples of process variables are measured from the industrial

plants and are likely correlated. In those cases, more information about the

plant and different methods are needed for the analysis. Let the samples of

raw data follow

X ∼

{︄
N (µx, σ

2
x,n), k < Tab,

N (µx, σ
2
x,ab), k ≥ Tab.
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According to the equation in (5.14), the generalized moving variance filter can

be reformulated as

y[k] =
N−1∑︂
i=0

θix̄
2[k − i], k = N,N + 1, · · · . (5.15)

Here, x̄[k]’s are identically distributed as

X̄ ∼

{︄
N (0, σ2

x,n), k < Tab,

N (0, σ2
x,ab), k ≥ Tab.

The distribution of filtered data (i.e. (5.15)) is obtained as

Y ∼

⎧⎪⎪⎨⎪⎪⎩
N−1∑︁
i=0

θiσ
2
x,nX 2, N ≤ k < Tab,

N−1∑︁
i=0

θiσ
2
x,abX 2, k ≥ Tab +N,

(5.16)

which leads to

Y ∼

⎧⎪⎪⎨⎪⎪⎩
N−1∑︁
i=0

Γ(1
2
, θiσ

2
x,n), N ≤ k < Tab,

N−1∑︁
i=0

Γ(1
2
, θiσ

2
x,ab), k ≥ Tab +N.

(5.17)

The distribution in (5.16) is reformed to the one in (5.17) to represent the

weights (i.e. θiσ
2
x,n’s and θiσ

2
x,ab’s) as the parameters of some Gamma distri-

bution. Now we approximate the summation of independent Gamma distribu-

tions in (5.17) with a single Gamma distribution using the so called momentum

matching method [31]. The approximation is expressed as

˜︁Y ∼

{︄
Γ(α̃y, β̃y,n), N ≤ k < Tab,

Γ(α̃y, β̃y,ab), k ≥ Tab +N,
(5.18)

where

α̃y =

(︂N−1∑︁
i=0

θi

)︂2
2
N−1∑︁
i=0

θ2i

,

β̃y,n =

σ2
x,n

N−1∑︁
i=0

θ2i

N−1∑︁
i=0

θi

, β̃y,ab =

σ2
x,ab

N−1∑︁
i=0

θ2i

N−1∑︁
i=0

θi

.
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This result can also be achieved from the Welch-Satterthwaite equation (see

[83]), which is used to approximate the effective degrees of freedom of a

weighted summation of independent sample variances.

With regard to the discussions that are given in [31], we can study the

accuracy of this approximation. Let θmin and θmax denote the minimum and

the maximum of filter coefficients θi’s, respectively. The following inequalities

hold:

θminσ
2
x,n ≤ β̃y,n ≤ θmaxσ

2
x,n, (5.19)

1

2
< α̃y ≤

N

2
. (5.20)

Here, the inequalities of (5.19) and the right inequality of (5.20) change to

equality if θi’s are equal. A similar statement holds for β̃y,ab. Under this

equality condition, the approximation is perfect. Otherwise, the smaller θmax−

θmin is, the lower the approximation error.

Now we need to find a good Gaussian approximation for the distribution in

(5.18). It is important to note that monotonic transformation of the random

variable does not change the associated ROC curve (see [37] and [50]). By

manipulating a result in [43], the mth moment of ˜︁Y λ is obtained as

E(Y mλ) =

⎧⎨⎩
(︁
β̃y,n

)︁−mλ Γ(α̃y+mλ)

Γ(α̃y)
, N ≤ k < Tab,(︁

β̃y,ab

)︁−mλ Γ(α̃y+mλ)

Γ(α̃y)
, k ≥ Tab +N.

(5.21)

The authors of [61] discussed the accuracy of approximation when a Gamma

distribution was raised to different powers of λ. More specifically, they com-

pared the methods that are presented in [103] and [43] where the approxima-

tions were given for λ = 1
3
and λ = 1

4
, respectively. In [61] it has been pointed

out that for some cases, choosing λ = 1
4
yields better approximation compared

with setting λ = 1
3
. However, λ = 1

4
leads to a non-monotonic function so it

can not preserve the ROC curve. By setting λ = 1
3
and using the equation in

(5.21) we have

˜︂˜︁Y 1
3 ∼

{︄
N (µ̃y,n, σ̃

2
y,n), N ≤ k < Tab,

N (µ̃y,ab, σ̃
2
y,ab), k ≥ Tab +N,

(5.22)
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where
˜︂˜︁Y 1

3 denotes the normal approximation of ˜︁Y 1
3 and

µ̃y,n =
(2σ2

x,nη)
1
3Γ(η + 1

3
)

Γ(η)
,

µ̃y,ab =
(2σ2

x,abη)
1
3Γ(η + 1

3
)

Γ(η)
,

σ̃y,n =
(σ2

x,nη)
2
3Γ(η + 2

3
)

Γ(η)
− µ̃2

y,n,

σ̃y,ab =
(σ2

x,abη)
2
3Γ(η + 2

3
)

Γ(η)
− µ̃2

y,ab.

Here, η ≜

N−1∑︁
i=0

θi

2
N−1∑︁
i=0

θ2i

. Now by performing some algebraic operation, the alarm

index of filtered data is expressed as

AGMVF(y) ≈
(︁
σ

4
3
x,ab + σ

4
3
x,n

)︁
(︁
σ

2
3
x,ab − σ

2
3
x,n

)︁2
(︄
Γ(η)Γ(η + 2

3
)

Γ2(η + 1
3
)

− 1

)︄
.

According to this result, the effect of the statistical parameters of x on the

alarm index of the filtered data is given by

AGMVF(y) ∝∼
σ

4
3
x,ab + σ

4
3
x,n(︁

σ
2
3
x,ab − σ

2
3
x,n

)︁2 . (5.23)

Furthermore, the area under ROC curve corresponding to the filtered data is

determined as

AUC(y) ≈ 1− Φ
(︂
A−1

GMVF(y)
)︂
. (5.24)

Remark 9 We introduced a procedure for approximating the distribution of

the output samples of the moving variance filter by a Gaussian distribution.

Based on the central-limit theorem, one can infer that the proposed method

performs more accurate approximation as the filter order increases.

Theorem 5.3.1 Consider the generalized moving variance filter described by

(5.14). The problem of minimizing AGMVF(y) is approximately equivalent to

the following problem:

min
θ0,...,θN−1

N−1∑︂
i=0

θ2i , s.t.,

N−1∑︂
i=0

θi = 1.
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Proof. To design the filter parameters we know that

AGMVF(y) ∝∼
Γ(η)Γ(η + 2

3
)

Γ2(η + 1
3
)

− 1 ≜ AF
GMVF.

