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Abstract

Polar codes are the first class of error correction codes with explicit construction

that provably achieve the channel capacity. In addition, polar codes enjoy

low-complexity encoding and low hardware and computational complexities under

successive-cancellation (SC) decoding [1]. Therefore, they have been selected to be used

for the control channel in the fifth generation of mobile communication standards (5G)

[2]. Although polar codes are asymptotically capacity-achieving under SC decoding,

the SC decoding fails to provide reasonable error correction performance for short to

moderate code length. This limitation is due to the performance gap between the

SC decoder and the maximum-likelihood (ML) decoder. Successive-cancellation list

(SCL) and successive-cancellation flip (SCF) decoding are proposed to improve the

performance of polar codes. However, their serial decoding nature results in significant

decoding latency. To reduce this latency some operations can be done in parallel.

Specifically, special nodes are identified in the decoding tree of polar codes that can be

decoded without serially traversing the decoding tree.

In this thesis, we present fast implementations of the SCL and SCF decoders. In

particular, we propose fast parallel list decoders for five newly-identified nodes in the

decoding tree of a polar code, which significantly reduces the decoding latency. We

also present novel fast SCF decoders that decode some special nodes in the decoding

tree of a polar code without serially computing bit log-likelihood ratios. Our proposed

fast decoders significantly reduce the decoding latency without sacrificing the error-rate

performance.

Another limitation of polar codes is lack of length flexibility. Polar codes are
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constructed by the recursive Kronecker product of a size-2 polarizing matrix, which

limits their code length to integer powers of two. Incorporating larger size polarizing

matrices in conjunction with the size-2 kernel enables the construction of multi-kernel

polar codes. Multi-kernel codes are also decoded with a SC decoder and thus suffer its

long decoding latency. This made devising fast decoding solutions for larger size kernels

necessary. The size-3 kernels have drawn much attention due to their sufficiently high

polarization exponents and the lowest decoding complexity among non-binary kernels.

Hence, we identify a new node in the decoding tree of polar codes constructed by two

commonly used size-3 kernels and propose a low-complexity decoder for it. Moreover,

we adapt the generalized-repetition (G-REP) node introduced for the binary kernel

to be used in the fast SC decoding of the size-3 kernel polar codes. The proposed

fast decoders reduce the decoding latency at the cost of a slight degradation in error

correction performance. Furthermore, the two specific size-3 kernels that can achieve

the optimal polarization have a zero in their last rows. This results in the error-rate

performance degradation of the repetition (REP) and G-REP nodes in addition to

increased memory requirements for their fast decoders. Thus, we propose modifications

to the REP and G-REP nodes that simultaneously result in improved error-rate

performance and reduced memory requirements for their fast decoders.
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Preface

The main results presented in Chapter 3 were published in IEEE Wireless

Communications and Networking Conference Workshops (WCNCW) [3] and IEEE

Transactions on Communications [4] in April 2016 and July 2019, respectively. Also,

the results in Chapter 4 were published in [4]. Furthermore, the results in Chapter

5 will be published in the 2020 IEEE Vehicular Technology Conference. Finally, the

results presented in Chapter 6 have been submitted to IEEE Wireless Communications
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Chapter 1

Motivation

1.1 Introduction

In any communication link, information is transmitted via a medium referred to as

the communication channel. The channel is usually imperfect and noisy resulting in

the erroneous received data. However, the transmission reliability and robustness to

disturbances present on the transmission channel can be increased by adding redundant

bits to the original data bits. This process is a part of any modern communication

system and is called error correction coding or channel coding.

How much redundancy should one add? This is the fundamental question about

channel codes and was answered by Shannon [12] in 1948. Shannon’s theory stated that

regardless of the advent of technology, reliable communication over a noisy channel

is limited by a maximum information rate, referred to as the channel capacity. An

ideal channel code is one that is capacity-achieving, meaning that it provides error-free

communication at an information rate equal to the capacity. For decades, tremendous

effort has been made to find channel codes that achieve the capacity or can approach

it. By the turn of the century, these efforts resulted in the discovery of two powerful

coding schemes, low-density parity check (LDPC) codes [13,14] and Turbo codes [15].

Although the LDPC and Turbo codes approach the channel capacity for specific

cases under iterative decoding, they can not be considered capacity-achieving in general.
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Only for the case of the binary erasure channel, LDPC codes are provably capacity

achieving [16]. Furthermore, the construction of both codes is complicated due the

required randomness in the process.

Polar codes, discovered by Arıkan [1], are the first class of channel codes that are

provably capacity-achieving. This new class of error correcting codes has an explicit

non-random construction and can achieve the symmetric capacity of any binary-input

memoryless channel under successive-cancellation (SC) decoding as the code length

goes to infinity [1]. In particular, polar codes are constructed based on the phenomenon

of channel polarization [1]. The polarization synthesizes bit channels such that certain

bits are deemed reliable and used to transfer data while others are deemed completely

unreliable and frozen to a known value. As the code length goes to infinity, the fraction

of reliable bits converges to the channel capacity.

Due to these unique features, polar codes have received significant attention in

recent years and have been selected to be used for the control channels in the

fifth generation mobile communication standards (5G) [17]. However, a number of

challenges are associated with their practical application. First, polar codes are only

asymptotically capacity-achieving under SC decoding. Second, the SC decoder suffers

from relatively long decoding latency. Third, polar codes lack length flexibility.

1.1.1 Error Correction Performance

Polar codes achieve the capacity under SC decoding as the code length goes to

infinity. However, the error correction performance of polar codes for short to moderate

block lengths with the SC decoder is inferior to the other state-of-the-art LDPC and

Turbo codes. This is due to the significant performance gap between the SC decoder

and the maximum-likelihood (ML) decoder [18]. Unfortunately, ML decoding has a

very high computational complexity, even for moderate-length polar codes. Thus,

to improve the performance of polar codes, lower complexity decoders such as the

successive-cancellation list (SCL) decoder and the successive-cancellation flip (SCF)

decoder have been proposed.

The SCL decoder, similar to the original SC decoder, operates serially as it estimates
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one bit at a time. However, unlike the latter which keeps only a single decoding

path, the SCL decoder maintains a list of L most probable paths while decoding each

bit [18]. The SCL decoder achieves near-ML performance even with moderate list

sizes [18]. Enhancing it with a cyclic redundancy check (CRC) further improves the

error correction performance beyond that of LDPC and Turbo codes [18].

Although the SCL decoder achieves near-ML performance, compared to the SC

decoder, it has higher computational and memory complexities that grow linearly with

the list size. Therefore, a different approach called SCF decoding was introduced in [10]

to improve the performance of the SC decoder.

The SCF decoder, unlike the SCL decoder that parallelizes multiple SC decoders,

relies on multiple sequential applications of the SC decoder. In particular, the SCF

decoder [10] allows up to a given number of decoding trials. The first trial is essentially

the same as SC decoding, but it also forms a list of bit-flip positions which will be

flipped in the next trials if the CRC is not satisfied. The bit-flip positions correspond

to the information bits with the smallest absolute values of the decision log-likelihood

ratios (LLRs). If the CRC is not satisfied in the initial SC decoding, then one bit is

flipped in the next trial, and the SC decoder is used to decode the subsequent positions.

A new decoding trial is launched unless the CRC is satisfied or the maximum number

of trials is reached.

It is shown in [10] that the error-rate performance of the SCF decoder with up

to 32 trials is almost identical to that of the SCL decoder with L = 2 with half the

memory requirement and half the computational complexity for reliable channels. More

specifically, unlike the SCL decoder, the memory requirements of the SCF decoder

do not scale linearly with the number of codewords considered. Furthermore, the

computational complexity of the SCF decoder is similar to that of the SC decoder

when the channel has high reliability. As such, the SCF decoding has gained interest

recently in the research community [11,19–24].
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1.1.2 Decoding Latency

The SC decoder sequentially decodes the bits by traversing a decoding tree from top

to bottom and from left to right. This serial decoding operation of the SC decoder

results in high decoding latency. To increase the decoding speed, researchers have

developed multiple schemes [5–8]. The main underlying idea behind these schemes is

to parallelize some operations to reduce the decoding latency. More specifically, these

schemes identify special nodes in the decoding tree of the polar code and implement

fast parallel decoders for them. This way the decoder avoids the code tree traversal

and outputs multiple bits in parallel.

In particular, [5] identifies nodes with all frozen bits and nodes with all information

bits called Rate-0 (no information bits) and Rate-1 (all information bits) nodes,

respectively, and provides low-complexity parallel SC decoders for them. Similarly,

[6] identifies single-parity-check (SPC) and repetition (REP) nodes along with their

fast decoders. Low-complexity decoders of five nodes (Type-I, Type-II, Type-III,

Type-IV, and Type-V nodes) are proposed in [7] to further increase the SC decoding

speed. Moreover, [8] provides general rules for the fast decoding of polar codes by

identifying generalized-REP (G-REP) and generalized parity-check (G-PC) nodes,

which generalize most of the other nodes. The aforementioned proposed fast SC

decoders mainly increase the throughput and reduce the latency without any error

correction performance loss with respect to the conventional SC decoder.

To increase the SCL decoding speed, a similar strategy to that of the fast SC

decoder is followed. However, unlike the fast SC decoders [5–7] that output only the

most-probable output sequence, the fast SCL decoders maintain and output a list of

the most probable paths.

Similar to the SC and SCL decoders, the decoding latency of the SCF decoder

can be improved by implementing fast decoders of different nodes. In particular, a

fast parallel decoder of a node, in addition to outputting the codeword, should also

compute and update the list of most probable bit-flip positions.
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1.1.3 Length-flexibility

Another challenge associated with polar codes is their lack of length flexibility. In

particular, the seminal work on polar codes [1] proposed to construct these codes by

a recursive Kronecker product of a size-2 (binary) kernel. This limits the codeword

lengths of the polar codes to the integer powers of two. However, arbitrary-length

codes are desirable for varying channel conditions. Thus, different length-matching

techniques, such as puncturing [25, 26] and shortening [27, 28] have been proposed for

polar codes. While, in the 5G standard, the puncturing and shortening methods have

been selected as the rate-matching (length-matching) schemes for polar codes [2], they

suffer two main drawbacks. First, punctured or shortened polar codes suffer from high

decoding complexity and latency as they are decoded on their mother code tree, whose

size might be significantly larger than the code length. Second, some optimizations

are required to determine the best patterns for the punctured and shortened bits to

achieve the best performance for a given length [29,30].

An alternative solution to achieving length flexibility is to use different sized kernels

in the construction of the polar codes. In particular, larger size polarizing matrices can

be used along with the binary kernel [29, 31, 32] to achieve more flexible codeword

lengths. The resulting codes are aptly named multi-kernel polar codes.

It is shown in [29, 33] that in some cases the multi-kernel polar codes constructed

with combinations of the size-2 and size-3 (ternary) kernels outperform the selected

rate-matching scheme in the 5G standard. Therefore, multi-kernel polar codes,

especially those constructed with ternary kernels, have received significant attention

[29, 30, 33–36]. Similar to the binary kernel polar codes, multi-kernel polar codes are

decoded by the SC decoder and hence they suffer from the shortcomings of the SC

decoders.

1.2 Contribution

Despite the capacity-achieving property of polar codes, they have mediocre error

correction performance at short to moderate lengths. The SCL and SCF decoders
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can be used to improve the error correction performance of polar codes. Similar to

the SC decoder, these decoders have relatively long decoding latency as they operate

serially. However, their decoding latency can be improved by implementing fast parallel

decoders for different kind of nodes, as discussed in Section 1.1.2.

The proposed fast SC decoders in [5–7] only output a single codeword. The SCL

decoder, on the other hand, maintains a list of L codewords for each bit. As such,

the fast SC decoders of the special nodes require modifications to be used for the

SCL decoder. Fast SCL decoders for Rate-0, REP, SPC and Rate-1 nodes have been

proposed in [37–39]. To further increase the SCL decoding speed, we present fast

SCL decoders for five other nodes (Type-I, Type-II, Type-III, Type-IV, and Type-V)

identified in the decoding tree of a polar code [7]. We further study how the fast

SCL decoders can be adopted to be used in the case of distributed parity-check aided

SCL decoding. It is shown that implementing the proposed fast decoders, along with

the existing fast SCL decoders of special nodes, can increase the decoder throughput

significantly with identical bit error-rate (BER) performance.

Since the SCF decoder uses SC decoding in each trial, implementing fast SC

decoders will improve the decoding latency of the SCF decoder. However, the SCF

decoder must also maintain a list of the most probable bit-flip positions and should be

able to flip the bits at these positions. Therefore, the existing fast SC decoders cannot

be used directly to increase the decoding speed. Fast SCF decoders for the REP,

Rate-1, SPC, and Type-I nodes have been proposed in [11]. However, except for the

REP node, the decision metrics used in these decoders to compute the most-probable

bit-flip positions, result in a BER performance loss compared to the original SCF

decoder [10]. To resolve this issue, we propose a new procedure to compute and update

the list of most-probable bit-flip positions. More specifically, we propose a decision

metric that reflects the effect of a bit/bits flip on the log likelihood of the estimated

codeword. The proposed decision metric can be computed without traversing the code

tree, hence facilitating fast SCF decoding. We investigate Rate-1, SPC and Type-I

nodes with our proposed procedure. Moreover, in order to further reduce the decoding

latency, we adapt the existing fast SC decoders of Type-II, Type-III, Type-IV and

6



Type-V nodes for SCF decoding. Our proposed fast decoder significantly reduces the

SCF decoder latency without sacrificing its error correction performance.

As was mentioned in Section 1.1.3, lack of length-flexibility is another shortcoming

of polar codes and one way to combat it is to combine the binary kernel with larger

size kernels to construct multi-kernel polar codes. The size-3 kernels have drawn much

attention due to their sufficiently high polarization exponents and the lowest decoding

complexity among non-binary kernels [29, 30, 34–36]. Unlike the binary kernel, there

are several choices for a ternary kernel and they achieve different levels of polarization.

In particular, T3 =
[ 1 1 1

1 0 1
0 1 1

]
and T′3 =

[ 1 0 0
1 1 0
1 0 1

]
were introduced and proved to be optimal

for polarization in [36] and [40], respectively.

Like binary polar codes, multi-kernel polar codes suffer from high decoding latency

due to the serial decoding nature of the SC decoder. Recently, [30] described Rate-0,

REP, Rate-1 and SPC nodes and their decoding methods for multi-kernel polar

codes constructed with combination of the binary and T3 kernels. It is shown that

implementing fast decoding of these four nodes significantly improves the decoding

speed. To further increase the decoding speed, we identify a family of special nodes

called t-dimensional SPC nodes (tD-SPC), where t stands for the number of dimensions,

and propose corresponding fast parallel decoding algorithms. It is observed that the

proposed nodes significantly improve the decoding latency at the expense of a slightly

degraded error-rate performance. We also adapt G-REP nodes, introduced for the

binary kernel in [8], to be used in the fast SC decoding of polar codes constructed with

T3 and T′3 kernels.

Unlike the size-2 kernel, T3 and T′3 have a zero in their last rows. As such, the

codeword of a REP node, the node corresponding to only one message bit, has some

zero elements. This results in error-rate performance degradation. Moreover, different

kernel orders in multi-kernel polar codes yield different zero locations for a REP node

[30]. Thus, the fast decoders for an REP node in a multi-kernel polar code require

storing all the zero-location patterns, which increases the memory requirements for the

decoders. In order to reduce the memory requirements, [30] proposes a fast decoder

that decodes the REP node up to a certain maximum size. This, in turn, results in

7



reduced decoding speed.

To address the above issues, we propose a modified REP pattern for polar codes

constructed using size-3 kernels. The proposed modification eliminates zeros in the

coded bits resulting in a unified REP pattern in multi-kernel codes. We also present

a low-complexity optimal decoder for the modified REP node. In addition, we apply

our proposed modification to the generalized repetition (G-REP) nodes [8] to further

improve the error-rate performance.

