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In a seminal paper, Erlwanger (1975) described the case of Benny, 
a grade six student learning how to convert between fractions 
and decimals. Benny had developed a unique procedure for 
doing so, one he was able to apply consistently and efficiently. 
Unsurprisingly, Benny demonstrated progress in his coursework 
and was noted by his teacher to be one of the best students in his 
class (Erlwanger, 1975, p. 49). The only problem was that Benny’s 
procedure was flawed, based on fundamental misunderstandings 
of the underlying mathematics, and so he invariably arrived at 
erroneous answers. This led Erlwanger (1975) to conclude that an 
“emphasis on instructional objectives and assessment procedures 
alone may not guarantee an appropriate learning experience for 
some pupils” (p. 51).

Much has changed in the mathematics classroom since Benny’s 
day, but much remains the same. One constant is an experience 
likely familiar to most mathematics teachers: imagine you are 
working with a student to multiply whole numbers. The student 
seems to demonstrate reasonable progress in some contexts (e.g., 
1- by 2-digit numbers), but falters in others (e.g., 2- by 2-digits 
numbers). A common approach might be to intervene with some 
additional instruction, say around the idea of using “placeholders” 
or effectively using the standard algorithm, followed by another 
round 2- by 2-digit multiplication practice questions (see Ma, 
1999). Unfortunately, even if the student eventually arrives at 
correct answers as a result of the intervention, there is no guarantee 
of conceptual understanding. So, if a focus on learning objectives 
and assessment procedures is not sufficient to support conceptual 
understanding, what is missing?

This article addresses that question by turning to variation theory 
(Marton, 2015). We argue that one thing missing from Benny’s 
inscriptions and the imagined scenario above is an invitation to 
notice what is critical to understanding an intended mathematical 
concept. We think that variation can serve as one such invitation. 
To this end, we present three task sequences attending to several 
big ideas in mathematics that were developed as part of an 

undergraduate course in teaching elementary mathematics, in 
which one of the authors was an instructor (Josh) and the other 
authors were students. Each application of variation was based 
on a rich, cognitively demanding task carefully selected from the 
mathematics education literature. Developing each task sequence 
involved identifying an object of learning and its critical features, 
then enacting patterns of variation, which entailed the contrasting, 
generalizing, and fusing of those critical features (Marton, 2015). 
Before turning to these task sequences, we briefly elaborate on the 
principles and patterns of variation.

What are the Principles of Variation?
In order to understand the principles of variation, we need to clarify 
how it answers one fundamental question: What is to be learned? 
As classroom teachers, it is natural in answering this question to 
point to mathematics content (e.g., fractions), learning outcomes, 
or curricular competencies. Variation theory, however, answers 
this question differently. What is to be learned are the aspects of 
an object of learning. Marton (2015) noted that some aspects (i.e., 
critical aspects) are needed to make distinctions (e.g., a triangle has 
three vertices and a square has four), while others (i.e., non-critical 
aspects) are needed to generalize (e.g., no matter the orientation of 
a triangle in a plane, it is still a triangle).

When used in this way, critical and non-critical aspects form the 
basis of the patterns of variation—contrast, generalization, and 
fusion. Variation theory is predicated on the idea that in learning, 
we perceive difference against a background of sameness (Kullberg 
et al., 2017). Moreover, difference must precede sameness (Marton, 
2015). This implies that a pattern of variation always begins by 
using contrast to draw students’ noticing to critical aspects of 
an object of learning. Consider when students begin to work 
with linear functions. A typical approach is to work through 
many examples of linear equations, but in offering this degree 
of sameness, students can miss the critical aspects of linearity. 
Using contrast would entail having students work with linear 
and nonlinear functions side-by-side while perhaps holding 
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some other aspects, such as the y-intercept, invariant. In the task 
sequences below, the decomposition of a number into addends, a 
number’s factors, and the relationship between numerators and 
denominators in a fraction are all critical aspects for discernment.

Contrast is always followed by generalization. When we generalize, 
we vary aspects that do not directly focus on an object of learning. 
To continue with the example in the preceding paragraph, this 
might mean varying the slopes and y-intercepts of only linear 
equations. Put another way, we would hold some critical aspects 
for discernment (linearity) invariant, while varying non-critical 
aspects for generalization (y-intercepts). This stage might sound 
as if we are simply reverting back to what we began this paper by 
critiquing (i.e., many examples of linear equations). But as Marton 
(2015) noted, the key here is that sameness (generalization) is 
preceded by difference (contrast). In the task sequences below, 
the order of addends, whether or not a number is odd or even, 
and the number of parts in a given fractional relationship are all 
non-critical aspects for generalization.