Derivatives of AF
GMVF(y) with respect to η is calculated as

d

dη
AF

GMVF =
Γ(η)Γ

(︁
η + 2

3

)︁(︁
ψ(η)− 2ψ(η + 1

3
) + ψ(η + 2

3
)
)︁

Γ2
(︁
η + 1

3

)︁ , (5.25)

where ψ denotes the Digamma function which is defined as

ψ(η) ≜
d

dη
ln
(︁
Γ(x)

)︁
=

Γ′(η)

Γ(η)
.

A series expansion for ψ is presented in [3] as

ψ(η) = −γ +
∞∑︂
i=0

(︄
1

i
− 1

i+ η

)︄
, η ̸= −1,−2,−3, · · · ,

where γ is the Euler-Mascheroni constant. We know that η > 0, thus we have

ψ(η)− 2ψ
(︂
η+

1

3

)︂
+ ψ

(︂
η +

2

3

)︂
=

∞∑︂
i=0

(︄
2

i+ η + 1
3

− 1

i+ η
− 1

i+ η + 2
3

)︄
< 0.

By comparing this inequality with (5.25), we conclude that d
dη
AF

GMVF < 0. So

we infer that AF
GMVF is a decreasing function with respect to η. So the optimal

solution is determined by maximizing η and the proof is complete. □

This result resembles the one of the generalized moving average filter. Sim-

ply, we only need to consider the filter configurations that satisfy
N−1∑︁
i=0

θi = 1.

Then,
N−1∑︁
i=0

θ2i can be served as the performance index for the corresponding

generalized moving variance filter.

Remark 10 The result of this theorem (in addition to determining the optimal

solution) gives a compact form for the impact of filter coefficients on the alarm

performance of GMVF filters. So it can be combined with other performance

indices (such as alarm detection delay) or design criteria, to find the optimal

filter under different circumstances.
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Remark 11 It is worth noting that although we started by assuming that the

statistical parameters of raw data are known, eventually, we relaxed this as-

sumption. Therefore, provided that the raw data follows Gaussian distribu-

tions, optimal parameters for both GMAF and GMVF can be determined re-

gardless of the statistical parameters.

Remark 12 An important advantage of the generalized filter over the con-

ventional version is that allows for a lower detection delay, since the θi’s can

be different. The rationale is that by assigning greater weights to the more

recent samples of the raw data, the effect of abnormality will appear earlier

in the filtered data. This will also be illustrated in the case study. However,

an analytical comparison of the detection delays relies on multivariate Gamma

CDF analysis and is beyond the scope of this work.

5.4 Implementation Notes

This section provides suggestions and discussions regarding the application

of the proposed filters in the real process industry to detect an abnormality.

To predict the filter performance we need to have an estimate of the mean

and variance of the process variables. Thus we need some historical data

with sufficient length that can represent the statistical feature of the process

variables in both operation modes (namely, normal and abnormal modes).

Label the historical data as xn[k], k ∈ {1, · · · , ln} and xab[k], k ∈ {1, · · · , lab}

for the normal and abnormal operation modes, respectively. An estimation for

mean values can be found as

µ̂x,n =
1

ln

ln∑︂
k=1

xn[k], µ̂x,ab =
1

lab

lab∑︂
k=1

xab[k],

and for variances as

σ̂2
x,n =

1

ln

ln∑︂
k=1

(x[k]− µ̂x,n)
2, σ̂2

x,ab =
1

lab

lab∑︂
k=1

(x[k]− µ̂x,ab)
2.

The most common type of abnormality is when the operating condition of a

process deviates from a steady state to a new one. This abnormality can be
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captured as a shift in the mean of a process measurement from µ̂n to µ̂ab. Here,

a generalized moving average filter can be used to detect the deviation from the

normal operating mode. According to (5.11), the lower
σ̂2
x,ab+σ̂2

x,n

(µ̂x,ab−µ̂x,n)
2 is, the more

precise the detection is. In some other types of faults, the abnormality only

becomes noticeable as a change in the variance of some process variables. More

specifically, the statistical properties of the historical data is such that µ̂n ≈ µ̂ab

and σ̂2
n ̸= σ̂2

ab. This category of abnormalities can not be distinguished by a

moving average filter (neither by the conventional nor the generalized one).

Under this circumstance, one can utilize a generalized moving variance filter

to detect the abnormality. Here, according to (5.23), the lower
σ̂

4
3
x,ab+σ̂

4
3
x,n(︁

σ̂
2
3
x,ab−σ̂

2
3
x,n

)︁2 is,

the more precise the detection is.

Another important point about applying generalized moving variance fil-

ters in real industrial application is regarding the parameter µx in the filter

equation in (5.14). This parameter refers to the base case value (or operation

point) of the process variable. Generally, this value is constant and can be

determined from the historical knowledge of the plant. However, in particular

cases, this value is changing or it is not precisely known. So we need to have

an online estimation of it which can be done by utilizing a moving average

filter. In this case, the filter equation in (5.14) is turned to

y[k] =
N−1∑︂
i=0

θi

(︂
x[k − i]− 1

N

N−1∑︂
i=0

x[k − i]
)︂2
, k = N,N + 1, · · · .

Nowadays, most modern industries are equipped with distributed control

systems (DCS) and supervisory control and data acquisition (SCADA). Mon-

itoring and alarm systems with various configurations for alarm filtering are

integrated into these systems. After obtaining the suitable filter type and

configuration based on the historical information of the process variable, the

corresponding alarm filter can be modified accordingly.

5.5 Case Studies

In this section, numerical and industrial case studies are conducted for gener-

alized moving variance filters. Generalized moving average filters are relatively
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Table 5.1: Simulation scenarios of GMVF

Scenario Filter weights

1 all set to 1 (conventional moving variance filter)

2
follow an arithmetic sequence which initial term and

common difference are set 1 and 1/N , respectively

3 randomly generated numbers

straightforward and are neglected here.

5.5.1 Case I: Numerical Case Study

Suppose that x[k]’s are identically distributed; and follow N (0, 1) and N (0, 2)

in normal and abnormal operation modes, respectively. We apply the gener-

alized moving variance filter (see the equation in (5.14)) on samples of x[k].

Consider that the filter weights are assigned according to the scenarios given

by Table 5.1 for various filter orders. Fig. 5.1 shows the approximation of

AUC that is calculated analytically and the one that is obtained based on

Monte Carlo simulation. As expected, the approximation error tends to van-

ish for higher filter length. It can also be verified by this figure that for specific

filter orders in Scenario 3, the approximation error is relatively higher. This

is because the θi’s are generated randomly and for those ones, θmax − θmin is

greater.

