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Abstract 

Cancer cachexia is a multifactorial syndrome characterized by progressive loss of weight (WL),  

muscle, and fat tissues. Skeletal muscle wasting, in particular, is strongly associated with morbidity 

and mortality. Understanding the pathophysiological mechanisms underlying muscle wasting in 

humans is urgently needed. While clinical variables, e.g., Body Mass Index (BMI), WL, and 

Skeletal Muscle Index (SMI), are helpful in prognostication, these variables provide no insight 

into the underlying molecular mechanisms of cachexia. Molecular mechanisms are described in 

animal models of cachexia with unknown translational relevance; clinical studies of human 

skeletal muscle biopsies are sparse and did not yield consistent findings. Patient classification 

heterogeneity, limited sample size, aggregate cancer types, and sex, and focus only on coding 

transcripts also limited the value of molecular findings in humans.  

An emerging consensus is that non-coding RNAs are key players in gene regulation and may play 

a role in muscle homeostasis. Therefore, comprehensive human studies are needed to address these 

gaps. My thesis addresses these gaps, and all subsequent work describes the findings in a sex-

specific context.  

I hypothesize that expression profiling of coding and non-coding RNAs from skeletal muscle of 

patients with cancer, when subjected to unsupervised machine learning clustering approaches, 

would facilitate the identification of the underlying molecular architecture (subtypes) of skeletal 

muscle.  

Rectus abdominis skeletal muscle biopsies (n=84; males, n=48; and females, n=36) were obtained 

from a surgical cohort of patients with cancer. Clinical data included age, sex, cancer diagnosis, 

WL, BMI, plasma C-reactive protein, and SMI determined by computed tomography. 
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mRNAs, long non-coding RNAs/ lncRNAs, and small RNAs (miRNA, piRNA, snoRNA, tRNA) 

were profiled using high-throughput Next Generation Sequencing. Transcriptome profiles were 

subjected to unsupervised clustering using the integrative Non-negative Matrix Factorization 

(intNMF) algorithm to address the clinical classification heterogeneity. K=2 clusters (or subtypes) 

were identified in patients of the male and female sex. Differential Expression (DE) analysis of 

the subtypes identified dysregulated RNAs. However, the intricate interplay through which RNAs 

co-regulate each other via post-transcriptional competing endogenous RNA (ceRNA) mechanism 

is not studied in clinical cachexia. ceRNAs communicate through common miRNA binding sites 

or response elements (MREs). I identified lncRNAs and mRNAs acting as ceRNAs. Amongst the 

top six identified hub lncRNAs, three were common.  

Although 2 muscle subtypes were determined, there is no standard method to discern the intrinsic 

characteristics of subtypes. I adopted two independent benchmark paradigms and referred to them 

as (i) clinical and (ii) molecular and functional benchmarking.   

I performed clinical benchmarking based on WL grading (severity Grade 0-4) and age- and sex-

specific SMI z-score. These analyses revealed that Subtype 1 in both male and female patients was 

proportionally associated with high-grade WL and low SMI z-score and regarded as a cachexia 

group; Subtype 2 had minimal WL and high SMI.  

There are no available datasets in the literature to guide functional benchmarking. I employed two 

experimental model systems to approach molecular benchmarking. mRNA profiles were generated 

from (i) human Rhabdomyosarcoma cells, a model of myoblast proliferation and differentiation. 

and (ii) from gastrocnemius muscle of rats bearing a colon adenocarcinoma. Comparison of 

pathways from DE mRNAs in these models with that in human Subtype 1 vs. Subtype 2 showed 
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overlap. These findings led me to propose a schematic model explaining the disruption of 

homeostatic response from component pathways necessary for skeletal muscle integrity and 

function. These include Extracellular Matrix regulation, nNOS signaling, Matrix 

Metalloproteases, calcium signaling, and transcriptional regulatory network in embryonic stem 

cells.  

Overall, my work has identified two de novo clinically applicable molecular subtypes. This is the 

first large-scale investigational study that provides a transcriptional landscape of human skeletal 

muscle from patients with cancer along with multilayered RNA crosstalk. The study results in a 

paradigm shift from applying heterogeneous patient classification criteria to the pragmatic utility 

of unsupervised machine learning algorithms for pursuing molecular studies in the cachexia 

domain. Subtype 1 is demonstrated to be a group affected by cachexia by WL and muscle 

depletion.  

Data curated for the entire transcriptional atlas of mRNAs, lncRNAs, and small ncRNAs will be 

accessible publicly to enable cachexia researchers to examine their genes or pathways of interest.  
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Chapter 1    Introduction 

1.1  Cancer-associated muscle wasting: Criteria for the classification of human 

skeletal muscle and their utility for molecular association studies 

Cancer Cachexia (CC), as defined in 2011 by a DELPHI consensus, is "a multifactorial syndrome 

characterized by an ongoing loss of skeletal muscle mass (with or without loss of fat mass) that 

cannot be fully reversed by conventional nutritional support and leads to progressive functional 

impairment" 1. Patients are classified as cachexic if there is weight loss greater than 5%  or ongoing 

weight loss of greater than 2% in individuals already showing depletion based on Body Mass Index 

(BMI) < 20 kg/m2 or skeletal muscle mass1 (sarcopenia, defined using literature reported cut-offs). 

Cachexia occurs in about 50-80% of patients with advanced cancer, contributing to mortality in 

about 20% of patients 2-4. There are currently no Food and Drug Administration (FDA) approved 

agents for the treatment of CC, and it is thus an unmet medical need and represents a significant 

clinical burden. Since the provisional diagnostic criteria for CC were proposed in 2011, 

classification based on weight loss cut-offs was refined using a large contemporary population 

cohort applying the criteria of percent Weight Loss (% WL) and BMI grading system5 (Grades 

0,1,2,3, and 4 representing graded severity). The grading system has been used in independent 

cohorts of patients with cancer for their association with clinical outcomes 6,7.  

Cancer-associated muscle wasting is the cardinal feature of cachexia and is distinct from age-

related sarcopenia, which relies primarily on muscle function 8,9. Sarcopenia is characterized by 

reduced muscle strength, physical inactivity, and physiological changes associated with aging or 

occurs secondary to the disease. Conversely, CC is characterized by weight, muscle, and fat loss 

caused by manifestations of host-tumor interactions.  
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Skeletal muscle is the most extensive tissue in the body, accounting for 40-60% of body mass, and 

is associated with regular bodily functions such as movement, maintenance of posture, breathing, 

and thermogenesis. Our group pioneered the opportunistic use of Computed Tomography (CT) 

images obtained during routine patient care to quantify body composition in patients with cancer 

10. Image analysis at the third lumbar vertebrae (L3) is considered the de facto standard landmark 

correlating with whole-body muscle and fat components 11. CT-derived muscle mass assessment 

of Skeletal Muscle Index (SMI) provides a measure of muscularity defined as Muscle Cross-

Sectional Area in cm2/height in m2. Low muscle mass in patients with cancer is associated with 

adverse clinical outcomes such as length of hospital stays, chemotherapy toxicity, quality of life, 

and mortality 12-19.  

Despite the advances in the clinical setting for numerous criteria to define cachexia, there is no 

consensus regarding patient stratification for application in molecular or bio-profiling studies. The 

definition and diagnostic criteria for cancer-associated muscle wasting are thus still in progress.  

I refer to bio-profiling studies as those encompassing omic approaches (transcriptomics, 

epigenomics, proteomics, metabolomics) to identify potential molecular markers for cancer-

associated muscle wasting. Clinically relevant cut-offs for low muscularity vary widely across 

molecular studies. These cut-offs were adopted from Prado et al. 15. (2008) based on sex-specific 

muscle mass cut-offs associated with mortality in a population cohort of obese individuals with 

locally advanced/metastatic solid tumors, Martin et al. 16 (2013) sex-specific SMI cut-offs for 

varying BMI categories, and Kazemi et al. 20 (2015) sex- and age-stratified cut-offs. A systematic 

review and meta-analysis of the published cut-offs for low muscle mass and clinical outcomes are 

described 21,22.  



 

3 

 

Non-invasive CT-based prognostication is well-established and does not involve complex bio-

profiling techniques, often not within reach of a clinical setting. While the SMI cut-offs or WL-

BMI grading schema were informative for prognostication, applying the same criteria for 

association studies for molecular bio-profiling skeletal muscle is not ideal. This is because the 

endpoint in profiling studies using human skeletal muscle is to understand the underlying 

pathophysiology of muscle wasting, not the prognostic gene signatures. On the other hand, disease 

diagnostic markers are distinct from prognostic markers 23. CC diagnostic markers from gene 

signatures are beneficial for identifying patients at risk of developing CC. Since CC is a 

multifactorial syndrome, developing diagnostic markers that show high specificity and sensitivity 

involves comprehensive bio-profiling of multiple tissues, including tumors, skeletal muscle, 

adipose tissue, and physiological fluids such as blood and urine.  

Thus, there is no consensus on the clinical criteria for application to molecular studies. There is an 

urgent need for molecular studies encompassing unbiased omic approaches for patient 

stratification for identifying Complex Biological Processes (CBPs) driving the wasting 

phenomena. The vast majority of understanding of molecular mechanisms was obtained from 

experimental and model systems described below.  

1.2  Bio-profiling attempts conducted to date to decipher underlying molecular 

mechanisms of cancer-associated muscle wasting (clinical studies and 

experimental models) 

The pathophysiology of cancer-associated muscle wasting is multifaceted, and the exact 

mechanisms are not well-defined. Identifying biomarkers to predict the development of cancer-

associated muscle wasting and response to therapeutic interventions is the primary outcome in 

experimental and clinical studies. Several factors impeding the validity and reproducibility across 
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studies are as follows: (i) limited sample size, (ii) heterogeneity in the patient stratification 

strategies employed in these studies, (iii) sex-specific differences are an emerging theme and were 

unaccounted for in studies using human muscle, (iv) use of multiple cancer types, (v) focus on a 

limited repertoire of candidate gene(s) or protein(s) from presently known pathways, and (vi) 

primarily studying protein-coding genes.  

1.2.1 Sample size limitations 

Samples for biological profiling of muscles are not readily available owing to the inherently 

invasive nature of skeletal muscle biopsy. This limits the available sample size and to conducting 

sex-specific stratified molecular association analyses. One means of increasing the sensitivity of 

analyses with relatively small samples is to capture the extremes of phenotype. For example, 

defining obesity-related biology by comparing individuals in the average body weight range (18.5-

24.9 kg/m2) to morbidly obese (>40 kg/m2) 24. For cachexia, the corollary would be a comparison 

of weight–stable individuals with those experiencing >10% weight loss (or weight loss-BMI 

≥Grade 3).  

In a  recent study, Anoveros-Barerra et al. conducted a literature review of n=59 studies reporting 

human skeletal muscle biopsies from patients with cancer 25. These studies had a limited sample 

size ranging from n=3 to 41, and 76% of studies included ≤ 30 participants with cancer. Moreover, 

98% of the studies did not account for sex differences, and the results presented were aggregated.  

Although the review addresses the critical limitations across human muscle bio-profiling studies, 

an in-depth understanding of gene expression profiles, their integrated higher-level regulatory 

mechanisms, and transcriptional changes in human skeletal muscle is yet to be determined.  
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1.2.2 Heterogeneity of cancer diagnosis and comparisons with healthy controls 

The Prevalence of CC varies based on the cancer type, with the highest incidence in pancreas 

cancer (80%), about 50% of patients with lung, prostate, or colon cancer, and up to 40% in breast 

cancers and leukemias26,27. It is not presently known whether different primary cancers invoke 

different mechanisms at the tissue level in muscle, as muscle biopsy research has used aggregate 

cancer types for their analyses. Therefore, the bio-profiling studies may limit understanding of the 

molecular mechanisms when combined cancer types are used and preclude stratified analysis 

based on cancer types due to the sample size. In an attempt to identify cancer-specific mediators 

and secreted proteins with different prevalences of cachexia, Friere et al. 28 (2020) performed the 

characterization of expression profiling of secreted genes in 12 tumor types from publicly available 

TCGA (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) 

and GTEx databases (https://gtexportal.org/home/). The authors identified 25 candidate genes 

from a previous study 29and termed Cachexia Inducing Factors (CIFs) that showed the highest 

number of up-regulated genes in pancreas cancer (cachexia is most prevalent in this cancer type 

as described above) and were associated with WL, cachexia prevalence, and neoplastic cellularity. 

A global perspective of the transcriptome profiling and regulatory mechanisms in skeletal muscle 

from patients with cancer is unclear. 

Comparisons with healthy controls: Some gene expression studies compared cancer cachexic 

muscle and healthy controls without accounting for all potentially confounding variables 30-33. It 

was recently shown that different skeletal muscles have intrinsic transcriptional diversity 34; hence, 

comparisons across diverse muscle types or disease states may not be a feasible approach. Due to 

the limitations mentioned above, an unambiguous and coherent approach, independent of clinical 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://gtexportal.org/home/
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labels, is needed for molecular profiling studies to understand the molecular mechanisms 

contributing to disease etiology. 

1.2.3 Candidate genes/pathways  

Many experimental model systems have contributed to the underlying mechanisms of cancer-

associated muscle wasting.35-38  

Skeletal muscle mass is maintained by the balance between protein synthesis and degradation, 

promoting muscle hypertrophy (increase in the myofibrillar muscle mass) and atrophy (reduction 

in the myofibrillar muscle mass), respectively. Candidate or representative genes, proteins, and 

pathways implicated in the anabolic and catabolic processes are explicitly studied in cachexia 

literature. Such hypothesis testing approaches, however, are confined to (i) patient classification 

(case vs. control) based on investigator-defined cut-offs and criteria for %WL and SMI and (ii) 

quantifying select genes or proteins in a highly selected pathway of interest. Representative genes 

within the pathways regulating muscle mass were quantified using the Real-Time Polymerase 

Chain Reaction (qRT-PCR) technique or northern blot31,33. However, the results across the studies 

were inconsistent, and their role remains debated about their association with classical cachexia 

variables or underlying pathophysiological mechanisms39,40. For instance, the gene expression 

profiles within pathways associated with muscle protein degradation via Ubiquitin-Proteasome 

Pathway (UPP)30,31,41 and autophagy and those mediating the processes of muscle atrophy or 

regeneration were inconsistent and variously showed no association or increased expression in 

muscle from the cachexic group32,42,43. The focus on the Ubiquitin-Proteasome Pathway came from 

experimental models that identified and suggested a group of genes termed atrogenes, including 

E3 Ubiquitin Ligases muscle atrophy F-box/atrogin1 (FBXO32) and Muscle RING finger 1 

(MuRF1) contributing to cancer-associated muscle wasting. Hypothesis-testing studies from the 
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experimental model systems have contributed to a vast understanding of upstream regulators and 

mediators of cachexia (examples include pro-inflammatory cytokines, Transforming Growth 

Factor TGF-β superfamily members such as Activin A, Myostatin, Growth Differentiation 

Factor/GDF11, GDF-15, Parathyroid Hormone release Peptide/PTHrP, and several miRNAs).  

Systemic inflammation is considered the hallmark of cachexia. Plasma-derived acute phase protein 

(C-Reactive Protein, CRP) is a marker of systemic inflammation. However, the clinical application 

of CRP as a marker of cachexia is not well-defined 44. Inflammatory mediators, including TNF-α, 

IL6, IL1ꞵ, and Interferon γ (INF-γ), elicit catabolic responses, promoting skeletal muscle wasting. 

Hypothesis-testing studies alluded to individual pathways contributing to muscle hypertrophy and 

atrophy, including the PI3K/Akt/mTOR pathway, GDF1 mediated Bcl-/caspase 3 pathway, and 

IL6/STAT3 signaling, amongst several others 45. 

Despite the experimental advances in understanding the catabolic processes driving muscle 

atrophy, the role of muscle regeneration is also debated. Skeletal muscle exhibits plasticity and the 

ability to regenerate following injury. This is driven by adult stem cells, termed satellite cells 46, 

located in close proximity to myofibers47. Upon injury or damage to muscle, satellite cells undergo 

a myogenic cascade of events, including myoblast proliferation, differentiation, and, eventually, 

fusion to form mature myofibers. It has been suggested that impaired skeletal muscle regeneration 

may contribute to muscle wasting in cancer patients,48,49. However, the role of dysregulation of 

skeletal muscle regeneration in cachexia is not well-defined.  

Studying one pathway at a time does not provide mechanistic insights from a holistic perspective, 

given the complex and multifaceted nature of the syndrome.  
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The findings thus elucidate that complex, combinatorial, and multifactorial regulatory mechanisms 

drive the wasting phenomenon in patients with cancer. A more comprehensive approach to 

understanding global transcriptional changes is critical.  

1.2.4 Sexual dimorphism 

It is well-established from the clinical and body composition studies that the prevalence of 

cachexia is higher in males 50,51. Sex-specific physiological differences in skeletal muscle are well 

described51. Men have more muscle mass, lower fat mass, a higher proportion of fast-twitch (type 

II, glycolytic) muscle fibers, and a higher rate of muscle loss compared to women 52,53. Men oxidize 

less fat and more carbohydrate than women during women54. Women are more resistant to fatigue 

than men. These morphological, physiological, and metabolic differences accompany the 

molecular differences at the transcriptional and post-transcriptional levels. Overall, human skeletal 

muscle is sexually dimorphic concerning gene expression profiles, fiber type specifications, 

fatigue resistance, muscle strength, mitochondrial function, muscle protein turnover, and intrinsic 

signaling pathways within the muscle microenvironment 51,52,54-58.  

Skeletal muscle exhibits diversity in the transcriptional changes reflected at the gene expression 

levels in a sex-specific manner 55. Considerable efforts in gaining mechanistic insights from 

molecular profiling studies focus on males or remain unaccounted for sex as a potential 

confounding variable. Recent experimental hypothesis-testing studies have started acknowledging 

the importance of sex differences for understanding the molecular mechanisms of cancer-

associated muscle wasting. Zhong et al. (2022) recently demonstrated the role of activin as a 

mediator of Pancreatic Ductal Adenocarcinoma (PDAC) associated cachexia in KPC mouse model 

59. They showed the importance of sex as a significant contributor to the underlying molecular 

mechanisms. Lindholm et al. (2014) performed RNA sequencing of vastus lateralis muscle biopsy 
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in 48 muscle biopsies (2 biopsies from each leg; and 2 biopsies within each leg ~ 3cm apart from 

n=6: 3 males and 3 females and a single biopsy from each leg of n=12 subjects: 6 males and 6 

females)58. Although skeletal muscle tissue showed spatial tissue homogeneity, transcriptome 

profiles exhibited sex differences. A recent study used RNA-sequencing data from 700 individuals 

from 24 tissues from the Genotype-Tissue Expression project. Tissue-specific gene co-expression 

maps were generated, and it was found that 29.5% of the gene co-expression is influenced by sex: 

skeletal muscle of males showed predominantly stronger gene co-expression. Anoveros et al. 

reported sexual dimorphism at L3-total muscle cross-sectional area and rectus abdominis muscle, 

as well as in the mean fiber CSA and gene expression changes from literature-reported pathways 

in cachexia such as muscle growth, apoptosis, and inflammation25. Of the total n=59 studies the 

authors reviewed, n=50 studies that included both male and female patients were disproportionate. 

About 98% of studies on human muscle reported aggregate results. Despite the overarching sex-

related differences in human skeletal muscle, no studies have construed comprehensive 

mechanisms underlying cancer-associated muscle wasting, broadscale RNA crosstalk, and gene 

regulation contributing to disease etiology. Although sex-specific differences are identified in 

skeletal muscle in aging and exercise settings 55,58, gene expression showed distinct profiles from 

those with cancer-associated wasting and needed to be thoroughly investigated.  

1.2.5 Whole transcriptome profiling of human skeletal muscle and the role of non-coding 

RNAs 

In contrast to the human muscle studies undertaken using candidate molecular approaches 

described in the previous section, literature on whole transcriptome profiling of human skeletal 

muscle is limited. This section introduces a description and justification of whole transcriptome 

profiling studies. An extensive repertoire of the human genome (~80-90%) previously considered 
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is transcribed into nonprotein-coding RNAs (ncRNAs) 60,61. ncRNAs regulate protein-coding 

genes at epigenetic, transcriptional, and post-transcriptional levels and mediate changes in gene 

expression levels. ncRNAs have gained prominence as their expression dysregulation has severe 

implications in several diseases, including various cancer types, and are essential players in 

modulating complex cellular and molecular processes. There are two distinct classes of ncRNAs 

based on their length: (i) long ncRNAs (lncRNAs, > 200 nucleotides in length) and (ii) small 

ncRNAs (< 200 nucleotides in length) that include microRNAs, piwi-interacting RNAs (piRNAs), 

small nucleolar RNAs (snoRNAs), and transfer RNAs (tRNAs). The details for each are provided 

below: 

1.2.5.1  MicroRNAs (miRNAs) 

miRNAs (~ 22 nucleotides in length) represent the most studied class of small regulatory RNAs62. 

miRNAs are transcribed from the introns of the protein-coding genes, lncRNAs, or miRNA 

clusters. Recent evidence also suggests that they could be embedded within other small non-coding 

RNAs such as small nucleolar RNAs 63,64 (snoRNAs), and transfer RNAs 65 (tRNAs) as well as 

long non-coding RNAs 66,67 (lncRNAs). miRNAs (primary miRNAs/pri-miRNAs) are transcribed 

canonically from their genes and cleaved into 60-70nt precursor miRNAs/pre-miRNAs by 

DiGeorge Syndrome Critical Region 8 (DGCR8) and by Drosha, ribonuclease III that are part of 

microprocessor complex. Exportin 5 and Ran GTPase export pre-miRNAs into the cytoplasm from 

the nucleus, which is further processed and cleaved by Dicer, an RNAase III endonuclease. The 

guide strand or the functional strand is then incorporated into Argonaute protein as part of an RNA-

induced silencing complex, which can target mRNAs and repress their expression by mediating 

mRNA degradation or translational inhibition 68.  
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Currently, there are about 2600 miRNAs reported in miRbase v.22 69 (https://www.mirbase.org/). 

miRNAs function by base-pairing with the 3' untranslated region (3'UTR) of the target mRNAs 

and mediate mRNA degradation or translational repression depending on the sequence homology 

of the seed sequence. Perfect base pair complementarity (6-8 nucleotide seed sequence of miRNA) 

could lead to mRNA degradation, whereas imperfect complementarity results in translational 

repression. Recently, miRNAs are also known to interact with the 5'UTR, CDS, the coding 

sequence, and gene promoter regions, thereby regulating transcription and translation processes. 

miRNAs are the critical regulators of skeletal muscle function, and their role has been depicted in 

the processes of skeletal muscle atrophy and regeneration 70,71. However, only two studies profiled 

using human skeletal muscle, one in lung 72, and the other in the pancreas and colorectal cancer73, 

respectively, have elucidated the role of miRNAs in the pathophysiology of cancer cachexia. 

Narasimhan et al. profiled and identified 777 tissue-specific miRNAs in the rectus abdominis 

muscle (n=22 cachexic cases and n=20 non-cachexic cases) stratified based on the international 

consensus diagnostic criteria of CC, of which 82 miRNAs were expressed post-filtering of read 

counts of greater than 5 read counts in 75% of the samples73. van de Worp et al. (2020) profiled 

754 miRNAs in vastus lateralis muscle using n=8 cachexic lung cancer patients and n=8 age-

matched healthy controls 72. While these studies provided the premise to identify the potential role 

of miRNAs underlying the pathophysiology of muscle wasting in cancer patients, they did not 

account for sex-specific differences due to the limited sample size. Also, they were limited in the 

availability of matched mRNA expression datasets for deciphering potential gene targets. miRNAs 

exhibit a pleiotropic effect on gene regulation, i.e., a single miRNA can regulate multiple gene 

targets, and several miRNAs can regulate a single gene target. A matched dataset to profile and 

identify miRNA-mRNA interactions from individual patient muscle biopsy is not yet generated; 

https://www.mirbase.org/
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hence, understanding miRNA-mediated gene regulation and its role in human muscle need further 

interpretations. Expression profiles generated from the same technology platform (for instance, 

NGS for both small RNA and RNA sequencing) open the avenues for performing correlation 

analysis and understanding whole transcriptome level gene regulation. 

1.2.5.2  Piwi-interacting RNAs (piRNAs) 

piRNAs are small single-stranded ncRNAs (26-31 nucleotides in length) 74, transcribed from 

introns of protein-coding genes, piRNA clusters, or snoRNAs 64,75 bind to Piwi proteins and 

mediate gene repression via epigenetic silencing and gene degradation 76. piRNAs were previously 

thought to be expressed in the mammalian germline acting on transposon silencing and thus 

protecting the integrity of the genome from transposons, autonomous pieces of DNA that replicate 

and insert into the genome and have detrimental effects. However, recent evidence reveals their 

tissue-specific expression in various human tissues along with Piwi (P-element induced wimpy 

testis) proteins (PIWIL1/HIWI, PIWIL2/HILI, PIWIL3, and PIWIL4/HIWI2)77. It has shown to 

be novel diagnostic and prognostic in several cancer types 78,79. Unlike miRNAs, piRNAs lack 

sequence conservation and are produced in a dicer-independent manner. Another distinct feature 

of piRNAs from miRNAs is that piRNA precursors do not exhibit hairpin structures and are not 

double-stranded. The exact mechanism of action of piRNA is still emerging. However, they are 

thought to exhibit similar mechanisms as miRNAs80 (i.e., piRNA/piwi complex represses the 

translation via binding to the protein-coding gene). piRNAs are essential for stem cell pluripotency 

and are developmentally regulated, and their expression regulation has been identified in somatic 

cells. A recent study (La Greca et al., 2020) found 447 piRNAs (241 detected in pluripotency, 218 

in the mesoderm, and 171 in cardiac cells) to have a role in fine-tuning the gene expression 

involved in the differentiation of pluripotent cells to cardiomyocytes 81. Muscle satellite cells may 
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also harbor piRNA sequences and play a role in myofiber formation; however, this in the context 

of cachexia remains unknown. Coenen-Stass et al. (2018) identified differentially abundant small 

RNAs in Duchenne muscular dystrophy (DMD) muscle and serum samples in a mouse model of 

DMD 82. No studies to date have identified and profiled piRNAs in the human skeletal muscle of 

patients with cancer. piRNA expression profiles and their role in undifferentiated and 

differentiated myoblast leading to mature myofiber formation remain to be determined.  

1.2.5.3  Small nucleolar RNAs (snoRNAs) 

snoRNAs (60-200 nucleotides in length) function canonically in the nucleolus. They guide the 

chemical modification of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs) by binding 

to the ribonucleoprotein complexes (snoRNPs) 83. snoRNAs as classified into C/D (SNORD) or 

H/ACA box snoRNAs (SNORA), depending on the conserved sequence motifs. Recent studies 

have also depicted the non-canonical role of snoRNAs acting as the regulators of gene expression, 

wherein they harbor miRNA or piRNA sequences 64,75,84,85. snoRNAs regulate their targets through 

complementary base-pairing with the target sequence. McCann et al. (2020) profiled snoRNAs in 

mouse embryonic stem cells and mouse myoblasts using small RNA sequencing and found that a 

subset of H/ACA snoRNAs are regulated during differentiation regulating the production of the 

ribosomes 86. snoRNA expression profiles in the human skeletal muscle of patients with cancer 

and their role in muscle wasting remain obscure.  

1.2.5.4  Long non-coding RNAs (lncRNAs) 

lncRNAs are > 200 base pairs to several kilobases in length. lncRNA structure, interactions with 

DNA, RNA, and proteins, and cellular localization are the key aspects that dictate their functions. 

lncRNAs are the master regulators and act at epigenetic, transcriptional, post-transcriptional, and 

post-translational levels 87,88. The same lncRNA could exhibit several roles depending on their 
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cellular localization and tissue-specific expression and are developmentally regulated. The human 

genome consists of about 16,000 lncRNA genes, and the functional role of lncRNAs is emerging. 

lncRNAs exhibit high tissue specificity and serve as excellent biomarkers and prognosticators. 

Recent studies have deciphered the functional role of lncRNAs in skeletal muscle development. 

However, these studies are limited to experimental model systems. One of the most studied 

mechanisms of action of lncRNAs is that they compete for the miRNA binding sites (miRNA 

Response Elements, MRE) with the mRNAs, regulating their expression levels 89-91 and thereby 

contributing to a particular phenotype. The ceRNA role of lncRNA lnc-MD192, a cytoplasmic 

lncRNA expressed during myoblast differentiation, was first studied in mouse and human 

myoblasts. lnc-MD1 acts as a ceRNA for miR-133 and miR-135 to regulate the expression of a 

mastermind-like transcriptional coactivator 1 (MAML1) and Myocyte Enhancer Factor 2C 

(MEF2C) transcription factors and thereby governs the timing of muscle differentiation. lncRNA 

lnc-mg, myogenesis-associated lncRNA overexpression in mice is known to promote hypertrophy 

and acts functionally as ceRNA for microRNA-1325b to control protein abundance of insulin-like 

growth factor 2 93. Li et al. (2021) recently demonstrated in a mouse C2C12 model that lncRNA 

Mir22hg harbors miR-22-3p and inhibits its target gene Histone Deacetylase 4 (HDAC4) and 

thereby increases the MEFC2, thus promoting myoblast differentiation94. Despite the advances in 

the functional characterization of lncRNAs in experimental model systems to understand skeletal 

muscle development and atrophy mechanisms, there is a paucity of literature regarding their 

expression and functional relevance to human skeletal muscle.  

Studies utilizing mRNA profiling techniques in the skeletal muscle of patients with cancer are 

scarce. Researchers thus far have utilized qRT-PCR and microarray techniques to profile and 

identify mRNA dysregulation in cancer cachexia. qRT-PCR is an excellent technique for gene 
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expression and renders high specificity; however, it can be used to quantify representative 

candidate marker genes with apriori-defined sets of genes. Microarray quantifies thousands of 

genes from multiple samples, but it suffers from cross-hybridization of probes across the array, 

and there is reliance upon pre-existing knowledge about genome sequences. In contrast, Next 

Generation Sequencing (NGS) has revolutionized the understanding of health and disease by its 

ability to perform massively parallel sequencing of millions of sequence reads simultaneously per 

run. Depending on the sequencing depth, it also enables higher detection sensitivity. Moreover, 

the detection of non-coding transcripts, novel splice variants, and gene fusions can be uncovered 

using NGS technologies.  

A recent study (Narasimhan et al., 2021) is the first study to generate mRNA expression profiles 

for muscle using ion proton sequencing using rectus abdominis muscle from patients with pancreas 

cancer (n=24, n=12 each of males and females) compared with patients diagnosed with benign 

lesions (n=11, n=5 and 6 respectively for males and females)95. The patient classification was 

based on consensus classification criteria for CC. The analyses schema did not encompass sex-

related expression differences due to the limited sample size. 

Overall, the expression landscape and higher-order interactions of RNAs in the human skeletal 

muscle of patients with cancer remain undetermined. No study in cachexia research has 

illuminated the unsupervised "omic" approach to decipher the intrinsic characteristics of skeletal 

muscle from surgical patients with cancer, independent of predefined phenotypes of interest.  
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1.3  Unsupervised clustering and Machine Learning methods for identification 

of potential molecular subtypes from the skeletal muscle of patients with 

cancer 

Supervised learning is a machine learning approach that uses labeled information for classification 

or predicting outcomes of interest. In contrast, in unsupervised learning, the algorithms are applied 

to cluster unlabelled data and identify hidden patterns using clustering or dimensionality reduction 

methods. High throughput omics data suffer from a high dimensionality problem. There is a low 

sample size (typically less than 100) and massive expression data (expression of thousands of 

genes) acquired from whole transcriptome profiles generated from Next-generation sequencing or 

array technologies. One of the major challenges is to discover coherent gene expression patterns 

by a set of genes across a group of experimental conditions. These patterns may offer insights into 

biological processes associated with different physiological states. Unsupervised machine learning 

approaches such as Non-negative Matrix Factorization (NMF) 96,97 (also referred to as blind source 

separation or pattern recognition) are performed to reduce the dimensionality of the data yielding 

a representation of conditions as a linear combination of a reduced set of k-factors. These 

techniques aid in discovering patterns (clusters or subtypes) from high-throughput data, and their 

characterizations help identify Complex Biological Processes (CBP). The unsupervised methods 

have several advantages over the supervised techniques as they are independent of a priori 

assigned phenotype used for molecular association studies. The raw sequencing reads are aligned 

and quantified to the reference genome and transcriptome (i.e., annotated transcriptome databases 

for mRNAs, lncRNA, miRNAs, piRNAs, snoRNAs, and tRNAs), followed by normalization and 

log-transformation. These are then subjected to the Matrix Factorization algorithm. The Gene x 

Sample matrix (genes represented in the rows and samples in columns, known as Gene by Sample 
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matrix) is used as the input data. Matrix Factorization could be used to cluster genes or samples 

depending on the study objectives.  

Given the normalized and transformed positive data matrix (A consisting of N rows and M 

columns), the NMF algorithm96 iteratively computes an approximation A ~ W x H, where W and 

H are non-negative matrices with respective sizes N x k, and k x M. k here represents the number 

of clusters or subtypes. For the given rank k, NMF groups the samples into clusters. For every run, 

the algorithm may or may not converge to the same solution for rank k, depending on the random 

initial conditions. Therefore, several iterations or runs must be performed to reach consensus 

matrices. This means that if clustering into k classes is robust, the sample assignments to the 

respective clusters will remain invariant from every run. The model selection is based on consensus 

clustering to evaluate the robustness of the factorization (or decomposition). Quality matrices such 

as Silhouette Width (SW) are used to assess the goodness of the clustering technique. The value 

of silhouette width ranges from -1 to 1, wherein 0 means that the clusters are indifferent; 1 means 

that the clusters are well apart from each other and are clearly distinguishable, and -1 implies that 

the clusters are wrongly assigned. A silhouette plot can measure how close each sample in one 

cluster is compared to samples in the neighboring clusters. While NMF can identify clusters or 

subtypes for a single RNA class, integrative NMF (intNMF) can incorporate multi-omic or multi-

RNA classes to identify molecular subtypes 98. Thus far, studies addressing the cancer-associated 

muscle wasting condition considered mRNA or miRNA profiling from skeletal muscle to 

understand muscle biology based on predefined phenotypes. However, such an approach is still 

incomplete in understanding the RNA-cross talk and higher-order gene regulatory networks when 

other molecular entities (tRNAs, snoRNAs, piRNAs, and lncRNAs) are now known to contribute 

to the overall gene regulatory mechanisms. Readouts from high-throughput omics data are 
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complex and require integrative analytic approaches. Comprehensive characterization of 

molecular subtypes is now studied in several cancer types using these integrative approaches, such 

as Pancreatic Ductal Adenocarcinoma (PDAC), muscle-invasive bladder cancer, colon and rectal 

cancer, particularly in the consortia studies such as The Cancer Genome Atlas Research Network 

(TCGA) and others 99-101. Moffitt et al. (2015) applied NMF to PDAC gene expression microarray 

data, including primary tumor, metastatic and normal samples, and identified distinct tumor and 

stroma-specific subtypes of PDAC 102.  

Given the complexity of the muscle-wasting condition in patients with cancer, it is crucial to 

investigate if the global transcriptomic data, when subjected to unsupervised methods, help 

decipher molecular subtypes of human skeletal muscle. Such a systematic approach has never been 

undertaken in cancer cachexia research for molecular characterization and functional relevance. 

1.4  Gene Expression Omnibus (GEO) datasets on mRNA and miRNA 

profiling studies in the skeletal muscle of patients with cancer 

The literature-reported transcriptome profiling studies using mRNA or miRNAs in the human 

skeletal muscle of patients with cancer are described in table 1.1. 



 

19 

 

Table 1.1 Description of human skeletal muscle studies utilizing transcriptome methods to understand disease etiology 

GEO dataset (Year) Study objective (s) Sample size and patient classification 

Skeletal muscle 

anatomical 

location 

Technology 

GSE133979 (2021) 

Zimmers lab 

Identified skeletal muscle and adipose 

tissue gene (mRNA) expression profiles 

in Pancreatic Ductal Adenocarcinoma 

(PDAC) cachexia patients 

N=11 benign, n=24 PDAC patients. 

Classification based on WL-BMI 

grading system 

Rectus 

abdominis 
Ion Ampliseq 

GSE130563 (2019) 

Judge lab 

Skeletal muscle fibrosis in pancreatic 

cancer patients with respect to survival 

N=16 non-cancer control, n=15 

cachectic (>5%WL) PDAC patients and 

N=5 non-cachectic PDAC patients 

Rectus 

abdominis 
Microarray 

GSE85017 (2018) 

Damaraju and 

Baracos lab 

Differentially expressed alternatively 

spliced genes (mRNAs) in human 

skeletal muscle of patients with cancer 

and cachexia 

N=21 cachexic, N=19 non-cachexic 

patients; classification based on 

International consensus 

Rectus 

abdominis 

Human 

Transcriptome 

Array  

(HTA 2.0) 

GSE41726 (2018) 

Damaraju and 

Baracos lab 

Sarcopenia and myosteatosis are 

accompanied by distinct profiles in 

patients with pancreatic and 

periampullary adenocarcinomas 

N=29, data mined from a subset of 

samples utilized from the previously 

generated dataset in 2013, n=8 

sarcopenia, n=10 myosteatosis, and 

n=15=neither 

 

Rectus 

abdominis 

Agilent 

Whole Human 

Genome 

Array 
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Table 1.1: N=8 studies applied transcriptome profiling techniques from the human skeletal muscle of patients with cancer to elucidate the molecular 

mechanisms underlying the pathophysiology of cachexia. The GEO series number of these studies are listed as follows:  GSE13397995, GSE85017103, 

GSE7547373, GSE41726104,105, GSE3411140, GSE1883239, GSE130563106.

GSE75473 (2017) 

Damaraju and 

Baracos lab 

miRNA profiling in human skeletal 

muscle of patients with cancer and 

cachexia 

N=22 cachexic, N=20 non-cachexic 

patients; classification based on 

international consensus criteria 

Rectus 

abdominis 

MiSeq Next 

Generation 

Sequencing 

GSE41726 (2013) 

Damaraju and 

Baracos lab 

Sexual dimorphism in skeletal muscle 

gene (mRNA) expression was used to 

assess the effect of sample size on the 

differential expression. Rank order and 

prediction tasks 

N=134, 69 men and 65 women 
Rectus 

abdominis 

Agilent 

Whole Human 

Genome 

Array 

GSE34111 (2012) 

Fearon lab 

Suppression of skeletal muscle turnover 

gene (mRNAs) in weight-losing Upper 

GI cancer  

N=6 healthy controls, N=6 Upper 

Gastro-Intestinal Cancer/UGIC pre- and 

post-surgical resection; mean % WL 7% 

Quadriceps 

Affymetrix 

U133+2 

platform 

GSE18832 (2010) 

Fearon and Timmons 

lab 

mRNA expression profiling in upper GI 

cancer patients. Identified CaMKIIꞵ and 

TIE1 genes associated with WL. FOXO 

proteins and ubiquitin E3 ligases 

commonly found in experimental studies 

were not related to WL in clinical study. 

Performed targeted and global gene 

profiling 

N=21 (18 Upper Gastro-Intestinal 

Cancer/UGIC, 2 non-cancer controls) ;  

%WL > 5%  

Rectus 

abdominis 

Affymetrix 

HGU-133 + 2 

array 
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1.5  The rationale for conducting the study 

Although mRNA expression profiles have advanced the understanding of cancer-associated 

muscle-wasting, there is a lack of consensus on comprehensive integrative molecular mechanisms. 

The expression landscape of human skeletal muscle from cancer patients using single-matched 

biopsy has never been generated. Attempts in this study are to generate comprehensive 

transcriptome profiles and systematically integrate RNAs to reveal the complex underlying 

biology, at least in a single biopsy specimen, as a representative specimen along the disease 

trajectory. Integrative analytical and experimental approaches could facilitate an understanding of 

molecular mechanisms underlying cancer-associated muscle wasting pathophysiology.  

My thesis provides the cornerstone for future molecular profiling and association studies utilizing 

human skeletal muscle biopsy to understand the functional aspects of muscle wasting in patients 

with cancer.  

1.6  Hypothesis and Objectives 

Hypothesis: I hypothesize that the whole-genome transcriptome profiling and sex-specific gene 

expression profiles generated from human skeletal muscle of patients with cancer, when subjected 

to unsupervised machine learning clustering approaches, would facilitate the identification of the 

molecular subtypes and sex-specific pathophysiology. The dysregulated transcriptome and RNA 

networks from the identified subtypes may explain the Complex Biological Processes (CBP) and 

potential functional consequences.  
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Study objectives are organized as part of individual chapters as follows: 

a) To accrue rectus abdominis muscle biopsies from patients with cancer intraoperatively, 

perform data acquisition from clinical and body composition analyses, and their phenotypic 

characterization using diagnostic criteria of %WL, and SMI (Chapter 2) 

b) To generate transcriptome profiles from each patient biopsy and to perform unsupervised 

clustering to identify molecular subtypes of muscle. Two sub-objectives of this chapter 

include: (i) to identify Differentially Expressed (DE) genes from subtypes to explain 

complex regulatory pathways within the skeletal muscle and (ii) to perform clinical 

benchmarking analyses of the subtypes  (Chapter 3) 

c) To investigate multilayered RNA crosstalk through Competing Endogenous RNA 

(ceRNA) network analysis (lncRNA-miRNA-mRNA triplets) and delineate pathways 

regulating the Complex Biological Processes (CBPs) in human skeletal muscle   

(Chapter 4) 

d) To identify converging pathways from transcriptional profiles in patients and in model 

systems (Chapter 5), to gain insights into the biological processes governing skeletal 

muscle homeostasis (functional benchmarking). 

Overall, my study encompasses profiling and generating the entire transcriptional landscape of 

human skeletal muscle (rectus abdominis) in patients with cancer and their analysis to identify 

molecular subtypes. N=84 muscle biopsy specimens were procured and subjected to whole 

transcriptome profiling (Next-generation RNA sequencing and small RNA sequencing). I 

utilized in silico computational tools and experimental techniques to address the sex-specific 

molecular and functional characterization of human skeletal muscle subtypes.  
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1.7  Scope of this work 

In Differential Expression profiling experiments, the intent is to get a high-level view of the 

dysregulated pathways, and in my data analysis, individual gene-based interpretations were 

avoided. Applying machine learning models to identify muscle subtypes, their transcriptome 

profiles, and integrative analyses of RNA networks offer insights into these subtypes. Further 

clinical relevance and functional insights could aid in characterizing the identified subtypes. My 

interest is to look for common or distinct pathways in males and females and determine if the sex-

specific gene expression profiles and pathways are comparable with experimental model systems. 

I address this using the first experimental model of a cell-line model system in which proliferative 

myoblasts are chemically induced to differentiate into mature myofibers. The second experimental 

system of gastrocnemius skeletal muscle transcriptome from tumor-induced rodents is also 

explored for their pathway analysis overlap with human muscle subtypes. The scope of this work 

is limited to performing molecular characterization of human skeletal muscle from cancer patients. 

While other omic techniques, such as those using proteomics and metabolomics, are emerging in 

cachexia literature, my research addresses muscle biology at the post-transcriptional regulatory 

mechanisms.



 

24 

 

1.8  References 

1. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and 

classification of cancer cachexia: an international consensus. Lancet Oncol. 

2011;12(5):489-495. 

2. Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and 

metabolic pathways. Cell Metab. 2012;16(2):153-166. 

3. von Haehling S, Anker MS, Anker SD. Prevalence and clinical impact of cachexia in 

chronic illness in Europe, USA, and Japan: facts and numbers update 2016. J Cachexia 

Sarcopenia Muscle. 2016;7(5):507-509. 

4. von Haehling S, Anker SD. Prevalence, incidence and clinical impact of cachexia: facts 

and numbers-update 2014. J Cachexia Sarcopenia Muscle. 2014;5(4):261-263. 

5. Martin L, Senesse P, Gioulbasanis I, Antoun S, Bozzetti F, Deans C, et al. Diagnostic 

criteria for the classification of cancer-associated weight loss. J Clin Oncol. 

2015;33(1):90-99. 

6. Daly L, Dolan R, Power D, Ni Bhuachalla E, Sim W, Fallon M, et al. The relationship 

between the BMI-adjusted weight loss grading system and quality of life in patients with 

incurable cancer. J Cachexia Sarcopenia Muscle. 2020;11(1):160-168. 

7. Vagnildhaug OM, Blum D, Wilcock A, Fayers P, Strasser F, Baracos VE, et al. The 

applicability of a weight loss grading system in cancer cachexia: a longitudinal analysis. J 

Cachexia Sarcopenia Muscle. 2017;8(5):789-797. 

8. Dunne RF, Loh KP, Williams GR, Jatoi A, Mustian KM, Mohile SG. Cachexia and 

Sarcopenia in Older Adults with Cancer: A Comprehensive Review. Cancers (Basel). 

2019;11(12). 



 

25 

 

9. Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: 

the muscle wasting continuum in healthy and diseased aging. Biogerontology. 

2021;22(5):459-477. 

10. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical 

and precise approach to quantification of body composition in cancer patients using 

computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 

2008;33(5):997-1006. 

11. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, et al. Total body 

skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-

sectional image. J Appl Physiol (1985). 2004;97(6):2333-2338. 

12. Vaughan VC, Martin P, Lewandowski PA. Cancer cachexia: impact, mechanisms and 

emerging treatments. J Cachexia Sarcopenia Muscle. 2013;4(2):95-109. 

13. Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in 

cancer cachexia. Nat Rev Clin Oncol. 2013;10(2):90-99. 

14. Prado CM, Baracos VE, McCargar LJ, Mourtzakis M, Mulder KE, Reiman T, et al. Body 

composition as an independent determinant of 5-fluorouracil-based chemotherapy 

toxicity. Clin Cancer Res. 2007;13(11):3264-3268. 

15. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence 

and clinical implications of sarcopenic obesity in patients with solid tumours of the 

respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 

2008;9(7):629-635. 



 

26 

 

16. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. 

Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic 

factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539-1547. 

17. Barret M, Antoun S, Dalban C, Malka D, Mansourbakht T, Zaanan A, et al. Sarcopenia is 

linked to treatment toxicity in patients with metastatic colorectal cancer. Nutr Cancer. 

2014;66(4):583-589. 

18. Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K, et al. 

Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in 

metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res. 

2009;15(8):2920-2926. 

19. Lieffers JR, Bathe OF, Fassbender K, Winget M, Baracos VE. Sarcopenia is associated 

with postoperative infection and delayed recovery from colorectal cancer resection 

surgery. Br J Cancer. 2012;107(6):931-936. 

20. Kazemi-Bajestani SM, Mazurak VC, Baracos V. Computed tomography-defined muscle 

and fat wasting are associated with cancer clinical outcomes. Semin Cell Dev Biol. 

2016;54:2-10. 

21. Rinninella E, Cintoni M, Raoul P, Pozzo C, Strippoli A, Bria E, et al. Muscle mass, 

assessed at diagnosis by L3-CT scan as a prognostic marker of clinical outcomes in 

patients with gastric cancer: A systematic review and meta-analysis. Clin Nutr. 

2020;39(7):2045-2054. 

22. Xia L, Zhao R, Wan Q, Wu Y, Zhou Y, Wang Y, et al. Sarcopenia and adverse health-

related outcomes: An umbrella review of meta-analyses of observational studies. Cancer 

Med. 2020;9(21):7964-7978. 



 

27 

 

23. Oldenhuis CN, Oosting SF, Gietema JA, de Vries EG. Prognostic versus predictive value 

of biomarkers in oncology. Eur J Cancer. 2008;44(7):946-953. 

24. Lu Z, Meng L, Sun Z, Shi X, Shao W, Zheng Y, et al. Differentially Expressed Genes 

and Enriched Signaling Pathways in the Adipose Tissue of Obese People. Front Genet. 

2021;12:620740. 

25. Anoveros-Barrera A, Bhullar AS, Stretch C, Esfandiari N, Dunichand-Hoedl AR, Martins 

KJB, et al. Clinical and biological characterization of skeletal muscle tissue biopsies of 

surgical cancer patients. J Cachexia Sarcopenia Muscle. 2019;10(6):1356-1377. 

26. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding 

the molecular basis. Nat Rev Cancer. 2014;14(11):754-762. 

27. Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. 

Nat Rev Dis Primers. 2018;4:17105. 

28. Freire PP, Fernandez GJ, de Moraes D, Cury SS, Dal Pai-Silva M, Dos Reis PP, et al. 

The expression landscape of cachexia-inducing factors in human cancers. J Cachexia 

Sarcopenia Muscle. 2020;11(4):947-961. 

29. Talbert EE, Lewis HL, Farren MR, Ramsey ML, Chakedis JM, Rajasekera P, et al. 

Circulating monocyte chemoattractant protein-1 (MCP-1) is associated with cachexia in 

treatment-naive pancreatic cancer patients. J Cachexia Sarcopenia Muscle. 

2018;9(2):358-368. 

30. Williams A, Sun X, Fischer JE, Hasselgren PO. The expression of genes in the ubiquitin-

proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. 

Surgery. 1999;126(4):744-749; discussion 749-750. 



 

28 

 

31. Khal J, Hine AV, Fearon KC, Dejong CH, Tisdale MJ. Increased expression of 

proteasome subunits in skeletal muscle of cancer patients with weight loss. Int J Biochem 

Cell Biol. 2005;37(10):2196-2206. 

32. Pessina P, Conti V, Pacelli F, Rosa F, Doglietto GB, Brunelli S, et al. Skeletal muscle of 

gastric cancer patients expresses genes involved in muscle regeneration. Oncol Rep. 

2010;24(3):741-745. 

33. Rhoads MG, Kandarian SC, Pacelli F, Doglietto GB, Bossola M. Expression of NF-

kappaB and IkappaB proteins in skeletal muscle of gastric cancer patients. Eur J Cancer. 

2010;46(1):191-197. 

34. Terry EE, Zhang X, Hoffmann C, Hughes LD, Lewis SA, Li J, et al. Transcriptional 

profiling reveals extraordinary diversity among skeletal muscle tissues. Elife. 2018;7. 

35. Olson B, Norgard MA, Levasseur PR, Zhu X, Marks DL. Physiologic and molecular 

characterization of a novel murine model of metastatic head and neck cancer cachexia. J 

Cachexia Sarcopenia Muscle. 2021;12(5):1312-1332. 

36. Huot JR, Novinger LJ, Pin F, Narasimhan A, Zimmers TA, O'Connell TM, et al. 

Formation of colorectal liver metastases induces musculoskeletal and metabolic 

abnormalities consistent with exacerbated cachexia. JCI Insight. 2020;5(9). 

37. Talbert EE, Cuitino MC, Ladner KJ, Rajasekerea PV, Siebert M, Shakya R, et al. 

Modeling Human Cancer-induced Cachexia. Cell Rep. 2019;28(6):1612-1622 e1614. 

38. Suzuki T, Von Haehling S, Springer J. Promising models for cancer-induced cachexia 

drug discovery. Expert Opin Drug Discov. 2020;15(5):627-637. 



 

29 

 

39. Stephens NA, Gallagher IJ, Rooyackers O, Skipworth RJ, Tan BH, Marstrand T, et al. 

Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle 

cancer cachexia. Genome Med. 2010;2(1):1. 

40. Gallagher IJ, Stephens NA, MacDonald AJ, Skipworth RJ, Husi H, Greig CA, et al. 

Suppression of skeletal muscle turnover in cancer cachexia: evidence from the 

transcriptome in sequential human muscle biopsies. Clin Cancer Res. 2012;18(10):2817-

2827. 

41. Bossola M, Muscaritoli M, Costelli P, Grieco G, Bonelli G, Pacelli F, et al. Increased 

muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann 

Surg. 2003;237(3):384-389. 

42. Schersten T, Lundholm K. Lysosomal enzyme activity in muscle tissue from patients 

with malignant tumor. Cancer. 1972;30(5):1246-1251. 

43. D'Orlando C, Marzetti E, Francois S, Lorenzi M, Conti V, di Stasio E, et al. Gastric 

cancer does not affect the expression of atrophy-related genes in human skeletal muscle. 

Muscle Nerve. 2014;49(4):528-533. 

44. Tavares P, Goncalves DM, Santos LL, Ferreira R. Revisiting the clinical usefulness of C-

reactive protein in the set of cancer cachexia. Porto Biomed J. 2021;6(1):e123. 

45. Mueller TC, Bachmann J, Prokopchuk O, Friess H, Martignoni ME. Molecular pathways 

leading to loss of skeletal muscle mass in cancer cachexia--can findings from animal 

models be translated to humans? BMC Cancer. 2016;16:75. 

46. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 

1961;9(2):493-495. 



 

30 

 

47. Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr 

Opin Cell Biol. 2007;19(6):628-633. 

48. Arneson PC, Doles JD. Impaired Muscle Regeneration in Cancer-Associated Cachexia. 

Trends Cancer. 2019;5(10):579-582. 

49. Bossola M, Marzetti E, Rosa F, Pacelli F. Skeletal muscle regeneration in cancer 

cachexia. Clin Exp Pharmacol Physiol. 2016;43(5):522-527. 

50. Zhong X, Zimmers TA. Sex Differences in Cancer Cachexia. Curr Osteoporos Rep. 

2020;18(6):646-654. 

51. Montalvo RN, Counts BR, Carson JA. Understanding sex differences in the regulation of 

cancer-induced muscle wasting. Curr Opin Support Palliat Care. 2018;12(4):394-403. 

52. Smith GI, Mittendorfer B. Sexual dimorphism in skeletal muscle protein turnover. J Appl 

Physiol (1985). 2016;120(6):674-682. 

53. Bredella MA. Sex Differences in Body Composition. Adv Exp Med Biol. 2017;1043:9-27. 

54. Landen S, Hiam D, Voisin S, Jacques M, Lamon S, Eynon N. Physiological and 

molecular sex differences in human skeletal muscle in response to exercise training. J 

Physiol. 2021. 

55. Welle S, Tawil R, Thornton CA. Sex-related differences in gene expression in human 

skeletal muscle. PLoS One. 2008;3(1):e1385. 

56. Maher AC, Fu MH, Isfort RJ, Varbanov AR, Qu XA, Tarnopolsky MA. Sex differences 

in global mRNA content of human skeletal muscle. PLoS One. 2009;4(7):e6335. 

57. Norman K, Stobaus N, Reiss J, Schulzke J, Valentini L, Pirlich M. Effect of sexual 

dimorphism on muscle strength in cachexia. J Cachexia Sarcopenia Muscle. 

2012;3(2):111-116. 



 

31 

 

58. Lindholm ME, Huss M, Solnestam BW, Kjellqvist S, Lundeberg J, Sundberg CJ. The 

human skeletal muscle transcriptome: sex differences, alternative splicing, and tissue 

homogeneity assessed with RNA sequencing. FASEB J. 2014;28(10):4571-4581. 

59. Zhong X, Narasimhan A, Silverman LM, Young AR, Shahda S, Liu S, et al. Sex 

specificity of pancreatic cancer cachexia phenotypes, mechanisms, and treatment in mice 

and humans: role of Activin. J Cachexia Sarcopenia Muscle. 2022;13(4):2146-2161. 

60. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15 Spec No 1:R17-

29. 

61. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The 

transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559-

1563. 

62. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 

2004;116(2):281-297. 

63. Scott MS, Ono M. From snoRNA to miRNA: Dual function regulatory non-coding 

RNAs. Biochimie. 2011;93(11):1987-1992. 

64. Krishnan P, Ghosh S, Wang B, Heyns M, Graham K, Mackey JR, et al. Profiling of 

Small Nucleolar RNAs by Next Generation Sequencing: Potential New Players for Breast 

Cancer Prognosis. PLoS One. 2016;11(9):e0162622. 

65. Krishnan P, Ghosh S, Wang B, Heyns M, Li D, Mackey JR, et al. Genome-wide profiling 

of transfer RNAs and their role as novel prognostic markers for breast cancer. Sci Rep. 

2016;6:32843. 

66. He D, Wu D, Muller S, Wang L, Saha P, Ahanger SH, et al. miRNA-independent 

function of long noncoding pri-miRNA loci. Proc Natl Acad Sci U S A. 2021;118(13). 



 

32 

 

67. Ulitsky I. Interactions between short and long noncoding RNAs. FEBS Lett. 

2018;592(17):2874-2883. 

68. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 

2014;15(8):509-524. 

69. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to 

function. Nucleic Acids Res. 2019;47(D1):D155-D162. 

70. Ge Y, Chen J. MicroRNAs in skeletal myogenesis. Cell Cycle. 2011;10(3):441-448. 

71. Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints 

on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol. 

2020;10:607196. 

72. van de Worp W, Schols A, Dingemans AC, Op den Kamp CMH, Degens J, Kelders M, et 

al. Identification of microRNAs in skeletal muscle associated with lung cancer cachexia. 

J Cachexia Sarcopenia Muscle. 2020;11(2):452-463. 

73. Narasimhan A, Ghosh S, Stretch C, Greiner R, Bathe OF, Baracos V, et al. Small 

RNAome profiling from human skeletal muscle: novel miRNAs and their targets 

associated with cancer cachexia. J Cachexia Sarcopenia Muscle. 2017;8(3):405-416. 

74. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, et al. A 

novel class of small RNAs bind to MILI protein in mouse testes. Nature. 

2006;442(7099):203-207. 

75. Zhong F, Zhou N, Wu K, Guo Y, Tan W, Zhang H, et al. A SnoRNA-derived piRNA 

interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes. 

Nucleic Acids Res. 2015;43(21):10474-10491. 



 

33 

 

76. Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: 

small RNAs with big functions. Nat Rev Genet. 2019;20(2):89-108. 

77. Han YN, Li Y, Xia SQ, Zhang YY, Zheng JH, Li W. PIWI Proteins and PIWI-Interacting 

RNA: Emerging Roles in Cancer. Cell Physiol Biochem. 2017;44(1):1-20. 

78. Li J, Wang N, Zhang F, Jin S, Dong Y, Dong X, et al. PIWI-interacting RNAs are 

aberrantly expressed and may serve as novel biomarkers for diagnosis of lung 

adenocarcinoma. Thorac Cancer. 2021;12(18):2468-2477. 

79. Muller S, Raulefs S, Bruns P, Afonso-Grunz F, Plotner A, Thermann R, et al. Next-

generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, 

miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol Cancer. 2015;14:94. 

80. Krishnan P, Ghosh S, Graham K, Mackey JR, Kovalchuk O, Damaraju S. Piwi-

interacting RNAs and PIWI genes as novel prognostic markers for breast cancer. 

Oncotarget. 2016;7(25):37944-37956. 

81. La Greca A, Scarafia MA, Hernandez Canas MC, Perez N, Castaneda S, Colli C, et al. 

PIWI-interacting RNAs are differentially expressed during cardiac differentiation of 

human pluripotent stem cells. PLoS One. 2020;15(5):e0232715. 

82. Coenen-Stass AML, Sork H, Gatto S, Godfrey C, Bhomra A, Krjutskov K, et al. 

Comprehensive RNA-Sequencing Analysis in Serum and Muscle Reveals Novel Small 

RNA Signatures with Biomarker Potential for DMD. Mol Ther Nucleic Acids. 2018;13:1-

15. 

83. Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse 

cellular functions. Cell. 2002;109(2):145-148. 



 

34 

 

84. Krishnan P, Ghosh S, Wang B, Li D, Narasimhan A, Berendt R, et al. Next generation 

sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic 

markers for breast cancer. BMC Genomics. 2015;16:735. 

85. Wajahat M, Bracken CP, Orang A. Emerging Functions for snoRNAs and snoRNA-

Derived Fragments. Int J Mol Sci. 2021;22(19). 

86. McCann KL, Kavari SL, Burkholder AB, Phillips BT, Hall TMT. H/ACA snoRNA levels 

are regulated during stem cell differentiation. Nucleic Acids Res. 2020;48(15):8686-8703. 

87. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. 

Genetics. 2013;193(3):651-669. 

88. Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long 

Noncoding RNAs. Cell. 2018;172(3):393-407. 

89. Kartha RV, Subramanian S. Competing endogenous RNAs (ceRNAs): new entrants to 

the intricacies of gene regulation. Front Genet. 2014;5:8. 

90. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta 

Stone of a hidden RNA language? Cell. 2011;146(3):353-358. 

91. Bosia C, Pagnani A, Zecchina R. Modelling Competing Endogenous RNA Networks. 

PLoS One. 2013;8(6):e66609. 

92. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long 

noncoding RNA controls muscle differentiation by functioning as a competing 

endogenous RNA. Cell. 2011;147(2):358-369. 

93. Zhu M, Liu J, Xiao J, Yang L, Cai M, Shen H, et al. Lnc-mg is a long non-coding RNA 

that promotes myogenesis. Nat Commun. 2017;8:14718. 



 

35 

 

94. Ye J, She X, Liu Z, He Z, Gao X, Lu L, et al. Eukaryotic Initiation Factor 4A-3: A 

Review of Its Physiological Role and Involvement in Oncogenesis. Front Oncol. 

2021;11:712045. 

95. Narasimhan A, Zhong X, Au EP, Ceppa EP, Nakeeb A, House MG, et al. Profiling of 

Adipose and Skeletal Muscle in Human Pancreatic Cancer Cachexia Reveals Distinct 

Gene Profiles with Convergent Pathways. Cancers (Basel). 2021;13(8). 

96. Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery 

using matrix factorization. Proc Natl Acad Sci U S A. 2004;101(12):4164-4169. 

97. Stein-O'Brien GL, Arora R, Culhane AC, Favorov AV, Garmire LX, Greene CS, et al. 

Enter the Matrix: Factorization Uncovers Knowledge from Omics. Trends Genet. 

2018;34(10):790-805. 

98. Chalise P, Fridley BL. Integrative clustering of multi-level 'omic data based on non-

negative matrix factorization algorithm. PLoS One. 2017;12(5):e0176278. 

99. Cancer Genome Atlas Research Network. Electronic address aadhe, Cancer Genome 

Atlas Research N. Integrated Genomic Characterization of Pancreatic Ductal 

Adenocarcinoma. Cancer Cell. 2017;32(2):185-203 e113. 

100. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al. 

Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 

2018;174(4):1033. 

101. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and 

rectal cancer. Nature. 2012;487(7407):330-337. 



 

36 

 

102. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, et al. Virtual 

microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic 

ductal adenocarcinoma. Nat Genet. 2015;47(10):1168-1178. 

103. Narasimhan A, Greiner R, Bathe OF, Baracos V, Damaraju S. Differentially expressed 

alternatively spliced genes in skeletal muscle from cancer patients with cachexia. J 

Cachexia Sarcopenia Muscle. 2018;9(1):60-70. 

104. Stretch C, Khan S, Asgarian N, Eisner R, Vaisipour S, Damaraju S, et al. Effects of 

sample size on differential gene expression, rank order and prediction accuracy of a gene 

signature. PLoS One. 2013;8(6):e65380. 

105. Stretch C, Aubin JM, Mickiewicz B, Leugner D, Al-Manasra T, Tobola E, et al. 

Sarcopenia and myosteatosis are accompanied by distinct biological profiles in patients 

with pancreatic and periampullary adenocarcinomas. PLoS One. 2018;13(5):e0196235. 

106. Judge SM, Nosacka RL, Delitto D, Gerber MH, Cameron ME, Trevino JG, et al. Skeletal 

Muscle Fibrosis in Pancreatic Cancer Patients with Respect to Survival. JNCI Cancer 

Spectr. 2018;2(3):pky043.

 

 

 



 

37 

 

Chapter 2    Challenges in patient stratification using clinical labels 

for cachexia research and molecular association studies 

2.1  Introduction 

The defining characteristic of cancer cachexia is unintentional weight loss, primarily due to 

skeletal muscle depletion 1. Traditionally, the determination of the presence of cachexia in patients 

with cancer relied on patient-reported weight changes or those obtained from medical charts. WL 

is known to mask the hidden muscle loss or dynamic changes within the muscle during patients' 

disease trajectory 2-4. Imaging modalities such as the opportunistic use of Computed Tomography 

(CT) scan and the quantitative image analysis at a specific landmark (Lumbar vertebrae, L3) 

representative of whole body muscle and fat components have revolutionized cachexia research in 

the last decade 5-7. The ability of image-based technologies to differentiate body composition 

components and their high specificity to discriminate organs and tissues have provided value-

added information for cachexia in patients with cancer. Several researchers have utilized 

retrospective datasets from medical records and image repositories to assess low muscle mass, 

radiodensity, and components of adipose tissue, including Subcutaneous Adipose Tissue (SAT), 

Intermuscular Adipose Tissue (IMAT), and Visceral Adipose Tissue (VAT). The total muscle and 

fat cross-sectional area segmented at L3 normalized by stature provide indices known as the 

Skeletal Muscle Index (SMI, cm2/m2) and Fat Mass Index (FMI, cm2/m2), respectively, as a 

measure of muscle and fat components. Clinical association studies using CT-based image analysis 

and their association with surgical and oncological outcomes have substantially advanced the field 

of cachexia 2,3,5,8-11.  

On the molecular forefront, despite decades of research in understanding mechanisms underlying 

the pathophysiology of cachexia, there are no druggable targets or FDA-approved agents to treat 
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or reverse cachexia. An overall consensus is that more human studies are required to understand 

the molecular mechanisms governing cachexia. Skeletal muscle biopsy acquired by the dedicated 

surgical oncologist during the surgical resection of the tumor is an excellent tool to explore 

biochemical, histological, and molecular data. The accrual of muscle biopsy specimens (which 

otherwise would be an invasive procedure) is considered a minimally invasive procedure since the 

sample collection is performed during surgery.  

To date, molecular studies exploring gene expression and regulation using human skeletal muscle 

biopsies from patients with cancer have not yielded consensus results with animal models or across 

human studies. The research in this area is sparse since the muscle biopsy accrual, otherwise, is an 

arduous process and requires extensive collaboration between surgical oncologists and researchers. 