1.3 Organization of the Thesis

The following chapter provides the required background to understand polar codes. In

particular, channel polarization, polar code construction, encoding, and SC decoding

are reviewed. Furthermore, it summarizes SCL and SCF decoders, and introduces

the special nodes in the decoding tree of polar codes. The chapter ends by reviewing

multi-kernel polar codes.

Fast SCL and fast SCF decoders are proposed in Chapter 3 and Chapter 4,

respectively. The decoding latency and error correction performance of the proposed

fast decoders are also presented.

We propose tD-SPC nodes in Chapter 5 to increase the decoding speed of the polar

codes constructed by ternary kernels. Their latency and performance are also compared

with the existing scheme. We also adapt G-REP nodes fast decoding to the ternary

kernels in this chapter.

In Chapter 6 we propose the modifications of REP and G-REP node for ternary

kernels and compare the error correction performance of the modified codes with the

original ones.

Finally, a summary of the dissertation and suggestions for future work are provided

in Chapter 7.
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Conventions for notation: Matrices and vectors are denoted by capital bold face

letters and small bold face letters, respectively. yk denotes the kth entry of vector y.

Furthermore, yK are all the yk entries with k ∈ K and yji are yk where i ≤ k ≤ j.

Moreover, {{R}} denotes the set {0, 1, · · · , R−1}. MN is a square matrix of size N ×N .

Also, 0N is an all-zero square matrix of size N ×N .

Symbol ⊗ denotes the Kronecker product and F⊗n is the n times Kronecker product

of F with F⊗0 = 1. Furthermore, ⊕ is the binary XOR and � is the check node

operation defined as a � b = 2 arctanh
(
tanh

(
a
2
)

tanh
(
b
2

))
. Also, M−1 is the inverse

of a matrix M.
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Chapter 2

Background

This chapter provides the required background for understanding polar codes. It

starts with a description of channel polarization, which is the main idea behind polar

coding. It then presents polar code construction and the encoding method for both

non-systematic and systematic codes. Next, the SC decoding method is reviewed,

as well as the SCL and SCF decoding algorithms. Then the simplified and fast SC

decoders, which provide a significant increase in decoding speed, are reviewed. Finally,

the chapter proceeds with a description of multi-kernel polar codes.

2.1 Channel Polarization

In his seminal work, Arıkan introduced the concept of channel polarization [1] where

N independent copies of a given channelW are synthesized to a set of N new channels,

{W(i)
N : 1 ≤ i ≤ N}. Here W : X → Y denotes a binary discrete memoryless channel

(B-DMC), where X and Y are the input and output alphabets, respectively. The new

set {W(i)
N : 1 ≤ i ≤ N} exhibits a polarization effect in the sense that, as N → ∞,

except for a vanishing fraction of indices i, the symmetric capacities, I(W(i)
N ), tend

toward either one or zero.

The symmetric channel capacity, I(W), and the Bhattacharyya parameter, Z(W),

are two measures of the channel quality. The symmetric capacity is the highest rate at

which reliable communication is possible over W when the inputs are used with equal

10



frequencies. Let W(y|x) denotes the transition probability, where x ∈ X and y ∈ Y,

then I(W) is defined as

I(W) =
∑
y∈Y

∑
x∈X

1
2W(y|x) log W(y|x)

1
2W(y|0) + 1

2W(y|1)
. (2.1)

The Bhattacharyya parameter is an upper bound on the probability of decision error

when a maximum-likelihood decoder is used to estimate a single y and is expressed as

Z(W) =
∑
y∈Y

√
W(y|0)W(y|1). (2.2)

If we use a base-2 logarithm, then both Z(W) and I(W) take a value in the interval

[0, 1] and are related with the following two inequalities

I(W) ≥ log 2
1 + Z(W) , (2.3)

and

I(W) ≤
√

1− Z(W)2. (2.4)

From (2.3) and (2.4) it can be observed that I(W) ≈ 1 if and only if Z(W) ≈ 0

and vice-versa. In particular, I(W) = 1 indicates a perfect channel with error-free

transmission, and I(W) = 0 is a completely unreliable channel where the probability

of correctly detecting a bit approaches 0.5.

The basic channel polarization can be explained as follows. Consider the two bits

u1
0 ∈ X 2 transmitted in two independent instances of W, as in Fig. 2.1(a), with the

corresponding output vectors y1
0 ∈ Y2. The mutual information values will be

I(y1
0;u0) = I(W) = I(y1

0;u1). (2.5)

Now consider that u1
0 is transformed to x1

0 such that x0 = u0 ⊕ u1 and x1 = u1,

as depicted in Fig. 2.1(b). In this case, two independent channels W are combined to

create a vector channel W2 : X 2 → Y2 with

I(y1
0; u1

0) = I(y1
0; x1

0) = 2I(W). (2.6)

This step is called channel combining in [1]. Using the chain rule, the left hand side of

(2.6) can be written as

I(y1
0; u1

0) = I(y1
0;u0) + I(y1

0|u0;u1) = I(y1
0;u0) + I(y1

0, u0;u1). (2.7)

11



(a)

(b)

Fig. 2.1: Channel polarizing transformation: (a) No transformation, and (b) Basic
transformation

We can define bit channel W(0)
2 : X → Y2 with the mutual information I(y1

0;u0).

I(y1
0;u0) can be interpreted as the mutual information of the channel between the

input u0 and the output y1
0, with u1 being random. Similarly, W(1)

2 : X → Y2 can

be defined with the mutual information I(y1
0, u0;u1). This can be interpreted as the

mutual information of the channel between u1 and the output y1
0, when u0 is available

at the decoder. In [1], this step is called channel splitting. Then the following relations,

which are proved in [1], can be written.

I(W(0)
2 ) ≤ I(W) ≤ I(W(1)

2 ), (2.8)

I(W(0)
2 ) + I(W(1)

2 ) = 2I(W). (2.9)

It can be observed that by channel combining and splitting, two independent copies

ofW are synthesized to two new channels. The new channelsW(0)
2 andW(1)

2 are a worse

and a better channel than W, respectively. In other words, the probability of correctly

estimating u0 decreases while that of u1 increases. As the number of transformed

12



Fig. 2.2: Eight instances transformation

channels increases, the probability of correctly estimating a bit either approaches 1.0

(completely reliable) or 0.5 (completely unreliable) with the proportion of reliable bits

approaching the channel capacity [1].

By recursive applications of the polarizing transformation, multiple instances of W

can be synthesized. The polarizing transformation for eight instances of the channel is

illustrated in Fig. 2.2.
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2.2 Polar Code Encoding

2.2.1 Linear Block Codes Encoding

An (N, k) linear block code of length N and rate k/N can be defined by a generator

matrix Gk×N . In particular, in an (N, k) linear block code each information sequence,

u1×k, is a block of length k symbols, which is converted to a codeword of length N ,

x1×N using Gk×N . Mathematically, this can be written as

x = uG. (2.10)

An example of linear block codes are Hamming codes. For a (7, 4) Hamming code,

each information sequence is in the form of u = {m0 ,m1, m2, m3}. Assuming a binary

Hamming code with u = {1 , 0, 0, 1} and generator matrix

G4×7 =



1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1


, (2.11)

the codeword will be x = uG = {0, 1, 1, 1, 0, 0, 1}.

2.2.2 Polar Code Encoding

In a binary polar code of length N = 2n, where n is a positive integer, a channel

transformation matrix is defined as

GN = T2
⊗n, (2.12)

where T2 is the matrix representation of the basic two-bit transformation, depicted in

Fig. 2.1(b), which can be expressed as

T2 =

1 0

1 1

 . (2.13)

The transformation matrix GN applies the polarization transformation and synthesizes

N bit channels from N independent copies of a given channel. For a P (N, k) polar
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code, amongst the N synthesized channels, the k most reliable ones are used to carry

the information and the N−k least reliable synthesized channels are frozen to a known

value, usually 0. We denote the index set of k information bits by I, and F is used to

denote the index set of frozen bits.

The transformation matrix has the property of GN = G−1
N and can be recursively

computed as

GN =

GN/2 0N/2

GN/2 GN/2

 . (2.14)

The generator matrix of the polar code is a sub-matrix of GN including the rows

whose indices are in I. However, the encoding complexity can be reduced by exploiting

the recursive structure of GN in (2.14). To do so, an auxiliary input vector u of length

N is introduced. In particular, u = {u0, u1, · · · , uN−1} is generated by setting ui = 0

if i ∈ F , and assigning the information bits to the indices in I. Note that the number

and location of the frozen bits affect the input vector u, while GN does not change.

The input vector u is then mapped to the codeword x = {x0, x1, · · · , xN−1} such that

x = uGN . (2.15)

Therefore, a P (N, k) polar code is completely described by its channel transformation

matrix GN and the set of information bit indices I. Encoding of a P (8, 4) polar code

with data bits {1 1 0 1} is illustrated in Fig. 2.2, where the auxiliary input vector is

u = {0, 0, 0, 1, 0, 1, 0, 1}.

Considering the recursive nature of the generator matrix GN , the time complexity

of a serial implementation of this encoding algorithm is O(N logN) [1].

2.2.3 Systematic Encoding

The encoding scheme presented above results in a non-systematic codeword, i.e. the

information bits do not appear unaltered in the codeword x. However, one might

be interested in generating a systematic polar codeword which can be separated

into information and parity bits. A systematic encoding scheme for polar codes

was introduced in [41]. It was shown that the systematic encoding preserves the
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low-complexity nature of non-systematic polar codes, improves the BER performance,

and retains the same block-error-rate (BLER) performance.

In the systematic encoding algorithm, first the information bits, xI , are located at

the information indices. Then the parity bits, which will be placed at the frozen bit

indices, are calculated as

xF = xI(GII)−1GIF . (2.16)

Here GII and GIF are sub-matrices of G = T2
⊗n. The rows and columns of GII

correspond to the set of indices in I, and the rows and columns of GIF corresponds to

the I and F , respectively.

2.3 Construction of Polar Codes

One of the challenges associated with the polar coding is determination of the

synthesized channel reliability, referred to as the polar code construction. Although the

encoding of polar codes is explicit in theory, the precise estimation of the synthesized

channels’ reliability is intractable in practice. In particular, with different underlying

channels and signal-to-noise ratios (SNRs) the indices of the reliable and unreliable

synthesized bit channels change [1, 42]. Therefore, selection of the k most reliable

channels out of N synthesized ones requires an algorithm for ranking them according

to their reliability.

In [1], Arıkan proposed an efficient construction method for a binary-erasure channel

(BEC). Specifically, he showed that if the Bhattacharyya parameter (or the erasure

probability) of the underlying BEC is z then the two synthesized channels are BECs

with the Bhattacharyya parameters of 2z − z2 and z2. Since the synthesized channels

are formed by the repeated Arıkan transformation, their Bhattacharyya parameters

can be calculated recursively. Finally, the channels with the smallest Bhattacharyya

parameters are used for data transmission. As an example, Fig. 2.2 presents the polar

code construction for a BEC with an erasure probability of 0.5.

In general, the polar code construction can be solved by computing the

Bhattacharyya parameters of the synthesized channels. However, unlike for a BEC, for

16



other symmetric channels the closed form expressions of the Bhattacharyya parameters

of the synthesized channels are nonexistent. Thus, their construction is not as efficient

as that of a BEC [1,42].

To construct polar codes for general channels, different approximate methods are

proposed in [1, 42–48]. The earliest construction method evaluates simple bounds on

the Bhattacharyya parameters of the synthesized channels [43]. In particular, for

a given channel with capacity I, the Bhattacharyya parameters of the synthesized

channels are computed by applying the channel transformation to a BEC with capacity

I. However, this heuristic approach only leads to capacity-achieving codes for the

BECs. Later, estimation of the Bhatacharyya parameters through a Monte-Carlo

approach was suggested in [1]. While this method can be applied to a wide range

of channels, including the additive white Gaussian noise (AWGN) channel, it comes at

the cost of very large computational complexity. Therefore, density evaluation [49] was

utilized in [44] and [45] to construct polar codes. Further, to reduce the computational

complexity of density evaluation, for the AWGN channel intermediate LLRs were

approximated as Gaussian random variables in [46–48]. This is referred to as Gaussian

approximation (GA) and found to approximate well the reliability of the synthesized

channels [47, 48]. GA has the second least complexity amongst the aforementioned

constructions algorithms [50].

2.3.1 Gaussian Approximation

To compute the bit channel reliability for an AWGN channel, the GA method [46] is

used. In the GA process it is assumed that all the intermediate LLRs have a Gaussian

distribution. With this assumption, the absolute mean value corresponding to each

index can be updated through the LLR transformation from one stage to the next. To

begin, all N indices are distributed as the channel W. In particular, if we consider a

zero mean AWGN channel with variance σ2 then each index is initialized as zNi = 2/σ2.

The mean values are recursively computed by [46]

z
N/2
2i−1 = φ−1(1− (1− φ(zNi ))2), (2.17)
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z
N/2
2i = 2zNi , (2.18)

where

φ(x) =

1− 1√
4πx

∫∞
−∞ tanhu2 e

−(u−x)2
4x du, x > 0

1, x = 0.
(2.19)

The main computational burden in the GA method is the non-linear calculation in

(2.17). Thus, [51] proposed a piece-wise quadratic approximation of Ξ(x) = φ−1(1 −

(1− φ(x))2), as

Ξ(x) ≈



0.9861x− 2.3152, x > 12

x(0.009005x+ 0.7694), 3.5 < x ≥ 12

x(0.062883x+ 0.3678)− 0.1627, 1 < x ≥ 3.5

x(0.2202x+ 0.06448), otherwise.

(2.20)

With the proposed approximation in [51] the complexity of GA polar code construction

is essentially the same as the recursive Bhattacharyya computation for a BEC [1].

2.4 The Successive-Cancellation Decoder

In a SC decoder, as indicated by its name, bits are estimated sequentially starting from

u0. The real decoding task, however, is to estimate uI since errors can be avoided in

the frozen part of the code. Once the estimate ûi−1
0 is available, the SC decoder decides

an information bit ui by computing

ûi =


0, if W

(i)
N (yN0 ,û

i−1
0 |ui=0)

W(i)
N (yN0 ,û

i−1
0 |ui=1)

≥ 1;

1, otherwise,
(2.21)

where W
(i)
N (yN0 ,û

i−1
0 |ui=0)

W(i)
N (yN0 ,û

i−1
0 |ui=1)

is the likelihood of ui and can be computed recursively. It was

shown in [52] that the SC decoding can be implemented in the logarithmic domain

and likelihood can be replaced by LLR. This eliminates the multiplication and division

operations and significantly reduces the complexity of each processing element.

The SC decoding can be better understood using a binary-tree representation of

the polar code. Fig. 2.3(a) depicts the binary-tree representation of a P (32, 15), where
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black and white leaf nodes are the information and frozen bits, respectively. Also,

shaded nodes denote different special nodes, which will be introduced later in this

chapter.

In Fig. 2.3(a), t denotes the level in the decoding tree and 0 ≤ φ < 2n−t is the count

from left to right at level t. R = 2t is used to denote the length of a node rooted at level

t. Observe that each node in the code tree of a polar code has a bijective relationship

with pair (φ, t). For example, the root node corresponds to (0, n), whereas the ith leaf

node can be represented as (i, 0). Further, with the exception of the leaf nodes, each

node (φ, t) has two children: the left child (2φ, t− 1) and the right child (2φ+ 1, t− 1).

The SC decoding involves a tree traversal from top to bottom and left to right

and can be viewed as information exchange between nodes in the decoding tree. In

particular, a soft information vector, yφ,t, is sent to each (φ, t) node from their parents,

except the root node which receives the channel LLRs, i.e., y0,n = ych. The node (φ, t)

then computes hard bit estimates xφ,t from yφ,t, and send these estimates to its parent.