Now we compare our method with the approaches proposed by [26] and

[17]. Ref. [26] introduced the conventional moving average filter, which can

be thought of as a special case of the method proposed in this chapter. In

[17] the authors used the Kantorovich distance which has a relatively higher

computation cost in comparison with our method and the one in [26]. The

simulation results are labeled as KD, MVF and GMVF which correspond to

[26], [17] and our method, respectively. We configure the filters based on the

above papers. The KD method has two parameters, m, which is the number

of segments, and k, which is the number of samples in each segment. For the

simulation we set m = 3 and k = 2. Furthermore, the MVF filter is of order 4

and the GMVF is of order 5 (see the second case study for more details about
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Figure 5.1: Comparison of the AUC that is evaluated analytically, and the
AUC that is determined by Monte Carlo simulation.

these choices). The samples of raw data follow N (0, 1) and N (0, 2) in the

normal and abnormal operation modes, respectively. Output amplitudes of

each filter are normalized by the maximum values of the corresponding time

trends. Fig. 5.2 shows that the ROC curve corresponding to our proposed

method is closer to the origin, especially for the points that satisfy FAR ≈

MAR. From Fig. 5.3 we can observe how the summation of the rates of false

and missed alarms change for various alarm trip-points. As shown in this

figure, the proposed method results in better performance. We also need to

check how fast are these three methods for detecting an abnormality. Thus we

conduct Monte Carlo simulation to evaluate the average detection delays for

various alarm trip-points. The result of this simulation is shown in Fig. 5.4.

To interpret this plot we need to use the information of Fig. 5.3. To compare

the detection delays of these methods, it is important to note that the best

performance achieved by a lower trip-point in MVF and GMVF (according to

Fig. 5.3 ). However, in the KD method, the optimal point can be achieved
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Table 5.2: Comparison of accuracy for different constraints on average detec-
tion delay.

Method FAR+MAR Average detection delay

KD 0.40
⎫⎪⎬⎪⎭ < 1MVF 0.55

GMVF 0.45

KD 0.39
⎫⎪⎬⎪⎭ < 2MVF 0.41

GMVF 0.36

by setting a greater alarm trip-point. To make the comparison we study two

design scenarios. In the first one, it is considered that the average detection

delay should be less than 1 sample. For the second scenario, we relax this

constraint to 2 samples. The solid red lines in Fig. 5.4 show these constraints;

and the dotted black lines show the highest possible trip-point to guarantee

the bounds for average detection delay. By utilizing this information, one

can exploit Fig. 5.3 to judge the accuracy and swiftness of all these three

methods. The summary of this comparison is given in Table 5.2. According to

this table, for the tighter constraint on detection delays (i.e., less than 1), the

KD method is a better choice. However, by slightly relaxing this constraint,

the proposed method outperforms the others. It is also worth noting that in

real industrial applications, the plant operators prefer (and need) to have a

comprehensive intuition about the meaning of the filtered data with respect to

their knowledge of the process. However, unlike MVF and GMVF methods,

the KD method is a transformation where at each step a linear programming

problem is solved; so the intuitive connection of the raw data and the filtered

data is missing.

5.5.2 Case II: Study of the Tennessee Eastman process

The Tennessee Eastman Process (TEP) is a realistic industrial benchmark for

evaluating process diagnosis and control methods [34]. There are five major

units in the process: condenser, separator, reactor, stripper, and compressor.
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Figure 5.2: ROC curves of three different methods.
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Figure 5.3: Comparison of accuracy in terms of FAR+MAR for various alarm
trip-points.
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Figure 5.4: Comparison of average detection delays for various alarm trip-
points. Solid red lines show the constraints on detection delays and dotted
black lines indicate the corresponding bound on trip-point to achieve the ap-
propriate detection delay.
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Figure 5.5: A diagram of the Tennessee Eastman process [4].

The details of the process are shown in Fig. 5.5. The process that used here

is operating under closed-loop control. There are 15 known faults introduced

in the TEP (represented as IDV (1)-(15)) where 12 types are corresponding

to mean change (step) and variance change (random variation). Table 6.1

shows the details of these 12 faults. Generalized moving average and moving

variance filters can be used to detect step change and random variation faults,

respectively. According to this table, providing an analytical method for de-

tecting random variation faults has the same degree of importance as for step

faults. There are 41 measurements (namely, XMEAS (1)-(41)) available from

the process; and 22 of them (namely, XMEAS (1)-(22)), are sampled with

interval of 3 (min) that are listed in Table 5.4. The rest of measurements are

sampled with some slower rates which may cause larger detection delays; so we

only consider XMEAS (1)-(22). We study the fault corresponding to the con-

denser cooling water inlet temperature, which is represented as IDV (12). To

detect the fault, we use the condenser coolant temperature (namely, XMEAS

(22)). The base case value is given as 77.297 which remained unchanged even

when an abnormality occurred. This base case value can also be substituted
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Table 5.3: Fault descriptions of the Tennessee Eastman process.

Fault

number
Process variable Type

IDV (1) A/C feed ratio, B composition constant
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Step

IDV (2) B composition, A/C ratio constant

IDV (3) D feed temperature

IDV (4) Reactor cooling water inlet temperature

IDV (5) Condenser cooling water inlet temperature

IDV (6) A feed loss

IDV (7) C header pressure loss-reduced availability

IDV (8) A, B, and C feed composition
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Random

variation

IDV (9) D feed temperature

IDV (10) C feed temperature

IDV (11) Reactor cooling water inlet temperature

IDV (12) Condenser cooling water inlet temperature

for µx in the generalized moving variance filter (see the equation in (5.14)).

Even if this base case value is not available, a moving average filter can be

used to estimate mean of the process variable. Fig. 5.6 shows the raw data

and its distributions in normal and abnormal operation modes. Fig. 5.7 and

Fig. 5.8 show the simulation results for two different filters with randomly

selected coefficients and filter orders 2 and 12, respectively. Now we can

compare the ROC curves using the analytical formulation proposed in (5.22)

and Monte Carlo simulation which are shown in Fig. 5.9 and Fig. 5.10 for

filter orders 2 and 12, respectively. There is a slight difference between the

analytical results and the simulations. The reason is that the samples of raw

data are not independent and do not precisely follow a Gaussian distribution

in the abnormal operation mode. To verify if the raw data follows a Gaussian

distribution, we use the Lilliefors test [65], which is developed based on the

Kolmogorov-Smirnov test. The null hypothesis is that the data comes from

a normally distributed data set. The raw data corresponding to the normal

operation mode does not reject the null hypothesis at a 5% significance level.

However, for the abnormal operation mode, it rejects the null hypothesis at

the same significance level. This is the first source of error for the analysis.
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Table 5.4: Process measurements of Tennessee Eastman process (measure-
ments corresponding to flow rate, temperature, level, and pressure are indi-
cated by blue, red, yellow, and green colors, respectively).