Ana Anoveros and colleagues performed a state-of-the-science literature review on human skeletal 

muscle biopsy studies (n=59). They reported inconsistencies across studies regarding sample size 

limitations, aggregate sex measures, and differing classification criteria, contributing to low 

quality and risk of sampling bias 12. Comparisons at the molecular level changes were not the focus 

of the review and hence were not reported.  

Decades of research have focused on quantifying gene expression using northern blot or qRT-

PCR. These studies were mainly hypothesis-testing and presented with no consensus regarding the 

comprehensive changes at the molecular level. The hypothesis-generating whole genome studies 

are limited. N=8 mRNA 13-18/miRNA 19,20 profiling studies from the human skeletal muscle of 

patients with cancer are reported. A robust dataset with complete clinical annotation and an entire 

transcriptional landscape from the muscle biopsy of patients with cancer has never been generated.  

A compelling question that remains unanswered is the classification or phenotyping of patients for 

molecular profiling studies. The investigators in human cachexia research have applied varying 
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classification strategies to classify patients as cachexic or non-cachexic based on the 

conventionally defined variables of interest, as mentioned in the previous sections. These include 

varying degrees of percent Weight Loss (%WL, which also includes investigator-defined cut-off 

values for %WL to classify patients) and low SMI determined using literature-derived cut-offs or 

combinations of these as described by the 2011 international diagnostic criteria for cancer 

cachexia. Since muscle mass loss could be hidden within the weight-stable patients and the 

heterogeneity related to classification strategies has never been looked at in the molecular 

association study.  

The traditional molecular association studies using muscle biopsies relied on phenotypic binary 

(clinical labels). However, there is a lack of consensus on the application of clinical labels for 

molecular association studies, which in part, could be one of the reasons for the incongruency and 

validity of findings. Another significant aspect impeding the replicability of findings is that the 

studies have not accounted for sex-specific differences, which is an important confounding 

variable. Sex-specific differences in the biological mechanisms driving muscle wasting 

phenomenon are not understood in human skeletal muscle studies from patients with cancer.  

Thus far, no study has identified clinical heterogeneity within individual male and female patients 

for the clinical labels. Whether the application of these for patient classification, particularly for 

molecular association studies, is unknown.  

Hypothesis: I hypothesize that applying conventional clinical labels (WL, SMI, and BMI) for 

cachexia could present heterogeneity and represent inter-individual variations (concerning the 

clinical labels) and limit their applicability for molecular association studies.  
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Objectives: (i) to accrue clinical data and perform body composition analyses for patients with 

cancer undergoing surgery for tumor resection (ii) to perform bivariate analyses of clinical labels 

and identify the presence of patient-level heterogeneity (iii) to provide recommendations for future 

molecular profiling studies 

This study focusses on the clinical annotation (or phenotyping, used interchangeably) of samples 

for which the muscle biopsy specimens were accrued. 

2.2  Methods* 

2.2.1 Patient recruitment, demographic, and clinical data acquisition 

Medical records were accessed to obtain patient clinical history (demographic, clinical, and 

survival data)†. The data from medical records included: age (>18 years), detailed weight history 

over time, height, Body Mass Index [BMI, weight (kg) /height (m2)], sex, cancer type, date of 

surgery, and time to death or censoring where applicable. Inclusion criteria: Pancreatic and 

colorectal patients with cancer (n=84) from the biobank specimens were selected to reduce cancer 

site heterogeneity and relatively high prevalence of WL and muscle loss. Exclusion criteria 

included missing weight histories, imaging history, and insufficient availability of samples for bio-

profiling.   

The percent weight loss (%WL) was calculated from medical records as follows:  

(current weight – previous weight / previous weight) x 100 

Patients were assigned composite grades based on the Weight Loss-Body Mass Index (WL-BMI) 

grading system ranging from 0-4 21. 

 
* Study was conceptualized by Bhumi Bhatt, Dr. Vickie Baracos and Dr. Sambasivarao Damaraju 
† Medical records were obtained by Bhumi Bhatt and Dr. Vickie Baracos. 
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2.2.2 Body composition analysis 

Cross-sectional CT imaging was used to assess the body composition in patients with cancer2,3,21,22. 

Pre-operative CT images were analyzed‡ for quantifying muscle and fat tissue cross-sectional area 

(cm2) using Slice-O-Matic software Tomovision, Montreal, Quebec, Canada. Single and 

consecutive CTs obtained pre-operatively at Lumbar vertebrae 3 (L3) were analyzed where 

applicable to quantify and assess the dynamic changes in muscle and fat components. Muscle 

radiation attenuation was measured and reported in Hounsfield Units (HU) (range: -29 to +150 

HU). The specific Hounsfield Unit (HU) range for fat components is as follows: -190 to -30 for 

Subcutaneous Adipose Tissue (SAT), -190 to -30 for Intramuscular Adipose Tissue (IMAT), and 

-150 to -50 for Visceral Adipose Tissue (VAT). Total Adipose Tissue (TAT) was calculated as the 

sum of SAT, VAT, and IMAT and reported in cm2. Muscle and fat cross-sectional area was 

normalized for stature and reported as Skeletal Muscle Index (SMI, cm2/m2) and Fat Mass Index 

(FMI, cm2/m2), respectively. Estimates of muscle and fat stores (in kg) were calculated using the 

following regression equation5: 

Whole-body muscle mass (kg) = 0.30 x [skeletal muscle at L3 using CT (cm2)] + 6.06 

Whole-body fat mass (kg) = 0.042 x [fat tissue at L3 using CT (cm2)] + 11.2 

Net %WL was inferred from the cumulative net muscle and fat loss quantified using consecutive 

CTs wherever patient-reported weight histories were missing. WL, SMI, TAT, and FMI were 

interchangeably referred to as body composition variables or clinical labels. Sex-specific median 

bivariate cut-offs were generated for WL, SMI, and FMI.  

 
‡ Bhumi Bhatt obtained certification to perform CT image analysis at the Cross Cancer Institute (2019). 
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2.2.3 Statistical analysis 

Statistical analyses were performed using Rstudio and SPSS v27. Differences between groups 

were analyzed using an independent t-test for continuous variables and Pearson's χ2 test for 

categorical variables. Non-normally distributed variables were compared using the Mann-Whitney 

U test. Correlations between continuous variables were assessed using Pearson correlation 

coefficients using Hmisc and corrplot R packages. Survival analysis was performed using the 

Kaplan-Meier method, and the differences were compared using log-rank tests. A nominal p-value 

of 0.05 was considered statistically significant unless stated otherwise. 

2.3  Results 

2.3.1 Study cohort and patient characteristics 

Each Rectus abdominis muscle biopsy (n=84) was procured and served to generate small RNA 

and RNA sequencing and downstream data pre-processing. Clinical data, including weight history, 

cancer diagnosis, and survival data, were obtained, and body composition analysis was used to 

assess skeletal muscle and fat components. 

This study focused on studying the sex-related differences in the skeletal muscle of patients with 

cancer, and the analysis presented will be sex-specific unless stated otherwise. The cohort was 

57% male (see clinical characteristics in Table 2.1). No statistically significant differences were 

observed in clinical variables such as age, BMI, cancer type, and % weight changes between males 

and females. Significant differences in body composition variables such as SMI and FMI were 

observed. SMI  was higher in males, and FMI was higher in females. 
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Table 2.1 Clinical, body composition and survival analysis for male and female patients 

with cancer 

Demographic or clinical variable Male (n=48) Female (n=36) P-value 

Age, years 64 ± 9 63 ± 10 0.6a 

BMI, kg/m2 26.3 ± 4.3 26.6 ± 7.0 0.8a 

Cancer type    0.2b 

Pancreas, n 19 19  

Colorectal, n 29 17  

Body composition variable    

% Weight loss -3.44 ± 8.8 -5.50 ± 9.4 0.3a 

Skeletal Muscle Index, cm2/m2 48.2 ± 7.8 39.1 ± 8.1 <0.0001a 

Skeletal Muscle Radiodensity, HU 36.0 ± 9.2 28.5 ± 6.8 <0.0001a 

Total Adipose Tissue, cm2 311.3 ± 135.0 358.3 ± 188.9 0.3c 

Fat Mass Index, cm2/m2 103.0 ± 44.7 141.5 ± 80.6 0.02c 

Survival analysis    

Median OS survival (days) 1293 ± 343 764 ± 59 0.08d 

Data presented as mean ± standard deviation. 
a Independent t-test for normally distributed variables 
b Pearson chi-square test for cancer site 
c Mann-Whitney U test for non-normally distributed variables. 
d Log-rank test. 

 

 

2.3.2 Challenges using clinical labels for the identification of molecular markers  

Patient-level heterogeneity from clinical labels limits their applicability to molecular 

characterization of skeletal muscle from patients with cancer. Inter-individual variations in the 

clinical labels were observed. Sex-specific median bivariate cut-offs were generated for clinical 

labels. However, the analyses resulted in disparities in conventionally defined parameters for 
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patient stratification, as represented in Figure 2.1 and Figure 2.2. For example, if one patient 

was classified as a case defined by low skeletal muscle mass, the same patient was classified as a 

control if the criterion was determined by weight stability. This disparity in classifying patients 

as cachexic or non-cachexic based on specific parameters of interest when used for molecular 

association studies (for example, gene expression analyses) could result in some overlap between 

the gene signatures. Hence, these analyses suggest using clinical labels cautiously, particularly 

when considering molecular profiling studies. 
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Sex Category %WL SMI FMI 

Male 
High ≥ -2 ≥ 47.1 ≥ 97.1 

Low < -2 < 47.1 < 97.1 
 

Figure 2.1 Heterogeneity of phenotypes in patients with cancer depicted as a chord diagram 

Sex-specific median bivariate cut-offs for this cohort were generated, as shown in the table depicted 

below the chord diagram. The right end of the sample spectrum (from M1) and the left end of the sample 

spectrum (M48) represent the highest and the lowest median measures, respectively, of %weight, SMI, 

and FMI groups (represented in various colored arcs shown in scale as degrees). 
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Sex Category %WL SMI FMI 

Females 
High ≥ -3 ≥ 38.0 ≥ 123.3 

Low < -3 < 38.0 < 123.3 
 

Figure 2.2 Heterogeneity of phenotypes in patients with cancer depicted as a chord diagram 

Sex-specific median bivariate cut-offs for this cohort were generated, as shown in the table depicted below 

the chord diagram. The right end of the sample spectrum (from F1) and the left end of the sample spectrum 

(F36) represent the highest and the lowest median measures, respectively, of %weight, SMI, and FMI 

groups (represented in various colored arcs shown in scale as degrees). 
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According to the above criteria, it is evident that the patient stratification presents a wide 

phenotypic variation within the individual patient, precluding the approach to classical association 

studies based on a single defined phenotype. For instance, an individual patient exhibiting different 

combinations of the phenotypic spectrum based on WL, SMI, or FMI (proxy to BMI) poses 

challenges to identifying individual RNA classes in the association analysis. This precludes 

integrative analysis and interpretation for a holistic understanding of muscle biology. Such 

complexities in the heterogeneity of skeletal muscle from cancer patients necessitate an unbiased 

approach independent of clinical labels to stratify patients based on transcriptome profiles. For 

example, the patient classified as a case based on percent %WL could represent a control if the 

criterion considered Skeletal Muscle Index (SMI) or Fat Mass Index (and vice versa) in the 

association study design. As such, the cut-offs adopted in literature for clinical labels are highly 

variable, lack clear consensus, and are often based on investigator-defined criteria for patient 

stratification.  

2.4  Discussion 

Classification criteria for molecular profiling studies are heterogenous and have impeded the 

progress in collating, replicating and validating the findings across the molecular studies. There is 

no concordance in implementing a specific classification criterion based on cachexia parameters 

such as % weight changes or SMI.  

This investigation examined the interindividual variations and disparities at the individual patient 

level for phenotypes of weight loss, SMI, or FMI. My study suggests re-evaluating the criteria 

established from clinical cachexia parameters and implementing an unbiased and systematic 

methodology to decode the mechanisms underlying the pathophysiology of cancer-associated 

muscle wasting, particularly for molecular association studies.   
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Currently, there is no preferred animal model to study human cachexia 22-24, and the findings across 

human studies are also not encouraging, owing to the discrepancies in the array of cancer diagnoses 

in sample collection, low sample size, aggregate results for males and females, and classification 

schemas. Johns et al. (2014) analyzed muscle fiber size, biochemical composition, and markers 

for select pathways, including autophagy, SMAD signaling, and inflammation, using four 

classification schemas based on > 5% WL, >10% WL, lean muscle mass (LM), and LM+2%WL. 

They found that muscle fiber size, biochemical composition, and markers for representative 

pathways varied based on the classification strategy 25. Ramge et al. (2016) used rectus abdominis 

muscle biopsies from n=32 patients with cancer. They analyzed protein content which, when 

correlated with weight loss or CT-derived measure of muscle mass, SMI or radiodensity, SMD, 

the protein content varied widely 26. The criterion for %WL has also been debated as it masks the 

skeletal muscle depletion occurring within these cohorts of patients and should be used with 

caution when the study design involves skeletal muscle biopsy from patients with cancer 27.  

Cancer-associated skeletal muscle wasting is an intricate and multifaceted syndrome. 

Identification of molecular markers that could potentially help in identifying cachexia in patients 

with cancer is imperative. A pre-requisite to it is the application of unsupervised methods to 

ascertain patterns based on the expression profiling of patients with cancer. Such broad-scale 

strategies were investigated in diverse cancer settings. However, these need to be determined in 

human cachexia research to facilitate an understanding of muscle wasting in patients with cancer. 

The robust classification system to stratify patients or alternative pattern recognition techniques 

could potentially enhance replicability and validity in identifying biomarkers for putative 

preclinical and clinical trials. The advantage of applying unsupervised learning techniques is that 

they are independent of predefined phenotypic stratifications and can discover inherent patterns 
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within the data. The expression analysis of coding and non-coding RNAs for each clinical label is 

infeasible since permutations and combinations of association analyses would limit the integrative 

analyses and the interpretations. For instance, if three clinical labels were individually assessed for 

the sex-specific expression profiles for coding and non-coding RNAs (total RNA type, n=6), then 

the resulting association studies that would need to be performed would be n=36 (n=3x6=18 

studies, individually for males and females). This concept would potentially affect the aggregation 

and interpretations based on individual RNA types and phenotypes analyzed. Integrative analyses 

are therefore necessary to understand RNA crosstalk.  

2.5  Conclusion 

My study is the first to identify inter- and intra-patient-level heterogeneity for the clinical labels 

used for molecular studies and suggests their use with caution. The clinical labels showed little to 

no overlap across patient groups in this cohort of patients undergoing tumor resection and using 

biopsy collection for expression profiling. Therefore these clinical labels in a muscle biopsy study 

may not fully reflect underlying changes in the muscle of patients with cancer. There is an urgent 

need to address this challenge with an unsupervised machine learning approach to stratify patients 

for molecular association studies. 
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Chapter 3    Whole transcriptome profiling of human skeletal 

muscle and unsupervised clustering to identify molecular subtypes 

in cancer-associated muscle wasting 

3.1  Introduction 

Muscle wasting, with or without the loss of fat mass, is one of the hallmarks of cachexia 1. We 

have little if any, insight into the inherent biological characteristic of human muscle biology in 

patients with cancer. Understanding molecular mechanisms underlying the pathophysiology of 

cancer-associated muscle wasting is derived from experimental model systems, including in vivo 

and in vitro systems. These, however, have limited applicability to the human condition due to 

varied reasons such as (i) heterogeneity in cancer types and models studied, (ii) the rapid 

development of cachexia in animal models (typically timeframe of tumor development is only a 

few weeks), the tumors encompassing about 10% of the entire body mass, (iii) the commonly used 

animal models showed little overlap with the molecular signatures from human muscle biopsies 

2,3. A consensus from animal models of cachexia is that no experimental model exists to study 

cancer cachexia encompassing the effects of metastases 4, chemotherapy 5, and recapitulating 

human clinical cachexia condition. Anoveros and colleagues conducted a systematic review of 

n=59 muscle biopsy studies. They reported fundamental limitations across studies concerning 

heterogenous patient populations due to constraints in accessibility to muscle biopsies, sample 

size, aggregate sex in the documented association analysis, and varying classification criteria, 

amongst others 6. Gene expression studies using human skeletal muscle biopsy from patients with 

cancer have to date, quantified candidate gene expression profiles to elucidate molecular 

mechanisms from a focussed lens. These studies have delineated the role of several pro-

inflammatory mediators and pathways contributing to protein imbalance, muscle wasting, 
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regeneration, and autophagy 7-16. Previous studies were limited to mRNA species, and the data 

generated was from microarray platforms. Further, the classification criteria varied and were 

subject to all crucial limitations explained in Chapter 2. 

Advances in research paradigms in clinical cachexia setting to study human muscle biology are 

needed. The cancer surgery setting serves as the best resource to obtain the relevant tissue of 

interest. The tissue collection is considered minimally invasive, given that the tissue is attained 

simultaneously with the surgical tumor resection. Collaboration between cancer surgeons and 

researchers can enable molecular profiling in cachexia-susceptible cancers. Morphological and 

histological17-19, fiber type composition20, biochemical20, protein21, and mRNA expression 

profiling analysis16,19,22-26 were conducted using the acquired muscle biopsies from the susceptible 

cachexia patient populations. The human genome comprises ~2-3% protein-coding genes, whereas 

an extensive repertoire of the transcribed genome is non-coding RNAs regulating gene expression 

at epigenetic, transcriptional, and post-transcriptional levels27,28. 

Studying whole transcriptional machinery is essential to understand muscle biology in patients 

with cancer since the signaling pathways target the transcriptional machinery. Advances in omics 

and computational biology provide tools to integrate different layers of information to understand 

gene expression regulation. mRNA profiling studies are sparse and heterogenous in patient 

populations. Studies in cancer n=6 only reviewed protein-coding (i.e., mRNA);16,19,22-25 whereas 

n=2 studied miRNAs from skeletal muscle biopsies of patients with cancer29,30. Whole 

transcriptome profiling studies are needed to gain mechanistic insights and an understanding of 

pathophysiology from a vantage point of view.  
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Non-coding RNAs are essential regulators of gene expression and their dysregulation results in 

several diseases. miRNAs and lncRNAs are the most studied non-coding RNAs in the 

experimental model systems studying skeletal muscle biology 31. However, their application in 

clinical samples from patients with cancer is limited to only the studies on miRNAs mentioned 

above. Integrated networks and the crosstalk mechanism between these RNAs contribute to gene 

regulation and may help delineate the processes involved in cancer-associated muscle wasting. 

These need to be studied in integrated analyses to understand the transcriptional changes in the 

skeletal muscle of patients with cancer. Therefore it is necessary to perform unbiased analyses for 

a molecular understanding of human skeletal muscle at the whole transcriptome level.  

Cluster analyses, an unsupervised machine learning method, is a task of grouping a set of data 

objects similar to one another in one group or cluster than those in other groups or clusters. It can 

be used to classify patients based on their expression profiles, help delineate patterns from complex 

high-dimensional datasets and aid in identifying Complex Biological Processes (CBPs). Non-

negative Matrix Factorization (NMF) is an unsupervised learning method that was first applied in 

facial recognition, signal processing, and text mining 32,33. NMF is a matrix decomposition 

approach that decomposes a non-negative matrix into lower-rank non-negative matrices. Brunet et 

al. were among the first to expand NMF application to gene expression studies. They applied the 

NMF algorithm to identify metagenes (a set of genes behaving in a functionally correlated manner 

within the genome) using four independent cancer datasets 34. The challenges inherent to high-

dimensional datasets are that the underlying biological processes are hidden (when no a priori 

hypothesis is presented), and the unsupervised clustering algorithms allow data dimensionality 

reduction and deconvolution of complex biological data into potentially interpretable data entities. 

I used integrative NMF (intNMF) to identify the clusters from NGS-generated whole 
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transcriptome data for human skeletal muscle mass for males and females, respectively. The 

identified clusters in skeletal muscle going forward are referred to as molecular subtypes, or 

subtypes throughout the thesis, analogous to the molecular classifications of tumors from 

transcriptome datasets reported in the literature.  

Several implementations of the NMF algorithm have been proposed and have revolutionalized 

genomics 35-39. Details on the methodology are described in chapter 1. An unbiased approach to 

identifying molecular subtypes of human skeletal muscle from patients with cancer has never been 

undertaken. The inherent variability of the data is unknown; therefore, grouping data according to 

transcriptional patterns is imperative to gain insights into muscle biology, which thus far has never 

been attempted in cachexia research. 

Investigations employing the human skeletal muscle to understand pathophysiological 

mechanisms of cancer-associated muscle wasting have not executed sex-related expression 

analyses. Human skeletal muscle is sexually dimorphic concerning patterns of gene expression, 

fiber type specifications, fatigue resistance, muscle strength, mitochondrial function, muscle 

protein turnover, and intrinsic signaling within the muscle microenvironment 40-46. Cachexia 

research relating to human muscle biopsies from patients with cancer has presented aggregate 

results or has not accounted for sex as a potential confounding variable 6. There have been no 

comprehensive studies to date that have addressed sex-specific differences using whole 

transcriptome datasets. 

I hypothesize that the whole transcriptome dataset generated from the human skeletal muscle of 

patients with cancer, when subjected to unsupervised clustering, would identify molecular 

subtypes. The dysregulated gene expression profiles from the subtypes could explain sexually 
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dimorphic pathways in the muscle of patients with cancer. The objectives of this study are to (i) 

accrue human skeletal muscle biopsies from patients with cancer, (ii) perform whole transcriptome 

Next-Generation RNA sequencing and small RNA sequencing on the obtained muscle biopsies, 

(iii) utilize machine learning-based unsupervised clustering methods to identify sex-specific 

molecular subtypes of human skeletal muscle (iv) to implement clinical benchmark (clinical 

relevance) analyses of subtypes (iv) perform Differential Expression (DE) of RNAs within these 

subtypes (v) identify distinct and common canonical pathways in males and females. 

3.2  Methods§ 

The overall study design is shown in Figure 3.1, represented in two panels. The top panel A depicts 

the acquisition of skeletal muscle biopsy and patient inclusion criteria. The bottom panel B 

illustrates the flow diagram (left to the right arrow) of the body composition assessment using CT 

image analysis, clinical data acquisition, and bio profiling methodology steps. The schematic flow 

diagram for methodological data pre-processing and clustering are outlined in Figures 3.2 and 3.3, 

respectively. 

 
§ Study was conceptualized by Bhumi Bhatt, Dr. Vickie Baracos and Dr. Sambasivarao Damaraju 
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Figure 3.1 Schematic of the study design 
Panel A depicts the exclusion and inclusion criteria of the study cohort for the bio profiling of RNAome; 

Panel B depicts the component data acquisition and downstream analysis modules (left to the right arrow).  

 

3.2.1 Accrual of human skeletal muscle biopsies 

Rectus abdominis muscle biopsies** of pancreatic and colorectal patients with cancer with liver 

metastasis were procured from the regional Hepatopancreaticobiliary/Gastrointestinal Tumor 

Bank (University of Calgary, Alberta, Canada). Patients had undergone laparotomy at the Foothills 

 
** Skeletal muscle biopsies provided by Dr. Oliver Bathe. 
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Hospital, Calgary, from 2006 to 2015. Standard procedures were followed for tissue procurement 

and storage. The operating surgeon (Dr. Oliver Bathe, Surgical Oncologist) took the biopsy 

specimen within 30 mins of the start of the surgery using sharp dissection, immediately flash-

frozen in liquid nitrogen to minimize ischemic shock post-devitalization, and stored it at -80◦C 

until further use. The study participants provided written informed consent and were approved by 

the Conjoint Health Research Ethics Board at the University of Calgary (Ethics ID: E17213). 

Health Research Ethics Board of Alberta (HREBA) – Cancer Committee approved the current 

study protocol for whole transcriptome profiling and access to the patient's clinical information 

(protocol number ETH21709).  

3.2.2 Next-Generation Sequencing (NGS) profiling of human skeletal muscle from 

patients with cancer 

RNA extraction was performed using the Trizol method and Qiagen RNAeasy midi kit 

(Mississauga, ON). The optical density (OD) 260/280 ratio was measured using Nanodrop, and 

RNA integrity number (RIN) was assessed using Agilent Bio-analyzer 2100 for all the samples. 

Services from the Genome Quebec facility (Montreal, Canada) were utilized for library preparation 

and whole transcriptome sequencing of RNA from human skeletal muscle. Briefly, pre-processing 

of isolated total RNA and downstream processing of the samples were as per the manufacturer's 

instructions summarized below:   

a rRNA depleted sequencing (RNA sequencing) 

Total RNA was quantified, and its integrity (RNA integrity Number, RIN) was assessed using 5K 

/ RNA / Charge Variant Assay LabChip and RNA Assay Reagent Kit (Perkin Elmer). All samples 

had RIN values above 5 (90% of samples with RIN >6), and one sample had at RIN 4.3. The RNA 

quality was based on RIN number for paired-end sequencing using rRNA-depleted libraries for 
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RNASeq, and small RNA sequencing was shown to have no dependence on RIN number (except 

for poly-A enriched RNA library preparations). Quality indices were consistently obtained and 

surpassed the recommended thresholds for assessing library and sequence quality scores. rRNA 

was depleted from 250 ng of total RNA using QIAseq FastSelect (Human 96rxns). New England 

BioLabs (NEB) provided the following reagents and kits, including adapters and primers for the 

cDNA synthesis: NEBNext RNA First-Strand Synthesis and NEBNext Ultra Directional RNA 

Second Strand Synthesis Modules were used. The remaining steps of the library preparation were 

performed using  NEBNext Ultra II DNA Library Prep Kit for Illumina. Libraries were quantified 

using the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies) and the Kapa Illumina 

GA with Revised Primers-SYBR Fast Universal kit (Kapa Biosystems). The average size fragment 

was determined using a LabChip GX (PerkinElmer) instrument.  

The libraries were normalized, pooled, and then denatured in 0.05N NaOH and neutralized using 

HT1 buffer. The pooled libraries were loaded at 225pM on an Illumina NovaSeq S4 lane using 

Xp protocol per the manufacturer's recommendations. The run was performed for 2x100 cycles 

(paired-end mode). A phiX library was used as a control and mixed with libraries at 1% level. All 

samples passed a Phred Quality Score of >30, as per the manufacturer's recommendations. Base-

calling was performed with RTA v3.4.4. Program bcl2fastq2 v2.20 was then used to demultiplex 

samples and generate fastq reads. 

b Small RNA sequencing (Small RNA seq) 

Total RNA was quantified, and its integrity (RIN) was assessed as described above for the 

RNASeq protocol. Libraries were generated from 300 to 800ng of total RNA using the NEBNext 

Multiplex Small RNA Library Prep Kit for Illumina, as per the manufacturer's recommendations. 

cDNA construct purification has been performed using SparQ beads (Qiagen). Final libraries were 
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quantified using the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies) and the Kapa 

Illumina GA with Revised Primers-SYBR Fast Universal kit (Kapa Biosystems). The average size 

fragment was determined using a LabChip GX (PerkinElmer) instrument. 

The libraries were normalized and pooled and then denatured in 0.05N NaOH and neutralized 

using HT1 buffer. The pool was loaded at 225pM on an Illumina NovaSeq SP lane using 

Xp protocol as per the manufacturer's recommendations. Downstream steps in the sequencing 

protocol are the same as adopted for RNASeq, including base calling, demultiplexing, and 

generating fastq reads.  

3.2.3 Analysis of raw sequence files and Differential Expression (DE) of RNAs†† 

The data analyses of raw fastq sequence files were performed using Partek Flow software 

v10.0.21.0929 (Copyright ©; 2018 Partek Inc., St. Louis, MO, USA)  unless specified otherwise. 

The raw fastq files were subjected to Cutadapt 47 for the 3' adapter trimming. The trimmed reads 

were then aligned to Human Genome (reference index hg38) using STAR aligner 48 (v2.7.3a) and 

Bowtie 49 (v.2.2.5) for RNA seq and small RNA seq data, respectively. The generated .bam files 

were quantified to transcriptome using RNAs obtained from different annotation databases: 

Ensembl transcripts v102 was used to quantify lncRNA and mRNA, miRNA using miRbase v2250, 

snoRNA using snoDB 51 v1.2.0, piRNA using piRNAdb v1.8.0 52, and tRNA using GtRNAdb53. 

The features (the terminology is used interchangeably referring to RNAs) were filtered for ten read 

counts in 90% of samples following quantification of the reads. Differential Expression (DE) 

analysis of the RNAs was performed using the DESeq2 54 R package. RNAs were considered to 

be DE at a Fold-change cut-off of 1.5 and a nominal P <0.05 (unadjusted), and a False Discovery 

Rate (FDR, adjusted) P<0.05. 

 
†† Bioinformatic analyses were performed by Bhumi Bhatt. 
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3.2.4 Non-negative Matrix Factorization (NMF) clustering for single RNA species‡‡ 

Non-negative Matrix Factorization (NMF) is an unsupervised machine learning method 

conventionally used in molecular tumor profiling studies to identify clusters (groups) from 

multidimensional data and to uncover Complex Biological Processes (CBPs) 34,55. The [gene x 

sample] expression matrix from the whole transcriptome datasets was generated and used as input 

for the algorithm. Data pre-processing steps are shown, and the overarching flow diagram is 

described in Figure 3.2. Briefly, the raw read counts were filtered, and feature selection was 

applied to filter out features that did not vary across the samples but selected only those that 

showed the most variance. The analysis was performed using the R package NMF 56. Variance 

Stabilized Transformed (vst) counts [gene x sample] matrix was subjected to the downstream 

analysis to identify molecular subtypes using the methods of Kullback-Leibler (KL) divergence 

and Euclidean. The algorithm was run for 30 iterations and fixed initializing seed parameters (with 

the predefined lower and upper limit of k clusters as 2:4) to estimate the optimal number of clusters. 

After ascertaining the number of clusters, the algorithm was run for 200 iterations to arrive at a 

consensus number of clusters using the same parameters above. The quality of the clusters and the 

optimal number of clusters were assessed using cophenetic coefficient (Ω), consensus maps (or 

connectivity matrix plots), Silhouette Width (SW), and the considerations of study sample size 

within the clusters. Rand Index (RI) scores, a metric of the similarity between the clustering results 

from two different RNA classes, were used to determine the similarity between the cluster 

annotations within the individual RNA class. I computed the RI using the R package Aricode. 

Rand Index 57 is calculated as follows:  

 

 
‡‡ Machine learning analyses were performed by Bhumi Bhatt. 
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𝑹 =
𝒂+𝒃

𝒂+𝒃+𝒄+𝒅
   =  

𝒂+𝒃

(
𝒏
𝟐)

 

a = number of pairs of clusters identified from the NMF clustering algorithm and the pairwise 

comparisons of sample identities being the same in a given set of RNA classes  

b = number of pairs of clusters identified from the NMF clustering algorithm and the pairwise 

comparisons of sample identities being different in a given set of RNA classes  

c = number of pairs of clusters identified from the NMF clustering algorithm and the pairwise 

comparisons of sample identities being the same in RNA class 1 and different in RNA class 2  

d = number of pairs of clusters identified from NMF clustering algorithm and the pairwise 

comparisons of sample identities being different in RNA class 1 and same in RNA class 
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Figure 3.2 Flow-diagram for identifying molecular subtypes from single RNA species using 

Non-negative Matrix Factorization (NMF) 
Individual RNAs (mRNA, lncRNA, miRNA, piRNA, tRNA, and snoRNA) were subjected to data pre-

processing steps, feature selection, and clustering using the NMF algorithm to identify consensus clusters 

for each RNA class (each RNA class boxed in the figure). Data pre-processing steps from the raw sequence 

data to normalized counts are shown on the left panel, feature selection is shown in the middle panel, and 

workflow for NMF for individual RNA classes is shown in the right panel. 

 

3.2.5 Integrative Non-negative Matrix Factorization (intNMF) clustering to identify 

molecular subtypes of human skeletal muscle  

The flow diagram for identifying consensus molecular subtypes using the intNMF algorithm 58 is 

shown in Figure 3.3. Using one RNA class to identify the molecular subtype of muscle does not 

provide an intuitive understanding and holistic picture of the underlying pathophysiology. 

Integrative unsupervised approaches are therefore necessary. Sex-specific integrative analyses 

were performed for all RNA classes. The filtered, normalized, and transformed [sample x gene] 
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matrix was subjected to intNMF analysis using the R package intNMF. An integrative analysis 

was implemented, combining all the RNA classes to determine the molecular subtypes of human 

skeletal muscle. The intNMF algorithm was run at 100 iterations using a random initializing seed 

parameter of an optimal number of clusters, 2-4 (k=2:4), with 5-fold cross-validation and 

Euclidean as a distance metric. The optimal number of clusters was selected based on the 

considerations of study sample size within the clusters, Cluster Prediction Index (CPI), and SW as 

quality indices. 

 

Figure 3.3 Flow diagram for identifying molecular subtypes using integrative Non-negative 

Matrix Factorization (intNMF) 
The whole transcriptome normalized and transformed read count data (mRNA, lncRNA, miRNA, piRNA, 

tRNA, and snoRNA, all RNAs considered together and marked within a single box in the figure) were 

subjected to data pre-processing steps, feature selection, and intNMF algorithm to identify consensus and 

coherent molecular subtypes of human skeletal muscle. 
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3.2.6 Statistical analysis 

Statistical analyses were performed using Rstudio and SPSS v27. Differences between groups 

were analyzed using an independent t-test for continuous variables and Pearson's χ2 test for 

categorical variables. Non-normally distributed variables were compared using the Mann-Whitney 

U test. Correlations between continuous variables were assessed using Pearson correlation 

coefficients using Hmisc and corrplot R packages. Survival analysis was performed using the 

Kaplan-Meier method, and the differences were compared using log-rank tests. Statistical 

significance was determined at P < 0.05 unless otherwise specified within the text.  

3.2.7 Functional insights into pathway-level regulation using Ingenuity Pathway Analysis 

(IPA) 

Differentially Expressed (DE) genes were subjected to pathway analysis and functional annotation 

using Ingenuity Pathway Analysis 59(IPA, 

QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). P-

value in IPA is calculated using right-tailed Fisher’s exact test, and it tests the likelihood that the 

association or overlap between a set of molecules from the experimental data set and the associated 

pathway or process predicted from the IPA knowledge base is due to random chance alone. The 

smaller the p-value, the less likely that the association is random. -log(P-value) threshold of 1.3 

(equivalent to a nominal p-value of 0.05) was used to define statistically significant pathways. 

 

3.3  Results 

3.3.1 Next-Generation Sequencing profiling of human skeletal muscle 

The overall study design is shown in Figure 3.1. Rectus abdominis muscle biopsies (n=84) and 

each biopsy specimen served to generate small RNA and RNA sequencing and downstream data 

about:blank
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pre-processing. Each patient's muscle biopsy specimen was used in this study to generate global 

transcriptome expression profiles. The RNA species studied were mRNA (protein-coding), small 

RNAs (<200 nt, miRNAs, snoRNAs, piRNAs, tRNAs), and long non-coding RNAs (>200 nt, 

lncRNAs). The expression landscape (normalized and transformed read counts) for all RNA 

species for males and females is summarized. No significant differences in the relative abundance 

of RNA species between males and females were observed, as shown in Figure 3.4, ruling out 

bias at the expression level (read counts) per se between the sexes. Amongst the RNA species, 

mRNAs were highly abundant, followed by: 

snoRNAs > lncRNAs > tRNAs > miRNAs > piRNAs. 

 

Figure 3.4 Relative abundance of RNA classes in human skeletal muscle from patients with cancer 

A total of six RNAs were profiled from n=84 muscle biopsy specimens from patients with cancer, and their 

expression profile distribution (normalized read counts) is shown individually for males (left panel) and 

females (right panel), respectively. The relative distribution of RNAs within skeletal muscle expression 

profiles of males and females was not statistically significant (P-value for the test of proportions >0.8 for 

all RNAs between males and females).  
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3.3.2 Individual RNAs in clustering analyses using Non-negative Matrix Factorization 

(NMF) 

RNAs identified from the human skeletal muscle of patients with cancer are described: (Males: 

18586 mRNAs, 16204 lncRNAs, 479 mature miRNAs, 868 piRNAs, 608 snoRNAs, tRNAs 408; 

Females: 18548 mRNAs, 16183 lncRNAs, 565 mature miRNAs, 838 piRNAs, 604 snoRNAs, 

tRNAs 410). Individual RNA species were subjected to an unsupervised NMF algorithm to 

determine human skeletal muscle molecular subtypes. Read count filtering of 1 read count in 100% 

of samples was applied, and the features that did not vary across the patient samples were removed. 

The optimal number of clusters k=2 was selected for all the RNA classes based on the quality 

metrics (Silhouette width and cophenetic coefficient) and sample size considerations.  

From the obtained two-cluster model, I compared the sample similarity between clusters using 

Rand Index (RI) derived from individual RNA classes (Figure 3.5). Up to 50% of the sample 

labels were identical in all NMF clusters, and the remaining sample labels were disseminated 

widely based on the class of RNA used for clustering. These results highlight that individual RNA 

expression profiles have the intrinsic ability to partition the data into unique and distinct clusters, 

and the lack of complete overlap of sample labels supports the earlier observations that clinical 

cachexia labels alone are insufficient to guide the clustering of molecular data.  
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Figure 3.5 Sample similarity matrix for NMF generated clusters computed using Rand Index (RI) 

RIs identify the sample similarity between the RNA classes and are shown individually for males (top 

panel) and females (bottom panel). RIs range from 0-1, with 1 being a 100% overlap of samples in the 

class comparisons. Pairwise RNA matrices were delineated separately for the sexes.  
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Note that in traditional association studies, samples were binarized as cases or controls based on 

the investigator-defined phenotypic criteria. The above sample similarity matrix analysis shows 

that some RNAs split the samples differently; males show an extensive sample overlap within the 

clusters driven by miRNA with piRNAs. In females, sample overlap was seen with miRNAs, 

piRNAs, and snoRNAs, whereas the sample overlap was 49-61% for other RNA classes and their 

pair-wise comparison. 

 

3.3.3 Integrative NMF (intNMF) clustering of human skeletal muscle transcriptome  

High dimensional data from profiling studies may capture a holistic view of the complex biological 

patterns in the health and diseased states. The integrated approach helps identify disease subtypes, 

potential biomarkers, and underlying pathophysiological insights. The whole transcriptome 

profiles with annotated RNA species are as follows: Males: 18586 mRNAs, 16204 lncRNAs, 479 

mature miRNAs, 868 piRNAs, 608 snoRNAs, and 408 tRNAs. Females: 18548 mRNAs, 16183 

lncRNAs, 565 mature miRNAs, 838 piRNAs, 604 snoRNAs, and 410 tRNAs; The intNMF 

clustering algorithm 58 was applied using a combination of all input RNA classes to classify 

patients into disjoint and coherent clusters based on global transcriptome expression profiles. A 

predefined cluster range K=2:5 was initially investigated with 100 iterations for each of the sexes 

and using 5-fold cross-validation. Silhouette width (SW) and Cluster Prediction Index (CPI) were 

quality metrics used to assess cluster solutions. k=2 cluster solution was consistent in all iterations 

when a high stringency of SW or CPI was considered. k=2 cluster solution was also consistent 

when sample considerations were adhered to maintain statistical rigor. In my analysis, the sample 

size for males (n=48) and females (n=36) align well with previous studies that reported a minimum 

sample size of n=36 as a prerequisite to confidently calling the optimum number of clusters. Given 

these considerations, males showed n=27 and n=21 samples in Cluster 1: Cluster 2, and females 
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showed n=18 samples in each cluster, respectively. Hereafter I use the terminology of clusters 1 

and 2 synonymously with skeletal muscle molecular subtype 1 and subtype 2, respectively. The 

intNMF method encompassing the entire transcribed genome offers an unbiased stratification of 

patients, independent of clinical labels, with cancer from their muscle transcriptome, providing a 

premise for the association of the subtypes with differential expression of genes and an in-depth 

analysis of the subtypes for tissue-level regulation of genes. 

3.3.4 Clinical benchmark analyses of the intNMF subtypes 

I performed two independent analyses to understand the clinical relevance of the intNMF subtypes. 

I refer to them as clinical benchmark analyses or clinical benchmarking of the intNMF subtypes 

throughout the thesis document. I conducted the first association analysis of the subtypes using the 

WL-BMI grading system 60 and the second association analysis using the age- and sex-adjusted 

distribution of CT-defined body composition at the L3 level in the single largest population of 

patients with cancer 61. The analysis methods are described in the subsequent sections.  

3.3.5 Association of clusters with the (a) WL-BMI grades and (b) ZSMI  

One of the first steps to understanding the inherent characteristics of clusters was to identify their 

association with the WL-BMI grading schema proposed by Martin et al. (2015) 60 and the ZSMI 

distribution based on literature-reported ZSMI cutoffs.61. Of note, in the low-grade cluster (cluster 

2) in both male (n=4) and female patients (n=4), total n=8 patients showed SMI values at or above 

those reported for healthy 30-year old kidney donors in male and female subjects, respectively 62. 

There were no such observations for subtype 1. An interesting observation from this analysis was 

that although 10% of patients in cluster 2 (i.e., the less severe group related to cachexia severity) 

had high WLBMI grades (Figure 3.6), they had higher muscle mass (i.e., from ZSMI values). 

Similar trends also followed for the same cluster 2 wherein, although patients belonged to low 
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muscle mass distribution, they were in the stable weight category. This analysis output reinstates 

using unsupervised methods to stratify patients for molecular association studies in lieu of 

heterogenous clinical labels.  

Despite the similarities or differences in the proportional association of subtypes with WL-BMI 

grades and z-SMI distribution, the overall take-home message is that subtype 1 is a relatively high-

risk group affected by cachexia compared to subtype 2. The given comparisons could be used as a 

working hypothesis for lack of a better metric to annotate the subtypes. This is corroborated by an 

independent experimental approach to compare the subtypes with model systems referred to as 

functional benchmarking, described in chapter 5. It is not to say that one approach is better and 

adequate. The overall consensus is reached from all of the above analytical methods. In this 

context, one should recall that the use of ML is to decipher subtypes in an unbiased manner, 

independent of clinical labels. Therefore, the benchmark analyses described in this thesis attempt 

to understand the subtype characteristics.  

The association analysis results of samples within the clusters to the WL-BMI grades and ZSMI 

is represented in Figure 3.6 for males and Figure 3.7 for females. The aggregate analysis 

performed by combining all samples (n=84) is represented in Figure 3.8, respectively. The 

association statistics of the clusters for males, females, and aggregate samples (combined for males 

+ females) are presented in Table 3.1. Statistical significance was ascertained using Fisher’s exact 

test. * represents statistical significance at P-value < 0.05 and ** represents P-value < 0.001. 

Significant differences were observed between the assignment of two clusters based on the grading 

system and ZSMI distribution, with the high-grade cluster showing a higher proportional 

association with high WL and low muscle mass in males and females, as well as for the combined 

sample analyses.  
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Figure 3.6 Clinical benchmark analyses for males.  
The pie charts depict the distribution of samples within the clusters based on the WL-BMI grades and z-

SMI distribution for the subtypes in males. High and Low-Grade labels correspond to the WL-BMI 

classification schema for the associated skeletal muscle subtypes. 
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Figure 3.7 Clinical benchmark analyses for females 
The pie charts depict the distribution of samples within the clusters based on the WL-BMI grades and z-

SMI distribution for the subtypes in females. High and Low-Grade labels correspond to the WL-BMI 

classification schema for the associated skeletal muscle subtypes. 
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Figure 3.8 Clinical benchmark analyses for aggregate samples 
The pie charts depict the distribution of samples within the clusters based on the WL-BMI grades and z-

SMI distribution for the subtypes in overall samples. High and Low-Grade labels correspond to the WL-

BMI classification schema for the associated skeletal muscle subtypes.  
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Table 3.1 Association statistics of the sex-specific clusters with WL-BMI grades and Z-SMI distribution 

 

Subtype 1 = WL/low muscle mass 

Subtype 2 = No WL/high muscle mass 
+Fisher’s exact test 

* represents statistical significance at P-value < 0.05  

** represents P-value < 0.001  

*** represents P-value < 0.0001. 

 

 

 Males 

(n=48) 

 
Females 

(n=36) 

 Males + Females 

(n=84) 

Clinical 

Labels 

Subtype 1 

(n=27) 

Subtype 2 

(n=21) 

P 

value 

 

Subtype 1 

(n=18) 

Subtype 2 

(n=18) 

P 

value 

 

Subtype 1 

(n=45) 

Subtype 2 

(n=39) 

P 

value+ 

WL-BMI 

grade 
   

 

   
 

   

Grade 0 or 1 12 (44%) 17 (81%) 

0.04* 

 

6 (33%) 13 (72%) 

0.03* 

 

18 (38%) 30 (75%) 

0.003** 
Grade 2 6 (22%) 0 (0%) 

 

2 (11%) 2 (11%)  10 (21%) 2 (5%) 

Grade 3 4 (15%) 2 (10%) 
 

5 (28%) 3 (17%)  9 (19%) 6 (15%) 

Grade 4 5 (19%) 2 (10%) 
 

5 (28%) 0 (0%)  10 (21%) 2 (5%) 
 

Z-SMI 

distribution 
   

 

   
 

   

> +1 SD 0 (0%) 4 (19%) 

0.001** 

 

0 (0%) 5 (28%) 

0.04* 

 0 (0%) 9 (23%) 

0.0001*** 
+1SD to -

1SD 
23 (85%) 8 (38%) 

 

13 (72%) 8 (44%) 
 

36 (80%) 16 (41%) 

< -1SD 4 (15%) 9 (43%) 
 

5 (28%) 5 (28%)  9 (20%) 14 (36%) 
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3.3.6 Differential Expression (DE) of coding and non-coding genes in the muscle subtypes 

from intNMF classification 

Molecular subtypes of human skeletal muscle derived from unsupervised ML algorithms do not 

directly allude to the underlying complex biological processes. Therefore, I subjected the global 

gene profiling data to differential expression analysis to discern the dysregulated genes in muscle 

subtype 1 relative to subtype 2 based on intNMF sample compositions for these subtypes in sexes 

(Appendix Tables A.1-A.11). All RNA classes were analyzed individually. The following DE 

RNAs were identified in males: 3519 mRNAs, 4231 lncRNAs, 59 snoRNAs, 72 miRNAs, and 136 

piRNAs. The DE RNAs identified in females are 2847 mRNAs, 2638 lncRNAs, 57 snoRNAs (57), 

39 miRNAs, and 26 piRNAs. tRNAs were not found to be DE in either sex except for one DE 

tRNA in males (Appendix Table A.6). Sex-related differences in DE profiles showed an overlap 

between the sexes as follows: mRNAs (n= 2376, 59%) and lncRNAs (n= 2385, 53%). 

Interestingly, a limited overlap of small ncRNAs was observed between the sexes (n=17, 34.7% 

for miRNAs, n=7, 6.4% for piRNAs, and n=7, 6.4% for snoRNAs), indicating the small ncRNAs 

are highly sexually dimorphic compared to mRNAs and lncRNAs.  

Overall, there is a trend towards higher DE coding and non-coding transcripts in males. There were 

no DE tRNAs in females, and one DE tRNA was observed in males between the subtypes. It is 

noted that tRNAs governing protein synthesis machinery were not differentially expressed 

between the subtypes identified in males and females. Thus far, mechanisms have highlighted the 

importance of protein degradation pathways relative to impaired protein synthesis. tRNAs have 

shown high DE in various cancers compared to healthy non-cancerous counterparts as a necessary 

condition under which the growth of tumor mass, increased protein synthesis, dysregulated 

apoptotic machinery, and uncontrolled cell division was explained 63. Human skeletal muscle is 
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predominantly a differentiated tissue, and it is not surprising that the tRNA expression is not 

dysregulated between the muscle subtypes and appears to reflect a state of skeletal muscle 

homeostasis in patients with cancer. In contrast, other coding and non-coding RNAs are highly 

differentially expressed. There are 497 tRNAs in the human genome 53, and my profiling study 

identified 409 and 411 in male and female muscle biopsies, respectively. RNA modifications 

affecting sequencing were not accounted for, and previous studies in other models have not 

supported this premise for tRNA sequencing-based DE profiles 63.  

3.3.7 Comprehensive heatmap representation of the DE profiles in muscle subtypes 

The unsupervised clustering method, intNMF, identified two molecular subtypes of muscle for 

males and females. A Heatmap of row-scaled normalized and log-transformed expression of 200 

DE mRNAs is illustrated, wherein the top 100 up-and down-regulated genes were considered for 

the schematic representation (Panel A in Figures 3.9 and 3.10 for males and females, respectively).  

The clinical labels for the corresponding samples are shown below the heatmap for individual 

subtypes and age and cancer diagnosis (Panels B and C in Figures 3.9 and 3.10 for males and 

females, respectively). Overall the individual parameters do not define the subtypes based on the 

binary classification of clinical labels and show significant non-overlap with the machine learning-

identified subtypes of skeletal muscle. Therefore the premise presented herein offers a novel 

modality to reveal complex biological processes underlying muscle wasting in patients with cancer
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Figure 3.9 Heatmap representation of differentially expressed genes from human skeletal muscle 

molecular subtypes in males 

The Heatmap schematic depicted represents the top 200 Differentially Expressed (DE) mRNAs with 

identified muscle subtypes 1 and 2. Panel A represents row-scaled normalized and log-transformed 

expression for mRNAs between the two-consensus clusters computed using the intNMF algorithm. 

Columns in the heatmap annotation represent samples. Panel B shows sample label distribution from 

individual RNAs using NMF clusters for comparison. Panel C is the annotation for clinical and body 

composition variables. SMI, cancer type, and WL-BMI grades are depicted. The right panel (next to the 

heatmap) is a schematic representation of the Silhouette Width (SW). SW is an index representing the 

validity of clusters within a range 0-1, with 1 meaning that the samples within the clusters are closest 

compared to their neighboring clusters. 0 indicates samples within the cluster are primarily distinct and do 

not belong to the same cluster.  
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Figure 3.10 Heatmap representation of differentially expressed genes from human skeletal muscle 

molecular subtypes in females 

The Heatmap schematic depicted represents the top 200 Differentially Expressed (DE) mRNAs with 

identified muscle subtypes 1 and 2. Panel A represents row-scaled normalized and log-transformed 

expression for mRNAs between the two-consensus clusters computed using the intNMF algorithm. 

Columns in the heatmap annotation represent samples. Panel B shows sample label distribution from 

individual RNAs using NMF clusters for comparison. Panel C is the annotation for clinical and body 

composition variables. SMI, cancer type, and WL-BMI grades are depicted. The right panel (next to the 

heatmap) is a schematic representation of the Silhouette Width (SW). SW is an index representing the 

validity of clusters within a range 0-1, with 1 meaning that the samples within the clusters are closest 

compared to their neighboring clusters. 0 indicates samples within the cluster are primarily distinct and do 

not belong to the same cluster.  
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3.3.8 Ingenuity Pathway Analysis (IPA) for the DE mRNAs between skeletal muscle 

molecular subtypes  

There is a lack of a dedicated knowledge base for the functional annotation of human skeletal 

muscle tissue-specific gene expression profiles. IPA data are not enriched for human skeletal 

muscle transcriptome, and the functional annotations are based on published findings and manual 

curation of the data fields, primarily from cancer tissues and cell lines. Nonetheless, this study 

demonstrates the utility of IPA as a knowledge base in interpreting skeletal muscle transcriptome 

profiles. The compelling premise of this study rests on the fact that biology is redundant in that 

several genes contribute to the regulation of the same pathway in different cells and tissues and 

exhibit pleiotropy: the same gene might contribute to multiple pathways. Hence sexual 

dimorphism in the regulatory mechanisms of skeletal muscle in cachexia is interrogated at the gene 

and pathway levels using IPA knowledge.  

There were two prime objectives for performing pathway analyses: one was to identify sexually 

dimorphic patterns of pathways, and the second was the functional annotation of subtypes at the 

DE gene level. I subjected the DE mRNAs within the muscle subtypes in males and females to 

IPA core analysis. The Venn diagram (Figure 3.11) indicates males' and females' overlapping and 

distinct canonical pathways. There was a significant overlap of canonical pathways between males 

and females at 66.4% (n=71 pathways, P-value <0.05 or -log(P-value) ≥ 1.3), with 19.6% (n=21 

pathways) and 14% (n=15 pathways) unique pathways enriched in males and females, 

respectively. Detailed pathway analysis results are reported in the bubble plots of the distinctive 

pathways in males (Figure 3.12) and females (Figure 3.13). Although a substantial overlap of the 

pathways was observed between males and females (n=71), the results are reported independently 

as bubble plots for males (Figure 3.14) and females (Figure 3.15). This is due to the differing 
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count of molecules or genes within the pathways, and their differing statistical significance, -log(P-

value)  and gene expression differences (fold-change)  within each pathway for the individual 

sexes. The considerable overlap at the level of pathways supports the view that redundancy and 

pleiotropy are characteristics of the genes conferring pathways and phenotypes. This aspect has 

been discussed in detail in the ensuing Chapter 5, wherein I provided a detailed list of the molecules 

regulating the pathways as supporting evidence for the same gene contributing to different 

pathways. 

There is no apriori information on the human skeletal muscle whole transcriptome sequencing 

dataset and no standard way to annotate the clusters identified in this study. Clinical benchmarking 

using the WL-BMI grading system and z-SMI distribution indicated subtype 2 to be a relatively 

less severe group in terms of WL-BMI grades and z-SMI distribution compared to subtype 1. In 

silico pathway analysis was performed to elucidate the common and distinct pathways enriched in 

males and females. Male pathway analysis results revealed pathways relatively enriched in 

inflammatory and immune cell regulation, and female expression analyses revealed pathways 

relatively more enriched in metabolic regulation. For example, acute phase response signaling, 

IL17 signaling, and the role of cytokines in mediating communication between immune cells, 

amongst others, were found to be exclusively regulated in males. In contrast, the urea cycle, 

triacylglycerol degradation, ethanol degradation, phospholipases, and eicosanoid signaling were 

found to be regulated solely in females. Overall, the overlapping pathways involved 

neuroendocrinal, metabolic, and immune cell regulatory pathways were enriched in males and 

females. Thus, from the clinical and in silico bioinformatic analyses, it is evident that subtype 1 is 

a relatively more severe muscle wasting group than subtype 2.  
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Figure 3.11 Venn diagram of canonical pathways between males and females 
Sex-specific differentially expressed genes between the subtypes subjected to Ingenuity Pathway 

Analysis. The Venn diagram indicates the overlapping (brown intersection) and unique pathways between 

males (blue) and females (peach). The pathways significantly enriched in males and females at -log(P-

value) ≥ 1.3 overlapped to examine the sexually dimorphic expression patterns of the canonical pathways.  
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Figure 3.12 Bubble plot of unique pathways in males from skeletal muscle gene expression profiles 

N=21 statistically significant canonical pathways were exclusively enriched in males (Figure 3.11, left 

side of the Venn diagram). The bubble plot illustrates these  21 canonical pathways in males and is 

arranged based on the increasing order of the count of molecules or genes within a given pathway. The X-

axis represents the number of molecules or genes within the individual pathways. Y-axis represents the 

terminology of the canonical pathways identified from IPA.  The bubble size corresponds to the count of 

molecules within the pathways, as indicated in the legend on the bottom right side of the figure, i.e., small 

to large bubbles representing a low to a high number of molecules within the given pathway, respectively.  

The color gradient within the bubbles corresponds to the statistical significance, as indicated in the 

figure's legend on the top right side. Blue to red is indicative of low to high statistical significance, 

respectively. 
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Figure 3.13 Bubble plots of unique pathways in females from skeletal muscle gene expression 

profiles 

N=15 statistically significant canonical pathways exclusively enriched in females (Figure 3.11, right side 

of the Venn diagram). The bubble plot illustrates these  15 canonical pathways in females and is arranged 

based on the increasing order of the count of molecules or genes within a given pathway.  The X-axis 

represents the number of molecules or genes within the individual pathways. Y-axis represents the 

terminology of the canonical pathways identified from IPA.  The bubble size corresponds to the count of 

molecules within the pathways, as indicated in the legend on the bottom right side of the figure, i.e., small 

to large bubbles representing a low to a high number of molecules within the given pathway, respectively.  

The color gradient within the bubbles corresponds to the statistical significance, as indicated in the 

figure's legend on the top right side. Blue to red is indicative of low to high statistical significance, 

respectively.
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Figure 3.14 Bubble plot of the overlapping pathways from the male pathway analysis dataset 

N=71 statistically significant canonical pathways overlapped between males and females (Figure 3.11, 

overlapping Venn diagram intersection). Despite the considerable overlap, the bubble plots are represented 

separately for males and females due to the differing count of molecules within the pathways and their 

statistical significance. The bubble plot in this figure illustrates 71 canonical pathways from the male 

dataset. It is arranged based on the increasing order of the count of molecules or genes within a given 

pathway.  The X-axis represents the number of molecules or genes within the individual pathways. Y-axis 

represents the terminology of the canonical pathways identified from IPA. The bubble size corresponds to 

the count of molecules within the pathways, i.e., small to large bubbles representing a low to a high number 

of molecules within the given pathway, respectively.  The color gradient within the bubbles corresponds to 

the statistical significance, as indicated in the figure's legend on the top right side. Blue to red is indicative 

of low to high statistical significance, respectively.  
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Figure 3.15 Bubble plot of the overlapping pathways from the female pathway analysis dataset 

N=71 statistically significant canonical pathways overlapped between males and females (Figure 3.11, 

overlapping Venn diagram intersection). See Figure 3.14 for caption details. 



 

89 

 

3.4  Discussion 

Cancer-associated muscle wasting emanates from synergistic interactions of myriad mediators, 

perturbations of signaling events, and biological pathways contributing to the wasting 

phenomenon. This investigation provides insights into the unsupervised clustering-based 

identification of sex-specific molecular clusters or subtypes of human skeletal muscle from 

patients with cancer. Unsupervised clustering facilitated the identification of two sex-specific 

coherent molecular subtypes of muscle using the entire transcribed genome within the skeletal 

muscle of patients with cancer. The subtypes were consequently subjected to molecular 

characterization (DE of genes within subtypes and sexes) to gain functional insights. Clinical and 

in silico methods were used to ascertain the intrinsic characteristics of the subtypes.  

To date, molecular profiling studies using human skeletal muscle biopsies quantified candidate 

genes using qRT-PCR or microarray technology to profile mRNAs. The human muscle studies in 

cachexia literature have not characterized sex-specific transcriptional changes. In a recent study, 

the authors utilized an Ampliseq transcriptome gene expression kit to perform mRNA profiling in 

rectus abdominis muscle and subcutaneous adipose tissue specimens of Pancreatic Ductal 

Adenocarcinoma (PDAC) vs. healthy controls 24 and the study was not optimized to identify 

differences within the expression profiles in patients with cancer due to small sample size. While 

the targeted sequencing generated mRNA expression profiles, it does not represent the entire 

transcribed genome, and their regulation and sex-related differences remain unaccounted 24. 

Human skeletal muscle gene expression data vary according to sex 42,43,45. Therefore, in this study, 

sex-specific molecular clusters were generated from the human skeletal muscle of patients with 

cancer. The single RNA clustering was inadequate to classify patients owing to clustering based 

on the RNA types and the individual association statistics. Performing association analyses for 
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individual RNAs is challenging and enigmatic, given that there are n=6 RNAs that would result in 

multiple association analyses if individual phenotypic variables were to be used. Therefore, 

integrated transcriptome analyses were performed using intNMF and revealed two cohesive sex-

specific subtypes of skeletal muscle in patients with cancer, with silhouette width corresponding 

to 0.97 and 0.92 (1.0 being ideal) for males and females, respectively.  

Unsupervised clustering-based methods have advantages over conventionally used criteria for 

patient classification, particularly in cachexia research due to the fact that (i) the diagnostic criteria 

are not consistent across molecular studies, (ii) it is imperative to study muscle transcriptome 

independently of any clinical or body composition variables to understand the state of muscle 

biopsied at the time of surgery irrespective of weight loss measured months before sample 

collection (iii) supervised methods use case vs. control study designs with aggregate cancer types, 

sex, and investigator defined weight loss or muscle loss criteria and then perform correlative 

analyses to represent the association between a representative set of genes of interest. Body mass 

is an aggregate measure encompassing body fat and lean mass (that includes muscle, organs, and 

bone). Therefore, classifying patients based on differing criteria of %WL on the samples obtained 

from human skeletal muscle biopsies of patients with cancer at a static time point is elusive. Weight 

stability masks the underlying skeletal muscle loss 64,65. While the supervised association approach 

defines a set of correlated genes, it fails to unveil the underlying changes at the whole 

transcriptional level. Importantly it also invokes challenges in the replicability and validity of 

findings. Vidman et al. (2019) evaluated the clustering performance based on sample size, 

distribution of subtypes, and sample heterogeneity from the publicly available breast, brain, 

kidney, and stomach cancer gene expression datasets. Sample size beyond a critical threshold 

(n=36) had a limited effect on the performance of cluster analyses, whereas homogeneity with 
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respect to sex was important for performance 66. Therefore, this study suggested optimum sample 

size and identified sex-specific clusters and not aggregate measures to characterize muscle from 

patients with cancer.  

This is the first report to indicate the prominence of sexual dimorphism in the non-coding part of 

the genome. The percent overlap of expression of RNAs in the descending order is as follows 

mRNAs (59% overlap between males and females), lncRNAs (53% overlap between males and 

females), miRNAs (34.7% overlap between males and females), piRNAs (6.4% overlap between 

males and females) and snoRNAs (6.4% overlap between males and females). These results 

illustrate the importance of sexually dimorphic patterns of expression of ncRNAs. Some of the 

sex-related differences likely reflect the differences in sample size, with males at n=48 vs. females 

at n=36. If such differences could be ascribed to sample size, independent analysis at higher sample 

sizes is needed to replicate and validate the findings. As such, this could be noted as a potential 

limitation to the study findings.  

At the pathway analyses level, although 66.4% overlapping pathways were found between males 

and females, these were performed considering the differential gene expression (mRNA) levels. 

Crosstalk mechanisms of the ncRNA-mediated regulation (provided in the ensuing chapter) may 

provoke higher-order integrative regulatory mechanisms of the regulated gene targets.  

This study reports a sex-specific transcriptional landscape of human skeletal muscle from whole 

transcriptome profiling and unsupervised clustering. There is no standard process to determine the 

constituent peculiarity of these subtypes, and there is also not a previously generated sequencing 

dataset available to compare the subtypes. I, therefore, approached this challenge with two precise 

benchmarking methods. The intrinsic characteristics of the subtypes in males and females were 
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articulated using clinical benchmarks and expression analyses contributing to pathway-level 

regulation.  

Clinical benchmarking of the subtypes was decoded using the WL-BMI grading system 60 and z-

score SMI distribution (ZSMI). Statistically significant differences were observed between the 

severity of the grading system and the two subtypes of muscle in males and females, wherein 

subtype 1 was indicative of higher WL-BMI grades and low muscle mass or, in other words, 

showed relatively higher severity of WL-BMI grades and low muscularity than subtype 2 in males 

and females, respectively. Similar trends followed for the aggregate statistics (i.e., combining male 

and female samples), wherein subtype 1 was a higher grade severity group than subtype 2. Thus, 

from the clinical viewpoint, subtype 1 was a more severe group compared to subtype 2.  

The muscle transcriptome expression profiling and pathways elicited the perturbations in 

metabolic, immune cell regulation, with a central emphasis on the perturbations involved in 

skeletal muscle microenvironment. Cancer-associated muscle wasting is not a single mediator or 

single pathway-derived mechanism. Studies conducting blockage of single mediators or pathways 

leading to muscle wasting have failed due to the complex heterogeneous nature of the syndrome. 

Cachexia is characterized by the complex interplay between the myriad set of mediators acting in 

concert. The acute inflammatory response is important for skeletal muscle regeneration. However, 

in cachexia, there is a chronic sustained inflammatory response resulting in muscle wasting by 

activating procatabolic pathways and inhibiting anabolic pathways. Pro-inflammatory cytokines 

released from host-tumor interactions such as TNF, IL1B, and IL6 are well-characterized in rodent 

model systems and are known to be associated with skeletal muscle, and fat wasting, as well as 

are essential contributors to hypothalamic inflammation. Direct effects of these catabolic 

mediators facilitate the activation of downstream signaling pathways such as NFkB, JAK/STAT 
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signaling, reduced PI3K//Akt signaling, and activation of myostatin and activin, amongst others67. 

These culminate in the proteolysis of myofibrillar proteins, thereby causing muscle wasting. In a 

normal physiological state, muscle mass is maintained by a balance between anabolic and catabolic 

signals leading to muscle protein synthesis and degradation . In cachexia, however, there is an 

imbalance of protein homeostasis, with an increase in protein degradation defined by Ubiquitin 

Proteasome Pathway (UPP), Autophagy, and calcium-dependent calpains and caspases. 

Experimental model systems suggest the involvement of these pathways in the pathophysiology 

of cachexia, whereas results from clinical studies using human muscle biopsies and mRNA 

profiling suggest otherwise. I did not capture proteolysis pathways in my datasets. These findings 

corroborate the findings from clinical studies conducted using human muscle 21,22. It is not 

surprising that the ubiquitin-proteasome or autophagy pathways were not identified in this study 

due to the rapid development of cachexia in model systems compared to human clinical cachexia. 