More specifically, with the exception of the leaf nodes, each node upon receiving yφ,t

generates LLR vectors for its children as

y2φ,t−1
k = 2 arctanh

(
tanh(y

φ,t
k

2 ) tanh(
yφ,tk+2t−1

2 )
)

(2.22)

y2φ+1,t−1
k = yφ,tk+2t−1 + (1− 2x2φ,t−1

k )yφ,tk , (2.23)

where 0 ≤ k < 2t−1 is used to denote the kth entry of a vector. On the other hand,

xφ,t is computed as

xφ,ti =

x
2φ,t−1
i ⊕ x2φ+1,t−1

i , if i < 2t−1;

x2φ+1,t−1
i−2t−1 , otherwise,

(2.24)

where ⊕ denotes the binary XOR operation, and 0 ≤ i < 2t. The decoding process

starts from the root node by setting y0,n = ych. Each node, upon receiving its LLR

vector, computes and passes LLR vectors to its children until the leaf nodes receive

their LLR values. At the ith leaf node (i, 0), the ith input bit ui is estimated as

ûi = xi,0 =

0, if i ∈ F ;

H(yi,0), otherwise,
(2.25)
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Fig. 2.4: The SC decoding tree of a length-four polar code.

where H(y) makes a hard decision on each element of y as

H(yi) =

0, when yi ≥ 0;

1, otherwise.
(2.26)

The leaf node (i, 0) then sends xi,0 to their parents. Each node (φ, t) upon receiving

x2φ,t−1 and x2φ+1,t−1 from its children, computes xφ,t using (2.24). Finally, the

decoding process is completed when the hard decision estimate of x, x̂ = x0,n is

computed at the root node.

Example 2.1. Fig. 2.4 depicts the decoding tree of a length four polar code and the

corresponding information exchanges between the nodes. In particular, after getting the

channel LLRs, the root node (0, 2) computes y0,1 using (2.22) and sends it to its left

child node (0, 1). The node (0, 1) then computes and passes y0,0 to the node (0, 0). This

is a leaf node and it does not have any children. Thus it estimates x0,0 by (2.25) and

sends it to its parent. Upon receiving x0,0, the node (0, 1) computes y1,0 using (2.23)

and sends it to its right child. Then the leaf node (1, 0) estimates x1,0 and passes it to

its parent. Now that the node (0, 1) has received both x0,0 and x1,0, it can estimate x0,1

through (2.24). The decoding proceeds by traversing the remaining branches sequentially

from top to bottom and left to right. This continues until the root node (0, 2) receives

x1,1 from its right child and estimates x0,2.

2.4.1 Successive-Cancellation List Decoding

A well-known method to improve the error correction performance of block codes is list

decoding [53,54]. This was first applied to polar codes in [18], where a likelihood-based
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SCL decoder was introduced. An LLR-based SCL decoder was presented in [9], which

shows identical error correction performance, while has lower computational complexity

and memory requirements.

The SCL decoder operates in a similar fashion to the SC decoder. Instead

of outputting only one codeword estimate, the SCL decoder maintains a list of L

candidate codewords with their corresponding path metrics (PM) while decoding each

bit. In particular, after estimating the ith bit, the path metric associated with the lth

candidate codeword PMl
i, is computed as [9]

PMl
i =

i−1∑
k=0

ln
(
1 + e−(1−2û

kl
)ykl,0

)
, (2.27)

where ûkl is the estimate of the (k + 1)-th bit, and yk
l,0 is the LLR received by the

(k + 1)-th leaf node in the path l.

If the (i + 1)-th bit is a frozen bit then ûil = 0 for each list, and the path metrics

are updated accordingly. But if the (i + 1)-th bit is an information bit, then each

path generates two paths corresponding to ûil = 0 and ûil = 1. The path metrics are

updated accordingly, and a total of 2L paths are generated. Amongst them, only those

L paths are maintained that have the lowest path metrics (largest reliability).

It was observed in [18] that aiding the SCL with a CRC in the selection of the

final candidate codeword further improves the error correction performance. A CRC of

length r, as an outer code, is concatenated to the polar code in serial. The CRC-aided

SCL decoder operates as standard SCL decoder of polar codes except for the final

output selection. The decoder selects the candidate codeword with the lowest path

metric that satisfies the CRC constraint. If no such candidate is found, the output is

the codeword with lowest path metric.

Although the SCL decoder achieves near-ML performance, compared to the SC

decoder, it has higher computational and memory complexities that grow linearly with

the list size. More specifically, for a code of size N the memory and computational

complexities of the SC decoder are O (N) and O (N logN), respectively, whereas for

a list of size L, they increase to O (LN) and O (LN logN), respectively, in the SCL

decoder.
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2.4.2 Successive-Cancellation Flip Decoding

Another polar code decoding scheme that outperforms the SC decoder is the SCF

decoder. Similar to the SCL decoder, the SCF decoder selects the most-probable

codeword amongst multiple codewords. However, unlike the SCL decoder that

parallelizes multiple SC decoders, the SCF decoder can be viewed as multiple SC

decoder operating in a sequential manner. In particular, in the initial phase, the

codeword is decoded through the standard SC decoder. In addition to the decoding, the

SC decoder identifies Tmax bit-flip positions. The bit-level LLRs, |yi,0|, corresponding

to the bit-flip positions have the smallest absolute values.

Let t = {t0, t1, ..., tTmax−1} denote the set of bit-flip positions, where t ⊂ I and

|yti,0| ≤ |ytj ,0| for 0 ≤ i ≤ j < Tmax. After the initial decoding, if the estimated

codeword satisfies the CRC, the decoding process stops. Otherwise, another SC

decoding trial is carried out. However, in this trial ût0 is flipped and the subsequent

bits are decoded with the standard SC decoder. The decoder outputs the estimated

codeword if it satisfies the CRC. Otherwise, a new SC decoding trial is launched. But

this time ût1 is flipped instead. Again the CRC is checked, and a new trial is carried out

if it is not satisfied. This process continues until the CRC of the estimated codeword

is satisfied or the maximum number of trials Tmax is reached. Note that the standard

SC decoding corresponds to Tmax = 0.

The aforementioned procedure of the SCF decoder has O (N) memory complexity,

and its average computational complexity is O (N logN) at high SNR [10], which are

the same complexities as those of the SC decoder.

2.5 Fast Successive-Cancellation Based Decoding

The sequential nature of the SC-based decoders and the tree traversal from top to

bottom and left to right result in a high decoding latency. The decoding speed can be

improved by implementing fast parallel decoders to avoid the code tree traversal and

output multiple bits in parallel. Based on this idea, researchers have identified special

nodes in the polar code tree and proposed their fast parallel decoders which improve
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the decoding speed significantly [5–7].

To better understand the special nodes, we find the following notations useful: For

a node (φ, t), we define Ãφ,t = {i : i ∈ {{R}}, and 2tφ + i ∈ I}, and Ãcφ,t = {i : i ∈

{{R}}, and 2tφ+ i ∈ F}, where R = 2t.

In particular, [5, 6] identified the following four nodes and proposed their fast SC

decoding.

• Rate-0 node: This is a node (φ, t) correspond to Ãφ,t = {}. It has a tree with all

leaf nodes being frozen bits (shown by white circles in Fig. 2.3(a)). This node is

directly estimated as

xφ,ti = 0. (2.28)

• Rate-1 node: This node corresponds to a tree with only information leaf nodes

and Ãφ,t = {{R}}. A Rate-1 is estimated by making hard decision on its

soft-information vector, without any additional calculations, as

xφ,t = H(yφ,t). (2.29)

• REP node: This node corresponds to Ãφ,t = {R− 1} and is identified when only

the rightmost leaf node is an information bit. In a REP node the data is repeated

on all the coded bits. This node is decoded by performing a hard decision on the

sum of the LLRs, as

xφ,ti = H(
R−1∑
i=0

yφ,ti ). (2.30)

• SPC node: This node correspond to the Ãcφ,t = {0} and is identified in the

code tree where only the leftmost leaf node is a frozen bit. A SPC node can

be estimated by Wagner decoding [55]. In particular, we set xφ,ti = H(yφ,ti ) for

0 ≤ k < R. If the frozen bits are fixed to zero, the SPC node will have an

even-parity constraint, where the parity is computed as

γ =
R−1⊕
k=0

xφ,ti , (2.31)
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If the constraint is not satisfied, the bit associated with the least-reliable LLR

value (the LLR with the smallest absolute value) should be flipped. The location

of this bit is found as

imin = argmin
0≤k<R

|yφ,tk |, (2.32)

Further, we set xφ,timin
= xφ,timin

⊕ γ to satisfy the even-parity constraint.

In addition to the aforementioned nodes, low-complexity decoders of five other

nodes are proposed in [7] to further increase the SC decoding speed. More specifically,

Type-I node corresponds, to Ãφ,t = {R − 2, R − 1}; Type-II node, to Ãφ,t = {R −

3, R−2, R−1}; Type-III node, to Ãcφ,t = {0, 1}; Type-IV node, to Ãcφ,t = {0, 1, 2}; and

Type-V node, to Ãφ,t = {R− 5, R− 3, R− 2, R− 1}.

Moreover, [8] provides general rules to fast decoding of polar codes by identifying

G-REP and G-PC nodes, which generalize most of the aforementioned nodes. In

particular, the G-REP node is identified when only the rightmost descendent contains

information bits. Also, the G-PC node is recognized when the leftmost descendent is

a Rate-0 node.

By implementing these fast decoders, the decoding tree can be pruned. This reduces

the number of node visitations and, as a result, the decoding latency. As an example,

Fig. 2.3(b) depicts the fast decoding tree of P (32, 15) when the nodes in [5, 6] are

considered. This will further be pruned to Fig. 2.3(c) if the nodes in [7, 8] are also

taken into account. While 62 time steps are required to traverse the SC decoding tree

in Fig. 2.3(a), traversing the decoding trees in Fig. 2.3(b) and Fig. 2.3(c) take 13 and

7 time steps, respectively.

2.6 Multi-kernel Polar Codes

Length-flexibility of polar codes can be achieved by puncturing or shortening the code.

However, an alternative way to enable polar codes of any block length is incorporating

different sized kernels in the code construction. In particular, [40] introduced square

polarizing kernels of size larger than two and [36,56] proposed the construction of polar

codes with mixed kernels, called multi-kernel polar codes.
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Fig. 2.5: A multi-kernel polar code P (18, 6) with k = (2, 3, 3).

Among non-binary polarizing kernels, ternary (3×3) kernels received more attention

[29, 30, 33–36] as they do not increase the decoding complexity significantly and have

sufficiently high polarization exponent. Unlike the binary kernel T2, there are several

choices for a ternary kernel [34,35]. In particular, T3 =
[ 1 1 1

1 0 1
0 1 1

]
and T′3 =

[ 1 0 0
1 1 0
1 0 1

]
were

introduced in [36] and [40], respectively, and shown to be optimal for polarization with

a polarization exponent of 0.42, slightly less than 0.5 which is the polarization exponent

of T2.

A multi-kernel polar code, P (N, k), that is constructed with mixed binary and

ternary kernels has a length N = 2n1 × 3n2 . In this case, the generator matrix GN is

constructed by n1 times the Kronecker product of the binary kernel T2 and n2 times the

Kronecker product of ternary kernel with any order. Here, the number of the levels in

the decoding tree is S = n1+n2. As an example, a multi-kernel code of length 18 can be

constructed with three different kernel orders, i.e., k = (2, 3, 3), (3, 3, 2), or (3, 2, 3).

To find the kernel order with most reliable set of information bits, [29] suggests

searching over all possible kernel orders. For long polar codes the kernel order selection

can be simplified by placing the ternary kernels at the first or last positions in the

Kronecker product without any significant performance degradation [30]. However,

the error rate performance of medium to high rate and low-rate polar codes can be

improved by placing the ternary kernels at the first and last positions, respectively [30].

Fig. 2.5 depicts a multi-kernel polar code of length 18 and code rate of 1/3, where the

ternary kernels are at last positions.
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The bit channel reliability when the T3 and T′3 kernels are used, can be obtained

by the GA method [46] as [30,33]

z
N/3
3i−2 = φ−1

(
1−

(
1− φ(φ−1(1− (1− φ(zNi ))2))

)
(1− φ(zNi ))

)
, (2.33)

z
N/3
3i−1 = φ−1(1− (1− φ(zNi ))2) + zNi , (2.34)

z
N/3
3i = 2zNi . (2.35)

Furthermore, the approximations of φ and φ−1 are obtained as [30]

φ(x) =

e
0.0564x2−0485x, x < 0.8678

e−0.4527x0.86+0.0218, otherwise,
(2.36)

φ−1(x) =

4.3049(1−
√

1 + 0.9567logx), x > 0.6846

(−2.209logx+ 0.482)1.163, otherwise.
(2.37)

Also, any node (φ, t) with t > 0, at a ternary level of the decoding tree has r =

(3φ, t−1), c = (3φ+1, t−1) and l = (3φ+2, t−1) as the left, center and right children,

respectively.

The SC decoder for multi-kernel polar codes follows the similar steps as in the binary

polar code, except for the LLR computations at the ternary levels. In particular, with

the exception of the leaf nodes, each node at a ternary level computes LLR vectors of

its left, center and right children using (2.38), (2.39) and (2.40), respectively, for T3.

ylk = yφ,tk � yφ,tk+3t−1 � yφ,tk+2×3t−1 , (2.38)

yck = (−1)x
l
k yφ,tk + yφ,tk+3t−1 � yφ,tk+2×3t−1 , (2.39)

yrk = (−1)xk yφ,tk+3t−1 + (−1)x
l
k⊕x

c
k yφ,tk+2×3t−1 , (2.40)

In the case of T′3 the LLR for the left child is computed using (2.38). However, the

optimal equations for LLR computation of center and right children are [57]

yck = (−1)x
l
k yφ,tk � yφ,tk+2×3t−1 + yφ,tk+3t−1 , (2.41)

yrk = (−1)x
l
k⊕x

c
k yφ,tk + yφ,tk+2×3t−1 . (2.42)
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Multi-kernel polar codes significantly improve the length flexibility of polar codes.

For instance, consider up to nine levels in the code tree, where n1 + n2 ≤ 9. Binary

kernel polar codes, can attain only nine code lengths, while 54 different code lengths

can be achieved using both binary and ternary kernels.
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Chapter 3

Fast Successive-Cancellation List

Decoding

The SCL decoder was proposed to improve the error-rate performance of polar codes.

However, it parallelizes multiple SC decoders and suffers high decoding latency. Fast

SCL decoders for Rate-0, REP, SPC, and Rate-1 nodes are proposed in [38, 39]. To

further improve the SCL decoding speed, in this chapter, we propose the fast SCL

decoders for the five special nodes (Type-I, Type-II, Type-III, Type-IV, and Type-V) [7]

identified in the decoding tree of polar codes [3, 4]. Next, we study how the fast SCL

decoders can be adopted to be used in the case of distributed parity-check-aided SCL

decoding. Moreover, we compare the decoding latencies of the proposed decoders and

the existing ones. Finally, simulation results are provided to verify the performance of

the proposed decoders.

Before presenting our fast SCL decoders for the five nodes, we first examine the

contribution of a node (φ, t) to the path metric of a codeword. Observe that the leaf

nodes corresponding to the node (φ, t) are the nodes (2tφ + k, 0), where 0 ≤ k < 2t.

Consequently, using (2.27), the contribution of the node (φ, t) to the path metric,

denoted by PMφ,t, is given by

PMφ,t =
2t(φ+1)−1∑
k=2tφ

ln
(
1 + e−(1−2ûk)yk,0

)
. (3.1)
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Our proposed decoders, similar to the list decoders of the Rate-0, Rate-1, REP and

SPC nodes [38], compute PMφ,t without traversing the whole subtree corresponding

to a node. To this end, for the path metric computation we use an important result

introduced in [38, Theorem 1], which specifically proves that1

PMφ,t =
2t−1∑
k=0

ln
(
1 + e−(1−2xφ,t

k
)yφ,t
k

)
. (3.2)

Another result, that will be used extensively in our proposed decoders to simplify

the calculations, is the following identity.

ln
(
1 + ea

)
− ln

(
1 + e−a

)
= a. (3.3)

3.1 Proposed Fast SCL decoders

In the following, we present fast decoders for the Type-I, Type-II, Type-III, Type-IV

and Type-V nodes. For better readability, we use R = 2t to denote the node length

and drop the indexes φ and t from the notation. Further, we add l, where 0 ≤ l < L,

in the notation to indicate that the calculations pertain to the path l.

