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Abstract—The value of teamwork is being recognized by
project owners, resulting in an increased acknowledgement of
collaboration among developers in software engineering. A good
understanding of how developers work together could positively
impact software development practices. In this paper, we inves-
tigate the collaboration habits of developers in project files by
leveraging the World of Code (WoC) dataset and GitHub API.
We first identify the collaboration level of developers within the
project files, such as the source, test, documentation, and build
files, using the Author Cross Entropy (ACE). From the results we
find out that test files report the highest degree of collaboration
among the developers, perhaps because collaboration is critical
to ensure convergence of functionality tests. Furthermore, the
source code files show the least degree of collaboration, perhaps
because of code ownership and the complexity and difficulty in
code modification. Secondly, given the widespread usage of the
Python programming language, we investigate the Python code
tokens that are more prone to change and collaboration. Our
findings offer insights into the specific project files and Python
code tokens that developers typically collaborate on in the open-
source community. This information can be used by researchers
and developers to enhance existing collaboration platforms and
tools.

Index Terms—OSS, WoC, development-practice

I. INTRODUCTION

Open-source software (OSS) is a publicly accessible and
freely distributed system, offering benefits such as improved
security and freedom from vendor lock-in [1]. In order to be
available for public use, OSS systems often require developers
to collaborate on certain development activities, such as code
refactoring, modification, build configuration, documentation,
and writing of tests. Improved understanding of developer col-
laboration can result in the development of better collaborative
platforms and tools. In this paper, we aim to understand how
developers collaborate in the OSS environment on different
project files and project code-tokens.

To investigate the trend of developer collaboration on dif-
ferent project files, we use Cross Entropy [2], a measure to
realize the degree of developer involvement in a particular
file. Furthermore, we use Author Cross Entropy (ACE) [3] to
classify the degree of collaboration between the authors on
a particular file. We investigate collaboration trends across 4
file types (source, test, build, and documentation files). After
observing the developers’ collaboration trends on project files,
we investigate how developers collaborate over Python code
tokens. We specifically focus on Python due to its widespread

use in open-source software [4]. To obtain the project files,
we randomly extracted 20,000 collaborative GitHub projects
from the World of Code (WoC) dataset [5].

To summarize, we investigate the following research ques-
tions:

RQ1: What is the difference in collaboration distributions
(ACE) across 4 file types: Source Code, Build files, Tests,
and Documentation?

RQ2: What tokens in Python are the most collaborative?

Our results report a high degree of developer collaboration
in test files. This result indicates that developers usually
require a high level of collaboration to write tests. On the
contrary, the source code files show minimal collaboration,
likely due to code ownership and how some authors contribute
more than others. In addition to investigating the collaboration
on files, we investigate collaboration on Python code tokens
as well. We first extracted code tokens that developers had
collaborated on, and then we used lexical analysis to compare
the changed version of the tokens with their unchanged
version. We make this comparison to determine the degree of
collaboration between the developers. From the comparison,
we find out that certain tokens report high collaboration, such
as identifiers, strings, imports, and comments.
In contrast, certain tokens report low collaboration, such as
operators, asserts, and whitespaces.

II. METHODOLOGY

The methodology of this study is depicted in Figure 1. First,
we find all projects that have more than a single author and
are available on Github leveraging the World of Code (WoC)
dataset [5]. Then we randomly sample 20,000 projects from
that subset and use GitHub API to retrieve all lines of changes
in all commits, as we face computational limits on using the
GitHub API. Then for RQ1, we calculate author cross entropy
distributions of files based on commits, split the analysis by
file type, and then compare author cross entropy of file types
with the Mann-Whitney U rank test [6]. For RQ2 we filter
the 20,000 projects further, selecting those that have Python
files with multiple contributors. We then count and calculate
the percentage of tokens added in commits and compare it
against the frequency of tokens overall.

a) Author Identity: In WoC [5], we found 125,154
unique tuples of authors and projects. To resolve authors who
have multiple email addresses (aliased authors) we adopt the
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Fig. 1. The methodology to extract projects and analyze their developers’
collaboration.

methodology of Tanner et al. [7], which maps author identity
from similar author emails to author names. However, without
first and last names we merge aliased authors, within the same
project, according the following three scenarios:

o Author A’s author name and Author B’s author name are
the same. e.g. <Alan Turing alan@example.com> and
<alan turing AlanT @ example.com>