Skeletal muscle serves as a precursor of amino acids to the liver for synthesizing acute-phase 

proteins. The liver sustains the cachexic state by increased energy expenditure and 

hypermetabolism through increased gluconeogenesis, secretion of acute phase reactant proteins, 

and reduced low-density lipoproteins, all these resulting in muscle proteolysis and fat breakdown 

in adipose tissue. A recent study demonstrated a marked increased production of acute phase 

reactants by glucocorticoids and pro-inflammatory cytokines in C26 cancer cachexia model, and 

in patients with cancer 64. The acute phase signaling pathway was highly enriched in males, 

specifically in subtype 1. These findings suggest the proteolysis to be an upstream mechanism and 

hence could be one of the plausible reasons for not being represented in a cachexic state in human 

muscle data from patients with cancer, unlike murine models that are characterized by the rapid 

development of cachexia and acute muscle wasting rather than the chronic wasting observed in the 
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human condition 65. The expression levels of the pro-inflammatory markers were upregulated in 

subtype 1 vs. 2, indicative of higher expression of these mediators in subtype 1.  

While this is the first time the unsupervised method has been applied to human muscle from 

patients with cancer, these were previously employed in consortia studies in several tumor types. 

Previous gene expression profiling analyses have identified subtypes of pancreatic 68, colorectal69, 

breast cancer 70,71, muscle-invasive bladder cancer 72, and B-cell lymphoma 73, amongst several 

other cancer types, using integrative clustering methods. Utilizing the multi-omic approaches 

combining mRNA, ncRNA, and methylation datasets provide novel insights into molecular 

subtyping in addition to previously known histological subtypes. Skeletal muscle is composed of 

myofibers, and changes in muscle function are reflected upon by the changes in the myofiber 

composition. Data-driven strategies were undertaken for fiber type classification to identify 

myofiber clusters in older human muscles wherein unsupervised clustering revealed the existence 

of six distinct myofiber clusters from vastus lateralis muscle of n=56 healthy elderly human 

subjects 74. Several in vitro studies have identified abundant lncRNAs and precursor miRNAs in 

muscle cell differentiation processes using single nucleus RNA-seq 75. This emphasizes the 

importance of studying the non-coding aspect of gene regulation in human skeletal muscle. 

Micheli et al. (2020) profiled the transcriptome of individual muscle stem cells and muscle-

resident cells from adult human muscle samples using single-cell RNA sequencing.76 Role of 

muscle fiber types in the degradation of muscle mass remains debated. I did not have fiber-type 

data for my study cohort. Skeletal muscle heterogeneity is reflected by fiber type composition 

differing in myosin heavy chain isoforms, metabolism, and neural response. Type 1, or slow-twitch 

fibers express MYH7 that are highly expressed in females, and type II, or fast-twitch fiber type, 

express MYH2 (type 2A), MYH1 (type 2x), and MYH4 (type 2B). There were no significant 
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expression fold differences between MYH expression in males. Females have higher type I fibers 

expressing MYH7. In this study, MYH7 was downregulated by -1.5 fold in subtype 1 vs. 2. Fiber 

typing annotation was not an objective of this study and is out of scope; however, downregulated 

expression of MYH7 in subtype 1 solidifies the annotation obtained from clinical benchmarking 

and literature reported marker genes and pathway analyses.  

Transcriptome profiles from cancer-associated muscle wasting and those obtained from a healthy 

condition are distinct. Global mRNA profiles from the human skeletal muscle of healthy donors 

in the setting of aging 68,69 and exercise 70-73 have been described using data generated from the 

vastus lateralis muscle. However, studies in human skeletal muscle from patients with cancer 

revealed distinct gene expression profiles and suggested discrete mechanism that prevails within 

these cohorts of patients 22,24. The strength of this study is that a systematic, comprehensive 

transcriptional landscape of human skeletal muscle was generated from the biopsies. The biopsies 

were collected from the same anatomical location (rectus abdominis muscle) by the designated 

surgical oncologist, and the subsequent sequencing experiments, data generation, and downstream 

analyses were executed in a single batch from each patient’s muscle biopsy specimen. The study 

cohort included all patients diagnosed with pancreatic and colorectal cancer to restrict the 

heterogeneity related to cancer type.  

I used matrix factorization to cluster samples. However, the applicability of matrix factorization is 

colossal to finding complex structures or relationships between genes, gene set discovery, and time 

course analysis, among others 36. Brunet et al. were the first researchers to utilize NMF in the gene 

expression domain using three cancer datasets of leukemia, medulloblastoma, and central nervous 

system tumors and identified biologically significant phenotypes 34. Attempts in cachexia literature 

to adopt machine learning models to detect changes in body composition using imaging techniques 
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have gained prominence in recent years. While these are the preliminary findings, the basis of 

these has been the input variables from CT assessment or weight loss 74-76. The central question 

that remains unaddressed is the use of varying cut-offs, the applicability of appropriate machine 

learning models to assess body composition, and the underlying biology insights. This 

investigation advances the field forward using integrative techniques adopted to identify molecular 

subtypes from the transcriptional profiles and to understand biological insights into the muscle of 

patients with cancer.  

The novel aspect of this study is the sex-specific molecular characterization of human skeletal 

muscle from patients with cancer using whole transcriptome profiles by NGS. This study 

demonstrates the importance of unsupervised methods and the utilization of transcriptional 

expression profiles to allow reproducible data across labs rather than relying on arbitrary cut-offs 

for a phenotype binary in the association studies. My study identified two sex-specific molecular 

subtypes using the intNMF algorithm. Future studies with higher sample sizes may potentially 

identify additional clusters or subtypes representative of the disease trajectory of cachexia severity.  

Given the multifactorial and complex nature of cachexia syndrome, no single pathway could be 

accredited to the causality of the syndrome. Identifying molecular subtypes and functional insights 

into mRNA-based regulation is the first step toward discovering complex biological regulation 

and the underlying pathophysiological mechanisms. Recent reports have illuminated the crosstalk 

mechanisms and the integrative networks of RNA crosstalk (mediated by ncRNAs) that regulate 

mRNAs and thereby confer the phenotypic changes and pathophysiology. These higher levels of 

RNA crosstalk eliciting gene-level regulations are independently explored in the ensuing chapter. 



 

97 

 

3.5  Conclusion  

Construing insights into the biological mechanisms in patients with cancer from the transcriptional 

regulation standpoint is the investigational theme of this chapter. I used unsupervised clustering 

algorithms from transcriptional expression profiles from diverse RNA classes generated from 

rectus abdominis skeletal muscle biopsies of patients with cancer. I determined two sex-specific 

molecular subtypes independent of clinical or body composition variables. Sexually dimorphic 

expression profiles were prominent in small non-coding RNAs (miRNA, snoRNA, piRNA). 

lncRNAs and small non-coding RNA classes studied using NGS are reported for the first time in 

cachexia literature using human skeletal muscle biopsies. mRNA profiling by NGS is also first of 

its kind. Another unique feature of this study is that a single biopsy from each individual patient 

served to profile all RNA classes (in independent small RNA seq and RNA seq experiments), 

eliminating batch effects in sequencing studies.  

Clinical and in silico benchmarking explained the relative intrinsic characteristics of muscle 

subtypes, with subtype 1 being a group associated with cachexia severity reflected by higher grades 

of WL-BMI. In silico IPA pathway analysis results indicated a multitude of signaling mediators 

underlying the molecular landscape of cachexia. The complex multilayered RNA cross-talk 

constituting the muscle subtype characteristics is explored independently and is summarized in the 

ensuing chapter. 
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Chapter 4    Competing Endogenous RNA (ceRNA) integrative 

networks for mechanistic insights in human skeletal muscle from 

patients with cancer 

4.1  Introduction 

This chapter focuses on post-transcriptional gene regulation, mediated by multilayered RNA 

crosstalk networks, including protein-coding mRNA and non-protein-coding RNAs (ncRNAs) 1. 

About 80-90% of the human genome is transcribed into non-coding RNAs (ncRNAs), suggesting 

that ncRNAs represent most of the human transcriptome 2. Two classes of ncRNAs are identified. 

Long non-coding RNAs (lncRNAs, > 200 nucleotides to several kilobases in length), and several 

species of small non-coding RNAs, the most studied being miRNAs3 (20-22 nucleotides in length). 

miRNAs are transcribed from the intron of the protein-coding genes, lncRNAs, or independently 

from miRNA clusters. Recent evidence also suggests that they could be embedded within other 

small non-coding RNAs such as snoRNAs 4,5 and tRNAs 6. miRNAs are known as the master 

regulators of gene expression. miRNAs are transcribed as precursor molecules and their 

subsequent processing by endoribonucleases, such as Drosha and Dicer, in the nucleus and 

cytoplasm, respectively, to form the mature miRNAs. miRNAs bind to the Argonaute family of 

proteins (AGO) to form the RNA-induced silencing complex (RISC), a process known as RISC 

loading. When this complex is loaded onto the miRNA response element (MRE) on the target 

gene, it results in gene silencing by translational repression or degradation. Gene regulation 

mediated by miRNAs is through the base-pair complementarity or sequence homology of the seed 

sequence  (2-8 nucleotide long miRNA region that determines target specificity) between miRNA 

and target gene 7-9. Perfect base-pair complementarity leads to mRNA degradation, and imperfect 

base pairing leads to translational repression. Canonical sites of gene regulation are 3’UTRs. 
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However, miRNAs also bind to 5’UTR and coding domain sequence (CDS) of the target genes 10-

12. miRNAs exhibit the property of redundancy and pleiotrophy, i.e., a single miRNA can regulate 

multiple mRNA targets, and several miRNAs can regulate a single mRNA target 7,13. More than 

60% of human protein-coding genes have at least one conserved binding site for the miRNAs and 

several non-conserved sites 14. This illustrates the complex regulation and control mediated by 

miRNAs. A repertoire of miRNAs is known to be expressed in the skeletal muscle of experimental 

model systems and human biopsy specimens and are termed myomiRs 15. Dysregulated expression 

of miRNAs has been reported in the experimental model systems 16,17 contributing to the 

pathophysiology of cancer-associated muscle wasting and in the muscle biopsies obtained from 

rectus abdominis and vastus lateralis muscle of patients with cancer cachexia from independent 

research groups, including our lab group 18-20.  

lncRNAs, on the other hand, are a diverse class of molecules regulating gene expression via 

epigenetic, transcriptional, and post-transcriptional levels 21-24. Their interacting partners could be 

DNA, RNA, or proteins 25. Most lncRNAs share similar biogenesis with mRNAs; lncRNAs are 

also transcribed by RNA polymerase II (Pol II), are often capped by 7-methyl guanosine at their 

5' ends, and are polyadenylated at the 3' ends, and spliced similar to mRNAs 26. lncRNA loci are 

encoded from intronic regions and intergenic regions, from both strands of DNA in a sense as well 

as antisense orientation. Even though the lncRNAs are lowly expressed than the protein-coding 

counterparts, their expression patterns are tissue-specific and developmentally regulated. The 

mechanism of action of lncRNAs is influenced by their subcellular localization in cytoplasmic and 

nuclear compartments.  

Recent reports and experimental evidence pinpoints the importance of the post-transcriptional 

regulatory mechanisms wherein crosstalk between RNA species act by sponging or sequestering 
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miRNAs 27, thereby releasing the inhibitory action of miRNAs on the target mRNAs. The RNA 

molecules that compete for the miRNA binding sites are referred to as competing endogenous 

RNA (ceRNA) 28-30. The effect of miRNA competition on regulating protein-coding and non-

coding RNAs represents a multilayered complexity31,32 of ceRNA crosstalk that has large-scale 

implications and may, therefore, contribute to the pathophysiological basis of skeletal muscle 

wasting. A schematic representation of ceRNA is depicted in Figure 4.1. Several lncRNAs acting 

as ceRNA have been characterized in the skeletal muscle of experimental model systems in the 

lncRNA-miRNA-mRNA crosstalk networks, regulating muscle differentiation and regeneration 

process. Myogenesis, or the process of mature myofiber formation, is a highly regulated process 

where the progenitor cells proliferate to myoblast that undergoes differentiation and fuse to form 

multinucleated myofibers 33. The functional role of lncRNAs in experimental model systems (i.e., 

animal models and C2C12 myoblast proliferation and differentiation models)  to understand 

skeletal muscle biology is well-defined 34-44.  

The expression profiling and crosstalk mechanisms contributing to higher-order integrative gene 

networks 45 are important to understand overall regulation. Such an approach to offer mechanistic 

insights into the pathophysiology of muscle wasting in patients with cancer have not yet been 

elucidated in human skeletal muscle.  

Hypothesis: I hypothesize that the competing endogenous RNAs (ceRNAs) crosstalk mechanisms 

characterized by the triplet (lncRNA-miRNA-mRNA) could provide insights into lncRNA-

mediated gene and pathway regulation within the skeletal muscle of patients with cancer.  

Objectives: (i) to perform ceRNA analysis and the subsequent network analysis for identifying 

lncRNA-miRNA-mRNA triplet interacting partners in males and females and (ii) to perform IPA 

pathway analysis of the ceRNA-mediated gene targets.  
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In this study, I utilized the expression profiles of mRNA, lncRNA, and miRNA from the skeletal 

muscle of patients with cancer, described in this thesis in the previous chapter (chapter 3). I 

subjected the Differentially Expressed (DE) lncRNAs, miRNAs, and mRNAs from the two 

molecular subtypes in males and females (FDR < 0.05 and fold-change >1.5) to the competing 

endogenous RNAs, network, and pathway analysis.  
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Figure 4.1 Schematic representation of ceRNA crosstalk mechanism 
A typical gene structure with 5’UTR, 3’UTR, and coding domain sequence is shown in the top panel 

consisting of MREs, wherein the multicolored ovals represent MREs, and mRNA is represented with a 

single strand. The middle panel represents the canonical role of miRNA-mediated gene regulation. , 

wherein miRNA bound to the RNA-induced silencing complex (RISC) targets the 3’UTR and leads to 

translational repression or mRNA degradation. miRNAs are represented as single-stranded short-chain 

molecules. The bottom panel represents the ceRNA-mediated gene regulation wherein ceRNA, which in 

the present case scenario is represented by lncRNA, competes with the mRNA for MREs and hence inhibits 

the binding and effect of miRNAs to their corresponding target genes. Created with BioRender.com.
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4.2  Methods§§ 

4.2.1 Bioinformatic target prediction of miRNA binding sites in lncRNA and mRNA*** 

The expression profiles of miRNAs, lncRNAs, and mRNAs were generated from rectus abdominis 

muscle biopsy specimens (refer to chapter 3). In silico target prediction of miRNA binding sites 

were performed individually for lncRNA (full-length non-coding RNAs) and mRNAs (3’UTR 

regions). DE miRNAs, mRNAs, and lncRNAs within the sex-specific subtypes were subjected to 

in silico target prediction. Target prediction tools, such as miRanda 46, were used to determine 

miRNA binding sites in DE lncRNAs and mRNAs within the datasets. Functionally validated 

target predictions for mRNAs and lncRNAs were also accessed from publicly available databases 

such as Tarbase v8.0 47, lncBase v3.0 48, and mirtarbase 49, which utilize different prediction 

algorithms from expression datasets from tissues and cell lines. To identify skeletal muscle-

specific genes (mRNAs) as targets, I overlapped mRNAs from male and female datasets in this 

study cohort with the gene targets from the publicly available databases.  

4.2.2 Competing Endogenous RNA (ceRNA) analysis 

R package GDCRNAtools 50 was used to perform ceRNA analysis. Competing lncRNA-mRNA 

pairs were determined using three criteria as follows: (i) Hypergeometric test was performed to 

determine if DE lncRNA-mRNA pairs share a significant number of miRNA binding sites as 

follows: 

P = 1 − ∑
(

K
k

) (
N −   K
n −   k

)

(
N
n

)

m

k=0

 

 
§§ Study was conceptualized by Bhumi Bhatt and Dr. Sambasivarao Damaraju. 
*** Bioinformatic analyses were performed by Bhumi Bhatt. 
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m = number of shared miRNAs between lncRNA-mRNA competing pairs 

N = total number of miRNAs 

n = number of miRNAs targeting the lncRNA  

K = number of miRNAs targeting mRNA 

 

(ii) For lncRNA-mRNA to be competing pairs, they must be co-expressed. Therefore, I 

determined this using the Pearson correlation test. 

(iii) To ascertain the regulatory role of miRNA on lncRNA and mRNA, regulation similarity 

score (regSim) and sensitivity correlation were calculated. The regulation similarity score is used 

to check the similarity of expression correlation between lncRNA-miRNA and mRNA-miRNA 

pairs. Sensitivity correlation is used to measure if the correlation between mRNA and lncRNA 

competing pairs is mediated by miRNA.  

The filtering criteria of Hypergeometric P-value < 0.01, correlation P-value < 0.01, and 

regulation similarity score > 0 (wherein 0 signifies no interactions) was applied to define 

competing endogenous RNAs (lncRNA-miRNA-mRNA).  

4.2.3 Network Analysis 

The network visualization of the triplet lncRNA-miRNA-mRNA as ceRNAs was performed to 

identify hub lncRNAs for individual male and female datasets using Cytoscape v3.9.0 51. Network 

analysis was performed, and the top six lncRNAs with the highest node degrees and betweenness 

centrality were selected as the Hub lncRNAs. The regulation network of the top six hub lncRNAs 

and their related mRNAs and miRNAs are depicted in the figures. 
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4.2.4 Functional annotation and pathway analysis 

The lncRNA-mediated target genes from ceRNA analysis in males and females were subjected to 

pathways analysis and functional annotation using Ingenuity Pathway Analysis 52 (IPA, QIAGEN 

Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). P-value in IPA 

is calculated using Fisher’s exact test and determines the probability that the association between 

the genes identified within a given pathway is explained by chance alone. -log(P-value) threshold 

of 1.3 (equivalent to a nominal p-value of 0.05) was used to define statistically significant 

pathways. 

4.3  Results 

4.3.1 Crosstalk of RNAs using Competing Endogenous RNA (ceRNA) analysis and 

mechanistic insights 

Recent studies have accentuated the crosstalk between various classes of RNAs, such as mRNAs 

and lncRNAs (sponge RNAs). These RNAs harboring miRNA binding sites regulate the gene 

expression levels by competing for miRNA Recognition Elements (MREs). These are known as 

"competing endogenous RNAs” (ceRNAs) 28,53-55. The expression and ceRNA regulatory network 

and their perturbations potentially contribute to a disease phenotype. However, the presence and 

contribution of such a complex regulatory network in human skeletal muscle remain undetermined. 

Each muscle biopsy specimen was subjected to next-generation rRNA depleted sequencing and 

small RNA sequencing to generate mRNA, lncRNA expression profiles, and miRNA expression 

profiles, respectively. I used the previously identified DE profiles from the molecular subtype 

analysis in males and females (refer to Chapter 3), to construct the competing RNA triplets. The 

higher-order integrative analyses could potentially aid in the identification of mechanisms of gene 

regulation in patients undergoing muscle loss in cancer.  

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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I used several target prediction databases to identify miRNA binding sites for lncRNAs and 

mRNAs to identify the ceRNAs. The stringency cut-offs applied for ceRNA analysis was as 

follows: Hypergeometric P-value < 0.01, Pearson’s correlation P-value < 0.01, correlation R-value 

> 0.7, and Regulation Similarity Score (RegSim score) > 0. A total of non-redundant lncRNA-

miRNA-mRNA triplets identified in males were: 961 lncRNAs, 71 miRNAs, 2081 mRNAs. A 

total of non-redundant lncRNA-miRNA-mRNA triplets identified in females were: 394 lncRNAs, 

39 miRNAs, and 722 mRNAs from the ceRNA analysis. 

Network analysis was performed and visualized using Cytoscape v 3.9.0. We identified the top six 

lncRNAs based on the highest node degree and betweenness Centrality (bC) as the hub lncRNAs 

for males and females, respectively (Figure 4.2 and Figures 4.3-4.5 and 4.6-4.8). The top six hub 

lncRNAs among the vast repertoire of the hub lncRNAs in ceRNA analysis and their interacting 

partners are summarized here for illustrative purposes:  6 hub lncRNAs, 60 miRNAs, and  202 

mRNAs in males (Appendix Table A.12), and 6 hub lncRNAs, 31 miRNAs and 114 mRNAs in 

females (Appendix Table A.13) with the stringency cut-offs as described above. 
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Figure 4.2 HELLPAR lncRNA and its interacting mRNA and miRNA partners in males and females 

Top hub lncRNAs representing the highest node degree (i.e., the highest number of interacting miRNA and mRNA partners) from the 

Network analysis are summarized using Cytoscape. One of the representative hub lncRNA, namely HELLPAR lncRNA (205kb in 

length), is common among males (shown in blue on the left side) and females (shown in red on the right side). Sexually dimorphic 

patterns of expression were observed at the ceRNA level, and the figure depicts that HELLPAR interacts and regulates 98% and 62% 

of the unique mRNAs and miRNAs, respectively, in individual sexes. Note that the number of mRNAs and miRNAs interacting with 

HELLPAR are significantly different between sexes.

Males Females
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4.3.2 Hub lncRNA networks in males and females 

Networks were generated and visualized using Cytoscape. lncRNA (oval) is illustrated at the 

center of each network, surrounded by the interacting partners, mRNAs (rectangle), and miRNAs 

(hexagon). Note that lncRNAs HELLPAR (shown in figure 4.1), CASC19, and LINC00943 were 

common in both sexes, but the interacting partners show a variable degree of similarities. Amongst 

the common lncRNAs, HELLPAR is represented in Figure 4.2. The other two common lncRNAs 

are not represented format. Unique lncRNAs in males (DLEU1, LINC00511, and XACT) and in 

females (AC016717.2, DLX6-AS1, and FIRRE) are represented in Figures 4.3-4.5 and Figures 

4.6-4.8, respectively. The detailed description of the six hub lncRNAs and interacting partners, 

their fold-change in expression, and expression correlations are summarized in Appendix Table 

A.12 (males) and Appendix Table A.13 (females), respectively.  

The top hub lncRNAs and their MREs for males are HELLPAR (205 kb and 46 MREs),  CASC19 

(154 kb and 22 MREs), LINC00943 (25 kb and 22 MREs), LINC00511 (350 kb and 25 MREs), 

DLEU1 (from autosomes, 824 kb, and 23 MREs), and XACT (X-chromosome, 442 kb, and 39 

MREs). The top hub lncRNAs in males and females were higher in Subtype 1 high grade weigh 

loss vs. Subtype 2 low grade weight loss, and the same pattern of expression followed for their co-

expressed mRNAs. The top hub lncRNAs for females are HELLPAR (205 kb and 17 MREs), 

CASC19 (154 kb and 14 MREs), LINC00943 (25 kb and 12 MREs), AC016717.2 (5 kb and 14 

MREs), and DLX6-AS1 (from autosomes, 58 kb, and 12 MREs) and FIRRE (X-chromosome, 142 

kb and 11 MREs). I observed sexual dimorphism at the ceRNA level as well. Although three hub 

lncRNAs were found to overlap between males and females, their interacting miRNAs and 

mRNAs showed differences. I also observed sex-specific differences in gene co-expression 

patterns, with males exhibiting higher gene co-regulation than females. For example, hub lncRNA 
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HELLPAR despite their average co-expression correlation r value: 0.85 in males and 0.8 in 

females, is comparable, whereas mRNA level expression fold-changes (upregulated) showed 

differences. The average fold-change was 3.5 and 2.9 in males and females, respectively. Their 

corresponding number of mRNAs expressed and regulated through lncRNA showed differences; 

in males (n=43 mRNAs, fold-change range: 1.6, 10.0) and females (n=5 mRNAs, fold-change 

range: 1.8, 3.3), concerning the identified subtypes 1 vs. 2. This demonstrates that miRNAs alone 

are not contributing to the overall regulation of mRNAs, but the dynamic interactions between the 

RNAs bring about the gene regulatory events. 
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Figure 4.3 DLEU1 lncRNA and its interacting mRNA and miRNA partners in males 

(unique) 
The figure depicts the network diagram generated from Cytoscape. DLEU1 (lncRNA deleted in 

lymphocytic leukemia), lncRNA (center, oval), mRNA (hexagon), and mRNA (rectangle) are described. 

Edges are denoted with the lines (interactions), and nodes are denoted in different shapes and colors for 

different RNA types and annotations.  
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Figure 4.4 LINC00511 lncRNA and its interacting mRNA and miRNA partners in males (unique) 

The figure depicts the network diagram generated from Cytoscape. LINC00511 (long intergenic non-coding 

RNA 00511), lncRNA (center, oval), mRNA (hexagon), and mRNA (rectangle) are described. Edges are 

denoted with the lines (interactions), and nodes are denoted in different shapes and colors for different RNA 

types and annotations. 
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Figure 4.5 XACT lncRNA and its interacting mRNA and miRNA partners in males (unique) 

The figure depicts the network diagram generated from Cytoscape. XACT (X active specific transcript) 

lncRNA (center, oval), mRNA (hexagon), and mRNA (rectangle) are described. Edges are denoted with 

the lines (interactions), and nodes are denoted in different shapes and colors for different RNA types and 

annotations. 
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Figure 4.6 AC016717.2 lncRNA and its interacting mRNA and miRNA partners in females (unique) 

The figure depicts the network diagram generated from Cytoscape. AC016717.2  lncRNA (center, oval), 

mRNA (hexagon), and mRNA (rectangle) are described. Edges are denoted with the lines (interactions), 

and nodes are denoted in different shapes and colors for different RNA types and annotations. 
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Figure 4.7 DLX6-AS1 lncRNA and its interacting mRNA and miRNA partners in females (unique) 

The figure depicts the network diagram generated from Cytoscape. DLX6-AS1  (Distal-less homeobox 6 

antisense 1) lncRNA (center, oval), mRNA (hexagon), and mRNA (rectangle) are described. Edges are 

denoted with the lines (interactions), and nodes are denoted in different shapes and colors for different RNA 

types and annotations. 
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Figure 4.8 FIRRE lncRNA and its interacting mRNA and miRNA partners in females (unique) 

The figure depicts the network diagram generated from Cytoscape. FIRRE  (Functional intergenic repeating 

RNA element), lncRNA (center, oval), mRNA (hexagon), and mRNA (rectangle) are described. Edges are 

denoted with the lines (interactions), and nodes are denoted in different shapes and colors for different RNA 

types and annotations. 
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4.3.3 Functional annotation of mRNAs acting as competing partners with lncRNAs 

There is a lack of a dedicated knowledge base for the functional annotation of human skeletal 

muscle tissue-specific gene expression profiles. IPA canonical pathways and biological functions. 

The pathway and function labels are primarily developed on non-muscle cell types. This 

practically means that IPA might identify a statistically significant inflammatory signature as being 

associated with “arthritis” or a metabolic signature associated with “hepatic cholestasis” in skeletal 

muscle by identifying DE elements characteristic of inflammation and metabolism, respectively,   

and are not enriched for skeletal muscle transcriptome. Nonetheless, this study demonstrates the 

utility of IPA as a knowledge base in interpreting skeletal muscle transcriptome profiles. The 

compelling premise of this study rests on the fact that biology is redundant in that several genes 

contribute to the regulation of the same pathway in different cells and tissues and exhibit 

pleiotropy: the same gene might contribute to multiple pathways. Hence sexual dimorphism in the 

regulatory mechanisms of skeletal muscle in cachexia is interrogated at the gene and pathway 

levels using IPA knowledge.  

As described in the previous sections, the molecular subtypes of human skeletal muscle from 

patients were identified, and their Differentially Expressed RNA profiles were performed (refer to 

Chapter 3). The clinical benchmarking revealed that subtype 1 was associated with poor WL-BMI 

grades and low skeletal muscle mass scored as z-SMI distribution.  

In this study, the premise is to understand post-transcriptional gene regulation via ceRNA analysis. 

mRNAs constitute <2% of the human genome, and due to the higher order regulation of mRNAs 

by lncRNAs in concert with miRNA, integrative ceRNA analyses were performed. The hub 

lncRNAs (those with the highest miRNA and mRNA interacting partners) are important regulators 

of gene expression since they exhibit the highest node degree, i.e., the number of interacting 
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miRNA and mRNA partners. Hence, ceRNA-regulated mRNAs that passed the stringency 

threshold were subjected to pathway analysis to identify significantly enriched pathways 

independently for males and females as well as the ones that regulate common molecular 

mechanisms.  

The Venn diagram (Figure 4.9) indicates males’ and females’ overlapping and distinct pathways. 

Significant canonical pathways that overlapped between males and females were at 44.4% (n=44 

pathways, P-value < 0.05 or -log(P-value ≥ 1.3), with 45.5% (n=45 pathways) and 10.1% (n=10 

pathways) unique pathways enriched in males and females, respectively. Detailed pathway 

analysis results are reported in the bubble plots of the distinctive pathways in males (Figure 4.10) 

and females (Figure 4.11). Although a substantial overlap of the pathways was observed between 

males and females (n=44), the results are reported independently as bubble plots for males (Figure 

4.12) and females (Figure 4.13), respectively. This is due to the differing count of molecules or 

genes within the pathways, their differing statistical significance, -log(P-value), and gene 

expressions within each pathway for the individual sexes.  

The proinflammatory gene signatures attributed to the cachexia in rodent model systems showed 

upregulation in subtype 1 vs. 2 in males and females. In this chapter, the top hub lncRNAs are 

known to be involved in tumorigenesis in various cancer types (see ensuing discussion section for 

details) and were upregulated in subtype 1 (the subtype that was associated with poor WL-BMI 

grades and low muscle mass based on z-SMI distribution, refer to Chapter 3 for details).  

The pathways unique to males (n=44, Figure 4.10 and Appendix Table A.15) were enriched in 

immune cell regulation, components important for skeletal muscle regeneration, such as 

extracellular matrix remodeling pathways, matrix metalloproteases, nNOS and eNOS signaling, 

amongst others. The pathways unique to females (n=10, Figure 4.11 and Appendix Table A.16) 
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were enriched in metabolic pathways such as the urea cycle, serotonin degradation, and 

components important for skeletal muscle homeostasis. A detailed report on the overlapping 

pathways between males and females is provided in Appendix Table A.14. 

Overall, the inferences obtained from pathway analysis in males and females (both the common 

and unique pathways) suggest that the components of skeletal muscle homeostasis appear 

essential, and their associated perturbations could help understand the pathophysiology of 

cachexia. If validated in the experimental model systems, these pathways could shed light on the 

holistic view of homeostatic regulation rather than studying a single pathway at a time, as has 

been the norm thus far.  

 

Figure 4.9 Venn diagram of canonical pathways between males and females 
Sex-specific lncRNA-mediated competing mRNA targets subjected to the Ingenuity Pathway Analysis. 

The Venn diagram indicates the overlapping (brown intersection) and unique pathways between males 

(blue) and females (peach). The pathways significantly enriched in males and females at -log(P-value) ≥ 

1.3 overlapped to examine the sexually dimorphic expression patterns of the canonical pathways. 
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Figure 4.10 Bubble plot of unique pathways in males from ceRNA-mediated gene targets 

N=45 statistically significant canonical pathways were exclusively enriched in males (Figure 4.9, left side 

of the Venn diagram). The bubble plot illustrates these  45 canonical pathways in males and is arranged 

based on the increasing order of the count of molecules or genes within a given pathway. The X-axis 

represents the number of molecules or genes within the individual pathways. Y-axis represents the 

terminology of the canonical pathways identified from IPA. The bubble size corresponds to the count of 

molecules within the pathways, as indicated in the legend on the bottom right side of the figure, i.e., small 

to large bubbles representing a low to a high number of molecules within the given pathway, respectively. 

The color gradient within the bubbles corresponds to the statistical significance, as indicated in the figure's 

legend on the top right side. Blue to red is indicative of low to high statistical significance, respectively. 
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Figure 4.11 Bubble plot of unique pathways in females from ceRNA-mediated gene targets 

N=10 statistically significant canonical pathways exclusively enriched in females (Figure 4.9, right side 

of the Venn diagram). The bubble plot illustrates these 10 canonical pathways in females and is arranged 

based on the increasing order of the count of molecules or genes within a given pathway. The X-axis 

represents the number of molecules or genes within the individual pathways. Y-axis represents the 

terminology of the canonical pathways identified from IPA. The bubble size corresponds to the count of 

molecules within the pathways, as indicated in the legend on the bottom right side of the figure, i.e., small 

to large bubbles representing a low to a high number of molecules within the given pathway, respectively. 

The color gradient within the bubbles corresponds to the statistical significance, as indicated in the 

figure's legend on the top right side. Blue to red is indicative of low to high statistical significance, 

respectively.
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Figure 4.12 Bubble plot of overlapping pathways in males from ceRNA-mediated gene targets 

N=44 statistically significant canonical pathways overlapped between males and females (Figure 4.9, 

brown intersection). Despite the considerable overlap, the bubble plots are represented separately for 

males and females due to the differing count of molecules within the pathways and their statistical 

significance.  
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Figure 4.13 Bubble plot of overlapping pathways in females from ceRNA-mediated gene targets 

N=44 statistically significant canonical pathways overlapped between males and females (Figure 4.9, 

overlapping Venn diagram intersection). Despite the considerable overlap, the bubble plots are 

represented separately for males and females due to the differing count of molecules within the pathways 

and their statistical significance. 
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4.4  Discussion 

This investigation demonstrates the mechanistic insights and RNA crosstalk via the competing 

endogenous networks of lncRNA-miRNA-mRNA. The differential expression profiles from the 

identified subtypes (refer to chapter 3) in the skeletal muscle of patients with cancer were 

investigated to identify hub lncRNA and their interacting miRNA and mRNA partners. 

Mechanistic insights also helped decipher the intrinsic characteristics of molecular subtypes of 

skeletal muscle in conjunction with the previously annotated subtypes based on the clinical (WL-

BMI grading system and ZSMI distribution) 56,57 and in silico benchmarks (at the level of 

differential gene expression patterns and regulation). (Refer to Chapter 3). This study solidifies the 

previously annotated subtypes, and the findings are encouraging, given the higher-order gene 

regulation contemplated by the RNA crosstalk mechanism. While the described lncRNA-miRNA-

mRNA interactions are at the post-transcriptional level (in the cytosolic cellular compartment), the 

role of regulatory lncRNAs at transcriptional and epigenetic levels needs to be ascertained in the 

future. 

Muscle differentiation has been one of the most studied models of ceRNAs as it can be 

recapitulated in vitro, and the transcription factors and signaling events in muscle growth and 

differentiation are highly conserved across the species 58,59. Lnc-MD1 was the first identified 

ceRNA in mouse and human myoblasts and was found to act as ceRNA for miRNAs miR-133 and 

miR-135 to regulate the expression of MAML1 and MEF2C transcription factors that activate 

muscle specific gene expression 41. Since then, many functionally important lncRNAs have been 

identified that play vital roles in myogenesis and skeletal muscle growth. This study identified sex-

specific ceRNAs and their regulatory networks. Sexually dimorphic patterns of expression were 

observed at the ceRNA level. For instance, HELLPAR lncRNA was found to be one of the top 
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hub lncRNAs in both sexes. However, the interacting miRNA and mRNA partners were 

significantly different in males and females. This is the first study to identify sexually dimorphic 

ceRNA regulatory networks and their functional annotation in the skeletal muscle of patients with 

cancer. 

The top hub lncRNAs identified in this study have also been investigated for their roles in 

tumorigenesis. Cancer susceptibility 19 (CASC19) acts as ceRNA via CASC16/miRNA-130b-

3p/ZBR2 and regulates proliferative, migratory, and invasive capacities of tumor cells 60. CASC19 

was upregulated by 6 and 5.4-fold in subtype 1 vs. subtype 2 in the skeletal muscle of male and 

female participants. lncRNA deleted in lymphocytic leukemia (DLEU1), another tumorigenic 

lncRNA, was upregulated in males by 1.6 fold and is known to accelerate colorectal cancer 

carcinogenesis through the miR-320b/PRPS1 axis. Knockdown of DLEU1 repressed cell 

proliferation, migration, and invasion61. Distal-less homeobox 6 antisense 1 (DLX6-AS1, also 

called Evf2) was one of the top hub lncRNA in females and is known to be aberrantly expressed 

in several cancer types, and is involved in signaling pathways such as Notch signaling, Wnt/β-

catenin/PI3k/Akt/mTOR, and STAT3 signaling62. It serves an oncogenic role and is upregulated 

in colorectal cancer and pancreas cancer. It is also involved in other cancer types, such as lung, 

renal, hepatocellular, endometrial, and gastric cancers. Hub lncRNAs involved in the tumorigenic 

process were found to be upregulated in subtype 1 compared to subtype 2 in males in the current 

study. 

Given the complexity and multifactorial nature of the syndrome, it is evident that no single 

therapeutic modality or candidate biomarker approach is ideal. Several pathways involved in the 

skeletal muscle microenvironment, such as extracellular matrix regulation, nNOS signaling, and 

calcium signaling, amongst others, were found in the integrative analyses. Further, signaling 
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pathways from inflammatory, metabolic, and endocrinal pathways were also found to be 

statistically significant. Tumor-host interactions release proinflammatory cytokines, enhancing the 

series of signaling events leading to muscle wasting. Acute phase reactants/complement and 

coagulation proteins were increased in cancer cachexia 63. Massart et al. (2020) characterized the 

changes in protein expression using proteomic analysis during cancer cachexia and identified 

increased muscular production of acute phase reactants in the C26 cancer cachexia model 

compared with vehicle control. The top canonical pathway involved in Soluble Fraction and 

Myofibrillar fractions of the C26 cancer cachexia model were acute phase reaction and 

complement and coagulation cascades. They showed that proinflammatory cytokines and 

glucocorticoids contributed to producing acute-phase reactants in muscle cells63. We found 

immune- and proinflammatory-related pathways significantly enriched in males. For instance, 

acute phase response signaling and coagulation cascade were activated in males in subtype 1. IL6 

is a well-established marker contributing to cancer-associated muscle wasting 64. One of the 

diverse effects of IL6 is that it promotes a coagulation cascade. Fibrinogen, an acute phase reactant 

that is a central player in coagulation, is elevated in the C26 model of cachexia. Reddel et al. (2017) 

found a mechanistic link between cachexia and thrombosis. They discovered that thrombin 

generation and coagulation parameters were partially but not completely corrected by blocking 

tumor-derived IL6 in C26 mice65. The expression levels of IL6 mRNA were higher by 2.17 and 

7.28 in males and females, respectively, in subtype 1 vs. subtype 2. One of the earliest metabolic 

abnormalities associated with cancer was glucose intolerance66. When insulin binds to its receptor 

phosphatidyl-3-kinase (PI3K) and Akt, the activation of Akt leads to the suppression of Foxo and 

caspase 3, leading to decreased expression of atrogenes, atrogin-1, and MuRF-1. When the activity 

of PI3k is reduced, as it occurs in cancer cachexia and insulin resistance, inhibitory action is 



 

136 

 

released, and hence proteolysis is increased. Through this anabolic pathway, insulin controls 

muscle degradation and is one of the mechanisms through which insulin resistance can lead to 

increased protein degradation and skeletal muscle wasting. Unlike the studies pursued using 

experimental model systems of cachexia wherein ubiquitin-proteasome pathway and autophagy 

pathways were predominant in cancer-associated muscle wasting, my dataset did not identify the 

proteolysis pathway. These findings align with studies conducted in human skeletal muscle 

wherein molecular mechanisms in animal models were not recapitulated in the transcriptional 

changes in human muscle67-69. Overall, an emerging theme was the involvement of pathways in 

the skeletal muscle microenvironment that seemed perturbed and were activated in subtype 1. In 

addition, pathways (not individual genes due to the redundancy of their functions) contributing to 

insulin resistance were enriched in subtype 1. These pathways enrichment in subtype 1 reveal a 

relatively poorer group than subtype 2 regarding cachexia severity than subtype 2. 

Cachexia-induced experimental models are highly controlled systems. They do not fully 

recapitulate the complexities, comorbidities, and wasting phenomenon experienced in the muscle 

wasting of cancer patients in a clinical setting 69. Nevertheless, most of the understanding of 

individual pathways and mediators was derived from these model systems and is thus helpful to 

collate the findings from this study undertaken using whole transcriptome profiling of human 

skeletal muscle. This is the first study to provide the entire transcribed genome within the skeletal 

muscle of patients with cancer, independent of any assigned weight loss or CT-based muscle 

parameter-generated classification. In contrast to lncRNA-mediated pathway regulation in males, 

unique pathways in females were pertaining to Gαs Signaling, urea cycle, GP6 Signaling Pathway, 

Tryptophan, and serotonin degradation.  
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The overall perturbations and overlap of canonical pathways between males and females was 

44.4%  (n=44 common pathways between males and females). Of note, despite the pathway 

overlap between the sexes, the gene overlap within the common pathways was 33.3% (n=146 

common genes of the 293 total non-redundant genes), with a higher number of genes uniquely 

present in male pathways at 62.9% (n=276) and 3.9% (n=17) in females pathways.  

A comparison of the pathways regulated by DE mRNAs (Chapter 3) between the subtypes (1 vs. 

2) in males with the ceRNA analysis (mRNAs, Chapter 4) revealed an overlap of 66.1% (n=72 

common canonical pathways). The number of unique pathways, 18.3% (n=20 canonical pathways) 

and 15.6% (n=17 canonical pathways), were found in DE mRNAs vs. ceRNAs (mRNA analysis), 

respectively. A similar comparison between subtype 1 vs. 2 in females at the DE mRNAs (Chapter 

3) and ceRNA analysis (mRNAs, Chapter 4) revealed an overlap of 44.4% (n=40 common 

canonical pathways). The number of unique pathways was 4.4% (n=4 canonical pathways), and 

51.1% (n=46 canonical pathways) were found in DE mRNAs vs. ceRNAs (mRNA analysis), 

respectively. 

As alluded to in Chapter 3, some sex-related differences at the pathway level and the networks 

likely reflect the differences in sample size with males at n=48 vs. females at n=36 and the number 

of lncRNAs, miRNAs, and mRNAs identified. If such differences could be ascribed to sample 

size, independent analysis at a higher sample size is needed to replicate and validate the findings. 

As such, this could be noted as a potential limitation to the study findings.  

Overall, the common pathways in males and females revealed pathways involved in immune cell 

regulation, metabolism-related pathways, and pathways important for maintaining skeletal muscle 

homeostasis. Although IPA is a pathway and functional annotation database, it should be noted 

that it is not skeletal muscle-specific. Hence, the genes regulating several pathways involved in 
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other organ systems are not discussed. The expression levels of the proinflammatory cytokines 

such as IL1ꞵ, TNFα, and IL6 were elevated in the skeletal muscle subtype 1 vs. subtype 2, 

indicative of the higher expression of these mediators in subtype 1. Overall, the perturbations of 

these mediators and canonical pathways involved in the above processes were enriched and 

predicted to be activated. Hence, the annotation of subtypes based on the mechanistic insights 

denote it to be associated with muscle wasting in subtype 1 in patients with cancer, i.e., subtype 1 

was concluded to be a relatively more severe group in terms of clinical benchmarks and expression 

profiling, and pathway level in silico benchmarking. Hence, this study provides another level of 

validation to the molecular subtype annotation and strengthens the findings from previous analyses 

reported in chapter 3. 

The application of competing endogenous RNA crosstalk mechanism is not limited to lncRNAs; 

pseudogenes and circular RNAs can also act as competing partners for mRNAs 70,71. The 

expression levels of individual RNAs within the ceRNA network can influence their cross-

regulation. Since these mechanistic insights are gained from the ceRNA networks, future studies 

should perform knockdown or knockout (loss-of-function) using RNA interference (RNAi), 

antisense oligonucleotides (ASOs) or CRISPR/cas9 genome editing, and overexpression (gain-of-

function)72 experiments with the hub lncRNA that consists of the highest interacting partners. In 

this study, skeletal muscle transcriptome profiles were generated from biopsy specimens of 

patients with cancer to understand their expression dysregulation and complex integrative higher-

order gene regulatory mechanisms. The expression profiles of lncRNAs and miRNAs are not 

limited to tissue specimens. They are also known to be expressed in the plasma and serum and are 

known to be transported via exosomes and hence were identified as circulating biomarkers 73,74. 

Future studies should identify their expression profiles using non-invasive sampling from patients 
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with cancer to detect their expression regulation and to compare their expression regulation from 

the skeletal muscle transcriptome generated in the present study. lncRNAs and miRNAs are known 

regulators of skeletal muscle development, as elucidated from the studies conducted using 

experimental model systems in vivo and in vitro systems. Hence, exploring the expression 

dysregulation in a cell-line model system representative of the myogenic cascade of events and 

replicating the findings from the human muscle is another approach to studying the lncRNAs that 

could potentially serve as important markers regulating the process of cancer-associated muscle 

wasting.  

This study aimed to determine the ceRNA mechanism via lncRNA-miRNA-mRNA ceRNA 

networks. piRNAs exhibit similar functions to the miRNAs 12. However, their expression profiling 

and gene targets have never been attempted in human skeletal muscle from patients with cancer. I 

have annotated piRNAs and their expression profiles in subtypes. Future work should analyze 

lncRNA-piRNA-mRNA ceRNA networks and pinpoint any overlapping or distinct molecular 

signatures and pathways regulated by miRNA and piRNAs, respectively.  

4.5  Conclusion 

This is the first study to identify ceRNA-mediated lncRNA-miRNA-mRNA higher-order or 

multilayered crosstalk as a potential post-transcriptional regulatory mechanism contributing to the 

overall homeostasis of the skeletal muscle of patients with cancer. Since ceRNA profiles were 

generated comparing subtype 1 vs. subtype 2, the ensuing post-transcriptional regulatory 

mechanisms underlying the complex interplay of RNA crosstalk are elucidated in the cachexia risk 

group. The ceRNA analysis revealed the pathways and mediators emerging from the skeletal 

muscle milieu representing integrated responses from the muscle microenvironment and metabolic 

and immune response signals. Molecular subtype annotation from ceRNA-mediated gene 
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regulation supports the evidence from clinical benchmarking and mRNA expression analyses 

(chapter 3), confirming subtype 1 as a relatively severe group affected by cachexia based on the 

above systematic analytical approaches.  
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Chapter 5    Molecular and functional benchmarking of the 

identified skeletal muscle subtypes using experimental model 

systems 

5.1  Introduction 

The current investigation focuses on determining the intrinsic molecular and putative functional 

characteristics of the skeletal muscle subtypes in patients with cancer. There is no prior human 

skeletal muscle sequencing dataset to understand the characteristics of the identified subtypes. 

Therefore, I adopted two independent, pragmatic approaches to ascertain the intrinsic 

characterization of the subtypes.  

I referred to the method to understand the clinical relevance of subtypes as clinical benchmarking 

in Chapter 3. I have described the proportional association of the muscle subtypes with the WL-

BMI grading system 1 and age- and sex- adjusted ZSMI distribution 2 as a metric to understand the 

clinical relevance (Chapter 3).  

The complementary approach for developing a molecular metric, referred to as molecular and 

functional benchmarking (hereafter, the terms molecular and functional benchmarking are used 

interchangeably), is conceived here as an extension for the molecular characterizations of the 

subtypes beyond the gene-level differential expression analysis. In this preliminary analysis,  the 

pathway level analysis is the focus rather than gene level expression differences described in 

chapter 3 since gene expressions are tissue-specific, exhibit pleiotropy, and show redundancy of 

functions regulating a diverse set of pathways.  

Skeletal muscle wasting is the cardinal feature of cancer cachexia 3. Despite several attempts to 

understand the underlying mechanisms of muscle wasting as a consequence of experimental 
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systems or human muscle biopsies, there is a lack of congruence on the mechanisms contributing 

to the pathophysiology of cachexia. Several decades of investigations were based on increased 

protein degradation, decreased protein synthesis, or a combination of both, leading to cancer-

associated muscle wasting 4-11. However, the findings remained inconsistent across the studies10-

12, as already reported in the preceding chapters.  

The importance of muscle environment for maintaining skeletal muscle integrity and function in 

cancer-associated muscle wasting and their role in the regenerative process has not been explicitly 

identified in human skeletal muscle studies. Adult skeletal muscle (comprises ~ 40-60% body 

mass) can regenerate post-injury; therefore, skeletal muscle regeneration is a hallmark of adult 

muscle tissue. Skeletal muscle regeneration is a highly orchestrated process. It is mediated by the 

interactions of satellite cells (adult stem cells) and their microenvironment. Satellite cells are 

characterized by their special anatomical localization between the basal lamina and sarcolemma, 

present in a particular microenvironment called "niche." The satellite niche comprises cellular and 

acellular components such as Extracellular Matrix (ECM) Proteins, fibroadipogenic progenitors, 

matrix metalloproteases (MMPs), growth factors interstitial cells, endothelial cells, chemokines, 

and motor neurons. Satellite cells are in a quiescent or dormant state characterized by Pax7 gene 

expression . However, in response to muscle injury, satellite cells are activated, proliferate, and 

differentiate into myoblasts. Myoblasts then fuse to form multinucleated myotubes that result in 

the formation of mature myofibers. The relative expression of myogenic regulatory factors 

(MYOD1, MYOG, and MYF5) is vital for the activation of satellite cells. A subset of the activated 

satellite cells can self-renew and revert to a quiescent state to maintain the satellite cell pool. The 

regenerative process is highly coordinated and requires participation from diverse mediators in a 

stage-specific manner, such as the factors released from ECM, growth factors, encoded proteins 
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from damage-associated molecular patterns (DAMPs), and infiltrating inflammatory immune 

cells.  

Impaired skeletal muscle regeneration could eventually contribute to muscle wasting in patients 

with cancer 13,14. A detailed review of skeletal muscle regeneration in cancer cachexia from the in 

vitro studies of human primary myoblasts and muscle progenitor cells as well as animal studies is 

provided by Bossola et al 15. Overall, different models of animal studies suggested the involvement 

of various steps implicating the process of skeletal muscle regeneration. Persistent high expression 

of Pax7 in the muscle of C26-bearing animals is noted compared to controls, whereas myogenin 

levels were reduced, suggestive of an impaired muscle regenerative mechanism 13,16. Pessina et al. 

(2010) showed that the rectus abdominis muscle of patients with gastric cancer showed higher 

expression of genes involved in muscle regeneration compared to non-cancer controls 17. They 

studied candidate genes such as PAX7, MYOD1 and necdin (NDN)  using qRT-PCR analysis. The 

higher expression of these genes in the muscle of patients with cancer suggested that regeneration 

is not inhibited but rather activated to counteract tumor-induced muscle wasting. These studies 

highlighted the potential for an injured muscle (in patients with cancer in cachectic conditions) to 

adapt to the changes in response to tumor-induced cachectic factors to preserve muscle 

homeostasis. This premise needs to be tested in human skeletal muscle in patients with cancer. 

There is a paucity of comprehensive and systematic human skeletal muscle study analyses 

addressing these gaps 18,19.  

Study rationale: Tissue homeostasis is a dynamic process and is highly regulated through tissue-

specific proliferation and terminal differentiation processes. In patients with cancer, the specific 

stages of muscle loss/regeneration are difficult to ascertain due to interindividual variability in the 

disease and muscle loss trajectory. However, in model systems, it was documented that the satellite 
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cells retain the regenerative ability 20,21. Independent investigations also supported this premise in 

human muscle stem cells 21. Therefore, the ongoing interest is to develop an appropriate model 

system (s) to assess human skeletal muscle atrophy or regenerative ability within the subtypes of 

muscle groups identified in patients with cancer.  

Proinflammatory cytokines promote activation and proliferation of satellite cells but sustained 

high systemic levels of these cytokines in cancer impede the differentiation potential by several 

mechanisms. In these aspects, animal models of cancer-induced muscle loss differ from those 

observed in patients with cancer. A further lack of expression of genes to promote differentiation 

was also reported in animal models, further emphasizing a need to interrogate the molecular 

mechanisms to delineate muscle atrophy and regeneration in human skeletal muscle. Hence, 

molecular level and functional benchmarking may serve as a composite metric between the 

subtypes of patients exhibiting differences in severity of muscle loss as judged from pathway 

analysis. There is no literature to date addressing these objectives. 

To address these gaps in the literature, two experimental model systems were developed to 

investigate if such model systems facilitate the molecular and functional benchmarking of muscle 

subtypes. The first system describes proliferating Rhabdomyosarcoma (RD) cells with the 

potential to differentiate and offers a model to emulate states of regenerative processes. The second 

system describes a rodent model to emulate the state of muscle atrophy in the presence of the 

tumor. I reasoned that the subtype 1 exhibiting higher severity of muscle loss as judged from the 

proportional association with poor WL-BMI grades and low muscle mass (z-SMI distribution of 

subtypes), would display characteristics of both muscle injury/repair as well as muscle atrophy 

features. The choice of these model systems is based on the observation that no prior reference 
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datasets are available to perform molecular and functional characterizations of the muscle subtypes 

identified in this study in patients with cancer.  

Hypothesis: Adopting model systems that characterize the muscle regenerative process and 

atrophy, generating NGS data from these model systems and their pathway level regulations when 

compared with pathways identified in human skeletal muscle subtypes, offers insights into muscle 

homeostasis in patients with cancer.  

Study-specific objectives are to (i) perform transcriptome analyses of RD cells in undifferentiated 

and differentiated states mimicking the process of skeletal muscle regeneration, (ii) perform 

transcriptome analyses of skeletal muscle of rodent model-bearing tumors mimicking the process 

of tumor-induced muscle atrophy, and (iii) identify overlapping and convergent pathways from 

model systems with that of human skeletal muscle tissue for molecular and functional 

benchmarking of the muscle subtypes to reveal pathways pertinent to muscle homeostasis. 
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5.2  Methods††† 

5.2.1 Experimental design and analysis  

The experimental design and analysis plan is presented in Figure 5.1. Two independent 

experimental model systems were generated and subjected to mRNA expression profiling 

analyses. The first human cell-line model system consisted of Rhabdomyosarcoma cells (RD cells) 

derived from a female donor in myoblast undifferentiated (n=2, proliferating) and differentiating 

(n=2) conditions were compared. The second model system consisted of a rodent model (female 

Fischer rats) characteristic of muscle wasting (rats bearing the ward colon tumor, n=5 and control 

animals, n=5). 

The rationale for the choice of the above model systems was based on (i) limited resources to 

generate NGS profiling in multiple cell lines or muscle from animal models; (ii) the availability of 

NGS data profiled for RD cells and rat bearing the tumor and data generated from the skeletal 

muscle (gastrocnemius muscle); (iii) all sample processing and data generation was from the single 

lab limiting or eliminating the batch effects (reagents, similar NGS platforms, and sample handling 

levels); (iv) RD cells were extensively used as a model system for myoblast differentiation and 

yet, a comprehensive approach to generate NGS data was lacking in the literature. I also 

acknowledge that other cell lines or model systems could potentially serve to extend this premise 

and will be deferred for future investigations.  

 

 

 
††† Study was conceptualized by Bhumi Bhatt, Dr. Vickie Baracos and Dr. Sambasivarao Damaraju. 
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Figure 5.1 Experimental design and analysis plan to perform molecular and functional benchmark 

analyses of the subtypes 

The schematic presents the analysis plan and the individual datasets with their respective comparisons and 

comparator reference groups. Pathway-level comparisons were used in the above systems to perform 

functional benchmarking of the molecular subtypes. Created with BioRender.com
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5.2.2 Cell Culture and qRT-PCR validation of myogenic markers 

RD cells were purchased from ATCC by Prof. Toshifumi Yokota, University of Alberta, 

Edmonton, Alberta, Canada, and the same were provided as a gift for the experiments described 

herein. RD cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 10% 

Fetal Bovine Serum (FBS) at 37° C in a humidified atmosphere containing 95% air and 5% CO2. 

For myogenic differentiation, proliferating (undifferentiated) myoblasts were made to differentiate 

using a chemical trigger (12-O-tetradecanolyphorbol-13-acetate, TPA, P1585, Sigma-Aldrich). 

TPA was used at a final concentration of 100nM. The cells were allowed to differentiate under 

these conditions for 6-10 days in T175 flasks with 35 ml culture medium. Cell cultures were set 

up in duplicates, and cells were harvested under proliferating and differentiating conditions. Cell 

suspensions were centrifuged to collect the cell pellets. These were resuspended in Trizol reagent 

for the extraction of total cellular RNA, as described in Chapter 3 in the RNA isolation procedures 

from muscle tissues. The total RNA was reverse transcribed for RT-PCR analysis using miRScript 

Plant RT kit routinely used for RT-PCR analysis to quantify miRNAs and mRNAs. QuantiTech 

Primer assays and QuantiTect SYBR Green Master mix within the miRScript SYBR Green PCR 

kit were used for the relative quantification of canonical myogenic gene markers. GAPDH was 

used as an internal control. Expression fold changes in undifferentiated (proliferating) and 

differentiating (differentiated) states of RD cells were calculated using the 2−ΔΔCt method 22. 

5.2.3 Next-Generation RNA sequencing (NGS) of RD Cells 

RNA extraction was performed using the Trizol method and Qiagen RNAeasy midi kit 

(Mississauga, ON). The optical density (OD) 260/280 ratio was measured using Nanodrop, and 

RNA integrity number (RIN) was assessed using Agilent Bio-analyzer 2100 for all the samples. 
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Services from the Genome Quebec facility (Montreal, Canada) were utilized for library preparation 

and whole transcriptome sequencing of RNA from human skeletal muscle. Briefly, pre-processing 

of isolated total RNA and downstream processing of the samples were as per the manufacturer's 

instructions summarized for  rRNA depleted sequencing (RNA sequencing). 

Total RNA was quantified, and its integrity (RNA integrity Number, RIN) was assessed using 5K 

/ RNA / Charge Variant Assay LabChip and RNA Assay Reagent Kit (Perkin Elmer). Purified 

RNA (RNA Integrity Values range 9.5 to 9.7) was used to construct RNA-seq library preparations 

from biological replicates (independently cultured and isolated cell pellets). Quality indices were 

consistently obtained and surpassed the recommended thresholds for assessing library and 

sequence quality scores (see details below). rRNA was depleted from 250 ng of total RNA using 

QIAseq FastSelect (Human 96rxns). New England BioLabs (NEB) provided the following 

reagents and kits, including adapters and primers for the cDNA synthesis: NEBNext RNA First-

Strand Synthesis and NEBNext Ultra Directional RNA Second Strand Synthesis Modules were 

used. The remaining library preparation steps were performed using  NEBNext Ultra II DNA 

Library Prep Kit for Illumina. Libraries were quantified using the Quant-iT™ PicoGreen® dsDNA 

Assay Kit (Life Technologies) and the Kapa Illumina GA with Revised Primers-SYBR Fast 

Universal kit (Kapa Biosystems). The average size fragment was determined using a LabChip GX 

(PerkinElmer) instrument.  

The libraries were normalized, pooled, and then denatured in 0.05N NaOH and neutralized using 

HT1 buffer. The pooled libraries were loaded at 225pM on an Illumina NovaSeq S4 lane using 

Xp protocol per the manufacturer's recommendations. The run was performed for 2x100 cycles 

(paired-end mode). A phiX library was used as a control and mixed with libraries at 1% level. All 

samples passed a Phred Quality Score of >35, as per the manufacturer's recommendations. Base-
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calling was performed with RTA v3.4.4. Program bcl2fastq2 v2.20 was then used to de-multiplex 

samples and generate fastq reads. 

5.2.4 Analysis of raw sequence files and Differential Expression (DE) of RNAs 

The data analyses of raw fastq sequence files were performed using Partek Flow software 

v10.0.21.0929 (Copyright ©; 2018 Partek Inc., St. Louis, MO, USA)  unless specified otherwise. 

The raw fastq files were subjected to Cutadapt 23 for the 3' adapter trimming. The trimmed reads 

were aligned to Human Genome (reference index hg38) using STAR aligner 24 (v2.7.3a). The 

generated .bam files were quantified to transcriptome using RNAs obtained from different 

annotation databases: Ensembl transcripts v102 was used to quantify mRNA. The features (the 

terminology is used interchangeably referring to RNAs) were filtered for ten read counts in 90% 

of samples following quantification of the reads. Differential Expression (DE) analysis of the 

RNAs was performed using the DESeq2 25 R package. RNAs were considered DE at a Fold-change 

cut-off of 1.5 and P <0.05.  

5.2.5 Next Generation RNA sequencing and differential expression analysis of 

gastrocnemius in a rodent model of muscle wasting 

The development of the preclinical animal model for cancer-associated muscle wasting has been 

described 26. Briefly, the Ward colorectal carcinoma (0.05g) was subcutaneously implanted into 

the flank of female Fischer 344 rats aged 11-12 weeks. The tumor was subcutaneously introduced 

to enable assessment of the rate of tumor growth. Following the tumor implantation, animals were 

sacrificed on day 14, when 22.2% mean muscle cross-sectional area reduction was recorded 

relative to healthy control animals. RNA was isolated from Gastrocnemius muscle tissue using a 

MagMax-95 total RNA isolation kit (Ambion, Austin, Texas, USA) following the manufacturer's 

instructions. RNA-seq libraries were prepared using TruSeq stranded total RNA with Ribo-Zero 



 

160 

 

TM Human/Mouse/Rat, TruSeq stranded total RNA according to manufacturer's instructions. Total 

RNA (1µg per sample and a RIN value of > 8.0) was used as an input material, depleted of rRNA, 

and the remaining RNA was purified, fragmented, and used for cDNA synthesis. The samples 

were sequenced on Illumina NextSeq 500 using high throughput 2x150 nt runs (paired-end read) 

with the density of 35 samples per flow cell to generate 10-13 million reads per sample. 

Sequencing services were from PlantBiosis Ltd, Lethbridge, Alberta, Canada. Base-calling and 

de-multiplexing were performed using 87 Illumina CASAVA1.9 with default settings. Adapter 

trimming was done using Trim Galore v.0.4.1. Quality control of the sequenced reads was 

performed using FastQC v0.11.4. Trimmed sequences were aligned to the rat reference genome 

using Tophat 2.0.10 with Bowtie2. Rat Genome (Rnor 6, Ensembl) was downloaded from the 

iGENOME website and served as a rat reference genome. Aligned sequences were saved as .sam 

files, which were then converted to .bam files and used for further data processing. Data analysis 

of .bam files was performed using Partek Flow software. mRNAs were annotated using Ensembl 

Rattus norvegius Rnor-6.0.92. Differential Expression analyses were performed using DESeq2 

with the Fold-change cut-off of 1.5 and P <0.05.  

5.2.6 Ingenuity Pathway analysis 

Differentially Expressed (DE) genes from the skeletal muscle subtypes and the two experimental 

model systems (RD cell and rodent models) were subjected to pathway analysis and functional 

annotation using Ingenuity Pathway Analysis 27 (IPA, QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). In characterizing 

the muscle subtypes, and muscle loss in patients with cancer, relative pathway enrichment analysis 

were used to create a schematic of networks that are integrative and interactive to potentially infer 

the complexity of the muscle loss in the cancer trajectory. II used functional and/or molecular 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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benchmarking as terms synonymous with integrating information from an IPA platform regarding 

molecular functions, cellular functions, biological processes (genes contributing to pathways), 

interactions, and gene regulations as described (https://digitalinsights.qiagen.com/technical-

support/manuals/). P-value in IPA is calculated using Fisher's exact test. It determines if the 

probability that the association between the genes identified within a given pathway is explained 

by chance alone. -log(P-value) threshold of 1.3 (equivalent to a nominal p-value of 0.05) was used 

to define statistically significant pathways.  

5.3  Results 

5.3.1 Cross-platform validation of gene markers regulating the processes of skeletal 

muscle regeneration 

The relative quantification of genes in undifferentiated and differentiated states of the skeletal 

muscle regenerative process is depicted in Figure 5.2 (top panel). PAX7, a proliferation marker, 

is shown in green bars (up-regulated in the proliferative state and down-regulated in the 

differentiated state). The MYH7 marker of differentiation is shown in pink bars (up-regulated in 

the differentiated state, down-regulated in the proliferative state). The NGS results were aligned 

with qRT-PCR platform results and are in agreement. Therefore, the relative expression of 

additional markers of differentiation in RD cells such as MYOD1, MYOG, and DES was 

presented from NGS findings.  

Overall, these results conform with the expected expressions of the candidate gene markers in 

proliferating and differentiating states of RD cells. The same total RNA from this batch was 

subsequently processed for RNASeq analysis. Cross-platform concordances between qRT-PCR 

and NGS further strengthen the experimental premise described. 

https://digitalinsights.qiagen.com/technical-support/manuals/
https://digitalinsights.qiagen.com/technical-support/manuals/
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Figure 5.2 Expression fold differences in proliferating and differentiating states of RD cells 

Expression fold change differences in proliferating and differentiating states of RD cells mimic the 

myogenic cascade of events. Top panel: qRT-PCR validation of select canonical gene markers: PAX7, for 

myoblast proliferating, and MYH7, for differentiating states. Bottom panel: Expression fold-change of 

select gene markers from Next-Generation Sequencing profiling study in proliferating vs. differentiating 

states. The X-axis represents canonical gene markers. Y-axis in both panels represents relative expression 

changes in proliferating vs. differentiating states of mature myofiber formation. Proliferating and 

differentiating gene markers are indicated in green and pink colored bars, respectively.  

PAX7: Paired box 7; MYH7: Myosin Heavy Chain; MYOD1: Myogenic Differentiation 1; MYOG: 

Myogenin and DES: Desmin. 

 

5.3.2 NGS profiling of RD cells and rat gastrocnemius muscle  

The expression profiling results from the experimental model systems are as follows: n=4595 DE 

mRNAs were identified in the RD cells (undifferentiated vs. differentiated states), and n=1283 DE 

mRNAs were identified in the rodent gastrocnemius muscle  (in tumor-bearing vs. healthy 

controls). These DE genes were subjected to pathway enrichment analysis using IPA. 
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5.3.3 Functional benchmark analyses of the identified molecular subtypes from patients 

with cancer using experimental model systems 

I interrogated the transcriptome data from two independent experimental model systems to extract 

functional understanding and interpretation of the identified molecular subtypes. Given the 

tissue/cell level heterogeneity of expression profiles and gene pleiotrophy 28, the DE genes from 

human rectus abdominis muscle, gastrocnemius muscle, and RD cells were subjected to IPA 

pathway analysis. The subsequent findings and data representation are from pathway-level 

analysis results.  