Variable

number
Variable name

Base case

value (unit)

XMEAS (1) A feed rate 0.2505 (kscmh)

XMEAS (2) D feed rate 3664.0 (kg h−1)

XMEAS (3) E feed rate 4509.3 (kg h−1)

XMEAS (4) A and C feed rate 9.3477 (kscmh)

XMEAS (5) Recycle flow rate 26.902 (kscmh)

XMEAS (6) Reactor feed rate 42.339 (kscmh)

XMEAS (7) Reactor pressure 2705.0 (kPa gauge)

XMEAS (8) Reactor level 75.000 (%)

XMEAS (9) Reactor temperature 120.40 (◦C)

XMEAS (10) Purge rate 0.3371 (kscmh)

XMEAS (11) Separator temperature 80.109 (◦C)

XMEAS (12) Separator level 50.000 (kPa gauge)

XMEAS (13) Separator pressure 2633.7 (kPa gauge)

XMEAS (14) Separator underflow 25.160 (m3 h−1)

XMEAS (15) Stripper level 50.000 (%)

XMEAS (16) Stripper pressure 3102.2 (kPa gauge)

XMEAS (17) Stripper underflow 22.949 (m3 h−1)

XMEAS (18) Stripper temperature 65.731 (◦C)

XMEAS (19) Steam flow rate 230.31 (kg h−1)

XMEAS (20) Compressor work 341.43 (kw)

XMEAS (21) Reactor coolant temperature 94.599 (◦C)

XMEAS (22) Condenser coolant temperature 77.297 (◦C)
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Figure 5.6: Raw data of XMEAS (22).

Figure 5.7: Filtered data and its distribution corresponding to XMEAS (22),
considering random filter coefficients where N = 2.
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Figure 5.8: Filtered data and its distribution corresponding to XMEAS (22),
considering random filter coefficients where N = 12.
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Figure 5.9: Original ROC (blue) and analytically evaluated ROC (black) of
filtered data XMEAS (22), considering random coefficients where N = 2.

89



0 1

0

1

0 0.1

0

0.1

Figure 5.10: Original ROC (blue) and analytically evaluated ROC (black) of
filtered data XMEAS (22), considering random coefficients where N = 12.

The second source is that the samples of raw data are coming from a plant

and are not independent, hence the samples corresponding to each Gamma

distribution in (5.17) are not independent and the approximation in (5.18)

gives rise to more errors under this circumstance.

Now we apply the conventional and the generalized moving variance filters

on data-set XMEAS (22) to exam the accuracy and swiftness of these filters for

different configurations. For a fair comparison, similar orders are considered

for both types of filters. Let Θ4 and Θ5 (resp. Θ′
4 and Θ′

5) denote the set

of coefficients for the conventional (resp. generalized) filter of order 4 and 5,

respectively. So for the conventional one we have Θ4 = {0.25, 0.25, 0.25, 0.25}

and Θ5 = {0.2, 0.2, 0.2, 0.2, 0.2}, but we need to obtain the coefficients for

the generalized filters considering the filter swiftness and accuracy. As it is

computationally infeasible to calculate detection delay for all combinations of

filter coefficients, we limit our search domain to the combinations that follow

a geometric series. So we consider Θ′
(N,r) = {a, ar, ar2, · · · , arN−1} where a is

the start term and r is the common ratio. We want the coefficients summation

to be 1 so we set a = 1−r
1−rN

. Furthermore, we are specifically interested in the
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generalized filters of order N which yield better accuracy than the conventional

filter of order N − 1. Thus, by applying Theorem 5.3.1 we conclude that r

should satisfy

N∑︂
i=1

(︄
1− r

1− rN
ri−1

)︄2

=
(r − 1)(rN + 1)

(r + 1)(rN − 1)
<

1

N − 1
.

For N = 4 and N = 5, we obtain 0.58 < r < 1 and 0.69 < r < 1, respectively

(r = 1 corresponds to the conventional filter). We know that if the coefficients

associated with the recent samples of the process variable are larger than the

rest, the detection can be done faster. So, the smaller the parameter r (where

0 < r < 1) is, the smaller the detection delay is. Considering the lower bound

for each case, we determine

Θ′
(4,0.58) = {0.474, 0.275, 0.159, 0.092},

Θ′
(5,0.69) = {0.367, 0.254, 0.175, 0.121, 0.083}.

Expectedly, each of these generalized filters of order N provides the same level

of accuracy as the corresponding conventional filter of order N − 1 and at the

same time results in a smaller detection delay. This result is confirmed by Fig.

5.11 which shows the ROC curves of the filtered versions of XMEAS (22). So

one can conclude that here, the most accurate filter is the conventional filter

of order 5, then the generalized filter of order 5, following by the conventional

filter of order 4, and the worst one is the generalized filter of order 4. Now we

need to investigate the swiftness of the filters in detecting the abnormality. We

expect that the generalized filters detect the abnormality faster in comparison

with the conventional ones. This is because in Θ′
4 and Θ′

5, the coefficients

corresponding to the more recent versions of the process variable are greater

than the others. By conducting Monte Carlo simulation we obtain the average

detection delays corresponding to N ∈ {4, 5} and various r which are shown

in Fig. 5.12. In this figure, the shaded blue area indicates the detection delay

of generalized filters of order 5 which yields better accuracy than the conven-

tional filter of order 4 (i.e. when 0.69 < r < 1). A similar statement holds for

the generalized filters of order 4 (i.e. 0.58 < r < 1) which correspond to the
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Figure 5.11: Comparison of ROC curves for two conventional and two gener-
alized moving variance filters.

shaded green area. This figure also confirms that for both cases, the selected

generalized filters result in the smallest detection delay among the filters with

their coefficients forming a geometric series. In conclusion, although the con-

ventional filter of order 5 is the best choice considering detection accuracy, it

is the worst candidate with respect to detection delay. Furthermore, by inves-

tigating this figure, we conclude that the best filter in terms of swiftness is the

generalized one of order 4 and then the same type of order 5. In real applica-

tions, a compromise must be made between the accuracy and the swiftness of

filters. So taking both concerns into account, the generalized filter of order 5

is superior to the other ones as it is the second-best candidate with respect to

accuracy and also has the second-best rank in swiftness. In other words, the

accuracy level of the generalized filter of order 5 falls between the conventional

filters of orders 4 and 5. Nonetheless, the detection delay of this filter is better

than both of them.
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Figure 5.12: Comparison of average detection delays for conventional and
generalized moving variance filters.

5.6 Summary

In this chapter, optimal alarm filter analysis and design are addressed for

detecting mean and variance changes. First, the method is employed for gen-

eralized moving average filters. Then, a Gaussian approximation is derived

for the output of moving variance filters. Based on this approximation, an

explicit relationship of filter parameters and the optimal solution is provided.