The final step is to allow both critical and non-critical to vary 
together, which is called fusion. In this stage, the learner’s noticing 
is drawn to how aspects of both types may be related and how some 
aspects directly focused on an object of learning may be discerned 
while all aspects are varied (Marton, 2015, p. 51). In what follows 
we apply the principles of variation to three tasks. We conclude 
with a brief discussion of the challenges and benefits of applying 
these principles in the mathematics classroom.

Task Sequence #1: Complex Counting
Complex Counting is a task that focuses on the composition and 
decomposition of numbers (Sci et al., 2016). Students are invited 
to explore the idea that sets of objects can be decomposed into 
smaller sets and that smaller sets can be composed to make a larger 
set. This task requires students to combine pictures of different-
size groups of cherries to create a set that contains six cherries. 
Students are encouraged to come up with various representations 
of the number six that consist of differing amounts of sets and 
number of cherries (Sci et al., 2016, p. 436). The task presents the 
same concept of composition in different ways so that students 
can make connections between mathematical concepts and ideas 
(Sci et al., 2016).

The object of learning in this task is the composition and 
decomposition of numbers and the big ideas consist of the 
conceptual understanding of counting and adding, which makes it 
an especially good task for kindergarten and early grades. Students 

are required to count the number of cherries in a given set, and add 
them together with other sets of cherries to compose the number 
six (Figure 1).

Figure 1

They will also take the total number of cherries and break it into 
various smaller sets of cherries. Students will explore numerous 
ways of representing numbers and become familiar with multiple 
ways to compose and decompose numbers.

For contrast, a critical aspect that can be varied is the composition 
and decomposition of a number. In order for students to develop 
an understanding of the process of composition, they must also 
be shown counter-examples of decomposition. Students will 
compose numbers by combining smaller sets of cherries to equal 
a total of six and will decompose the total number of six cherries 
into smaller sets. Under composing, two sets of three cherries are 
represented to equal a total of six cherries. Under decomposing, 
the total number of cherries is six and is broken apart into two 
groups of three cherries.

For generalization, a non-critical aspect that can be varied is the 
combinations in which a number can be composed. Students will 
be representing the number six using sets of various quantities 
(Figure 2). 
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Figure 2

For fusion, students will combine the ideas they have developed 
previously in the task sequence. Students are invited to compose 
and decompose numbers using a variety of sets and number of 
cherries (Figure 3).

Figure 3

The first example is of decomposition. The total number of six 
cherries and is broken apart into two sets of three cherries. The 
second example shows composition. It shows three sets of cherries, 
the first set having one cherry, the second set having two cherries, 
and the third set having three cherries. Adding these sets togethers 
totals to six cherries. This final task allows students to notice the 
similarities and differences among the processes of composing 
and decomposing as well as understanding that a number can be 
composed and/or decomposed in various ways. 

Task Sequence #2: Sorting Rectangles Using Prime and 
Composite Numbers
Sorting Rectangles is a task that involves students building 
rectangular arrays using coloured tiles for the numbers 1 to 25 
(“Sorting Rectangles,” 2011). In this task, students construct as 
many arrays as they can for a specific number of tiles and then create 
pictorial representations of the resulting rectangles on grid paper. 
Students then record the number of rows and columns for each 
rectangle in a table to display the factors of each number. Students 
can work on this task in small groups, pairs, or individually. In the 
task presented here, we modified the original Sorting Rectangles 
task to focus on developing students’ understanding of composite 
and prime numbers. 

Number is a big idea in mathematics (Charles, 2005) and this 
task’s focus on composite and prime numbers particularly suits 
Grades 3-4 students. During this task, teachers should aim to draw 
students’ attention to the idea that that composite numbers have 
at least two rectangular arrays, whereas prime numbers only have 
a single array. In what follows, we use the patterns of variation to 
focus students’ attention on this big idea of number.

As we know, prime numbers have only two factors (1 and the 
number itself), while composite numbers have more than two 
factors. The number of factors thus constitutes a critical aspect 
of the task. To attend to this critical aspect, we draw students’ 
attention to the relationship between the number of arrays they 
construct for an assigned number and the factors recorded in the 
rows and columns of their tables. 

To effect the principle of contrast, teachers can present composite 
numbers (i.e., numbers with two or more arrays) and prime 
numbers (i.e., numbers with only a single array) simultaneously. 
Presenting both prime and composite numbers as examples 
illustrates differences in factors and can help students discern that 
composite numbers have more than two factors. 
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To generalize, one must now identify a non-critical aspect of 
number in this context. For example, one such non-critical aspect 
is the size of the number. Consider the following sequences of 
prime and composite numbers: 2, 11, 17 and 4, 12, 20. For each 
sequence, a critical aspect is held constant (number of factors), 
while a non-critical aspect is varied. This generalization highlights 
that the characteristic of a number being composite with multiple 
factors is not dependent on the size of the number or number of 
tiles assigned in the task. Figure 4 shows three examples of two 
composite and one prime number.