Individual analysis of the genes within each model system and their contribution to muscle 

homeostasis is beyond the scope of the current objectives. 

Detailed pathway analysis results in the tabular format with the -log(P-value) and the overlapping 

or convergent and distinct pathways within the datasets are presented in Table 5.1 and Appendix 

Tables A.17-05A-20.  

The total number of pathways determined in individual datasets were as follows: n=85 pathways 

in males, n=82 pathways in females were enriched in subtype 1 relative to subtype 2. In RD, n=196 

pathways were enriched in proliferating vs. differentiating states of cells. In rat gastrocnemius 

muscle in tumor-bearing vs. healthy rats,  n=37 enriched pathways were identified.  

Overall, five convergent pathways were identified from patients with cancer (male and female) 

and the experimental model systems (Figure 5.3). These include Calcium signaling, nNOS 

signaling in Skeletal Muscle Cells, GP6 (Glycoprotein 6, a part of the Extracellular matrix) 

Signaling Pathway, Tumor Microenvironment Pathway, and Transcriptional Regulatory Network 

in Embryonic Stem Cells. Detailed descriptions of the five convergent pathways described above, 
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genes regulating those pathways, and the statistical significance -log(P-value) are described in 

Table 5.1.  

Despite the pathway overlap, the individual genes within the convergent pathways showed limited 

overlap, shown in the Venn diagram in appendix Figure A.1. The gene comparisons revealed that 

they were particularly distinct, which is expected due to the tissue-specific and species-specific 

transcriptional profile differences. Therefore, it is imperative to perform pathway-level 

comparisons, not gene expression comparisons owing to the limited species/tissue-specific gene 

expression patterns.   

Besides the convergent pathways, the individual pathway analysis within males and females also 

showed a certain overlap with immune cell regulatory, extracellular matrix regulation and nNOS 

signaling, cellular metabolism, transcriptional regulatory network, and neuroendocrinal regulation 

(Appendix Table A.19, and Table A.20).  
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Datasets that overlap Pathway overlap from datasets Number of pathways (n) 

All four Male, Female, RD and Rat 5 

Any three 

Male, Female and RD 23 

Male, Female and Rat 1 

Male, RD and Rat 1 

Female, RD and Rat 1 

Any two 

Male and Female 36 

Male and RD 7 

Female and RD 7 

RD and Rat 21 

Unique pathways 

Female 9 

Male 9 

RD 131 

Rat 8 
 

Figure 5.3 Venn diagram of the pathway overlap between male, female, RD, and rat pathway 

analysis datasets 

The figure represents the Venn diagram and table explaining the overlapping and distinct pathways from 

four dataset comparisons. IPA pathway analysis was performed for sex-specific DE mRNAs from the 

subtypes identified in patients with cancer, RD cell, and rat datasets. Overall, five pathways were found to 

be convergent (Table 5.1). The other overlapping pathways between any three or two datasets and the 

distinct pathway results are presented in Table 05A.17- 05A.20, respectively. 
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Table 5.1 Convergent pathways in patients with cancer and those overlapping with experimental model systems 

 

Calcium Signaling (one of the convergent pathways) 
 

Males      -log(P-value) 4.5 

                            Genes AKAP5,ATP2B3,CACNA1A,CACNA1B,CACNA1D,CACNA1E,CACNA1F,CACNA1G,CACNA1I,CACNA2D

4,CACNB4,CACNG2,CACNG3,CACNG5,CACNG7,CACNG8,CAMK1G,CAMK4,CATSPER1,CATSPER4,CH

RNA2,CHRNA3,CHRNA4,CHRNA5,CHRNA6,CHRNA7,CHRNA9,CHRNB2,CHRNB3,CHRNB4,GRIA1,GRI

A2,GRIA4,GRIK1,GRIN1,GRIN2A,GRIN2B,GRIN2D,GRIN3A,HTR3A,MYH13,MYH8,MYO1A,MYO1H,PPP

3R2,RYR2,SLC8A2,TNNI3,TRPC3,TRPC4,TRPC5,TRPC7,TRPM8,TRPV6 

Females  -log(P-value) 4.4 

                            Genes AKAP5,ATP2B3,CACNA1A,CACNA1B,CACNA1D,CACNA1F,CACNA1I,CACNG2,CACNG5,CACNG8,CA

MK1D,CAMK4,CATSPER4,CHRNA2,CHRNA3,CHRNA4,CHRNA6,CHRNA7,CHRNA9,CHRNB2,CHRNB3,

CHRNB4,GRIA2,GRIA4,GRIK1,GRIN1,GRIN2A,GRIN2B,GRIN3A,HTR3A,MYH10,MYH13,MYH7,MYL2,M

YL6B,MYO1A,MYO1H,PPP3R2,PRKAR1B,RYR2,TRPC3,TRPC4,TRPC5,TRPC7,TRPM8,TRPV6 

RD           -log(P-value) 15.0 

                           Genes ACTA1,ACTC1,AKAP5,ATP2A3,ATP2B1,ATP2B4,CACNA1A,CACNA1B,CACNA1C,CACNA1D,CACNA1E

,CACNA1S,CACNA2D3,CACNB1,CACNG1,CACNG4,CACNG6,CACNG8,CALM1,CAMK1D,CAMK2A,CA

MK2B,CASQ1,CASQ2,CATSPER2,CHRNA1,CHRNA10,CHRNA4,CHRNA5,CHRNA9,CHRNB1,CHRNB2,C

HRND,CHRNG,CREB3,CREB5,GRIK1,GRIN2B,GRIN2C,GRIN2D,GRIN3A,GRINA,HDAC11,HDAC2,HDAC

5,HDAC8,HDAC9,ITPR2,MEF2A,MEF2C,MEF2D,MYH10,MYH2,MYH3,MYH6,MYH7,MYH7B,MYH8,MYH

9,MYL1,MYL4,MYL5,MYL6,MYL6B,MYL9,MYO18A,MYO18B,NFATC2,PRKACA,PRKACB,PRKAG2,PR

KAR1A,PRKAR1B,PRKAR2B,RCAN2,RCAN3,RYR3,SLC8A2,SLC8A3,TNNC1,TNNC2,TNNI1,TNNI2,TNNT

1,TNNT2,TNNT3,TP63,TPM1,TPM2,TRDN,TRPM8,TRPV6 

Rat          -log(P-value) 2.1 

                            Genes ACTA1,ATP2A2,ATP2B1,CACNA1D,CACNA1S,CACNA2D3,CACNB4,CACNG1,CASQ2,GRIA4,HDAC9,M

YH10,MYH6,MYH7B,RYR3,TNNC1,TNNT1,TPM3,TRPC1 
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nNOS Signaling (one of the convergent pathways) 
 

Males -log(P-value) 4.2 

                            Genes CACNA1A,CACNA1B,CACNA1D,CACNA1E,CACNA1F,CACNA1G,CACNA1I,CACNA2D4,CACNB4,CAC

NG2,CACNG3,CACNG5,CACNG7,CACNG8,CAMK4,CATSPER1,CATSPER4,RYR2 

Females  -log(P-value) 1.7 

                            Genes CACNA1A,CACNA1B,CACNA1D,CACNA1F,CACNA1I,CACNG2,CACNG5,CACNG8,CAMK4,CATSPER4,

RYR2 

RD           -log(P-value) 4.1 

                            Genes CACNA1A,CACNA1B,CACNA1C,CACNA1D,CACNA1E,CACNA1S,CACNA2D3,CACNB1,CACNG1,CACN

G4,CACNG6,CACNG8,CALM1,CAPN3,CATSPER2,CHRNA1,ITPR2,NOS1,RYR3,SNTA1,SNTB1 

Rat          -log(P-value) 2.1 

Genes in Rat dataset CACNA1D,CACNA1S,CACNA2D3,CACNB4,CACNG1,RYR3,SNTB1 

 

 

GP6 Signaling Pathway (one of the convergent pathways) 
 

Males      -log(P-value) 2.5 

                            Genes CAMK4,COL17A1,COL19A1,COL1A1,COL1A2,COL20A1,COL26A1,COL2A1,COL3A1,COL5A1,COL5A2,C

OL6A1,COL6A2,COL6A3,COL6A5,COL9A1,COL9A2,COL9A3,FGA,FGB,FGG,GP6,GRAP2,ITGA2B,LAMA

1,LAMC3,NOX1,PIK3C2G,PRKCG,PRKCZ 

Females  -log(P-value) 4.3 

                            Genes CAMK4,COL10A1,COL17A1,COL1A1,COL1A2,COL20A1,COL23A1,COL24A1,COL25A1,COL2A1,COL3A1

,COL5A1,COL6A1,COL6A2,COL6A3,COL6A5,COL9A1,COL9A2,COL9A3,FGA,FGB,FGG,GRAP2,LAMA1,L

AMC2,LAMC3,NOX1,PIK3C2G,PIK3R2,PRKCB,PRKCZ 

RD           -log(P-value) 3.6 

                            Genes CALM1,COL15A1,COL16A1,COL1A2,COL20A1,COL22A1,COL25A1,COL26A1,COL28A1,COL2A1,COL3A

1,COL4A3,COL5A1,COL5A2,COL6A1,COL6A2,COL6A3,COL7A1,FCER1G,GRAP2,ITGB3,ITK,LAMA3,LA

MA5,LAMB2,LAMB3,LAMC2,PIK3C2B,PIK3CD,PIK3CG,PIK3R5,PLCG2,PRKCE,PRKCQ,PRKCZ,PRKD1,P

RKD3,RASGRP2,SCHIP1,SYK,VAV1 

Rat          -log(P-value) 2.1 

Genes in Rat dataset APBB1IP,COL22A1,COL27A1,COL3A1,COL4A1,COL4A3,COL5A1,COL5A3,ITGB3,LAMB1,LAMC1,PIK3C

B,VAV2 
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Tumor Microenvironment Pathway (one of the convergent pathways) 
 

Males -log(P-value) 2.1 

                            Genes ARG1,COL1A1,COL1A2,COL3A1,CTLA4,CXCL8,FASLG,FGF14,FGF20,FGF23,FGF5,FN1,FOXG1,ICAM1,I

DO2,IL10,IL13,IL1B,IL6,MMP1,MMP10,MMP12,MMP13,MMP14,MMP2,MMP20,MMP21,MMP24,MMP26,M

MP7,MMP8,NOS2,OSM,PIK3C2G,PROK1,SLC1A4,SLC2A2,TNF 

Females  -log(P-value) 2.0 

                            Genes ARG1,COL1A1,COL1A2,COL3A1,CTLA4,FASLG,FGF14,FGF17,FGF23,FN1,IDO2,IGF2,IL1B,IL6,MMP10,M

MP12,MMP13,MMP19,MMP20,MMP21,MMP25,MMP3,MMP8,MYC,NOS2,PDGFD,PIK3C2G,PIK3R2,SLC2A

2,SLC2A3,TNF,VEGFB 

RD           -log(P-value) 6.7 

                            Genes BAD,BCL2,CCL2,CCND1,CD44,COL1A2,COL3A1,CSF1,CSPG4,CXCL12,CXCL8,CXCR4,EGF,FGF1,FGF13,

FGF7,FN1,FOXG1,FOXO6,HLA-A,HLA-B,HLA-C,HLA-

E,ICAM1,IL1B,IL6,ITGA5,ITGB3,LEPR,MMP1,MMP11,MMP14,MMP15,MMP17,MMP19,MMP2,MMP23B,M

MP24,MMP9,MRAS,MYC,NFKB2,NRAS,PDCD1LG2,PDGFB,PDGFC,PIK3C2B,PIK3CD,PIK3CG,PIK3R5,PL

AU,RASD1,RASD2,RELB,RRAS,SLC1A4,SLC2A1,TGFB1,TGFB2,TNC,VEGFA,VEGFB,VEGFC 

Rat          -log(P-value) 1.9 

                            Genes BCL2,COL3A1,CXCR4,FGF1,FGF7,FGF9,FOXO4,HLAA,ITGB3,LEP,MMP14,MMP19,MYC,PIK3CB,RRAS,T

GFB1 
 

Transcriptional Regulatory Network in Embryonic Stem Cells (one of the convergent pathways) 

Males      -log(P-value) 1.8 

                            Genes EOMES,GATA4,GJD2,HNF4A,ISL1,LHX5,NANOG,ONECUT1,OTX1,PAX6,POU5F1,RFX4,SOX2,ZIC3 

Females  -log(P-value) 2.1 

                            Genes EOMES,GATA4,HESX1,HNF4A,ISL1,NANOG,ONECUT1,OTX1,PAX6,POU5F1,RFX4,SOX2,ZIC3 

RD -log(P-value) 3.3 

                            Genes FOXC1,GATA6,GJD2,H3A/3B,H4C1,H4C11,H4C12,H4C13,H4C2,H4C3,H4C4,H4C8,H4C9,HNF4A,MEIS1,OT

X1,PAX6,RIF1,SET,SKIL,TCF7L1 

Rat -log(P-value) 3.0 

                            Genes CDYL,H4C1,H4C14,H4C4,H4C6,H4C8,RIF1,SKIL,SMARCAD1 

The male dataset is indicated in blue; the female dataset in peach color; RD in yellow; and the rat dataset in green. 
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5.4  Discussion 

In this study, I have attempted to elucidate molecular and functional benchmark analyses of 

subtypes from patients with cancer. Two independent experimental model systems were used to 

accomplish the study endpoints and to perform molecular characterization of muscle from patients 

with cancer. NGS-generated whole transcriptome datasets facilitated comparisons between 

experimental model systems and exemplified the pathway-level regulation across independent 

datasets. This is the first study to demonstrate the characterization of molecular subtypes of muscle 

from patients with cancer from comparisons using the experimental model system to gain insights 

into components of muscle and regenerative processes. The pathways were compared between 

human skeletal muscle datasets and those identified from the experimental model systems (RD 

cells and tumor-implanted rodent model). Perturbations of the multiple components in the local 

skeletal muscle microenvironment with sustained tumor-elicited inflammatory responses were 

observed. From this analysis, it appears that skeletal muscle homeostasis is maintained by 

coordinated and integrated actions of various components and is vital for maintaining skeletal 

muscle mass, strength, fatigue, resistance, and metabolic properties. 

Skeletal muscle regeneration requires crosstalk between satellite cells and their microenvironment, 

also called niche 29,30. Skeletal muscle is a highly organized tissue consisting of bundles of 

myofibers (muscle fibers). Each myofiber composed of several myofibrils is known as a muscle 

cell with the basic structural and the contractile unit called a sarcomere. Bundles of myofibers form 

the fascicles, and bundles of fascicles form the muscle tissue. An extracellular matrix and 

cytoskeletal networks cover each layer, from muscle cells to muscle tissue 29,31. Skeletal muscle is 

an important metabolic regulator and a highly vascularized and innervated tissue. The functional 

components of skeletal muscle include Neuromuscular junctions, Excitation-contraction coupling, 
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contractile unit (sarcomere), the homeostatic balance between inflammation, oxidative stress, 

extracellular matrix components, cytoskeleton supporting the muscle structure, circulation, and 

mitochondrial energy metabolism. 29 The activity and regulation of these interconnected structures 

are crucial for maintaining muscle mass, structure, and function. Any derangements in these 

coordinated processes due to external physical insults or chronic disease may lead to the loss of 

muscle fibers, affecting overall muscle health and function. 

The key processes affecting skeletal muscle integrity and function, as depicted in Figure 5.4, are 

as follows: (1) the inflammatory perturbations leading to a sustained proinflammatory response. 

In an ideal state, for a muscle to regenerate, early response is mediated by the complement system 

followed by mast cell and neutrophil activation. This is followed by the activation of M1 

macrophage (proinflammatory), and the last phase is characterized by the activation of M2 

macrophage (anti-inflammatory). (2) Satellite cells (muscle stem cells) reside in a specialized 

microenvironment referred to as a "niche"29,32. The niche is important for maintaining satellite cell 

quiescence, provides a signaling mechanism for activation, proliferation, and differentiation of 

satellite cells in response to tissue injury, and maintains the structural integrity of the muscle. 

Satellite cells are located between the basal lamina and sarcolemma of the myofiber (Figure 5.4). 

The ECM surrounding the muscle fiber comprises collagens, laminins, fibronectin, and 

proteoglycans 33. ECM consists of two layers, an outer layer, known as the reticular lamina, and 

an inner basal lamina. Satellite cells are connected to the basal lamina via integrins and laminins, 

which are connected to collagen IV of the basal lamina. Satellite cell also connects to the 

dystrophin complex on the sarcolemma via laminin. (3) Basal lamina maintains the quiescence 

state of satellite cells. In order for satellite cells to migrate to the injured site, it requires the 

degradation of ECM components which is mediated by Matrix MetalloProteases (MMPs). The 
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fragments and growth factors released during the ECM degradation are important for satellite cell 

activation, proliferation, and differentiation. A tight regulation between MMPs and Tissue 

inhibitors of MMPS (TIMPs) is required for ECM regulation 34. Imbalance in this pathway results 

in ECM accumulation leading to fibrosis 35,36. (4) The two important signaling mediators of the 

ECM are integrins and Dystrophin Glycoprotein Complex (DGC), consisting of dystroglycan, 

sarcoglycans, dystrobrevins, and syntrophins. DGC is the structural link between the cytoskeleton 

and ECM, and interactions with nNOS mediate the signaling via DGC 31,37. (5) Nitric oxide 

synthase (NOS) is attached to syntrophin and binds to dystrophin. NOS catalyzes the formation of 

Nitric Oxide and L-citrulline from L-arginine. Skeletal muscle fibers are a vital source of nNOS 

38,39. Three forms of nNOS are neuronal (nNOS, activated by interaction with calcium and 

calmodulin), endothelial (eNOS, activated by interaction with calcium and calmodulin), and 

inducible or macrophage or calcium-independent (iNOS). nNOS is differentially distributed near 

mitochondria, presynaptic and postsynaptic motor nerve terminals, sarcoplasmic reticulum, and 

sarcolemma. NO is a multifunctional molecule that affects muscle contraction, the mitochondrial 

respiratory chain, glucose metabolism, and the neuromuscular junction. It serves as an activity 

sensor and responds to the effects of prolonged disuse as well as exercise-mediated changes. (6) 

Mitochondria are essential for ATP production and are one of the primary sources of Reactive 

Oxygen Species/Reactive Nitrogen Species. Dysregulation in mitochondrial energetics results in 

elevated levels of ROS that are detrimental to skeletal muscle homeostasis. (7) Dysregulation in 

nNOS signaling results in the delocalization of NOS from sarcolemma, and cytoplasmic 

accumulation leads to Ryanodine receptor (RYR, the calcium channels that control intracellular 

calcium levels by releasing calcium from the sarcoplasmic reticulum)nitrosylation and thereby 

leads to Ca2+ leakage from the sarcoplasmic reticulum. Ca2+ leak can further activate nNOS in a 
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feed-forward mechanism 40. This affects the overall dynamics of skeletal muscle contractility and 

causes muscle damage and fatigue. (8) Dysregulated calcium signaling affects NMJ signaling. 

Besides acetylcholine, glutamate is also shown to stimulate nNOS acting through N-methyl-D-

aspartate receptors and is colocalized with nNOS at the sarcolemma 37. (9) Transcriptional 

regulation plays an essential role in the maintenance of skeletal muscle homeostasis. This vicious 

cycle or series of imbalanced component mechanisms with the sustained inflammatory response 

in the local milieu may contribute to the pathophysiology of cachexia and therefore needs to be 

carefully investigated. 

The components contributing to skeletal muscle homeostasis and their disturbances resulting in 

the imbalance were found to be altered in subtype 1 relative to subtype 2, and that subtype 1 is 

likely a severe group affected by cachexia. These findings that subtype 1 is a skeletal muscle 

wasting group align with the results from clinical benchmark analyses (chapter 3), wherein subtype 

1 was associated with high-grade WL-BMI and with low muscle mass (evident from z-SMI 

distribution). Overall, subtype 1 is inferred as a group affected by cachexia from clinical 

benchmark analyses (Chapter 3) and the functional benchmark analyses performed in this study. 

Despite the large number of pathways identified in each dataset, the limited overlap across all 

datasets. This was expected due to the heterogeneity in the model systems. Heterogeneity in the 

transcriptome and metabolic profiles of the model systems exists due to species- and sex-specific 

differences within study datasets, differential skeletal muscle anatomical localization (rectus 

abdominis skeletal muscle obtained from patients with cancer, and gastrocnemius obtained from 

rats bearing tumors and those from the healthy control rats), different comparator groups and 

reference groups. Human muscle subtypes were identified from patients with cancer, whereas the 
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rat model consisted of tumor-bearing and healthy reference controls. The rat model system is a 

highly controlled system wherein a tumor is implanted based on the specified experimental 

timeline 26, and therefore transcriptional changes are captured accordingly. On the other hand, the 

human clinical cachexia condition is the chronic wasting process, and the specific stages of muscle 

wasting (i.e., when the muscle wasting exactly occurred) or the damage caused to muscle due to 

the presence of a tumor cannot be captured. Abdelmoez and colleagues performed comparative 

profiling of skeletal muscle models (Rat L6, mouse C2C12, and primary human skeletal muscle 

cells) and identified transcriptome and metabolic differences based on the choice of the 

independent model systems 41. While the current study focused on the convergent pathways, the 

importance of the pathways overlapping with any two comparators is not to be undermined 

(Subtypes in individual sex vs. rat model or subtypes vs. RD model, or RD vs. rat model). Further 

investigations are warranted on the relative importance of these pathways in the above 

comparisons. In the absence of an ideal model of cancer-associated muscle wasting, I utilized the 

model systems developed in-house mimicking muscle cell regenerative process (RD) and a model 

mimicking cancer-induced muscle atrophy (Rat) and was able to successfully explore the potential 

molecular characteristics of skeletal muscle subtypes from patients with cancer.  

The overarching theme emerging from this study underpins the implications and dysregulation of 

several coordinated events that regulate skeletal muscle structure, function, and regenerative 

process. Numerous investigations have been conducted on experimental systems mainly focussed 

on the catabolic pathways with a particular emphasis on protein degradation pathways (ubiquitin-

proteasome pathway, autophagy, calpain proteases, and caspases). Protein homeostasis is essential 

for skeletal muscle mass but is not the only contributory factor. Emphasis was placed on enhanced 

protein degradation and decreased protein synthesis in the experimental systems. Human skeletal 
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muscle studies, on the contrary, presented conflicting results 10,11. Observations from model 

systems were not recapitulated in the human muscle studies 42,43. Given these limitations, the 

current study design and conceptualization justify using the two experimental model systems to 

understand and conduct benchmark analysis of the human skeletal muscle subtypes. While 

common pathways across all datasets highlight shared processes, this is not to undermine the 

importance of other pathways in individual datasets or pair-wise comparisons between any two 

datasets. Regardless of the number of pathways in individual datasets, the overarching theme 

appears to be the key findings summarized in Figure 5.4. 

 

Figure 5.4 Holistic view of pathway implications from functional benchmark analysis 

Overarching mechanistic insights from molecular characterization of subtypes identified in patients with 

cancer. The figure depicts the holistic view, including the coordinated mechanisms involving individual 

components and their crosstalk occurring within the milieu of skeletal muscle along with the tumor-elicited 

sustained inflammatory responses. Created with Biorender.com 
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This is the first study using the human skeletal muscle that has demonstrated the involvement of 

several fundamental factors integral to skeletal muscle integrity, the most important being the 

crosstalk between muscle and its microenvironment. A series of events affecting the muscle 

regenerative process, such as sustained chronic inflammatory response, perturbations in 

Extracellular Matrix regulation, Calcium signaling, nNOS signaling, transcriptional dysregulation, 

and metabolic disturbances, were some of the key mechanisms observed. The process of 

regeneration begins with the necrosis of damaged fibers and the infiltration of immune cells. The 

initial processes involve the activation of the coagulation cascade followed by immune cell 

response to the injury 44. The complement system serves as the initial trigger in response to muscle 

injury. The activation by the complement system is followed by the activation and infiltration of 

mast cells and neutrophils (early phase). This is followed by the activation of T cells, and M1 

macrophages (pro-inflammatory) stimulate satellite cell proliferation and prepress differentiation; 

in the middle phase, these processes secrete TNFα, IL1ꞵ, IFNγ, and IL6. The last phase is 

characterized by M2 macrophages along with regulatory T cells. M2 macrophages secrete IL4, 

IL10, and IL13 and are characterized by differentiation and maturation of myofibers. Acute 

inflammatory response plays an important role in initiating the tissue remodeling process. 

However, sustained chronic inflammatory responses are deleterious for muscle health and 

function. A sustained inflammatory process disrupts ECM remodeling (degradation and 

reformation). The interplay and balance between hydrolytic activity and its inhibition are important 

for ECM homeostasis. Coordination between MMPs/TIMPs is required for skeletal muscle 

regeneration, as disruption of this balance has deleterious effects on skeletal muscle structure and 

function. MMP2 and MMP14 deficiency were found to contribute to defective maturation of 

skeletal muscle and promote cell death 45,46. MMP14 regulates the migration of myoblasts and 
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therefore plays an important role in skeletal muscle regeneration. MMP2 and MMP14 were found 

to be DE in male subtypes but not female ones. MMP2 and MMP14 expression were 

downregulated in male subtype 1. 18 collagen genes were found to be perturbed in subtypes in 

both the sexes and 12 and 9 MMP genes in males and females, respectively. The beneficial or 

disruptive effects of NOS are based on the spatial localization of NOS synthases. nNOS is 

important for contractile function and maintaining skeletal muscle integrity by regulating muscle 

size, strength, and fatigue resistance. NOS expression increases after endurance exercise, whereas 

inactivity or prolonged muscle disuse leads to decreased expression. In an experimental model of 

tail-suspension-induced muscle atrophy in mouse models, nNOS from the DGC complex induced 

muscle atrophy via upregulation of FoxO 47. nNOS dissociated from α-1syntrophin within the 

sarcolemma and dislocated to the cytoplasm. The delocalization of NOS led to the generation of 

NO that regulates Foxo transcription factors, thereby promoting proteolysis by the ubiquitin-

proteasome system. Alterations in the nNOS pathway impair muscle fiber growth by causing a 

decrease in the number of myonuclei per fiber and defects in the fusion of myogenic precursor 

cells during regeneration, mitochondrial dysfunction (alterations in shape, morphology, size, and 

energy metabolism), Unfolded Protein Response, and autophagy and were observed in vivo mouse 

model and isolated satellite cells in vitro models 48.  

Judge et al. performed morphological and microarray analysis on the rectus abdominis muscle 

biopsies from PDAC patients and weight-stable control subjects and found increased collagen 

content in the cachexic PDAC patients representative of a fibrotic phenotype (cachexia defined 

using 5% WL criteria) 49. My study findings using muscle from the same anatomical location align 

with their findings, suggesting the importance of studying components described as a schematic 

model. Reports from another human skeletal muscle study affirm these findings. Stephens et al. 
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evaluated biomarkers for cancer cachexia from rectus abdominis muscle of gastrointestinal cancer 

patients and concluded that structural elements of skeletal muscle were potential cancer cachexia 

biomarkers 50. Amongst all the atrophy and structural genes quantified, the study suggested ꞵ-

dystroglycan as a potential biomarker of cancer cachexia 50. Overall, the inferences obtained from 

the literature-reported findings and those observed in the muscle of patients with cancer in my 

study suggest that these mechanisms need to be studied in detail, and the therapeutic developments 

or drug repurposing should target the components described in Figure 5.4.  

It is important to note that the findings reported in this study are focused on the mRNA expression 

profiles generated and comparative pathway analyses at the mRNA level. Future implementations 

should incorporate multilayered RNA crosstalk from post-transcriptional ceRNA (lncRNA-

miRNA-mRNA) mechanisms in the experimental model systems. These would facilitate the 

comparisons of hub lncRNAs and their regulatory networks identified from human skeletal muscle 

subtypes (described in Chapter 4). There is evidence of lncRNAs involved in regulating ECM in 

skeletal muscle 51. Therefore, if the ceRNA mediated-gene regulation is operated by the same hub 

lncRNAs, then further knockdown or overexpression experiments could be performed. It would 

help confirm the mRNA expression changes and thereby governing pathways. These need to be 

determined.  

5.5  Conclusions 

This is the first investigation towards generating a transcriptional landscape of skeletal muscle 

from patients with cancer and comparisons to cellular model systems representative of muscle 

regenerative process and a skeletal muscle model of tumor-induced muscle atrophy. Invoking 

model systems for molecular and functional benchmarking of the muscle subtypes is also the first 
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in the literature to align the human skeletal muscle transcriptome for putative functional insights. 

Implementation of the comparative analyses in this study illuminated the importance of the 

component mechanisms concerning skeletal muscle homeostasis. I provide a schematic model 

from the pathway analyses comparisons across different datasets wherein disturbances occurring 

within the skeletal muscle and its microenvironment and the tumor-elicited effects aggravating 

those disturbances are captured. The resulting disruptions from all data sets' component 

mechanisms from converging pathways are depicted and summarized from the in silico IPA 

pathway analysis. These analyses provide insights into the skeletal muscle integrity, function, and 

overall homeostasis in patients with cancer. Distinct component mechanisms within the skeletal 

muscle milieu epitomize the series of events (cycle) in a feed-forward manner, including sustained 

inflammatory response, disturbances in ECM regulation, perturbations in calcium signaling, and 

transcriptional networks. In this study, molecular and functional benchmarking methods for 

identifying intrinsic characteristics of skeletal muscle from patients with cancer corroborate with 

the findings obtained from the clinical benchmarking methods, i.e., the clinical relevance (WL-

BMI graded severity and z-SMI distribution) of the subtypes. Future studies should target the 

discrete component mechanisms (Figure 5.4) acting in a coordinated fashion in concert rather than 

in isolation in future studies. 
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Chapter 6    Discussion 

This thesis is the first and the most extensive investigation in cachexia literature. In this thesis, I 

have performed sex-specific molecular characterization of human skeletal muscle from patients 

with cancer. I performed data integration using an unsupervised clustering algorithm from the 

entire transcribed genome of the human skeletal muscle to identify molecular subtypes. The 

subtype identification was independent of clinical cachexia parameters, also referred to as clinical 

labels throughout the thesis. Further clinical relevance and functional insights were gained using 

independent analytical approaches. The key findings of this study are described below: 

6.1  Sample size considerations and acquisition of skeletal muscle biopsy 

I utilized N=84 (N=48 males and N=36 females) human rectus abdominis skeletal muscle biopsy 

specimens obtained from patients undergoing surgical tumor resection in a regional cancer center 

in Alberta, Canada. Biopsy specimen from each patient was subjected to high-throughput Next 

Generation rRNA and small RNA sequencing (mRNAs, lncRNAs, and small non-coding RNAs) 

to generate transcriptional expression profiles. To date, molecular profiling studies using human 

skeletal muscle biopsies have used qRT-PCR or northern blot analysis to measure expression 

levels of candidate gene markers or various microarray technology platforms to profile mRNAs. 

High-throughput NGS sequencing has several advantages over qRT-PCR and microarray-based 

techniques described in chapter 1.  

None of the human muscle studies from patients with cancer have characterized sex-specific 

transcriptional changes. A recent study used targeted sequencing (representation of over 20k 

RefSeq genes) using an Ampliseq transcriptome gene expression kit.  Sequencing was performed 

on rectus abdominis muscle and subcutaneous biopsies of Pancreatic Ductal Adenocarcinoma 

(PDAC) vs. healthy controls to identify a distinct and overlapping set of muscle and fat-related 
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genes and pathways 1. Although the targeted sequencing was performed on protein-coding genes 

and is therefore not a complete representation of the entire transcriptome, the sex-related 

differences were not elucidated, possibly due to the limited sample size. My study overcomes this 

limitation. I tried to minimize the effects of the confounding variables in the statistical models 

considered and the ensuing analysis plan. 

6.2  Molecular profiling studies and challenges in the patient classification  

Despite the higher prevalence of cachexia in patients with cancer, clinically meaningful definitions 

and diagnostic criteria, molecular staging, and understanding of pathophysiologic mechanisms are 

still rudimentary. Data emerging from decades of work using experimental model systems are 

beyond the realms of understanding cachexia as a holistic problem emulating the complex human 

cachexia condition. Nevertheless, a vast interpretation of representative pathways contributing to 

the pathophysiology of cancer-associated muscle wasting was acquired from varied animal models 

of cachexia due to the supporting experimental evidence. Some reasons for the lack of 

translatability include the rapid growth of tumors in these models 2,3, comorbidities in clinical 

settings that are not reflected in the model systems, and the lack of appropriate models that 

represent the human cachexia condition, including the state of metastasis and cancer-specific 

treatment effects. One of the caveats of the animal models for cachexia is that the tumor 

proliferates and reaches 10% of the body mass within a limited period of a few days or weeks. 

In contrast, in humans, the tumor burden is < 1% of the body mass 2,4. Human skeletal muscle 

biopsy is an excellent tool to infer the muscle-wasting phenomenon in patients with cancer 5. 

However, the accrual of muscle biopsy specimens is an invasive procedure, usually obtained 

during surgical resection of the tumor, and requires extensive collaboration between cachexia 

researchers and surgical oncologists. Therefore, studies employing muscle biopsy are limited.  
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Until now, studies that have used human skeletal muscle biopsy to gain insights into molecular 

mechanisms of muscle wasting have applied case vs. control strategies. The case herein is defined 

as a patient with cancer experiencing a phenotype of % WL or low skeletal muscle mass defined 

using low Skeletal Muscle Index (SMI) or radiodensity as a metric of muscle quality. (parameters 

obtained from image analysis). The weight changes often introduce recall bias, incomplete records 

from the medical charts, and are not insightful of underlying dynamic changes of muscle mass; 6,7 

hence, using weight changes as a sole diagnostic criterion to stratify patients is challenging 8.  

Lack of assessment of weight changes was also reported in a recent study from our group, wherein 

of the n=30 patients, n= 3 did not have records of weight changes, and for n=11, data for weight 

changes were taken several months before surgery 9. It is evident from the literature that when 

weight loss is recognized in patients with cancer, cachexia is often in a state of irreversibility, and 

the outcome measures in patients deteriorate 10. This has also resulted in the failures of clinical 

trials because the recruitment of patients was at a refractory stage wherein weight loss is severe, 

and the catabolic events are exalted. One of the other muscle measures obtained from CT image 

analysis, which I have not considered in my study, is Skeletal Muscle Radiodensity (SMR, 

measured in HU). Although SMR is not a canonical parameter used in classifying cases as 

cachexic, it is associated with the amount of lipid content in muscle or fatty infiltration in muscle 

11, known as myosteatosis. It is associated with poor clinical outcomes 12-14. However, a recent 

study found that intravenously administered contrast material during scans and different beam 

energies (in kilovolts) serve as confounding variables. Muscle density increased or decreased 

based on high contrast or low beam energy. These variables are often not reported in clinical 

studies or profiling studies 15. Hence, these variables should be used cautiously, especially when 

designing molecular studies, due to the labor-intensive, resource, and time-consuming 
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experimental design and processing. No consensus exists on the classification strategies, and 

variable criteria employed in molecular or profiling studies have generated conflicting results.  

For the initial analyses, I performed phenotyping of patients based on cachexia parameters of % 

WL, SMI, and FMI (proxy to BMI). I generated bivariate sex- and cohort-specific median cutoffs 

to reduce the bias of using literature-derived cutoffs of SMI or arbitrary investigator-defined WL 

cutoffs. I found that patients in my cohort exhibited interindividual variations and distributed to a 

wide range of the phenotypic spectrum (Figures 2.1 and 2.2). For instance, I found that a weight-

losing patient was on the high SMI spectrum and vice versa. The inference was that the clinical 

and body composition parameters did not yield consensus; hence, I needed alternative unbiased 

methods that were independent of these parameters to classify patients with cancer into subtypes 

to understand the pathobiology of the skeletal muscle.  

To summarize the findings from the clinical phenotyping analyses, there is a lack of a clear 

understanding of the definition and diagnostic criteria that can be applied to classify patients as 

cachexic both in a clinical setting and when pursuing molecular profiling studies. The use of 

heterogeneous patient classification strategies is one of the key impediments to the replicability of 

molecular findings across the studies.  

6.3  Unsupervised machine learning approaches to identify sex-specific 

molecular subtypes of human skeletal muscle from patients with cancer 

Unsupervised clustering methods are well-established and were applied in consortia studies for 

various cancer types. I used Non-negative Matrix Factorization (NMF), a dimensionality reduction 

method that models data by additive combinations of non-negative basis vectors, i.e., metagenes, 

to cluster individual samples relying on individual RNA expression profiles. Brunet et al. were the 
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first researchers to utilize NMF in the gene expression domain using three cancer datasets of 

leukemia, medulloblastoma, and central nervous system tumors and identified biologically 

significant phenotypes 16. Since then, the applicability of NMF has increased tremendously. NMF 

utilizes non-negative gene by sample matrix (gene expression matrix) and reduces the 

dimensionality to a few metagenes reflective of the original matrix. In this study, I applied the 

NMF algorithm to cluster samples. However, the applicability of NMF is vast and can be used to 

cluster genes and gene set discovery, among others. In the NMF analysis employing single RNA 

species, the resulting association statistics with clinical and body composition variables of the 

NMF clusters showed striking patterns reflecting the sample heterogeneity across clusters and their 

differential associations with clinical labels. The biological mechanisms are attributed to the 

complex interplay between various RNA species and are not dependent on a single RNA species. 

Therefore,  I investigated the interactions amongst different RNAs to sample clustering to mirror 

the complex biological patterns inherent to the subtype, a proxy to a phenotype. I used the intNMF 

algorithm to identify molecular subtypes of skeletal muscle from patients with cancer. Unlike other 

models that require specific distributional assumptions to be met, the intNMF algorithm does not 

assume any distributional form of the data. Two cluster model was selected, considering the cluster 

quality indices (cophenetic coefficient, cluster prediction index, and silhouette width) and sample 

size utilized to confidently ascertain the subtypes and facilitate downstream analysis and data 

interpretations. This is the first study wherein whole transcriptome profiles were used to generate 

subtypes of muscle, unlike any other previously conceived study based on supervised classification 

using case vs. control strategies dependent on phenotypic characterizations of the cohorts.  

Several attempts were made to apply machine learning models to detect changes in body 

composition using imaging techniques, including muscle loss 17, weight loss 18, and application of 
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auto segmentation of CT image data (instead of manual segmentation) and analysis of muscle and 

fat components of body composition 14,19. While these are preliminary findings, the central 

question that remains to be determined is the use of varying cutoffs, the applicability of appropriate 

machine learning models to assess changes in body composition, and the underlying biological 

insights. My thesis addresses these questions and advances the field using integrative approaches 

to gain biological insights using human skeletal muscle. 

6.4  Sex-specific expression analyses and pathway regulation 

Sex-related differences are prominent in skeletal muscle. Males have higher muscle mass, a higher 

composition of fast-twitch Type II fibers (i.e., glycolytic phenotype), and are less fatigue resistant 

20. Sexual dimorphism is also extensively studied in the gene expression profiles from human 

skeletal muscle biopsies in healthy aging 21,22 and exercise settings 23-26. My study identified sex-

specific Differentially Expressed (DE) profiles of the protein-coding mRNAs and the long and 

small ncRNAs. Notably, the DE profile overlap between males and females for mRNAs and 

lncRNAs was about 50%. In contrast, I observed a higher diversity of expression differences in 

the small ncRNAs, with miRNAs exhibiting an overlap of 34.7% genes between males and 

females. Other small RNAs demonstrated < 10% gene overlap between the sexes. Therefore, 

studying whole transcriptome profiles rather than mRNAs in isolation is imperative. Protein-

coding genes are under tight regulation by lncRNAs or small non-coding RNAs. While 

mechanisms of miRNA regulation of mRNAs are well studied, the regulatory potential of 

snoRNAs, piRNAs, and tRNAs is currently being explored for their non-canonical functions. 

Recognizing the regulatory roles of all small RNAs and lncRNAs, I included these RNAs along 

with protein-coding RNAs in the intNMF clustering models to identify the skeletal muscle 

subtypes in patients with cancer. This is the first report to show sexually dimorphic expression 
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patterns of these RNA species in the human skeletal muscle of patients with cancer, with the 

highest sample size conducted to date in the literature.  

Transcriptome profiling has revealed that in comparisons of muscle biopsy specimens from 

different anatomical locations of skeletal muscle, those obtained from the same site showed 

homogeneity 27, whereas intrinsic transcriptional diversity is prevalent among other skeletal 

muscle tissues 28. About 55.2% of transcripts were differentially expressed among 11 mouse 

skeletal muscles, and about 13% were differentially expressed between at least two skeletal 

muscles 28, highlighting the importance of using a single muscle type and limiting the number of 

cancer types in the study to limit heterogeneity to allow interpretability and replication of findings 

in independent studies.  

In this study, rectus abdominis skeletal muscle was obtained from each patient to perform 

sequencing of small ncRNAs, lncRNAs, and mRNAs. Several measures were taken to reduce 

sampling bias and to ensure the maintenance of the quality of samples and consequent data 

analyses. Patient biopsy specimens were obtained from a single center by a designated surgical 

oncologist. Sample processing for NGS was carried out in the same batch eliminating the 

introduction of batch effects.   

6.5  Intrinsic characterization of molecular subtypes of skeletal muscle from 

patients with cancer 

Since my study is the only investigation performed in cachexia literature that identified subtypes 

of skeletal muscle from patients with cancer, there was no standard method I could undertake to 

understand which of the two subtypes is affected by cachexia. Therefore, I performed two 

independent benchmark analyses described as follows: 
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Clinical benchmarking analyses: I first explored the skeletal muscle subtypes for their clinical 

relevance. This was accomplished using the association statistics using the distribution of samples 

from the two subtypes in males and females to (i) WL-BMI grading schema 10(grades 0-4 represent 

increased graded severity) and (ii) z-score SMI distribution generated from literature-reported sex- 

and age-adjusted SMI values 29. Reports from the individual analyses construed subtype one as a 

relatively high-grade cachexia group or the group affected by cachexia (with high WL-BMI and 

low SMI). Further, a slight variation was observed in subtype 2 (low-grade cachexia group/high 

SMI), with 10% of the patients within subtype 2 falling under the WL-BMI grade 4.  

Molecular and functional benchmarking analyses: Next, I interrogated the subtypes 

transcriptome profiles and their pathway analysis results from IPA to the in-house generated 

experimental model systems (RD cells in undifferentiated and differentiated skeletal muscle from 

tumor-implanted rodents). I acknowledge the limitations of using these experimental model 

systems (RDs being a female cell lineage and rodents being all females). However, the premise 

was to test the pathways identified from muscle subtypes in a model that emulates myoblast 

proliferating and differentiating states (i.e., RD dataset) and an animal model of cancer-induced 

muscle wasting (i.e., rat transcriptome dataset). It is not to conclude the use of any particular 

systems but to understand the intrinsic characteristics of skeletal muscle subtypes from patients 

with cancer. These datasets were generated in-house. I performed all the data preprocessing and 

analysis regimen, which is also one of the strengths of this study, that all sequencing datasets are 

generated from the same lab.  

The overarching theme emerging from this study underpins the implications and dysregulation of 

several coordinated events that regulate skeletal muscle structure, function, and regenerative 

process. The disturbances in the component mechanisms may contribute to the pathophysiology 
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of cancer-associated muscle wasting. I present a schematic model of perturbations in the skeletal 

muscle microenvironment and tumor-elicited inflammatory responses in Figure 6.1.  

 
Figure 6.1 A proposed schematic of various cellular and functional components contributing to 

skeletal muscle homeostasis 

The disrupted homeostatic response from multi-component mechanisms regulating skeletal muscle 

structure and function is shown. Skeletal muscle wasting in patients with cancer appears to be highly 

orchestrated. Individual component systems were shown in the numbered format in the above schematic, 

and their detailed description is shown below. (1) Sustained inflammatory response (2) Satellite cell and 

their microenvironment (3) ECM regulation by MMPs (4) DGC complex (5) nNOS signaling (6) 

Mitochondrial dysfunction (7) Calcium signaling (8) Synaptic junction (9) Transcriptional regulation. 
Created with Biorender.com 

Pathways illustrated were found to be perturbed in subtype 1 (IPA predictions). The component 

systems concerned were described in detail in Chapter 5, section 5.4, and Figure 5.4.  

A proposed schematic of various cellular and functional components contributing to skeletal 

muscle homeostasis 

I also present a model of the series of events or cycle of a feed-forward process from individual 

components that could contribute to the pathophysiology of cachexia is depicted in Figure 5.4. 
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This is the first study using the human skeletal muscle that has demonstrated the involvement of 

several fundamental factors integral to skeletal muscle integrity, the most important being the 

crosstalk between muscle and its microenvironment. A series of events affecting the muscle 

regenerative process, such as sustained chronic inflammatory response, perturbations in 

Extracellular Matrix regulation, Calcium signaling, nNOS signaling, transcriptional dysregulation, 

and metabolic disturbances, were some of the key mechanisms observed. 

This is the first human skeletal muscle study from patients with cancer to investigate the pathways 

from subtypes and report the importance of the skeletal muscle microenvironment and the 

interactions of various components in a sex-specific manner. This further explains the complexity 

of cachexia syndrome and the rationale for not looking from a focused lens but rather 

understanding cachexia as a multifaceted syndrome involving multiple mediators and signaling 

pathways. Overall, results from both the benchmark analyses align; therefore, subtype 1 is assigned 

as a group affected by cachexia. This study provides a roadmap for future implementations wherein 

a higher sample size could segregate the subtypes into multiple other subtypes that could indicate 

the graded severity of cachexia.  

Systemic inflammation is one of the hallmarks of cancer-associated muscle wasting. 

Proinflammatory factors are released by complex host-tumor interactions and act centrally to 

directly mediate muscle loss by activating pathways leading to muscle protein degradation or 

peripherally through interactions with other organ systems having an indirect effects on skeletal 

muscle wasting. Direct activation of proinflammatory cytokines leads to the activation of pro-

catabolic pathways leading to muscle wasting; these include NF-kB signaling, JAK/STAT 

signaling, MAPK, and SMAD signaling pathways 30. All these eventually culminated in increased 

proteolysis or muscle protein breakdown and decreased protein synthesis, as have been identified 
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in experimental model systems. However, activation of proteolytic systems or decreased protein 

synthesis were not recapitulated in human studies 31,32, including this study. Proinflammatory 

cytokines such as IL6, IL1B, and TNF-α stimulate the release of acute phase protein (APP) from 

the liver. These APPs include C-Reactive Protein (CRP), coagulation, complement proteins, and 

transport proteins, as well as proteinase inhibitors such as α1 antitrypsin. Massart et al. (2020) 

suggested skeletal muscle as being another source of APPs using C26 cancer cachexia model, and 

that activation of APPs were mediated by glucocorticoids and proinflammatory cytokines 33.  

Elevated levels of plasma or serum CRP is recognized as a marker of systemic inflammation and 

cachexia in patients with cancer 34. However, the clinical utility of CRP is still debated due to the 

varying cutoffs; the most commonly used is greater than 10mg/L 35. I was fortunate to have plasma 

CRP data from a subset of patients for whom I had the muscle biopsy specimen and transcriptome 

datasets to perform correlation analyses. However, when plasma CRP was correlated with tissue 

muscle expression profiles of proinflammatory cytokines and candidate genes selected from 

cachexia literature related to skeletal muscle regeneration, it showed no correlation or poor 

correlation in male and female patients, suggesting the criteria to re-evaluate the significance of a 

single marker to address the multifactorial problem of cachexia (data not shown). Despite the 

activation of downstream catabolic events by these cytokines, antibody targetting individual 

cytokines is ineffective in reversing all the features of cancer-associated muscle wasting. This is 

because the activation of one cytokine entity triggers the downstream effector molecules and 

complementary cytokines that bring about changes in signaling pathways. 

In addition to the primary role of inflammatory cascades, skeletal muscle serves as an important 

metabolic center of regulation. Skeletal muscle is the largest reservoir of amino acids and is 

important for glucose homeostasis. The amino acids released from the breakdown of proteins in 
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muscle are utilized by the liver for gluconeogenesis. Insulin resistance has been shown to be 

another feature of cachexia described in experimental models. All these metabolic perturbations 

were observed in my dataset, along with the upregulation of proinflammatory markers such as IL6, 

IL1B, and TNF in males and females in subtype 1.   

In a recent study by Abdelmoez et al. (2020) it was identified that the in vitro model systems used, 

such as rat L6 cells 36 derived from the thigh muscle, mouse C2C12 derived from thigh muscle 37, 

and primary human skeletal muscle cells (HSMCs) derived from human biopsies 38, exhibit 

heterogeneity in their transcriptome profiles and metabolism 39. Hence, caution should be applied 

in using these model systems. Researchers should utilize these models to address their specific 

research question to gain biological insights considering their strengths and limitations. Also, these 

studies have been performed using mRNA expression from representative pathways (select 

candidate gene expression profiles). As my study explained, higher-order regulatory mechanisms 

have never been performed. The top six hub lncRNAs identified with high stringency cutoffs as 

described in this thesis, and with a greater proportion of interacting miRNAs and mRNAs 

demonstrated, could be subject to further interrogation using in vitro and in vivo studies since they 

regulate a large number of targets. This could potentially be one of the ways to study the integrated 

gene and pathway networks instead of targeting individual pathways. These could possibly be 

druggable targets, provided their validity in cell line models, or validation in non-invasive serum 

or plasma samples, provided these samples show circulating RNAs of sufficient selectivity and 

specificity for the diagnostic, prognostic, or predictive value to guide treatment decisions.  

6.6  Limitations of the study 

Since this is the first study to perform molecular subtyping of human skeletal muscle from patients 

with cancer, there was no previously generated reference dataset to predict the inherent type or 
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ability to characterize the subtypes functionally or to correlate the findings from this study. 

Nevertheless, I successfully characterized the subtypes in males and females to overcome such 

limitations.  

Inherent characterization of skeletal muscle subtypes encompassed several validation methods, 

including aligning samples within the subtypes with those classified based on the WL-BMI grading 

system and z-SMI distribution. Subsequently, I performed functional benchmarking to understand 

the intrinsic characteristics of skeletal muscle subtypes. The perturbations in pathways related to 

the proinflammatory signaling cascade, nNOS signaling, tumor microenvironment, inhibition of 

matrix metalloproteases, calcium signaling, extracellular matrix regulation, activation of Acute 

Phase Reactant (APR) proteins, and metabolic aberrations were enriched in subtype 1 relative to 

subtype 2.  While the molecular subtype identification and benchmarking methods (both clinical 

and functional benchmarking) are novel and presented for the first time in literature, this is not to 

imply that one method is adequate. I undertook two independent paradigms to reach a consensus 

on the subtype characteristics. 

The sample size in this cohort was n=84; although this is the single most extensive sex-specific 

study of skeletal muscle transcriptome in cachexia, increasing the sample size could possibly result 

in identifying subclusters within these clusters and could be representative of trajectory-specific 

markers. A higher sample size will also allow analysis and interpretations from a single cancer 

diagnosis should there be any dependence on cancer type when the rectus abdominis is the only 

muscle analyzed. However, this needs to be determined.  

Published studies in human skeletal muscle transcriptome were limited to mRNAs. Such datasets 

in the public domain could not be used to validate the classification of subtypes in my study since 
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these lack profiling of lncRNAs and small non-coding RNAs from the same patient's rectus 

abdominis muscle. Where miRNA data is available 40, lack of access to RNA from published 

cohorts or availability of RNA isolated from rectus abdominis muscle from our previous studies 

(Damaraju and Baracos labs) hindered profiling of all RNA classes.  

Data on muscle fiber typing and its role in the selective degradation of muscle mass remain 

controversial 41. I did not have immunohistological or fiber-type data for my study cohort. Muscle 

heterogeneity is reflected by fiber type composition differing in myosin heavy chain isoforms, 

metabolism, and neural response. Slow type I fibers express MYH7, and fast type 2 fibers express 

MYH2 (type 2A), MYH1 (type 2x), and MYH4 (type 2B). While no significant differences were 

observed in MYH expression for males, women have more type I fiber expressing MYH7; in this 

cohort, MYH7 expression was down-regulated by -1.52 fold in subtype 1 vs. 2. I cannot comment 

on the fiber type data as it was not one of the study objectives and hence, it is out of the scope of 

the current study. Nevertheless, the lower expression of myosin heavy chain in subtype 1 further 

strengthens the annotation of the subtypes.  

For this project, the skeletal muscle biopsy sampling procurement was at a fixed time point during 

the surgery. Hence dynamic changes in the muscle of patients with cancer are unattainable. The 

subtype annotation limitations are also from single biopsy profiling, whereas WL and SMI are 

from varying time points. Collection of serial biopsies pre- and post-surgery along the disease 

trajectory would be useful information to annotate subtype-related transcriptional changes. 

However, this is not a feasible or ethical approach considering the invasiveness of the surgical 

procedure. Nevertheless, the unsupervised clustering and identification of subtypes are 

encouraging, given the above sampling limitations.  
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6.7  Strengths of this study 

• This is the first ever largest dataset generated of human skeletal muscle from patients with 

cancer that has complete (i) clinical and body composition annotation for each patient included 

in the study (ii) Muscle transcriptional landscape was generated for each patient using Next 

Generation rRNA depleted RNA sequencing (to profile mRNAs and lncRNAs) and Small 

RNA sequencing (to profile miRNAs, piRNAs, snoRNAs, and tRNAs). Using a high-

throughput NGS platform has significant advantages over qRT-PCR and microarray-based 

technology.  

• My entire dataset from the initial data acquisition of muscle biopsy (from a designated surgical 

oncologist) and subsequent NGS profiling experiments was handled in a single batch to 

overcome reagent and processing artifacts. Quality checks for all samples enabled the 

downstream data processing to ensure confidence in the data analysis and interpretations. Such 

a rigorous approach may facilitate the reproducibility of this study's findings in independent 

cohorts.  

• Patient stratification using cohort-specific median cutoffs and their distributions led me to infer 

that the application of classically used cachexia variables or clinical labels was not an 

appropriate method for the profiling study conducted in this thesis. This is important because 

muscle biopsy was obtained at a single time at the time of surgery, and it becomes imperative 

to study the transcriptome independent of clinical labels. It opens new avenues to study 

cachexia and its underlying pathophysiological mechanisms from a pragmatic view.  

• Overcoming the challenge of classification bias was a significant breakthrough for my 

downstream analyses. The unsupervised clustering method identified sex-specific differential 

gene expression profiles and molecular subtypes of skeletal muscle in patients with cancer.  



 

201 

 

• I adopted two de novo avenues to establish subtype characterization: (i) clinical and (ii) 

molecular and functional benchmarking. The validation from both approaches led to 

determining subtype one as a group affected by cachexia. Overall, the molecular and functional 

benchmarking suggested disturbances within the skeletal muscle milieu contributing to the 

pathophysiology of cachexia. 
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Chapter 7    Future directions 

My thesis focussed on identifying skeletal muscle subtypes from patients with cancer using 

transcriptome profiles and unsupervised clustering algorithms. The intrinsic characteristics 

attained from clinical (graded WL-BMI severity and low z-SMI scores) and functional (or 

molecular) benchmarking analyses demonstrated subtype 1 as a group affected by cachexia. This 

is the first pivotal transcriptome investigational study, and the consecutive text describes future 

considerations. 

7.1  Validation of the present study in an independent patient cohort 

This study focussed on the accrual of rectus abdominis skeletal muscle biopsies from a cohort of 

patients with pancreas and colorectal cancer types due to the higher prevalence of cachexia in these 

cancer types 1. Restricted choice of the cancer types was to prevent the heterogeneity related to 

them since different cancer types may exert distinct or overlapping muscle wasting phenomena in 

terms of their transcriptional landscape, which needs to be ascertained. Studying cancer-type-

specific muscle wasting in individual cancer types is also imperative. Hence, the study findings 

must be replicated and validated in an independent patient cohort. Since this is the first whole 

transcriptome study of human skeletal muscle within patients with cancer, it could serve as a 

reference dataset for future validation studies. 

7.2  Sample size considerations: Identification of cancer-specific and sex-

specific molecular subtypes with higher sample size 

While this study focussed on identifying sex-specific molecular subtypes, it would be equally 

essential to analyze cancer-type- and sex-specific molecular subtypes. In this study, the molecular 

subtypes or clusters were restricted to the k=2 cluster model, considering the sample size 
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limitations. However, this is not to say that there are no subclusters within a given cluster. 

Increasing the sample size would help elucidate the subclusters that could potentially corroborate 

the stage-specific trajectory of cachexia, i.e., determine subtypes in early vs. late phases based on 

the associated graded cachexia severity. It needs to be determined using an independent patient 

cohort and would require collaborative efforts between researchers and surgical oncologists to 

perform an extensive cancer cachexia-omic study. I did not have any previously generated RNA 

sequencing data from the skeletal muscle of patients with cancer to compare the identified clusters 

or to perform functional benchmarking of the clusters. Hence the dataset in my study could serve 

as a reference cohort in future cachexia research. 

7.3  Functional characterization 

LncRNAs are diverse molecules and exhibit functions based on their cellular localization. 

lncRNAs interact with  DNA, RNA, and protein to exert their gene regulatory functions. I 

generated the ceRNA networks in this study, and hub lncRNAs were determined based on the 

highest interacting miRNA and mRNA partners. As the transcriptome profiles derived from tissue 

data do not entirely recapitulate the expression profiles from the cell-line data, the next step would 

be to confirm the expression of ceRNAs, and their interacting miRNA and mRNAs. One of the 

ways to validate the ceRNA mechanism would be performing overexpression or knockdown 

experiments of lncRNAs and confirming the similar abundance of corresponding mRNA targets. 

Further confirmation of the ceRNA mechanism could be obtained by generating Dicer knockout 

cell lines, i.e., that are essentially deficient in miRNA biogenesis. The Dicer knockout cells should 

not have any effects on the other miRNAs. To initiate these, the specific targets should be the hub 

lncRNAs that demonstrate the highest miRNA binding sites and interacting target genes. In 

addition to the ceRNA-mediated regulation, the cis- and trans-regulatory genes could be predicted 
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using bedtools suite 2 that could have functions in skeletal muscle wasting or muscle pathology. 

Further experimental models could be generated for candidate lncRNAs via knockdown or 

overexpression followed by sequencing to confirm the gene targets. lncRNAs also have epigenetic 

roles wherein their association with chromatin-modifying complexes, for example, polycomb 

repressive complex 2 (PRC2), leads to changes in gene expression 3-5. Identifying such 

mechanisms in human skeletal muscle could shed light on lncRNA-mediated gene expression at 

the epigenetic levels.  

7.4  Expand the ceRNA premise to piRNA-mediated crosstalk with lncRNAs 

and mRNAs to find unique and overlapping gene targets and pathways 

I performed molecular subtype identification using unsupervised clustering in the human skeletal 

muscle of patients with cancer. Non-negative Matrix Factorization6,7 (NMF) was used to identify 

clusters based on a single RNA class. The final ascertainment of molecular subtypes was based on 

integrative NMF8 (intNMF) clusters or molecular subtypes. To gain mechanistic insights using the 

post-transcriptional ceRNA mechanism9, I utilized lncRNA-miRNA-mRNA triplet RNA crosstalk 

and network-based analysis. piRNAs have a similar post-transcriptional mechanism of action as 

miRNAs, i.e., they bind to the 3’UTR of the mRNAs and lead to translational repression. 

Previously thought to be expressed in the germline, they are now known to be expressed in somatic 

tissues, and their dysregulation contributes to pathological states. I identified the Differentially 

Expressed (DE) piRNAs in subtype 1 vs. 2 in males and females. Future studies could explore 

lncRNA-piRNA-mRNA crosstalk and compare the gene targets to that of lncRNA-miRNA-

mRNA crosstalk to determine piRNA- and miRNA-specific gene targets and pathway level 

regulation. This would emphasize the importance of the distinct or shared mechanisms of action 

between miRNA and piRNA-mediated gene regulation. 
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7.5  lncRNA and snoRNA embedded small RNAs in human skeletal muscle 

Recent studies have identified that lncRNA and snoRNA can serve as precursors to miRNA and 

piRNAs, although the exact mechanism is still unknown10-13. It would be interesting to determine 

if any of the profiled lncRNAs and snoRNAs in the skeletal muscle dataset from my study harbor 

any miRNAs and piRNAs. The embedded miRNA and piRNAs could be checked for expression 

in the in-house skeletal muscle dataset generated. Further, their corresponding gene targets 

regulate common and distinct pathways. It is a novel phenomenon and remains to be determined 

in human skeletal muscle from patients with cancer. 

7.6  Multi-omic molecular characterization of human skeletal muscle and their 

integrative gene regulatory mechanisms in cancer-associated muscle wasting 

Future advancements in the field would be significant to identify molecular subtypes using multi-

omic platforms to unravel the mechanisms. However, acquiring a skeletal muscle biopsy is an 

invasive and arduous procedure and requires extensive collaborative efforts to accomplish the task. 

Few projects worldwide perform data integration at the systems biology levels, particularly in the 

cancer context requiring large-scale consortia efforts from different expertise and sampling 

collection. Pursuing such a comprehensive study in cachexia research would require extensive 

funding, sampling and clinical data collection, and collaborative efforts between clinicians and 

researchers. It could potentially open up avenues to form consortia in the research area focussing 

on cachexia in patients with cancer. The data integration methods could also help identify the 

subtype of patients undergoing muscle-wasting to target therapeutic modalities and identify 

druggable targets for those patients. This is the first report to suggest nuance approaches as the one 

undertaken in the current study. 
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Chapter 8    Conclusions 

Molecular association studies applying binary phenotype classes have limitations when multiple 

RNA classes are to be studied. Investigator-defined cut-offs primarily drive phenotype-specific 

patient stratification in the cachexia context for WL, BMI, SMI, or combinations of these variables. 

Literature-reported findings from molecular association studies attempted in isolation for mRNA 

and miRNA using human skeletal muscle biopsies have limited value in understanding the 

complex interplay of RNA molecules in a cellular milieu. My thesis surmounts these limitations. 

Overall, two de novo molecular subtypes using the intNMF algorithm were identified from the 

skeletal muscle of patients with cancer. This is the first large-scale investigation providing a 

transcriptional atlas of human skeletal muscle from patients with cancer. Matched expression 

profiles using high-throughput NGS sequencing of small RNA dataset and RNA sequencing 

dataset is one of a kind and the first in cachexia research. Data curated for the entire transcriptional 

atlas of mRNAs, lncRNAs, and small ncRNAs will be accessible publicly. This would help enable 

cachexia researchers to study their genes or pathway of interest unique to a particular sex or 

overlapping targets. It is a prerequisite to deposit sequencing data and cite the Gene Expression 

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) Accession Number before communication. 

GEO releases the data upon publication of the original findings.  