3.1.1 Type-I Node

For a Type-I node, xl = {xR−2, xR−1, · · · , xR−2, xR−1} [7]. As such, xl equals only one

of the four codewords: C0 = {0, 0, · · · , 0, 0}, C1 = {0, 1, · · · , 0, 1}, C2 = {1, 0, · · · , 1, 0},

and C3 = {1, 1, · · · , 1, 1}.

In the proposed decoder, we compute the PM contribution of the Type-I node

corresponding to each codeword for each list. In particular, the PMs corresponding to
1Although [38] presented the equivalence of PMs for a Rate-1 node, the same result is valid for any

node and can be proved using a similar approach.
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the four codewords for the list l, 0 ≤ l < L, are

PMl
0 =PMl +

R/2−1∑
k=0

ln
(
1 + e−yl2k

)
+ ln

(
1 + e−yl2k+1

)
, (3.4)

PMl
1 =PMl +

R/2−1∑
k=0

ln
(
1 + e−yl2k

)
+ ln

(
1 + e+yl2k+1

)
, (3.5)

PMl
2 =PMl +

R/2−1∑
k=0

ln
(
1 + e+yl2k

)
+ ln

(
1 + e−yl2k+1

)
, (3.6)

PMl
3 =PMl +

R/2−1∑
k=0

ln
(
1 + e+yl2k

)
+ ln

(
1 + e+yl2k+1

)
. (3.7)

Using (3.3), the above calculations can be simplified as

PMl
0 =PMl +

R−1∑
k=0

ln
(
1 + e−ylk

)
, (3.8)

PMl
1 =PMl

00 + ς1, (3.9)

PMl
2 =PMl

00 + ς0, (3.10)

PMl
3 =PMl

00 + ς0 + ς1, (3.11)

where ςi =
∑R/2−1
k=0 yl2k+i for i = 0, 1.

As a result of these calculations, a total of 4L path metrics are computed. Amongst

them, only the smallest L ones are retained, and the corresponding codewords are

assigned to xl.

3.1.2 Type-II Node

For a Type-II node, xl = {xR−4, xR−3, xR−2, xR−1, · · · , xR−4, xR−3, xR−2, xR−1}, where

xR−4 = xR−3⊕xR−2⊕xR−1 [7]. Hence, xl can only be one of the eight codewords: C0 =

{0, 0, 0, 0 · · · , 0, 0, 0, 0}, C1 = {1, 0, 0, 1, · · · , 1, 0, 0, 1}, C2 = {1, 0, 1, 0, · · · , 1, 0, 1, 0},

C3 = {0, 0, 1, 1, · · · , 0, 0, 1, 1}, C4 = {1, 1, 0, 0, · · · , 1, 1, 0, 0}, C5 = {0, 1,

0, 1, · · · , 0, 1, 0, 1}, C6 = {0, 1, 1, 0 · · · , 0, 1, 1, 0}, and C7 = {1, 1, 1, 1 · · · , 1, 1, 1, 1}.
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Following the approach used in the Type-I list decoder, we compute

PMl
0 =PMl +

R−1∑
k=0

ln
(
1 + e−ylk

)
, (3.12)

PMl
1 =PMl

0 + η0 + η3, (3.13)

PMl
2 =PMl

0 + η0 + η2, (3.14)

PMl
3 =PMl

0 + η2 + η3, (3.15)

PMl
4 =PMl

0 + η0 + η1, (3.16)

PMl
5 =PMl

0 + η1 + η3, (3.17)

PMl
6 =PMl

0 + η1 + η2, (3.18)

PMl
7 =PMl

0 + η0 + η1 + η2 + η3. (3.19)

where ηi =
∑R/4−1
k=0 yl4k+i for 0 ≤ i < 4.

Afterwards, L PMs are retained amongst the 8L computed PMs, and the

corresponding codewords are assigned to xl.

3.1.3 Type-III Node

A Type-III node corresponds to Âc = {0, 1}; i.e., there are only two frozen bits in the

node [7]. Therefore, xl can be one of the 2R−2 = 22t−2 valid Type-III node codewords.

Since the size of a Type-III node can be large, it is impractical to compute a total

of 2R−2L path metrics and choose the best L ones from them. Hence, we follow the

approach of generating candidate codewords used in [37,39].

For each path l, we first find the ML codeword and compute its corresponding PM.

Since the even-indexed and odd-indexed bits of a Type-III codeword constitute two

separate SPC codes [7], we compute the ML codeword by using Wagner decoding [55].

In particular, we set xlk = H(ylk), where H(y) is defined in (2.26), and 0 ≤ k < R. We

then find the location of the least-reliable even-indexed and odd-indexed LLR values

as

(el, ol) = ( argmin
0≤k<R/2

|yl2k|, argmin
0≤k<R/2

|yl2k+1|), (3.20)
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and compute the parities of both SPC codes as

(γle, γlo) =
(R/2−1⊕

k=0
xl2k,

R/2−1⊕
k=0

xl2k+1

)
. (3.21)

Further, to satisfy the even-parity constraint we set

xl2el = xl2el ⊕ γ
l
e (3.22)

and

xl2ol+1 = xl2ol+1 ⊕ γlo (3.23)

Lastly, we compute the PM corresponding to the ML codeword as

PMl
ML = ∆l + γle|yl2el |+ γlo|yl2ol+1|, (3.24)

where ∆l = PMl +
∑R−1
k=0 ln

(
1 + e−|y

l
k|
)
.

We then define modified LLRs, αli’s, as αl2k = |yl2k| + (1 − 2γle)|yl2el |, and αl2k+1 =

|yl2k+1|+(1−2γlo)|yl2ol+1| for 0 ≤ k < R/2. Next, we sort the modified LLRs (excluding

αl2el and αl2ol+1) in ascending order and denote the sorted indexes by (i)l, where 0 ≤

i < R− 2. Mathematically, αl(k)l ≤ α
l
(k+1)l for 0 ≤ k < R− 3.

After computing the sorted indexes for each path, we start generating candidate

codewords by flipping bits of the ML codeword. In particular, starting from k = 0, we

generate two codewords corresponding to the bit (k)l being 0 or 1. In order to satisfy

the even parity condition, the bits with indexes 2el and 2ol+1 are modified accordingly.

The PM corresponding to the generated codewords are calculated as

PMl
(k)l=

PMl
(k−1)l , if xl(k)l=H(yl(k)l);

PMl
(k−1)l+|y

l
(k)l |+β(k)l , otherwise,

(3.25)

where PMl
(−1)l = PMl

ML, β(k)l = (1 − 2γle,k−1)|yl2el | if (k)l is even, and β(k)l = (1 −

2γlo,k−1)|yl2ol+1| otherwise. The bit γle,k equals γle,k−1 when (k)l is odd. When (k)l is

even then

γle,k =

γ
l
e,k−1, if xl(k)l=H(yl(k)l);

1− γle,k−1, otherwise.
(3.26)
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Likewise, γlo,k = γlo,k−1 when (k)l is even. When (k)l is odd, γlo,k is updated as likewise,

γlo,k = γlo,k−1 when (k)l is even. When (k)l is odd, γlo,k is updated as

cγlo,k =

γ
l
o,k−1, if xl(k)l=H(yl(k)l);

1− γlo,k−1, otherwise.
(3.27)

Here, γle,−1 = γle, and γlo,−1 = γlo.

As a result of the aforementioned operations, a total of 2L PMs are computed for

each k. Amongst them, only the lowest L ones are retained. We continue this process

of creating 2L codewords from the existing L ones and retaining only the L best ones

in a successive manner as k varies from 0 to min{L− 2, R− 3}. After that, we return

the L surviving paths and their PMs. We do not consider all the codewords; i.e., we

do not vary k from 0 to R− 3, when L < R− 1, because Theorem 3.1 asserts that the

extra codewords created after k = L− 2 are not included in the surviving paths.

Theorem 3.1. In the proposed list decoder of the Type-III node, the codewords that

have xl(k)l 6= H(yl(k)l) for k ≥ L− 1 are not amongst the surviving codewords.

Proof. We prove this theorem by contradiction. Suppose the codeword with xl(L−1)l 6=

H(yl(L−1)l) is among the surviving codewords. Consequently, the PM corresponding to

such a codeword is one of the smallest L ones. Note that the minimum possible value

of the corresponding PM is PMl
ML +αl(L−1)l , which represents the case that all the bits

of the generated codeword and the ML codewords are the same except the bit (L− 1)l
and the corresponding parity bit.

Now consider the codewords corresponding to xl(k)l = H(yl(k)l) and xl(k)l = 1 −

H(yl(k)l) for 0 ≤ k < L−1. Amongst them, we consider the following L codewords. One

of them is the ML codeword with the path metric of PMl
ML. The other L−1 codewords

are the ones that differ from the ML codeword only in two locations: the (k)l bit and

the corresponding (even/odd) parity bit. The PM of such codeword is PMl
ML + αl(k)l

for 0 ≤ k < L − 1. Using the fact that αli ≥ 0 and αl(k)l ≤ αl(L−1)l , the PMs of the

considered L codewords is less than or equal to PMl
ML + αL(L−1)l . Consequently, the

PM of the codeword corresponding to xl(L−1)l 6= H(yl(L−1)l) is not amongst the best
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L ones. Therefore, we do not need to consider multiple codewords corresponding to

xl(L−1)l being equal to 0 or 1. Rather, we just set xl(L−1)l = H(yl(L−1)l).

Similar assertions can be made for xl(k)l for k ≥ L.

3.1.4 Type-IV Node

The codeword in a Type-IV node satisfies the following relationship [7].

R/4−1∑
i=0

x4i =
R/4−1∑
i=0

x4i+1 =
R/4−1∑
i=0

x4i+2 =
R/4−1∑
i=0

x4i+3 = z, (3.28)

where z can be 0 or 1.

In the proposed list decoder of a Type-IV node, we first compute the ML codewords

for each list corresponding to z = 0 and z = 1 using a Wagner decoder. In particular,

we compute the i∗0, i∗1, i∗2, and i∗3 as

i∗j = argmin
0≤k<R/4

|yl4k+j |, (3.29)

where j = 0, 1, 2, 3.

Then we set xl = H(yl) and compute γlj as

γlj =
R/4−1⊕
k=0

xl4k+j , (3.30)

where j = 0, 1, 2, 3. Afterwards, we generate two ML codewords corresponding to z = 0

and z = 1 by setting xl4i∗j+j = xl4i∗j+j ⊕ γlj ⊕ z. Their corresponding PMs are

PMl
ML,z = ∆l +

3∑
j=0

(γlj ⊕ z)|yl4i∗j+j |, (3.31)

where ∆l = PMl +
∑R−1
k=0 ln

(
1 + e−|y

l
k|
)
.

As a result, we compute 2L codewords and their corresponding PMs. Amongst

them, we only retain those L codewords that have the smallest PM values. Afterwards,

using z of the retained codewords, we update γlj as γlj = γlj ⊕ zl.

Similar to the Type-III node decoder, we then define αi’s as αl4k+j = |yl4k+j |+ (1−

2γlj)|yl4i∗j+j | for 0 ≤ k < R/4, and 0 ≤ j ≤ 3. Next, excluding αl4i∗j+j , we sort αli’s in

35



an ascending order and denote the sorted indexes by (i)l, where 0 ≤ i < R − 4. Thus,

αl(k)l ≤ α
l
(k+1)l for 0 ≤ k < R− 5.

Starting from k = 0, we then compute different codewords and their corresponding

PMs by considering x(k)l = 0 and x(k)l = 1 and setting appropriate values to the

xl4i∗j+j , where j = [[(k)l]]2 is the remainder after division of (k)l by 22 = 4. The PMs

are computed as

PMl
(k)l=

PMl
(k−1)l , if xl(k)l=H(yl(k)l);

PMl
(k−1)l+|y

l
(k)l |+β(k)l , otherwise,

(3.32)

where PMl
(−1)l = PMl

ML,z and β(k)l = (1 − 2γlj,k−1)|yl4i∗j+j |. Here, γlj,k is computed

recursively as

γlj,k =

γ
l
j,k−1, if x(k)l=H(y(k)l);

1− γlj,k−1, otherwise,
(3.33)

with γlj,−1 = γlj . Also, γli,k = γli,k−1 for 0 ≤ i < 4 and i 6= j, and γli,−1 = γli.

The aforementioned procedure produces a total of 2L codewords for each k. We

then save only those codewords and their corresponding PMs that have the lowest PM

values. We continue this process till k reaches min{L − 2, R − 5}. If L < R − 3, we

simply set xl(k)l = H(yl(k)l) for L−2 < k ≤ R− 5 as the codeword with xl(k)l 6= H(yl(k)l)

has a larger PM and is not amongst the surviving codewords2 .

3.1.5 Type-V Node

The list decoder for a Type-V node is quite similar to that of the Type-I and Type-II

nodes. In particular,

xl = m
[
G0 · · · G0

]
, (3.34)

where m is a binary row vector of length 4, and

G0 =



1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

0 1 1 0 1 0 0 1


. (3.35)

2The proof of this assertion is omitted because it is quite similar to the proof of Theorem 3.1.
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Similar to the proposed decoders for Type-I and Type-II nodes, we compute 16

PMs corresponding to different values of m3 as

PMl
0 =PMl +

R−1∑
k=0

ln
(
1 + e−ylk

)
, (3.36)

PMl
1 =PMl

0 + σ1 + σ2 + σ4 + σ7, (3.37)

PMl
2 =PMl

0 + σ0 + σ2 + σ4 + σ6, (3.38)

PMl
3 =PMl

0 + σ0 + σ1 + σ6 + σ7, (3.39)

PMl
4 =PMl

0 + σ0 + σ1 + σ4 + σ5, (3.40)

PMl
5 =PMl

0 + σ0 + σ2 + σ5 + σ7, (3.41)

PMl
6 =PMl

0 + σ1 + σ2 + σ5 + σ6, (3.42)

PMl
7 =PMl

0 + σ4 + σ5 + σ6 + σ7, (3.43)

PMl
8 =PMl

0 + σ0 + σ1 + σ2 + σ3, (3.44)

PMl
9 =PMl

0 + σ0 + σ3 + σ4 + σ7, (3.45)

PMl
10 =PMl

0 + σ1 + σ3 + σ4 + σ6, (3.46)

PMl
11 =PMl

0 + σ2 + σ3 + σ6 + σ7, (3.47)

PMl
12 =PMl

0 + σ2 + σ3 + σ4 + σ5, e (3.48)

PMl
13 =PMl

0 + σ1 + σ3 + σ5 + σ7, (3.49)

PMl
14 =PMl

0 + σ0 + σ3 + σ5 + σ6, (3.50)

PMl
15 =PMl

0 +
7∑
i=1

σi, (3.51)

where σi =
∑R/8−1
k=0 yl8k+i for 0 ≤ i < 8. Amongst the 16L computed path metrics,

only the smallest L ones are kept, and their corresponding codewords are assigned to

xl.

Remark 3.1. In the aforementioned list decoders, we did not provide calculations for

ûlk, where 2tφ ≤ k < 2t(φ + 1) for a node (φ, t). For systematic polar codes, we do

not compute ûl as the information bits appear directly in x [41]. For non-systematic
3Here PM0 corresponds to the codeword x when m = {0, 0, 0, 0}, PM1 corresponds to the codeword

x when m = {0, 0, 0, 1}, and so on.
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polar codes, we can use ûφ,t = xφ,tG to find the information bits corresponding to

the codeword xφ,t. Note that the above operation, in contrast to the conventional list

decoding, involves only bit operations, which can be carried out expeditiously with very

few hardware resources.

For the Type-I, Type-II and Type-V nodes, we can further reduce the hardware

complexity and decoding latency by using the special structure of xφ,t and the frozen-bit

pattern. For example, for a Type-I node, û can be calculated as follows: ûk = 0 for

2tφ ≤ k < 2t(φ+ 1)− 2, û2t(φ+1)−2 = xφ,t2t−2 ⊕ x
φ,t
2t−1, and û2t(φ+1)−1 = xφ,t2t−1.