Although moving average and variance filters are structurally different, it is

illustrated that a similar solution can be found for determining optimal coeffi-

cients for the filters. We also derived a formulation for the impact of statistical

parameters of raw data on the performance of filtering. Furthermore, we pro-

posed a method to estimate the ROC curves corresponding to the filtered data.

The effectiveness of the method is verified by conducting simulation and a case

study of the Tennessee Eastman process. Our filter is designed for stationary

processes. The extension to non-stationary processes is left as future work.

Similar to the existing methods in the literature in [95], one may approach
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this problem by assuming a time-series model for the system.
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Chapter 6

Performance Assessment and
Design of Quadratic Alarm
Filters

In the previous chapters we have studied the moving average and moving vari-

ance filters. We saw that a moving average (resp. moving variance) filter

can detect mean (resp. variance) changes, but it can not be used to detect

variance (resp. mean) changes. However, a quadratic filter can be used to

detect both types of changes. Although this remarkable feature of quadratic

filters has been addressed in the literature, no explicit performance analysis

is performed yet. So, deriving an analytical solution for quadratic filters is

of paramount importance. To this aim, we propose an analytical method for

performance assessment and design of quadratic filters. On the other side, in

industrial applications, many process variables are acquired. So one challenge

is to identify the process variable that provides the best alarm performance

after filtering. We will derive an analytical solution to this problem. Further-

more, we will prove that this optimal solution is a function of the statistical

feature of historical data and alarm filter structure.

6.1 Problem Formulation

Let x[k], k ∈ {0, 1, 2, · · · }, indicate a process variable that is measured in a

plant. Suppose that samples of this process variable are independent, identi-
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cally distributed and follow

X ∼

{︄
N (µx,n, σ

2
x,n), k < Tab,

N (µx,ab, σ
2
x,ab), k ≥ Tab,

(6.1)

where Tab corresponds to the time of abnormality occurrence, σ2
x,ab (resp.

µx,ab) and σ2
x,n (resp. µx,n) are corresponding to the variance (resp. mean)

of x in abnormal and normal operation modes, respectively. Now let y[k], k ∈

{0, 1, 2, · · · }, denote the output samples of a quadratic alarm filter. The for-

mulation of a general quadratic filter of order N (see [26]) is given by

y[k] = xQxT , (6.2)

where Q is a symmetric matrix and

x ≜
[︁
x[k] · · · x[k −N + 1] 1

]︁
.

The alarm system decides whether to raise an alarm or not based on what

follows: {︄
alarm, y[k] > ytp;

no alarm, otherwise,

where ytp indicates the alarm trip-point which is designed by the operator

using the historical information of the plant. Based on the results of Chapter

2, we define the alarm performance index as

A(y) ≜
σ2
y,ab + σ2

y,n

(µy,ab − µy,n)2
, (6.3)

where σ2
y,ab (resp. µy,ab) and σ

2
y,n (resp. µy,n) are corresponding to the variance

(resp. mean) of y in abnormal and normal operation modes, respectively. A

smaller index represents a better distinguishability of normal and abnormal

operation modes. Intuitively, when the mean difference of abnormal and nor-

mal modes is large, and variance of each mode is small, it is easier to separate

these two modes by using a constant trip-point. The following lemma holds

for the introduced alarm index.

Lemma 6.1.1 Suppose that A(y), A(yc) and A(ym) are associated with y[k],

y[k] + c and my[k] where c ∈ R and m ∈ R− {0} are known and constant. It

follows that

A(y) = A(yc) = A(ym). (6.4)
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Proof. The proof is straightforward from the definition of the alarm index. □

Intuitively, if a constant value is multiplied by, or added to, a process variable,

the trip-point can be modified accordingly to compensate it. According to

Lemma 6.1.1, without loss of generality, we can fix the upper-left and lower-

right elements of Q to 1 and 0, respectively. Now we impose some constraints

on the structure of filters and study two special cases.

6.1.1 Case I: Diagonal Q

Suppose that the matrix Q has the following structure

Q =

[︃
Q1 0
0 0

]︃
.

Here, Q1 is a diagonal matrix and defined as

Q1 =

⎡⎢⎢⎢⎣
1 0 · · · 0

0 q1
. . .

...
...

. . . . . . 0
0 . . . 0 qN−1

⎤⎥⎥⎥⎦ , (6.5)

where qi’s are non-negative weights. In this case, the filter can be reformulated

as

y[k] = x2[k] +
N−1∑︂
i=1

qix
2[k − i].

For this problem, our goal is to evaluate A(y), given the statistical information

of x.

6.1.2 Case II: a More General Case

Inspired by [26] we assume the following structure for Q:

Q2 =

⎡⎢⎢⎢⎢⎢⎣
1 0 · · · 0 α0

0 q1
. . .

... α1q1
...

. . . . . . 0
...

0 . . . 0 qN−1 αN−1qN−1

α0 α1q1 . . . αN−1qN−1 0

⎤⎥⎥⎥⎥⎥⎦ . (6.6)
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Considering this expression, one may rewrite the filter equation as

y′[k] = (x[k] + α0)
2 +

N−1∑︂
i=1

qi(x[k − i] + αi)
2 + c,

where c = −
(︂
α2
0 +

N−1∑︁
i=1

α2
i qi

)︂
. It is worth noting that c does not affect the

alarm performance of filter (see Lemma 6.1.1) and can be discarded in further

analysis. Now the problem is to find an explicit expression for A(y′).

6.2 Performance Assessment of Case I

For this problem, the filter can be rewritten as x1Q1x
T
1 , where

x1 ≜
[︁
x[k] · · · x[k −N + 1]

]︁
. (6.7)

To evaluate the alarm performance index, we first need the following lemma,

which is introduced by [76].

Lemma 6.2.1 Consider the quadratic form P1(x1) = x1Q1x
T
1, where Q1 is a

symmetric matrix and X1 ∼ N (µ,Σ), where Σ is a positive definite matrix.

The rth moment of P1(x1) for r ∈ {1, 2} is expressed as

E(P1(x1))
r =

r−1∑︂
r1=0

(︃
r − 1

r1

)︃
g(r−1−r1)

r1−1∑︂
r2=0

(︃
r1 − 1

r2

)︃
g(r1−1−r2), (6.8)

where

g(j) = 2jj!
(︁
tr(Q1Σ)

j+1 + (j + 1)µ(Q1Σ)
jQµT

)︁
,

for j ∈ {0, 1, 2, · · · }.