The study results in a paradigm shift from applying clinical labels to the pragmatic application of 

classifying patients with cachexia and pursuing molecular studies using unbiased pattern 

recognition ML algorithms. Further, my study provides insights into multilayered RNA crosstalk 

via competing endogenous RNA (ceRNA) analysis of lncRNA-miRNA-mRNA triplets. The hub 

lncRNAs demonstrated the sexually dimorphic pattern of post-transcriptional gene regulation.  

https://www.ncbi.nlm.nih.gov/geo/
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Two independent paradigm avenues revealed subtype 1 as a group affected by cachexia. Clinical 

benchmarking showed an association of subtype 1 with increased severity of WL-BMI grades and 

low muscle mass; subtype 2 had minimal WL and high SMI. Further clinical relevance of subtypes 

was obtained using survival analysis. Subtype 1 showed poor overall survival (Kaplan-Meier 

method), and differences in survival were statistically significant at a log-rank P-value of 0.05 

(data not shown). Molecular and functional benchmarking using experimental model systems led 

me to generate a pathway map of component pathways important for skeletal muscle integrity and 

function. Drugs developed thus far using targeted mechanisms at a single gene product or a single 

pathway was inadequate as judged from the clinical benefit to patients to alleviate cachexia 

condition. Stratifying patients for clinical trials should consider the complex interplay of clinical 

variables and an unbiased approach to identifying at-risk patients for cachexia. Though not ready 

for clinical implementation, the study premise described in this thesis suffices to bring to the fore 

independent methods to understand the complex muscle homeostasis in patients with cancer at a 

molecular level. My study could be a reference for future studies to validate the findings.   
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Appendix 

Table A.1 Differentially Expressed (DE) mRNAs between subtypes in males 

Top 200 (up- and down-regulated) DE mRNAs (Subtype 1 vs. Subtype 2) in males 

Genome assembly GRCh 38 Human Genome (hg) build 38 

mRNA  Chr Start Stop P-value                    FDR            FC 
log2 

FC 

FSHB 11 30231014 30235262 3.12E-09 3.95E-07 14.8 3.9 

OR14J1 6 29301701 29313018 8.55E-11 1.01E-07 14.3 3.8 

DUOXA2 15 45114326 45118422 5.89E-08 1.97E-06 13.9 3.8 

LRRC19 9 26993136 27005673 4.88E-09 5.03E-07 13.6 3.8 

IL36A 2 113005459 113008045 9.78E-09 7.55E-07 13.3 3.7 

ANKRD40CL 17 50761029 50767558 2.15E-09 3.28E-07 13.2 3.7 

OR8D4 11 123902167 123909230 3.27E-11 6.67E-08 13.1 3.7 

TMEM213 7 138797952 138838102 2.43E-10 1.38E-07 13.0 3.7 

ZSWIM2 2 186827475 186849209 5.47E-10 1.94E-07 13.0 3.7 

SPATS1 6 44342650 44380180 8.69E-09 6.99E-07 12.5 3.6 

PGK2 6 49785660 49787286 8.09E-07 1.09E-05 12.1 3.6 

SMIM31 4 164754064 164803796 1.76E-09 2.92E-07 12.0 3.6 

TTLL8 22 50015123 50056936 9.62E-08 2.64E-06 11.2 3.5 

BPIFB6 20 33031648 33044048 2.37E-08 1.19E-06 11.0 3.5 

GSTA3 6 52896639 52909699 7.30E-08 2.23E-06 10.9 3.4 

OR2J1 6 29099657 29102702 1.52E-06 1.68E-05 10.8 3.4 

APOBEC1 12 7649400 7665909 9.03E-07 1.17E-05 10.7 3.4 

OR4Q3 14 19743571 19749470 1.11E-08 7.97E-07 10.6 3.4 

OR4K2 14 19875142 19883933 4.88E-10 1.85E-07 10.4 3.4 

OR2T2 1 248445512 248455726 4.45E-06 3.69E-05 10.4 3.4 

VSX2 14 74239449 74262739 1.59E-06 1.73E-05 10.3 3.4 

NEUROD6 7 31337465 31340727 7.91E-07 1.08E-05 10.3 3.4 

OR10H5 19 15787661 15801026 5.09E-10 1.85E-07 10.2 3.4 

SUN5 20 32983773 33004434 6.71E-08 2.11E-06 10.2 3.3 

IL36G 2 112973203 112985659 5.08E-08 1.81E-06 10.1 3.3 

C2orf80 2 208165343 208190031 2.17E-08 1.14E-06 10.1 3.3 

C17orf78 17 37375985 37392709 4.36E-09 4.65E-07 10.1 3.3 

OR7G2 19 9100407 9107476 1.40E-07 3.40E-06 10.1 3.3 

OR4D9 11 59511368 59520704 1.49E-10 1.21E-07 10.0 3.3 

INSL6 9 5123880 5185648 1.31E-09 2.69E-07 10.0 3.3 

LHX1 17 36936785 36944613 1.00E-07 2.70E-06 10.0 3.3 

FRG2C 3 75664330 75667221 2.62E-09 3.66E-07 9.9 3.3 

RFPL2 22 32190435 32205002 3.48E-08 1.47E-06 9.9 3.3 

PIWIL1 12 130337887 130372638 2.22E-10 1.38E-07 9.8 3.3 
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MEIOB 16 1833986 1884295 7.61E-09 6.43E-07 9.8 3.3 

MGAT4D 4 140442262 140498378 1.18E-09 2.54E-07 9.7 3.3 

CACNG2 22 36560857 36703753 5.12E-10 1.85E-07 9.7 3.3 

SPIC 12 101475336 101486998 1.32E-07 3.26E-06 9.7 3.3 

PRAMEF2 1 12857086 12861910 5.04E-10 1.85E-07 9.7 3.3 

MOG 6 29657002 29672373 6.92E-08 2.16E-06 9.6 3.3 

EXD1 15 41182725 41230744 3.34E-10 1.58E-07 9.6 3.3 

PADI6 1 17372196 17401700 5.28E-09 5.24E-07 9.6 3.3 

SLC13A2 17 28473293 28497782 2.44E-07 4.87E-06 9.6 3.3 

NAT16 7 101170496 101180294 2.78E-07 5.32E-06 9.6 3.3 

CEACAM20 19 44501677 44529789 9.39E-10 2.40E-07 9.5 3.3 

TRIM77 11 89710299 89717873 3.81E-09 4.38E-07 9.5 3.2 

OR5K1 3 98463201 98472925 9.63E-09 7.54E-07 9.5 3.2 

BEST2 19 12751702 12758459 4.00E-07 6.76E-06 9.5 3.2 

KCNJ13 2 232765802 232776566 1.97E-10 1.35E-07 9.4 3.2 

OR7A17 19 14878203 14886133 4.17E-10 1.73E-07 9.4 3.2 

OTOP1 4 4188726 4226930 4.07E-08 1.61E-06 9.3 3.2 

NPHS2 1 179550539 179575953 1.69E-06 1.81E-05 9.3 3.2 

UGT3A2 5 36035021 36071359 8.69E-08 2.47E-06 9.3 3.2 

SCGB3A2 5 147870682 147882192 3.72E-10 1.58E-07 9.3 3.2 

LIPK 10 88724544 88752757 5.94E-08 1.98E-06 9.3 3.2 

SLC34A1 5 177379235 177398849 7.84E-08 2.31E-06 9.3 3.2 

OR4K1 14 19930917 19936758 3.13E-09 3.95E-07 9.3 3.2 

TEX101 19 43401496 43418598 9.77E-07 1.24E-05 9.2 3.2 

OR4N2 14 19719015 19830254 7.85E-10 2.39E-07 9.2 3.2 

ASIC5 4 155829729 155866278 3.23E-08 1.43E-06 9.2 3.2 

PLCZ1 12 18683169 18738101 1.94E-10 1.35E-07 9.2 3.2 

OR4M1 14 19773504 19783697 1.37E-07 3.34E-06 9.2 3.2 

AC013470.2 7 12469621 12542223 3.67E-12 3.43E-08 9.1 3.2 

RNF212B 14 23185316 23273478 6.06E-07 8.91E-06 9.1 3.2 

NANOGNB 12 7765216 7774122 1.35E-06 1.55E-05 9.1 3.2 

DAOA 13 105465867 105491035 4.47E-08 1.70E-06 9.1 3.2 

NLRP9 19 55708438 55738403 8.72E-08 2.48E-06 9.0 3.2 

TMEM225 11 123882920 123885671 1.29E-06 1.50E-05 9.0 3.2 

CD200R1L 3 112815709 112846857 3.33E-08 1.44E-06 8.9 3.2 

MS4A12 11 60492778 60507431 2.53E-10 1.38E-07 8.9 3.2 

BTNL3 5 180988846 181006728 1.54E-09 2.90E-07 8.9 3.2 

NLRP11 19 55785397 55836801 1.54E-08 9.44E-07 8.9 3.1 

OR5H1 3 98130721 98138549 6.86E-09 6.13E-07 8.8 3.1 

BRINP3 1 190097658 190478405 3.55E-10 1.58E-07 8.8 3.1 

PRR27 4 70133616 70176800 1.29E-09 2.69E-07 8.8 3.1 
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PRR23C 3 139042102 139044893 5.16E-06 4.14E-05 8.8 3.1 

OR6N2 1 158774222 158781205 5.88E-08 1.97E-06 8.7 3.1 

SERPINB13 18 63586989 63604640 5.31E-09 5.24E-07 8.7 3.1 

TMIGD1 17 30316333 30334060 3.54E-06 3.11E-05 8.7 3.1 

ELSPBP1 19 47994632 48025155 3.47E-07 6.10E-06 8.7 3.1 

OR51A7 11 4903783 4909463 3.97E-07 6.73E-06 8.7 3.1 

TSPAN16 19 11296139 11326997 8.41E-08 2.42E-06 8.7 3.1 

SPANXB1 X 141002594 141003707 1.82E-05 1.12E-04 8.7 3.1 

CCDC63 12 110846769 110907536 1.03E-08 7.63E-07 8.7 3.1 

HMGB4 1 33860475 33864792 1.04E-05 7.17E-05 8.7 3.1 

SELENOV 19 39515113 39520687 7.63E-07 1.05E-05 8.6 3.1 

DNAJC22 12 49346888 49357547 3.79E-08 1.54E-06 8.6 3.1 

TRIM51GP 11 48975324 48983827 8.45E-09 6.95E-07 8.6 3.1 

NLRP7 19 54923509 54966313 2.49E-09 3.60E-07 8.6 3.1 

ACSBG2 19 6135247 6193095 3.83E-08 1.55E-06 8.6 3.1 

HTR3A 11 113974881 113990314 1.62E-06 1.76E-05 8.5 3.1 

ARGFX 3 121567949 121590623 2.32E-08 1.19E-06 8.5 3.1 

SULT2A1 19 47870467 47886316 1.10E-06 1.33E-05 8.5 3.1 

SLC17A1 6 25782915 25832053 9.46E-11 1.03E-07 8.5 3.1 

SLC9A4 2 102473226 102533973 9.84E-10 2.43E-07 8.5 3.1 

ADAM2 8 39743735 39838290 4.54E-09 4.78E-07 8.5 3.1 

SLC17A6 11 22338381 22379504 2.04E-09 3.16E-07 8.5 3.1 

TSGA13 7 130668643 130687433 1.85E-06 1.93E-05 8.5 3.1 

ANKRD20A3P 9 66106815 66179475 7.12E-08 2.18E-06 8.5 3.1 

OR2V1 5 181123122 181131170 9.86E-07 1.25E-05 8.5 3.1 

C1QC 1 22643633 22648111 1.65E-03 5.51E-03 -1.5 -0.6 

DLK1 14 100725705 100738225 2.40E-03 7.70E-03 -1.5 -0.6 

OAF 11 120211032 120230335 2.26E-04 9.39E-04 -1.5 -0.6 

XG X 2752040 2816501 6.00E-04 2.22E-03 -1.5 -0.6 

DCLK1 13 35768652 36131383 4.30E-03 1.30E-02 -1.5 -0.6 

PDGFRL 8 17576433 17644072 1.05E-07 2.76E-06 -1.5 -0.6 

ECM2 9 92493554 92536656 1.52E-03 5.11E-03 -1.5 -0.6 

EZR 6 158765741 158819369 1.67E-05 1.04E-04 -1.5 -0.6 

SCN4B 11 118133377 118152889 3.17E-04 1.26E-03 -1.5 -0.6 

SCARA3 8 27633868 27676777 2.24E-03 7.24E-03 -1.5 -0.6 

LRRC56 11 537527 554913 1.56E-02 4.07E-02 -1.5 -0.6 

PTPRF 1 43525187 43623667 1.97E-02 4.97E-02 -1.5 -0.6 

GPC3 X 133535745 133985595 3.46E-03 1.07E-02 -1.5 -0.6 

CYBB X 37780059 37813462 6.55E-04 2.40E-03 -1.5 -0.6 

THBS2 6 169215780 169254051 7.26E-04 2.64E-03 -1.5 -0.6 

FBLN1 22 45502238 45601136 4.78E-05 2.49E-04 -1.5 -0.6 
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SLC1A4 2 64988477 65023866 1.85E-04 7.92E-04 -1.6 -0.6 

FBN1 15 48408313 48645722 6.09E-05 3.05E-04 -1.6 -0.6 

IGSF10 3 151425384 151458710 1.30E-02 3.45E-02 -1.6 -0.6 

ABI3BP 3 100749156 100993516 4.90E-05 2.54E-04 -1.6 -0.6 

COL6A2 21 46098112 46132849 1.77E-05 1.09E-04 -1.6 -0.6 

OIP5 15 41309273 41332592 4.06E-04 1.57E-03 -1.6 -0.6 

ARRDC2 19 18001132 18014103 4.85E-03 1.44E-02 -1.6 -0.7 

FSTL1 3 120392293 120450994 9.26E-05 4.33E-04 -1.6 -0.7 

COL6A1 21 45981769 46005051 6.00E-06 4.64E-05 -1.6 -0.7 

MRC2 17 62627670 62693598 1.77E-04 7.63E-04 -1.6 -0.7 

PCOLCE 7 100602363 100608176 8.13E-04 2.92E-03 -1.6 -0.7 

OLFML3 1 113979391 114035573 7.11E-05 3.48E-04 -1.6 -0.7 

PLXNB2 22 50274979 50307647 2.53E-05 1.46E-04 -1.6 -0.7 

OMD 9 92414245 92424462 2.36E-03 7.58E-03 -1.6 -0.7 

FN1 2 215360440 215436074 4.07E-04 1.57E-03 -1.6 -0.7 

SMOC2 6 168441151 168673446 4.75E-05 2.48E-04 -1.6 -0.7 

MFAP2 1 16974502 16980633 8.24E-03 2.31E-02 -1.6 -0.7 

MGP 12 14880864 14885858 6.87E-04 2.51E-03 -1.6 -0.7 

S100A4 1 153543613 153550137 2.48E-04 1.02E-03 -1.6 -0.7 

PI16 6 36948263 36964838 1.94E-04 8.21E-04 -1.6 -0.7 

MMP14 14 22836560 22849028 2.51E-04 1.03E-03 -1.6 -0.7 

CD248 11 66314494 66317045 3.86E-04 1.50E-03 -1.6 -0.7 

SPARC 5 151661096 151686976 3.18E-04 1.26E-03 -1.6 -0.7 

HTRA1 10 122458551 122514908 3.01E-06 2.75E-05 -1.6 -0.7 

FST 5 53480626 53487135 1.08E-02 2.94E-02 -1.6 -0.7 

CHRDL1 X 110673856 110795820 2.51E-04 1.03E-03 -1.6 -0.7 

SESN3 11 95165513 95232542 7.70E-04 2.78E-03 -1.6 -0.7 

HS6ST2 X 132626016 132961396 4.14E-03 1.25E-02 -1.6 -0.7 

SMAD9 13 36844831 36920766 6.76E-03 1.94E-02 -1.6 -0.7 

SCPEP1 17 56978129 57006769 2.09E-05 1.25E-04 -1.7 -0.7 

CAPN6 X 111245099 111270484 2.46E-03 7.87E-03 -1.7 -0.7 

COL6A3 2 237324003 237414208 4.59E-06 3.78E-05 -1.7 -0.7 

SSC5D 19 55488404 55519100 3.85E-05 2.08E-04 -1.7 -0.7 

LAPTM5 1 30732469 30757775 2.14E-03 6.94E-03 -1.7 -0.8 

FSCN1 7 5592816 5606656 2.92E-06 2.70E-05 -1.7 -0.8 

FMOD 1 203340628 203351759 1.45E-02 3.81E-02 -1.7 -0.8 

NGFR 17 49495293 49515009 1.05E-02 2.87E-02 -1.7 -0.8 

COL5A2 2 189031898 189225313 5.34E-05 2.73E-04 -1.7 -0.8 

MMP2 16 55389700 55506692 2.79E-06 2.61E-05 -1.7 -0.8 

EDA2R X 66595637 66639299 6.55E-03 1.88E-02 -1.7 -0.8 

GXYLT2 3 72888046 72998139 1.32E-04 5.88E-04 -1.7 -0.8 
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BGN X 153494980 153509547 6.94E-03 1.98E-02 -1.8 -0.8 

COL14A1 8 120059780 120373574 1.10E-03 3.83E-03 -1.8 -0.8 

HES6 2 238238267 238240663 2.83E-03 8.90E-03 -1.8 -0.8 

PDZD4 X 153802166 153830566 1.55E-04 6.77E-04 -1.8 -0.8 

MMRN1 4 89879532 89954630 1.29E-03 4.41E-03 -1.8 -0.8 

HPDL 1 45326895 45328680 1.40E-02 3.69E-02 -1.8 -0.9 

GPNMB 7 23235967 23275109 1.03E-05 7.12E-05 -1.8 -0.9 

COL19A1 6 69866556 70212469 5.98E-03 1.74E-02 -1.9 -0.9 

FRZB 2 182833275 182866638 2.80E-03 8.84E-03 -1.9 -0.9 

FAM43B 1 20552573 20555021 5.30E-05 2.71E-04 -1.9 -0.9 

THY1 11 119415476 119424986 5.34E-03 1.57E-02 -1.9 -0.9 

LUM 12 91102629 91111495 4.20E-04 1.62E-03 -1.9 -0.9 

POSTN 13 37562583 37598845 4.98E-03 1.48E-02 -1.9 -0.9 

LOX 5 122063195 122078414 3.82E-04 1.49E-03 -1.9 -0.9 

COL5A1 9 134641803 134844844 7.04E-05 3.45E-04 -1.9 -0.9 

CEBPA 19 33299934 33302535 8.65E-05 4.10E-04 -1.9 -0.9 

CCL21 9 34709005 34710137 4.75E-03 1.42E-02 -1.9 -0.9 

FNDC1 6 159169400 159272109 2.24E-03 7.22E-03 -1.9 -1.0 

THBS4 5 79991311 80083288 4.92E-03 1.46E-02 -2.0 -1.0 

OLFML2B 1 161983192 162023855 1.23E-04 5.53E-04 -2.0 -1.0 

ADAMTS2 5 179110853 179345462 3.07E-04 1.22E-03 -2.0 -1.0 

TMEM119 12 108589851 108598321 2.90E-04 1.16E-03 -2.0 -1.0 

CCDC80 3 112596797 112649531 3.18E-04 1.26E-03 -2.0 -1.0 

H1-5 6 27866792 27867589 2.34E-03 7.51E-03 -2.0 -1.0 

ELN 7 74027789 74069908 1.66E-04 7.19E-04 -2.1 -1.1 

KAZALD1 10 101061989 101068132 7.90E-05 3.80E-04 -2.1 -1.1 

ASPN 9 92456205 92482507 5.93E-04 2.20E-03 -2.1 -1.1 

SCD 10 100347233 100364827 1.70E-02 4.37E-02 -2.1 -1.1 

APOE 19 44905791 44909394 4.95E-05 2.56E-04 -2.2 -1.1 

MYH8 17 10390322 10421951 9.78E-03 2.69E-02 -2.2 -1.1 

LRRC15 3 194355249 194369744 5.38E-03 1.58E-02 -2.3 -1.2 

CHAD 17 50464496 50468907 8.49E-05 4.03E-04 -2.4 -1.2 

MXRA5 X 3308565 3346653 3.86E-04 1.50E-03 -2.5 -1.3 

UTS2R 17 82371400 82375587 2.26E-03 7.30E-03 -2.6 -1.4 

COL1A2 7 94394895 94431228 1.58E-05 9.95E-05 -2.6 -1.4 

SCT 11 626309 627182 1.65E-04 7.15E-04 -2.8 -1.5 

SFRP2 4 153780591 153789084 5.10E-04 1.93E-03 -2.8 -1.5 

MYBPH 1 203167811 203175827 4.53E-04 1.73E-03 -3.0 -1.6 

COL3A1 2 188974373 189012747 3.03E-05 1.69E-04 -3.0 -1.6 

NPR3 5 32689070 32791725 8.48E-05 4.03E-04 -3.2 -1.7 

SFRP4 7 37905932 38025696 4.61E-07 7.44E-06 -3.4 -1.8 
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SAMD11 1 923928 944582 6.37E-06 4.86E-05 -4.2 -2.1 

COL1A1 17 50184101 50201633 7.19E-06 5.34E-05 -4.3 -2.1 

N=48 male samples were subjected to the DE analysis. The table represents top 100 up-regulated 

and 100 down-regulated mRNAs between subtype 1vs. subtype 2 in males. Total n= 3519 mRNAs 

were found to be DE between the subtypes. 
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Table A.2 Differentially Expressed (DE) lncRNAs between subtypes in males 

Top 200 (up- and down-regulated) DE lncRNAs (Subtype 1 vs. Subtype 2) in males 

Genome assembly GRCh 38 Human Genome (hg) build 38 

lncRNA Chr Start Stop P-value                    FDR           FC  log2FC  

AC087639.2 15 68880663 68928942 6.80E-10 2.17E-07 18.9 4.2 

LINC02681 10 101252821 101263551 9.45E-09 7.52E-07 16.4 4.0 

LINC01549 21 17438821 17450105 6.41E-09 5.89E-07 15.0 3.9 

LINC02558 22 31970823 32037996 2.64E-09 3.66E-07 14.0 3.8 

LINC02267 4 96310701 96818865 2.80E-10 1.46E-07 14.0 3.8 

AC008060.1 7 155382076 155396357 5.51E-08 1.89E-06 13.8 3.8 

AC100834.2 15 34657736 34670513 2.21E-08 1.15E-06 13.7 3.8 

LINC02378 12 17509353 17590050 3.64E-10 1.58E-07 13.5 3.8 

AL139090.1 6 88378280 88385448 5.32E-08 1.84E-06 12.9 3.7 

AF279873.4 8 33973701 34009596 1.12E-07 2.90E-06 12.6 3.7 

AC114760.2 2 196151263 196154882 1.64E-07 3.73E-06 12.6 3.7 

AC107373.1 8 24992002 25009778 5.46E-08 1.88E-06 12.3 3.6 

EFCAB6-AS1 22 43516107 43560064 1.27E-10 1.11E-07 12.1 3.6 

AC134508.1 3 72321051 72324028 1.07E-08 7.76E-07 12.0 3.6 

LINC02796 1 72765031 72791283 8.39E-12 3.95E-08 12.0 3.6 

AC103957.1 8 8414204 8424649 4.44E-08 1.70E-06 12.0 3.6 

AP003774.1 11 64420311 64432671 6.74E-08 2.12E-06 12.0 3.6 

AC019155.2 7 125229579 125264292 1.03E-09 2.43E-07 11.9 3.6 

AC023136.1 4 162022733 162047568 3.56E-08 1.49E-06 11.9 3.6 

AL139393.2 6 160926269 160943111 1.36E-08 8.97E-07 11.5 3.5 

SNCA-AS1 4 89836408 89841979 1.08E-08 7.84E-07 11.4 3.5 

TLX1NB 10 101089321 101131127 7.67E-08 2.29E-06 11.3 3.5 

AP004247.2 11 58044110 58060139 2.17E-08 1.14E-06 11.3 3.5 

LINC02058 5 92907180 92939592 1.62E-07 3.69E-06 11.3 3.5 

FAM230C 13 18195297 18232025 4.01E-14 9.84E-10 11.2 3.5 

AC009019.1 16 22083256 22092486 1.26E-09 2.66E-07 11.1 3.5 

AC018692.1 21 9913117 9914847 1.50E-08 9.30E-07 11.0 3.5 

LINC02087 17 15806241 15847997 1.02E-08 7.63E-07 11.0 3.5 

LINC00485 12 102809280 102824400 5.86E-09 5.59E-07 10.9 3.5 

AC093765.2 4 116754453 116921793 3.64E-08 1.51E-06 10.9 3.4 

AL732437.2 10 5563295 5566882 1.10E-07 2.85E-06 10.9 3.4 

AC011287.2 7 13339201 13365050 7.95E-08 2.34E-06 10.9 3.4 

AC016383.2 18 52283909 52309225 6.54E-07 9.39E-06 10.8 3.4 

AC091885.2 5 24554018 24613223 3.46E-08 1.47E-06 10.8 3.4 

AL360169.3 6 158296671 158303373 4.12E-08 1.63E-06 10.7 3.4 

LINC00992 5 117415509 117546299 1.30E-08 8.75E-07 10.7 3.4 
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AC138123.2 12 93090480 93108630 1.51E-09 2.90E-07 10.6 3.4 

DSCAM-AS1 21 40383083 40385359 3.89E-08 1.57E-06 10.6 3.4 

AL355347.1 6 61870097 61893883 1.02E-10 1.03E-07 10.6 3.4 

AC021134.2 4 162806370 162844691 3.68E-07 6.36E-06 10.5 3.4 

LINC01514 10 101176306 101194148 1.71E-07 3.82E-06 10.5 3.4 

AP001255.1 21 23106928 23119904 1.63E-06 1.77E-05 10.5 3.4 

AC104257.1 8 131308545 131317633 1.49E-08 9.30E-07 10.5 3.4 

AC003092.1 7 94022833 94066662 5.18E-07 8.03E-06 10.4 3.4 

LINC02510 4 137193756 137198368 4.95E-06 4.01E-05 10.4 3.4 

AL441943.2 10 2150480 2169461 7.12E-07 9.98E-06 10.4 3.4 

AC125613.1 3 181534177 181700612 2.90E-10 1.48E-07 10.4 3.4 

LINC02797 1 72793104 72854476 3.71E-08 1.52E-06 10.4 3.4 

AL359987.1 6 92631066 92633269 6.75E-06 5.07E-05 10.4 3.4 

LINC01525 1 117272182 117321337 9.51E-08 2.62E-06 10.3 3.4 

AC018767.3 16 8309962 8357861 2.50E-05 1.44E-04 10.3 3.4 

LINC01518 10 42644445 42691724 6.42E-09 5.89E-07 10.3 3.4 

LINC00547 13 37534940 37551537 9.96E-08 2.70E-06 10.2 3.4 

AL591543.1 9 38650215 38662718 4.15E-09 4.52E-07 10.2 3.4 

LINC02221 5 9854371 9899971 4.98E-08 1.80E-06 10.2 3.3 

LINC01818 2 150169474 150356461 3.60E-07 6.26E-06 10.1 3.3 

AC090337.2 18 69240448 69250782 1.96E-10 1.35E-07 10.1 3.3 

AC104623.1 2 16523176 16555565 1.13E-07 2.91E-06 10.1 3.3 

AC113348.3 5 178690804 178693682 1.96E-06 2.02E-05 10.1 3.3 

LINC02134 16 47965620 47971694 2.36E-06 2.30E-05 10.0 3.3 

AC079154.1 2 124011984 124025174 2.10E-10 1.36E-07 10.0 3.3 

AC093426.1 1 239247808 239250819 3.95E-08 1.58E-06 10.0 3.3 

LINC01966 2 144877734 144882034 1.93E-06 1.99E-05 10.0 3.3 

AC109441.1 5 144439204 144468472 1.48E-08 9.28E-07 10.0 3.3 

MARCHF10-DT 17 62808500 62836372 1.29E-07 3.19E-06 9.9 3.3 

LINC01441 20 55420336 55427198 2.74E-07 5.26E-06 9.9 3.3 

TTC21B-AS1 2 165933857 165949892 2.99E-08 1.35E-06 9.9 3.3 

AL353730.1 9 25579657 25584273 6.89E-06 5.16E-05 9.8 3.3 

LINC01179 4 165684639 165762779 1.08E-08 7.84E-07 9.8 3.3 

AL450307.1 10 131776386 131795278 5.31E-07 8.16E-06 9.8 3.3 

AL445985.2 13 23954493 23970189 2.44E-06 2.36E-05 9.8 3.3 

AC097654.1 4 32005076 32022484 8.11E-10 2.39E-07 9.8 3.3 

FABP6-AS1 5 160195744 160204827 1.19E-07 3.02E-06 9.8 3.3 

AP001120.1 18 11666456 11670166 3.50E-07 6.13E-06 9.8 3.3 

AC016245.1 17 80801640 80805633 8.67E-08 2.47E-06 9.8 3.3 

LINC02487 6 167679626 167696291 2.54E-08 1.24E-06 9.8 3.3 

AL353784.1 10 54486230 54656052 3.84E-09 4.38E-07 9.7 3.3 



 

252 

 

AL137018.1 9 74630794 74641759 2.99E-09 3.90E-07 9.7 3.3 

LINC02529 6 159383422 159401148 1.19E-07 3.02E-06 9.7 3.3 

AC116611.1 4 32583855 32745526 1.51E-09 2.90E-07 9.7 3.3 

AC093515.1 16 7878799 8112757 8.36E-08 2.41E-06 9.7 3.3 

AC025180.1 5 52930606 52990279 4.17E-08 1.64E-06 9.7 3.3 

LINC00381 13 74419158 74444736 7.08E-09 6.13E-07 9.7 3.3 

LMNB1-DT 5 126751963 126776487 2.73E-06 2.56E-05 9.7 3.3 

AC105114.2 18 25196663 25218242 1.27E-09 2.67E-07 9.6 3.3 

AC019330.1 2 198493242 198772357 2.03E-10 1.35E-07 9.6 3.3 

AL356295.1 13 53207831 53801490 4.54E-08 1.71E-06 9.6 3.3 

AC068189.1 8 95071732 95087925 4.30E-05 2.28E-04 9.6 3.3 

AL139280.3 10 3270090 3277650 1.48E-08 9.28E-07 9.6 3.3 

LINC01964 2 85061213 85067348 3.77E-08 1.54E-06 9.6 3.3 

AC022201.1 2 70402934 70422679 9.04E-07 1.17E-05 9.6 3.3 

FAM245A 10 87396561 87435036 3.15E-07 5.75E-06 9.6 3.3 

AC008966.3 5 53024924 53035885 1.04E-07 2.76E-06 9.5 3.3 

AC026462.4 16 52622115 52677748 1.23E-10 1.11E-07 9.5 3.2 

LINC00838 10 33759713 33772703 5.12E-10 1.85E-07 9.5 3.2 

LINC01120 2 131402778 131410051 3.33E-09 4.03E-07 9.5 3.2 

AC011284.1 7 3642815 3643785 1.72E-08 1.00E-06 9.5 3.2 

LINC00911 14 85393828 85420551 4.85E-09 5.03E-07 9.5 3.2 

LINC01548 21 33164809 33170650 8.01E-08 2.35E-06 9.4 3.2 

AP000439.2 11 69425690 69429622 4.58E-05 2.40E-04 9.4 3.2 

AC092115.3 16 69727013 69742564 1.79E-02 4.58E-02 1.6 0.7 

LINC01348 1 235065479 235074221 1.40E-02 3.70E-02 1.6 0.7 

AC073130.1 7 116275606 116286735 1.87E-02 4.74E-02 1.6 0.7 

AC023481.1 3 8359344 8366428 4.05E-06 3.41E-05 1.6 0.7 

AC044893.1 8 49086301 49229175 5.22E-03 1.54E-02 1.6 0.7 

LINC01801 19 34788527 34832870 6.89E-03 1.97E-02 1.6 0.7 

AL161756.1 14 64329431 64338640 1.86E-02 4.72E-02 1.6 0.7 

AC010332.3 19 52453580 52458837 1.30E-02 3.46E-02 1.6 0.7 

KCNMB2-AS1 3 178526505 178937353 3.16E-03 9.85E-03 1.6 0.7 

AC090260.1 15 78141243 78143174 1.79E-02 4.57E-02 1.6 0.7 

PRC1-AS1 15 90966340 90988626 6.69E-07 9.53E-06 1.6 0.7 

AC015712.2 15 100892343 100919392 3.50E-03 1.08E-02 1.6 0.6 

AC000403.1 13 76887551 76891136 5.24E-03 1.55E-02 1.6 0.6 

ZNF503-AS1 10 75243568 75373501 1.68E-02 4.32E-02 1.6 0.6 

AC131934.1 11 665910 678392 7.44E-03 2.11E-02 1.6 0.6 

AL110114.1 20 1023874 1118468 4.20E-03 1.27E-02 1.6 0.6 

AC092802.1 1 95161676 95233983 1.71E-03 5.67E-03 1.6 0.6 

CCDC28A-AS1 6 138725211 138773653 5.64E-03 1.65E-02 1.6 0.6 
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AP001122.1 11 128614340 128686923 5.44E-04 2.04E-03 1.6 0.6 

AL034550.1 20 32449755 32453608 3.27E-03 1.02E-02 1.6 0.6 

AC012443.2 2 152635268 152641276 8.98E-04 3.19E-03 1.6 0.6 

HOXA-AS2 7 27107777 27134303 2.01E-04 8.49E-04 1.6 0.6 

AC004263.2 12 120218070 120222669 1.87E-02 4.75E-02 1.6 0.6 

AC008679.1 5 129150677 129173258 1.00E-02 2.75E-02 1.6 0.6 

AL359764.3 1 241453751 241484996 2.33E-04 9.63E-04 1.6 0.6 

AF131215.4 8 11123381 11126065 1.03E-03 3.62E-03 1.6 0.6 

HCG25 6 33249534 33255168 1.89E-03 6.20E-03 1.6 0.6 

SEC24B-AS1 4 109347475 109433818 1.09E-03 3.82E-03 1.6 0.6 

LINC00484 9 91118592 91182763 7.14E-04 2.60E-03 1.6 0.6 

AL445250.1 6 57961438 58438365 7.19E-03 2.05E-02 1.6 0.6 

AC008496.3 5 79840797 79845240 1.35E-02 3.57E-02 1.6 0.6 

AC026469.1 16 85142696 85146002 1.81E-02 4.62E-02 1.6 0.6 

EPS15-AS1 1 51518309 51561630 6.90E-03 1.97E-02 1.6 0.6 

AP000845.1 18 268148 270279 4.78E-03 1.43E-02 1.6 0.6 

AC109587.1 3 69013941 69056623 1.99E-04 8.42E-04 1.6 0.6 

AC090518.1 15 56542952 56629593 1.01E-03 3.55E-03 1.6 0.6 

APCDD1L-DT 20 58515379 58619889 4.27E-03 1.29E-02 1.5 0.6 

AC017050.1 2 33599442 33657461 4.97E-04 1.88E-03 1.5 0.6 

SPART-AS1 13 36346431 36369602 3.47E-03 1.07E-02 1.5 0.6 

AC139887.5 4 843963 846295 1.92E-02 4.87E-02 1.5 0.6 

AL137026.1 10 44282489 44293999 5.86E-03 1.71E-02 1.5 0.6 

TMSB15B-AS1 X 103845151 103919549 6.67E-03 1.91E-02 1.5 0.6 

EAF1-AS1 3 15436171 15455941 7.81E-03 2.20E-02 1.5 0.6 

CPEB2-DT 4 14909961 15002046 9.81E-05 4.55E-04 1.5 0.6 

AL117336.1 10 35210416 35210751 4.23E-03 1.28E-02 1.5 0.6 

ACOXL-AS1 2 111098345 111116408 1.18E-02 3.17E-02 1.5 0.6 

AL133482.1 10 113482069 113492055 1.30E-02 3.46E-02 1.5 0.6 

AC002467.1 7 107739999 107744582 2.63E-03 8.34E-03 1.5 0.6 

LINC01460 2 27705786 27715733 7.19E-03 2.05E-02 1.5 0.6 

AC073530.1 12 66950754 67096411 2.54E-03 8.10E-03 1.5 0.6 

WDR11-AS1 10 120759898 120851458 5.29E-05 2.71E-04 1.5 0.6 

AC004241.1 12 47706083 47742295 9.46E-04 3.35E-03 1.5 0.6 

KCTD21-AS1 11 78139771 78175324 1.74E-03 5.77E-03 1.5 0.6 

AC003086.1 7 91880791 91886491 9.44E-03 2.61E-02 1.5 0.6 

AC040160.1 16 67261108 67263785 1.60E-06 1.74E-05 1.5 0.6 

LINC02553 11 97222644 97259988 1.20E-02 3.23E-02 1.5 0.6 

AC004943.2 16 72665123 72822782 4.73E-05 2.47E-04 1.5 0.6 

AL133257.1 6 123589711 123685324 2.44E-03 7.82E-03 1.5 0.6 

AL078604.2 6 159586955 159589170 1.93E-04 8.19E-04 1.5 0.6 
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AL022069.3 6 166342632 166351467 8.28E-03 2.32E-02 1.5 0.6 

AL359710.1 9 99396987 99819922 1.07E-03 3.73E-03 1.5 0.6 

LINC02646 10 130213488 130483194 6.26E-03 1.81E-02 1.5 0.6 

LINC02615 4 128292751 128519399 5.09E-04 1.92E-03 1.5 0.6 

AL008628.1 6 170414139 170419326 5.24E-04 1.97E-03 1.5 0.6 

AL596442.4 6 170135374 170142927 1.39E-02 3.68E-02 1.5 0.6 

AP001029.2 18 12438890 12448206 1.89E-04 8.04E-04 1.5 0.6 

AFDN-DT 6 167822103 167826813 1.86E-02 4.72E-02 1.5 0.6 

LIX1-AS1 5 97089075 97437218 7.06E-03 2.01E-02 1.5 0.6 

AC017083.1 2 68252870 68253849 6.23E-04 2.30E-03 1.5 0.6 

AC130814.1 2 18939697 18946651 1.48E-02 3.88E-02 1.5 0.6 

AL390198.1 20 25697003 25752777 6.52E-03 1.88E-02 1.5 0.6 

ALDH1L1-AS2 3 126180012 126210170 5.35E-03 1.58E-02 1.5 0.6 

AL133215.1 10 100980507 100985615 2.52E-03 8.05E-03 1.5 0.6 

AC025165.1 12 57612118 57619639 8.07E-03 2.27E-02 1.5 0.6 

LINC00924 15 95326528 95507866 1.04E-02 2.83E-02 1.5 0.6 

AC109927.1 4 138819954 139012647 8.94E-03 2.48E-02 1.5 0.6 

AC105285.1 4 173094868 173169653 4.02E-03 1.22E-02 1.5 0.6 

AC008771.1 5 80411231 80488096 1.18E-03 4.08E-03 1.5 0.6 

ERVK9-11 19 38935297 38938633 8.15E-03 2.29E-02 1.5 0.6 

AC098484.4 1 42658687 42682161 5.45E-03 1.60E-02 1.5 0.6 

AL359715.1 6 80441295 80466675 7.74E-04 2.79E-03 1.5 0.6 

AC026401.2 16 15683290 15684571 7.11E-03 2.03E-02 1.5 0.6 

AC073655.2 12 94277758 94282845 1.72E-03 5.72E-03 1.5 0.6 

FLG-AS1 1 152168125 152445457 1.16E-02 3.14E-02 1.5 0.6 

AC024060.2 3 3152942 3153436 2.33E-03 7.50E-03 1.5 0.6 

MIR223HG X 66015461 66020423 3.94E-03 1.20E-02 -1.5 -0.6 

AC004584.3 17 56982749 56985105 1.31E-02 3.49E-02 -1.5 -0.6 

WAKMAR2 6 137823673 137868234 9.91E-03 2.72E-02 -1.6 -0.7 

AL359397.2 14 50326526 50327910 1.65E-03 5.51E-03 -1.6 -0.7 

AC069224.1 3 160753428 160755143 2.54E-03 8.08E-03 -1.6 -0.7 

AC020909.2 19 50486810 50487639 1.82E-03 5.99E-03 -1.6 -0.7 

MDC1-AS1 6 30703067 30713185 8.73E-03 2.43E-02 -1.7 -0.7 

GAS6-AS1 13 113815630 113845745 2.67E-03 8.47E-03 -1.7 -0.8 

AC021016.2 2 218398743 218399220 9.92E-05 4.59E-04 -1.7 -0.8 

AC254633.1 1 12618900 12619245 2.73E-03 8.62E-03 -1.7 -0.8 

AL158195.1 13 50372788 50387159 7.16E-03 2.04E-02 -1.8 -0.8 

AC011239.1 2 23507043 23524345 3.19E-05 1.77E-04 -2.6 -1.4 

MIR503HG X 134543119 134546643 1.06E-03 3.72E-03 -2.7 -1.4 

LINC02593 1 916865 921017 1.88E-03 6.19E-03 -2.8 -1.5 
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N=48 male samples were subjected to the DE analysis. The table represents top 100 up-regulated 

and 100 down-regulated lncRNAs between subtype 1vs. subtype 2 in males. Total n= 4232 

lncRNAs were found to be DE between the subtypes.
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Table A.3 Differentially Expressed miRNAs between subtypes in males 

DE miRNAs (Subtype 1 vs. Subtype 2) in Males 

Genome assembly GRCh 38 Human Genome (hg) build 38 

miRNA Chr Start Stop P-value FDR FC 
log2 

FC 

hsa-miR-296-5p 20 58817661 58817682 4.42E-11 3.50E-09 3.1 1.6 

hsa-miR-4485-3p 11 10508277 10508297 7.19E-04 2.64E-03 2.6 1.4 

hsa-miR-2110 10 114174151 114174173 2.14E-09 9.42E-08 2.6 1.4 

hsa-miR-885-3p 3 10394499 10394521 2.83E-04 1.15E-03 2.4 1.3 

hsa-miR-501-3p X 50009772 50009794 1.83E-06 1.83E-05 2.2 1.1 

hsa-miR-320b 1 116671787 116671809 4.33E-06 3.91E-05 2.1 1.0 

hsa-miR-433-3p 14 100881949 100881971 6.65E-04 2.48E-03 2.0 1.0 

hsa-miR-139-3p 11 72615066 72615089 1.35E-04 6.21E-04 2.0 1.0 

hsa-miR-339-5p 7 1022990 1023013 5.42E-05 3.31E-04 1.9 1.0 

hsa-miR-532-3p X 50003204 50003226 5.72E-07 6.99E-06 1.9 0.9 

hsa-miR-193a-5p 17 31560016 31560038 5.80E-06 4.56E-05 1.9 0.9 

hsa-miR-486-3p 8 41660443 41660464 2.62E-04 1.11E-03 1.8 0.9 

hsa-miR-320a-3p 8 22244975 22244997 4.84E-06 4.10E-05 1.8 0.9 

hsa-miR-92a-3p 13 91351361 91351383 1.32E-04 6.16E-04 1.8 0.8 

hsa-miR-92b-3p 1 155195237 155195259 3.98E-04 1.56E-03 1.8 0.8 

hsa-miR-193b-5p 16 14303980 14304002 9.02E-05 4.73E-04 1.8 0.8 

hsa-miR-23b-5p 9 95085227 95085249 3.38E-04 1.35E-03 1.7 0.8 

hsa-miR-664a-3p 1 220200549 220200572 7.98E-05 4.36E-04 1.7 0.8 

hsa-miR-145-5p 5 149430661 149430684 9.57E-05 4.80E-04 1.7 0.7 

hsa-miR-423-5p 17 30117095 30117118 8.12E-05 4.36E-04 1.7 0.7 

hsa-miR-361-3p X 85903641 85903664 1.97E-09 9.42E-08 1.6 0.7 

hsa-miR-125a-5p 19 51693268 51693292 2.53E-03 7.53E-03 1.6 0.7 

hsa-miR-486-5p 8 41660484 41660506 6.18E-03 1.67E-02 1.5 0.6 

hsa-miR-197-3p 1 109598940 109598962 1.55E-02 3.63E-02 1.5 0.6 

hsa-miR-125b-5p 11 122099809 122099831 1.98E-04 8.79E-04 1.5 0.6 

hsa-miR-199a-5p 1 172144592 172144615 2.26E-03 7.00E-03 -1.5 -0.6 

hsa-miR-22-5p 17 1713952 1713974 2.00E-04 8.79E-04 -1.6 -0.6 

hsa-miR-148a-5p 7 25949960 25949982 1.80E-02 3.96E-02 -1.6 -0.6 

hsa-miR-152-3p 17 48037174 48037195 4.62E-03 1.29E-02 -1.6 -0.7 

hsa-miR-10a-5p 17 48579904 48579927 9.59E-05 4.80E-04 -1.6 -0.7 

hsa-miR-22-3p 17 1713914 1713936 9.58E-06 6.80E-05 -1.6 -0.7 

hsa-miR-363-3p X 134169382 134169404 8.49E-03 2.25E-02 -1.6 -0.7 

hsa-miR-145-3p 5 149430699 149430721 7.85E-04 2.78E-03 -1.7 -0.7 

hsa-miR-27a-3p 19 13836447 13836468 5.27E-08 8.28E-07 -1.7 -0.8 

hsa-miR-143-3p 5 149428978 149428999 8.95E-04 3.08E-03 -1.7 -0.8 

hsa-miR-182-5p 7 129770447 129770471 2.37E-03 7.23E-03 -1.8 -0.8 
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hsa-miR-30a-5p 6 71403595 71403617 6.55E-05 3.74E-04 -1.8 -0.8 

hsa-miR-151a-3p 8 140732587 140732608 2.87E-08 5.75E-07 -1.8 -0.8 

hsa-miR-30e-5p 1 40754371 40754393 5.11E-05 3.21E-04 -1.8 -0.8 

hsa-miR-196b-5p 7 27169528 27169550 8.90E-04 3.08E-03 -1.8 -0.9 

hsa-miR-194-5p 1 220118206 220118228 1.55E-03 5.00E-03 -1.8 -0.9 

hsa-miR-99a-5p 21 16539101 16539123 4.19E-08 7.53E-07 -1.9 -0.9 

hsa-miR-335-3p 7 130496162 130496184 1.60E-02 3.64E-02 -1.9 -0.9 

hsa-miR-26b-5p 2 218402657 218402678 4.44E-06 3.91E-05 -1.9 -0.9 

hsa-miR-132-5p 17 2049965 2049987 3.46E-03 9.88E-03 -1.9 -0.9 

hsa-miR-155-5p 21 25573983 25574007 1.19E-04 5.71E-04 -2.0 -1.0 

hsa-miR-192-5p 11 64891203 64891224 1.82E-03 5.71E-03 -2.0 -1.0 

hsa-miR-379-5p 14 101022071 101022092 6.04E-03 1.66E-02 -2.0 -1.0 

hsa-miR-10b-5p 2 176150329 176150352 1.05E-06 1.15E-05 -2.0 -1.0 

hsa-miR-16-5p 3 160404754 160404776 6.12E-06 4.65E-05 -2.0 -1.0 

hsa-let-7g-5p 3 52268336 52268358 1.69E-07 2.32E-06 -2.0 -1.0 

hsa-miR-146a-5p 5 160485372 160485394 6.62E-05 3.74E-04 -2.0 -1.0 

hsa-miR-499a-5p 20 34990408 34990429 2.49E-04 1.08E-03 -2.0 -1.0 

hsa-miR-96-5p 7 129774739 129774762 1.30E-03 4.33E-03 -2.1 -1.1 

hsa-let-7i-5p 12 62603691 62603713 2.51E-11 3.50E-09 -2.3 -1.2 

hsa-miR-493-3p 14 100869116 100869138 7.24E-06 5.31E-05 -2.3 -1.2 

hsa-let-7f-5p 9 94176353 94176375 4.45E-08 7.53E-07 -2.3 -1.2 

hsa-miR-140-5p 16 69933103 69933125 1.01E-05 6.95E-05 -2.3 -1.2 

hsa-miR-148a-3p 7 25949922 25949944 1.80E-06 1.83E-05 -2.3 -1.2 

hsa-miR-98-5p X 53556299 53556321 8.13E-09 2.56E-07 -2.4 -1.2 

hsa-miR-370-3p 14 100911186 100911208 4.78E-11 3.50E-09 -2.5 -1.3 

hsa-miR-146b-5p 10 102436520 102436543 1.17E-05 7.81E-05 -2.5 -1.3 

hsa-miR-214-5p 1 172138857 172138879 9.70E-09 2.67E-07 -2.5 -1.3 

hsa-miR-199b-5p 9 128244783 128244806 1.19E-08 2.90E-07 -2.5 -1.3 

hsa-miR-15b-3p 3 160404645 160404667 6.62E-04 2.48E-03 -2.6 -1.4 

hsa-miR-126-3p 9 136670653 136670675 1.45E-07 2.12E-06 -2.6 -1.4 

hsa-miR-195-5p 17 7017667 7017688 5.51E-06 4.49E-05 -2.6 -1.4 

hsa-miR-374b-5p X 74218587 74218609 2.81E-07 3.63E-06 -2.6 -1.4 

hsa-miR-21-5p 17 59841273 59841295 2.68E-08 5.75E-07 -2.7 -1.4 

hsa-miR-451a 17 28861403 28861425 1.12E-04 5.49E-04 -2.7 -1.4 

hsa-miR-495-3p 14 101033804 101033826 6.34E-07 7.34E-06 -2.7 -1.4 

hsa-miR-101-3p 1 65058442 65058463 4.11E-09 1.51E-07 -3.3 -1.7 

N=48 male samples were subjected to the DE analysis. The table represents n=72 DE miRNAs 

between subtype 1 vs. subtype 2 in males.  
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Table A.4 Differentially Expressed piRNAs between subtypes in males 

DE piRNAs (Subtype 1 vs. Subtype 2) in Males 

Genome assembly GRCh 38 Human Genome (hg) build 38 

piRNA Chr Start Stop P-value  FDR FC 
log2 

FC 

hsa-piR-33031_752301 12 34205795 34205821 8.06E-20 1.10E-17 5.9 2.6 

hsa-piR-23127_440092 6 4428054 4428084 2.59E-20 8.61E-18 5.9 2.5 

hsa-piR-33031_752321 12 38161464 38161490 9.95E-20 1.10E-17 5.5 2.5 

hsa-piR-33031_752312 1 228614748 228614774 1.95E-19 1.62E-17 5.4 2.4 

hsa-piR-33031_752307 1 228634869 228634895 9.55E-18 3.17E-16 5.0 2.3 

hsa-piR-33031_752305 1 228623665 228623691 1.44E-18 9.59E-17 4.8 2.3 

hsa-piR-33031_752319 1 228641566 228641592 1.06E-16 2.70E-15 4.7 2.2 

hsa-piR-33031_752309 1 228612507 228612533 4.77E-18 1.98E-16 4.7 2.2 

hsa-piR-33031_752304 1 228621445 228621471 5.36E-17 1.48E-15 4.6 2.2 

hsa-piR-33031_752318 1 228643807 228643833 2.98E-18 1.65E-16 4.6 2.2 

hsa-piR-33031_752315 1 228637094 228637120 7.70E-18 2.84E-16 4.5 2.2 

hsa-piR-33031_752313 1 228625907 228625933 4.11E-18 1.95E-16 4.4 2.1 

hsa-piR-33031_752302 X 28982850 28982876 1.17E-17 3.53E-16 4.4 2.1 

hsa-piR-32913_735926 X 69672573 69672600 6.33E-16 1.31E-14 4.1 2.0 

hsa-piR-33031_752316 1 228632629 228632655 1.99E-15 3.30E-14 3.9 2.0 

hsa-piR-33031_752310 1 228630388 228630414 1.71E-16 3.78E-15 3.9 2.0 

hsa-piR-32913_735925 12 38161465 38161492 1.32E-11 1.62E-10 3.9 1.9 

hsa-piR-33031_752317 1 228639335 228639361 1.25E-16 2.98E-15 3.7 1.9 

hsa-piR-33031_752308 1 228619230 228619256 7.92E-16 1.55E-14 3.7 1.9 

hsa-piR-32913_735927 19 21113127 21113154 1.37E-15 2.40E-14 3.6 1.9 

hsa-piR-33031_752303 1 228558284 228558310 1.12E-15 2.07E-14 3.6 1.8 

hsa-piR-33031_752314 1 228646038 228646064 7.25E-15 1.09E-13 3.6 1.8 

hsa-piR-33031_752311 1 228610266 228610292 2.51E-15 3.97E-14 3.6 1.8 

hsa-piR-32913_735913 1 228619231 228619258 1.00E-08 7.22E-08 3.6 1.8 

hsa-piR-33031_752320 1 228628146 228628172 1.35E-14 1.95E-13 3.5 1.8 

hsa-piR-32913_735921 1 228639336 228639363 3.66E-09 3.04E-08 3.4 1.8 

hsa-piR-32913_735914 1 228630389 228630416 4.96E-08 3.11E-07 3.3 1.7 

hsa-piR-33031_752306 1 228616989 228617015 2.11E-14 2.80E-13 3.3 1.7 

hsa-piR-32913_735924 1 228628147 228628174 4.00E-10 4.28E-09 3.2 1.7 

hsa-piR-32913_735923 1 228641567 228641594 8.39E-08 5.16E-07 3.2 1.7 

hsa-piR-32913_735917 1 228625908 228625935 4.33E-09 3.34E-08 3.2 1.7 

hsa-piR-32913_735910 1 228623666 228623693 1.08E-07 6.30E-07 3.2 1.7 

hsa-piR-32913_735911 1 228616990 228617017 2.75E-07 1.52E-06 3.0 1.6 

hsa-piR-32913_735907 7 140386780 140386807 1.53E-14 2.12E-13 2.9 1.6 

hsa-piR-32913_735915 1 228610267 228610294 4.53E-08 2.95E-07 2.9 1.5 
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hsa-piR-32913_735908 1 228558285 228558312 2.06E-06 9.77E-06 2.8 1.5 

hsa-piR-32913_735922 1 228643808 228643835 5.20E-07 2.66E-06 2.7 1.5 

hsa-piR-32913_735920 1 228632630 228632657 1.19E-08 8.07E-08 2.7 1.5 

hsa-piR-32913_735905 1 228612508 228612535 1.28E-07 7.31E-07 2.7 1.4 

hsa-piR-32913_735912 1 228634870 228634897 2.82E-05 1.08E-04 2.6 1.4 

hsa-piR-32913_735906 X 28982851 28982878 2.10E-06 9.83E-06 2.6 1.4 

hsa-piR-32913_735919 1 228637095 228637122 7.31E-07 3.68E-06 2.5 1.3 

hsa-piR-32913_735909 1 228621446 228621473 1.94E-06 9.35E-06 2.5 1.3 

hsa-piR-32913_735918 1 228646039 228646066 1.22E-06 6.02E-06 2.3 1.2 

hsa-piR-32919_735943 3 186784832 186784861 3.71E-04 1.18E-03 2.3 1.2 

hsa-piR-33112_752509 4 7582605 7582639 4.44E-04 1.39E-03 2.3 1.2 

hsa-piR-32913_735916 1 228614749 228614776 1.51E-05 6.21E-05 2.2 1.1 

hsa-piR-32976_744093 M 2552 2578 2.45E-03 6.95E-03 2.1 1.1 

hsa-piR-32941_743234 1 227561275 227561303 1.47E-09 1.39E-08 2.1 1.1 

hsa-piR-33171_752575 19 12703635 12703669 8.93E-04 2.72E-03 2.1 1.1 

hsa-piR-28172_625444 19 12706490 12706518 1.16E-03 3.44E-03 2.1 1.0 

hsa-piR-33055_752427 6 85677587 85677622 2.84E-05 1.08E-04 1.9 0.9 

hsa-piR-33090_752480 1 173864368 173864403 5.50E-03 1.39E-02 1.8 0.9 

hsa-piR-32845_734843 8 123044780 123044810 8.81E-03 2.13E-02 1.7 0.8 

hsa-piR-33161_752563 1 173864413 173864447 1.65E-02 3.83E-02 1.5 0.6 

hsa-piR-32952_743942 21 8400810 8400838 3.23E-04 1.06E-03 -1.5 -0.6 

hsa-piR-28085_601020 11 77886523 77886552 5.69E-03 1.43E-02 -1.5 -0.6 

hsa-piR-32914_735935 21 8438155 8438180 1.53E-02 3.59E-02 -1.5 -0.6 

hsa-piR-28255_625563 21 8218531 8218556 3.30E-03 8.87E-03 -1.6 -0.6 

hsa-piR-32914_735932 11 45826690 45826715 2.08E-02 4.70E-02 -1.6 -0.6 

hsa-piR-28085_601015 7 69062492 69062521 5.04E-03 1.30E-02 -1.6 -0.6 

hsa-piR-1014_303 21 8398881 8398911 2.48E-04 8.48E-04 -1.6 -0.6 

hsa-piR-1014_305 21 8443110 8443140 1.28E-03 3.77E-03 -1.6 -0.7 

hsa-piR-1014_304 21 8260076 8260106 2.26E-04 7.81E-04 -1.6 -0.7 

hsa-piR-32835_734800 1 198859106 198859131 6.09E-03 1.52E-02 -1.6 -0.7 

hsa-piR-1014_302 21 8215847 8215877 1.58E-05 6.41E-05 -1.6 -0.7 

hsa-piR-28247_625544 12 124921797 124921827 7.00E-03 1.73E-02 -1.7 -0.7 

hsa-piR-28255_625564 21 8445801 8445826 9.99E-04 3.02E-03 -1.7 -0.7 

hsa-piR-1911_208229 7 48632773 48632803 7.43E-04 2.31E-03 -1.7 -0.8 

hsa-piR-3440_757356 21 8218493 8218518 1.09E-02 2.63E-02 -1.7 -0.8 

hsa-piR-3440_757357 21 8445763 8445788 1.75E-02 4.01E-02 -1.7 -0.8 

hsa-piR-14992_62869 21 8398762 8398791 2.61E-03 7.27E-03 -1.7 -0.8 

hsa-piR-1911_208228 21 8401537 8401567 2.61E-04 8.84E-04 -1.7 -0.8 

hsa-piR-32837_734802 12 20551529 20551555 2.53E-05 9.90E-05 -1.7 -0.8 

hsa-piR-33041_752376 7 148987140 148987165 1.13E-02 2.70E-02 -1.8 -0.8 

hsa-piR-28085_601016 21 8217623 8217652 3.67E-04 1.18E-03 -1.8 -0.8 
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hsa-piR-32837_734804 21 8438258 8438284 3.40E-06 1.50E-05 -1.8 -0.8 

hsa-piR-32896_735112 16 47504906 47504931 4.97E-03 1.29E-02 -1.8 -0.8 

hsa-piR-1911_208227 21 8445769 8445799 4.11E-04 1.30E-03 -1.8 -0.8 

hsa-piR-3440_757359 X 89480866 89480891 4.35E-03 1.14E-02 -1.8 -0.9 

hsa-piR-14992_62868 21 8215728 8215757 2.86E-03 7.84E-03 -1.8 -0.9 

hsa-piR-1911_208226 21 8218499 8218529 1.50E-04 5.26E-04 -1.8 -0.9 

hsa-piR-33041_752353 1 10999866 10999891 7.55E-03 1.86E-02 -1.9 -0.9 

hsa-piR-32837_734805 21 8394048 8394074 3.33E-07 1.78E-06 -1.9 -0.9 

hsa-piR-3440_757355 7 48632767 48632792 7.98E-03 1.95E-02 -1.9 -0.9 

hsa-piR-28255_625566 17 77162271 77162296 1.09E-04 3.90E-04 -1.9 -0.9 

hsa-piR-27080_595436 14 89875055 89875082 4.05E-06 1.77E-05 -1.9 -0.9 

hsa-piR-28085_601017 21 8444893 8444922 1.92E-05 7.60E-05 -1.9 -0.9 

hsa-piR-28398_626068 21 8218422 8218453 1.49E-05 6.18E-05 -1.9 -0.9 

hsa-piR-14992_62867 21 8259957 8259986 8.94E-05 3.26E-04 -1.9 -0.9 

hsa-piR-32837_734807 16 34161416 34161442 4.63E-07 2.40E-06 -1.9 -1.0 

hsa-piR-32837_734806 21 8211013 8211039 4.72E-08 3.01E-07 -2.0 -1.0 

hsa-piR-28398_626069 21 8445692 8445723 2.32E-06 1.06E-05 -2.0 -1.0 

hsa-piR-28085_601018 21 8400661 8400690 1.38E-05 5.82E-05 -2.0 -1.0 

hsa-piR-28398_626070 21 8401460 8401491 2.83E-07 1.54E-06 -2.0 -1.0 

hsa-piR-28247_625547 6 28658279 28658309 2.54E-03 7.15E-03 -2.0 -1.0 

hsa-piR-28255_625562 21 8401569 8401594 3.16E-05 1.19E-04 -2.0 -1.0 

hsa-piR-14992_62870 21 8442991 8443020 6.76E-05 2.52E-04 -2.0 -1.0 

hsa-piR-601_774896 21 8393728 8393757 3.11E-06 1.39E-05 -2.1 -1.1 

hsa-piR-28085_601019 1 237603102 237603131 1.23E-06 6.02E-06 -2.1 -1.1 

hsa-piR-28255_625565 12 127166401 127166426 4.12E-06 1.77E-05 -2.1 -1.1 

hsa-piR-33117_752514 10 68755205 68755240 2.30E-03 6.59E-03 -2.1 -1.1 

hsa-piR-1588_175572 2 206161922 206161951 8.89E-04 2.72E-03 -2.1 -1.1 

hsa-piR-33080_752465 20 17962709 17962744 2.88E-04 9.57E-04 -2.1 -1.1 

hsa-piR-28734_627512 1 30968167 30968196 1.46E-03 4.26E-03 -2.1 -1.1 

hsa-piR-32837_734803 21 8255221 8255247 8.71E-09 6.43E-08 -2.1 -1.1 

hsa-piR-28764_627566 5 181188459 181188489 5.33E-03 1.36E-02 -2.1 -1.1 

hsa-piR-33160_752562 20 2656938 2656970 9.96E-05 3.59E-04 -2.2 -1.1 

hsa-piR-28247_625550 6 28673878 28673908 2.72E-04 9.11E-04 -2.2 -1.2 

hsa-piR-601_774894 21 8254901 8254930 9.53E-08 5.65E-07 -2.2 -1.2 

hsa-piR-27080_595438 21 8394147 8394174 4.63E-10 4.65E-09 -2.3 -1.2 

hsa-piR-601_774897 21 8210693 8210722 2.33E-07 1.31E-06 -2.3 -1.2 

hsa-piR-601_774893 22 11630607 11630636 3.95E-07 2.08E-06 -2.3 -1.2 

hsa-piR-427_764105 21 8255327 8255355 1.09E-08 7.53E-08 -2.3 -1.2 

hsa-piR-427_764102 20 29298647 29298675 2.25E-09 1.97E-08 -2.3 -1.2 

hsa-piR-27080_595440 21 8255321 8255348 1.08E-10 1.23E-09 -2.4 -1.3 

hsa-piR-27080_595437 21 8438357 8438384 1.69E-09 1.55E-08 -2.4 -1.3 
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hsa-piR-427_764104 21 8211118 8211146 9.32E-08 5.63E-07 -2.4 -1.3 

hsa-piR-601_774895 21 8437938 8437967 4.11E-09 3.25E-08 -2.4 -1.3 

hsa-piR-27080_595439 21 8211112 8211139 3.86E-09 3.12E-08 -2.4 -1.3 

hsa-piR-33036_752333 1 40754372 40754397 1.35E-04 4.75E-04 -2.5 -1.3 

hsa-piR-25987_572571 7 129770440 129770471 3.69E-04 1.18E-03 -2.5 -1.3 

hsa-piR-427_764103 21 8394153 8394181 2.04E-09 1.83E-08 -2.5 -1.3 

hsa-piR-1056_12506 17 77162277 77162303 1.74E-05 6.97E-05 -2.5 -1.3 

hsa-piR-427_764101 21 8438363 8438391 1.89E-10 2.09E-09 -2.5 -1.3 

hsa-piR-29006_628299 7 100094034 100094064 7.24E-05 2.67E-04 -2.5 -1.3 

hsa-piR-32899_735175 1 237603164 237603190 3.94E-08 2.62E-07 -2.6 -1.4 

hsa-piR-32899_735179 21 8400723 8400749 5.59E-10 5.46E-09 -2.9 -1.5 

hsa-piR-816_788048 5 138561047 138561074 2.26E-06 1.04E-05 -2.9 -1.5 

hsa-piR-32899_735176 X 109054275 109054301 3.44E-09 2.93E-08 -3.2 -1.7 

hsa-piR-32899_735174 21 8217685 8217711 1.03E-08 7.30E-08 -3.2 -1.7 

hsa-piR-32899_735180 11 77886585 77886611 2.48E-11 2.94E-10 -3.3 -1.7 

hsa-piR-32899_735177 8 69690206 69690232 4.44E-13 5.67E-12 -3.5 -1.8 

hsa-piR-32899_735178 21 8444955 8444981 4.27E-10 4.43E-09 -3.5 -1.8 

hsa-piR-32927_743195 17 76561160 76561188 7.15E-09 5.39E-08 -4.8 -2.3 

hsa-piR-33048_752419 7 48632774 48632801 8.73E-06 3.72E-05 -9.6 -3.3 

N=48 male samples were subjected to the DE analysis. The table represents n=136 DE piRNAs 

between subtype 1 vs. subtype 2 in males.  
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Table A.5 Differentially Expressed snoRNAs between subtypes in males 

DE snoRNAs (Subtype 1 vs. Subtype 2) in Males 

Genome assembly GRCh 38 Human Genome (hg) build 38 

snoRNA Chr Start Stop P-value FDR FC 
log2 

FC 

SNORA74B_URS0000

00D517 
5 173020727 173020930 8.18E-14 3.72E-11 3.5 1.8 

SNORD3A_URS00005

A4CE1 
17 19188017 19188715 2.09E-08 1.90E-06 3.2 1.7 

SNORA14A_URS0000

6C8B95 
7 75943783 75943917 6.10E-05 9.57E-04 2.9 1.6 

SNORA13_URS00001

BD443 
5 112161486 112161618 2.15E-06 8.91E-05 2.6 1.4 

SCARNA4_URS00007

1234F 
1 155925959 155926086 5.49E-03 2.58E-02 2.6 1.4 

SNORD145_URS0000

ABD825 
1 44670958 44671057 1.00E-03 7.72E-03 2.4 1.3 

SNORA75_URS000046

40CB 
2 231455801 231455937 1.43E-03 9.72E-03 2.2 1.2 

SNORA10_URS000003

4D55 
16 1962335 1962467 6.65E-04 5.82E-03 2.2 1.1 

SNORA66_URS000065

6AFD 
1 92840720 92840852 1.88E-04 2.25E-03 2.1 1.1 

SNORA31B_URS0000

721537 
13 45336315 45336448 1.98E-08 1.90E-06 2.1 1.0 

SCARNA4_URS00005

C0742 
1 155925959 155926087 2.28E-03 1.31E-02 2.0 1.0 

SNORD3C_URS00006

6CC58 
17 19190029 19190246 1.54E-05 3.33E-04 2.0 1.0 

SNORD3B-

2_URS0000A9F9BD 
17 19063347 19064137 9.71E-03 3.98E-02 2.0 1.0 

SNORA11_URS000032

FEC4 
X 54814371 54814501 1.70E-04 2.19E-03 2.0 1.0 

SNORA51_URS00004F

2BDE 
20 2655068 2655199 1.75E-04 2.19E-03 2.0 1.0 

SNORA6_URS0000714

944 
3 39408390 39408540 2.83E-06 9.91E-05 2.0 1.0 

SNORA18_URS000020

2A89 
11 93733467 93733598 1.73E-07 1.31E-05 2.0 1.0 

SNORA65_URS000081

59A6 
9 127448502 127448638 1.97E-03 1.17E-02 2.0 1.0 

SNORA27_URS00005F

1DD0 
13 27255402 27255527 2.76E-04 3.13E-03 1.9 0.9 

SNORA46_URS000001

8549 
16 58548500 58548634 1.74E-03 1.11E-02 1.8 0.9 
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SNORA2A_URS00002