Remark 3.2. The computational and hardware complexity of PM calculations can be

reduced using [9]

ln(1 + ea) ≈

a, if a > 0;

0, otherwise.
(3.52)

For example, using (3.52), we can compute PMl
0 for a Type-I node as

PMl
0 ≈ PMl +

∑
k:yl

k
<0

ylk. (3.53)

3.2 A Case Study: Fast SCL Decoding in the Distributed

Parity-check Aided Polar Codes

As mentioned earlier, the error correction performance of the SCL decoder can be

improved with serial concatenation of a CRC after the non-frozen bits [18]. The idea of

using a CRC is then extended to a more general case by distributing parity-check

(PC) bits among the non-frozen bits [58, 59]. It was shown in [58, 59] that the

distributed-PC-aided SCL decoder can outperform the CRC-aided SCL decoder since

the scattered PC bits enables the SCL decoder to detect and prune error paths more

effectively and timely. [58, 59] proposed two different methods for distributing the PC

bits. In both methods each PC bit is the module 2 sum of a number of its preceding

information bits and is estimated as

ûi = (
∑
j∈Pi

ûj) mod 2, (3.54)
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where Pi is the set of information bit indices corresponding to the ith PC bit. Note

that all j ∈ Pi are smaller than the index of their corresponding PC bit, i.e., j < i.

In this section, we study fast SCL decoding for the distributed-PC-aided polar

codes. In particular, in the distributed-PC-aided polar codes, the PC bits appear

in the node patterns along with information and frozen bits and impose additional

constraints. Thus, to see the impact of PC bits we consider different patterns (i.e., the

REP, SPC, and Type-III patterns) and adapt their existing fast SCL decoders to be

used in the case of distributed-PC-aided SCL decoding.

3.2.1 PC-REP Node

A PC-REP node is an REP node with the rightmost bit being a PC bit rather than

an information bit. Thus, its codeword is xl = {ûlPC, û
l
PC, ..., û

l
PC}, where ûlPC is the

estimation of the PC bit for each list obtained by (3.54). Also, the PM contribution of

this node is computed as

PMl =
R−1∑
k=0

ln
(
1 + e−(1−2ûlPC)ylk

)
. (3.55)

3.2.2 PC-SPC Node

A PC-SPC node is an SPC node except that the leftmost bit is a PC bit rather than

being a frozen bit. Thus, the parity-check constraint is imposed by the estimated value

of the PC bit. If ûlPC = 0, the PC-SPC node is a SPC code with an even parity-check

constraint. Otherwise, it is a SPC code with an odd parity-check constraint. As such,

the fast SCL decoder for the SPC node [39] can be adopted to decode this node. In

particular, the decoder first computes the ûlPC to identify the parity-check constraint

for each path. The rest of the decoding process is identical to the decoding of the SPC

node in [39].

3.2.3 PC-Type-III Node

In a Type-III node the first two bits are frozen bits. We observed that two different

patterns can be described as a PC-Type-III node. In particular, in one of the patterns
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the first bit is frozen bit and the second bit is a PC bit. The corresponding codeword

to this pattern satisfies the following constraint.

R/2−1∑
i=0

xl2i =
R/2−1∑
i=0

xl2i+1 = ûlPC. (3.56)

Here, the even-indexed and odd-indexed bits in the codeword form two separate SPC

codes, where their parity check constraint is imposed by the value of ûlPC.

In the second PC-Type-III pattern, the first and second bits are both PC bits. In

this case, a valid codeword satisfies the following relations:

R/2−1∑
i=0

xl2i = ûlPC1 ⊕ ûlPC2, (3.57)

R/2−1∑
i=0

xl2i+1 = ûlPC2, (3.58)

where the subscripts PC1 and PC2 refer to the index of the first and second PC bits

in this node, respectively. In particular, the even-indexed and odd-indexed bits in the

codeword from two separate SPC codes.

Both PC-Type-III node patterns can be decoded using the proposed Type-III fast

SCL decoder in Section 3.1.3, except that the (3.21) must be modified as

(γle, γlo) =
(R/2−1⊕

k=0
xl2k ⊕ γl1,

R/2−1⊕
k=0

xl2k+1 ⊕ γl2

)
(3.59)

where for the first pattern γl1 = γl2 = ûlPC1 and for the second pattern γl1 = ûlPC1⊕ ûlPC2

and γl2 = ûlPC2.

3.3 Decoding Latency

In this section, we compare the decoding latency of our proposed fast SCL decoders

with that of the existing ones [39] (referred to as FSCL decoders hereafter). To

compare the decoding latencies we compute the required number of time steps to

decode different nodes with the existing decoders and our proposed ones, under the

following assumptions. First, we assume there are no resource limitations so that
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all the parallelizable instructions are performed in one time step [38, 39]. Second,

addition/subtraction of real numbers and the check-node operation is assumed to

consume one time step. Third, hard decisions on LLRs and bit operations are carried

out instantaneously [5, 7, 9, 38, 39]. Fourth, Wagner decoding can be performed in a

single time step. Last, the decoder duplicates all L paths, sorts the corresponding 2L

PMs and selects the smallest L ones during a single time step [38,39].

Note that [39] presented fast decoders for only Rate-0, REP, SPC and Rate-1 nodes,

and the remaining special nodes are decoded using these nodes. In the following, we

first present the decoding latency of the Rate-0, REP, SPC, and Rate-1 nodes as these

calculations will be used when computing the decoding latencies of the FSCL decoders

for the remaining nodes.

The FSCL decoder takes one time step to decode a Rate-0 node as the computation

of the PM for active paths consumes a single time step. The FSCL decoder for a REP

node duplicates each path and computes their corresponding PMs in a single time

step. In the next time step, it sorts the PMs and selects the best L paths. As such,

the decoding latency of the FSCL REP node decoder is two time steps. The Rate-1

node FSCL decoder computes the PM of the ML codeword in one time step and needs

min{L− 1, R} time steps to do the path and PM updates of the remaining codewords.

As such, it consumes 1 + min{L− 1, R} time steps to decode a Rate-1 node. Similarly,

the FSCL decoder for an SPC node takes one time step to find the ML codeword and

its corresponding PM and min{L−1, R−1} time steps for the path and PM updates of

the remaining codewords. Thus, the decoding latency of the FSCL SPC node decoder

is 1 + min{L− 1, R− 1} time steps.

For Type-I, Type-II and Type-V nodes, our proposed decoders consume one time

step to compute the PMs corresponding to all codewords. Following the first and last

assumptions from the beginning of this section, our decoders require two, three and

four time steps to sort 4L, 8L and 16L PMs, respectively. As such, the decoding

latencies of the Type-I, Type-II and Type-V decoders are three, four and five time

steps, respectively.

On the other hand, if the FSCL decoders are used to decode Type-I, Type-II and
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Fig. 3.1: Decoding trees of the proposed nodes in [7] correspond to either decoding tree
(a) or decoding tree (b).

Type-V nodes then the decoding tree of these nodes corresponds to the decoding tree

of Fig. 3.1(a). In particular, the left child of each node is a Rate-0 node, whereas node

B is a Rate-1 node of size two for the Type-I node, an SPC node of size four for the

Type-II, and a REP-SPC node of size eight for the Type-V node [7].

In general, the LLR computation for each child takes one time step. However,

when the left children are Rate-0 nodes, the LLRs of both children can be calculated

simultaneously in one time step. That results in a decoding latency of log2(R/RB)

time steps to traverse to the node B, where RB is the size of node B. Using the

aforementioned decoding delay expressions, node B can be decoded in min {L− 1, 2}+

1, min {L, 4}, and min {L, 4} + 4 time steps for Type-I, Type-II and Type-V nodes,

respectively. Using these calculations, the decoding latencies of these nodes can be

computed and are given in Table 3.1.

The proposed decoder of a Type-III node first computes the ML codeword and

its corresponding PM in one time step. Afterwards, it generates 2L codewords and

select the best L ones for min{L − 1, R − 2} bits, which results in a decoding delay

of 1 + min{L − 1, R − 2} time steps. Likewise, the decoding latency of the proposed

Type-IV decoder can be shown to be 1 + min{L− 1, R− 4} time steps.

With the FSCL decoders, the decoding tree of a Type-III or Type-IV node

corresponds to the decoding tree of Fig. 3.1(b). In particular, the right child of each

node is a Rate-1 node. The node B is a Rate-0 node of size two, and a REP node

of size four for the Type-III and Type-IV nodes, respectively. Decoding delays of

2 log2(R/RB) − 1 and 2 log2(R/RB) time steps are required to traverse to the level
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Table 3.1: Decoding latencies of the FSCL and proposed fast SCL decoders.

Node FSCL [39] Proposed fast SCL

Type-I t+ min {L− 1, 2} 3

Type-II t− 2 + min{L, 4} 4

Type-III 3t− 4 +
t−1∑
i=1

min{L− 1, 2i} min{L,R− 1}

Type-IV 3t− 4 +
t−1∑
i=2

min{L− 1, 2i} min{L,R− 3}

Type-V t+ 1 + min{L, 4} 5

of node B in the Type-III and Type-IV node, respectively. Using the decoding delay

expression for the Rate-0, REP and Rate-1 nodes, the decoding latencies of the fast

SCL decoders can be computed and are given in Table 3.1.

Observe that the decoding latencies of the proposed fast SCL decoders are less than

those of the FSCL decoders. The latency improvement is more pronounced for Type-III

and Type-IV nodes. For example, the proposed decoder will require four time steps

to decode a Type-III node, whereas the FSCL decoder will consume a total of 22 time

steps to decode the node when L = 4 and R = 2t = 25.

Note that the aforementioned decoding delay calculations are valid when L > 1.

This is because no PM computation and path duplication are required for L = 1.

3.4 Numerical Results

In this section, we compare the BER and block-error-rate (BLER) performances of the

proposed fast SCL decoders with those of the existing decoders4 . We used a 16-bit

CRC defined by the generator polynomial x16 + x15 + x12 + x7 + x6 + x4 + x3 + 1

(0xC86C). Systematic polar codes [41] with random BPSK-modulated codewords were

transmitted through the AWGN channel. Furthermore, the simple GA method [51]

was used to design the polar codes.
4Performances of different decoders are compared under identical noise values and codewords in our

simulations.
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Fig. 3.2: BER and BLER performances of the SCL [9] and proposed fast SCL decoders
for a P (1024, 256).
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Fig. 3.3: BER and BLER performances of the SCL [9] and proposed fast SCL decoders
for a P (512, 256).
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Table 3.2: Number of special nodes for different polar codes.

N
od

e
Le

ng
th

R
at

e-
0

R
EP

R
at

e-
1

SP
C

T
yp

e-
I

T
yp

e-
II

T
yp

e-
II

I

T
yp

e-
IV

T
yp

e-
V

P (1024, 256)

8 0 9 0 4 1 0 1 1 10
16 1 6 0 2 1 0 1 0 0
32 1 5 0 1 0 0 0 1 0
64 1 2 0 1 0 0 0 0 0
128 1 0 0 0 0 0 0 0 0

P (512, 256)

8 0 4 1 3 1 0 0 1 6
16 0 2 0 2 0 1 0 1 0
32 0 2 1 1 0 0 1 0 0
64 0 1 1 0 0 0 0 0 0

Fig. 3.2 compares the BER and BLER performances of the proposed fast SCL

decoder with those of the LLR-based SCL decoder [9] for a P (1024, 256). Note that

the proposed decoder, while matching the performance of the SCL decoder, has a

decoding latency of almost 16% and 23% less than that of the FSCL decoder [39] for

L = 2 and 4, respectively (see Table 3.3). In particular, considering the special nodes

in the simulated P (1024, 256) with 16-bit CRC provided in Table 3.2, the proposed fast

SCL decoder consumes 226 and 250 time steps, whereas the FSCL decoder requires 269

and 323 time steps to complete the decoding when L = 2 and 4, respectively.

Furthermore, Fig. 3.3 illustrates the BER and BLER performances of the proposed

fast SCL decoder for P (512, 256). The required number of time steps of the proposed

fast SCL decoder is 135 and 159, respectively, for L = 2 and 4 which is 19% and 25%

less than that of the FSCL decoder [39].

3.5 Conclusion

The SCL decoder can be used to improve the performance of polar codes, especially

for short to moderate length codes. However, their serial decoding nature results
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Table 3.3: Decoding latency comparison of different SCL decoders

Required number of time steps Saving with respect to
for the proposed fast SCL decoders the FSCL decoders [39]
L = 2 L = 4 L = 2 L = 4

P (1024, 256) 226 250 16% 23%
P (512, 256) 135 159 19% 25%

in significant decoding latency. Thus we proposed fast SCL decoders for five

recently-identified nodes in the decoding tree of polar codes, i.e., Type-I, Type-II,

Type-III, Type-IV and Type-V nodes. The new decoders, while achieving the same

error-rate performance as the SCL decoders, significantly reduce the decoding latency.
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Chapter 4

Fast Successive-Cancellation Flip

Decoders

SCF decoding is another SC-based decoding scheme that outperforms SC decoding

and can be used to improve the performance of polar codes. The SCF decoding relies

on multiple sequential applications of the SC decoder. Thus, the sequential iterations

of the SC decoder results in the relatively high decoding latency of the SCF decoder.

Furthermore, the fast SC decoders in [5–7, 60–62] cannot be used directly to increase

the speed because the SCF decoder needs to maintain the list of the least-reliable bit

locations. Specifically, the conventional SCF decoder [10] uses the bit-level LLR, |yi,0|,

to determine the bit-flip locations. Note that the existing fast SC decoder of a node

(φ, t) does not compute the bit-level LLRs to improve the throughput.

Since computing the bit-level LLRs will incur a high decoding latency, we propose

a new decision metric to determine bit-flip locations. The proposed decision metric can

be computed without traversing the decoding tree, hence speeding up SCF decoding.

In this chapter, we first introduce the new decision metric, and then describe the

fast SCF decoders for the special nodes based on our proposed metric. We further

compare the decoding latencies of the original SCF decoder [10], the existing fast

SCF decoders [11], and our proposed fast SCF decoders. Simulation results are also

provided to compare the performances of different SCF decoders. Using our proposed

48



fast parallel SCF decoders, a speed-up of up to 81% is observed. This significant

reduction in the decoding latency comes without sacrificing the error-rate performance

of the code.

4.1 Proposed Decision Metric

Before we present our proposed decision metric, we first analyze the decision metric

used in the conventional SCF decoder, i.e., |yi,0| [10]. To this end, we consider the path

metric of a codeword decoded by the conventional SCL decoder for L = 1.

The conventional SCL decoder considers two possibilities for the bit ui, i.e., 0 or

1, and selects the path with the least PM. Using (2.27), it can be verified that the

difference between the PMs of the considered codewords is exactly |yi,0|. That is, the

decision metric used in the conventional SCF decoder equals the difference between the

PMs of the codewords that share the same code bits except the code bits corresponding

to the node (i, 0).

We use the aforementioned observation to propose a decision metric for our proposed

fast SCF decoders. Since our decoders decode the codewords corresponding to a node

without traversing it, we propose a decision metric that can be computed without the

traversal. In particular, we propose to use the following decision metric:

λ = PMx − PMML. (4.1)

Here, PMx and PMML are the contributions of a codeword x and the ML codeword to

the PM, respectively. The ML codeword is the codeword that is selected by the SCL

decoders for L = 1, i.e., it has the least associated PM. Observe that our proposed

metric λ coincides with |yi,0| for the nodes (i, 0), which is used in the conventional SCF

decoding [10].

It should be noted that [11] also proposed decision metrics for the REP, Rate-1,

SPC and Type-I nodes. However, except the metric used for the REP node, the other

metrics used in [11] result in performance degradation. Our proposed decoders, on the

other hand, are based on the contribution of the selected codeword to the PM and,

hence, show better BER performance than the decoders from [11].
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4.2 Proposed Fast SCF Decoders

In the following, we first describe the fast SCF decoders of the REP, Rate-1, SPC

and Type-I nodes proposed in [11]. We also compare them with the proposed SCF

decoders highlighting the key differences, which eventually result in the improvement

of the BER performance. Afterwards, we present fast SCF decoders for the remaining

nodes (Type-II, Type-III, Type-IV, and Type-V nodes).