« Author A’s author name and Author B’s email prefix' are
same. — e.g. <Alan Turing alan@example.com> and
<A Turing AlanTuring @example.com>

o Author A’s email prefix and Author B’s email prefix are
the same. — e.g. <Alan Turing alan@ example.com> and
<A Turing alan@email.com>

As a result, we found 15,080(12%) duplicated author-
project tuples. This reduced the number of author-project
tuples from 125,154 to 110, 074.

b) File Classification: To identify the degree of col-
laboration in different file types, we classify the files into
four majority file types. We considered the use of file types
since it provides better details on the task type involved in
the collaboration. Then we used Hindle et al.’s [8] method,
which classifies file types by matching the file extensions
and filenames. Then, we classified the files into four major
file types: Source Code (S), Build files (B), Tests (T), and
Documentation (D).

c) Author Cross Entropy: To estimate the collaboration
level of files, we used the Author Cross Entropy (ACE) method
from Taylor et al. [3] to characterize the distribution of the

'Email prefix is the email content before @. e.g. alan is the email prefix
of alan@example.com

authors’ contributions within each file type. We estimate the
ACE at the granularity of a number of commits. For example,
if majority of file-commits are from a single author, then the
file has a lower ACE. Higher ACE also indicates the files
were created collaboratively in a fair or equal manner (a flat
distribution). Where n is number of authors and P(7) is the
frequency (between 0 and 1) of author ¢’s commits on a file,
ACE is defined by the following equation:

n

Author Cross Entropy = — Z P(i) - log P(7) (D)

d) Comparison: We want to compare if the collabo-
ration level is different between file types. Since file types
have different sizes, and there are no assumptions for data
distributions, we used the Mann-Whitney U rank test [6] to
compare the pair ACE distribution for each file type. We have
applied two different hypothesis: (1) HO: the two distributions
are equal; H1: the two distributions are not equal (2) HO:
distribution 1 is less than distribution; H1: distribution 1 is
greater and equal than distribution 2. Then, in each hypothesis
we consider if p-value < 0.05 means we will reject null
hypothesis and choose alternative hypothesis.

e) Lexical Analysis: For RQ2, we want to discover the
collaboration level of per token in Python code. We use lexical
analysis libraries [9] to extract 9 different types of Python
tokens:

o Identifier: Identifiers are the name given to variables,
classes, methods, e.g., add_argument, os, join, etc.

« String: The words are surrounded by either single quota-
tion marks, or double quotation marks, e.g., Menu.html,
hello, etc.

¢ Comment: Comments are started with a # or a comment
string of 3 quotes (“ * ’). Python will ignore them.

o Operator: Operators are used to perform operations on
variables and values, e.g., +, -, =

o Keyword: Keywords are reserved words in Python in
Python, e.g., for, except, if.

o Number: Number is a numeric literal, e.g., 1.1, 10,
-20.5.

e Decorator: Decorator provides the functionality to wrap
another function to extend the behaviour of the wrapped
function and start with @, e.g., @my_decorator.

« White Space: Characters such as spaces, tabs, and new-
lines used in indentation, line-breaks, or spacing between
operators and identifiers.

o Other: Other operators, e.g., 2, — .

ITI. RESULTS
A. Collaboration Across File Types (RQI)

Before calculating the collaboration distributions, we clas-
sify 21,837,761 files from 20, 000 projects into 4 file types:
Source Code, Build files, Tests, and Documentation. First we
measure the distribution of collaborators per file type. Table I
summarizes the count of files that are associated with the
number of authors who have contributed to the file’s type.



TABLE I
ACE DISTRIBUTIONS OF ALL FILES, SOURCE CODES, DOCUMENTATIONS,
BUILD FILES AND TESTS.

Authors  Source Code Tests Document  Build Files
1 12228517 2618221 1525821 195454

2 2743892 596494 348110 34587

3 600149 163073 173321 8493

4 140546 46019 16188 2606

5 81748 33161 7823 1862

6 31979 16785 3173 929

>7 150669 55407 8908 3826
SUM 15977500 3529160 2083344 247757

& & 5 9 I

Author Cross Entropy

All Source Code  Documentation
File Types

Build Files Tests

Then, we find that all four file types have a left-skewed
distribution of the number of collaborators.

Secondly, we investigate the distribution of ACE scores
per file type, shown in Figure III-A. Then, we used Mann-
Whitney U tests [6] to compare the ACE distributions between
each pair of file types. In each pair of Mann-Whitney U test
results, if file type A shows significant greater than file type B
(p-value < 0.05), then we consider authors collaborate more
in file type A than file type B. Our results show four file
types from the most collaborative to least collaborative: Tests
> Documentation > Build Files > Source Code.