E5E66 
12 48656649 48656783 2.50E-07 1.63E-05 1.8 0.9 

SNORA109_URS00008

E39C3 
X 55183481 55183608 1.22E-02 4.81E-02 1.8 0.8 

SNORA17A_URS0000

08230A 
9 136726748 136726880 1.92E-05 3.79E-04 1.8 0.8 

SNORA52_URS00003E

7565 
11 811682 811815 5.90E-05 9.57E-04 1.8 0.8 

SNODB2078_URS0000

EFB92F 
1 88794475 88794587 1.20E-02 4.77E-02 1.8 0.8 

SNORD22_URS000066

FABB 
11 62852911 62853036 4.56E-04 4.41E-03 1.7 0.8 

SNORD124_URS00006

2A15C 
17 40027543 40027646 4.11E-04 4.07E-03 1.7 0.8 

SNORD3D_URS00006

86F5C 
17 19112420 19112637 9.96E-06 2.39E-04 1.7 0.8 

SNORA44_URS000002

FDBC 
1 28580382 28580513 9.68E-06 2.39E-04 1.7 0.8 

SNORA12_URS000002

084A 
10 100237157 100237303 5.49E-03 2.58E-02 1.6 0.7 

SNORA71A_URS0000

2B3FE4 
20 38427307 38427444 4.36E-03 2.20E-02 1.6 0.7 

SNORA62_URS000016

96A6 
3 39411055 39411208 1.48E-03 9.74E-03 1.6 0.7 

SNORA57_URS00000

CC074 
11 62665423 62665571 1.10E-03 8.30E-03 1.6 0.7 

SNORA50_URS0000A

9F116 
17 64146338 64146472 1.94E-03 1.17E-02 1.6 0.7 

SCARNA10_URS0000

569A4A 
12 6510223 6510552 8.32E-05 1.26E-03 1.6 0.7 

SNORD115-

44_URS00006346FD 
15 25250860 25250941 7.97E-03 3.42E-02 1.6 0.7 

SNORA64_URS000021

0FD6 
16 1962974 1963107 2.83E-05 5.15E-04 1.6 0.7 

SNORA31_URS000019

135F 
13 45337481 45337610 6.49E-04 5.79E-03 1.6 0.7 

SCARNA13_URS0000

26BDF0 
14 95533356 95533630 7.01E-06 1.99E-04 1.6 0.7 

SNORD3B-

1_URS0000720EFA 
17 19061913 19062130 6.45E-04 5.79E-03 1.6 0.7 

SNORD3B-

2_URS0000720EFA 
17 19063920 19064137 3.16E-04 3.50E-03 1.6 0.7 

SNORD73A_URS0000

51B5A1 
4 151103828 151103892 1.78E-04 2.19E-03 1.6 0.6 
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SNORA20_URS000056

82D3 
6 159780251 159780382 1.07E-04 1.52E-03 1.6 0.6 

SNORA63_URS00004

B4AC7 
3 186787300 186787434 3.47E-03 1.86E-02 1.6 0.6 

snosnR60_Z15_URS00

0072E51D 
1 173864828 173864909 1.24E-03 8.57E-03 1.5 0.6 

SNORA3B_URS00004

51E99 
11 8685440 8685570 1.26E-02 4.91E-02 1.5 0.6 

SNORD80_URS000083

2FA3 
1 173864830 173864907 1.46E-03 9.74E-03 1.5 0.6 

SNORA23_URS000006

4325 
11 9428767 9428955 9.87E-04 7.72E-03 1.5 0.6 

SNORA73B_URS0000

ABD8E7 
1 28508559 28508763 4.00E-03 2.07E-02 1.5 0.6 

SNORD82_URS000062

6A32 
2 231460372 231460441 9.30E-07 4.23E-05 -1.5 -0.6 

SNORD51_URS0000A

77ED7 
2 206161879 206161958 1.78E-05 3.67E-04 -1.6 -0.6 

SNORD51_URS000070

BB97 
2 206161879 206161957 3.31E-06 1.07E-04 -1.6 -0.7 

SNORD144_URS0000

A76DCB 
4 82898141 82898226 4.33E-07 2.46E-05 -1.8 -0.9 

SNORD24_URS000052

FCE0 
9 133349397 133349471 3.71E-11 8.44E-09 -2.0 -1.0 

snoU2-

30_URS00006CFD5E 
11 93721798 93721867 4.78E-05 8.06E-04 -2.1 -1.0 

SNORD36B_URS0000

687979 
9 133350096 133350169 2.39E-06 9.07E-05 -2.9 -1.5 

SNORD103B_URS000

075CFA2 
1 30949119 30949206 4.62E-03 2.29E-02 -2.9 -1.5 

SCARNA15_URS0000

5172B7 
15 82755946 82756072 5.53E-09 8.38E-07 -2.9 -1.6 

SNORD103A_URS000

075CFA2 
1 30935690 30935777 7.59E-04 6.40E-03 -3.1 -1.7 

N=48 male samples were subjected to the DE analysis. The table represents n=59 DE snoRNAs 

between subtype 1 vs. subtype 2 in males.  
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Table A.6 Differentially Expressed tRNAs between subtypes in males 

DE tRNAs (Subtype 1 vs. Subtype 2) in Males 

Genome assembly GRCh 38 Human Genome (hg) build 38 

tRNA Chr Start Stop P-value FDR FC 
log2 

FC 

tRNA-Val-CAC-2-1 6 27280270 27280343 4.95E-04 3.35E-02 -2.0 -1.0 

N=48 male samples were subjected to the DE analysis. The table represents one DE tRNA 

between subtype 1 vs. subtype 2 in males.  
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Table A.7 Differentially Expressed mRNAs between subtypes in females 

Top 200 (up- and down-regulated) DE mRNAs (Subtype 1 vs. Subtype 2) in females 

Genome assembly GRCh 38 Human Genome (hg) build 38 

mRNA Chr Start Stop P-value FDR  FC Log2 fc 

CEACAM5 19 41708585 41730434 4.69E-10 1.87E-08 15.4 3.9 

TRIM31 6 30102897 30113091 6.03E-13 2.23E-10 14.0 3.8 

ONECUT3 19 1753506 1780989 1.19E-09 3.87E-08 13.3 3.7 

NLRP4 19 55836540 55881856 4.37E-12 7.83E-10 12.1 3.6 

SPATA3 2 230990324 231025056 1.18E-10 6.96E-09 11.1 3.5 

BTBD18 11 57743514 57751782 1.66E-09 4.95E-08 11.1 3.5 

CCDC63 12 110846769 110907536 1.87E-11 2.12E-09 10.8 3.4 

AC097636.1 3 51798803 51833390 2.41E-10 1.16E-08 10.6 3.4 

CKMT1B 15 43593054 43604902 2.50E-10 1.20E-08 10.4 3.4 

UGT2B11 4 69199951 69214749 2.42E-11 2.44E-09 10.1 3.3 

UNC93A 6 167271169 167316015 1.23E-09 3.95E-08 9.9 3.3 

NXPH1 7 8433609 8752962 7.11E-09 1.54E-07 9.8 3.3 

WNT8A 5 138083990 138092366 8.36E-10 2.96E-08 9.7 3.3 

OR5K1 3 98463201 98472925 9.74E-11 6.17E-09 9.7 3.3 

C10orf53 10 49679651 49710262 5.35E-11 4.11E-09 9.5 3.3 

DAO 12 108858932 108901044 2.82E-10 1.30E-08 9.5 3.3 

CLEC4M 19 7763210 7769606 3.46E-08 5.47E-07 9.4 3.2 

MAT1A 10 80271820 80289659 1.65E-08 3.03E-07 9.3 3.2 

KRT32 17 41459513 41467387 8.51E-08 1.14E-06 9.2 3.2 

EXD1 15 41182725 41230744 1.80E-10 9.42E-09 9.2 3.2 

TENT5D X 80335504 80445312 1.06E-09 3.55E-08 8.8 3.1 

LIPM 10 88802730 88820547 1.50E-08 2.80E-07 8.8 3.1 

MAJIN 11 64937517 64972109 1.16E-10 6.92E-09 8.7 3.1 

ANKRD66 6 46746917 46759507 2.31E-10 1.13E-08 8.7 3.1 

EDAR 2 108894471 108989373 1.54E-09 4.65E-08 8.7 3.1 

IGFL4 19 46039748 46077119 1.92E-12 4.50E-10 8.6 3.1 

PAX4 7 127610292 127618143 1.85E-07 2.17E-06 8.6 3.1 

TEDDM1 1 182398117 182400668 4.32E-09 1.04E-07 8.5 3.1 

CLUL1 18 596988 650335 5.48E-10 2.11E-08 8.5 3.1 

PLA2G2F 1 20139323 20150382 3.72E-08 5.77E-07 8.4 3.1 

CEACAM6 19 41750977 41772212 5.97E-08 8.48E-07 8.4 3.1 

NLRP9 19 55708438 55738403 3.32E-11 3.03E-09 8.3 3.1 

AFM 4 73481745 73504002 1.67E-11 2.00E-09 8.3 3.1 

CYLC2 9 102995311 103018489 3.76E-14 4.92E-11 8.3 3.0 

SULT2B1 19 48552172 48599426 1.43E-07 1.75E-06 8.3 3.0 

STMND1 6 17102050 17131379 3.79E-10 1.62E-08 8.2 3.0 
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AGR2 7 16791811 16833434 5.17E-11 4.00E-09 8.2 3.0 

SLC7A3 X 70925579 70931126 9.39E-12 1.31E-09 8.2 3.0 

PRAMEF1 1 12791397 12796629 9.32E-08 1.22E-06 8.2 3.0 

CRX 19 47819779 47843331 8.84E-10 3.09E-08 8.2 3.0 

HTR1A 5 63957874 63962508 3.58E-10 1.55E-08 8.2 3.0 

SLC34A1 5 177379235 177398849 4.45E-10 1.80E-08 8.1 3.0 

OR4Q3 14 19743571 19749470 1.05E-08 2.12E-07 8.1 3.0 

OR51D1 11 4637477 4643061 7.67E-07 7.40E-06 8.1 3.0 

OR2M3 1 248197265 248212926 4.91E-11 3.93E-09 8.0 3.0 

GOLGA6L2 15 23439038 23447244 1.61E-12 4.21E-10 8.0 3.0 

OR1I1 19 15082211 15092971 1.34E-09 4.23E-08 8.0 3.0 

CATSPERD 19 5720637 5778735 2.35E-12 5.13E-10 8.0 3.0 

DSC1 18 31129236 31162857 7.48E-11 5.22E-09 8.0 3.0 

LIN28B 6 104936616 105083333 1.88E-11 2.12E-09 8.0 3.0 

PDC 1 186443566 186461115 2.77E-10 1.28E-08 8.0 3.0 

REG4 1 119794017 119811581 3.00E-09 7.91E-08 8.0 3.0 

PP2D1 3 19979961 20012268 3.20E-10 1.43E-08 7.9 3.0 

EHF 11 34621093 34663289 2.01E-14 3.39E-11 7.8 3.0 

OR1A1 17 3207539 3218897 1.59E-15 8.83E-12 7.8 3.0 

GOLGA6L6 15 20531856 20541801 2.10E-07 2.42E-06 7.8 3.0 

SLC5A8 12 101155493 101210239 7.18E-09 1.55E-07 7.7 3.0 

OR10A2 11 6863057 6874718 3.57E-09 9.01E-08 7.7 2.9 

GRXCR2 5 145858521 145937127 5.14E-11 4.00E-09 7.7 2.9 

TMPRSS7 3 112034843 112081270 3.74E-10 1.61E-08 7.7 2.9 

GLRA1 5 151822513 151924852 7.49E-07 7.24E-06 7.6 2.9 

SNTN 3 63652675 63679021 1.89E-11 2.12E-09 7.6 2.9 

OR4K2 14 19875142 19883933 3.47E-11 3.12E-09 7.6 2.9 

SLC30A8 8 116950273 117176715 2.63E-13 1.39E-10 7.6 2.9 

PRAMEF19 1 13369067 13371901 1.49E-04 8.24E-04 7.6 2.9 

UGT2B28 4 69280475 69295051 2.39E-05 1.58E-04 7.6 2.9 

ADGRD2 9 124451425 124478590 5.90E-08 8.42E-07 7.6 2.9 

DNAAF6 X 107206611 107244248 2.68E-09 7.26E-08 7.6 2.9 

RS1 X 18639688 18672109 3.88E-10 1.64E-08 7.5 2.9 

B4GALNT2 17 49132460 49176841 4.71E-12 8.12E-10 7.5 2.9 

KASH5 19 49388219 49417991 2.69E-12 5.59E-10 7.5 2.9 

ZP4 1 237877864 237890923 7.01E-07 6.84E-06 7.5 2.9 

SLC1A6 19 14950034 15022991 1.05E-09 3.53E-08 7.5 2.9 

CYP4F8 19 15615218 15630640 1.96E-11 2.17E-09 7.5 2.9 

ANKS4B 16 21233699 21253851 2.21E-09 6.21E-08 7.5 2.9 

CNGB3 8 86553977 86743676 5.47E-12 9.08E-10 7.5 2.9 

FAM71C 12 99647753 99650115 7.83E-08 1.06E-06 7.5 2.9 
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UGT2B15 4 68646597 68670653 1.17E-09 3.84E-08 7.4 2.9 

OR51A4 11 4942831 4947606 5.00E-11 3.97E-09 7.4 2.9 

MUC15 11 26559032 26572264 1.43E-09 4.43E-08 7.4 2.9 

MAGEA11 X 149688228 149717269 1.36E-08 2.57E-07 7.3 2.9 

C6orf118 6 165279664 165309606 2.08E-09 5.96E-08 7.3 2.9 

POTEB3 15 21405401 21440500 1.14E-08 2.26E-07 7.3 2.9 

IRGM 5 150846523 150900737 5.01E-07 5.12E-06 7.3 2.9 

OR14J1 6 29301701 29313018 6.94E-09 1.51E-07 7.3 2.9 

IL6 7 22725884 22732003 5.15E-05 3.16E-04 7.3 2.9 

CNGB1 16 57882340 57971129 1.75E-08 3.17E-07 7.3 2.9 

IDO2 8 39934614 40016392 5.14E-11 4.00E-09 7.3 2.9 

GPRC6A 6 116792085 116829084 1.25E-09 4.00E-08 7.2 2.9 

FRMPD2 10 48153088 48274697 3.65E-11 3.16E-09 7.2 2.8 

OR51G2 11 4912588 4919351 1.43E-08 2.69E-07 7.2 2.8 

CD5L 1 157830911 157898257 4.58E-09 1.09E-07 7.2 2.8 

CCKBR 11 6259806 6272128 2.35E-09 6.56E-08 7.2 2.8 

OR5H14 3 98147479 98156615 2.93E-10 1.33E-08 7.2 2.8 

CTXN2 15 48178122 48203759 3.10E-09 8.08E-08 7.2 2.8 

TMPRSS4 11 118077012 118121891 3.56E-13 1.64E-10 7.2 2.8 

TMEM132D 12 129071725 129904026 5.90E-12 9.57E-10 7.2 2.8 

TMEM207 3 190428655 190449877 1.94E-10 9.93E-09 7.1 2.8 

GUCY2D 17 8002615 8020343 4.25E-07 4.44E-06 7.1 2.8 

BRINP2 1 177170958 177282423 2.17E-11 2.28E-09 7.1 2.8 

CD248 11 66314494 66317045 9.98E-03 3.34E-02 -1.7 -0.7 

RFLNA 12 123973241 124316025 1.24E-03 5.55E-03 -1.7 -0.7 

TECRL 4 64275257 64409469 2.73E-03 1.10E-02 -1.7 -0.7 

STMN3 20 63639705 63657683 5.32E-03 1.97E-02 -1.7 -0.7 

TPPP3 16 67389809 67393519 8.99E-03 3.06E-02 -1.7 -0.7 

LGALS3BP 17 78971238 78979948 3.14E-04 1.61E-03 -1.7 -0.7 

COL6A1 21 45981769 46005051 2.54E-03 1.04E-02 -1.7 -0.7 

C1QTNF4 11 47589667 47594412 9.18E-03 3.12E-02 -1.7 -0.8 

ANKRD65 1 1418420 1421770 2.33E-04 1.24E-03 -1.7 -0.8 

IFI6 1 27666064 27672199 2.57E-05 1.68E-04 -1.7 -0.8 

MFAP4 17 19383442 19387191 1.38E-03 6.07E-03 -1.7 -0.8 

PRKAR1B 7 549197 727651 1.71E-04 9.32E-04 -1.7 -0.8 

CBR1 21 36069941 36073167 3.94E-04 1.99E-03 -1.7 -0.8 

ABI3BP 3 100749156 100993516 3.77E-03 1.46E-02 -1.7 -0.8 

C1QB 1 22652762 22661638 1.73E-03 7.41E-03 -1.7 -0.8 

NT5E 6 85449584 85495792 4.32E-03 1.65E-02 -1.7 -0.8 

OMD 9 92414245 92424462 1.47E-02 4.61E-02 -1.7 -0.8 

SCARA3 8 27633868 27676777 6.49E-03 2.33E-02 -1.7 -0.8 
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B3GNT9 16 67148104 67150999 8.78E-03 3.01E-02 -1.7 -0.8 

SEMA3C 7 80742538 80922360 5.27E-08 7.68E-07 -1.7 -0.8 

APLN X 129645259 129654957 9.61E-03 3.24E-02 -1.7 -0.8 

OSGIN2 8 89901849 89927889 1.23E-05 8.60E-05 -1.7 -0.8 

FBN1 15 48408313 48645722 1.14E-03 5.15E-03 -1.7 -0.8 

DPT 1 168695468 168729207 1.48E-03 6.44E-03 -1.7 -0.8 

HSD11B2 16 67430652 67437554 1.51E-02 4.73E-02 -1.7 -0.8 

OXCT1 5 41730065 41870426 6.30E-04 3.03E-03 -1.7 -0.8 

COL5A1 9 134641803 134844844 5.74E-03 2.10E-02 -1.7 -0.8 

NES 1 156668763 156677408 7.28E-04 3.44E-03 -1.8 -0.8 

ACOT11 1 54542257 54639193 5.09E-03 1.90E-02 -1.8 -0.8 

ECM1 1 150508062 150513790 2.83E-03 1.14E-02 -1.8 -0.8 

FSCN1 7 5592816 5606656 1.83E-03 7.80E-03 -1.8 -0.8 

F2R 5 76716126 76735771 8.41E-04 3.92E-03 -1.8 -0.8 

ASB18 2 236194872 236264410 2.78E-03 1.12E-02 -1.8 -0.8 

POMC 2 25160853 25168904 3.87E-03 1.50E-02 -1.8 -0.8 

SLC25A34 1 15736258 15741393 4.89E-04 2.42E-03 -1.8 -0.8 

OLFML3 1 113979391 114035573 2.29E-03 9.48E-03 -1.8 -0.8 

PRICKLE1 12 42456757 42590356 8.00E-04 3.75E-03 -1.8 -0.8 

CILP 15 65194760 65211474 7.52E-04 3.55E-03 -1.8 -0.8 

MAP1A 15 43510958 43531621 1.20E-03 5.36E-03 -1.8 -0.8 

SOX12 20 325595 330225 1.06E-04 6.02E-04 -1.8 -0.9 

ASPN 9 92456205 92482507 7.76E-03 2.71E-02 -1.8 -0.9 

COL6A2 21 46098112 46132849 5.85E-04 2.84E-03 -1.8 -0.9 

IGSF10 3 151425384 151458710 8.23E-03 2.85E-02 -1.8 -0.9 

GPNMB 7 23235967 23275109 1.37E-03 6.02E-03 -1.9 -0.9 

SMOC2 6 168441151 168673446 2.31E-04 1.23E-03 -1.9 -0.9 

FSTL1 3 120392293 120450994 5.48E-04 2.68E-03 -1.9 -0.9 

OSR1 2 19351485 19358624 3.02E-03 1.20E-02 -1.9 -0.9 

PI16 6 36948263 36964838 1.49E-03 6.50E-03 -1.9 -0.9 

QPRT 16 29663279 29698700 1.48E-03 6.44E-03 -1.9 -0.9 

KCTD15 19 33795933 33815764 6.04E-04 2.92E-03 -1.9 -0.9 

C14orf132 14 96039362 96093972 2.05E-03 8.61E-03 -1.9 -0.9 

CYS1 2 10056780 10080945 8.30E-03 2.87E-02 -1.9 -0.9 

SLC45A3 1 205657851 205680510 6.62E-03 2.37E-02 -1.9 -0.9 

LOXL1 15 73925989 73952138 7.81E-04 3.67E-03 -1.9 -0.9 

FAP 2 162170684 162245152 7.34E-04 3.47E-03 -1.9 -0.9 

FBLN1 22 45502238 45601136 1.17E-03 5.26E-03 -1.9 -0.9 

SPOCK1 5 136975298 137598380 2.43E-03 9.96E-03 -1.9 -0.9 

IGF2 11 2129112 2141239 1.19E-03 5.33E-03 -1.9 -0.9 

C1QTNF3 5 34017858 34043214 7.05E-04 3.35E-03 -1.9 -0.9 
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ACOX2 3 58505136 58537284 1.17E-06 1.06E-05 -2.0 -1.0 

MRC2 17 62627670 62693598 1.46E-03 6.39E-03 -2.0 -1.0 

CLIC6 21 34668994 34718228 4.38E-04 2.19E-03 -2.0 -1.0 

KDELR3 22 38468078 38483448 1.02E-03 4.64E-03 -2.0 -1.0 

KAZALD1 10 101061989 101068132 9.93E-04 4.55E-03 -2.0 -1.0 

MGP 12 14880864 14885858 1.33E-03 5.88E-03 -2.0 -1.0 

CCL21 9 34709005 34710137 6.17E-03 2.23E-02 -2.0 -1.0 

MYL6B 12 56152256 56159648 1.20E-02 3.90E-02 -2.0 -1.0 

COL6A3 2 237324003 237414208 3.77E-04 1.90E-03 -2.0 -1.0 

UCHL1 4 41256413 41268456 4.72E-04 2.34E-03 -2.1 -1.0 

FN1 2 215360440 215436074 1.72E-03 7.36E-03 -2.1 -1.1 

FAM180A 7 135728348 135748814 4.20E-03 1.61E-02 -2.1 -1.1 

OLFML2B 1 161983192 162023855 5.90E-04 2.86E-03 -2.1 -1.1 

EXTL1 1 26019884 26036465 2.09E-04 1.12E-03 -2.1 -1.1 

SLC1A7 1 53087179 53142639 8.69E-04 4.03E-03 -2.1 -1.1 

SMIM32 5 136191468 136193163 6.32E-03 2.28E-02 -2.2 -1.1 

BICD1 12 32106835 32383634 5.76E-05 3.49E-04 -2.2 -1.1 

PCOLCE 7 100602363 100608176 1.16E-03 5.22E-03 -2.3 -1.2 

COL1A2 7 94394895 94431228 3.33E-03 1.31E-02 -2.3 -1.2 

THY1 11 119415476 119424986 3.39E-03 1.33E-02 -2.4 -1.3 

FNDC1 6 159169400 159272109 4.61E-03 1.74E-02 -2.4 -1.3 

CKB 14 103519667 103522834 2.47E-04 1.30E-03 -2.5 -1.3 

TYRP1 9 12685439 12710286 2.37E-03 9.75E-03 -2.6 -1.4 

ALX4 11 44260440 44310140 1.42E-03 6.23E-03 -2.6 -1.4 

THBS4 5 79991311 80083288 1.00E-03 4.59E-03 -2.6 -1.4 

LRRC15 3 194355249 194369744 5.60E-03 2.05E-02 -2.6 -1.4 

FNDC10 1 1598012 1600136 4.04E-03 1.55E-02 -2.8 -1.5 

MXRA5 X 3308565 3346653 1.19E-03 5.34E-03 -2.8 -1.5 

SLC16A7 12 59596029 59789856 2.95E-06 2.38E-05 -2.8 -1.5 

BGN X 153494980 153509547 6.10E-04 2.95E-03 -2.9 -1.5 

COL3A1 2 188974373 189012747 5.92E-04 2.87E-03 -3.0 -1.6 

ARFGEF3 6 138161939 138344664 3.44E-04 1.76E-03 -3.0 -1.6 

CCDC80 3 112596797 112649531 2.88E-04 1.49E-03 -3.1 -1.7 

SFRP2 4 153780591 153789084 6.39E-04 3.07E-03 -3.2 -1.7 

LUM 12 91102629 91111495 5.82E-05 3.51E-04 -3.2 -1.7 

SBK2 19 55528611 55537134 2.94E-03 1.18E-02 -3.4 -1.8 

HMGCS2 1 119748002 119768906 1.71E-03 7.33E-03 -3.6 -1.9 

METTL21C 13 102685744 102694505 5.19E-03 1.93E-02 -4.0 -2.0 

DIRAS1 19 2714567 2721373 2.45E-03 1.00E-02 -4.2 -2.1 

COL1A1 17 50184101 50201633 9.51E-06 6.82E-05 -5.4 -2.4 

FAM240C 2 241893988 241902552 2.11E-04 1.13E-03 -7.4 -2.9 
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N=36 female samples were subjected to the DE analysis. The table represents top 100 up-regulated 

and 100 down-regulated mRNAs between subtype 1vs. subtype 2 in females. Total n= 2847 

mRNAs were found to be DE between the subtypes.
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Table A.8 Differentially Expressed lncRNAs between subtypes in females 

Top 200 (up- and down-regulated) DE lncRNAs (Subtype 1 vs. Subtype 2) in females 

Genome assembly GRCh 38 Human Genome (hg) build 38 

lncRNA Chr Start Stop P-value FDR FC 
Log2 

FC 

CACNA2D1-AS1 7 82009177 82029956 1.28E-13 8.89E-11 21.5 4.4 

PRICKLE2-DT 3 64445231 64456071 1.37E-10 7.73E-09 16.6 4.0 

LINC00410 13 90890954 90926598 8.55E-12 1.22E-09 14.2 3.8 

LINC02253 15 97215812 97432095 1.51E-10 8.18E-09 14.0 3.8 

AL034427.1 20 9835556 9873901 5.28E-10 2.06E-08 13.0 3.7 

LINC02885 22 34756676 35002863 5.81E-13 2.19E-10 12.6 3.7 

SHANK2-AS1 11 70626441 70635659 1.81E-12 4.37E-10 12.3 3.6 

AC090993.1 8 34228439 34346732 3.34E-09 8.55E-08 12.2 3.6 

AC092053.6 3 39213069 39216586 1.74E-08 3.16E-07 12.1 3.6 

AC068535.1 2 104406471 104416721 4.94E-14 5.78E-11 12.1 3.6 

LINC02369 12 128086621 128118657 7.29E-11 5.10E-09 11.9 3.6 

AL117353.1 1 69706950 69710275 1.54E-09 4.65E-08 11.6 3.5 

AC005863.1 17 14767583 14780687 2.79E-08 4.59E-07 11.2 3.5 

AL355997.1 6 51599723 51623429 5.96E-11 4.43E-09 10.6 3.4 

LINC02096 17 14834557 14957217 1.12E-10 6.81E-09 10.5 3.4 

ELF3-AS1 1 201995696 202010464 2.05E-12 4.65E-10 10.4 3.4 

CASC17 17 71097774 71202204 3.73E-14 4.92E-11 10.1 3.3 

AC010230.1 5 114475339 114668411 1.40E-08 2.64E-07 10.1 3.3 

AC093791.1 4 28343862 28402937 6.21E-15 1.97E-11 10.0 3.3 

AC096644.3 1 220401122 220404034 6.26E-09 1.41E-07 10.0 3.3 

AC009505.1 2 105874509 105962387 6.85E-10 2.54E-08 9.9 3.3 

AL133259.1 6 14152196 14211187 1.27E-09 4.05E-08 9.9 3.3 

AL157359.2 21 18917934 18935860 1.08E-08 2.17E-07 9.8 3.3 

AC090337.2 18 69240448 69250782 5.65E-12 9.23E-10 9.8 3.3 

CSMD2-AS1 1 33868953 33893727 2.45E-09 6.77E-08 9.6 3.3 

AC095350.1 12 130651342 130669234 1.61E-10 8.63E-09 9.6 3.3 

SPATA3-AS1 2 230984368 230996033 1.74E-08 3.17E-07 9.6 3.3 

AP001150.1 11 120249759 120265933 1.17E-11 1.55E-09 9.4 3.2 

AL109653.3 X 145699056 145820633 2.14E-10 1.06E-08 9.2 3.2 

AC096719.1 4 21949015 22330331 7.08E-14 7.08E-11 9.1 3.2 

LINC01646 1 4571481 4594017 3.82E-10 1.63E-08 9.1 3.2 

AC022133.2 5 52853183 52872926 9.25E-11 5.91E-09 9.1 3.2 

LINC02401 12 103547751 103578948 4.05E-13 1.77E-10 9.0 3.2 

AL158038.1 13 65941073 65973700 1.48E-09 4.56E-08 9.0 3.2 

AL136524.1 13 104125930 104134258 6.21E-07 6.16E-06 9.0 3.2 

AC125437.3 18 79185801 79191560 1.50E-14 3.35E-11 9.0 3.2 
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AC007920.1 3 187197090 187207630 3.52E-10 1.53E-08 8.9 3.2 

LINC02824 12 126688341 126720334 7.19E-10 2.63E-08 8.9 3.2 

AC026746.1 5 61658474 61698433 4.91E-12 8.40E-10 8.9 3.2 

ARNTL2-AS1 12 27389789 27446626 2.07E-08 3.58E-07 8.9 3.2 

AC109441.1 5 144439204 144468472 3.08E-09 8.04E-08 8.9 3.1 

L3MBTL4-AS1 18 6256747 6260935 1.53E-12 4.06E-10 8.8 3.1 

AC114550.1 8 8561386 8574039 2.66E-10 1.24E-08 8.8 3.1 

AC007402.2 2 51441959 51455914 1.36E-10 7.70E-09 8.7 3.1 

LINC01541 18 71519962 71578957 7.57E-11 5.24E-09 8.7 3.1 

LINC02003 17 72342692 72355137 4.53E-08 6.76E-07 8.7 3.1 

DAOA-AS1 13 105459055 105505682 2.57E-12 5.50E-10 8.7 3.1 

AC076968.2 12 53739611 53898977 8.66E-14 7.70E-11 8.7 3.1 

LINC00485 12 102809280 102824400 6.99E-12 1.07E-09 8.6 3.1 

MKNK1-AS1 1 46538611 46570256 2.13E-07 2.44E-06 8.6 3.1 

AC244100.2 17 35983656 35990271 1.64E-10 8.76E-09 8.5 3.1 

AC124067.3 8 37559992 37567478 1.53E-09 4.63E-08 8.5 3.1 

AC093838.1 2 131555007 131568600 8.79E-09 1.82E-07 8.5 3.1 

LINC02338 13 58165827 58209484 1.03E-14 2.87E-11 8.5 3.1 

LCAL1 6 79307669 79313385 1.15E-10 6.88E-09 8.4 3.1 

AC022433.1 5 51438792 51665049 4.04E-10 1.67E-08 8.4 3.1 

LINC01551 14 28771676 28823818 1.94E-13 1.20E-10 8.4 3.1 

LARGE-AS1 22 33725007 33750844 2.29E-14 3.39E-11 8.4 3.1 

AC020743.2 7 50202001 50262995 1.72E-08 3.14E-07 8.4 3.1 

AC127540.2 17 16525832 16529291 8.13E-09 1.71E-07 8.4 3.1 

AC093515.1 16 7878799 8112757 2.14E-11 2.28E-09 8.4 3.1 

AL117372.1 20 60755001 60767280 3.71E-10 1.60E-08 8.4 3.1 

LINC00547 13 37534940 37551537 7.14E-10 2.62E-08 8.3 3.1 

AC010976.1 2 127455394 127514624 2.65E-10 1.24E-08 8.3 3.1 

CARS1-AS1 11 3029009 3041261 1.99E-07 2.31E-06 8.3 3.0 

LINC01297 14 19344578 19384588 1.33E-08 2.53E-07 8.3 3.0 

AC016687.3 4 33775498 34039915 2.90E-10 1.33E-08 8.2 3.0 

LINC02671 10 64901136 65017640 6.94E-10 2.56E-08 8.2 3.0 

AC113385.1 5 100399047 100526913 2.54E-13 1.38E-10 8.2 3.0 

AL033381.1 6 1079929 1104947 2.76E-07 3.05E-06 8.2 3.0 

LINC01791 19 31167457 31225144 1.33E-10 7.58E-09 8.2 3.0 

AC144833.1 15 27362310 27366399 5.47E-10 2.11E-08 8.1 3.0 

AP001360.1 11 120008044 120013621 5.44E-08 7.89E-07 8.1 3.0 

MIR137HG 1 97933474 98049864 2.27E-13 1.26E-10 8.1 3.0 

Z82186.1 22 47345569 47373542 2.20E-06 1.84E-05 8.1 3.0 

AC096585.1 4 96841995 96857901 5.12E-09 1.20E-07 8.0 3.0 

AC023824.3 16 35207884 35284147 2.23E-08 3.81E-07 8.0 3.0 
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LINC02548 11 13784017 13848003 4.63E-13 1.98E-10 8.0 3.0 

AC060765.1 8 82514568 82677154 5.97E-08 8.49E-07 8.0 3.0 

OSBPL10-AS1 3 31704058 31721653 3.60E-11 3.15E-09 8.0 3.0 

AC108073.3 4 187942164 187963346 1.92E-10 9.90E-09 8.0 3.0 

LINC02380 4 57424495 57478342 6.16E-12 9.93E-10 7.9 3.0 

LINC00474 9 115888169 115925208 4.05E-08 6.19E-07 7.9 3.0 

AC015813.8 17 58050789 58060740 6.60E-11 4.76E-09 7.9 3.0 

AL157886.1 9 84316514 84657078 7.89E-11 5.37E-09 7.9 3.0 

AL355481.1 13 83877888 83895212 1.71E-11 2.03E-09 7.9 3.0 

DAB1-AS1 1 57860532 57880906 1.91E-12 4.50E-10 7.9 3.0 

LINC02476 7 119495024 119907398 1.92E-10 9.88E-09 7.9 3.0 

AC008894.2 19 16123661 16139893 1.78E-07 2.11E-06 7.8 3.0 

AC021351.1 15 35939167 36252258 1.61E-08 2.96E-07 7.8 3.0 

AC007106.1 4 27964517 27985064 1.45E-11 1.80E-09 7.8 3.0 

AL355337.1 6 142671980 142681268 3.67E-09 9.24E-08 7.8 3.0 

LINC02074 17 74043452 74154213 1.62E-08 2.98E-07 7.8 3.0 

LINC02627 10 105808225 105820350 7.54E-09 1.61E-07 7.8 3.0 

BX255923.2 9 41100793 41119910 1.36E-09 4.27E-08 7.8 3.0 

AC126323.2 15 62196066 62222912 1.83E-09 5.35E-08 7.8 3.0 

AL158058.2 14 29415856 29500461 2.13E-11 2.28E-09 7.8 3.0 

AL772363.1 9 137867925 137892571 1.14E-08 2.26E-07 7.7 3.0 

LINC02201 5 122628952 122730686 3.53E-13 1.64E-10 7.7 2.9 

LINC02488 5 87662040 87705338 1.06E-09 3.55E-08 7.7 2.9 

AC125437.1 18 79117207 79117921 9.61E-05 5.53E-04 1.6 0.7 

AC105285.1 4 173094868 173169653 1.13E-04 6.41E-04 1.6 0.7 

LINC02009 3 46416524 46423592 8.76E-03 3.00E-02 1.6 0.7 

BAALC-AS1 8 103153394 103298773 6.15E-04 2.97E-03 1.6 0.7 

LINC00623 1 120913184 121009292 1.20E-02 3.91E-02 1.6 0.7 

AL121938.1 6 125268087 125274829 4.02E-03 1.55E-02 1.6 0.7 

Z93943.1 X 102945971 102952040 1.99E-04 1.07E-03 1.6 0.7 

AL121992.3 1 15565611 15565957 1.17E-02 3.81E-02 1.6 0.7 

AC005562.1 17 30576464 30672790 1.08E-02 3.55E-02 1.6 0.7 

AC018816.1 3 4814294 4887294 1.98E-03 8.34E-03 1.6 0.7 

AL023806.1 6 145735570 145737219 1.09E-02 3.59E-02 1.6 0.7 

AC078881.1 4 177442519 177681382 5.53E-05 3.37E-04 1.6 0.7 

LINC00652 20 18786065 18794580 2.35E-03 9.68E-03 1.6 0.7 

AC007785.3 19 46027648 46031668 6.39E-03 2.30E-02 1.6 0.7 

LIVAR 18 70335929 70337311 7.57E-03 2.65E-02 1.6 0.7 

AC107071.1 4 108669949 108678875 1.41E-03 6.20E-03 1.6 0.7 

AC007877.1 2 40534806 40545782 9.04E-03 3.08E-02 1.6 0.7 

AP002784.1 11 94185439 94282204 8.35E-03 2.89E-02 1.6 0.7 
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CAVIN2-AS1 2 191846539 192044526 1.09E-03 4.93E-03 1.6 0.7 

TUB-AS1 11 8060038 8069374 1.33E-02 4.26E-02 1.6 0.7 

AC022154.1 19 48619272 48624133 1.59E-02 4.92E-02 1.6 0.7 

AL365361.1 1 110653560 110657041 1.51E-02 4.71E-02 1.6 0.7 

AC004160.1 7 11180902 11520176 9.70E-03 3.27E-02 1.6 0.7 

AL359764.3 1 241453751 241484996 1.79E-03 7.64E-03 1.6 0.7 

AL157911.1 14 59969116 60091784 3.72E-03 1.45E-02 1.6 0.7 

AC012464.3 12 93945041 93947814 8.15E-03 2.83E-02 1.6 0.7 

LINC02680 10 27564430 27594589 2.67E-03 1.08E-02 1.6 0.7 

AC004672.2 12 1385833 1386988 9.17E-03 3.12E-02 1.6 0.7 

AL157827.2 9 92600094 92612369 1.22E-02 3.97E-02 1.6 0.7 

LINC00989 4 79491802 79623480 2.39E-03 9.81E-03 1.6 0.7 

KRTAP5-AS1 11 1571353 1599185 7.85E-03 2.74E-02 1.6 0.7 

AL445250.1 6 57961438 58438365 3.04E-03 1.21E-02 1.6 0.7 

LINC01933 5 151949571 152270450 9.80E-03 3.30E-02 1.6 0.7 

PGR-AS1 11 101129077 101209592 4.15E-03 1.59E-02 1.6 0.7 

TMSB15B-AS1 X 103845151 103919549 5.58E-04 2.72E-03 1.6 0.7 

LINC01619 12 91984976 92142915 1.45E-03 6.33E-03 1.6 0.7 

AC016831.1 7 130876809 130913311 1.30E-02 4.17E-02 1.6 0.7 

AL512353.1 1 42832522 42846423 5.89E-03 2.15E-02 1.6 0.7 

AP002907.1 8 102256392 102257822 5.82E-03 2.13E-02 1.6 0.7 

AC002480.2 7 22589698 22602537 1.50E-02 4.69E-02 1.6 0.7 

FSIP2-AS1 2 185652374 185800152 1.82E-03 7.76E-03 1.6 0.6 

AC234782.2 X 103707034 103919048 4.00E-04 2.01E-03 1.6 0.6 

LINC00640 14 51333068 51365558 5.36E-03 1.98E-02 1.6 0.6 

AC015802.1 17 76569792 76571241 1.28E-02 4.11E-02 1.6 0.6 

CPEB2-DT 4 14909961 15002046 9.08E-06 6.55E-05 1.6 0.6 

AC138627.1 16 73943078 74296763 5.11E-05 3.13E-04 1.6 0.6 

ECI2-DT 6 4136072 4157386 1.92E-03 8.14E-03 1.6 0.6 

LINC01819 2 43027823 43040663 3.40E-03 1.34E-02 1.6 0.6 

USP2-AS1 11 119364359 119526665 2.91E-03 1.17E-02 1.6 0.6 

AP001122.1 11 128614340 128686923 5.72E-05 3.47E-04 1.6 0.6 

AF165147.1 21 28328738 28674849 5.30E-03 1.97E-02 1.5 0.6 

MMADHC-DT 2 149587196 150047448 1.07E-03 4.87E-03 1.5 0.6 

AC002451.1 7 95545191 95615133 1.42E-04 7.88E-04 1.5 0.6 

AC073530.1 12 66950754 67096411 2.39E-03 9.83E-03 1.5 0.6 

AL096870.10 14 24271726 24279090 2.78E-03 1.12E-02 1.5 0.6 

LINC01266 3 536062 846562 1.95E-03 8.23E-03 1.5 0.6 

AC100827.4 15 72615810 72618251 1.34E-03 5.92E-03 1.5 0.6 

AC004834.1 7 99252452 99325827 7.14E-03 2.53E-02 1.5 0.6 

AL662884.5 6 32108406 32112850 5.01E-04 2.47E-03 1.5 0.6 
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AC024060.2 3 3152942 3153436 6.38E-03 2.30E-02 1.5 0.6 

AL359220.1 14 61294909 61322839 1.19E-03 5.32E-03 1.5 0.6 

GEMIN7-AS1 19 45076510 45092636 1.13E-02 3.69E-02 1.5 0.6 

LINC02656 10 6350316 6352763 3.19E-04 1.64E-03 1.5 0.6 

AC004076.2 19 57449689 57453012 5.16E-05 3.17E-04 1.5 0.6 

AL157400.3 10 89667181 89701275 9.84E-03 3.31E-02 1.5 0.6 

AL160272.1 9 117759455 117879989 1.35E-02 4.31E-02 1.5 0.6 

AC009228.1 2 24210650 24222202 7.31E-03 2.58E-02 1.5 0.6 

AC022211.1 17 75145261 75146547 9.95E-03 3.34E-02 1.5 0.6 

AC015871.6 15 79894502 79896696 1.16E-03 5.22E-03 1.5 0.6 

LINC00471 2 231508422 231514367 1.24E-02 4.01E-02 1.5 0.6 

AC109587.1 3 69013941 69056623 1.67E-03 7.19E-03 1.5 0.6 

LINC01352 1 220829255 220832430 1.25E-02 4.02E-02 1.5 0.6 

AL352979.4 14 52951432 52952865 5.64E-03 2.07E-02 1.5 0.6 

AC097717.1 2 199867396 199911160 4.31E-03 1.64E-02 1.5 0.6 

LINC01273 20 50171809 50176677 4.25E-03 1.62E-02 1.5 0.6 

AL022098.1 6 11291299 11296225 1.58E-02 4.90E-02 1.5 0.6 

AC011603.2 12 49127782 49188485 5.62E-04 2.74E-03 1.5 0.6 

AC090518.1 15 56542952 56629593 6.12E-04 2.96E-03 1.5 0.6 

LINC00240 6 26956932 27059750 1.57E-03 6.79E-03 1.5 0.6 

MCM3AP-AS1 21 46229196 46259391 1.38E-05 9.55E-05 1.5 0.6 

LINC02246 21 14819699 14918553 5.48E-04 2.68E-03 1.5 0.6 

EIF2AK3-DT 2 88627539 88631822 2.61E-03 1.06E-02 1.5 0.6 

INTS6-AS1 13 51452364 51554679 3.35E-05 2.12E-04 1.5 0.6 

AC002467.1 7 107739999 107744582 4.13E-03 1.59E-02 1.5 0.6 

AL049828.1 14 39432599 40390548 1.71E-03 7.36E-03 1.5 0.6 

AC002398.2 19 35754566 35755491 4.70E-04 2.33E-03 -1.5 -0.6 

AC026748.7 5 1345197 1350787 5.32E-04 2.60E-03 -1.6 -0.7 

AL356218.2 9 33401478 33410554 3.44E-03 1.35E-02 -1.6 -0.7 

AL450326.1 10 43420738 43422101 2.35E-05 1.55E-04 -1.7 -0.7 

AL590004.3 6 3904920 3911980 7.06E-03 2.50E-02 -1.7 -0.7 

AC012555.1 12 103841451 103844665 5.47E-03 2.02E-02 -1.7 -0.8 

AL513217.1 1 201893842 201899979 5.75E-04 2.79E-03 -1.7 -0.8 

AC113189.3 17 7439159 7443328 7.47E-03 2.63E-02 -1.7 -0.8 

AL161669.3 14 103208100 103208877 1.33E-03 5.90E-03 -1.8 -0.8 

AC048344.4 12 32109076 32109603 2.04E-04 1.10E-03 -1.9 -0.9 

AC026356.1 12 32339368 32340725 2.87E-04 1.49E-03 -1.9 -0.9 

LINC01405 12 110934590 110959094 1.14E-04 6.46E-04 -2.0 -1.0 

AC026356.2 12 32352349 32354145 4.59E-05 2.84E-04 -2.1 -1.1 

LINC02188 16 86710122 86742084 1.23E-03 5.49E-03 -2.5 -1.3 

AC073349.4 7 64801958 64804118 7.70E-06 5.64E-05 -2.5 -1.3 



 

277 

 

N=36 female samples were subjected to the DE analysis. The table represents top 100 up-regulated 

and 100 down-regulated lncRNAs between subtype 1vs. subtype 2 in males. Total n= 2637 

lncRNAs were found to be DE between the subtypes.
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Table A.9 Differentially Expressed miRNAs between subtypes in females 

DE miRNAs (Subtype 1 vs. Subtype 2) in Females 

Genome assembly GRCh 38 Human Genome (hg) build 38 

miRNA Chr Start Stop P-value 
FDR 

step up 
FC 

Log2 

FC 

hsa-miR-3615 17 74748663 74748684 6.09E-03 3.88E-02 2.2 1.2 

hsa-miR-18a-3p 13 91350797 91350820 1.19E-03 1.60E-02 2.1 1.0 

hsa-miR-1306-5p 22 20086072 20086094 5.12E-03 3.63E-02 2.1 1.0 

hsa-miR-145-5p 5 149430661 149430684 9.43E-04 1.34E-02 1.6 0.7 

hsa-miR-532-3p X 50003204 50003226 4.76E-04 8.45E-03 1.6 0.7 

hsa-miR-652-3p X 110055389 110055410 4.32E-04 8.45E-03 1.5 0.6 

hsa-miR-22-5p 17 1713952 1713974 5.34E-03 3.68E-02 -1.5 -0.6 

hsa-miR-22-3p 17 1713914 1713936 2.82E-03 2.52E-02 -1.5 -0.6 

hsa-miR-27b-3p 9 95085505 95085526 4.78E-04 8.45E-03 -1.5 -0.6 

hsa-miR-143-3p 5 149428978 149428999 4.04E-03 3.04E-02 -1.6 -0.6 

hsa-miR-99a-5p 21 16539101 16539123 7.38E-03 4.45E-02 -1.6 -0.7 

hsa-miR-30e-5p 1 40754371 40754393 6.12E-03 3.88E-02 -1.6 -0.7 

hsa-miR-151a-3p 8 140732587 140732608 4.04E-03 3.04E-02 -1.7 -0.7 

hsa-let-7g-5p 3 52268336 52268358 2.41E-03 2.48E-02 -1.7 -0.8 

hsa-miR-27a-3p 19 13836447 13836468 3.06E-05 1.47E-03 -1.7 -0.8 

hsa-miR-145-3p 5 149430699 149430721 5.97E-05 2.40E-03 -1.8 -0.8 

hsa-miR-409-3p 14 101065346 101065368 3.89E-03 3.04E-02 -1.9 -0.9 

hsa-let-7f-5p 9 94176353 94176375 2.91E-03 2.52E-02 -1.9 -0.9 

hsa-miR-340-3p 5 180015319 180015341 2.57E-03 2.48E-02 -1.9 -0.9 

hsa-let-7i-5p 12 62603691 62603713 5.26E-04 8.45E-03 -1.9 -1.0 

hsa-miR-155-5p 21 25573983 25574007 1.45E-03 1.84E-02 -1.9 -1.0 

hsa-miR-493-5p 14 100869075 100869097 2.95E-03 2.52E-02 -2.0 -1.0 

hsa-miR-98-5p X 53556299 53556321 1.75E-03 1.97E-02 -2.1 -1.0 

hsa-miR-487b-3p 14 101046505 101046527 5.56E-03 3.72E-02 -2.1 -1.1 

hsa-miR-126-3p 9 136670653 136670675 1.80E-03 1.97E-02 -2.1 -1.1 

hsa-miR-199b-5p 9 128244783 128244806 1.59E-03 1.92E-02 -2.1 -1.1 

hsa-miR-140-5p 16 69933103 69933125 4.20E-03 3.07E-02 -2.2 -1.1 

hsa-miR-511-5p 10 17845122 17845143 6.60E-03 4.08E-02 -2.2 -1.2 

hsa-miR-214-5p 1 172138857 172138879 3.03E-03 2.52E-02 -2.3 -1.2 

hsa-miR-148a-3p 7 25949922 25949944 3.76E-04 8.45E-03 -2.5 -1.3 

hsa-miR-543 14 101032033 101032055 5.19E-04 8.45E-03 -2.6 -1.4 

hsa-miR-21-5p 17 59841273 59841295 1.97E-04 5.27E-03 -2.8 -1.5 

hsa-miR-499a-5p 20 34990408 34990429 1.50E-05 9.03E-04 -2.8 -1.5 

hsa-miR-654-3p 14 101040269 101040291 3.77E-06 4.55E-04 -2.8 -1.5 

hsa-miR-379-5p 14 101022071 101022092 2.51E-03 2.48E-02 -3.1 -1.6 

hsa-miR-370-3p 14 100911186 100911208 1.26E-05 9.03E-04 -3.1 -1.6 
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hsa-miR-146b-5p 10 102436520 102436543 1.42E-04 4.40E-03 -3.9 -2.0 

hsa-miR-495-3p 14 101033804 101033826 1.46E-04 4.40E-03 -4.6 -2.2 

hsa-miR-493-3p 14 100869116 100869138 2.29E-07 5.52E-05 -5.5 -2.5 

 

N=36 female samples were subjected to the DE analysis. The table represents n=39 DE miRNAs 

between subtype 1 vs. subtype 2 in females.  
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Table A.10 Differentially Expressed piRNAs between subtypes in females 

DE piRNAs (Subtype 1 vs. Subtype 2) 

Genome assembly GRCh 38 Human Genome (hg) build 38 

piRNA Chr Start Stop P-value FDR FC 
Log2 

FC 

hsa-piR-32158_692422 20 18329074 18329099 2.70E-04 1.56E-02 2.5 1.3 

hsa-piR-32913_735924 1 228628147 228628174 1.02E-03 2.35E-02 2.2 1.2 

hsa-piR-32913_735914 1 228630389 228630416 1.36E-03 2.93E-02 1.9 1.0 

hsa-piR-32952_743942 21 8400810 8400838 3.05E-03 4.49E-02 -1.6 -0.7 

hsa-piR-28085_601016 21 8217623 8217652 3.13E-03 4.49E-02 -1.8 -0.9 

hsa-piR-32835_734800 1 198859106 198859131 8.65E-04 2.30E-02 -2.0 -1.0 

hsa-piR-28004_600873 6 27902950 27902980 9.89E-04 2.35E-02 -2.0 -1.0 

hsa-piR-28004_600872 16 70789507 70789537 3.37E-03 4.49E-02 -2.0 -1.0 

hsa-piR-28004_600876 1 16861921 16861951 2.27E-03 4.14E-02 -2.1 -1.1 

hsa-piR-1044_11926 16 70778253 70778283 6.99E-04 2.13E-02 -2.1 -1.1 

hsa-piR-1044_11927 16 70788694 70788724 1.73E-03 3.32E-02 -2.1 -1.1 

hsa-piR-1044_11924 1 161523889 161523919 1.55E-04 1.19E-02 -2.2 -1.1 

hsa-piR-427_764104 21 8211118 8211146 3.11E-03 4.49E-02 -2.2 -1.1 

hsa-piR-1044_11928 2 156401189 156401219 1.73E-04 1.19E-02 -2.2 -1.1 

hsa-piR-1044_11923 5 86372858 86372888 5.89E-04 2.13E-02 -2.2 -1.2 

hsa-piR-28278_625759 6 28838485 28838516 3.12E-03 4.49E-02 -2.3 -1.2 

hsa-piR-28004_600875 1 16545981 16546011 3.28E-04 1.62E-02 -2.3 -1.2 

hsa-piR-32946_743914 1 161469799 161469829 2.92E-03 4.49E-02 -2.3 -1.2 

hsa-piR-1044_11925 16 70779081 70779111 6.28E-04 2.13E-02 -2.3 -1.2 

hsa-piR-33041_752380 7 39679583 39679608 3.30E-03 4.49E-02 -2.3 -1.2 

hsa-piR-32946_743913 1 161455008 161455038 1.02E-04 1.17E-02 -2.7 -1.4 

hsa-piR-28278_625758 6 28863726 28863757 6.75E-04 2.13E-02 -2.8 -1.5 

hsa-piR-33041_752353 1 10999866 10999891 9.72E-05 1.17E-02 -2.9 -1.6 

hsa-piR-32927_743195 17 76561160 76561188 1.55E-03 3.16E-02 -3.0 -1.6 

hsa-piR-33036_752333 1 40754372 40754397 7.88E-05 1.17E-02 -3.1 -1.6 

hsa-piR-32915_735937 5 136080573 136080599 7.39E-04 2.13E-02 -3.6 -1.8 

N=36 female samples were subjected to the DE analysis. The table represents n=26 DE piRNAs 

between subtype 1 vs. subtype 2 in females.  
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Table A.11 Differentially Expressed snoRNAs between subtypes in females 

DE snoRNAs (Subtype 1 vs. Subtype 2) 

Genome assembly GRCh 38 Human Genome (hg) build 38 

snoRNA 
Ch

r 
Start Stop P-value FDR FC 

Log2 

FC 

SNORD115-

41_URS000071C0E6 
15 25245479 25245560 1.08E-03 1.15E-02 2.0 1.0 

SNORD115-

29_URS00000F2AEF 
15 25223247 25223328 1.56E-04 3.57E-03 1.9 0.9 

SNORD115-

38_URS000065B7B7 
15 25239839 25239920 6.52E-04 8.34E-03 1.9 0.9 

SNORD115-

35_URS0000682126 
15 25234248 25234329 3.34E-04 6.02E-03 1.8 0.9 

SNORD3A_URS00005

A4CE1 
17 19188017 19188715 6.26E-03 4.80E-02 1.7 0.8 

SNORD115-

16_URS00005CE711 
15 25199449 25199530 1.66E-03 1.66E-02 1.7 0.8 

SNORD115-

30_URS00003737BE 
15 25225204 25225285 7.38E-04 8.66E-03 1.7 0.8 

SNORD115-

39_URS000068E625 
15 25241747 25241828 2.30E-03 2.04E-02 1.6 0.7 

SNORD144_URS0000

A76DCB 
4 82898141 82898226 1.89E-03 1.84E-02 -1.6 -0.6 

SNORD45B_URS00007

25609 
1 75789478 75789549 8.42E-04 9.40E-03 -1.6 -0.7 

SNORD45B_URS00002

F8E76 
1 75789478 75789548 7.26E-04 8.66E-03 -1.6 -0.7 

SNORD24_URS000052

FCE0 
9 133349397 133349471 1.31E-03 1.34E-02 -1.7 -0.7 

snoU2-

30_URS00006CFD5E 
11 93721798 93721867 6.64E-03 4.80E-02 -1.8 -0.9 

SNORD114-

22_URS00006CE133 
14 100982927 100982998 4.85E-03 3.99E-02 -1.8 -0.9 

SNORD114-

11_URS000075D5CC 
14 100968112 100968185 2.00E-03 1.88E-02 -1.8 -0.9 

SNORD114-

22_URS000075A044 
14 100982927 100982997 5.06E-03 4.09E-02 -1.8 -0.9 

SNORD114-

25_URS000075DB96 
14 100986058 100986128 5.69E-03 4.52E-02 -1.8 -0.9 

SNORD114-

1_URS000067B8ED 
14 100949834 100949905 6.06E-04 8.22E-03 -1.9 -0.9 

SNORD114-

14_URS000069C4EF 
14 100972104 100972178 8.26E-04 9.40E-03 -1.9 -1.0 

SNORD114-

1_URS000075D742 
14 100949834 100949904 5.51E-04 7.84E-03 -2.0 -1.0 

SNORD114-

14_URS000075DABA 
14 100972104 100972177 6.13E-04 8.22E-03 -2.0 -1.0 
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SNORD114-

23_URS00006EEEE6 
14 100983877 100983948 1.00E-04 2.95E-03 -2.0 -1.0 

SNORD114-

13_URS000075AB92 
14 100969880 100969952 3.64E-03 3.05E-02 -2.1 -1.1 

SNORD112_URS00007

014CB 
14 100897921 100897997 7.28E-04 8.66E-03 -2.1 -1.1 

SNORD113-

6_URS00006CC403 
14 100939557 100939631 3.57E-04 6.17E-03 -2.2 -1.1 

SNORD114-

23_URS000075B92D 
14 100983877 100983947 3.79E-05 2.21E-03 -2.2 -1.1 

SNORD114-

21_URS00006B8E06 
14 100981976 100982047 6.58E-04 8.34E-03 -2.2 -1.1 

SNORD113-

6_URS000075E6A0 
14 100939557 100939630 2.76E-04 5.40E-03 -2.2 -1.1 

SNORD114-

9_URS00006DFE33 
14 100966030 100966101 9.12E-05 2.85E-03 -2.3 -1.2 

SNORD113-

7_URS00006B57E0 
14 100941127 100941203 2.22E-03 2.00E-02 -2.3 -1.2 

SNORD114-

21_URS000075C687 
14 100981976 100982046 1.28E-04 3.34E-03 -2.3 -1.2 

SNORD113-

7_URS000075ED12 
14 100941127 100941202 2.15E-03 1.97E-02 -2.3 -1.2 

SNORD114-

3_URS00007234FC 
14 100953350 100953424 3.31E-05 2.21E-03 -2.4 -1.2 

SNORD114-

11_URS00006926AF 
14 100968112 100968186 5.97E-05 2.27E-03 -2.4 -1.2 

SNORD114-

3_URS000075C3B9 
14 100953350 100953423 2.77E-05 2.21E-03 -2.4 -1.3 

SNORD114-

28_URS00006E38EC 
14 100989131 100989202 6.30E-05 2.27E-03 -2.4 -1.3 

SNORD114-

28_URS000075A673 
14 100989131 100989201 7.03E-05 2.36E-03 -2.4 -1.3 

SNORD113-

9_URS0000674865 
14 100945650 100945721 3.81E-04 6.17E-03 -2.4 -1.3 

SNORD113-

9_URS000075A3C2 
14 100945650 100945720 3.76E-04 6.17E-03 -2.4 -1.3 

SNORD114-

9_URS000075F03E 
14 100966030 100966100 3.70E-05 2.21E-03 -2.4 -1.3 

SNORD51_URS000004

E6C0 
2 206161882 206161951 3.02E-03 2.58E-02 -2.5 -1.3 

SNORD114-

5_URS000075B3D8 
14 100955371 100955439 8.72E-04 9.52E-03 -2.5 -1.3 

SNORD113-

3_URS00006762EA 
14 100929920 100929991 2.14E-04 4.36E-03 -2.5 -1.3 

SNORD113-

3_URS000075A0ED 
14 100929920 100929990 1.13E-04 3.13E-03 -2.6 -1.4 

SNORD113-

8_URS0000729F65 
14 100943452 100943525 4.25E-05 2.21E-03 -2.6 -1.4 

SNORD114-

12_URS0000676D30 
14 100968949 100969023 6.30E-05 2.27E-03 -2.7 -1.4 
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SNORD113-

8_URS000075D37A 
14 100943452 100943524 2.73E-05 2.21E-03 -2.7 -1.4 

SNORD113-

4_URS000075EC65 
14 100936492 100936565 1.43E-04 3.54E-03 -2.7 -1.4 

SNORD113-

4_URS000064C51A 
14 100936492 100936566 4.40E-04 6.45E-03 -2.8 -1.5 

SNORD114-

12_URS000075AF2D 
14 100968949 100969022 4.83E-05 2.27E-03 -2.8 -1.5 

SCARNA15_URS00005

172B7 
15 82755946 82756072 2.05E-04 4.36E-03 -2.8 -1.5 

SNORD114-

26_URS00006AAF5B 
14 100987047 100987118 9.19E-06 1.44E-03 -2.9 -1.5 

SNORD114-

15_URS000075AFFC 
14 100972671 100972741 1.60E-04 3.57E-03 -2.9 -1.5 

SNORD114-

26_URS000075CBCD 
14 100987047 100987117 8.91E-06 1.44E-03 -2.9 -1.5 

SNORD114-

15_URS000063F2D8 
14 100972671 100972742 3.24E-04 6.02E-03 -2.9 -1.5 

SNORD103A_URS000

075CFA2 
1 30935690 30935777 4.15E-04 6.29E-03 -5.4 -2.4 

SNORD103B_URS0000

75CFA2 
1 30949119 30949206 4.10E-04 6.29E-03 -5.9 -2.6 

N=36 female samples were subjected to the DE analysis. The table represents n=57 DE 

snoRNAs between subtype 1 vs. subtype 2 in females.
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Table A.12 ceRNA analysis results for n=6 hub lncRNAs in males 

 CASC19 hub lncRNA in Males 

mRNA 

miR 

binding 

sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

IL12A 5 8.9E-03 
hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-26b-

5p,hsa-miR-27a-3p,hsa-miR-10a-5p 
0.8 5.1E-12 1.0 6.0 3.0 

ZIC5 16 2.6E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-96-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-27a-3p,hsa-miR-10a-5p,hsa-miR-

486-5p,hsa-miR-125a-5p,hsa-miR-423-5p,hsa-

miR-92b-3p,hsa-miR-92a-3p 

0.9 2.6E-16 0.9 6.0 5.6 

NR1I2 6 8.4E-03 
hsa-miR-98-5p,hsa-miR-148a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-27a-3p 
0.9 3.3E-16 0.7 6.0 4.6 

OR2AG

1 
4 7.1E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.9 2.6E-18 1.0 6.0 5.7 

SYT16 8 5.5E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-96-5p,hsa-let-7g-5p,hsa-miR-22-5p,hsa-

miR-486-5p,hsa-miR-125a-5p 

0.9 1.7E-21 0.9 6.0 5.5 

RGS4 16 8.8E-04 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-98-

5p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-96-5p,hsa-miR-499a-5p,hsa-let-7g-

5p,hsa-miR-26b-5p,hsa-miR-27a-3p,hsa-miR-

10a-5p,hsa-miR-125b-5p,hsa-miR-486-5p,hsa-

miR-125a-5p,hsa-miR-320b 

0.9 1.0E-14 0.7 6.0 2.1 

MOXD

1 
9 8.2E-03 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-let-7g-5p,hsa-miR-26b-5p,hsa-miR-27a-

3p 

0.8 4.1E-14 0.5 6.0 2.2 



 

285 

 

ICOS 7 7.0E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-27a-3p,hsa-miR-320a-

3p,hsa-miR-320b 

0.8 2.4E-12 1.0 6.0 2.6 

CYP2C

8 
6 8.4E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-92b-3p,hsa-miR-92a-3p 
0.8 1.2E-10 1.0 6.0 2.9 

RTP1 6 2.6E-03 

hsa-miR-27a-3p,hsa-miR-125b-5p,hsa-miR-

125a-5p,hsa-miR-423-5p,hsa-miR-320a-3p,hsa-

miR-320b 

0.8 4.4E-13 0.9 6.0 3.1 

FGF5 13 4.9E-03 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-miR-125b-5p,hsa-miR-486-5p,hsa-miR-

125a-5p,hsa-miR-423-5p,hsa-miR-92b-3p,hsa-

miR-92a-3p,hsa-miR-320b 

0.8 3.5E-11 0.9 6.0 2.5 

GPR85 7 7.4E-04 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-let-7g-

5p,hsa-miR-27a-3p 

0.9 7.5E-17 0.9 6.0 3.2 

BEND4 11 9.4E-04 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-148a-

3p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-26b-5p,hsa-miR-27a-

3p,hsa-miR-320a-3p,hsa-miR-320b 

0.9 9.7E-15 0.9 6.0 4.1 

IL22RA

1 
7 7.4E-04 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-125a-5p 

0.7 4.5E-10 0.7 6.0 1.9 

C3orf52 8 5.5E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-148a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-26b-5p,hsa-miR-27a-3p 

0.8 1.2E-13 0.9 6.0 1.9 

SALL1 12 2.5E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-499a-5p,hsa-let-7g-

5p,hsa-miR-26b-5p,hsa-miR-27a-3p,hsa-miR-

423-5p,hsa-miR-92b-3p,hsa-miR-92a-3p,hsa-

miR-320b 

0.9 2.8E-15 1.0 6.0 5.0 

TFAP2

B 
7 7.0E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-27a-3p,hsa-miR-320a-

3p,hsa-miR-320b 

0.9 2.1E-19 0.9 6.0 4.9 

MAST1 5 8.9E-03 
hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p 
0.8 9.1E-13 1.0 6.0 6.1 
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TDO2 6 8.4E-03 
hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p 
0.9 5.5E-17 1.0 6.0 5.2 

IL23A 4 7.1E-03 
hsa-miR-101-3p,hsa-miR-499a-5p,hsa-miR-

27a-3p,hsa-miR-10a-5p 
0.8 1.1E-11 0.7 6.0 4.5 

CRTA

M 
6 4.8E-04 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-5p 
0.8 8.0E-14 0.7 6.0 3.5 

TOP2A 11 7.0E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-let-7g-

5p,hsa-miR-26b-5p,hsa-miR-27a-3p,hsa-miR-

22-5p,hsa-miR-423-5p,hsa-miR-320b 

0.8 1.1E-13 0.8 6.0 2.0 

SKIDA

1 
15 9.3E-04 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-miR-10a-

5p,hsa-miR-125b-5p,hsa-miR-125a-5p,hsa-

miR-92b-3p,hsa-miR-92a-3p,hsa-miR-320a-

3p,hsa-miR-320b 

0.9 3.5E-15 0.9 6.0 2.0 

CSPG5 5 8.9E-03 
hsa-miR-26b-5p,hsa-miR-27a-3p,hsa-miR-486-

5p,hsa-miR-125a-5p,hsa-miR-92a-3p 
0.7 2.5E-09 0.6 6.0 1.9 

PTPRO 11 3.8E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-27a-3p,hsa-miR-125b-5p,hsa-miR-