Figure 4

To effect fusion, teachers can direct students’ attention to the 
relationship between critical and non-critical aspects by varying 
them simultaneously. For example, teachers can point students 
towards critical aspects through contrast by emphasizing how 
composite numbers have three or more factors and prime numbers 
have only two factors. Changing both critical and non-critical 
aspects of the task can make salient to students how multiple 
factors of composite numbers do not depend on number size.

Task Sequence #3: Equivalent Fractions Using Circle 
Models
Wessman-Enzinger and Hofer (2020) investigated the notion of 
unconventional units through the topic of equivalent fractions. 
Students are first given a fraction represented in a physical circle 
model, then asked to represent a given fraction in different ways. 
In many cases, students come to realize they are limited in the 
number of representations they can make if the whole is defined 
as only a single circle. For example, for the fraction 3/8, only two 
representations are possible if the whole that they are using remains 
as one circle, since the model does not include 1/16 pieces (see 
Figure 5). This means that for students to come up with a third 
representation they must be flexible in their thinking and redefine 
the whole as something other than the single-circle. 

Figure 5

Fractions tend to be daunting for many students. A task such 
as this has the potential to prompt a deeper understanding and 
recognition of connections to procedures and builds conceptual 
understanding about fractions (Wessman-Enzinger & Hofer, 2020). 
Through this task students engage deeply with fractions and are 
being given opportunities to reason and explore connections 
between concepts, which are important curricular competencies 
(British Columbia Ministry of Education, 2019). Moreover, the 
task occasions engagement with several big ideas in mathematics, 
such as numbers, equivalence, and comparison (Charles, 2005). 
For these reasons, this is an ideal task for students in grades 3 to 5.

The object of learning in this task is the relationship between 
parts and wholes in equivalent fractions. In order for students to 
understand that a fractional relationship can be represented in 
numerous ways, they must notice both that different numerators 
for a given whole reflect different part-whole relationships and that 
a given part-whole relationship can be expressed using different 
numerators and denominators. Using variation theory, we can 
begin by contrasting between pairs of fractions that are equivalent 
(e.g., 3/4 and 6/8) and not equivalent (3/4 and 7/8). They will be 
asked to notice that the area being covered on each circle is the 
same for some pairs but not others. Students will be asked to notice 
that although the denominator for both fractions remains the same, 
the fractional relationship changes.

To generalize, students can be shown that how a whole is 
represented does not necessarily change the part-whole 
relationship. Students will be asked to represent equivalent 
fractions in multiple ways and will find that there are only two 
concrete representations possible when using the physical circle 
model. To reinforce the idea that what is defined as a whole is not 
a critical aspect of equivalent fractions, the students will be shown 
the same fraction but represented using two circles as the whole.

For fusion, students can be given a fraction and shown a variety 
of representations and asked which are equivalent to the given 
fraction (Figure 6).

Figure 6
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In these representations, both critical (i.e., the parts of a whole/
numerator) and non-critical (i.e., how the whole is represented) 
aspects will be varied. This will require students to make sure the 
number of parts of the different representations are equivalent to 
the given fraction and require understanding that the whole of a 
fraction can be represented in a number of ways. 

Successes and Challenges of Using Variation to 
Develop Pedagogical Expertise
We end by considering the potential impacts of using variation 
theory for developing teaching expertise. The three task sequences 
presented here were initially developed as part of an assignment 
in an introductory course for pre-service elementary mathematics 
teachers. The purpose of the assignment was two-fold. First, 
it was to gain experience in carefully selecting rich tasks from 
the mathematics education literature, as reflected in each task 
sequence’s origins (Sorting Rectangles, 2011; Sci et al., 2016; 
Wessman-Enzinger & Hofer, 2020). Second, it was to use the 
principles of variation to develop pre-service teachers’ awareness 
of the important mathematics in each task. This involved clearly 
identifying an object of learning, as well as aspects of the tasks that 
we wanted students to notice. Ultimately, and following Marton 
(2015), we were interested in better understanding what could be 
made possible for students to learn through each task.

As pre-service teachers, some of the authors faced significant 
challenges. One in particular was identifying the critical aspects of 
an object of learning in a given task. This often required significant 
reflection on the specific groups of learners and anticipation of 
potential responses to the task. Furthermore, it took time to 
carefully plan and design these lessons, since once the critical and 
non-critical aspects were identified, they needed to be varied in 
an intentional way. But these authors also found variation to be an 
aid them in being intentional in their pedagogical decisions. Using 
variation requires teachers to plan specific, well-crafted examples, 
not just randomly selected questions from a textbook, and to 
present them in deliberate sequence to draw students’ noticing to 
the big mathematical ideas. We hope the task sequences we present 
here can help to support new and experienced teachers alike in 
their mathematics classrooms.
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