4.2.1 REP Node

A REP node contains only one information bit. Therefore, there are two valid

REP node codewords: an all-zeros codeword and an all-ones codeword. The PM

contributions for these codewords can be computed as

PM0 =
R−1∑
k=0

ln
(
1 + e−yk

)
, (4.2)

and

PM1 =
R−1∑
k=0

ln
(
1 + eyk

)
. (4.3)

When the ML codeword is an all-zeros codeword, PMML = PM0, and λ = PM1 −

PM0; otherwise λ = PM0 − PM1. Equivalently, λ = |PM1 − PM0|, which can be

simplified using (3.3) as

λ =
∣∣∣∣∣
R−1∑
k=0

yk

∣∣∣∣∣ . (4.4)

Note that [11] also used the same decision metric for a REP node.

The decision metric in (4.4) is equivalent to that of the conventional SCF decoder

[10] computed for the only non-frozen bit in u supported by a REP node.

After the first trial, in case the bit-flip position belongs to a REP node, all bits

of the estimated ML codeword, xML, of the REP node are flipped. This process is

equivalent to the flipping process described in [10], i.e., flipping the only non-frozen bit

of the REP node at u.
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4.2.2 Rate-1 Node

The ML codeword of a Rate-1 node is obtained as xML = H(y) for 0 ≤ k < R, and its

corresponding PM is

PMML =
R−1∑
k=0

ln
(
1 + e−|yk|

)
. (4.5)

The proposed SCF decoder for a Rate-1 node follows the approach used in its

fast SCL decoder [39] to compute the contributions of other codewords to the PM. In

particular, codewords are generated by flipping bits, individually and simultaneously,

relative to the ML codeword, as is done in the decoding of a Type-III node. Specifically,

the absolute values of LLRs are sorted. We denote the sorted indexes by (i), where

0 ≤ i < R. Next, PMs are computed in a successive manner by path splitting for each

index (i). Since, we are generating Tmax numbers of the most likely codewords, as we

do in the SCL decoder with list size L [38, Theorem 1], we only consider path splitting

for 0 ≤ i < min{Tmax, R − 1}. This limits the number of searches that are required

to find the bit-flip positions. The contributions of the Rate-1 node codewords can be

obtained as

PMx = PMML +
∑
j∈fx

|yj |. (4.6)

Here, fx is the set of those indexes of codeword x at which the code bits differ that of

the ML codeword. Consequently, the decision metric can be computed as

λx =
∑
j∈fx

|yj |. (4.7)

Observe that [11] introduced λx = |y(i)| for 0 ≤ i ≤ R− 1 as the decision metric for

a Rate-1 node. This metric computes the contribution of those codewords that differ

from the ML codeword only in one bit location. For example, the decision metric used

in [11] would compute λ2 = |y(2)|. On the other hand, we compute λ2 = |y(2)| when

|y(2)| < |y(0)|+ |y(1)|, and λ2 = |y(0)|+ |y(1)| otherwise.

In the decoding trials following the initial one, in case the bit-flip positions belong

to a Rate-1 node, we flip the bits in fx of the estimated ML codeword.
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4.2.3 SPC Node

The ML codeword of an SPC node can be estimated using Wagner decoding [55]. In

particular, we set xk = H(yk) for 0 ≤ k < R. We then find the location of the

least-reliable LLR value and compute the parity as

p = argmin
0≤k<R

|yk|, (4.8)

and

γML =
R−1⊕
k=0

xk, (4.9)

respectively. Further, we set xp = xp ⊕ γML to satisfy the even-parity constraint. The

PM corresponding to the ML codeword is given by

PMML = ∆ + γML|yp|, (4.10)

where ∆ =
∑R−1
k=0 ln

(
1 + e−|yk|

)
.

In our proposed decoder, the absolute values of LLRs (excluding yp) are sorted in

ascending order. We use (i), where 0 ≤ i < R−1 to denote the sorted indexes. Next, we

generate codewords by flipping bits relative to the ML codeword such that the parity

constraint is satisfied. This can be done by ‘path splitting’ as described in [39] and in

the proposed SCL decoders for the Type-III and Type-IV nodes.

The contribution of the generated codewords to the PM can be shown to be

PMx = ∆ +
∑
j∈fx

|yj |. (4.11)

Here, fx is the set of indexes of the codeword x which differ from H(y), where H(y) is

defined in (2.26). Consequently, the decision metrics for the node can be computed as

λx =
∑
j∈fx

|yj | − γML|yp|. (4.12)

Note that [11] introduced the following metric

λx = |y(i)|+ (−1)γML |yp|, (4.13)

which corresponds to only double bit flips relative to the ML codeword. Since

(4.13) does not consider some valid codewords that have a greater likelihood than
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the considered codewords, it results in a BER performance loss compared to the

conventional SCF decoder. Our proposed decoders, on the other hand, do not incur

any BER performance loss compared to the conventional SCF decoder, as is evident

from the simulation results presented in Section 4.4.

If a trial of the fast SCF decoder needs to flip bits in an SPC node, the bits stored

in fx are flipped relative to the hard-decision bit estimates.

4.2.4 Type-I node

A Type-I node contains two information bits, and its codeword is x =

{xR−2, xR−1, ..., xR−2, xR−1}. Thus, the even and odd-indexed code bits constitute

two repetition codes.

The proposed SCF decoder computes the PMs corresponding to (xR−2, xR−1) =

(0, 0), (0, 1), (1, 0), (1, 1), as mentioned in Section 3.1.1, and selects the one which has

the least PM as the ML codeword. Next, it computes the decision metrics corresponding

to other codewords using (4.1). It can be verified that the decision metric corresponding

to the codeword that has all of its even-indexed bits flipped with respect to the ML

codeword is

λ0 = |ς0|. (4.14)

Likewise, the decision metric corresponding to the codeword that differs from the ML

codeword at odd-indexed bits is

λ1 = |ς1|. (4.15)

Finally, the codeword that differs from the ML codeword at all locations has the

following decision metric:

λ2 = |ς0|+ |ς1|. (4.16)

The conventional SCF decoder considers only two additional codewords: the

codeword with the second last and last bits in the u vector flipped relative to the

decoded SC codeword. These codewords correspond to the codewords with decision

metrics (4.15) and (4.16), respectively. The Type-I node decoder presented in [11]

only computes the codewords with decision metrics λ0 and λ1; i.e., it ignores a valid
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conventional SCF codeword. Our proposed decoder, on the other hand, computes the

decision metric for both codewords. In addition, it considers a valid Type-I codeword

that has both of its bits in u flipped relative to that of the ML codeword (codeword

with decision metric (4.14)). This codeword has more likelihood (and hence has less

contribution to the PM) than the codeword that has its last bit in u flipped.

4.2.5 Type-II node

A Type-II node contains three information bits and its codeword is x =

{xR−4, xR−3, xR−2, xR−1, ..., xR−4, xR−3, xR−2, xR−1}, where xR−4 = xR−3 ⊕ xR−2 ⊕

xR−1 [7]. Hence, (xR−3, xR−2, xR−1) can be one of the eight combinations: (000),

(001), (010), (011), (100), (101), (110), and (111).

The proposed decoders for the Type-II node works similarly to that of a Type-I

node. In particular, we first compute 8 PM values corresponding to the valid codewords

of a Type-II node. Next, the ML codeword is found by selecting the code with the least

PM. Then, we compute the decision metrics for the remaining codeword using (4.1).

The decision metric values of a Type-II node can be computed similar to an SPC

node as in (4.12). In particular, (xR−4, xR−3, xR−2, xR−1) form a (4, 3) SPC node with

the corresponding LLR vector η = {η0, η1, η2, η3}. Let ηp denote the minimum value of

η. We can compute the decision metric corresponding to a codeword x which disagrees

with the hard decision on η, H(η), at locations in fx as

λx =
∑
j∈fx

|ηj | − γML|ηp|. (4.17)

Remark 4.1. It should be noted that we do not need to compute the decision metric

values using the aforementioned equations for Type-I and Type-II nodes. Rather, we

compute the PMs for all the codewords and, based on (4.1), subtract the PM of the ML

codeword from that of the remaining codewords to compute the decision metrics.

4.2.6 Type-III node

The even and odd-indexed bits of a Type-III node codeword constitute two separate

SPC codes. Thus, they can be optimally decoded using two Wagner decoders [7].
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In particular, we set xML
i = H (yi) for 0 ≤ i < R. Next, we find the locations of

the least reliable even-indexed and odd-indexed LLR values as e = arg min
0≤i≤R/2−1

|y2i| and

o = arg min
0≤i≤R/2−1

|y2i+1| for 0 ≤ i < R/2, respectively. Then we check the parity condition

for the SPC codes as

(γe,γo) =

R/2−1⊕
i=0

xML
2i ,

R/2−1⊕
i=0

xML
2i+1

 , (4.18)

and set xML
2e = xML

2e ⊕γe and xML
2o+1 = xML

2o+1⊕γo. The contribution of the ML codeword

to the PM is given by

PMML = ∆ + γe|y2e|+ γo|y2o+1|, (4.19)

where ∆ =
∑R−1
k=0 ln

(
1 + e−|yk|

)
.

Next, we generate different codewords by flipping bits relative to the ML codeword

and compute their corresponding contribution to the PM, as discussed in Section 3.1.3.

It can be shown that the contribution of a Type-III codeword to the PM is given by

PMx = ∆ +
∑
j∈fx

|yj |.

Here, fx is the set of bit indexes of the codeword x that differ from H(y). Consequently,

the decision metrics for the node are

λx =
∑
j∈fx

|yj | − γe|y2e| − γo|y2o+1|. (4.20)

4.2.7 Remaining Nodes

The fast SCF decoders for the remaining two special nodes can be similarly

implemented. For the Type-IV node, the proposed decoder works similarly to that

of the proposed Type-III node. That is, it first computes the ML codeword and the

corresponding PM. Next, it generates other codewords and their corresponding PMs

(or equivalently the decision metrics) by flipping the bits relative to the ML codeword

as detailed in Section 3.1.4.

For the Type-V node, the proposed decoder first generates 16 Type-V codewords

and computes their corresponding PMs. Next, it selects the codeword with the least PM
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as the ML codeword and computes the decision metrics for the remaining codewords

using (4.1).

4.3 Decoding Latency

The first trial of an SCF decoder, in addition to decoding the codeword, computes

decision metrics and maintains a list of bit-flip positions. The remaining trials, on the

other hand, do not compute any decision metrics. Therefore, the decoding latency of

the first trial differs from that of the remaining trials. Following the assumptions in 3.3

and by means of similar calculations used for the fast SCL decoders, we provide the

decoding latencies of our proposed fast SCF and the existing fast SCF decoders [11]

(FSCF).

The decoding latency of the initial trials for the FSCF and proposed fast SCF

decoders are tabulated in Table 4.1. Since the decoding latency calculations are very

similar to those presented in Section 3.3, we briefly mention the results below.

The proposed decoders for the Rate-1 and SPC nodes require more time steps in

first decoding trial than the FSCF decoders. This is because the FSCF decoders for

both nodes flip only a single coded bit, whereas our proposed decoders flip multiple

coded bits. Although the FSCF decoders consume slightly fewer time steps, they incur

a significant error-rate performance loss, as it is evident from Fig. 4.1.

For the remaining decoding trials, we assume that bit flipping can be carried out

instantaneously. Under this assumption, the decoding latency of both the FSCF and

our proposed decoders are one, zero, one, and two time steps for the REP, Rate-1, SPC

and Type-I nodes, respectively.

For the remaining nodes, our proposed decoders require fewer time steps than the

FSCF decoders. In particular, the FSCF decoders consume t−1, 2t−2, 2t−3, and t+1

time steps for decoding Type-II, Type III, Type-IV and Type-V nodes, respectively.

Our proposed fast SCF decoders, on the other hand, require only one or two time steps

to decode these nodes.
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Table 4.1: Decoding latencies of the FSCF and proposed fast SCF decoders in the first
trial.

Node FSCF [11] Proposed fast SCF

Rate-0 0 0

REP 2 2

Rate-1 2 min{Tmax, R}

SPC 2 min{Tmax + 1, R}

Type-I 2 2

Type-II t 2

Type-III 3t− 4 1 + min{Tmax, R− 2}

Type-IV 3t− 4 1 + min{Tmax, R− 4}

Type-V t+ 3 2

4.4 Simulation Results

In this section, we compare the BER and BLER performances of the proposed fast SCF

decoders with those of the existing decoders. A 16-bit CRC defined by the generator

polynomial x16+x15+x12+x7+x6+x4+x3+1 (0xC86C) is used, unless otherwise stated.

Systematic polar codes [41] with random BPSK-modulated codewords were transmitted

through AWGN channel. Furthermore, we used the simple GA method [51]. We have

included the performance of the SC and the oracle-assisted SC (SC-Oracle)1 decoders

in our simulation results to provide a better insight into the performance of different

decoders.

Fig. 4.1 compares the BER and BLER performances of the proposed SCF decoder

with those of the SCF [10] and FSCF [11] decoders for a P (128, 96) with 8-bit CRC

(0xEA). Due to the possibility of multiple bits flipping in our proposed fast SCF

decoder, it slightly outperforms the SCF decoder. Furthermore, our proposed decoder

significantly outperforms the FSCF decoder, whose performance degradation is mainly

due to the decision metrics used in the decoding of the SPC node. Note that multiple
1We employ an oracle-assisted SC decoder which is able to correct the first erroneous bit at the

decision level.
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Fig. 4.1: BER and BLER performance of different SCF decoders (i.e., the SCF decoder
[10], the FSCF decoders [11] and proposed fast SCF decoders) for a P (128, 96) polar
code and Tmax = 7.
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Table 4.2: Number of special nodes for different polar codes.

N
od

e
Le

ng
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R
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0
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C

T
yp

e-
I

T
yp

e-
II

T
yp

e-
II

I

T
yp

e-
IV

T
yp

e-
V

P (512, 256)

8 0 4 1 3 1 0 0 1 6
16 0 2 0 2 0 1 0 1 0
32 0 2 1 1 0 0 1 0 0
64 0 1 1 0 0 0 0 0 0

P (128, 96)
8 0 0 0 2 0 0 0 0 2
16 0 0 1 0 0 0 0 0 1
64 0 0 0 0 0 0 1 0 0

Table 4.3: Decoding latency comparison of different SCF decoders in the first trial

Required number of Saving with respect to
time steps SCF [10]

FSCF [11] Proposed fast SCF
P (128, 96), Tmax = 7 51 49 81%
P (512, 256), Tmax = 15 158 234 77%

SPC nodes exist in the FSCF decoding tree of P (128, 96) with 8-bit CRC. The FSCF

decoder performance without SPC nodes is presented in Fig. 4.1. It can be seen that

the performance of the FSCF decoder is significantly improved without SCP nodes.

The number and length of the special nodes in the proposed SCF code tree is

presented in Table 4.2. Furthermore, the required number of time steps for the FSCF

and proposed fast SCF decoders in their first trials, along with the reduction in the

decoding latency using our proposed fast decoder instead of the SCF [10] decoder, are

provided in Table 4.3.

The BER and BLER performances of different SCF decoders for P (512, 256) are

depicted in Fig. 4.2. Note that the performance of our proposed fast SCF decoder

is identical to that of the SCF decoder with 77% fewer required time steps. More
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Fig. 4.2: BER and BLER performance of different SCF decoders for a P (512, 256)
polar code.
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Fig. 4.3: BER and BLER performance of the proposed fast SCL and proposed fast
SCF decoders for a P (512, 256) polar code.

specifically, our proposed fast SCF decoder consumes 234 time steps in its initial

trial. By contrast, the SCF decoder requires 1022 time steps. Here we have made

the assumption that finding bit flip positions has no latency overhead. Thus the SCF

decoder in each trial consumes a similar number of time steps as the SC decoder. On

the other hand, the FSCF decoder consumes 158 time steps in its first trial, however,

it fails to achieve the performance of the SCF decoder. Furthermore, in the next trials,

our proposed decoder requires 90 time steps while the FSCF decoder takes 116 time

steps.