423-5p,hsa-miR-92b-3p,hsa-miR-92a-3p 

0.8 1.0E-13 1.0 6.0 2.2 

DNAH9 4 7.1E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.9 4.1E-22 1.0 6.0 4.5 

FAM13

3A 
11 7.0E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-miR-140-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-miR-499a-

5p,hsa-let-7g-5p,hsa-miR-320b 

0.8 8.1E-13 0.8 6.0 6.5 

RAB19 4 7.1E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.8 2.6E-11 1.0 6.0 5.3 

EHF 8 5.5E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-26b-5p,hsa-miR-27a-3p 

0.9 6.8E-22 1.0 6.0 4.8 

RAB3C 12 1.3E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-96-5p,hsa-miR-499a-5p,hsa-let-7g-5p,hsa-

miR-27a-3p,hsa-miR-22-5p,hsa-miR-92b-

0.8 2.2E-12 0.8 6.0 1.8 
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3p,hsa-miR-92a-3p,hsa-miR-320a-3p,hsa-miR-

320b 

FASLG 10 5.5E-04 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-27a-3p,hsa-miR-22-5p,hsa-miR-

92b-3p,hsa-miR-92a-3p 

0.8 5.2E-12 0.8 6.0 3.1 

PAX9 12 7.7E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-140-

5p,hsa-miR-499a-5p,hsa-miR-27a-3p,hsa-miR-

125b-5p,hsa-miR-486-5p,hsa-miR-125a-5p,hsa-

miR-423-5p,hsa-miR-92b-3p,hsa-miR-92a-

3p,hsa-miR-320b 

0.8 1.1E-11 0.9 6.0 1.9 

ONECU

T2 
21 3.6E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-miR-140-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-miR-499a-

5p,hsa-let-7g-5p,hsa-miR-26b-5p,hsa-miR-27a-

3p,hsa-miR-22-5p,hsa-miR-125b-5p,hsa-miR-

486-5p,hsa-miR-125a-5p,hsa-miR-423-5p,hsa-

miR-92b-3p,hsa-miR-92a-3p,hsa-miR-320a-

3p,hsa-miR-320b 

0.9 3.5E-15 0.9 6.0 3.6 

CACN

A1I 
11 3.8E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-10a-5p,hsa-miR-125b-

5p,hsa-miR-125a-5p,hsa-miR-92b-3p,hsa-miR-

92a-3p,hsa-miR-320a-3p,hsa-miR-320b 

0.8 5.3E-12 0.8 6.0 3.2 

SLC6A

14 
14 4.9E-03 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-26b-5p,hsa-miR-27a-3p,hsa-miR-125b-

5p,hsa-miR-486-5p,hsa-miR-125a-5p,hsa-miR-

92b-3p,hsa-miR-92a-3p,hsa-miR-320b 

0.9 7.4E-15 0.9 6.0 7.2 

ARHGE

F38 
9 1.8E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-miR-320a-3p,hsa-miR-

320b 

0.9 2.7E-20 1.0 6.0 6.3 

DMP1 5 8.9E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-27a-3p 
0.9 5.1E-15 0.8 6.0 4.5 

HMGA

2 
18 4.2E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-148a-

3p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-7i-
0.9 2.7E-22 0.9 6.0 5.7 
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5p,hsa-miR-96-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-27a-3p,hsa-miR-22-5p,hsa-miR-

125b-5p,hsa-miR-125a-5p,hsa-miR-423-5p,hsa-

miR-92b-3p,hsa-miR-92a-3p,hsa-miR-320a-

3p,hsa-miR-320b 

SLC8A

2 
7 7.0E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-125b-5p,hsa-miR-125a-

5p,hsa-miR-423-5p 

0.8 6.4E-12 1.0 6.0 2.9 

TCEAL

2 
4 7.1E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.9 3.5E-15 0.7 6.0 2.8 

ONECU

T3 
9 8.2E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-96-5p,hsa-let-7g-5p,hsa-miR-10a-5p,hsa-

miR-423-5p,hsa-miR-320a-3p,hsa-miR-320b 

0.9 4.3E-15 0.7 6.0 5.7 

KIF5C 17 2.1E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-miR-140-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-let-7g-

5p,hsa-miR-26b-5p,hsa-miR-125b-5p,hsa-miR-

486-5p,hsa-miR-125a-5p,hsa-miR-423-5p,hsa-

miR-92b-3p,hsa-miR-92a-3p,hsa-miR-320b 

0.9 7.7E-20 0.9 6.0 3.1 

CXCL5 11 7.0E-03 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-499a-5p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-miR-92b-3p,hsa-miR-

92a-3p,hsa-miR-320a-3p,hsa-miR-320b 

0.8 7.6E-13 0.8 6.0 2.8 

E2F7 18 5.9E-04 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-26b-5p,hsa-miR-27a-

3p,hsa-miR-10a-5p,hsa-miR-125b-5p,hsa-miR-

486-5p,hsa-miR-125a-5p,hsa-miR-423-5p,hsa-

miR-92b-3p,hsa-miR-92a-3p,hsa-miR-320a-

3p,hsa-miR-320b 

0.9 1.0E-20 0.9 6.0 4.7 

LHCGR 4 7.1E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.8 4.0E-11 0.9 6.0 1.9 

SHANK

2 
17 5.5E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-148a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-miR-499a-5p,hsa-let-7g-5p,hsa-miR-

26b-5p,hsa-miR-27a-3p,hsa-miR-10a-5p,hsa-

0.9 8.0E-19 0.8 6.0 2.9 
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miR-22-5p,hsa-miR-125b-5p,hsa-miR-125a-

5p,hsa-miR-423-5p,hsa-miR-92b-3p,hsa-miR-

92a-3p 

GRID2 11 2.0E-03 

hsa-miR-101-3p,hsa-miR-148a-3p,hsa-let-7f-

5p,hsa-miR-96-5p,hsa-miR-27a-3p,hsa-miR-

486-5p,hsa-miR-125a-5p,hsa-miR-92b-3p,hsa-

miR-92a-3p,hsa-miR-320a-3p,hsa-miR-320b 

0.9 1.0E-18 0.8 6.0 4.1 

CELSR

3 
14 2.9E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-27a-3p,hsa-miR-486-5p,hsa-miR-125a-

5p,hsa-miR-423-5p,hsa-miR-92b-3p,hsa-miR-

92a-3p,hsa-miR-320a-3p,hsa-miR-320b 

0.8 3.7E-12 0.9 6.0 1.8 

SALL3 11 2.0E-03 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-27a-3p,hsa-miR-92b-3p,hsa-miR-

92a-3p,hsa-miR-320a-3p,hsa-miR-320b 

0.8 9.3E-14 1.0 6.0 4.4 

NRCA

M 
12 4.5E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-miR-423-

5p,hsa-miR-92b-3p,hsa-miR-92a-3p,hsa-miR-

320b 

0.8 5.1E-11 0.7 6.0 1.8 

C3orf52 8 5.5E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-148a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-26b-5p,hsa-miR-27a-3p 

0.8 1.2E-13 0.9 6.0 1.9 

DLX1 9 8.2E-03 

hsa-miR-101-3p,hsa-miR-148a-3p,hsa-miR-96-

5p,hsa-miR-27a-3p,hsa-miR-10a-5p,hsa-miR-

125b-5p,hsa-miR-125a-5p,hsa-miR-320a-

3p,hsa-miR-320b 

0.8 1.5E-12 0.8 6.0 3.8 

NRIP3 6 8.4E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-499a-5p,hsa-let-7g-5p,hsa-miR-27a-3p 
0.8 1.1E-13 1.0 6.0 2.4 

SPAG1 11 2.0E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-let-7g-5p,hsa-miR-26b-5p,hsa-miR-27a-

3p,hsa-miR-10a-5p,hsa-miR-22-5p 

0.8 5.4E-13 0.6 6.0 1.7 

TSPEA

R 
6 8.4E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-320a-3p,hsa-miR-320b 
0.8 9.4E-14 1.0 6.0 4.1 



 

290 

 

CRX 5 1.9E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-423-5p 
0.9 6.2E-18 1.0 6.0 5.8 

GABRB

3 
7 7.0E-03 

hsa-miR-26b-5p,hsa-miR-27a-3p,hsa-miR-

125b-5p,hsa-miR-486-5p,hsa-miR-125a-5p,hsa-

miR-92b-3p,hsa-miR-92a-3p 

0.8 3.4E-12 0.9 6.0 2.3 

SALL3 11 2.0E-03 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-27a-3p,hsa-miR-92b-3p,hsa-miR-

92a-3p,hsa-miR-320a-3p,hsa-miR-320b 

0.8 9.3E-14 1.0 6.0 4.4 

SAMD1

2 
20 2.4E-04 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-148a-

3p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-96-5p,hsa-miR-499a-5p,hsa-let-7g-

5p,hsa-miR-26b-5p,hsa-miR-27a-3p,hsa-miR-

10a-5p,hsa-miR-22-5p,hsa-miR-125b-5p,hsa-

miR-486-5p,hsa-miR-125a-5p,hsa-miR-423-

5p,hsa-miR-92b-3p,hsa-miR-92a-3p,hsa-miR-

320b 

0.8 3.3E-14 0.8 6.0 1.8 

SALL3 11 2.0E-03 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-27a-3p,hsa-miR-92b-3p,hsa-miR-

92a-3p,hsa-miR-320a-3p,hsa-miR-320b 

0.8 9.3E-14 1.0 6.0 4.4 

NDST3 7 2.6E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-27a-3p 

0.9 2.5E-17 0.9 6.0 5.7 

ADAM

28 
9 4.1E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-125b-

5p,hsa-miR-125a-5p,hsa-miR-320a-3p,hsa-miR-

320b 

0.8 7.2E-14 0.9 6.0 1.8 

MAB21

L3 
6 8.4E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-148a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p 
0.9 3.5E-18 0.9 6.0 4.3 

ESPL1 9 8.2E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-27a-3p,hsa-miR-10a-5p,hsa-

miR-125b-5p,hsa-miR-125a-5p,hsa-miR-423-5p 

0.8 1.9E-14 0.8 6.0 3.2 

IL13 6 8.4E-03 
hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-125a-5p 
0.7 5.6E-10 1.0 6.0 4.6 
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IQGAP

3 
12 6.2E-04 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-148a-

3p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-10a-5p,hsa-miR-22-

5p,hsa-miR-125b-5p,hsa-miR-125a-5p,hsa-

miR-423-5p 

0.9 6.9E-16 0.7 6.0 3.0 

EPPIN 6 2.6E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-26b-5p,hsa-miR-22-5p 
0.9 5.4E-20 0.8 6.0 6.1 

TDO2 6 8.4E-03 
hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p 
0.9 5.5E-17 1.0 6.0 5.2 

DIO1 7 1.2E-04 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-26b-5p,hsa-miR-486-5p,hsa-

miR-125a-5p 

0.9 2.1E-15 1.0 6.0 6.9 

TBX5 7 7.4E-04 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-96-5p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-

miR-10a-5p 

0.8 5.4E-14 0.6 6.0 2.4 

RRM2 13 4.9E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-miR-499a-5p,hsa-let-7g-5p,hsa-miR-

26b-5p,hsa-miR-27a-3p,hsa-miR-125b-5p,hsa-

miR-125a-5p,hsa-miR-423-5p 

0.9 2.5E-18 0.9 6.0 3.7 

AGBL2 6 8.4E-03 
hsa-miR-98-5p,hsa-miR-148a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-10a-5p 
0.8 1.5E-13 0.8 6.0 2.3 

LIN28B 18 1.7E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-miR-140-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-499a-5p,hsa-let-7g-

5p,hsa-miR-26b-5p,hsa-miR-27a-3p,hsa-miR-

10a-5p,hsa-miR-125b-5p,hsa-miR-486-5p,hsa-

miR-125a-5p,hsa-miR-92b-3p,hsa-miR-92a-

3p,hsa-miR-320b 

0.9 1.1E-21 0.9 6.0 7.1 

RASGR

F1 
5 8.9E-03 

hsa-miR-101-3p,hsa-miR-26b-5p,hsa-miR-27a-

3p,hsa-miR-125b-5p,hsa-miR-125a-5p 
0.9 2.5E-17 1.0 6.0 4.5 

LIN28A 11 3.8E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-26b-5p,hsa-miR-27a-3p,hsa-

miR-125b-5p,hsa-miR-125a-5p,hsa-miR-92b-

3p,hsa-miR-92a-3p,hsa-miR-320b 

0.9 3.5E-19 1.0 6.0 5.6 
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PXT1 5 8.9E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-423-5p 
0.9 5.0E-15 1.0 6.0 3.8 

LRGUK 5 1.9E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-27a-3p 
0.8 3.4E-14 1.0 6.0 1.9 

KIF5C 17 2.1E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-miR-140-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-let-7g-

5p,hsa-miR-26b-5p,hsa-miR-125b-5p,hsa-miR-

486-5p,hsa-miR-125a-5p,hsa-miR-423-5p,hsa-

miR-92b-3p,hsa-miR-92a-3p,hsa-miR-320b 

0.9 7.7E-20 0.9 6.0 3.1 

SAXO1 6 8.4E-03 

hsa-miR-101-3p,hsa-let-7f-5p,hsa-miR-125b-

5p,hsa-miR-125a-5p,hsa-miR-320a-3p,hsa-miR-

320b 

0.8 1.9E-14 1.0 6.0 2.7 

MUC16 5 8.9E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-125b-5p 
0.9 4.5E-18 1.0 6.0 3.9 

IMPG2 7 7.0E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-499a-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-27a-3p 

0.8 9.8E-13 1.0 6.0 1.7 

LECT2 4 7.1E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.9 1.2E-21 1.0 6.0 6.6 

SAMD3 5 8.9E-03 
hsa-miR-21-5p,hsa-miR-140-5p,hsa-miR-27a-

3p,hsa-miR-320a-3p,hsa-miR-320b 
0.8 5.4E-12 0.7 6.0 2.0 

AGBL2 6 8.4E-03 
hsa-miR-98-5p,hsa-miR-148a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-10a-5p 
0.8 1.5E-13 0.8 6.0 2.3 
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DLEU1 hub lncRNA in Males 

mRNA 
miR 

binding 

sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

TAT 10 4.6E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

370-3p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-

7i-5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-

miR-145-5p,hsa-miR-885-3p 

0.7 2.9E-09 0.5 1.6 6.3 

ETNPP

L 
5 2.4E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.7 1.0E-08 0.6 1.6 2.1 

NGF 7 9.6E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-

10b-5p,hsa-miR-423-5p 

0.7 3.6E-09 0.9 1.6 2.0 

RAD54

L 
9 6.1E-03 

hsa-miR-195-5p,hsa-miR-214-5p,hsa-miR-

146b-5p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-339-5p 

0.7 1.5E-08 0.4 1.6 3.8 

CTSV 7 3.7E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

140-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-320a-3p,hsa-miR-320b 

0.7 3.2E-09 0.3 1.6 4.7 

ADAM

TS6 
13 8.8E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

146b-5p,hsa-miR-370-3p,hsa-miR-98-

5p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-

10b-5p,hsa-miR-26b-5p,hsa-miR-320b 

0.7 3.9E-09 0.8 1.6 1.6 

IQGAP

3 
12 1.1E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

146b-5p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-

5p,hsa-miR-16-5p,hsa-miR-10b-5p,hsa-

miR-22-5p,hsa-miR-423-5p 

0.7 1.3E-09 0.8 1.6 3.0 
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TDO2 7 1.0E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

98-5p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-

7i-5p,hsa-let-7g-5p 

0.7 1.3E-09 0.5 1.6 5.2 

BICDL

1 
10 9.0E-04 

hsa-miR-195-5p,hsa-miR-370-3p,hsa-miR-

98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-

5p,hsa-miR-16-5p,hsa-miR-10b-5p,hsa-

miR-423-5p,hsa-miR-145-5p 

0.8 2.3E-10 1.0 1.6 3.7 

EPPIN 6 3.5E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-26b-5p,hsa-miR-

22-5p 

0.7 4.6E-09 0.4 1.6 6.1 

HMGA

2 
19 2.3E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

146b-5p,hsa-miR-370-3p,hsa-miR-98-

5p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-96-5p,hsa-let-7g-5p,hsa-miR-

16-5p,hsa-miR-26b-5p,hsa-miR-22-5p,hsa-

miR-199a-5p,hsa-miR-423-5p,hsa-miR-

145-5p,hsa-miR-320a-3p,hsa-miR-339-

5p,hsa-miR-320b 

0.7 6.0E-09 0.6 1.6 5.7 

LYPD5 5 2.4E-03 
hsa-miR-195-5p,hsa-miR-16-5p,hsa-miR-

26b-5p,hsa-miR-145-5p,hsa-miR-339-5p 
0.7 1.7E-09 0.5 1.6 2.3 

RGS4 15 9.5E-03 

hsa-miR-101-3p,hsa-miR-214-5p,hsa-miR-

146b-5p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-

10b-5p,hsa-miR-26b-5p,hsa-miR-145-

5p,hsa-miR-339-5p,hsa-miR-320b 

0.7 3.1E-09 0.8 1.6 2.1 

ABCA

13 
7 3.7E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-320b 

0.7 2.4E-09 0.5 1.6 5.1 

CKAP2

L 
9 3.4E-04 

hsa-miR-195-5p,hsa-miR-214-5p,hsa-miR-

98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-

5p,hsa-miR-16-5p,hsa-miR-145-5p,hsa-

miR-320b 

0.7 1.1E-09 0.5 1.6 3.8 
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TDO2 7 1.0E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

98-5p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-

7i-5p,hsa-let-7g-5p 

0.7 1.3E-09 0.5 1.6 5.2 

BEND

4 
10 8.9E-03 

hsa-miR-101-3p,hsa-miR-146b-5p,hsa-miR-

98-5p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-

7i-5p,hsa-let-7g-5p,hsa-miR-26b-5p,hsa-

miR-320a-3p,hsa-miR-320b 

0.7 7.1E-09 0.6 1.6 4.1 

CACN

A1E 
10 8.9E-03 

hsa-miR-195-5p,hsa-miR-370-3p,hsa-miR-

98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-

5p,hsa-miR-16-5p,hsa-miR-320a-3p,hsa-

miR-339-5p,hsa-miR-320b 

0.7 9.8E-09 0.7 1.6 3.7 

 

HELLPAR hub lncRNA in Males 

mRNA 
miR 

bindin

g sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

ADAMTS6 23 1.9E-04 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-146b-5p,hsa-miR-370-

3p,hsa-miR-98-5p,hsa-miR-140-5p,hsa-let-7f-

5p,hsa-miR-493-3p,hsa-let-7i-5p,hsa-miR-

146a-5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-

miR-155-5p,hsa-miR-26b-5p,hsa-miR-30e-

5p,hsa-miR-30a-5p,hsa-miR-27a-3p,hsa-miR-

363-3p,hsa-miR-193b-5p,hsa-miR-92a-

3p,hsa-miR-433-3p,hsa-miR-320b 

0.8 2.8E-13 0.8 3.5 1.6 

CACNB4 22 5.2E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-146b-5p,hsa-miR-98-5p,hsa-

let-7f-5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-

miR-146a-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-155-5p,hsa-miR-26b-5p,hsa-miR-

196b-5p,hsa-miR-30e-5p,hsa-miR-151a-

3p,hsa-miR-30a-5p,hsa-miR-182-5p,hsa-miR-

0.9 4.6E-17 0.8 3.5 2.0 
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143-3p,hsa-miR-27a-3p,hsa-miR-361-3p,hsa-

miR-433-3p 

GABRG2 13 9.7E-03 

hsa-miR-21-5p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-146b-5p,hsa-let-7f-5p,hsa-

miR-96-5p,hsa-miR-146a-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-27a-3p,hsa-miR-

423-5p,hsa-miR-320b,hsa-miR-2110 

0.9 2.0E-20 0.8 3.5 6.4 

LYPD6 24 5.6E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-

15b-3p,hsa-miR-199b-5p,hsa-miR-98-5p,hsa-

miR-140-5p,hsa-let-7f-5p,hsa-miR-493-

3p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-let-7g-

5p,hsa-miR-379-5p,hsa-miR-192-5p,hsa-miR-

155-5p,hsa-miR-151a-3p,hsa-miR-182-

5p,hsa-miR-143-3p,hsa-miR-27a-3p,hsa-miR-

199a-5p,hsa-miR-125b-5p,hsa-miR-197-

3p,hsa-miR-361-3p,hsa-miR-433-3p,hsa-miR-

320b 

0.9 1.0E-15 0.9 3.5 3.0 

TTLL9 10 7.6E-03 

hsa-miR-140-5p,hsa-let-7f-5p,hsa-miR-493-

3p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-196b-

5p,hsa-miR-27a-3p,hsa-miR-199a-5p,hsa-

miR-339-5p,hsa-miR-433-3p 

0.9 1.4E-15 1.0 3.5 3.2 

ARHGEF38 13 1.4E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-let-7g-5p,hsa-miR-196b-5p,hsa-miR-

182-5p,hsa-miR-27a-3p,hsa-miR-320a-

3p,hsa-miR-320b,hsa-miR-2110 

0.9 1.4E-19 0.9 3.5 6.3 

HOOK1 23 9.0E-03 

hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-

199b-5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-

7i-5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-

155-5p,hsa-miR-26b-5p,hsa-miR-196b-

5p,hsa-miR-30e-5p,hsa-miR-30a-5p,hsa-miR-

143-3p,hsa-miR-27a-3p,hsa-miR-363-3p,hsa-

miR-22-5p,hsa-miR-199a-5p,hsa-miR-125b-

5p,hsa-miR-361-3p,hsa-miR-145-5p,hsa-miR-

92a-3p,hsa-miR-339-5p 

0.9 3.6E-15 0.9 3.5 2.0 
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OLR1 17 5.5E-03 

hsa-miR-21-5p,hsa-miR-195-5p,hsa-miR-

370-3p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-miR-

493-3p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-let-

7g-5p,hsa-miR-16-5p,hsa-miR-379-5p,hsa-

miR-155-5p,hsa-miR-182-5p,hsa-miR-143-

3p,hsa-miR-27a-3p,hsa-miR-423-5p,hsa-miR-

320b 

0.8 9.3E-11 0.9 3.5 3.5 

RSPO2 11 4.4E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-miR-493-

3p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-155-

5p,hsa-miR-196b-5p,hsa-miR-27a-3p,hsa-

miR-197-3p,hsa-miR-320a-3p,hsa-miR-320b 

0.9 3.0E-19 0.9 3.5 4.4 

KIF5C 29 3.2E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-

374b-5p,hsa-miR-195-5p,hsa-miR-146b-

5p,hsa-miR-370-3p,hsa-miR-98-5p,hsa-miR-

140-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

96-5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-379-5p,hsa-miR-192-

5p,hsa-miR-155-5p,hsa-miR-26b-5p,hsa-miR-

30e-5p,hsa-miR-30a-5p,hsa-miR-182-5p,hsa-

miR-143-3p,hsa-miR-363-3p,hsa-miR-125b-

5p,hsa-miR-361-3p,hsa-miR-423-5p,hsa-miR-

92a-3p,hsa-miR-433-3p,hsa-miR-320b 

0.9 8.7E-19 0.9 3.5 3.1 

KIF5C 29 3.2E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-

374b-5p,hsa-miR-195-5p,hsa-miR-146b-

5p,hsa-miR-370-3p,hsa-miR-98-5p,hsa-miR-

140-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

96-5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-379-5p,hsa-miR-192-

5p,hsa-miR-155-5p,hsa-miR-26b-5p,hsa-miR-

30e-5p,hsa-miR-30a-5p,hsa-miR-182-5p,hsa-

miR-143-3p,hsa-miR-363-3p,hsa-miR-125b-

5p,hsa-miR-361-3p,hsa-miR-423-5p,hsa-miR-

92a-3p,hsa-miR-433-3p,hsa-miR-320b 

0.9 8.7E-19 0.9 3.5 3.1 

BRCA2 13 9.7E-03 

hsa-miR-195-5p,hsa-miR-146b-5p,hsa-miR-

98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

146a-5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-

0.8 1.7E-14 0.8 3.5 2.0 
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miR-192-5p,hsa-miR-155-5p,hsa-miR-30e-

5p,hsa-miR-30a-5p,hsa-miR-145-5p 

SALL4 18 3.3E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

16-5p,hsa-miR-155-5p,hsa-miR-30e-5p,hsa-

miR-30a-5p,hsa-miR-182-5p,hsa-miR-143-

3p,hsa-miR-27a-3p,hsa-miR-22-5p,hsa-miR-

433-3p,hsa-miR-320b 

0.9 6.5E-16 0.9 3.5 4.7 

BLM 14 5.8E-03 

hsa-miR-195-5p,hsa-miR-146b-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-146a-5p,hsa-let-7g-

5p,hsa-miR-16-5p,hsa-miR-192-5p,hsa-miR-

26b-5p,hsa-miR-30e-5p,hsa-miR-30a-5p,hsa-

miR-27a-3p,hsa-miR-197-3p,hsa-miR-361-3p 

0.9 6.0E-17 0.9 3.5 3.2 

IQCH 11 4.4E-03 

hsa-miR-21-5p,hsa-miR-199b-5p,hsa-miR-

146b-5p,hsa-miR-96-5p,hsa-miR-146a-

5p,hsa-miR-194-5p,hsa-miR-196b-5p,hsa-

miR-182-5p,hsa-miR-27a-3p,hsa-miR-22-

5p,hsa-miR-199a-5p 

0.9 1.4E-16 0.9 3.5 2.7 

MACC1 16 8.9E-03 

hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-

199b-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-

16-5p,hsa-miR-155-5p,hsa-miR-26b-5p,hsa-

miR-143-3p,hsa-miR-27a-3p,hsa-miR-199a-

5p,hsa-miR-197-3p,hsa-miR-145-5p,hsa-miR-

193b-5p,hsa-miR-433-3p,hsa-miR-2110 

0.9 2.6E-21 0.9 3.5 5.1 

FASLG 13 9.7E-03 

hsa-miR-21-5p,hsa-miR-15b-3p,hsa-miR-

214-5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-

7i-5p,hsa-let-7g-5p,hsa-miR-26b-5p,hsa-miR-

27a-3p,hsa-miR-363-3p,hsa-miR-22-5p,hsa-

miR-361-3p,hsa-miR-92a-3p 

0.9 1.3E-15 0.7 3.5 3.1 

KRT5 10 7.6E-03 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-146a-5p,hsa-let-7g-

5p,hsa-miR-155-5p,hsa-miR-151a-3p,hsa-

miR-182-5p,hsa-miR-125b-5p 

0.9 1.0E-16 0.8 3.5 4.4 

KYNU 13 9.7E-03 
hsa-miR-21-5p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-146b-5p,hsa-miR-370-
0.8 1.8E-12 0.8 3.5 1.9 
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3p,hsa-miR-146a-5p,hsa-miR-16-5p,hsa-miR-

155-5p,hsa-miR-26b-5p,hsa-miR-30a-5p,hsa-

miR-27a-3p,hsa-miR-145-5p,hsa-miR-320b 

TG 10 7.6E-03 

hsa-miR-195-5p,hsa-miR-370-3p,hsa-let-7f-

5p,hsa-miR-493-3p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-miR-16-5p,hsa-miR-182-5p,hsa-miR-

361-3p,hsa-miR-339-5p 

0.9 1.8E-19 0.9 3.5 3.2 

TAT 16 2.4E-04 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-

374b-5p,hsa-miR-195-5p,hsa-miR-370-

3p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-miR-493-

3p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-182-5p,hsa-miR-197-3p,hsa-miR-

145-5p,hsa-miR-885-3p,hsa-miR-2110 

0.9 3.0E-18 0.9 3.5 6.3 

NIPAL4 16 2.0E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-miR-493-3p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

30e-5p,hsa-miR-30a-5p,hsa-miR-182-5p,hsa-

miR-143-3p,hsa-miR-27a-3p,hsa-miR-125b-

5p,hsa-miR-145-5p,hsa-miR-339-5p 

0.8 3.8E-13 1.0 3.5 2.9 

SH3GL2 13 9.7E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-

195-5p,hsa-miR-140-5p,hsa-miR-146a-

5p,hsa-miR-16-5p,hsa-miR-155-5p,hsa-miR-

26b-5p,hsa-miR-30a-5p,hsa-miR-182-5p,hsa-

miR-143-3p,hsa-miR-27a-3p,hsa-miR-320b 

0.8 7.6E-14 0.9 3.5 3.7 

LMNB1 26 5.6E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-

195-5p,hsa-miR-199b-5p,hsa-miR-98-5p,hsa-

miR-140-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-16-5p,hsa-miR-192-

5p,hsa-miR-155-5p,hsa-miR-26b-5p,hsa-miR-

30a-5p,hsa-miR-182-5p,hsa-miR-27a-3p,hsa-

miR-363-3p,hsa-miR-22-5p,hsa-miR-199a-

5p,hsa-miR-125b-5p,hsa-miR-361-3p,hsa-

miR-145-5p,hsa-miR-92a-3p,hsa-miR-433-

3p,hsa-miR-320b,hsa-miR-2110 

0.7 9.2E-09 0.9 3.5 1.6 

SALL3 17 1.2E-03 
hsa-miR-21-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-146a-
0.8 1.4E-13 0.8 3.5 4.4 
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5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-

26b-5p,hsa-miR-194-5p,hsa-miR-196b-

5p,hsa-miR-27a-3p,hsa-miR-363-3p,hsa-miR-

92a-3p,hsa-miR-320a-3p,hsa-miR-433-

3p,hsa-miR-320b 

CPS1 22 5.2E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-

374b-5p,hsa-miR-15b-3p,hsa-miR-98-5p,hsa-

let-7f-5p,hsa-miR-493-3p,hsa-let-7i-5p,hsa-

miR-146a-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-155-5p,hsa-miR-26b-5p,hsa-miR-

30e-5p,hsa-miR-30a-5p,hsa-miR-363-3p,hsa-

miR-22-5p,hsa-miR-197-3p,hsa-miR-92a-

3p,hsa-miR-339-5p,hsa-miR-433-3p,hsa-miR-

320b 

0.8 2.0E-13 0.9 3.5 2.1 

COL9A1 10 7.6E-03 

hsa-miR-146b-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-miR-493-3p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

26b-5p,hsa-miR-197-3p 

0.9 1.9E-20 0.9 3.5 6.8 

HELB 14 8.0E-04 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-493-3p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-26b-5p,hsa-miR-30e-

5p,hsa-miR-143-3p,hsa-miR-22-5p,hsa-miR-

197-3p,hsa-miR-145-5p,hsa-miR-433-3p,hsa-

miR-320b 

0.8 4.0E-10 0.9 3.5 1.9 

SPTSSB 21 2.6E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-

374b-5p,hsa-miR-370-3p,hsa-miR-98-5p,hsa-

let-7f-5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-

miR-146a-5p,hsa-let-7g-5p,hsa-miR-379-

5p,hsa-miR-26b-5p,hsa-miR-30e-5p,hsa-miR-

30a-5p,hsa-miR-182-5p,hsa-miR-27a-3p,hsa-

miR-22-5p,hsa-miR-361-3p,hsa-miR-423-

5p,hsa-miR-145-5p,hsa-miR-433-3p 

0.9 5.5E-20 1.0 3.5 4.7 

CHRNB2 13 9.7E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

214-5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-

7i-5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-

0.9 2.8E-15 0.9 3.5 4.3 
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361-3p,hsa-miR-145-5p,hsa-miR-339-5p,hsa-

miR-433-3p,hsa-miR-2110 

LYPD6B 11 4.4E-03 

hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-

146a-5p,hsa-miR-16-5p,hsa-miR-155-5p,hsa-

miR-143-3p,hsa-miR-27a-3p,hsa-miR-361-

3p,hsa-miR-423-5p,hsa-miR-433-3p,hsa-miR-

320b 

0.9 2.3E-18 0.9 3.5 5.3 

BTLA 14 5.8E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-

195-5p,hsa-miR-16-5p,hsa-miR-30e-5p,hsa-

miR-151a-3p,hsa-miR-30a-5p,hsa-miR-182-

5p,hsa-miR-143-3p,hsa-miR-27a-3p,hsa-miR-

363-3p,hsa-miR-92a-3p,hsa-miR-339-5p,hsa-

miR-433-3p 

0.8 2.0E-14 0.9 3.5 3.1 

CDH1 27 8.9E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

199b-5p,hsa-miR-146b-5p,hsa-miR-98-

5p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-miR-

493-3p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-miR-

146a-5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-

miR-379-5p,hsa-miR-26b-5p,hsa-miR-30a-

5p,hsa-miR-143-3p,hsa-miR-363-3p,hsa-miR-

22-5p,hsa-miR-199a-5p,hsa-miR-197-3p,hsa-

miR-361-3p,hsa-miR-145-5p,hsa-miR-92a-

3p,hsa-miR-320a-3p,hsa-miR-339-5p,hsa-

miR-320b 

0.8 2.3E-14 0.8 3.5 2.5 

ADAM28 13 9.7E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

146a-5p,hsa-let-7g-5p,hsa-miR-30e-5p,hsa-

miR-30a-5p,hsa-miR-125b-5p,hsa-miR-145-

5p,hsa-miR-320a-3p,hsa-miR-320b 

0.9 1.3E-15 0.9 3.5 1.8 

LHX1 12 2.5E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-miR-

146a-5p,hsa-let-7g-5p,hsa-miR-379-5p,hsa-

miR-26b-5p,hsa-miR-30e-5p,hsa-miR-30a-

5p,hsa-miR-182-5p 

0.8 1.6E-13 0.9 3.5 10.0 

NAT1 10 7.6E-03 
hsa-miR-101-3p,hsa-miR-199b-5p,hsa-miR-

155-5p,hsa-miR-26b-5p,hsa-miR-30e-5p,hsa-
0.8 6.3E-12 1.0 3.5 1.8 
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miR-30a-5p,hsa-miR-27a-3p,hsa-miR-199a-

5p,hsa-miR-320a-3p,hsa-miR-320b 

IL10 10 7.6E-03 

hsa-miR-21-5p,hsa-miR-374b-5p,hsa-miR-

98-5p,hsa-let-7f-5p,hsa-miR-493-3p,hsa-let-

7i-5p,hsa-let-7g-5p,hsa-miR-155-5p,hsa-miR-

27a-3p,hsa-miR-2110 

0.8 2.2E-11 1.0 3.5 2.3 

NECAB1 18 3.3E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-146b-5p,hsa-miR-96-5p,hsa-

miR-146a-5p,hsa-miR-16-5p,hsa-miR-379-

5p,hsa-miR-192-5p,hsa-miR-155-5p,hsa-miR-

26b-5p,hsa-miR-30e-5p,hsa-miR-30a-5p,hsa-

miR-182-5p,hsa-miR-27a-3p,hsa-miR-145-

5p,hsa-miR-193b-5p,hsa-miR-433-3p 

0.8 2.7E-14 0.8 3.5 3.4 

PTPRO 17 5.5E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-155-5p,hsa-miR-26b-5p,hsa-miR-

182-5p,hsa-miR-27a-3p,hsa-miR-363-3p,hsa-

miR-125b-5p,hsa-miR-361-3p,hsa-miR-423-

5p,hsa-miR-145-5p,hsa-miR-92a-3p,hsa-miR-

433-3p 

0.8 2.4E-13 1.0 3.5 2.2 

KCNG3 10 7.6E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-

374b-5p,hsa-miR-195-5p,hsa-miR-146b-

5p,hsa-miR-96-5p,hsa-miR-146a-5p,hsa-miR-

16-5p,hsa-miR-182-5p,hsa-miR-339-5p 

0.8 2.1E-12 0.7 3.5 3.4 

SALL3 17 1.2E-03 

hsa-miR-21-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-146a-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-

26b-5p,hsa-miR-194-5p,hsa-miR-196b-

5p,hsa-miR-27a-3p,hsa-miR-363-3p,hsa-miR-

92a-3p,hsa-miR-320a-3p,hsa-miR-433-

3p,hsa-miR-320b 

0.8 1.4E-13 0.8 3.5 4.4 

TFAP2B 10 7.6E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

182-5p,hsa-miR-27a-3p,hsa-miR-320a-

3p,hsa-miR-320b,hsa-miR-2110 

0.9 4.8E-18 0.9 3.5 4.9 
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LHX1 12 2.5E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-96-5p,hsa-miR-

146a-5p,hsa-let-7g-5p,hsa-miR-379-5p,hsa-

miR-26b-5p,hsa-miR-30e-5p,hsa-miR-30a-

5p,hsa-miR-182-5p 

0.8 1.6E-13 0.9 3.5 10.0 

HOXC11 20 1.1E-03 

hsa-miR-195-5p,hsa-miR-214-5p,hsa-miR-

146b-5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-

miR-493-3p,hsa-let-7i-5p,hsa-miR-146a-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-

379-5p,hsa-miR-151a-3p,hsa-miR-182-

5p,hsa-miR-143-3p,hsa-miR-27a-3p,hsa-miR-

361-3p,hsa-miR-423-5p,hsa-miR-145-5p,hsa-

miR-339-5p,hsa-miR-320b 

0.8 1.2E-12 0.7 3.5 5.6 

EPHA7 24 1.8E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-199b-5p,hsa-miR-214-

5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-miR-493-

3p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-155-5p,hsa-miR-26b-5p,hsa-miR-

196b-5p,hsa-miR-30e-5p,hsa-miR-30a-

5p,hsa-miR-182-5p,hsa-miR-27a-3p,hsa-miR-

199a-5p,hsa-miR-125b-5p,hsa-miR-92a-

3p,hsa-miR-339-5p,hsa-miR-433-3p,hsa-miR-

320b 

0.9 8.7E-15 0.9 3.5 2.3 

SALL3 17 1.2E-03 

hsa-miR-21-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-146a-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-

26b-5p,hsa-miR-194-5p,hsa-miR-196b-

5p,hsa-miR-27a-3p,hsa-miR-363-3p,hsa-miR-

92a-3p,hsa-miR-320a-3p,hsa-miR-433-

3p,hsa-miR-320b 

0.8 1.4E-13 0.8 3.5 4.4 

HMGA2 32 4.2E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

199b-5p,hsa-miR-146b-5p,hsa-miR-370-

3p,hsa-miR-98-5p,hsa-miR-140-5p,hsa-let-7f-

5p,hsa-miR-493-3p,hsa-let-7i-5p,hsa-miR-96-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

16-5p,hsa-miR-379-5p,hsa-miR-26b-5p,hsa-

0.9 1.2E-20 0.9 3.5 5.7 
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miR-196b-5p,hsa-miR-151a-3p,hsa-miR-182-

5p,hsa-miR-143-3p,hsa-miR-27a-3p,hsa-miR-

363-3p,hsa-miR-22-5p,hsa-miR-199a-5p,hsa-

miR-125b-5p,hsa-miR-423-5p,hsa-miR-145-

5p,hsa-miR-92a-3p,hsa-miR-320a-3p,hsa-

miR-339-5p,hsa-miR-433-3p,hsa-miR-320b 

 

LINC00511 hub lncRNA in Males 

mRNA 
miR 

bindin

g sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

IQGAP3 12 5.3E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

16-5p,hsa-miR-10a-5p,hsa-miR-22-5p,hsa-

miR-423-5p 

0.9 3.8E-20 0.7 4.5 3.0 

NR1I2 7 2.7E-03 

hsa-miR-98-5p,hsa-miR-148a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-146a-5p,hsa-let-7g-

5p,hsa-miR-16-5p 

0.9 1.9E-19 1.0 4.5 4.6 

SCN11A 7 8.9E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

143-3p,hsa-miR-664a-3p 

0.9 6.7E-19 1.0 4.5 2.9 

FAM81A 14 6.2E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

16-5p,hsa-miR-143-3p,hsa-miR-197-3p,hsa-

miR-193b-5p,hsa-miR-92b-3p,hsa-miR-92a-

3p 

0.9 2.1E-17 0.8 4.5 2.2 

GINS4 10 7.5E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-let-7i-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

16-5p,hsa-miR-26b-5p,hsa-miR-10a-5p,hsa-

miR-197-3p,hsa-miR-193b-5p 

0.9 8.1E-16 1.0 4.5 2.6 
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FRMPD3 9 8.4E-03 

hsa-miR-195-5p,hsa-miR-370-3p,hsa-miR-16-

5p,hsa-miR-197-3p,hsa-miR-423-5p,hsa-miR-

92b-3p,hsa-miR-92a-3p,hsa-miR-339-5p,hsa-

miR-885-3p 

0.9 2.3E-16 0.7 4.5 2.5 

ESRP1 12 2.6E-03 

hsa-miR-195-5p,hsa-miR-370-3p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-

5p,hsa-miR-16-5p,hsa-miR-26b-5p,hsa-miR-

143-3p,hsa-miR-197-3p,hsa-miR-92b-3p,hsa-

miR-92a-3p 

0.9 6.7E-19 1.0 4.5 6.7 

EPPIN 6 7.6E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-26b-5p,hsa-miR-22-

5p 

0.9 4.9E-23 0.9 4.5 6.1 

OR14J1 5 4.7E-03 
hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.9 5.3E-16 0.6 4.5 14.3 

ETNPPL 5 4.7E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.8 1.9E-12 0.8 4.5 2.1 

PTPRT 12 5.3E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-143-3p,hsa-miR-10a-5p,hsa-miR-

197-3p,hsa-miR-361-3p,hsa-miR-664a-

3p,hsa-miR-885-3p 

0.9 8.2E-24 0.9 4.5 3.7 

FASLG 10 3.3E-03 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-22-5p,hsa-miR-361-3p,hsa-miR-

92b-3p,hsa-miR-92a-3p 

0.8 3.0E-13 0.8 4.5 3.1 

SLC17A4 8 3.3E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-423-5p,hsa-miR-664a-3p 

0.9 5.0E-22 0.9 4.5 6.7 

OR14J1 5 4.7E-03 
hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.9 5.3E-16 0.6 4.5 14.3 

BICDL1 10 3.3E-03 

hsa-miR-195-5p,hsa-miR-370-3p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-

5p,hsa-miR-16-5p,hsa-miR-10a-5p,hsa-miR-

361-3p,hsa-miR-423-5p 

0.9 7.6E-20 0.7 4.5 3.7 

NCAPH 10 3.3E-03 
hsa-miR-195-5p,hsa-miR-370-3p,hsa-miR-

148a-3p,hsa-miR-16-5p,hsa-miR-22-5p,hsa-
0.9 2.2E-16 0.9 4.5 2.9 
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miR-197-3p,hsa-miR-361-3p,hsa-miR-423-

5p,hsa-miR-664a-3p,hsa-miR-92a-3p 

CDH1 18 4.9E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

199b-5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-

7i-5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-26b-5p,hsa-miR-143-

3p,hsa-miR-10a-5p,hsa-miR-22-5p,hsa-miR-

197-3p,hsa-miR-361-3p,hsa-miR-92b-3p,hsa-

miR-92a-3p,hsa-miR-339-5p 

0.9 8.7E-17 0.7 4.5 2.5 

PALM3 7 4.5E-04 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-339-5p 

0.9 3.2E-19 0.9 4.5 5.7 

PTPN22 11 1.2E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-146a-5p,hsa-let-7g-

5p,hsa-miR-26b-5p,hsa-miR-143-3p,hsa-miR-

664a-3p,hsa-miR-92b-3p,hsa-miR-92a-3p 

0.7 6.6E-10 0.7 4.5 1.6 

OR14J1 5 4.7E-03 
hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.9 5.3E-16 0.6 4.5 14.3 

CGN 15 8.2E-03 

hsa-miR-21-5p,hsa-miR-195-5p,hsa-miR-370-

3p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

16-5p,hsa-miR-143-3p,hsa-miR-10a-5p,hsa-

miR-197-3p,hsa-miR-423-5p,hsa-miR-193b-

5p,hsa-miR-339-5p 

0.9 4.5E-24 0.8 4.5 4.3 

AGBL2 7 2.7E-03 

hsa-miR-98-5p,hsa-miR-148a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-146a-5p,hsa-let-7g-

5p,hsa-miR-10a-5p 

0.8 1.4E-12 0.8 4.5 2.3 

STAG3 8 8.8E-04 

hsa-miR-98-5p,hsa-miR-148a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-197-

3p,hsa-miR-423-5p,hsa-miR-339-5p 

0.9 1.4E-16 1.0 4.5 2.6 

SLC8A2 8 3.3E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

197-3p,hsa-miR-361-3p,hsa-miR-423-5p 

0.8 5.7E-14 1.0 4.5 2.9 

HAP1 7 8.9E-03 

hsa-miR-21-5p,hsa-miR-370-3p,hsa-miR-

146a-5p,hsa-miR-361-3p,hsa-miR-423-

5p,hsa-miR-193b-5p,hsa-miR-339-5p 

0.8 1.8E-11 0.6 4.5 2.3 
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CPA4 13 4.3E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

16-5p,hsa-miR-26b-5p,hsa-miR-143-3p,hsa-

miR-22-5p,hsa-miR-423-5p 

0.9 1.3E-16 1.0 4.5 3.6 

PALM3 7 4.5E-04 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-339-5p 

0.9 3.2E-19 0.9 4.5 5.7 

DBX2 5 4.7E-03 
hsa-miR-370-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p 
0.8 1.9E-11 1.0 4.5 2.5 

STAB2 7 2.7E-03 

hsa-miR-370-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-143-

3p,hsa-miR-361-3p 

0.9 4.4E-16 0.7 4.5 2.2 

FAM189A

1 
8 8.8E-04 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-

5p,hsa-miR-16-5p,hsa-miR-423-5p 

0.8 1.3E-13 0.9 4.5 3.0 

FAM189A

1 
8 8.8E-04 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-

5p,hsa-miR-16-5p,hsa-miR-423-5p 

0.8 1.3E-13 0.9 4.5 3.0 

OR14J1 5 4.7E-03 
hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.9 5.3E-16 0.6 4.5 14.3 

MAB21L3 7 2.7E-03 

hsa-miR-101-3p,hsa-miR-370-3p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p 

0.9 4.3E-17 0.8 4.5 4.3 

AGBL2 7 2.7E-03 

hsa-miR-98-5p,hsa-miR-148a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-146a-5p,hsa-let-7g-

5p,hsa-miR-10a-5p 

0.8 1.4E-12 0.8 4.5 2.3 

GALNT13 9 3.5E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-197-3p,hsa-miR-92b-3p,hsa-miR-

92a-3p 

0.9 1.0E-14 1.0 4.5 2.9 

TAT 11 3.0E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-195-

5p,hsa-miR-370-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-197-3p,hsa-miR-885-3p 

0.9 1.1E-23 0.9 4.5 6.3 
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LRTM2 7 2.7E-03 

hsa-miR-195-5p,hsa-miR-370-3p,hsa-miR-

146a-5p,hsa-miR-16-5p,hsa-miR-197-3p,hsa-

miR-361-3p,hsa-miR-423-5p 

0.8 7.6E-11 1.0 4.5 5.3 

OR14J1 5 4.7E-03 
hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.9 5.3E-16 0.6 4.5 14.3 

CRTAM 6 1.5E-03 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p 

0.8 1.5E-14 0.7 4.5 3.5 

LRTM2 7 2.7E-03 

hsa-miR-195-5p,hsa-miR-370-3p,hsa-miR-

146a-5p,hsa-miR-16-5p,hsa-miR-197-3p,hsa-

miR-361-3p,hsa-miR-423-5p 

0.8 7.6E-11 1.0 4.5 5.3 

CRX 5 4.7E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-423-5p 
0.9 3.1E-17 1.0 4.5 5.8 

ZBTB32 6 7.6E-03 

hsa-miR-370-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-146a-5p,hsa-let-7g-

5p 

0.8 1.8E-13 0.8 4.5 4.9 

CACNA1I 12 5.3E-03 

hsa-miR-195-5p,hsa-miR-370-3p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-146a-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-10a-

5p,hsa-miR-92b-3p,hsa-miR-92a-3p,hsa-miR-

885-3p 

0.9 6.6E-16 0.9 4.5 3.2 

GABRA6 7 8.9E-03 

hsa-miR-98-5p,hsa-miR-148a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-22-

5p,hsa-miR-339-5p 

0.9 5.9E-18 1.0 4.5 7.5 

GHSR 6 1.5E-03 

hsa-miR-195-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-664a-3p,hsa-miR-92b-3p,hsa-

miR-92a-3p 

0.9 1.8E-16 0.9 4.5 7.3 

ZBP1 7 4.5E-04 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-146a-5p,hsa-let-7g-5p,hsa-miR-

361-3p,hsa-miR-339-5p 

0.8 1.3E-13 0.8 4.5 2.3 

LAMC3 7 8.9E-03 

hsa-miR-370-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-146a-5p,hsa-let-7g-

5p,hsa-miR-16-5p 

0.9 3.4E-17 1.0 4.5 3.5 

HSD17B6 5 4.7E-03 
hsa-miR-101-3p,hsa-miR-146a-5p,hsa-miR-

16-5p,hsa-miR-26b-5p,hsa-miR-664a-3p 
0.9 7.2E-15 0.8 4.5 4.5 
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KHDC1 5 4.7E-03 
hsa-miR-21-5p,hsa-miR-146a-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-423-5p 
0.8 1.0E-12 0.8 4.5 2.6 

PRSS22 8 3.3E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-146a-5p,hsa-let-7g-

5p,hsa-miR-361-3p,hsa-miR-423-5p 

0.8 1.4E-12 0.9 4.5 5.3 

OR14J1 5 4.7E-03 
hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.9 5.3E-16 0.6 4.5 14.3 

PRSS22 8 3.3E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-146a-5p,hsa-let-7g-

5p,hsa-miR-361-3p,hsa-miR-423-5p 

0.8 1.4E-12 0.9 4.5 5.3 

POTEG 7 8.9E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-26b-5p,hsa-miR-

92a-3p,hsa-miR-885-3p 

0.8 1.2E-12 1.0 4.5 7.1 

EHF 9 3.5E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-664a-3p,hsa-miR-193b-5p,hsa-

miR-339-5p 

0.9 2.7E-21 0.9 4.5 4.8 

IL22RA1 7 2.7E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-197-3p 

0.8 3.4E-11 0.8 4.5 1.9 

ABCG4 11 1.2E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

370-3p,hsa-let-7f-5p,hsa-let-7g-5p,hsa-miR-

16-5p,hsa-miR-26b-5p,hsa-miR-361-3p,hsa-

miR-92b-3p,hsa-miR-92a-3p,hsa-miR-339-5p 

0.9 3.1E-15 0.6 4.5 3.0 

OR14J1 5 4.7E-03 
hsa-miR-148a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.9 5.3E-16 0.6 4.5 14.3 
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LINC00943 hub lncRNA in Males 

mRNA 
miR 

binding 

sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

TAT 11 4.0E-04 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-374b-

5p,hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-197-3p,hsa-miR-145-5p 

0.9 1.3E-21 0.9 6.2 6.3 

DNAH9 4 7.1E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.9 1.0E-23 1.0 6.2 4.5 

TCEAL

2 
4 7.1E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.9 1.3E-15 0.7 6.2 2.8 

MUC4 6 8.4E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-197-3p,hsa-miR-145-5p 
0.9 1.7E-17 1.0 6.2 3.8 

MUC4 6 8.4E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-197-3p,hsa-miR-145-5p 
0.9 1.7E-17 1.0 6.2 3.8 

MUC4 6 8.4E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-197-3p,hsa-miR-145-5p 
0.9 1.7E-17 1.0 6.2 3.8 

SLC6A

14 
16 1.3E-04 

hsa-miR-21-5p,hsa-miR-374b-5p,hsa-miR-195-

5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-125b-5p,hsa-miR-197-3p,hsa-miR-

486-5p,hsa-miR-125a-5p,hsa-miR-92b-3p,hsa-

miR-92a-3p,hsa-miR-433-3p 

0.8 7.1E-14 0.9 6.2 7.2 

RRM2 13 4.9E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-499a-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-125b-5p,hsa-miR-197-3p,hsa-miR-

125a-5p,hsa-miR-423-5p 

0.9 1.7E-16 0.9 6.2 3.7 

NGF 7 7.0E-03 

hsa-miR-374b-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-423-5p 

0.8 5.0E-11 0.6 6.2 2.0 

MUC4 6 8.4E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-197-3p,hsa-miR-145-5p 
0.9 1.7E-17 1.0 6.2 3.8 
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KIF5C 17 2.1E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-374b-

5p,hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-125b-5p,hsa-miR-

486-5p,hsa-miR-125a-5p,hsa-miR-423-5p,hsa-

miR-92b-3p,hsa-miR-92a-3p,hsa-miR-433-3p 

0.9 1.1E-20 0.8 6.2 3.1 

LRFN5 5 8.9E-03 
hsa-miR-195-5p,hsa-miR-16-5p,hsa-miR-486-

5p,hsa-miR-125a-5p,hsa-miR-145-5p 
0.7 3.1E-09 0.5 6.2 1.6 

PTPN22 9 8.2E-03 

hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-145-5p,hsa-miR-92b-3p,hsa-miR-

92a-3p 

0.7 5.3E-10 0.7 6.2 1.6 

MUC4 6 8.4E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-197-3p,hsa-miR-145-5p 
0.9 1.7E-17 1.0 6.2 3.8 

IL12A 5 8.9E-03 
hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-26b-

5p,hsa-miR-10a-5p,hsa-miR-433-3p 
0.8 1.2E-10 0.8 6.2 3.0 

OMG 7 7.0E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-499a-5p,hsa-let-7g-

5p,hsa-miR-16-5p 

0.8 1.7E-10 0.9 6.2 3.2 

MUC4 6 8.4E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-197-3p,hsa-miR-145-5p 
0.9 1.7E-17 1.0 6.2 3.8 

SLC22

A10 
7 1.2E-04 

hsa-miR-374b-5p,hsa-miR-15b-3p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-145-5p 

0.8 1.9E-14 0.9 6.2 6.6 

SLC8A

2 
8 7.8E-04 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-125b-5p,hsa-miR-197-

3p,hsa-miR-125a-5p,hsa-miR-423-5p 

0.8 3.2E-13 1.0 6.2 2.9 

BICDL

1 
9 4.1E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-10a-5p,hsa-miR-423-5p,hsa-miR-

145-5p 

0.9 1.7E-19 0.8 6.2 3.7 

ITIH1 7 2.6E-03 

hsa-miR-21-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p 

0.9 3.8E-15 0.9 6.2 4.9 

HOOK1 14 4.9E-03 
hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-
0.8 8.3E-14 0.9 6.2 2.0 
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miR-16-5p,hsa-miR-26b-5p,hsa-miR-10a-

5p,hsa-miR-125b-5p,hsa-miR-125a-5p,hsa-

miR-145-5p,hsa-miR-92b-3p,hsa-miR-92a-3p 

RGS4 16 8.8E-04 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-374b-

5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-499a-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-10a-5p,hsa-miR-

125b-5p,hsa-miR-486-5p,hsa-miR-125a-5p,hsa-

miR-145-5p,hsa-miR-433-3p 

0.8 2.6E-14 0.9 6.2 2.1 

POTEG 7 2.6E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-26b-5p,hsa-miR-92a-3p,hsa-

miR-433-3p 

0.8 5.2E-12 1.0 6.2 7.1 

MUC4 6 8.4E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-197-3p,hsa-miR-145-5p 
0.9 1.7E-17 1.0 6.2 3.8 

XRCC2 10 5.7E-03 

hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-

499a-5p,hsa-miR-16-5p,hsa-miR-26b-5p,hsa-

miR-10a-5p,hsa-miR-197-3p,hsa-miR-486-

5p,hsa-miR-125a-5p,hsa-miR-145-5p 

0.7 4.1E-09 0.7 6.2 1.5 

ABCG4 9 8.2E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-let-7f-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-145-5p,hsa-miR-92b-3p,hsa-miR-

92a-3p 

0.8 3.8E-14 0.7 6.2 3.0 

ADAM

28 
9 4.1E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-125b-5p,hsa-miR-125a-5p,hsa-miR-145-5p 

0.8 1.2E-14 0.9 6.2 1.8 

PALM3 6 2.6E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-16-5p,hsa-miR-26b-5p 
0.9 9.4E-16 0.8 6.2 5.7 

MUC16 5 8.9E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-125b-5p 
0.9 1.9E-17 1.0 6.2 3.9 

IQGAP

3 
11 3.8E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-10a-5p,hsa-miR-125b-

5p,hsa-miR-125a-5p,hsa-miR-423-5p 

0.9 8.8E-18 0.8 6.2 3.0 

LIPH 11 9.4E-04 
hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-
0.9 7.7E-16 0.8 6.2 3.2 
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miR-16-5p,hsa-miR-486-5p,hsa-miR-125a-

5p,hsa-miR-92b-3p,hsa-miR-92a-3p 

FASLG 9 4.1E-03 

hsa-miR-21-5p,hsa-miR-15b-3p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-26b-5p,hsa-miR-92b-3p,hsa-miR-92a-3p 

0.8 1.6E-11 0.8 6.2 3.1 

LECT2 4 7.1E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.9 1.9E-18 1.0 6.2 6.6 

MUC4 6 8.4E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-197-3p,hsa-miR-145-5p 
0.9 1.7E-17 1.0 6.2 3.8 

PLEKH

G7 
6 2.6E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-145-5p,hsa-miR-433-3p 
0.9 2.0E-19 1.0 6.2 4.7 

PAQR5 12 1.3E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-195-

5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-499a-5p,hsa-let-7g-5p,hsa-miR-

26b-5p,hsa-miR-486-5p,hsa-miR-125a-5p,hsa-

miR-423-5p 

0.7 1.5E-09 0.8 6.2 1.5 

IL13 6 8.4E-03 
hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-125a-5p 
0.7 4.4E-09 1.0 6.2 4.6 

PALM3 6 2.6E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-16-5p,hsa-miR-26b-5p 
0.9 9.4E-16 0.8 6.2 5.7 

ESRP1 11 2.0E-03 

hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-26b-5p,hsa-miR-197-

3p,hsa-miR-92b-3p,hsa-miR-92a-3p 

0.9 6.4E-20 0.9 6.2 6.7 

RNF43 11 7.0E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-10a-5p,hsa-miR-125b-5p,hsa-miR-

486-5p,hsa-miR-125a-5p,hsa-miR-423-5p 

0.7 4.7E-10 0.6 6.2 2.3 

TNIP3 7 2.6E-03 

hsa-miR-101-3p,hsa-miR-15b-3p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-433-3p 

0.9 4.8E-19 0.9 6.2 5.9 

LHCGR 4 7.1E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.7 3.1E-09 1.0 6.2 1.9 

FAM18

9A1 
8 1.9E-04 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-423-5p 

0.8 1.8E-13 0.9 6.2 3.0 
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GALNT

13 
9 6.9E-04 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-197-3p,hsa-miR-92b-3p,hsa-miR-

92a-3p 

0.9 9.3E-16 0.9 6.2 2.9 

NTF3 5 1.9E-03 
hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-374b-

5p,hsa-miR-195-5p,hsa-miR-16-5p 
0.7 4.4E-09 0.8 6.2 1.7 

SYT14 5 8.9E-03 
hsa-miR-21-5p,hsa-miR-374b-5p,hsa-miR-195-

5p,hsa-miR-16-5p,hsa-miR-125a-5p 
0.8 2.4E-13 0.6 6.2 3.4 

NR1H4 4 7.1E-03 
hsa-miR-195-5p,hsa-miR-16-5p,hsa-miR-197-

3p,hsa-miR-92a-3p 
0.9 3.6E-18 0.7 6.2 6.1 

WNK3 13 2.8E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-195-

5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-499a-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-10a-5p,hsa-miR-

125a-5p,hsa-miR-433-3p 

0.8 2.7E-11 0.9 6.2 1.7 

CHEK1 15 5.1E-04 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-125b-

5p,hsa-miR-197-3p,hsa-miR-125a-5p,hsa-miR-

145-5p,hsa-miR-92b-3p,hsa-miR-92a-3p,hsa-

miR-433-3p 

0.8 1.9E-11 0.9 6.2 2.0 

RAB19 4 7.1E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.8 9.2E-11 1.0 6.2 5.3 

CRTA

M 
6 4.8E-04 

hsa-miR-21-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-5p 
0.8 1.9E-13 0.7 6.2 3.5 

KIF5C 17 2.1E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-374b-

5p,hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-125b-5p,hsa-miR-

486-5p,hsa-miR-125a-5p,hsa-miR-423-5p,hsa-

miR-92b-3p,hsa-miR-92a-3p,hsa-miR-433-3p 

0.9 1.1E-20 0.8 6.2 3.1 

GHSR 5 8.9E-03 
hsa-miR-195-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-92b-3p,hsa-miR-92a-3p 
0.8 4.3E-14 0.8 6.2 7.3 

SALL1 12 2.5E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-499a-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-26b-

0.9 2.7E-15 0.8 6.2 5.0 
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5p,hsa-miR-423-5p,hsa-miR-92b-3p,hsa-miR-

92a-3p 

CHRNB

2 
9 4.1E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-145-5p,hsa-miR-433-3p 

0.9 2.9E-15 0.9 6.2 4.3 

PXT1 5 8.9E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-423-5p 
0.8 9.7E-13 1.0 6.2 3.8 

SYT16 8 5.5E-03 

hsa-miR-374b-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-486-

5p,hsa-miR-125a-5p,hsa-miR-433-3p 

0.9 2.2E-19 0.9 6.2 5.5 

MAST1 5 8.9E-03 
hsa-miR-101-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p 
0.9 5.7E-16 1.0 6.2 6.1 

CPS1 14 1.7E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-374b-

5p,hsa-miR-15b-3p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-197-3p,hsa-miR-

92b-3p,hsa-miR-92a-3p,hsa-miR-433-3p 

0.8 2.2E-12 0.9 6.2 2.1 

OR2AG

1 
4 7.1E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.9 1.2E-15 1.0 6.2 5.7 

TDO2 6 8.4E-03 
hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p 
0.9 5.9E-15 0.8 6.2 5.2 

CACN

A1I 
11 3.8E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-10a-5p,hsa-miR-125b-5p,hsa-miR-

125a-5p,hsa-miR-92b-3p,hsa-miR-92a-3p 

0.8 4.0E-14 1.0 6.2 3.2 

TOP2A 11 7.0E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-195-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-26b-5p,hsa-miR-197-

3p,hsa-miR-423-5p,hsa-miR-145-5p 

0.8 1.1E-12 0.8 6.2 2.0 

EPS8L3 5 1.9E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-145-5p 
0.9 1.9E-17 0.9 6.2 7.0 

HELB 9 4.1E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-

26b-5p,hsa-miR-197-3p,hsa-miR-145-5p,hsa-

miR-433-3p 

0.7 1.1E-08 0.9 6.2 1.9 
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HTR4 6 8.4E-03 
hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.9 5.5E-17 0.7 6.2 2.7 

NRIP3 6 8.4E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-499a-5p,hsa-let-7g-5p,hsa-miR-16-5p 
0.8 6.6E-13 0.8 6.2 2.4 

CDC25

A 
16 2.6E-03 

hsa-miR-21-5p,hsa-miR-374b-5p,hsa-miR-195-

5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-125b-5p,hsa-miR-197-3p,hsa-miR-

125a-5p,hsa-miR-423-5p,hsa-miR-145-5p,hsa-

miR-92a-3p,hsa-miR-433-3p 

0.8 5.2E-14 0.9 6.2 2.1 

XDH 4 7.1E-03 
hsa-miR-195-5p,hsa-miR-16-5p,hsa-miR-26b-

5p,hsa-miR-197-3p 
0.9 1.1E-19 0.5 6.2 2.9 

ASPM 11 3.8E-03 

hsa-miR-21-5p,hsa-miR-195-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-499a-5p,hsa-let-7g-

5p,hsa-miR-16-5p,hsa-miR-26b-5p,hsa-miR-

92b-3p,hsa-miR-92a-3p,hsa-miR-433-3p 

0.8 5.0E-13 0.8 6.2 2.1 

DIAPH

3 
12 4.5E-03 

hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-26b-5p,hsa-miR-197-

3p,hsa-miR-145-5p,hsa-miR-92b-3p,hsa-miR-

92a-3p 

0.9 3.6E-15 0.9 6.2 4.0 

SHANK

2 
19 1.3E-04 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-499a-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-10a-5p,hsa-miR-

125b-5p,hsa-miR-197-3p,hsa-miR-125a-5p,hsa-

miR-423-5p,hsa-miR-145-5p,hsa-miR-92b-

3p,hsa-miR-92a-3p,hsa-miR-433-3p 

0.9 6.8E-21 0.9 6.2 2.9 

GRID2I

P 
4 7.1E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p 
0.7 3.4E-09 1.0 6.2 3.2 

CYP2C

8 
6 8.4E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-92b-3p,hsa-miR-92a-3p 
0.7 5.4E-09 1.0 6.2 2.9 

DMP1 5 8.9E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-197-3p 
0.9 2.0E-15 0.8 6.2 4.5 

GINS4 9 8.2E-03 
hsa-miR-101-3p,hsa-miR-195-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-26b-
0.8 6.5E-14 0.9 6.2 2.6 
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5p,hsa-miR-10a-5p,hsa-miR-197-3p,hsa-miR-

433-3p 

KCNK1 11 3.8E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-

499a-5p,hsa-miR-16-5p,hsa-miR-26b-5p,hsa-

miR-10a-5p,hsa-miR-125b-5p,hsa-miR-125a-

5p,hsa-miR-145-5p,hsa-miR-92b-3p,hsa-miR-

92a-3p 

0.9 5.8E-18 0.9 6.2 2.7 

FGF5 14 9.1E-04 

hsa-miR-21-5p,hsa-miR-374b-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-125b-5p,hsa-miR-486-5p,hsa-miR-125a-