By using this lemma, the mean and variance of P1(x1) is determined as

E(P1(x1)) =

(︃
0

0

)︃
g(0)

= tr(Q1Σ) + µQ1µ
T , (6.9)

and

Var(P1(x1)) = E(P1(x1))
2 −

(︁
E(P1(x1))

)︁2
=

(︄(︃
1

0

)︃
g(1) +

(︃
1

1

)︃(︁
g(0)
)︁2)︄−

(︃
0

0

)︃(︂
g(0)
)︂2

= 2tr(Q1Σ)
2 + 4µQ1ΣQ1µ

T . (6.10)
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According to the equation in (6.1), it follows that

Σx1,n = σ2
xn
IN ,

Σx1,ab = σ2
x,abIN ,

where Σx1,n and Σx1,ab are corresponding to the normal and abnormal opera-

tion modes, respectively, and IN is an identity matrix of size N . Considering

the equation in (6.5), we have

tr(Q1Σx1,n) = σ2
x,n

(︂
1 +

N−1∑︂
i=1

qi

)︂
,

tr(Q1Σx1,ab) = σ2
x,ab

(︂
1 +

N−1∑︂
i=1

qi

)︂
,

(6.11)

and

tr(Q1Σx1,n)
2 = σ4

x,n

(︂
1 +

N−1∑︂
i=1

q2i

)︂
,

tr(Q1Σx1,ab)
2 = σ4

x,ab

(︂
1 +

N−1∑︂
i=1

q2i

)︂
.

(6.12)

Furthermore, according to the equation in (6.1) we have

µx1,n = µx,n

[︁
1 1 · · · 1

]︁
,

µx1,ab = µx,ab

[︁
1 1 · · · 1

]︁
,

(6.13)

where µx1,n and µx1,ab are corresponding to the normal and abnormal opera-

tion modes, respectively. By performing some algebraic manipulations on the

equations in (6.9), (6.11) and (6.13), the mean of filtered data is determined

as

µy =

⎧⎪⎪⎨⎪⎪⎩
(σ2

x,n + µ2
x,n)
(︂
1 +

N−1∑︁
i=1

qi

)︂
, N ≤ k < Tab,

(σ2
x,ab + µ2

x,ab)
(︂
1 +

N−1∑︁
i=1

qi

)︂
, k ≥ Tab +N.

(6.14)

Moreover, by manipulating the equations in (6.10), (6.11) and (6.13), we have

σ2
y =

⎧⎪⎪⎨⎪⎪⎩
(2σ4

x,n + 4µ2
x,nσ

2
x,n)
(︂
1 +

N−1∑︁
i=1

q2i

)︂
, N ≤ k < Tab,

(2σ4
x,ab + 4µ2

x,abσ
2
x,ab)

(︂
1 +

N−1∑︁
i=1

q2i

)︂
, k ≥ Tab +N.

(6.15)
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Now by substituting (6.14) and (6.15) into the definition of alarm index (see

the equation in (6.3)) we have

A(y) =

(︁
2(σ4

x,n + σ4
x,ab) + 4(µ2

x,nσ
2
x,n + µ2

x,abσ
2
x,ab)

)︁(︂
1 +

N−1∑︁
i=1

q2i

)︂
(︁
σ2
x,n + µ2

x,n − (σ2
x,ab + µ2

x,ab)
)︁2(︂

1 +
N−1∑︁
i=1

qi

)︂2 . (6.16)

Hence, the impact of filter weights on the alarm performance index is given by

A(y) ∝
1 +

N−1∑︁
i=1

q2i(︂
1 +

N−1∑︁
i=1

qi

)︂2 . (6.17)

Now by setting
[︁
∂A
∂q1

∂A
∂q2

· · · ∂A
∂qN−1

]︁
= 0, the optimal alarm weights are deter-

mined as qi = q, ∀i ∈ {1, 2, · · · , N − 1}, where q can be any positive real

number.

Although the best performance (in the view of (6.3)) can be achieved by

setting all qi’s to one, there are some cases that operators decide to change

the weights due to some circumstances. An example is when operators assign

higher weights to the newer samples of a process variable to reduce detection

delay. For this condition, (6.17) can be exploited as a straightforward measure

for the accuracy of alarm systems. Adding other constraints gives rise to a

new optimization problem. The effect of statistical parameters of raw data x

on the alarm performance of filtered data is obtained as

Ay(x) ∝
(︁
2(σ4

x,n + σ4
x,ab) + 4(µ2

x,nσ
2
x,n + µ2

x,abσ
2
x,ab)

)︁(︁
σ2
x,n + µ2

x,n − (σ2
x,ab + µ2

x,ab)
)︁2 . (6.18)

This expression can be utilized as a measure to help operators for exploring

historical data and determining the optimal process variable for filtering. In

this chapter, we call Ay(x), the alarm score. A smaller alarm score corresponds

to a better alarm performance after filtering.

6.3 Performance Assessment of Case II

The quadratic filter associated with Case II can be reformulated as

P2(x) = x

[︃
Q1 αT

α 0

]︃
xT ,
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where x =
[︁
x1 1

]︁
, x1 is introduced by the equation in (6.7), and

α =
[︁
α0 α1q1 . . . αN−1qN−1

]︁
.

Furthermore, x1α
T = αxT

1 , thus

P (x) = x1Q1x
T
1 + 2αxT

1 . (6.19)

By performing some modification on a lemma presented by [76], we introduce

the following lemma.

Lemma 6.3.1 Considering the same assumptions that are made in Lemma

6.2.1, the rth moment of P2(x) for r ∈ {1, 2} is determined by replacing g(j)

with g
(j)
∗ in (6.8), where

g(j)∗ =

⎧⎪⎪⎨⎪⎪⎩
1
2
j!

N−1∑︁
i=1

(2λi)
j+1 + (j+1)!

2

N−1∑︁
i=1

b∗i
2(2λi)

j−1, j ≥ 1,

1
2

N−1∑︁
i=1

(2λi) + 2αµ+ µQ1µ
T , j = 1.

Here, ⎡⎢⎢⎢⎣
λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λN−1

⎤⎥⎥⎥⎦ = Q1Σ,

and

b∗ ≜ (b∗1, b
∗
2, · · · , b∗N−1) = 2

(︁
Σ

1
2α+ Σ

1
2µQ1

)︁
.

According to this lemma, the mean and variance of P2(x) is determined as

E(P2(x)) = tr(Q1Σ) + 2αµ+ µQ1µ
T , (6.20)

and

Var(P2(x)) = E(P2(x))
2 −

(︁
E(P2(x))

)︁2
=

(︄(︃
1

0

)︃
g(1)∗ +

(︃
1

1

)︃(︁
g(0)∗
)︁2)︄−

(︃
0

0

)︃(︂
g(0)∗

)︂2
= 2tr(ΣQ1)

2 +
N−1∑︂
i=1

b∗i
2. (6.21)
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Now let b∗n be corresponding to the normal operation mode. Then

b∗n = 2σx,nα+ 2σx,nµ

⎡⎢⎢⎢⎣
1 0 · · · 0

0 q1
. . .