We can compare the performance of the SCF and the SCL decoders in Fig. 4.3. It

is observed that the performance of the proposed fast SCF decoder with Tmax = 15

is almost identical to that of the proposed fast SCL decoder with L = 2. However,

for larger list sizes, such as L = 4, the proposed fast SCL decoder outperforms the
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proposed fast SCF decoder. Although, the proposed SCL decoder consumes fewer time

steps (see Table 3.3) than the proposed SCF decoder, its memory complexity is two

and four times that of the proposed SCF decoder when L = 2 and 4, respectively.

4.5 Conclusion

In this chapter, we proposed novel fast SCF decoders. To that end, we first proposed

a new decision metric which can be computed without the decoding tree traversal.

Using the proposed decision metric, we introduced fast parallel SCF decoders for many

special nodes identified in the decoding tree of polar codes. The proposed fast SCF

decoders achieve significant decoding speed improvement and, unlike the existing FSCF

decoders [11], show the same error-rate performance as that of the conventional SCF

[10] decoder.
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Chapter 5

New Fast Nodes for 3 × 3 Kernel

Polar Codes

Non-binary kernels are used to improve the length flexibility of polar codes. Given

the long decoding latency of the SC decoder, devising fast decoding solutions for

non-binary kernels is necessary. In this chapter, we identify tD-SPC nodes in the

decoding tree of polar codes which are constructed by T3 and T′3 kernels and then

propose low-complexity decoders for them. Moreover, we adapt the G-REP node

introduced for binary kernel to be used in the fast SC decoding of the ternary kernel

polar codes. Numerical results are also provided to compare the decoding latency and

performance of the proposed decoders with those of the existing ones. The results show

that implementing the proposed fast decoders can reduce the decoding latency by more

than 40% if an error-rate performance loss of just 0.5 dB can be tolerated.

5.1 tD-SPC node

An SPC node in the polar code tree is a node whose descendants are all Rate-1

nodes, except the leftmost bit which is frozen to zero. The only frozen bit in the

SPC node imposes the even parity constraint on the codeword. This can be decoded

through Wagner decoding [55] by making a hard decision on the received LLRs. If
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(a)

(b)

Fig. 5.1: Tree representation of tD-SPC node.

the parity-check condition is satisfied, then the decoder outputs the hard-decision

estimates; otherwise, the bit associated with the least reliable LLR is flipped to satisfy

the constraint. The SPC node pattern was first identified in [6] in the polar code tree

constructed by T2 kernel. Later [30] showed that the SPC pattern and its decoding

method is valid while the T3 kernel is used, thus it can be implemented in the fast

decoding of multi-kernel polar codes. This observation is also valid for the case of T′3
kernel.

In this section, we identify an extended SPC node in the polar code tree constructed

by T3 or T′3 kernel, called a t-dimensional SPC (tD-SPC) node. Specifically, in a

tD-SPC node the left child is a Rate-0 node, whereas the center and the right children

are (t−1)D-SPC nodes. The tD-SPC nodes1 correspond to the node code rate of (2/3)t.

Also, note that a 1D-SPC is a SPC node of length three. To further investigate the

tD-SPC nodes and their decoding, we first consider a 2D-SPC node, which is illustrated
1A tD-SPC node can be also described as a node where at each level all the left children are Rate-0

nodes.
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in Fig. 5.1(a). It can be seen that this node consists of one Rate-0 node and two SPC

(1D-SPC) nodes. The codeword x = {x0 x1 x2 ... x8} corresponding to the 2D-SPC

node can be structured in the form of a 3× 3 matrix below

M1 =


x0 x3 x6

x1 x4 x7

x2 x5 x8

 . (5.1)

In this matrix each row and each column is an SPC code with even parity constraint.

For example, the third row and second column suggests that x2 + x5 + x8 = 0 and

x3 + x4 + x5 = 0, respectively. This is a SPC-product code and it can be decoded with

soft iterative decoding [63]. However, to increase the decoding speed we adapt a hard

decoding approach. In particular, first the parity of all SPC codes are computed to

find the rows and columns in error. As each bit in error results in one erroneous row

and one erroneous column, it can be readily observed that the sum of the number of

rows and the number of columns in error is always an even number. As such, the error

patterns can be categorized into five general cases. Fig. 5.2 illustrates sample cases of

these five patterns.

The hard decoding of five error patterns are explained as follows. Fig. 5.2(a)

illustrates the situation when one row and one column are in error. In this case

flipping the common bit between the erroneous row and column will satisfy the even

parity constraint for two erroneous SPC codes, resulting in all SPC constraints being

satisfied. If the SPC codes in two rows/columns or two rows and two columns are

in error, flipping a pair of bits, as shown in Fig. 5.2(b) and Fig. 5.2(c), respectively,

will satisfy all parity constraints. Among these pairs, we suggest flipping the bit with

the smallest sum of the absolute value of LLRs. Moreover, Fig. 5.2(d) shows when all

rows/columns and only one column/row are in error. In this case the bit associated

with the least reliable LLR in the single erroneous column/row will be flipped and the

error pattern will changed to the case in Fig. 5.2(b). Furthermore, when all SPC codes

do not satisfy the even parity constraint, Fig. 5.2(e), among all the bits, the one that

has the least reliable LLR will be flipped. This yields to the error pattern in Fig. 5.2(c).

Now that 2D-SPC nodes and their hard decoding is well understood, we can extend
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(c)

(d) (e)

Fig. 5.2: The five different error patterns of a 2D-SPC node. Red dashed lines denote
erroneous rows and columns. Also, circle, square, and octagonal shapes are used to
denote bit/pair of bits that are suspected to be in error.
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these ideas to higher dimensions. Note that a 3D-SPC consists of Rate-0 and 2D-SPC

nodes as illustrated in Fig. 5.1(b). In this case nine 3×3 matrices with similar properties

as M1 can be formed. In particular, the first three matrices are

M1 =


x0 x3 x6

x1 x4 x7

x2 x5 x8

 M2 =


x9 x12 x15

x10 x13 x16

x11 x14 x17

 M3 =


x18 x21 x24

x19 x22 x25

x20 x23 x26

 .

Furthermore, M4 to M6 are

M4 =


x0 x9 x18

x1 x10 x19

x2 x11 x20

 M5 =


x3 x12 x21

x4 x13 x22

x5 x14 x23

 M6 =


x6 x15 x24

x7 x16 x25

x8 x17 x26

 .

Note that, M4 consists of the first columns of M1, M2 and M3. Also, M5 and

M6, respectively, contain the second columns and third columns of M1, M2 and M3.

Finally, we have

M7 =


x0 x3 x6

x9 x12 x15

x18 x21 x24

 M8 =


x1 x4 x7

x10 x13 x16

x19 x22 x25

 M6 =


x2 x5 x8

x11 x14 x17

x20 x23 x26

 .

Observe that all the parity-check constraints in M7 to M9 are repetitions of those in

M1 to M6. Thus, in the decoding of the 3D-SPC nodes only M1 to M6 are considered.

In the decoding of the 3D-SPC nodes, first the bit with the least reliability among

those bits which are suspected to be in error in more than one set of matrices is flipped.

The rest of the decoding works the same as the 2D-SPC decoding; i.e., among the bit

or pair of bits suspected to be erroneous in all nine matrices, the one associated with

the smallest sum of absolute value of LLRs is flipped.

In general, the decoding of tD-SPC nodes, when t > 2, follows similar rules as those

of 2D-SPC node, except that we give priority to flipping bits which are suspected to

be erroneous in multiple places.

Remark 5.1. A node (φ, t) with the leftmost child at a level p < t being Rate-0 and

other children are Rate-1 nodes is proposed in [8] and is called G-PC. It is shown that
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this node can be optimally decoded using 2p parallel Wagner decoders. The G-PC node

is further extended to the relaxed G-PC nodes which is similar to the G-PC node except

that some of the nodes have a rate close to one rather than being Rate-1 nodes. In this

case, the additional frozen bits impose new constraints. Therefore, the proposed parallel

Wagner decoding is not optimal and brings a trade off between the decoding latency

and the error-rate performance [8]. Note that the 2D-SPC node can be considered

as a relaxed G-PC node with two additional frozen bits. As such, we compare the

performance of our proposed decoder and the parallel Wagner decoding in Section 5.3.

It is observed that our proposed decoding method significantly outperforms the parallel

Wagner decoding method [8].

5.2 Generalized Repetition Nodes

The G-REP node is introduced in [8] as a generalization of the REP node. The G-REP

node is any node (φ, t) for which all children are Rate-0 nodes, except the rightmost

descendant at level p < t. Using T2 for polar code construction, the soft LLR vector

of the rightmost descendant can be computed by

yφ
′,p
i =

2t−p−1∑
j=0

yφ,ti+j2p , (5.2)

where φ′ = 2t−p(φ+1)−1 and the node (φ′, p) is decoded under SC or fast SC decoding.

Then the corresponding codeword to the G-REP node is obtained by repeating the

estimation of its rightmost descendant, xφ′,p, 2t−p times as

xφ,t = {xφ′,p, ..., xφ′,p︸ ︷︷ ︸
2t−p

}. (5.3)

The fast decoding of a G-REP node, when T3 or T′3 is used, can also be

implemented. In this case, the LLR vector of the rightmost child at level p can be

expressed as

yφ
′,p
i =

3t−p−1∑
j=0

yφ,ti+3pjLi+3pj , (5.4)
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where φ′ = 3t−p(φ+1)−1 and L = R⊗t−p3 ⊗{1 ... 1︸ ︷︷ ︸
3p
}. Furthermore, R3 is {0 1 1} for T3

and {1 0 1} for T′3. Then xφ′,p is estimated under SC or fast SC decoders using yφ′,p.

Finally, the G-REP node codeword is obtained by

xφ,t = R⊗t−p3 ⊗ xφ′, p. (5.5)

5.3 Simulation results

In this section, the impact of the proposed nodes on fast SC decoding in terms of

both speed and BER performances are investigated2 . In our simulations, random

BPSK-modulated codewords were transmitted through the AWGN channel. Also,

“Fast-SC” refers to fast SC decoding with Rate-0, REP, Rate-1, and SPC nodes and

“New Fast-SC” is the Fast-SC when G-REP, 2D-SPC and 3D-SPC nodes are also

implemented. Here, we present the simulation results for the polar codes constructed

by T3 only. A similar trend is depicted if T′3 is used instead.

To compare the decoding latencies, the number of time steps required to decode

polar codes of different lengths and rates are provided in Table 5.1. Here, the G-REP,

2D-SPC and 3D-SPC nodes are progressively added to the Fast-SC decoding and their

impact on the speed is evaluated. The last column provides the latency saving when

the G-REP, 2D-SPC and 3D-SPC nodes are implemented. Note that as the channels

reliability are computed based on (2.33), (2.34), and (2.35) for both T3 and T′3, the

number and length of the special nodes in both cases are identical.

To compute the number of time steps we follow similar assumptions as in Section

3.4. With those assumptions, the Rate-0 and Rate-1 node will be decoded instantly.

Moreover, REP and SPC nodes consumes one time step. The G-REP node takes one

time step plus the time steps required to decode its rightmost children. Furthermore,

the proposed 2D-SPC node consume one or two time steps, depending on the error

pattern3 . However, the number of time steps required to decode tD-SPC nodes when
2Due to the COVID-19 outbreak, the access to the high-speed computers at the university was

limited. Hence, the simulations in Sections 5.3 and 6.3 were conducted using a limited number of
trials. To achieve reliable results for lower BER values, a larger number of trials is required.

3In Table 5.1 the latency of 2D-SPC node decoding is considered to be 2 time steps.
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Table 5.1: Required number of time steps for decoding.

N Rate Fast-SC +G-REP +2D-SPC +3D-SPC Saving%

81

1/3 24 24 21 21 12.5

4/9 24 24 21 21 12.5

1/2 34 32 29 29 14.7

2/3 32 32 23 19 40.6

5/6 18 16 16 16 11.11

243

1/3 62 62 53 53 14.5

4/9 99 99 72 64 35.3

1/2 91 91 64 52 42.8

2/3 68 68 62 62 8.8

5/6 52 52 37 33 36.5

729

1/3 188 181 148 136 27.6

4/9 203 203 158 138 32

1/2 185 185 149 137 25.9

2/3 203 198 150 138 32.0

5/6 118 118 94 86 27.1

2187

1/3 478 468 400 373 21.9

4/9 485 485 395 371 23.5

1/2 499 499 393 380 23.8

2/3 532 532 385 321 39.6

5/6 446 446 335 311 30.2
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Fig. 5.3: The BER performances of the fast SC decoder with different fast nodes for
(a) P (243, 122) and (b) P (729, 486).
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t > 2 is variable as it depends on how many times the decoder revisits to correct

the error patterns. Hence, we computed the average required time steps to decode a

3D-SPC nodes at BER around 10−3 for each case in Table5.1 through simulation. This

average was found to be three time steps. Note that decoding the 3D-SPC node under

Rate-0 and 2D-SPC nodes decoders will take five to seven time steps.

The G-REP nodes brought limited gain in terms of speed. This can be also observed

in Table 5.1 as the number of time steps in the “+ G-REP” column is sometimes the

same as the one in “Fast-SC” column. This is due to the fact that the number of G-REP

nodes is small, regardless of the length and rate of the code. This is also observed in [8]

when the T2 kernel is used.

On the other hand, the fast decoding of tD-SPC nodes can reduce the decoding

latency significantly. It can be observed from Table 5.1 that the time step saving in

most cases is more than 20%. As an example, adding 2D-SPC nodes increases the

time step saving up to 29.7% when N = 243 and rate = 1/2; this saving increases

further to 42.8% when 3D-SPC nodes are also added. This gain, however, comes at

the cost of about 0.5 dB BER performance degradation, as seen in Fig. 5.3(a). Note

that the performance loss is more significant when parallel Wagner decoders [8] are

used to decode the 2D-SPC nodes. The performance loss of our proposed decoder is

due to the hard decoding approach and is much smaller for N = 729. In particular,

the BER performance loss brought by hard decoding of tD-SPC nodes is about 0.2 dB

with N = 729 and rate 2/3, as illustrated in Fig. 5.3(b). In this case the combined time

saving of adding G-REP and 2D-SPC nodes is 26.1% which grows to 32% by adding

3D-SPC nodes.

5.4 Conclusion

In this chapter, we identified a family of fast nodes in the decoding tree of polar codes

constructed by two commonly used ternary kernels, T3 and T′3. We also presented fast

parallel decoders for these nodes. The proposed decoders decrease the decoding latency

with only a small performance degradation. Furthermore, we adapted the G-REP node,
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which was originally proposed for T2 kernel, to be fast decoded in the case of T3 and

T′3 kernels.

The tD-SPC node can be also implemented in the fast SC decoding of multi-kernel

polar codes, when the ternary kernels are ordered as the last components of the

Kronecker product in the construction of multi-kernel codes.
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Chapter 6

Modified REP pattern for 3 × 3

Kernel Polar Codes

Among the ternary kernels, T3 =
[ 1 1 1

1 0 1
0 1 1

]
and T′3 =

[ 1 0 0
1 1 0
1 0 1

]
, proved to be optimal for

polarization in [36] and [40], respectively. Unlike the size-2 kernel, T3 and T′3 have

a zero in their last rows. As such, in the corresponding codeword of a REP node

some coded bits are zero rather than being a repetition of the data. This degrades

the error correction performance of this node. Furthermore, different kernel orders in

multi-kernel polar codes yield different zero locations for a REP node [30]. Thus,

the fast decoders for a REP node in a multi-kernel polar code require storing all

the zero-location patterns or computing them during the decoding procedure. This

increases the memory requirements or the computational complexity of the decoders.