5p,hsa-miR-423-5p,hsa-miR-145-5p,hsa-miR-

92b-3p,hsa-miR-92a-3p,hsa-miR-433-3p 

0.8 1.1E-10 1.0 6.2 2.5 

RASGR

F1 
5 8.9E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

26b-5p,hsa-miR-125b-5p,hsa-miR-125a-5p 
0.9 5.5E-21 1.0 6.2 4.5 

ARHGE

F39 
13 2.8E-03 

hsa-miR-21-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-26b-5p,hsa-miR-125b-

5p,hsa-miR-125a-5p,hsa-miR-423-5p,hsa-miR-

145-5p,hsa-miR-433-3p 

0.9 2.2E-16 0.9 6.2 3.1 

EPGN 6 8.4E-03 

hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-16-

5p,hsa-miR-197-3p,hsa-miR-486-5p,hsa-miR-

125a-5p 

0.8 1.5E-11 0.5 6.2 3.8 

TEX15 6 8.4E-03 

hsa-miR-21-5p,hsa-miR-374b-5p,hsa-miR-195-

5p,hsa-miR-499a-5p,hsa-miR-16-5p,hsa-miR-

145-5p 

0.9 3.5E-19 0.8 6.2 4.5 

DIO1 7 1.2E-04 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-26b-5p,hsa-miR-486-5p,hsa-

miR-125a-5p 

0.8 6.7E-14 0.9 6.2 6.9 

POLQ 12 1.3E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-let-7g-5p,hsa-miR-16-5p,hsa-miR-197-

3p,hsa-miR-92b-3p,hsa-miR-92a-3p,hsa-miR-

433-3p 

0.8 1.0E-13 0.9 6.2 2.6 

SALL3 11 2.0E-03 
hsa-miR-21-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-
0.8 2.5E-14 0.9 6.2 4.4 
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miR-16-5p,hsa-miR-26b-5p,hsa-miR-92b-

3p,hsa-miR-92a-3p,hsa-miR-433-3p 

TDO2 6 8.4E-03 
hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p 
0.9 5.9E-15 0.8 6.2 5.2 

SCN8A 15 1.7E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-374b-

5p,hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-197-3p,hsa-miR-486-5p,hsa-miR-

125a-5p,hsa-miR-145-5p,hsa-miR-92b-3p,hsa-

miR-92a-3p 

0.9 7.6E-17 0.8 6.2 2.9 

SLC17

A4 
7 7.0E-03 

hsa-miR-195-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-423-5p 

0.9 1.2E-20 0.9 6.2 6.7 

ZWINT 13 2.8E-03 

hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-26b-5p,hsa-miR-10a-

5p,hsa-miR-197-3p,hsa-miR-486-5p,hsa-miR-

125a-5p,hsa-miR-92a-3p 

0.8 1.3E-12 0.8 6.2 2.3 

CRB1 9 8.2E-03 

hsa-miR-374b-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-486-5p,hsa-miR-125a-5p,hsa-miR-

145-5p 

0.8 8.5E-11 0.9 6.2 1.9 

NWD1 7 7.4E-04 

hsa-miR-374b-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-26b-

5p,hsa-miR-197-3p 

0.8 6.7E-13 1.0 6.2 2.6 

SALL3 11 2.0E-03 

hsa-miR-21-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-26b-5p,hsa-miR-92b-

3p,hsa-miR-92a-3p,hsa-miR-433-3p 

0.8 2.5E-14 0.9 6.2 4.4 

SALL3 11 2.0E-03 

hsa-miR-21-5p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-26b-5p,hsa-miR-92b-

3p,hsa-miR-92a-3p,hsa-miR-433-3p 

0.8 2.5E-14 0.9 6.2 4.4 

PAX9 12 7.7E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-195-

5p,hsa-miR-499a-5p,hsa-miR-16-5p,hsa-miR-

125b-5p,hsa-miR-486-5p,hsa-miR-125a-5p,hsa-

0.8 5.8E-11 0.9 6.2 1.9 
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miR-423-5p,hsa-miR-92b-3p,hsa-miR-92a-

3p,hsa-miR-433-3p 

FAM18

9A1 
8 1.9E-04 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-423-5p 

0.8 1.8E-13 0.9 6.2 3.0 

SAMD1

2 
19 1.9E-03 

hsa-miR-101-3p,hsa-miR-195-5p,hsa-miR-15b-

3p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-499a-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-10a-5p,hsa-miR-

125b-5p,hsa-miR-197-3p,hsa-miR-486-5p,hsa-

miR-125a-5p,hsa-miR-423-5p,hsa-miR-145-

5p,hsa-miR-92b-3p,hsa-miR-92a-3p 

0.8 9.2E-14 0.9 6.2 1.8 

CLGN 9 1.8E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-98-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-

miR-16-5p,hsa-miR-92b-3p,hsa-miR-92a-3p 

0.8 1.6E-12 1.0 6.2 2.8 

OPRM1 10 5.7E-03 

hsa-miR-374b-5p,hsa-miR-98-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-10a-5p,hsa-miR-

92b-3p,hsa-miR-92a-3p 

0.9 7.1E-23 1.0 6.2 5.0 

CRX 5 1.9E-03 
hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-423-5p 
0.9 1.2E-17 1.0 6.2 5.8 

CXCL5 11 7.0E-03 

hsa-miR-21-5p,hsa-miR-374b-5p,hsa-miR-195-

5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-499a-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-92b-3p,hsa-miR-92a-3p 

0.8 4.0E-12 0.7 6.2 2.8 

EPHA7 14 4.9E-03 

hsa-miR-101-3p,hsa-miR-374b-5p,hsa-miR-

195-5p,hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-499a-5p,hsa-let-7g-5p,hsa-miR-16-

5p,hsa-miR-26b-5p,hsa-miR-125b-5p,hsa-miR-

125a-5p,hsa-miR-92a-3p,hsa-miR-433-3p 

0.8 1.4E-11 0.9 6.2 2.3 

FGFR2 10 5.7E-03 

hsa-miR-374b-5p,hsa-miR-195-5p,hsa-miR-16-

5p,hsa-miR-125b-5p,hsa-miR-125a-5p,hsa-

miR-423-5p,hsa-miR-145-5p,hsa-miR-92b-

3p,hsa-miR-92a-3p,hsa-miR-433-3p 

0.9 4.9E-16 0.9 6.2 2.9 

ETNPP

L 
5 1.9E-03 

hsa-miR-98-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

let-7g-5p,hsa-miR-16-5p 
0.8 8.0E-12 0.8 6.2 2.1 
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XACT hub lncRNA in Males 

mRNA 
miR 

binding 

sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

FANCI 14 7.1E-03 

hsa-miR-21-5p,hsa-miR-370-3p,hsa-miR-140-

5p,hsa-miR-16-5p,hsa-miR-10b-5p,hsa-miR-

182-5p,hsa-miR-22-3p,hsa-miR-10a-5p,hsa-

miR-22-5p,hsa-miR-197-3p,hsa-miR-92b-

3p,hsa-miR-92a-3p,hsa-miR-532-3p,hsa-miR-

320b 

0.9 2.1E-15 0.8 5.0 2.1 

CLDN7 12 7.9E-03 

hsa-miR-21-5p,hsa-miR-214-5p,hsa-miR-370-

3p,hsa-miR-148a-3p,hsa-miR-140-5p,hsa-miR-

146a-5p,hsa-miR-10b-5p,hsa-miR-27a-3p,hsa-

miR-10a-5p,hsa-miR-125a-5p,hsa-miR-361-

3p,hsa-miR-532-3p 

0.7 2.2E-09 0.5 5.0 1.8 

POU2F

2 
17 8.4E-03 

hsa-miR-214-5p,hsa-miR-370-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-10b-5p,hsa-miR-155-

5p,hsa-miR-196b-5p,hsa-miR-182-5p,hsa-miR-

143-3p,hsa-miR-27a-3p,hsa-miR-10a-5p,hsa-

miR-197-3p,hsa-miR-361-3p,hsa-miR-193b-

5p,hsa-miR-320a-3p,hsa-miR-532-3p,hsa-miR-

320b 

0.7 1.8E-09 0.5 5.0 1.5 

HYDIN 12 7.9E-03 

hsa-miR-101-3p,hsa-miR-370-3p,hsa-miR-493-

3p,hsa-miR-182-5p,hsa-miR-143-3p,hsa-miR-

27a-3p,hsa-miR-22-3p,hsa-miR-361-3p,hsa-

miR-23b-5p,hsa-miR-193b-5p,hsa-miR-320a-

3p,hsa-miR-320b 

0.9 3.9E-19 0.9 5.0 5.3 

CDS1 19 6.3E-03 

hsa-miR-101-3p,hsa-miR-495-3p,hsa-miR-21-

5p,hsa-miR-146b-5p,hsa-miR-148a-3p,hsa-

miR-146a-5p,hsa-miR-16-5p,hsa-miR-10b-

5p,hsa-miR-143-3p,hsa-miR-27a-3p,hsa-miR-

152-3p,hsa-miR-22-5p,hsa-miR-197-3p,hsa-

miR-145-5p,hsa-miR-664a-3p,hsa-miR-92b-

0.8 2.0E-11 0.9 5.0 2.1 
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3p,hsa-miR-92a-3p,hsa-miR-320a-3p,hsa-miR-

320b 

PRSS35 10 7.5E-03 

hsa-miR-101-3p,hsa-miR-495-3p,hsa-miR-493-

3p,hsa-miR-10b-5p,hsa-miR-27a-3p,hsa-miR-

10a-5p,hsa-miR-125a-5p,hsa-miR-664a-3p,hsa-

miR-532-3p,hsa-miR-320b 

0.8 7.7E-12 0.6 5.0 2.9 

IGF2BP

1 
34 2.3E-03 

hsa-miR-495-3p,hsa-miR-21-5p,hsa-miR-214-

5p,hsa-miR-146b-5p,hsa-miR-370-3p,hsa-miR-

148a-3p,hsa-miR-140-5p,hsa-let-7f-5p,hsa-let-

7i-5p,hsa-miR-146a-5p,hsa-miR-16-5p,hsa-

miR-10b-5p,hsa-miR-155-5p,hsa-miR-132-

5p,hsa-miR-196b-5p,hsa-miR-151a-3p,hsa-

miR-30a-5p,hsa-miR-182-5p,hsa-miR-143-

3p,hsa-miR-27a-3p,hsa-miR-22-3p,hsa-miR-

10a-5p,hsa-miR-152-3p,hsa-miR-22-5p,hsa-

miR-197-3p,hsa-miR-125a-5p,hsa-miR-361-

3p,hsa-miR-145-5p,hsa-miR-664a-3p,hsa-miR-

23b-5p,hsa-miR-320a-3p,hsa-miR-532-3p,hsa-

miR-320b,hsa-miR-2110 

0.9 1.1E-15 0.9 5.0 5.9 

SKIDA

1 
22 8.8E-04 

hsa-miR-101-3p,hsa-miR-495-3p,hsa-miR-21-

5p,hsa-miR-370-3p,hsa-miR-148a-3p,hsa-let-7f-

5p,hsa-miR-493-3p,hsa-let-7i-5p,hsa-miR-16-

5p,hsa-miR-155-5p,hsa-miR-30a-5p,hsa-miR-

143-3p,hsa-miR-27a-3p,hsa-miR-10a-5p,hsa-

miR-152-3p,hsa-miR-125a-5p,hsa-miR-361-

3p,hsa-miR-92b-3p,hsa-miR-92a-3p,hsa-miR-

320a-3p,hsa-miR-532-3p,hsa-miR-320b 

0.8 2.1E-14 1.0 5.0 2.0 

FAM83

F 
12 1.9E-03 

hsa-miR-21-5p,hsa-miR-214-5p,hsa-miR-146a-

5p,hsa-miR-132-5p,hsa-miR-30a-5p,hsa-miR-

143-3p,hsa-miR-361-3p,hsa-miR-145-5p,hsa-

miR-664a-3p,hsa-miR-193b-5p,hsa-miR-92b-

3p,hsa-miR-532-3p 

0.8 2.7E-14 0.6 5.0 2.8 

PKIB 14 2.1E-03 

hsa-miR-101-3p,hsa-miR-21-5p,hsa-miR-146b-

5p,hsa-miR-148a-3p,hsa-miR-140-5p,hsa-miR-

146a-5p,hsa-miR-16-5p,hsa-miR-10b-5p,hsa-

miR-155-5p,hsa-miR-182-5p,hsa-miR-27a-

0.8 1.8E-11 0.9 5.0 1.9 
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3p,hsa-miR-664a-3p,hsa-miR-92b-3p,hsa-miR-

92a-3p 

IGF2BP

3 
27 4.0E-04 

hsa-miR-101-3p,hsa-miR-495-3p,hsa-miR-21-

5p,hsa-miR-214-5p,hsa-miR-146b-5p,hsa-miR-

148a-3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

146a-5p,hsa-miR-16-5p,hsa-miR-10b-5p,hsa-

miR-155-5p,hsa-miR-196b-5p,hsa-miR-30a-

5p,hsa-miR-182-5p,hsa-miR-27a-3p,hsa-miR-

22-3p,hsa-miR-197-3p,hsa-miR-125a-5p,hsa-

miR-361-3p,hsa-miR-664a-3p,hsa-miR-193b-

5p,hsa-miR-92b-3p,hsa-miR-92a-3p,hsa-miR-

320a-3p,hsa-miR-320b,hsa-miR-2110 

0.9 2.3E-19 1.0 5.0 4.8 

IL36G 8 5.1E-03 
hsa-miR-101-3p,hsa-miR-146a-5p,hsa-miR-

10b-5p,hsa-miR-155-5p,hsa-miR-182-5p,hsa-

miR-143-3p,hsa-miR-27a-3p,hsa-miR-22-5p 
0.8 2.5E-13 0.8 5.0 10.2 

CLDN7 12 7.9E-03 

hsa-miR-21-5p,hsa-miR-214-5p,hsa-miR-370-

3p,hsa-miR-148a-3p,hsa-miR-140-5p,hsa-miR-

146a-5p,hsa-miR-10b-5p,hsa-miR-27a-3p,hsa-

miR-10a-5p,hsa-miR-125a-5p,hsa-miR-361-

3p,hsa-miR-532-3p 

0.7 2.2E-09 0.5 5.0 1.8 

STYK1 8 5.1E-03 
hsa-miR-101-3p,hsa-miR-495-3p,hsa-miR-21-

5p,hsa-miR-16-5p,hsa-miR-155-5p,hsa-miR-

27a-3p,hsa-miR-22-3p,hsa-miR-22-5p 
0.7 1.9E-09 1.0 5.0 2.6 

HYDIN 12 7.9E-03 

hsa-miR-101-3p,hsa-miR-370-3p,hsa-miR-493-

3p,hsa-miR-182-5p,hsa-miR-143-3p,hsa-miR-

27a-3p,hsa-miR-22-3p,hsa-miR-361-3p,hsa-

miR-23b-5p,hsa-miR-193b-5p,hsa-miR-320a-

3p,hsa-miR-320b 

0.9 3.9E-19 0.9 5.0 5.3 

INA 12 7.9E-03 

hsa-miR-101-3p,hsa-miR-495-3p,hsa-miR-

146b-5p,hsa-miR-493-3p,hsa-miR-146a-5p,hsa-

miR-16-5p,hsa-miR-155-5p,hsa-miR-182-

5p,hsa-miR-27a-3p,hsa-miR-197-3p,hsa-miR-

320a-3p,hsa-miR-320b 

0.8 2.5E-13 0.9 5.0 4.6 

CABP4 8 5.1E-03 
hsa-miR-146a-5p,hsa-miR-10b-5p,hsa-miR-

182-5p,hsa-miR-27a-3p,hsa-miR-10a-5p,hsa-

miR-152-3p,hsa-miR-145-5p,hsa-miR-23b-5p 
0.7 1.3E-09 0.5 5.0 1.8 
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MUC13 10 7.5E-03 

hsa-miR-495-3p,hsa-miR-493-3p,hsa-miR-143-

3p,hsa-miR-27a-3p,hsa-miR-197-3p,hsa-miR-

361-3p,hsa-miR-92b-3p,hsa-miR-92a-3p,hsa-

miR-320a-3p,hsa-miR-320b 

0.9 4.7E-16 1.0 5.0 4.4 

ceRNA results for n=6 hub lncRNAs are presented for males.  

 

 

Table A.13 ceRNA analysis results for n=6 hub lncRNAs in females 

AC016717.2 hub lncRNA in Females 

mRNA 
miR 

binding 

sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

CENPK 7 5.2E-03 

hsa-miR-27b-3p,hsa-miR-30e-5p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-495-3p 

0.7 1E-07 1.0 2.7 2.7 

MACC1 8 1.5E-03 

hsa-miR-145-5p,hsa-miR-532-3p,hsa-miR-27b-

3p,hsa-miR-143-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7i-5p,hsa-miR-155-5p 

0.7 4E-07 1.0 2.7 5.0 

CRB1 8 4.5E-03 

hsa-miR-145-5p,hsa-miR-27b-3p,hsa-miR-30e-

5p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-155-5p 

0.7 5E-07 1.0 2.7 2.4 

FANCD

2 
7 5.2E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-155-

5p,hsa-miR-148a-3p 

0.7 8E-07 1.0 2.7 1.9 

IPCEF1 8 1.5E-03 

hsa-miR-145-5p,hsa-miR-532-3p,hsa-miR-27b-

3p,hsa-miR-27a-3p,hsa-miR-155-5p,hsa-miR-

148a-3p,hsa-miR-21-5p,hsa-miR-495-3p 

0.7 5E-07 0.7 2.7 2.4 
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CASC19 hub lncRNA in Females 

mRNA 
miR 

binding 

sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

RPH3A 7 1.4E-03 

hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-493-5p,hsa-miR-98-5p,hsa-

miR-148a-3p 

0.8 2E-10 1.0 5.4 3.4 

DMP1 5 3.5E-03 
hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-98-5p 
0.8 5E-10 1.0 5.4 3.8 

FAM13

3A 
8 4.5E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-140-5p,hsa-miR-148a-

3p,hsa-miR-21-5p,hsa-miR-499a-5p 

0.8 9E-11 1.0 5.4 5.2 

GRIN3

A 
7 5.2E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p 

0.9 5E-12 0.9 5.4 2.9 

ITIH1 5 3.5E-03 
hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-21-5p 
0.8 1E-08 1.0 5.4 6.2 

WNK3 11 1.9E-04 

hsa-miR-27b-3p,hsa-miR-151a-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-493-5p,hsa-miR-98-5p,hsa-miR-

543,hsa-miR-21-5p,hsa-miR-499a-5p 

0.7 1E-07 0.7 5.4 2.0 

KCNC2 8 4.5E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-543,hsa-miR-499a-5p 

0.7 1E-07 1.0 5.4 2.9 

C11orf8

7 
7 1.4E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p 

0.8 2E-09 1.0 5.4 3.4 

GABR

A6 
8 3.6E-04 

hsa-miR-22-5p,hsa-miR-151a-3p,hsa-let-7g-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p,hsa-miR-148a-3p 

0.9 4E-14 1.0 5.4 4.6 

EHF 9 3.7E-04 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p,hsa-miR-140-5p,hsa-miR-

543 

0.9 2E-11 1.0 5.4 7.8 
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FAXC 9 3.4E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p,hsa-miR-543,hsa-miR-499a-

5p 

0.8 4E-11 0.9 5.4 3.4 

MEI4 5 3.5E-03 
hsa-miR-151a-3p,hsa-miR-493-5p,hsa-miR-

543,hsa-miR-21-5p,hsa-miR-499a-5p 
0.8 5E-11 1.0 5.4 4.9 

SALL3 7 2.2E-04 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-21-5p 

0.8 2E-09 1.0 5.4 3.9 

ARHGE

F38 
7 1.4E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p 

0.9 2E-17 1.0 5.4 5.6 

ONECU

T2 
13 9.6E-03 

hsa-miR-22-5p,hsa-miR-27b-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-493-5p,hsa-miR-98-5p,hsa-miR-

140-5p,hsa-miR-148a-3p,hsa-miR-543,hsa-

miR-21-5p,hsa-miR-499a-5p 

0.8 3E-11 0.9 5.4 4.5 

TFAP2

B 
6 9.2E-04 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 4E-13 1.0 5.4 6.5 

PARPB

P 
8 4.5E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-148a-3p,hsa-miR-499a-5p 

0.7 3E-07 0.9 5.4 1.6 

GRM5 9 1.3E-03 

hsa-miR-22-5p,hsa-miR-27b-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-493-5p,hsa-miR-98-5p,hsa-miR-

543 

0.9 2E-12 1.0 5.4 3.6 

RSPO2 7 5.2E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p 

0.7 5E-07 0.9 5.4 3.0 

BEND4 9 3.4E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-140-5p,hsa-miR-148a-3p,hsa-miR-

543 

0.9 3E-12 1.0 5.4 3.8 

FANCD

2 
7 5.2E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-148a-3p 

0.8 5E-10 1.0 5.4 1.9 
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NEXMI

F 
10 5.2E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p,hsa-miR-148a-3p,hsa-miR-

543,hsa-miR-21-5p 

0.8 8E-11 1.0 5.4 2.3 

TDO2 6 5.1E-03 
hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-493-5p,hsa-miR-98-5p,hsa-miR-140-5p 
0.7 7E-07 0.8 5.4 3.1 

KCNJ1

0 
8 4.5E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p,hsa-miR-21-5p 

0.8 7E-11 1.0 5.4 4.7 

AP3B2 6 5.1E-03 
hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 1E-08 0.5 5.4 2.8 

NR1I2 6 9.2E-04 
hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-98-5p,hsa-miR-148a-3p 
0.8 1E-10 0.8 5.4 4.6 

NDST3 8 1.5E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p,hsa-miR-140-5p 

0.9 7E-12 1.0 5.4 4.6 

XKR7 5 3.5E-03 
hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-98-5p 
0.8 2E-09 1.0 5.4 4.0 

GALNT

13 
6 5.1E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-98-5p,hsa-miR-543 
0.8 4E-09 1.0 5.4 2.2 

TBX5 6 5.1E-03 
hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 1E-08 1.0 5.4 2.8 

NTRK3 9 3.7E-04 

hsa-miR-22-5p,hsa-miR-151a-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p,hsa-miR-148a-3p,hsa-miR-

543 

0.7 6E-07 0.9 5.4 1.5 

SPAG1 9 1.3E-03 

hsa-miR-22-5p,hsa-miR-27b-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p,hsa-miR-140-5p,hsa-miR-

543 

0.8 6E-08 1.0 5.4 1.7 

MAB21

L3 
6 5.1E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-148a-3p,hsa-miR-543 
0.8 5E-08 0.7 5.4 3.9 
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DLX6-AS1 hub lncRNA in Females 

mRNA 

miR 

bindin

g sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

CHEK1 

8 2.4E-03 

hsa-miR-145-5p,hsa-miR-143-3p,hsa-let-7g-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-199b-5p,hsa-miR-146b-5p 

0.7 5E-07 0.8 5.2 1.7 

SALL4 

7 9.2E-03 

hsa-miR-27b-3p,hsa-miR-143-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 

0.7 8E-08 1.0 5.2 3.1 

CDH1 

10 1.2E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-143-

3p,hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p,hsa-miR-199b-5p,hsa-miR-

140-5p,hsa-miR-146b-5p 

0.7 1E-07 0.8 5.2 3.7 

EPS8L3 
5 1.4E-03 

hsa-miR-145-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 1E-11 1.0 5.2 6.5 

FANCD2 

7 1.4E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-199b-5p 

0.8 2E-10 1.0 5.2 1.9 

SALL3 
6 1.7E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 6E-10 1.0 5.2 3.9 

SLC22A1

0 
5 1.4E-03 

hsa-miR-145-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 5E-15 1.0 5.2 5.8 

BEND4 

8 5.4E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-140-5p,hsa-miR-146b-5p 

0.9 1E-14 1.0 5.2 3.8 

LECT2 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.9 7E-13 1.0 5.2 6.6 

HOOK1 

10 5.4E-04 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-27b-

3p,hsa-miR-143-3p,hsa-let-7g-5p,hsa-miR-

27a-3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

98-5p,hsa-miR-199b-5p 

0.9 3E-11 1.0 5.2 2.9 

ZNF311 
5 6.8E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-199b-5p 
0.8 1E-08 1.0 5.2 2.6 
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COL9A1 
5 6.8E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-146b-5p 
0.9 6E-18 1.0 5.2 4.3 

TNIP3 
5 6.8E-03 

hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 8E-10 1.0 5.2 4.1 

ONECUT

3 
5 1.4E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-146b-5p 
0.9 1E-11 0.8 5.2 13.3 

DMP1 
5 1.4E-03 

hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 7E-12 1.0 5.2 3.8 

OTOF 
5 1.4E-03 

hsa-miR-143-3p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 5E-09 1.0 5.2 2.3 

ESPL1 

8 2.8E-04 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-27b-

3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 

0.7 1E-07 1.0 5.2 2.8 

IL22RA1 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.8 3E-08 1.0 5.2 2.9 

EHF 

7 9.2E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-140-5p 

0.9 2E-13 1.0 5.2 7.8 

DSC3 

8 9.1E-04 

hsa-miR-22-3p,hsa-miR-27b-3p,hsa-miR-143-

3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 

0.8 5E-10 1.0 5.2 3.3 

LIN28B 

11 5.9E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-27b-

3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

199b-5p,hsa-miR-140-5p,hsa-miR-146b-5p 

0.9 7E-16 1.0 5.2 8.0 

IGF2BP1 

12 7.8E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-27b-

3p,hsa-miR-143-3p,hsa-let-7g-5p,hsa-miR-

27a-3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

98-5p,hsa-miR-199b-5p,hsa-miR-140-5p,hsa-

miR-146b-5p 

0.9 3E-15 0.9 5.2 5.0 

TBX5 
6 1.7E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 1E-09 1.0 5.2 2.8 

CYP2C8 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.7 7E-08 1.0 5.2 2.3 
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PTCHD1 

8 2.8E-04 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-199b-5p,hsa-miR-140-5p 

0.8 1E-09 1.0 5.2 1.7 

STAB2 

7 3.6E-04 

hsa-miR-27b-3p,hsa-miR-143-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 

0.8 5E-08 1.0 5.2 2.4 

TTLL9 
5 6.8E-03 

hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-140-5p 
0.9 2E-11 0.8 5.2 3.1 

GRIN2B 

10 5.4E-04 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-27b-

3p,hsa-miR-143-3p,hsa-let-7g-5p,hsa-miR-

27a-3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

98-5p,hsa-miR-199b-5p 

0.9 4E-18 1.0 5.2 3.5 

HTR3A 
4 6.0E-03 

hsa-miR-22-3p,hsa-miR-143-3p,hsa-miR-27a-

3p,hsa-miR-140-5p 
0.8 1E-08 0.7 5.2 6.5 

CLDN16 
5 6.8E-03 

hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 2E-11 1.0 5.2 4.2 

C11orf87 
6 5.6E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 9E-10 1.0 5.2 3.4 

TFAP2B 
6 2.8E-04 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 8E-16 1.0 5.2 6.5 

ONECUT

2 

12 2.5E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-27b-

3p,hsa-miR-143-3p,hsa-let-7g-5p,hsa-miR-

27a-3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

98-5p,hsa-miR-199b-5p,hsa-miR-140-5p,hsa-

miR-146b-5p 

0.9 2E-12 0.9 5.2 4.5 

GPR85 
5 6.8E-03 

hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 5E-10 1.0 5.2 2.1 

RAG1 
6 5.6E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.7 8E-08 1.0 5.2 1.7 

IGDCC3 

8 2.4E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p,hsa-miR-199b-5p 

0.8 4E-08 0.6 5.2 2.1 

TMPRSS

2 
6 5.6E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 9E-14 1.0 5.2 4.9 

MUC4 
6 1.7E-03 

hsa-miR-145-5p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 3E-09 1.0 5.2 4.1 
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CDC25A 

11 4.0E-04 

hsa-miR-145-5p,hsa-miR-27b-3p,hsa-miR-

143-3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-

7f-5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

199b-5p,hsa-miR-140-5p,hsa-miR-146b-5p 

0.9 6E-12 0.7 5.2 1.8 

OR2AG1 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.9 3E-13 1.0 5.2 4.7 

TCEAL2 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.8 5E-11 1.0 5.2 3.7 

KCNJ10 

7 9.2E-03 

hsa-miR-22-3p,hsa-miR-27b-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 

0.9 2E-11 1.0 5.2 4.7 

HS6ST3 

8 5.4E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-27b-

3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-199b-5p 

0.8 7E-11 0.8 5.2 2.8 

HMMR 

7 3.9E-03 

hsa-miR-27b-3p,hsa-miR-143-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 

0.8 7E-10 1.0 5.2 1.7 

HMGA2 

12 2.5E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-27b-

3p,hsa-miR-143-3p,hsa-let-7g-5p,hsa-miR-

27a-3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

98-5p,hsa-miR-199b-5p,hsa-miR-140-5p,hsa-

miR-146b-5p 

0.9 7E-18 1.0 5.2 4.4 

ZNF215 
5 6.8E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-199b-5p 
0.8 5E-09 1.0 5.2 2.0 

DMKN 

8 2.8E-04 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-199b-5p,hsa-miR-146b-5p 

0.8 2E-08 0.9 5.2 2.5 

ICOS 
6 1.7E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.7 4E-07 1.0 5.2 2.1 

SOX11 

11 5.9E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-27b-

3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

199b-5p,hsa-miR-140-5p,hsa-miR-146b-5p 

0.7 6E-07 0.7 5.2 2.0 

MYH15 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.8 2E-09 1.0 5.2 2.6 
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DNAH9 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.9 2E-17 1.0 5.2 4.5 

FAM81A 

9 1.3E-03 

hsa-miR-145-5p,hsa-miR-27b-3p,hsa-miR-

143-3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-

7f-5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

146b-5p 

0.9 8E-12 0.9 5.2 2.0 

MACC1 

7 3.9E-03 

hsa-miR-145-5p,hsa-miR-27b-3p,hsa-miR-

143-3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-

7i-5p,hsa-miR-199b-5p 

0.8 6E-09 1.0 5.2 5.0 

USP44 

9 1.3E-03 

hsa-miR-22-3p,hsa-miR-27b-3p,hsa-miR-143-

3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

199b-5p 

0.8 3E-08 1.0 5.2 2.0 

PALM3 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.9 2E-11 1.0 5.2 5.9 

XKR7 
5 1.4E-03 

hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 2E-13 1.0 5.2 4.0 

IQGAP3 

7 3.9E-03 

hsa-miR-22-3p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-140-

5p,hsa-miR-146b-5p 

0.7 7E-07 0.9 5.2 2.4 

NR1I2 
5 6.8E-03 

hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 5E-11 1.0 5.2 4.6 

NIPAL4 

8 2.4E-03 

hsa-miR-145-5p,hsa-miR-27b-3p,hsa-miR-

143-3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-

7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 

0.8 3E-08 1.0 5.2 3.9 

PLEKHG

7 
6 2.8E-04 

hsa-miR-145-5p,hsa-miR-143-3p,hsa-let-7g-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 4E-14 1.0 5.2 6.0 

LRGUK 
5 1.4E-03 

hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.7 6E-07 1.0 5.2 1.9 

CRB1 

8 9.1E-04 

hsa-miR-145-5p,hsa-miR-27b-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p,hsa-miR-199b-5p 

0.9 2E-13 1.0 5.2 2.4 

NDST3 

8 2.8E-04 

hsa-miR-145-5p,hsa-miR-27b-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p,hsa-miR-140-5p 

0.9 2E-12 1.0 5.2 4.6 
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FAM189

A1 
5 1.4E-03 

hsa-miR-22-3p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.7 4E-07 0.9 5.2 2.2 

C4orf50 
4 6.0E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-27b-

3p,hsa-miR-27a-3p 
0.9 2E-15 1.0 5.2 5.7 

SLC17A2 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.9 2E-16 1.0 5.2 6.1 

CCDC15 
5 1.4E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-199b-5p 
0.7 3E-07 1.0 5.2 1.6 

ARHGEF

38 
6 5.6E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 4E-17 1.0 5.2 5.6 

ARHGEF

39 

7 3.9E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-let-7g-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-199b-5p 

0.7 4E-07 0.7 5.2 1.8 

GRHL2 

10 8.9E-03 

hsa-miR-22-3p,hsa-miR-27b-3p,hsa-miR-143-

3p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

199b-5p,hsa-miR-146b-5p 

0.9 4E-17 0.9 5.2 6.9 

BICDL1 
6 5.6E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-let-7g-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 4E-08 1.0 5.2 2.3 

ETNPPL 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.8 2E-08 0.9 5.2 2.3 

KCNC2 

7 9.2E-03 

hsa-miR-27b-3p,hsa-miR-143-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 

0.8 4E-08 1.0 5.2 2.9 

MGAT5B 
5 6.8E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-146b-5p 
0.8 2E-09 0.8 5.2 2.4 

GRIN3A 

7 1.4E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-146b-5p 

0.9 2E-13 0.9 5.2 2.9 

OR2AG1 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.9 3E-13 1.0 5.2 4.7 
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FIRRE hub lncRNA in Females 

mRNA 

miR 

bindin

g sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

LECT2 4 4.0E-03 
hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.7 1E-06 1.0 2.0 6.6 

FANCD

2 
7 6.1E-04 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-98-5p,hsa-miR-199b-5p,hsa-

miR-148a-3p 

0.8 2E-08 0.9 2.0 1.9 

STAG3 6 1.4E-04 
hsa-miR-3615,hsa-let-7g-5p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-98-5p,hsa-miR-148a-3p 
0.7 8E-08 1.0 2.0 3.1 

SLC17

A2 
4 4.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.7 4E-07 1.0 2.0 6.1 

KRT5 5 4.1E-03 
hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-21-5p 
0.7 3E-07 1.0 2.0 5.2 

CACN

A1I 
5 4.1E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-370-3p 
0.7 4E-07 0.9 2.0 2.3 

CRTA

M 
5 8.0E-04 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-21-5p 
0.7 8E-08 0.6 2.0 2.1 

TFAP2

B 
5 4.1E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-98-5p 
0.7 6E-07 1.0 2.0 6.5 

SALL3 6 8.6E-04 
hsa-miR-27b-3p,hsa-let-7g-5p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-98-5p,hsa-miR-21-5p 
0.7 8E-07 1.0 2.0 3.9 

MAST1 5 8.0E-04 
hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p,hsa-miR-379-5p 
0.8 4E-09 1.0 2.0 3.4 

DNAH9 4 4.0E-03 
hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.8 5E-08 1.0 2.0 4.5 

PALM3 4 4.0E-03 
hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.7 7E-07 1.0 2.0 5.9 

IL22RA

1 
4 4.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-

miR-98-5p 
0.7 8E-07 1.0 2.0 2.9 
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CNTNA

P2 
8 9.1E-04 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-98-5p,hsa-miR-199b-5p,hsa-

miR-148a-3p,hsa-miR-370-3p 

0.8 6E-08 0.7 2.0 5.0 

CGN 8 4.5E-03 

hsa-miR-27b-3p,hsa-let-7g-5p,hsa-let-7f-5p,hsa-

let-7i-5p,hsa-miR-98-5p,hsa-miR-21-5p,hsa-

miR-379-5p,hsa-miR-370-3p 

0.7 4E-07 0.7 2.0 3.6 

 

LINC00943 hub lncRNA in Females 

mRNA 

miR 

binding 

sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

TRIM7

1 
17 8.6E-03 

hsa-miR-145-5p,hsa-miR-27b-3p,hsa-miR-143-

3p,hsa-miR-30e-5p,hsa-miR-151a-3p,hsa-let-

7g-5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-155-5p,hsa-miR-98-5p,hsa-miR-

199b-5p,hsa-miR-140-5p,hsa-miR-214-5p,hsa-

miR-543,hsa-miR-21-5p,hsa-miR-379-5p 

0.8 1E-08 0.9 2.9 5.7 

CDC25

A 
17 5.6E-04 

hsa-miR-18a-3p,hsa-miR-145-5p,hsa-miR-22-

5p,hsa-miR-27b-3p,hsa-miR-143-3p,hsa-let-7g-

5p,hsa-miR-27a-3p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-155-5p,hsa-miR-98-5p,hsa-miR-

199b-5p,hsa-miR-140-5p,hsa-miR-511-5p,hsa-

miR-543,hsa-miR-21-5p,hsa-miR-146b-5p 

0.8 1E-09 0.6 2.9 1.8 

FASLG 9 6.2E-03 

hsa-miR-22-5p,hsa-let-7g-5p,hsa-miR-27a-

3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-214-5p,hsa-miR-543,hsa-miR-21-

5p 

0.7 9E-08 0.9 2.9 3.2 

SLC6A

15 
18 4.0E-03 

hsa-miR-18a-3p,hsa-miR-27b-3p,hsa-miR-30e-

5p,hsa-miR-151a-3p,hsa-let-7g-5p,hsa-miR-

27a-3p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-155-

5p,hsa-miR-98-5p,hsa-miR-199b-5p,hsa-miR-

140-5p,hsa-miR-511-5p,hsa-miR-214-5p,hsa-

0.8 6E-09 1.0 2.9 3.4 
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miR-543,hsa-miR-370-3p,hsa-miR-146b-

5p,hsa-miR-493-3p 

CRB1 11 1.5E-03 

hsa-miR-145-5p,hsa-miR-27b-3p,hsa-miR-30e-

5p,hsa-let-7g-5p,hsa-miR-27a-3p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-155-5p,hsa-miR-98-

5p,hsa-miR-199b-5p,hsa-miR-543 

0.8 2E-10 1.0 2.9 2.4 

 

HELLPAR hub lncRNA in Females 

mRNA 

miR 

binding 

sites 

Hyper- 

geo 

metric 

P-value 

Interacting miRNAs 

lncRNA

-mRNA 

Corr R-

value 

lncRNA

-mRNA 

Corr P-

value 

Regulation 

Similarity 

Score 

(RegSim) 

FC 

lncRNA 

(Subtype 

1 vs. 2) 

FC 

mRNA 

(Subtype 

1 vs. 2) 

TAT 6 5.6E-03 

hsa-miR-145-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

21-5p 

0.8 6E-09 1.0 6.1 5.2 

ETNPP

L 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 
0.7 6E-07 1.0 6.1 2.3 

WNK3 9 2.8E-03 

hsa-miR-30e-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-493-5p,hsa-miR-

98-5p,hsa-miR-543,hsa-miR-21-5p,hsa-

miR-499a-5p 

0.8 3E-08 0.7 6.1 2.0 

FAM1

89A1 
5 1.4E-03 

hsa-miR-22-3p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.7 3E-07 1.0 6.1 2.2 

HTR4 5 1.4E-03 
hsa-miR-30e-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 6E-09 1.0 6.1 2.7 

LHCG

R 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 
0.7 6E-07 0.8 6.1 1.9 

PALM

3 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 
0.9 2E-12 1.0 6.1 5.9 

NTRK

3 
7 9.2E-03 

hsa-miR-22-3p,hsa-miR-99a-5p,hsa-let-7g-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p,hsa-miR-543 

0.8 5E-08 1.0 6.1 1.5 
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KRT5 5 6.8E-03 
hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p,hsa-miR-21-5p 
0.8 1E-10 0.9 6.1 5.2 

BICDL

1 
6 5.6E-03 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-let-7g-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-98-

5p 

0.8 2E-08 1.0 6.1 2.3 

SPTSS

B 
10 5.4E-04 

hsa-miR-145-5p,hsa-miR-22-3p,hsa-miR-

30e-5p,hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-

7i-5p,hsa-miR-98-5p,hsa-miR-543,hsa-

miR-21-5p,hsa-miR-499a-5p 

0.7 2E-07 1.0 6.1 2.8 

GRM5 8 2.4E-03 

hsa-miR-22-3p,hsa-miR-30e-5p,hsa-let-7g-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p,hsa-miR-543 

0.9 3E-11 1.0 6.1 3.6 

TCEA

L2 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 
0.8 5E-09 1.0 6.1 3.7 

LAMC

3 
5 6.8E-03 

hsa-miR-30e-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 6E-09 1.0 6.1 3.1 

SLITR

K5 
7 3.6E-04 

hsa-miR-99a-5p,hsa-miR-30e-5p,hsa-let-7g-

5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-493-

5p,hsa-miR-98-5p 

0.7 4E-07 1.0 6.1 1.7 

DNAH

9 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 
0.9 8E-15 1.0 6.1 4.5 

MYH1

5 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 
0.8 1E-08 1.0 6.1 2.6 

ZNF69

5 
9 1.3E-03 

hsa-miR-145-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-493-5p,hsa-miR-

98-5p,hsa-miR-543,hsa-miR-21-5p,hsa-

miR-499a-5p 

0.7 7E-08 0.9 6.1 5.6 

KCNJ1

0 
7 9.2E-03 

hsa-miR-22-3p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-493-5p,hsa-miR-

98-5p,hsa-miR-21-5p 

0.9 1E-12 1.0 6.1 4.7 

FAM1

33A 
7 9.2E-03 

hsa-miR-30e-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

21-5p,hsa-miR-499a-5p 

0.8 9E-10 1.0 6.1 5.2 
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EPS8L

3 
5 1.4E-03 

hsa-miR-145-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 1E-10 1.0 6.1 6.5 

OR2A

G1 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 
0.9 2E-12 1.0 6.1 4.7 

RFX6 6 5.6E-03 

hsa-miR-30e-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

543 

0.9 9E-12 1.0 6.1 5.6 

SLC17

A2 
4 6.0E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 
0.9 1E-14 1.0 6.1 6.1 

CRTA

M 
5 1.4E-03 

hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p,hsa-miR-21-5p 
0.7 2E-07 0.6 6.1 2.1 

GALN

T13 
6 1.7E-03 

hsa-miR-30e-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

543 

0.8 3E-09 1.0 6.1 2.2 

LECT2 4 6.0E-03 
hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p 
0.9 4E-12 1.0 6.1 6.6 

OMG 6 5.6E-03 

hsa-miR-30e-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p,hsa-miR-

499a-5p 

0.8 2E-08 1.0 6.1 2.3 

SLC22

A10 
5 1.4E-03 

hsa-miR-145-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 7E-13 1.0 6.1 5.8 

PLEK

HG7 
5 6.8E-03 

hsa-miR-145-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.9 2E-12 1.0 6.1 6.0 

ITIH1 5 1.4E-03 
hsa-let-7g-5p,hsa-let-7f-5p,hsa-let-7i-

5p,hsa-miR-98-5p,hsa-miR-21-5p 
0.8 2E-09 1.0 6.1 6.2 

CRB1 7 9.2E-03 

hsa-miR-145-5p,hsa-miR-30e-5p,hsa-let-

7g-5p,hsa-let-7f-5p,hsa-let-7i-5p,hsa-miR-

98-5p,hsa-miR-543 

0.8 1E-10 1.0 6.1 2.4 

CYP4F

2 
5 1.4E-03 

hsa-miR-99a-5p,hsa-let-7g-5p,hsa-let-7f-

5p,hsa-let-7i-5p,hsa-miR-98-5p 
0.8 4E-11 1.0 6.1 5.5 

ceRNA results for n=6 hub lncRNAs are presented for females. 
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Table A.14 Common pathways in males and females from ceRNA-mediated gene 

regulation 

N=44 common pathways between Male and Female ceRNA-mediated gene regulation 

Pathway 
Male 

-log(P-value) 

Female 

-log(P-value) 

Acetone Degradation I (to Methylglyoxal) 2.8 2.2 

Amyotrophic Lateral Sclerosis Signaling 6.4 3.1 

Breast Cancer Regulation by Stathmin1 5.6 2.3 

Bupropion Degradation 3.8 3.1 

Calcium Signaling 5.8 3.4 

cAMP-mediated signaling 2.2 3.1 

CREB Signaling in Neurons 12.1 4.7 

Dopamine-DARPP32 Feedback in cAMP Signaling 2.7 3.8 

Embryonic Stem Cell Differentiation into Cardiac Lineages 2.1 1.5 

Endocannabinoid Neuronal Synapse Pathway 4.6 4.9 

Estrogen Biosynthesis 2.9 2.0 

Estrogen-mediated S-phase Entry 2.3 2.1 

FXR/RXR Activation 10.1 4.6 

GABA Receptor Signaling 8.8 6.2 

Glutamate Receptor Signaling 11.0 10.1 

G-Protein Coupled Receptor Signaling 5.5 2.8 

Gustation Pathway 9.5 6.6 

Hepatic Cholestasis 4.0 1.9 

Kinetochore Metaphase Signaling Pathway 5.7 2.2 

LPS/IL-1 Mediated Inhibition of RXR Function 5.5 1.3 

Maturity Onset Diabetes of Young (MODY) Signaling 5.1 1.5 

Melatonin Degradation I 4.3 3.3 

Netrin Signaling 4.0 2.8 

Neuroinflammation Signaling Pathway 3.4 2.4 

Neuropathic Pain Signaling In Dorsal Horn Neurons 5.4 6.4 

Neurovascular Coupling Signaling Pathway 14.9 10.3 

Nicotine Degradation II 3.4 3.1 

Nicotine Degradation III 4.1 3.5 

nNOS Signaling in Neurons 2.7 1.9 

nNOS Signaling in Skeletal Muscle Cells 4.4 2.5 

Opioid Signaling Pathway 2.7 2.6 

Oxytocin In Brain Signaling Pathway 2.8 1.8 

Phagosome Formation 4.7 1.3 

PXR/RXR Activation 6.5 3.9 

Role of BRCA1 in DNA Damage Response 1.7 2.0 

Serotonin Receptor Signaling 2.4 1.3 

Superpathway of Melatonin Degradation 3.8 3.0 

Synaptic Long Term Depression 5.8 3.5 

Synaptic Long Term Potentiation 2.1 3.8 
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Synaptogenesis Signaling Pathway 6.3 6.3 

Transcriptional Regulatory Network in Embryonic Stem Cells 2.7 1.6 

Xenobiotic Metabolism CAR Signaling Pathway 3.7 1.9 

Xenobiotic Metabolism PXR Signaling Pathway 3.2 1.8 

Xenobiotic Metabolism Signaling 2.2 1.5 

 

Table A.15 Unique pathways in males from ceRNA-mediated gene regulation 

N=45 unique pathways in Males from ceRNA-mediated gene regulation 

Pathway -log(P-value) 

Acute Phase Response Signaling 2.9 

Airway Pathology in Chronic Obstructive Pulmonary Disease 1.6 

Basal Cell Carcinoma Signaling 1.7 

Chondroitin Sulfate Biosynthesis 2.5 

Chondroitin Sulfate Biosynthesis (Late Stages) 2.0 

Citrulline Biosynthesis 1.4 

Coagulation System 2.6 

Corticotropin Releasing Hormone Signaling 1.7 

Dermatan Sulfate Biosynthesis 1.9 

Dermatan Sulfate Biosynthesis (Late Stages) 1.7 

Differential Regulation of Cytokine Production in Intestinal 

Epithelial Cells by IL-17A and IL-17F 
1.4 

eNOS Signaling 1.5 

Extrinsic Prothrombin Activation Pathway 2.8 

Fatty Acid Activation 1.5 

FcγRIIB Signaling in B Lymphocytes 1.9 

G Beta Gamma Signaling 2.1 

Glutamate Dependent Acid Resistance 2.1 

GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells 2.2 

Granulocyte Adhesion and Diapedesis 1.9 

Heparan Sulfate Biosynthesis 1.5 

Histidine Degradation III 1.6 

HOTAIR Regulatory Pathway 1.6 

Human Embryonic Stem Cell Pluripotency 1.8 

Inhibition of Matrix Metalloproteases 1.3 

Insulin Secretion Signaling Pathway 1.9 

Intrinsic Prothrombin Activation Pathway 6.0 

LXR/RXR Activation 3.9 

Mitochondrial L-carnitine Shuttle Pathway 1.7 

Mitotic Roles of Polo-Like Kinase 2.4 

MSP-RON Signaling Pathway 2.5 

Neuroprotective Role of THOP1 in Alzheimer's Disease 2.8 

Nitric Oxide Signaling in the Cardiovascular System 1.9 
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Phototransduction Pathway 2.2 

Retinol Biosynthesis 1.4 

Role of Cytokines in Mediating Communication between 

Immune Cells 
2.7 

Role of Osteoblasts, Osteoclasts and Chondrocytes in 

Rheumatoid Arthritis 
1.3 

Serotonin and Melatonin Biosynthesis 2.0 

SNARE Signaling Pathway 1.6 

SPINK1 Pancreatic Cancer Pathway 2.3 

Superpathway of Citrulline Metabolism 2.2 

Thyroid Hormone Metabolism II (via Conjugation and/or 

Degradation) 
1.7 

Type II Diabetes Mellitus Signaling 2.5 

VDR/RXR Activation 2.2 

Wound Healing Signaling Pathway 1.3 

α-tocopherol Degradation 1.3 

 

Table A.16 Unique pathways in females from ceRNA-mediated gene regulation 

N=45 unique pathways in Females from ceRNA-mediated gene regulation 

Pathway -log(P-value) 

4-hydroxybenzoate Biosynthesis 1.5 

4-hydroxyphenylpyruvate Biosynthesis 1.5 

Cellular Effects of Sildenafil (Viagra) 1.8 

GP6 Signaling Pathway 1.4 

Gαs Signaling 1.9 

Role of CHK Proteins in Cell Cycle Checkpoint Control 1.5 

Role of OCT4 in Mammalian Embryonic Stem Cell 

Pluripotency 
1.3 

Serotonin Degradation 1.7 

Tryptophan Degradation to 2-amino-3-carboxymuconate 

Semialdehyde 
1.9 

Urea Cycle 1.9 
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Figure A.1 Gene overlap within the five convergent pathways identified from patient 

dataset and experimental systems 

The individual and non redundant genes were overlapped between all datasets from the five 

convergent IPA identified pathways. The Venn diagram shows the overlapping and unique genes 

within all datasets. Of the five convergent pathways, the overlapping and distinct genes regulating 

the pathways are shown in the figure.  
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Table A.17 Overlapping pathways between any three datasets 

N=23 common pathways between Male, Female, and RD pathway analysis 

Pathway Male 

-log(P-value) 

Female 

-log(P-value) 

RD 

-log(P-value) 

Neuroinflammation Signaling Pathway 2.6 1.8 3.3 

Neurovascular Coupling Signaling Pathway 13.4 12.7 7.0 

CREB Signaling in Neurons 11.1 13.7 4.0 

Gustation Pathway 10.0 10.8 9.3 

Glutamate Receptor Signaling 7.6 9.6 1.5 

GABA Receptor Signaling 7.5 6.5 4.8 

Synaptic Long Term Depression 4.7 3.6 3.2 

Endocannabinoid Neuronal Synapse Pathway 3.3 2.4 4.8 

Neuropathic Pain Signaling In Dorsal Horn 

Neurons 
3.1 5.1 5.9 

Synaptogenesis Signaling Pathway 2.8 5.2 5.0 

nNOS Signaling in Neurons 1.9 1.4 2.4 

Opioid Signaling Pathway 1.6 1.3 5.1 

G-Protein Coupled Receptor Signaling 4.6 7.8 3.0 

Kinetochore Metaphase Signaling Pathway 3.9 2.4 9.0 

Mitotic Roles of Polo-Like Kinase 1.4 1.4 5.0 

Netrin Signaling 3.5 1.8 6.2 

Inhibition of Matrix Metalloproteases 3.8 2.9 4.6 

cAMP-mediated signaling 2.0 3.9 1.5 

Coagulation System 2.6 4.8 1.3 

Wound Healing Signaling Pathway 6.3 2.4 3.4 

Phagosome Formation 5.6 10.5 3.3 

Agranulocyte Adhesion and Diapedesis 2.6 2.0 3.1 

Maturity Onset Diabetes of Young (MODY) 

Signaling 
6.2 2.1 2.4 
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Table A.18 Overlapping  pathways between any three datasets 

N=1 common pathways between Male, Female, and Rat 

Pathway Male 

-log(P-value) 

Female 

-log(P-value) 

Rat 

-log(P-value) 

Complement system 1.9 3.8 1.5 

 

 

N=1 common pathways between Male, RD, and Rat 

Pathway Male 

-log(P-value) 

RD 

-log(P-value) 

Rat 

-log(P-value) 

Role of Pattern Recognition Receptors in 

Recognition of Bacteria and Viruses 
1.7 1.6 1.5 

 

 

N=1 common pathways between Female, RD, and Rat 

Pathway Female 

-log(P-value) 

RD 

-log(P-value) 

Rat 

-log(P-value) 

Cellular Effects of Sildenafil (Viagra) 2.4 11.4 1.9 
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Table A.18 Overlapping pathways between any two datasets 

N=36 common pathways between Male and Female datasets 

Pathway 
Male 

-log(P-value) 

Female 

-log(P-value) 

Intrinsic Prothrombin Activation Pathway 10.8 9.0 

Granulocyte Adhesion and Diapedesis 5.1 4.2 

MSP-RON Signaling Pathway 3.1 1.8 

Extrinsic Prothrombin Activation Pathway 2.4 2.9 

Differential Regulation of Cytokine Production in Macrophages 

and T Helper Cells by IL-17A and IL-17F 
2.0 1.3 

Pyroptosis Signaling Pathway 2.0 3.1 

TREM1 Signaling 2.0 1.5 

IL-23 Signaling Pathway 1.3 1.8 

FXR/RXR Activation 9.9 4.8 

PXR/RXR Activation 5.3 2.2 

LXR/RXR Activation 5.3 2.7 

LPS/IL-1 Mediated Inhibition of RXR Function 4.6 2.1 

Xenobiotic Metabolism CAR Signaling Pathway 2.1 1.5 

Xenobiotic Metabolism PXR Signaling Pathway 1.8 1.6 

Nicotine Degradation III 5.7 4.2 

Superpathway of Melatonin Degradation 5.6 3.8 

Melatonin Degradation I 5.1 4.3 

Serotonin Receptor Signaling 4.7 3.4 

Nicotine Degradation II 4.6 3.4 

Bupropion Degradation 3.5 2.9 

Serotonin Degradation 2.4 2.6 

Retinol Biosynthesis 2.3 3.8 

Serotonin and Melatonin Biosynthesis 2.3 1.6 

Acetone Degradation I (to Methylglyoxal) 1.9 2.3 

Histidine Degradation III 2.6 1.3 

Thyroid Hormone Metabolism II (via Conjugation and/or 

Degradation) 
2.6 1.8 

Estrogen Biosynthesis 2.5 2.8 

Asparagine Degradation I 1.7 1.9 

Androgen Biosynthesis 1.6 1.5 

Tryptophan Degradation to 2-amino-3-carboxymuconate 

Semialdehyde 
1.4 1.6 

α-tocopherol Degradation 1.4 2.5 

Fatty Acid Activation 1.3 1.6 

Superpathway of Citrulline Metabolism 1.3 1.6 

Chondroitin Sulfate Biosynthesis 1.5 1.5 

Glutamate Dependent Acid Resistance 1.7 1.9 

Embryonic Stem Cell Differentiation into Cardiac Lineages 2.1 2.5 
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Table A.19 Overlapping  pathways between any two datasets 

N=7 common pathways between Male and RD datasets 

Pathway 
Male 

-log(P-value) 

RD 

-log(P-value) 

HOTAIR Regulatory Pathway 1.8 2.8 

Role of Macrophages, Fibroblasts and Endothelial Cells in 

Rheumatoid Arthritis 
1.6 3.6 

FcγRIIB Signaling in B Lymphocytes 1.3 2.8 

Type II Diabetes Mellitus Signaling 2.3 2.4 

Corticotropin Releasing Hormone Signaling 1.6 4.1 

GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells 1.8 4.1 

VDR/RXR Activation 1.3 1.5 

 

N=7 common pathways between Female and RD datasets 

Pathway 
Female 

-log(P-value) 

RD 

-log(P-value) 

eNOS Signaling 3.2 4.3 

Nitric Oxide Signaling in the Cardiovascular System 1.5 4.7 

Phospholipases 1.4 2.3 

Eicosanoid Signaling 1.3 2.2 

Apelin Liver Signaling Pathway 2.1 1.4 

Dopamine-DARPP32 Feedback in cAMP Signaling 2.0 5.1 

Estrogen-mediated S-phase Entry 1.6 2.3 
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Table A.19 Overlapping  pathways between any two datasets 

N=21 common pathways between RD and Rat datasets 

Pathway 
RD 

-log(P-value) 

Rat 

-log(P-value) 

Actin Cytoskeleton Signaling 7.0 2.8 

ATM Signaling 2.5 1.8 

Cardiac Hypertrophy Signaling 3.7 1.4 

Cardiac Hypertrophy Signaling (Enhanced) 10.5 2.2 

Caveolar-mediated Endocytosis Signaling 7.3 1.6 

Cell Cycle: G1/S Checkpoint Regulation 1.3 1.4 

DNA Methylation and Transcriptional Repression Signaling 2.0 1.6 

Ferroptosis Signaling Pathway 2.7 1.8 

NAD Signaling Pathway 3.3 2.3 

NER (Nucleotide Excision Repair, Enhanced Pathway) 4.4 2.0 

Neuregulin Signaling 4.9 1.3 

Regulation of Actin-based Motility by Rho 3.9 1.7 

Regulation of Cellular Mechanics by Calpain Protease 6.6 1.6 

Regulation of eIF4 and p70S6K Signaling 1.3 1.3 

RHOGDI Signaling 6.5 1.3 

Semaphorin Neuronal Repulsive Signaling Pathway 9.5 1.9 

Senescence Pathway 3.5 1.3 

Signaling by Rho Family GTPases 4.7 1.5 

STAT3 Pathway 3.9 2.3 

VEGF Signaling 1.3 1.3 

White Adipose Tissue Browning Pathway 3.5 2.3 
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Table A.19 Unique pathways in individual datasets 

N=9 exclusive pathways in the Female dataset 

Pathway -log(P-value) 

Ethanol Degradation II 1.4 

L-dopachrome Biosynthesis 1.9 

NAD biosynthesis II (from tryptophan) 1.3 

Neuroprotective Role of THOP1 in Alzheimer's Disease 2.3 

Osteoarthritis Pathway 1.5 

Phototransduction Pathway 4.6 

SPINK1 Pancreatic Cancer Pathway 4.5 

Triacylglycerol Degradation 1.5 

Urea Cycle 1.6 

 

N=9 exclusive pathways in the Male dataset 

Pathway -log(P-value) 

Acute Phase Response Signaling 2.3 

Chondroitin Sulfate Biosynthesis (Late Stages) 1.3 

Differential Regulation of Cytokine Production in Intestinal 

Epithelial Cells by IL-17A and IL-17F 1.4 

Glycine Betaine Degradation 2.1 

HMGB1 Signaling 1.3 

IL-17 Signaling 1.8 

L-serine Degradation 1.3 

Mitochondrial L-carnitine Shuttle Pathway 1.4 

Oxytocin In Brain Signaling Pathway 3.9 
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Table A.20 Unique pathways in individual datasets 

N=131 exclusive pathways in the RD dataset 

Pathway -log(P-value) 

3-phosphoinositide Biosynthesis 1.7 

Acetate Conversion to Acetyl-CoA 1.6 

Actin Nucleation by ARP-WASP Complex 2.8 

Adrenomedullin signaling pathway 3.0 

Aldosterone Signaling in Epithelial Cells 1.5 

AMPK Signaling 3.7 

Androgen Signaling 3.2 

Angiopoietin Signaling 1.3 

Apelin Cardiac Fibroblast Signaling Pathway 1.7 

Apelin Cardiomyocyte Signaling Pathway 3.7 

Apelin Endothelial Signaling Pathway 3.5 

Apelin Pancreas Signaling Pathway 2.1 

Apoptosis Signaling 1.8 

Aryl Hydrocarbon Receptor Signaling 1.7 

Autophagy 1.9 

Axonal Guidance Signaling 12.7 

BER (Base Excision Repair) Pathway 1.9 

BMP signaling pathway 2.3 

Cardiac β-adrenergic Signaling 4.3 

CDK5 Signaling 3.7 

CDP-diacylglycerol Biosynthesis I 1.5 

Cell Cycle Control of Chromosomal Replication 6.8 

Cell Cycle: G2/M DNA Damage Checkpoint Regulation 1.7 

Ceramide Signaling 1.3 

Circadian Rhythm Signaling 3.8 

Creatine-phosphate Biosynthesis 2.3 

CXCR4 Signaling 1.8 

Cyclins and Cell Cycle Regulation 2.2 

Death Receptor Signaling 2.0 

D-myo-inositol (1,4,5,6)-Tetrakisphosphate Biosynthesis 1.4 

D-myo-inositol-5-phosphate Metabolism 1.5 

DNA Double-Strand Break Repair by Homologous Recombination 2.8 

Endocannabinoid Cancer Inhibition Pathway 2.9 

Endocannabinoid Developing Neuron Pathway 1.6 

Endothelin-1 Signaling 3.9 

Ephrin Receptor Signaling 5.7 

ERK/MAPK Signaling 4.4 

Estrogen Receptor Signaling 6.0 

Factors Promoting Cardiogenesis in Vertebrates 4.9 

FAK Signaling 3.8 

Fc Epsilon RI Signaling 1.3 
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G Beta Gamma Signaling 5.6 

GADD45 Signaling 2.8 

Gap Junction Signaling 2.6 

GDNF Family Ligand-Receptor Interactions 1.4 

GDP-glucose Biosynthesis 1.4 

Glycine Degradation (Creatine Biosynthesis) 1.4 

Glycogen Biosynthesis II (from UDP-D-Glucose) 1.6 

GNRH Signaling 3.8 

GPCR-Mediated Integration of Enteroendocrine Signaling Exemplified by an 

L Cell 1.4 

Granzyme A Signaling 2.3 

Guanosine Nucleotides Degradation III 1.6 

Gα12/13 Signaling 1.6 

Gαi Signaling 1.7 

Hepatic Fibrosis Signaling Pathway 11.9 

HGF Signaling 3.5 

HIF1α Signaling 3.0 

Human Embryonic Stem Cell Pluripotency 2.7 

IGF-1 Signaling 1.8 

IL-1 Signaling 2.9 

IL-15 Production 3.3 

IL-6 Signaling 1.7 

IL-8 Signaling 3.8 

ILK Signaling 5.6 

Inhibition of Angiogenesis by TSP1 2.2 

Insulin Secretion Signaling Pathway 2.3 

Integrin Signaling 2.7 

Interferon Signaling 4.0 

Iron homeostasis signaling pathway 1.4 

JAK/STAT Signaling 1.3 

Leptin Signaling in Obesity 2.6 

Leukocyte Extravasation Signaling 4.1 

Macropinocytosis Signaling 4.6 

Melanocyte Development and Pigmentation Signaling 2.0 

Melatonin Signaling 2.2 

Mismatch Repair in Eukaryotes 3.0 

Molecular Mechanisms of Cancer 8.5 

MYC Mediated Apoptosis Signaling 1.4 

NAD Salvage Pathway II 1.7 

NF-κB Activation by Viruses 2.7 

Notch Signaling 2.1 

Oncostatin M Signaling 1.6 

Oxytocin Signaling Pathway 7.1 

P2Y Purigenic Receptor Signaling Pathway 4.3 

p38 MAPK Signaling 1.5 
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p53 Signaling 1.6 

PAK Signaling 6.9 

Paxillin Signaling 4.7 

Pentose Phosphate Pathway (Oxidative Branch) 1.3 

PFKFB4 Signaling Pathway 2.5 

Phagosome Maturation 3.4 

Phosphatidylglycerol Biosynthesis II (Non-plastidic) 1.3 

PI3K/AKT Signaling 5.5 

PPARα/RXRα Activation 2.7 

Prolactin Signaling 1.3 

Protein Kinase A Signaling 6.8 

PTEN Signaling 7.0 

Pulmonary Healing Signaling Pathway 4.9 

Purine Nucleotides De Novo Biosynthesis II 2.1 

Pyrimidine Deoxyribonucleotides De Novo Biosynthesis I 1.3 

Pyrimidine Ribonucleotides Interconversion 1.3 

RAC Signaling 4.4 

RAR Activation 2.3 

Reelin Signaling in Neurons 2.0 

Relaxin Signaling 3.3 

Renin-Angiotensin Signaling 3.4 

RHOA Signaling 1.6 

Role of CHK Proteins in Cell Cycle Checkpoint Control 1.8 

Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of 

Influenza 1.6 

Role of JAK1 and JAK3 in γc Cytokine Signaling 1.8 

Role of MAPK Signaling in Inhibiting the Pathogenesis of Influenza 1.3 

Role of MAPK Signaling in Promoting the Pathogenesis of Influenza 1.5 

Role of NANOG in Mammalian Embryonic Stem Cell Pluripotency 1.8 

Role of NFAT in Cardiac Hypertrophy 7.7 

Role of Tissue Factor in Cancer 2.6 

Sonic Hedgehog Signaling 1.9 

Superpathway of Inositol Phosphate Compounds 2.1 

Telomere Extension by Telomerase 1.3 

TGF-β Signaling 1.3 

Thrombin Signaling 2.5 

Tight Junction Signaling 2.5 

tRNA Splicing 1.7 

Urate Biosynthesis/Inosine 5'-phosphate Degradation 1.5 

UVA-Induced MAPK Signaling 1.6 

UVB-Induced MAPK Signaling 1.6 

VEGF Family Ligand-Receptor Interactions 3.3 

Virus Entry via Endocytic Pathways 4.7 

α-Adrenergic Signaling 3.6 

β-alanine Degradation I 1.4 
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γ-glutamyl Cycle 1.6 

γ-linolenate Biosynthesis II (Animals) 1.3 

 

Table A.20 Unique pathways in individual datasets 

N=8 exclusive pathways in the Rat dataset 

Pathway -log(P-value) 

Adipogenesis pathway 4.7 

EIF2 Signaling 3.7 

Dilated Cardiomyopathy Signaling Pathway 2.8 

Ephrin B Signaling 1.7 

Glycine Cleavage Complex 1.5 

Stearate Biosynthesis I (Animals) 1.4 

Ceramide Degradation 1.4 

Agrin Interactions at Neuromuscular Junction 1.3 

 

 

 

 

 