...
...

. . . . . . 0
0 . . . 0 qN−1

⎤⎥⎥⎥⎦ .
Hence {︄

b∗i,n = 2σx,n(αi + µx,n), i = 0,

b∗i,n = 2qiσx,n(αi + µx,n), i ≥ 1,
(6.22)

where b∗i,n’s are elements of b∗n. The same result holds for the abnormal op-

eration modes (b∗i,ab). By substituting (6.11) and (6.13) into the equation in

(6.20) and performing some algebraic manipulations, the mean of filtered data

is obtained by

µy′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µy′,n = (σ2
x,n + µ2

x,n)
(︂
1 +

N−1∑︁
i=1

qi

)︂
+

2µx,n

(︂
α0 +

N−1∑︁
i=1

αiqi

)︂
, N ≤ k < Tab,

µy′,ab = (σ2
x,ab + µ2

x,ab)
(︂
1 +

N−1∑︁
i=1

qi

)︂
+

2µx,ab

(︂
α0 +

N−1∑︁
i=1

αiqi

)︂
, k ≥ Tab +N.

(6.23)

The variance of filtered data is determined by substituting (6.12) and (6.22)

into equation (6.21):

σ2
y′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
y′,n = 4σ2

x,n

(︂
(α0 + µx,n)

2 +
N−1∑︁
i=1

q2i (αi + µx,n)
2
)︂
+

2σ4
x,n

(︂
1 +

N−1∑︁
i=1

q2i

)︂
, N ≤ k < Tab,

σ2
y′,ab = 4σ2

x,ab

(︂
(α0 + µx,ab)

2 +
N−1∑︁
i=1

q2i (αi + µx,ab)
2
)︂
+

2σ4
x,ab

(︂
1 +

N−1∑︁
i=1

q2i

)︂
, k ≥ Tab +N.

(6.24)

So the alarm index corresponding to the second scenario is given by

A(y′) =
σ2
y′,ab + σ2

y′,n(︁
µ2
y′,ab − µ2

y′,n

)︁2 , (6.25)
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where σy′,ab, σy′,n, µy′,ab, and µy′,n are given by the equations in (6.23) and

(6.24). Now consider a special case where αi = α, ∀i ∈ {1, 2, · · · , N}, and let

ỹ′ indicates the filter output, which is represented by

ỹ′[k] = (x[k] + α)2 +
N−1∑︂
i=1

qi(x[k − i] + α)2. (6.26)

Under this assumption, we can obtain the mean and variance of ỹ′ as

µỹ′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︁
σ2
x,n + µ2

x,n + 2αµx,n

)︁(︂
1 +

N−1∑︁
i=1

qi

)︂
, N ≤ k < Tab,

(︁
σ2
x,ab + µ2

x,ab + 2αµx,ab

)︁(︂
1 +

N−1∑︁
i=1

qi

)︂
, k ≥ Tab +N.

and

σ2
ỹ′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︁
4σ2

x,n(α + µx,n)
2+ 2σ4

x,n

)︁(︂
1+

N−1∑︁
i=1

q2i

)︂
, N ≤ k < Tab,

(︁
4σ2

x,ab(α + µx,ab)
2+ 2σ4

x,ab

)︁(︂
1+

N−1∑︁
i=1

q2i

)︂
, k ≥ Tab +N.

Now the relation of qi’s and the alarm performance index is determined as

A(ỹ′) ∝
1 +

N−1∑︁
i=1

q2i(︂
1 +

N−1∑︁
i=1

qi

)︂2 .
This expression is similar to the result that we derived for Case I, so the

optimal qi’s can be obtained similar to the one in Case I. By performing some

calculations, the optimal value for α is determined as

αopt =
Π1Π2 − Π3Π4

Π1Π4 − Π5Π2

, Π1Π4 ̸= Π5Π2, (6.27)

where

Π1 = 2(σ2
x,abµx,ab + σ2

x,nµx,n),

Π2 = (σ2
x,ab + µ2

x,ab)− (σ2
x,n + µ2

x,n),

Π3 = (σ4
x,ab + σ4

x,n) + 2(σ2
x,abµ

2
x,ab + σ2

x,nµ
2
x,n),

Π4 = 2(µx,ab − µx,n),

Π5 = 2(σ2
x,ab + σ2

x,n).
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Hence, the effect of statistical parameters of process variable x on the alarm

performance of filter data ỹ′ is expressed as

Aỹ′(x) ∝
Π5α

2
opt +Π1αopt +Π3

(Π4αopt +Π2)2
. (6.28)

6.4 Simulation Results

In this section, we study an example to demonstrate the effectiveness of the

proposed method and verify the theoretical analysis. Consider a plant with

three process variables that are sampled at discrete times. The process vari-

ables are indicated by x1[k], x2[k] and x3[k], k ∈ {1, 2, · · · , T} and are available

for the alarm system to detect abnormal operation of the plant. Now assume

that a fault occurred in the plant at sample k = Tab. Mean and variance of

the process variables can be estimated as

µxj ,n =
1

Tab

Tab−1∑︂
k=0

xj[k],

µxj ,ab =
1

T − Tab + 1

T∑︂
k=Tab

xj[k],

and

σ2
xj ,n

=
1

Tab

Tab−1∑︂
k=0

(xj[k]− µxj ,n)
2,

σ2
xj ,ab

=
1

T − Tab + 1

T∑︂
k=Tab

(xj[k]− µxj ,ab)
2,

where j ∈ {1, 2, 3}. We assume that after estimation of mean and variance,

the following distributions are obtained:

X1 ∼

{︄
N (0.2, 0.42), k < Tab,

N (1, 12), k ≥ Tab,

X2 ∼

{︄
N (0.4, 0.32), k < Tab,

N (1, 0.42), k ≥ Tab,

X3 ∼

{︄
N (0.1, 0.42), k < Tab,

N (2.1, 1.42), k ≥ Tab.
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Table 6.1: Alarm score of process variables

x1 x2 x3

Ay(x) 1.87 0.92 1.10

Aỹ′(x) 1.63 0.69 0.46

1 2 3 4 5 6 7 8 9 10
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0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 6.1: Simulation results for various filter orders, where qi = 1, ∀i ∈
{1, 2, · · · , N − 1}, and α = αopt.