To address the above issues, we propose a modified REP node for polar codes

constructed using T3 and T′3 kernels. The proposed modification eliminates zeros

in the coded bits. This unifies the REP pattern in multi-kernel codes. We also

present a low-complexity optimal decoder for the modified REP node. In addition,

we apply our proposed modification to the G-REP nodes [8] to further improve the

error-rate performance. Numerical results are provided to compare the performance of

the multi-kernel polar codes and their modified ones.
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6.1 Modified Repetition Nodes

A REP node in the decoding tree of the polar code has only one message bit m0, at

its rightmost leaf node. When the polar code is constructed using the T2 kernel, all

coded bits of the REP node are repetitions of the m0. Thus, the LLR of the rightmost

leaf node is the sum of the LLRs in yφ,t as

ym0 =
R−1∑
i=0

yφ,ti , (6.1)

where R is the REP node length and is equal to 2t here. Further, the message bit is

estimated by making a hard decision as m̂0 = H (ym0) and xφ,t is obtained from the 2t

times repetition of m̂0.

When polar codes are constructed using T3 or T′3, the corresponding codeword to

the REP node is xφ,t = m0R⊗t3 , where R3 is {0 1 1} for T3 and {1 0 1} for T′3 and R⊗t3

is the t-th Kronecker product of R3. Further, ym0 is given by

ym0 =
R−1∑
i=0

yφ,ti R
⊗t
3 i. (6.2)

Here R = 3t and xφ,t = H (ym0)R⊗t3 .

In general, in a multi-kernel code constructed by binary and ternary kernels, the

LLR of the rightmost bit of a REP node at stage S = n1 +n2 with length R = 2n1×3n2 ,

is obtained by [30]

ym0 =
R−1∑
i=0

yφ,ti Ri, (6.3)

where R is the repetition pattern computed as

R =
S−1⊗
i=0
Rki . (6.4)

In (6.4), Rki is R2 = {1 1} and R3 when i is a binary level or a ternary level,

respectively.

From (6.4) it can be observed that in multi-kernel polar codes different kernel orders

(k) yield in several REP pattern. Some examples are provided in Table 6.1. Note that

decoding different REP nodes requires the computation of R or storing all the patterns.
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Table 6.1: Different REP patterns in multi-kernel codes.

R k REP pattern with T3 REP pattern with T′3

3 (3) {0, 1, 1} {1, 0, 1}

6 (2, 3) {0, 1, 1, 0, 1, 1} {1, 0, 1, 1, 0, 1}

6 (3, 2) {0, 0, 1, 1, 1, 1} {1, 1, 0, 0, 1, 1}

8 (2, 2, 2) {1, 1, 1, 1, 1, 1, 1, 1} {1, 1, 1, 1, 1, 1, 1, 1}

9 (3, 3) {0, 0, 0, 0, 1, 1, 0, 1, 1} {1, 0, 1, 0, 0, 0, 1, 0, 1}

12 (2, 2, 3) {0, 1, 1, 0, 1, 1 0, 1, 1, 0, 1, 1} {1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1}

12 (3, 2, 2) {0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1} {1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1}

18 (2, 3, 3) {0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1} {1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1}

To simplify the decoding, [30] proposes fast decoders that only decode REP patterns

up to a certain maximum size and a certain number of ternary stages. This, in turn,

reduces the decoding speed.

Furthermore, unlike T2, none of the coded bits are a repetition of the

data when T3 or T′3 are used. For instance, the corresponding codeword to

a REP node of length 12 is {0, m0, m0, 0, m0, m0, 0, m0, m0, 0, m0, m0} or

{0, 0, 0, 0, m0, m0, m0, m0, m0, m0, m0, m0}, or {0, 0, m0, m0, m0, m0, 0, 0, m0, m0

, m0, m0}, depending on the order of T2 and T3 in the Kronecker product. Here four

out of 12 coded bits are zero, thereby leading to error-rate performance degradation.

This is because, instead of repeating the bit (in this case a maximum of 12 times),

some zeros (in this case four zeros) are sent.

To eliminate zeros in the coded bits, we propose a modification to the REP node

pattern. In particular, for the T3 kernel we suggest placing the data, m0, in the

leftmost descendant of the REP node rather than its rightmost one. Moreover, in

the T′3 kernel we will set the frozen bits in the REP node to m0 rather than zero.

The suggested modifications eliminate zeros in the codeword and result in coded bits
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which are all repetitions of m0, as in the case of binary kernel. With this modification,

the Kronecker product computation in the fast estimation of REP node in (6.2) will be

eliminated, thus eliminating the need for storing different patterns for the REP node in

a multi-kernel polar code and, consequently, removing any limitation on the REP-node

length in their fast decoding.

6.2 Modified G-REP node

The G-REP node is any node (φ, t) for which all children are Rate-0 nodes, except

the rightmost descendant at level p < t. To fast decode the G-REP node based on

(5.4) when only T3 or T′3 is used, either the Kronecker product must be computed

or the pattern for different combinations of t and p must be stored. The number

of possible patterns further increases based on the kernel orders in multi-kernel codes

constructed with a combination of binary and ternary kernels. Moreover, similar to the

REP node, some bits in the G-REP codeword are zeros and their LLRs are unused in

the decoding procedure. For example, in a G-REP node of length 18, k = (2, 3, 3) and

two message bits (m1, m0), the codeword is {0, 0, 0, m1, m0, m0 +m1, m1, m0, m0 +

m1, 0, 0, 0, m1, m0, m0 + m1, m1, m0, m0 + m1} when T3 is used. As such, six out

of 18 coded bits are zero, which will degrade the error correction performance of the

repetition code.

To address the above shortcomings we suggest modifying the G-REP node pattern.

In particular, for the T3 kernel we exchange the pattern of the right child and left child

at level p. Accordingly, the right child will become a Rate-0 node and the left child will

contain some information bits. For the T′3 kernel, however, we suggest repeating the

rightmost descendent pattern 3t−p times, i.e., on all descendant at level p. In this case a

number of frozen bits will repeat information bits rather than being frozen to zero. The

suggested modification will thus eliminate all the zeros in the coded bits and simplify

the decoding similar to that of binary polar codes by eliminating the computation of

L in (5.4). In particular, for the ternary kernels polar codes the computation of the

LLR vector of the rightmost descendent in (5.4) and the codeword estimation in (5.5)
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are simplified to

yφ
′,p
i =

3t−p−1∑
j=0

yφ,ti+j3p , (6.5)

and

xφ,t = {xφ′,p, ..., xφ′,p︸ ︷︷ ︸
3t−p

}. (6.6)

As such, the LLR for G-REP nodes in the multi-kernel codes can be calculated as

yφ
′,p
i =

R
R′−1∑
j=0

yφ,ti+jR′ , (6.7)

where R is the G-REP node length and R′ is length of the rightmost descendent at

level p and we have xφ,t = {xφ′,p, ..., xφ′,p︸ ︷︷ ︸
R
R′

}.

Note that the rightmost descendent of a G-REP node may include REP or G-REP

node of smaller length, which also must be modified. This case can be seen in the

following example.

Example 6.1. Fig. 6.1 illustrates an example of the suggested modifications. The

original code tree is represented in Fig. 6.1(a). This G-REP node includes Rate-0,

REP and SPC nodes. Here out of 27 coded bits, 11 bits are zeros. The modification in

the code tree for the T3 kernel is shown in Fig. 6.1(b). It can be seen that both the REP

and G-REP patterns are modified. On the other hand, Fig. 6.1(c) depicts the suggested

changes for the T′3 kernel where a crossed circle denotes a frozen bit that repeats an

information bit.

Remark 6.1. Note that the proposed modifications are for the ternary-level REP and

G-REP nodes only. As such, in a multi-kernel polar code, the binary-level REP and

G-REP nodes are not modified. For example, in Fig. 6.2(a), the node (0, 3) is a G-REP

node. Since it is not a ternary-level node, we do not modify it. On the other hand, in

Fig. 6.2(b) both the (0, 3) and (1, 2) nodes are G-REP nodes. In this case, the node

(1, 2) which corresponds to a ternary stage is modified only. The modified code tree

for T3 kernel is illustrated in Fig. 6.2(c). Furthermore, in Fig. 6.2(d) nodes (0, 3),

(1, 2), and (5, 1) are REP nodes. However, only node (1, 2) is modified because it is at

a ternary level. This modification is provided in Fig. 6.2(e).
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(a)

(b)

(c)

Fig. 6.1: An example of REP and G-REP (a) original pattern, (b) modified pattern
for T3, and (c) modified pattern for T′3 in a ternary kernel polar code.
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(a)

(b) .

(c)

(d)

(e)

Fig. 6.2: Examples of REP and G-REP nodes in multi-kernel code trees: (a) G-REP
node which does not need modification, (b) a G-REP and (c) modified G-REP node in
(b), (d) a REP node, and (e) modified REP node in (d).
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Table 6.2: Number and length of the modified REP and G-REP nodes.

P (N, k) Node length REP G-REP

(342, 108) 3 2 -
9 1 -

(342, 162) 3 4 -
9 1 -

(342, 216) 3 1 -
9 1 -

(576, 192)
3 5 -
9 1 1
18 1 -

(576, 288)

3 3 -
9 1 -
36 1 -
72 1 -

(576, 384) 3 3 -
9 1 -

6.3 Simulation results

In this section, simulation results are provided to investigate the impact of the proposed

modifications on the bit-error-rate (BER) performance. In our simulations, random

BPSK-modulated codewords were transmitted through the AWGN channel. Here, we

present the simulation results for the polar codes constructed by T3 only. A similar

trend is depicted if T′3 is used instead.

Fig. 6.3 depicts the performance of two multi-kernel polar code with lengths 22 ×

34 = 324 and 26 × 32 = 576 for different rates. It is seen that the modified codes at

a BER= 10−3 show an improvement of 0.15 dB, 0.23 dB, and 0.1 dB when N = 324

and the code rate is 1/3, 1/2, and 2/3, respectively. Also, when N = 576 the modified

codes show coding gains of 0.2 dB, 0.32 dB, and 0.05 dB when the code rate is 1/3,
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Fig. 6.3: BER performance of a multi-kernel codes with length (a) 324 and (b) 576.
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1/2, and 2/3, respectively. The amount of performance gain is related to the number

and length of the REP and G-REP nodes which are modified, as shown in Table 6.2.

Note that there are G-REP nodes in these multi-kernel code configurations which do

not require modifications, as explained in Remark 6.1.

6.4 Conclusion

In this chapter, we identified an inefficiency in the polar codes constructed using the

most commonly used ternary kernels (T3 and T′3 ) and proposed modifications for their

REP and G-REP patterns. These modifications improve the error-rate performance of

the code, unify the REP and G-REP node patterns in multi-kernel codes, and simplify

the computations for their fast decoding.
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Chapter 7

Summary and Future Work

7.1 Summary

The practical application of polar codes is beset by three main drawbacks: its mediocre

error-rate performance for short to moderate length codes, its low decoding speed due

to the serial nature of the SC decoder, and its lack of length flexibility.

The SCL and SCF decoders can be used to improve the performance of polar

codes, especially for short to moderate length codes. However, their serial decoding

nature results in high decoding latency. The decoding latency can be decreased by

implementing some operations in parallel. In Chapter 3, we presented fast SCL

decoders for five newly-identified nodes in the decoding tree of a polar code, i.e.,

Type-I, Type-II, Type-III, Type-IV and Type-V nodes. We also explained how fast SCL

decoders can be used in the case of distributed PC-aided SCL decoders. The proposed

decoders, while achieving the same error-rate performance, significantly reduce the

decoding latency of the SCL decoder. Furthermore, in Chapter 4, we proposed fast

SCF decoders. To that end, we first proposed a new decision metric that can be

computed without a full decoding tree traversal. Using the proposed decision metric,

we introduced fast parallel SCF decoders for many special nodes in the decoding tree

of polar codes. The proposed fast SCF decoders achieve significant decoding speed

improvement and, unlike the existing fast SCF decoders, show the same error correction
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performance as that of the original SCF decoder.

Length flexibility can be achieved in polar codes using a multi-kernel construction of

the code, i.e., by using non-binary kernels in conjunction with the binary kernel. Among

the non-binary kernels, the size-3 kernels have drawn much attention as they do not

increase the decoding complexity significantly and have sufficiently high polarization

exponents. Similar to the binary polar codes, multi-kernel codes are decoded by the SC

decoder and suffer long decoding latency. Therefore, devising fast decoding solutions

for non-binary kernels is necessary. In Chapter 5, we identify a new node, called

the tD-SPC node, in the decoding tree of polar codes constructed by two commonly

used size-3 kernels. We also propose a low-complexity hard decoder for this node. It

was observed that the proposed node significantly improves the decoding latency at

the expense of a slightly degraded error-rate performance. Furthermore, we adapt fast

decoding of the G-REP nodes, introduced for the binary kernel, to the case of a ternary

kernel.

The two specific size-3 kernels, T3 and T′3, which are known to have optimal

polarization speed, contain one zero in their last rows. As such, the codeword

corresponding to the REP and G-REP nodes have some zero elements. This results

in some error-rate performance degradation. Moreover, different kernel orders in

multi-kernel polar codes yield different zero locations for these two nodes. Thus, the

fast decoders for the REP and G-REP nodes in a multi-kernel polar code are required

to store all the zero-location patterns, which increases the memory requirements for

the decoders. To eliminate these inefficiencies, in Chapter 6, we propose modifications

to the encoding of the REP and G-REP patterns. The proposed modifications improve

the error-rate performance, simplify the computations in the fast decoding of these two

nodes and eliminate the need for storing different patterns for the REP and G-REP

nodes in a multi-kernel polar code.
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7.2 Future Work

7.2.1 Puncturing/Shortening of Multi-Kernel Polar Codes

The length flexibility of multi-kernel polar codes can be further improved by puncturing

or shortening them. However, this subject is only briefly discussed in [33]. Both T3

and T′3 can be punctured, however, codeword shortening is only possible with the T′3
kernel. Also, unlike binary polar codes, the mother code is not strictly defined for

puncturing/shortening of multi-kernel polar codes. It is possible to select longer codes

with more binary stages or shorter codes where more ternary stages are incorporated.

Different choices of mother code length will impact the decoding complexity and the

error correction performance. Thus, more research needs to be carried out to find design

criteria for selecting the mother code length and the patterns of punctured/shortened

bits in multi-kernel codes.

7.2.2 Fast Decoding of Multi-Kernel Polar Codes

It is shown in [30] that the Rate-0, SPC, and Rate-1 nodes are compatible with

multi-kernel polar codes constructed with the T2 and T3 kernels and can be decoded

with fast decoders similar to those used for binary polar codes. Also, [30] presents

different REP node patterns that can be seen in the multi-kernel code based on the

order of the binary and ternary stages. We further adopt the G-REP node in the fast

decoding of ternary polar codes. However, multiple other nodes are identified in the

binary polar code tree and their compatibility with multi-kernel polar codes can be

studied. Moreover, combining different size kernels may result in new node patterns,

such as the tD-SPC node introduced in this work. Furthermore, shortening of the

codes allows frozen bits on the right-hand side of the information bits, which generates

new patterns. Thus, fast decoding of multi-kernel and shortened polar codes could be

considered as a future research topic.

86



7.2.3 Machine Learning Application in Polar Code Decoding

A major focus of research in polar coding is to improve their complexity/latency.

Machine learning techniques have proven successful in efficiently solving

high-complexity decision-making problems. The problem of decoding polar codes can

be cast as a decision-making problem. Hence, it could be solved using machine learning

techniques. Recently, deep learning algorithms and specifically neural network-based

decoders, have been considered as potential candidates to either replace or aid the

existing polar codes decoders [64–71]. The one-shot decision-making approach of

neural-network based decoders reduces the computational complexity and enables fast

decoding of polar codes, however, their error-rate performance has been found to be

not satisfactory [71]. Also, they are only feasible for short code lengths as the training

complexity scales exponentially with the number of information bits [64]. Therefore,

studies on the optimization of neural network based decoders to reduce the latency

and complexity of polar code decoding while retaining the performance are of interest.
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