

Rene Avalloni de Morais MscIT, Concordia University of Edmonton E-mail: ravallon@student.concordia.ab.ca

Contact

Customer Sentiment Analysis from Audio Data Using Deep Learning

Rene Avalloni de Morais Concordia University of Edmonton

Flowchart of Customer Sentiment Analysis Using Deep Learning

1. Ya-Nan Jia and Sony SungChu, "A Deep Learning System for Sentiment Analysis of Service Calls," ArXiv, 2020. 2. B. Li, D. Dimitriadis and A. Stolcke, "Acoustic and Lexical Sentiment Analysis for Customer Service Calls," ICASSP 2019 3. S. Ezzat, N. Gayar, and M. Ghanem, Sentiment Analysis of Call Centre Audio Conversations using Text Classification. IJCISIMA, 2012.

Fine t pro

Deep S Mo

Fine tur custom data

Original DeepSp Fine-tur Original DeepSp

Fine-tu Original DeepSp Fine-tur

from text data

References

Performance Evaluation			
uning ess	WER	CER	Loss
peech del	0.348	0.193	35.91
ned by er call set	0.111	0.056	14.51
\rightarrow it's right by my office			
eech Model \rightarrow it is it's very fine officeed Model \rightarrow it's right by my office			
\rightarrow okay what is your name sir			
eech Model \rightarrow okay i what is your name sired Model \rightarrow okay what is your name sir			
→ what's the difference there			
eech Model → ed Model →		i was so different there what's the difference there	

Conclusions and Future Works

Deep Learning can successfully transcribe customer call audio data as well as conduct sentiment analysis

Long Short Term Memory (LSTM) based algorithm can successfully transcribe audio data to text and then text to sentiment analysis.

In future we would like to exploit different features such as word2vec, context encoder for sentiment analysis.

In addition, we would like to implement feature selection strategy for selecting important audio features.