Now we use the equations in (6.18) and (6.28) to obtain the appropriate process

variable for fault detection. The result is presented in Table 6.1. In this table, a

smaller alarm score represents a better alarm performance after filtering. This

result indicates that for the filter structures of Case I and Case II, we should

select x2 and x3, respectively. Furthermore, we can infer that x1 is not the

right choice for either filter structure. Now let y1, y2 and y3 denote the filtered

data corresponding to the process variables x1, x2 and x3, respectively. This

result can also be concluded from Fig. 6.1 which is obtained by conducting

Monte Carlo simulation. Fig. 6.2 shows the alarm index of filtered data for

Case I. Details of the studied scenarios are presented in Table 6.2. From Fig.
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6.2, we can see that the best performance (in terms of the equation in (6.3))

can be archived by setting all qi’s to one. However, considering new constraints

(see Remark 6.2), another scenario may be a good candidate. In all scenarios,

the analytical result captures well the Monte Carlo simulation.

Table 6.2: Simulation scenarios

Scenario Filter weights

1 All set to 1

2
Set according to an arithmetic sequence with

initial term 1 and common difference 1/N

3
Set according to a geometric sequence with

initial term 1 and common ratio 0.6

4
Set according to a geometric sequence with

initial term 1 and common ratio 0.2

For Case II, the obtained αopt for each process variable is presented in

Table 6.3.

Table 6.3: Optimal α for process variables

x1 x2 x3

αopt 1.31 -6.64 -4.93

The simulation result of Fig. 6.3 verifies this analysis. Finally, Fig. 6.4

and Fig. 6.5 show time trends of x2 and y2, respectively. By comparing the

histograms of x2 and y2, we conclude that the filter reduced the overlapped area

of normal and abnormal operation modes. This implies that the separation of

these two modes can be achieved with higher accuracy after filtering.

6.5 Summary

This chapter addressed the problem of optimal quadratic filter design for in-

dustrial alarm management systems. We derived an explicit solution for the
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Figure 6.2: Simulation result of A(y) where qi’s are selected according to Table
6.2.
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Figure 6.3: Analytically evaluated optimal α (using the equation in (6.27))
and simulation result for various choices of α with N = 3.
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Figure 6.4: Time trend and histogram of x2.

Figure 6.5: Time trend and histogram of y2 (filtered version of x2 according
to the scenario 1 with N = 3).
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alarm performance of quadratic filters. We introduced a new score, which can

be utilized to help plant operators to determine an appropriate process variable

for alarm purposes. We also demonstrated that for different filter structures,

this optimal choice might be different. The analysis of this chapter can be

combined with other alarm performance indices (e.g., alarm detection delay)

to satisfy the requirements of various applications. It can also be served as a

stepping stone to assess and design other forms of nonlinear alarm filters.
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Chapter 7

Conclusions and Future Work

This chapter concludes the thesis. In the first part of this chapter, a summary

of the main results is presented. After that, some potential future research

directions are proposed.

7.1 Conclusions

In this thesis, PID and state-feedback controller synthesis problems considering

both control and alarm performance have been studied. Inspired by the pres-

ence of model uncertainty in most of industrial applications, a state-feedback

controller has been designed to be robust against norm-bounded uncertainty

of model parameters. A new alarm index has been introduced by utilizing

the concept of the area under a ROC curve. This alarm index is shown to be

applicable for controller design even for uncertain systems. It also has been

justified that there is an interplay between control and alarm performance for

a certain type of performance indices. LMI based methods have been proposed

to compromise the control and alarm performance.

The problem of linear alarm filters for statistically correlated process vari-

ables has also been addressed in this thesis. It has been justified that the

conventional moving average filter is not the optimal answer when relaxing

the independence assumption on process measurements. In the case of actua-

tor faults, it has been shown that the optimal filter coefficients can be obtained

regardless of the abnormality amplitude.

We have also addressed the problems of optimal generalized moving vari-

110



ance and quadratic filters for industrial alarm management systems. We de-

rived an explicit solution for the alarm performance of quadratic filters. We

introduced a new score, which can be utilized to help plant operators to de-

termine an appropriate process variable for alarm purposes. We also demon-

strated that for different filter structures, this optimal choice might be differ-

ent.

7.2 Future Work

Some possible extensions and new ideas that are worth investigating as future

research are listed as follows:

• The proposed controller design approach could be further extended in

the various directions. In the proposed method, we have only considered

mean change problem which is the most popular type of abnormality.

But other types of abnormality such as ramp and variation changes can

be investigated. For ramp abnormalities, instead of Gaussian distribu-

tions, one can use Gaussian mixture models to analyze the alarm perfor-

mance. For variance changes, a possible solution is to derive a Gaussian

approximation for alarm signals. The proposed method of Chapter 5 may

be helpful to find such an approximation. Furthermore, a similar control

design problem can be studied by adding alarm filters, deadbands or de-

lay timers. The result of Chapter 4 can be utilized to deal with alarm

filters. However, for deadbands or delay timers, Markov models should

be used to analyze the overall performance of alarm systems. In the first

two chapters, we have studied only PID and state-feedback controllers.

So another possible research direction is to exploit other types of con-

trol strategies. In this case, the alarm performance index that has been

introduced for systems (see Chapter 3) can be added as a constraint to

the new control design problem.

• To further enhance the analysis, in addition to the accuracy measures

FAR and MAR, swiftness of alarm filters in detecting abnormalities is
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desirable. Average detection delay (ADD) has already been introduced

in the literature which is suitable for alarm deadbands and delay timers

and is hard to adopt for alarm filters. However, the definition of ADD

makes it very hard to obtain a closed form solution in case of alarm filter-

ing. The reason is that for alarm filters this index deals with multivariate

Gaussian distributions where the samples are not independent; and the

average is on an infinite number of cumulative distribution functions

(CDFs) of these distributions. A possible direction to obtain a solution

is to introduce a new index to measure the swiftness considering the

structure of alarm filters.

• Industrial processes are prone to various operation mode changes. Hence,

statistical parameters of process variables and associated alarm signals

may also change. This may cause performance degradation of alarm fil-

ters. To address this problem, the moving variance filter design method

of Chapter 5 can be generalized for non-stationary processes. Similar to

the existing methods in the literature (see e.g., [95]), one may approach

this problem by assuming a time-series model for the system. Further-

more, The approach of Chapter 5 can be served as a stepping-stone for

analysis of other classes of nonlinear alarm filters. The simplest solu-

tion is based on the moment matching method where the output of a

nonlinear filter is approximated by a Gaussian distribution. However, in

some cases, more sophisticated methods can be adopted to improve the

approximation accuracy.

• The distribution parameters of raw data may have uncertainties in some

real applications. In Chapter 3, we have designed a controller to guar-

antee a robust performance for alarm systems in the presence of model

uncertainties. The issue of uncertain statistical parameters of the raw

data may be even more challenging for nonlinear filters. As an instance,

for quadratic filters, if the parameter α is close to the mean of a process

variable, a small change in the mean value can significantly deteriorate

the filter performance. Thus, robust design of the quadratic and the mov-
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ing variance alarm filter of Chapter 5 and Chapter 6 is also a promising

research direction.
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