Code ownership of source code, even in OSS, is well
documented [10], [11], thus it is unsurprising that source code
is less collaborative than file types such as tests. Perhaps tests
are more collaborative due to the involvement of multiple
stakeholders, as tests give immediate feedback if dependencies
and expectations have been changed within the source code.

B. Collaboration Across Python Code Tokens (RQ2)

We want to explore the token distribution in collaborative
content (content added or modified by multiple authors), with
a specific focus on the added or modified tokens in each
commit changes. To discover the collaboration features in
Python files, we filtered 835 projects with at least one Python
file committed by multiple authors of 20,000 projects. In 835
projects, there are 2,046 Python files committed by multiple
authors. Moreover, we downloaded the latest version of these
same 2,046 Python files and did the lexical analysis for the
entire content. Finally, we named these as python background
files and compared them with collaborative content. Next, we
used the WoC database [5] to find the project’s url, commits,
commit authors and changed files in each project. To find the

collaborative line of code, we used GitHub API to retrieve the
commit diff files.

We applied the lexical analyzer on added lines from commit
changes, which consists of newly added lines and modified
lines. We extracted a total 75,162 unique Python tokens
from collaborative content in 2,046 Python files. To compare
the collaborative content with Python background files, we
extracted total 126, 738 unique Python tokens from the latest
version of the same 2,046 Python files.

Table II shows the Python token type distribution in both
Python background files and collaborative content. Accord-
ingly, authors collaborate the most in identifier of all token
types, which is the 3rd rank in Python background files.
Authors might frequently update the variable name, and
function names while fixing bugs or refactoring. Moreover,
we discovered that collaborators frequently update or add
the string and comment tokens. In string token type,
they make up 20.9% updated tokens in commit changes.
Authors might update the string content in the source code for
more comprehensive descriptions or proper words iteratively.
Comment token type makes up 10.7% of collaborative con-
tent. To collaborate well with team mates, once authors make
code modifications, they often add the comments to explain
their changes. Finally, we realized the collaborative content
ranks of operator and whitespace decreased compared
with ranks in background files. Authors barely update or add
operator tokens in collaborative content with only 8.95%
compared with 35.98% in background files perhaps because
operators are fundamental logic that might cause unexpected
issues. Moreover, the percentage of whitespace tokens in
collaborative content is 1.68%, while in background files it
is 27.63%. In collaborative content, the majority of added or
removed whitespace tokens are space characters between
operators and identifiers. However, in background files, the
types of whitespace include line breaks and indents. Col-
laborators may less frequently add or update line breaks and
indents in their commits compared to the background files.

Python keyword token Table III shows that authors update
the import keyword token more often in collaborative con-
tent. The rank of import increases from fifth in the Python
background files to the first in the collaborative content. We
believe there are two possible scenarios: (1) when develop-
ers are adding new features, fixing bug or optimizing code
performance, they might import new modules or libraries; (2)
when developers want to refactor code, they simplify the code
by creating reusable functions. Therefore, moving functions
to modules causes the need for the import statement in
collaborative content. In both of the above scenarios, devel-
opers might add more lines including the import keyword.
Furthermore, we find the assert has 0.01% in collaborative
content but 1.09% in background files. According to previous
literature [12], [13], using a high density of asserts im-
proves the effectiveness of testing and improves code quality.
In our study, the collaborative content has unexpected lower
percentage of assert tokens compared with background
files.



TABLE 11

PYTHON TOKEN TYPES’ COUNT, PERCENTAGE, AND RANK IN BOTH COLLABORATIVE CONTENT AND PYTHON BACKGROUND FILES.

Token Type Count  Percentage  Collaborative Content Rank  Background Files Rank Count  Percentage
Collaborative Content Background Files
IDENTIFIER 94657 48.63% 1 3 915385 24.21%
STRING 40688 20.90% 2 4 190866 5.05%
COMMENT 20836 10.70% 3 7 52482 1.39%
OPERATOR 17417 8.95% 4 1 1360274 35.98%
KEYWORD 10430 5.36% 5 5 145588 3.85%
NUMBER 6938 3.56% 6 6 64987 1.72%
WHITESPACE 3273 1.68% 7 2 1044772 27.63%
DECORATOR 236 0.12% 8 8 5325 0.14%
OTHER 182 0.09% 9 9 1480 0.04%

TABLE III

PYTHON KEYWORD TYPES’ COUNT, PERCENTAGE, AND RANK IN BOTH COLLABORATIVE CONTENT AND PYTHON BACKGROUND FILES.

Collaborative Content Background Files
Type of Keyword | Count Percentage  Collaborative Content Rank ‘ Background Files Rank  Count  Percentage
import 1196 11.47% 1 5 11333 7.78%
if 909 8.72% 2 1 25620 17.60%
def 832 7.98% 3 2 19541 13.42%
in 710 6.81% 4 4 13318 9.15%
from 698 6.69% 5 9 5665 3.89%
return 693 6.64% 6 3 14883 10.22%
for 613 5.88% 7 6 9020 6.20%
else 493 4.73% 8 7 6622 4.55%
not 436 4.18% 9 8 6334 4.35%
class 394 3.78% 10 14 2777 1.91%
and 369 3.54% 11 10 3577 2.46%
as 361 3.46% 12 16 2172 1.49%
try 290 2.78% 13 13 2812 1.93%
with 271 2.66% 14 20 1394 0.96%
is 272 2.61% 15 11 3214 2.21%

IV. RELATED WORK

The studies in collaborative software engineering have
gained reasonable attention with a plethora of challenges
arising in this niche.

Scacchi et al. [14] studied the collaboration practices and
socio-technical relationships of Open Source Software. They
observed that project leaders’ instinct in managing software
project issues might be to expand the team which doesn’t
always lead to a solution. Our study however focused on
the granular aspect of collaboration by looking at software
artifacts like files to gain accurate insights into the level of
collaborative effort needed in creating and modifying projects.

Colazo et al. [15] leveraged data archives from OSS projects
to identify the interrelations amongst collaboration patterns,
quality, and efficiency of software products. Their results
suggest that project managers should encourage internal col-
laboration. Our study however focused on the investigation
of collaborations in software artifacts while helping project
managers understand specific software artifacts that could
require more collaborative efforts.

Hindle ez al. [8] studied developer behavior, and the general
nature of software processes by looking at activities in source,
test, build, and documentation files that occurred when a
software project is released. We used this classification of files
in this study.

Tanner et al. [7] noted that authors could have multiple
identities, and could triage bug reports to themselves. We saw
duplicate author identities even in our datasets as some authors
have multiple emails. We applied pre-processing techniques
even in our samples to get single authors. The pre-processing
method further highlights the value of relying on bug triage
for identifying collaboration patterns in Open Source projects.

Avishkar et al. [16] leveraged Python tokens and LSTM
models to learn the Python code suggestions. Their study
leveraged findings from GitHub [17] to produce a code
suggestion corpus for Python of about 41 million lines of
Python code. We built on this intuition to identify tokens in
Python code and identified the varying degrees of collaboration
existing amongst them.

V. THREATS TO VALIDITY

We leveraged World of Code (WoC) [5] as our source
of data and mined projects extracted from GitHub [17].
This means that replicating our methodologies outside the
aforementioned platforms may not guarantee a similar out-
come. Moreover, a high proportion of toy projects or student
assignments causes sampling bias in the representation of all
software development project collaborations. We only studied
Python code thus we cannot guarantee similar results for other
widely used programming languages.



Furthermore, we resolved author aliases, but might have
missed some, or potentially combined aliases that were not
aliases. Moreover, we adopted ACE as a means of measuring
the degree of authors’ involvement in the project which can
be invalidated with a different mathematical function.

VI. CONCLUSION

We leveraged the World of Code (WoC) dataset [S] and
GitHub API [17] in our study to extract and analyze 20,000
random collaborated projects in a bid to identify collaboration
patterns in Open Source Software tasks. We answered two
research questions to guide our intuition in this study. Firstly,
we started with identifying collaboration distribution patterns
across different file types (i.e. source code, build files, test files,
and documentation). This was done by leveraging the ACE of
authors-changed files, with results showing a high level of
collaboration in test files and source files being the least col-
laborated files. Secondly, we wanted to identify collaboration
patterns across Python tokens by leveraging lexical analysis
(RQ2). Our results show that tokens such as identifiers,
strings, and comments are highly collaborative, while
operators, and whitespaces are less collaborative.
Python keywords like import are highly collaborative while
keywords like assert are less collaborative. The replication
kit of this work is made freely available [18].
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