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Abstract

Many heuristic algorithms have been proposed for graph coloring�
The simplest is perhaps the greedy algorithm� Many variations have
been proposed for this algorithm at various levels of sophistication�
but it is generally assumed that the coloring will occur in a single at�
tempt� We note that if a new permutation of the vertices is chosen
which respects the independent sets of a previous coloring� then ap�
plying the greedy algorithm will result in a new coloring in which the
number of colors used does not increase� yet may decrease� We intro�
duce several heuristics for generating new permutations that are fast
when implemented and e�ective in reducing the coloring number�

The resulting Iterated Greedy algorithm�IG� can obtain colorings
in the range ��� to ��� on graphs in G

������
�

� More interestingly� it
can optimally color k�colorable graphs with k up to 	� and n 
 �����
exceeding results of anything in the literature for these graphs�

We couple this algorithm with several other coloring algorithms�
including a modi�ed Tabu search� and one that tries to �nd large
independent sets using a pruned backtrack� With these combined al�
gorithms we �nd �	 and �
 colorings for G

������
�

�
Finally� we explore the areas of di�culty in probabilistic graph

space under a natural parameterization� Speci�cally� we check our
system on k�colorable graphs in G����p�k for ���� � p � ���� and � �
k � ���� We �nd a narrow ridge where the algorithms fail to �nd the
speci�ed coloring� but easy success everywhere else�
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Part I

Introduction

Graph coloring is perhaps one of the most notorious of the NP�complete
problems� It has many applications in scheduling and timetabling� The best
deterministic exact algorithms are hopelessly exponential� the best known
polynomial time approximation algorithms cannot guarantee a coloring as�
signment within less than O�n���� ��� of the optimal coloring and are very
complex� Since it is known that it is NP�hard to guarantee a coloring within
a factor of two of the optimal ����	 this leaves a large gap in our knowledge
of the di
culty of coloring and dismal prospects in the worst case�

Numerous algorithms have been developed for average case coloring� The
simple greedy algorithm starts with some permutation of the vertices and as
each vertex is considered in turn	 it is assigned the minimum color that does
not cause a con�ict� For random graphs in which each vertex pair is assigned
an edge with probability ���	 it is known that asymptotically this will on
average use about twice as many colors as required����� In the worst case
it will use 
�n� times as many colors as needed����� Many heuristics have
been proposed for ordering the vertices for coloring by the greedy algorithm�
But usually the greedy algorithm is seen as a one shot approach to coloring�

In this paper we will examine the possibility of applying the greedy algo�
rithm repeatedly	 basing each successive ordering on the preceding coloring	
using various heuristics� One feature of this approach is that the successive
coloring numbers will be non�increasing�

Our heuristics can be used to generate new permutations starting with
any valid coloring� Thus we can use Br�elaz�s DSATUR ��� algorithm to form
an initial coloring	 and then proceed with our heuristics� We also explore the
use of Tabu search	 developing a method to combine this technique with ours
by alternating between them� Bollob�as and Thomason ��� present an algo�
rithm that recursively selects an approximation to the largest independent
set from the uncolored vertices	 and colors it� They report the best coloring
results for the class G����� �

�

to date �see section � for de�nitions of graph

classes�� We show that for various random graph classes improvements can
be made by combining these techniques�

Finally we explore the coloring landscape with this system	 as we vary
a known coloring number	 and the density of the graph� We �nd classes of
k�colorable graphs that even our full system cannot color well� On the other
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hand	 most k�colorable graphs are easily colored	 even for values of k well
outside the ranges suggested in previous analyses ���	 ����

� De�nitions

Given a simple undirected graph G � �V�E�	 where V is a set of vertices	
and E is a set of pairs of vertices called edges	 a k�coloring of G is an
assignment C � V � f� � � �kg such that if C�v� � C�w� then �v� w� �� E�
The set f� � � �kg is the set of colors� The chromatic number ��G� is the
minimal k for which there exists a k�coloring of G� The coloring problem is
given a graph	 obtain a ��coloring of it� Since this is generally impractical	
we will relax the problem and attempt to obtain k�colorings	 where k is an
approximation of �� Such a coloring is called a �valid� approximate coloring�

An independent set is V � � V such that for v� w � V �� �v� w� �� E� A
k�coloring thus partitions the vertex set into independent sets �sometimes
called the color classes�	 with each color class being the set of vertices of a
given color� An assignment of colors to vertices such that for some edges
�v� w� we have C�v� � C�w� is an approximately correct coloring� In approx�
imately correct colorings	 each such edge is referred to as a con�ict	 and we
say that vertex v is in con�ict with vertex w�

A clique is a set V � � V such that for v� w � V �� �v� w� � E� A comple�
ment �G of G is a graph in which each pair v� w is an edge in �G exactly when
it is not an edge in G� Thus	 an independent set in G is a clique in �G�

� Algorithm Classes

Many algorithms have been proposed to obtain approximate colorings in
reasonable time� These algorithms generally fall into one of the following
classes�

Greedy Find large independent sets and color each of them with one color�
One of the simplest implementations is the greedy algorithm	 described
previously� Intuitively it seems reasonable that the larger the inde�
pendent sets	 the fewer the colors used� However	 being too greedy
on the �rst sets may cause problems for later choices	 forcing the
use of unnecessary colors� Thus	 these approaches produce approx�
imate colorings� There are many variations	 heuristics and analyses
���	 ��	 ��	 ��	 ��	 ��	 �	 ��	 ��	 �	 ����
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Partition Partition the vertices by some means	 and then attempt to re�
move con�icts by moving vertices from one partition to another� These
methods may produce an approximately correct coloring	 since on ter�
mination some con�icts may remain� If the partition number is not
the chromatic number	 the results may also be an approximation to
the coloring number� Example algorithms are Anti�voter���� and Tabu
search���� and simulated annealing���� Tabu search will be described
in more detail in section ��

Clique After choosing the �rst vertex	 choose vertices with a maximal num�
ber of constraints on the colors available to them� This is almost the
opposite of the �rst method as now we choose vertices that form large
cliques with respect to the vertices already chosen� Examples of these
are the No Choice algorithm���� and Br�elaz�s DSATUR algorithm����
Counter example graphs for DSATUR are provided in ����� The in�
tuition is that if we choose vertices which are forced to be a certain
color	 we are less likely to make an error that forces bad colorings
later on� We will discuss an implementation of Br�elaz�s algorithm in
a subsequent section�

Zykov Do partial traversals of Zykov�s tree����� These algorithms use the
recursive structure imposed on graphs by the Zykov decompositions	
but rather than do a complete search	 use heuristics to attempt to
�nd a good if not optimal coloring� We will not be discussing these
methods further in this paper� see ���	 �� for further details�

Other A few algorithms use other methods such as eigenvalue decomposition����

Most of these algorithms make a single pass over the set of vertices
and edges	 and produce a coloring result� Tabu and simulated annealing
are notable exceptions as they may iterate a basic search loop an arbitrary
number of times�

In this paper we will look at an iterated greedy algorithm	 which also
may be run for an arbitrary amount of time� Unlike partitioning algorithms	
it will always produce a correct but possibly non�optimal coloring�

� Classes of Graphs

There are many classes of graphs that could and should be used to test
coloring algorithms� Time permits testing only on a few however�
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The most natural class is perhaps the class Gn�p	 where n is the number
of vertices	 and for each pair of vertices an edge is assigned with probability
p� This class of graphs has been deeply studied with respect to coloring	 es�
pecially for p � ���� Asymptotically	 for a �xed probability p	 the chromatic
number is known to almost surely �a�s�� be����

�

�
� o���

�
log

�
�

�� p

�
n

logn

The greedy algorithm is known to assign approximately twice the chromatic
number when coloring graphs with p � ��� ���	 ����

In one sense	 the class of random graphs is easy	 since good approxima�
tions are obtained on average� Also	 we do not have a speci�c target color
to shoot for� On the other hand	 they are di
cult to color optimally or
even nearly so� That is	 we are unlikely to obtain colorings far from optimal
but not likely to obtain very close colorings either� Also	 not knowing the
chromatic number means we can never be sure just how well or poorly we
are doing�

We de�ne the following class of graphs to provide another test bed for
our algorithms� Gn�p�k is the set of graphs with n vertices	 partitioned into
k as nearly equal sized sets as possible� Edges are assigned with proba�
bility p provided that the vertices in question are in distinct elements of
the partition� No edges are assigned between vertices within any element
of the partition� Thus	 these graphs are always k�colorable	 although the
chromatic number may be less than k in some cases�

In practice	 the partitioning is done by �rst generating a random permu�
tation	 and then placing all vertices occupying positions congruent modulo
k in the permutation into the same set� The permutation is taken to avoid
accidental use of the partitioning structure by a coloring algorithm� This
class forms much of the basis of our empirical study�

In general partitions may be selected in several alternate ways� These
allow variability in the sizes of the elements of the partition� We de�ne a
class of graphs Gn�p�k��	 with � � � � k	 as follows� If � � � then assign to
each vertex in turn one of the values � � � �k chosen at random� This subclass
of graphs is used in the literature ���	 ���� Otherwise	 choose � at random
with � � � � �� and then assign the value i chosen at random from the
range ��� k�� As � increases	 the variability increases� This allows us to tune
for hardness of graphs with respect to our algorithms�

In general	 we found for any p and k	 the class Gn�p�k is more di
cult
than Gn�p�k�� for any �	 and that as � increases	 the graphs become easier to
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color� That is	 the hardest graphs to color are those in which all sets were
of equal size� Thus for all of the results reported here we use either Gn�p or
Gn�p�k� Note that Gn�p is just the special case Gn�p�n�

When we refer to coloring a graph in Gn�p�k or Gn�p�k�� we say that a
k�coloring is a speci�ed coloring of the graph� This terminology is used to
clearly distinguish the k�coloring from an optimal ��coloring which in some
cases may be less�
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Part II

The Iterated Greedy Algorithm

In section �	 we describe the Iterated Greedy algorithm	 the heuristics and
de�nitions required to understand it	 and some graphs which can cause it to
produce arbitrarily bad colorings� In the section �	 we describe the results
of experiments using this algorithm with various heuristic mixes on classes
of graphs introduced earlier�

� Algorithm Description

Let V � fv� � � � vng� Let � be a permutation of f� � � �ng� The simple greedy
algorithm is

Color v���� with color ��
for i from � to n do

Assume k colors have been used�
Color v��i� with the minimum from f� � � �k � �g
such that no con�ict is created�

It is easy to see that for any graph	 there is some permutation from
which the greedy algorithm will produce a ��coloring� Many heuristics for
selecting permutations have been proposed� One of the earliest was that
of Welsh and Powell ���� who suggested ordering the vertices by decreasing
degree� Variations on that include ordering the vertices by degree in the
subgraph which remains after the vertices up to the one in question are
deleted�

However	 for our purposes we will use the simple greedy algorithm as
the core of an iterative process	 where the permutations will be determined
by previous colorings� The idea is to use information obtained in a previous
coloring to produce an improved coloring� The following states that if we
take any permutation in which the vertices of each color class are adjacent in
the permutation	 then applying the greedy algorithm will produce a coloring
at least as good�

Lemma ��� Let C be a k�coloring of a graph G� and � a permutation of
the vertices such that if C�v��i�� � C�v��m�� � c� then C�v��j�� � c for
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i � j � m� Then� applying the greedy algorithm to the permutation � will
produce a coloring C� using k or fewer colors�

Proof� The proof is a simple induction showing that the �rst i color classes
listed in the permutation will be colored with i or fewer colors� Clearly	 the
�rst color class listed will be colored with color �� Suppose some element of
the ith class requires color i � �� This means that it must be adjacent to
a vertex of color i� But by induction the vertices in the �st to the i � �th
classes used no more than i � � colors� Thus	 the con�ict has to be with a
member of its own color class	 but this contradicts the assumption that C
is a valid coloring�

Clearly	 the order of the vertices within the color classes cannot a�ect
the next coloring	 because the color classes are independent sets� It is easily
seen that if the permutation is such that the k color classes generated by a
previous iteration of the greedy algorithm are listed in order of increasing
color	 then applying the greedy algorithm again will produce an identical
coloring� This is the heart of IG� repeatedly generate new permutations
satisfying the conditions of lemma ��� with respect to the previous coloring	
and apply the simple greedy algorithm�

Figure �� Simple Iterated Greedy Example Graph

The following example shows that rearranging the color classes can im�
prove the coloring number� Applying the greedy algorithm to the permu�
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tation �abcdef� of the vertices in �gure � yields the coloring a � �	 b � �	
c � �	 d � �	 e � �	 f � �� The permutation �fecdab� reverses the coloring
class order	 and applying the greedy coloring algorithm to it produces an
optimal ��coloring�

��� Reordering Heuristics

To clarify the following discussion on heuristics we refer to �gure �� Here the
oval shapes represent the vertices of each of three color classes generated by
the previous application of the greedy algorithm� Three di�erent orders are

Figure �� The E�ects of Di�erent Orders of the Color Classes
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represented� On the next application of Greedy	 the vertices in the leftmost
set will be colored with color �	 and the rest with colors � and �� The
arrows represent the possibilities of certain vertices being assigned a lower
color than the other vertices in the same set� We can think of this as moving
the vertices from one set to another� Notice that there are more paths for
movement in the order �� �� � than for the other orders� However	 this does
not mean it is necessarily the best order� For example	 the order �� �� � could
be better because if the �� �� � order is used	 moving some vertex from � to
� could block several vertices from moving from � to �� Of course the order
�� �� � can produce no improvement�

We must restrict ourselves to permutations which rearrange the color
classes� Many heuristics could be used� We consider the following where the
ordering refers to the color classes generated by a previous iteration of the
greedy algorithm�

Reverse order This intuitively should be useful since it gives the maxi�
mum opportunity for mixing classes� If j � k and class j precedes
class k in a permutation	 then no vertex from k can move to class j�
This is because every vertex in class k must con�ict with some vertex
in class j	 or else the preceding application of the greedy algorithm
would have assigned it the smaller color� However	 vertices of class j
are not necessarily all in con�ict with vertices of class k	 and so re�
versing the two classes could result in some vertices being moved to a
di�erent group� This heuristic should maximally enhance the mixing
of groups�

Increasing size Intuitively	 smaller classes	 that is ones with fewer vertices	
should have fewer adjacent vertices in total	 and so listing them �rst
should provide opportunity for vertices to move into new groupings�

Decreasing size We observed that one of the techniques for coloring is to
�nd large independent sets� Putting the largest independent sets �rst
increases their opportunity for further growth�

Increasing Degree Again we try to enhance mixing	 similar to the idea of
smallest classes �rst	 placing the color classes with the smallest total
degree �rst�

Decreasing Degree Ordering the classes by decreasing total degree �al�
though similar to the Welsh and Powell suggestion� does not seem to
be a good idea	 and is listed for reasons of completeness�
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Random order This is useful to prevent or break cycles that can arise
when other methods are used exclusively�

Although these strategies were tested individually we �nd that the best
strategy is one that mixes the above heuristics� Two types of mixing are
used� First	 sorting the classes by size is greatly enhanced by reverse order�
ing the classes of the same size� Whenever we refer to sorting by size �or
degree� we assume reverse order on equality unless otherwise stated� Second
switching between heuristics on di�erent iterations breaks up cyclic patterns
in the coloring process� Clearly it is not possible to have both increasing
and decreasing size as heuristics on any one iteration� Decreasing size is
generally quicker than increasing size	 but has a much stronger tendency to
stagnate� This is not unexpected since the largest classes will usually still be
the largest after recoloring� However	 even using a strategy of pure reversal
is less e�ective than one that occasionally uses a random reordering�

The heuristics based on degree sequence do not seem to be useful� One
quite e�ective combination for the graphs in the classes we are interested in is
four or �ve iterations of decreasing size	 followed by one or two of increasing
size or reverse order	 and occasionally inserting a random reordering step�
Another is to allow random selection between various heuristics	 with the
user specifying the relative frequencies� This last method provides the most
�exibility� We found that for G����� �

�
�k	 very good frequencies were decreasing

��	 reverse ��	 increasing �� and random ���
The program repeats the basic reordering and recolorings step until a

speci�ed number of iterations have occurred since the last improvement	 or
until a target coloring number has been achieved� In the next section we
discuss the measurements used to determine when a coloring is an improve�
ment�

One last detail should be mentioned� If	 using the measure of progress
de�ned in the next section	 the program fails to make an improvement after
some number of iterations	 then the best result so far is reintroduced� A new
sequence of reorderings is attempted from that point� The program allows
the user to specify the number of iterations to wait before retrying	 and a
maximum number of retries to any given point� If the maximum number of
retries is exceeded the process continues on inde�nitely along the last line
of search�
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��� Measures of Progress

It is easy to see that progress has been made whenever the coloring number
is reduced� However	 it may be that the program takes hundreds or thou�
sands of iterations on larger graphs between changes in the coloring number�
As a more re�ned measure of progress	 we take the sum of assigned colors�
This is the sum obtained by adding together all of the colors assigned to
the vertices� As the vertices form larger independent sets	 one would hope
that we are making progress towards reducing this sum� Of course this is
not strictly true	 since a reduction in coloring number could �and frequently
does� correspond to an increase in the sum of colors� Nevertheless	 exper�
iments show that this is a reasonable measure of progress	 and so it is the
measure used to determine when progress has ceased� A fudge factor of
current coloring number times the number of vertices is added to the sum�
This makes it more probable that a reduction in colors used reduces the
measurement�

In the following paragraphs	 we show that the smallest sum on a ��
coloring can be arbitrarily larger than the minimal possible sum	 and that
the coloring number associated with the smallest coloring sum can be arbi�
trarily larger than the chromatic number�

In �gure � an example is given to show that the smallest coloring sum
does not necessarily correspond to the smallest coloring number� If all of
the leaves are given color �	 then three colors are required	 and the minimal
coloring sum is ��� However	 the graph can be ��colored	 but the corre�
sponding sum will be at least ��� By using more leaves	 the sum di�erence
can be made arbitrarily large�

Figure � shows a ��colorable graph in which the minimum sum coloring
must have � colors� To minimize the sum	 color the black vertices with color
�	 the grey nodes with color � and the remaining two nodes with colors � and
�� To reduce the coloring number by one	 the node colored � would have to
be colored with color � or �� If � then the four adjacent black nodes would
have to increase their coloring number	 which increases the total� If �	 then
either the three adjacent grey nodes would have to increase their coloring	
increasing the total	 or decrease by one with corresponding increases in the
six black nodes at the bottom� Reducing the coloring to a two coloring
would increase the sum even further	 by a similar argument�

The graphs in �gure � and �gure � are the �rst members of a sequence in
which the kth member requires k colors to achieve a minimum sum in a ��
colorable graph� The kth member consists of two identical trees	 connected
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Figure �� Smallest Coloring Sum Requires � Colors

Figure �� Smallest Coloring Sum Requires � Colors
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at the root� Each root is connected to k leaves	 k � � ��trees	 k � � ��trees	
and so on up to � k � ��trees� An i�tree consists of a root connected to i
leaves	 i � � ��trees and so on� The construction of the �th member of the
sequence is illustrated in �gure ��

Figure �� Construction of the k � � Case

The number of vertices in the i�trees satisfy

T� � �

T� � �

Ti � � �
i��X
j��

�k � �� j�Tj

� �Ti�� � �Ti��� i � �
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and thus

Ti �
ai � bi

�
� a � � �

p
�� b � ��

p
�

The number of vertices in the kth member of the sequence is

Nk � �

�
� �

k��X
i��

�k � �� i�Ti

�

� � �Tk � �Tk���

�
ak�� � bk��p

�
� k � �

��� Anti	IG graphs

IG is not guaranteed to �nd an optimal coloring� In fact	 in the worst case
it can be as bad as a single iteration of the greedy algorithm� The almost
complete bipartite graph de�ned in ���� also foils IG� This graph is de�ned
by G � �V�E� where V � fa� � � �ang � fb� � � � bng and E � f�ai� bj�ji �� jg�
In the worst case the greedy algorithm assigns the same color to ai and bi	
requiring n colors when � would su
ce� If this happens then no reordering
of the independent sets will lead to an improved coloring��

The probability of producing an n�coloring on this graph is very small
for even moderate values of n� Suppose ai is chosen on the �rst step� Then a
b must be chosen on the second step to produce an n�coloring� If bi is chosen
on the second step with probability of ����n� ��	 then we may choose any
vertex for the third step� Otherwise we must choose bi on the third step
with probability of �n���

��n���
�

�n�� � �
���n��� � In either case we have reduced

the problem to the second step on n � � pairs	 and keeping in mind that
on the last vertex there is no choice	 we can repeat this to compute the
probability

P � P �n� coloring� �
n��Y
i��

�

���n� �i� ��

�

�
�

�

�n�� nY
i��

�

�n� �i� �

�If we start with an application of Br�elaz for the initial coloring� then this graph will
be two colored as Br�elaz guarantees optimal coloring of bipartite graphs�
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�n��n�

��n��

If any other coloring is produced	 then the �rst iteration in which a color
class with two or more vertices of one type �a or b� is �rst in the permutation
will color the graph correctly� �If two vertices from one side have the same
color	 then no vertex from the other side can have that color�� We can
produce a graph in which the probability of an n�coloring is arbitrarily high
using IG by creating enough components of this type	 that is by �xing � 	 �
and choosing a repetition number r large enough so that

��� P �r � �

� Experiments Using IG

With the many combinations of heuristics possible	 many tests were done to
determine the most advantageous ones� In general mixed strategies seemed
to perform best� Even apparently minor changes in control or frequency of
use of di�erent heuristics could cause changes in absolute e
ciency on par�
ticular graphs	 but mixes using about forty to �fty percent reverse ordering	
with the remainder decreasing size �with reverse ordering on equality� and
occasional random reorderings were robust over most graphs�

We �rst state the results using some of the best mixed heuristics	 and
then summarize brie�y the results obtained using each of the heuristics on
its own�


�� Mixed Heuristics

In �gure � we display typical behavior for coloring graphs from the classes
G����� �

�
�k for k from �� to �� in steps of �� Each curve represents the drop

in coloring number as the number of iterations increases� For each class	
ten graphs were generated and colored	 and ranked according to the total
number of iterations required to reach the speci�ed coloring� The graph of
rank �ve in each class was then chosen to represent the class in the diagram�
�For the �rst few values of k	 the plots are nearly coincident��

Initially	 the coloring number drops rapidly �from a range of ��� ���
down to about ��� for k � ���	 then there is a long period of slow decline
�to ��� and �nally a rapid drop to the speci�ed coloring� The period of slow
decline we refer to as the plateau �of di
culty��
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In table �	 we present the minimum	 maximum and average number of
iterations to complete the coloring for the ten graphs in each class� Not only
does the required number of iterations increase signi�cantly with k	 but also
the variation increases	 the maximum iterations being approximately double
the minimum in each case� The cpu time required for the longest run in class
G����� �

�
��� was ���� seconds� This gives an average time of ����� seconds per

iteration for ���� vertices� The time per iteration varies slightly	 decreasing
with decreasing coloring number	 but since nearly all of the time is spent in
the ��� to �� range	 this average is a good estimate for all of the longer runs�
�The time per iteration is greatly reduced for smaller graphs	 of course��

Color Min Max Avg

�� �� �� ����
�� �� �� ����
�� �� ��� �����
�� ��� ��� �����
�� ��� ��� �����
�� ��� ���� ������
�� ���� ���� ������
�� ���� ����� ������
�� ����� ����� �������

Table �� Iterations to Achieve a Speci�ed Coloring for G����� �
�
�k

Table � shows the results of applying IG to graphs in the class G����� �
�

�

Many more tests were done on this class	 with similar results for obtaining
colorings down to about ���� These test results are for �ve graphs using
a mixed strategy that seems to be among the best� Only �ve tests were
done due to the time required� The purpose of this test was to explore the
limits of IG� The program was set to run for ��	��� iterations after the last
improvement	 where an improvement is a reduction in the coloring sum as
discussed in a previous section�

The table shows the initial coloring number used by greedy	 the coloring
after one and two iterations	 and then the number of iterations to reach
colorings in the range from ��� down to ��� Only one graph reached �� and
none did better�

We note that IG is fairly e�ective down to colorings of about ��� to ���	
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Graph � Graph � Graph � Graph � Graph �

Iterations Colors used

It �� ��� ��� ��� ��� ���
It �� ��� ��� ��� ��� ���
It �� ��� ��� ��� ��� ���

Color Iterations To Reach Color

��� �� �� �� �� ��
��� �� �� �� �� ��
��� �� �� ��� ��� ��
��� ��� ��� ��� ��� ��
��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ���
��� ��� ���� ���� ���� ����
��� ���� ���� ���� ���� ����
��� ����� ����� ���� ���� ����
��� ����� ����� ����� ���� �����
��� ����� ����� ����� ����� �����
�� �����

Table �� Iterated Greedy on G����� �
�
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but then slows down signi�cantly� It is not an e�ective means of reducing
the coloring below ����

We can use another algorithm to generate a �rst coloring of a graph	
and then use the IG approach starting with that coloring� The DSATUR
algorithm of Br�elaz ��� is one that we have tested�� This algorithm colors a
vertex	 then selects the next vertex to be colored from the set which has the
largest number of di�erent colors assigned to its neighbors� The minimum
possible color is assigned to the vertices when colored�

For the same graphs in G����� �
�
��� as in table �	 we started the search with

one application of our modi�ed Br�elaz� While greedy gave initial colorings
ranging from ��� to ���	 the Br�elaz algorithm gave colorings ranging from
��� to ���� �These ranges are also typical of graphs in G����� �

�

� It took from

� to � iterations of IG to reach ��� and from � to �� iterations to reach
���� These latter values represent ���� to ���� seconds� However	 we should
keep in mind that Br�elaz requires more time than greedy because of the
increase in complexity� Perhaps a better comparison is obtained by noticing
that both approaches required similar times to reach a ��� coloring� To
complete the �� coloring required from ���� to ����� iterations with an
average of ������� This average is �! more than when the coloring process
started with greedy� On the other hand	 six of the ten graphs were faster
using Br�elaz� It does not seem possible to draw any �rm conclusions on the
merits of starting with Br�elaz�

Similar comments hold when Br�elaz is used to initialize the search on
graphs in G����� �

�

�


�� E�ectiveness of Individual Heuristics

In this section	 we report results in which individual heuristics were used
alone� These results are not in general nearly as good as the mixed heuristics
previously reported	 but may have scienti�c interest�

In a previous section	 we demonstrated graphs on which it was possible
that an initial coloring could not be improved by IG using any reordering
heuristic which preserves coloring classes as adjacent sets� Clearly	 there will
be more graphs which thwart optimal colorings if the possible reorderings
are restricted� When we restrict the heuristics to one of those which are

�We should point out that our version is slightly modi�ed from that given in the
reference� In particular� for these tests we did not select by decreasing degree� Earlier
tests showed that this did not alter the results by more than one or two colors usually�
The modi�cations were made while attempting to use Br�elaz in an iterative mode�
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deterministic	 such as smallest last	 or reverse order	 this problem can be
quite noticeable	 even on graphs in Gn�p�k for small k� We did several test
on graphs in the class G����� �

�
��� as an illustration� Initial greedy colorings

for this class are from ��� to ��� on the graphs tested�
Reverse ordering as stated should yield the maximum opportunity for

recoloring vertices� However	 in a test on � graphs	 it never managed to
obtain a �� coloring� The colors obtained were ��� ��� ��� ��� ��� ��� These
colors were obtained quite quickly	 ranging from ��� to ��� iterations� Then
the process apparently began to cycle	 as the coloring sum would become
�xed or cycle over one or two values� This occurred after the process pene�
trated the plateau exhibited in �gure �	 and had reached the region where
coloring drops rapidly� In fact	 this rapid drop was evident in each case right
up until the stagnation occurred�

For decreasing size	 progress usually terminates after only � or � iter�
ations	 with further iterations repeating one coloring sum� Little improve�
ment is made over the initial coloring	 ranging from zero to three colors�
If reverse order is used for those sets of equal size	 instead of the previous
order	 then the coloring was reduced further	 from ��� to ��� in the three
graphs tested	 although progress terminated after �� iterations �in a sample
of three graphs��

Using the increasing size heuristic	 colorings from ��� to ��� were ob�
tained	 but considerably more time was required� In this case the tests were
terminated before there was evidence of repetition of the coloring sum� This
heuristic just does not seem to progress well� When classes of equal size are
placed in reverse order	 with smallest coming �rst	 then the coloring was
reduced to ��� to ���� Again	 the coloring sum did not show evidence of
repetition	 but no progress was achieved in reasonable time�

Smallest total degree �rst behaved similar to smallest size �rst	 except
that it did better when sets of equal degree were kept in the same order
rather than reversing them� The tests only used three graphs �the same
three as in the smallest �rst test��

Largest degree �rst did not perform as well as smallest degree �rst	
obtaining colorings of from ��� to ��� in �� to �� iterations� In this case	
reversing the order on sets of equal degree did improve the performance
in one case	 while worsening it in the other two� More tests need to be
performed in these cases	 as little experimental work has been done with
these two heuristics�

Using random reordering	 the speci�ed coloring can usually be achieved	
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although it takes ���� or more iterations�
From these limited results one might conclude that the reverse ordering

heuristic is the best	 but should be mixed with random reorderings occasion�
ally to prevent stagnation� Using a random reordering every �� iterations
resulted in the speci�ed coloring being found on each of �� graphs	 with the
number of iterations ranging from ��� to ��� with an average of ������ This
compares well with the results in table ��

However	 for larger k it is worthwhile applying iterations of largest size
�rst with equal sizes being reverse ordered� A number of di�erent strategies
for mixing heuristics have been tried� Surprisingly	 one of the best	 and the
one used to develop most of the ��� vertex landscape in part IV	 was to use
� iterations with largest �rst	 followed by one of smallest �rst	 with every
��th iteration being a random shu"e� On a ten graph sample from G����� �

�
���

we have been unable to improve on the results of this mix even after dozens
of attempts� The di�erences are not large	 however	 and a lot could depend
on the luck of the draw�

It should be pointed out that even with mixed heuristics	 on very rare
occasions the process will hang up just short of the speci�ed coloring� Re�
running with even a minor change in the mix �xes this� In the next part we
introduce mixed algorithms	 which also correct this problem�


�� Notes on the behavior of IG

Turner ���� proved that for a �xed k	 almost all k�colorable graphs are easy to
color� The algorithm he used is a re�nement of Br�elaz�s DSATUR algorithm�
It operates in two stages	 the �rst trying to grow a clique of size k	 and the
second selecting vertices which have exactly one of the k colors available to
them� He uses this improbable sounding algorithm to prove that as n goes
to in�nity	 almost all k�colorable graphs �for a �xed k� will be optimally
colored�

Simulations and analysis both suggest that the point at which the al�
gorithm fails ��! of the time grows logarithmically in n	 with the failure
at k � � for n � ����� He �nds experimentally that DSATUR has similar
capabilities�

On the other hand	 Turner shows that the greedy algorithm has low
probability of �nding a k�coloring	 even if k is as small as four� In fact	 �
the greedy algorithm can be expected to produce colorings that di�er from
optimal by an arbitrarily large factor��

Ku#cera ���� improves Turner�s result in the asymptotic sense by showing

��



that for k � pcn� logn	 a k�colorable graph is easy to color using an algo�
rithm he presents� The c he proposes can be as large as �����	 which for a
graph of ���� nodes gives a k of �� However	 he does not implement or test
his algorithm�

In the light of the above negative comments on greedy	 it is interesting
that iterated greedy performs so well� Here we try to improve our intuitive
understanding of the algorithm�

Discussion of IG in previous sections shows how it could work	 but not
why it should work on k�colorable graphs� The drift through the plateau
takes a very long time� Let us suppose for now that it is just a random
search process	 except that the coloring number is not allowed to increase�
How do we explain the rapid drop below the plateau$

The basic observation is that once a small enough coloring has been
discovered	 then with high probability theremust be some sets in the coloring
that are subsets of some of the speci�ed sets� For example	 suppose we are
coloring a graph in G����� �

�
��� and currently have achieved a ���coloring�

We can assume that the largest independent sets in the ���coloring have at
most �� vertices� If so	 these are almost surely the speci�ed sets	 because the
probability of getting any vertex non�adjacent to all �� vertices in a speci�ed
set is ����� 	 In fact	 it is well known ���� that the largest independent set
in a graph in G����� �

�

is likely ��	 and most sets will be of size �� or less� For

our example	 a ���coloring means there must be some sets of size ��	 which
will likely be subsets �or very nearly so� of the speci�ed sets� If these sets
are placed near the beginning of the order �by the largest �rst heuristic�
then they will almost surely achieve their maximum size of ��� If they are
placed near the end �by the reverse order heuristic� then either they retain
their size	 or other sets of similar size must be formed�

In all cases	 the coloring sum will be reduced with high probability	 and
so the coloring number is forced down� The remaining subgraph	 not yet
correctly colored	 is reduced in size	 and so is easier to color� Even when the
coloring is large enough to be near the plateau	 there is a chance that some
set will be a subset of one of the speci�ed sets	 and when such a set moves
to the front of the ordering	 it has a good chance of collecting many of the
vertices of the speci�ed set containing it�

Notice how this analysis fails as k goes to the expected coloring number

�Given the combinations of sets and vertices available� there is a small probability of
a set of size �� not being a speci�ed one� but for purposes of our intuitive analysis� we
ignore this�
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of a random graph� In this case	 the speci�ed sets have no advantage over
the huge number of other maximal independent sets in the graph�

This analysis leaves much to be desired	 and is only an initial step to
understanding why this algorithm should work� Other considerations have
to be taken into account to explain the rapid drop through the plateau when
k is small enough� For example	 it seems likely that when k is small �say
k � �� then out of the set of independent sets on any coloring	 there is high
probability that some of them will be subsets of one of the large speci�ed
sets	 or nearly so� Once such a set is the �rst in the ordering	 it will collect
most of the remaining vertices in the set� This leaves only two sets in the
remaining subgraph to be colored� Notice that if we increase p while keeping
k �xed	 this argument implies that the coloring becomes still easier� This in
fact has been observed while exploring the ��� vertex landscape discussed
in Part ��

Finally	 these arguments also yield an intuition as to why increasing the
variance in the coloring seems to aid the algorithm� The larger the largest
sets are	 the easier they are to identify	 because the probability will be higher
that some independent set is a subset of one of them�
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Part III

Combining IG with Other

Algorithms

The pure iterated greedy algorithm	 although sometimes successful	 still
does not perform well on G����� �

�

� Hertz and de Werra ���� describe the

application of a technique called Tabu search attributed to Glover����� Using
this technique they were able to color graphs in G����� �

�

with �� colors� Using

a more sophisticated technique	 in which they �rst found large independent
sets using Tabu and then applied Tabu coloring to the remaining vertices	
they obtained at least one �� coloring�

In this section we describe the combination of IG with Tabu	 and show
where improvements can be made� We discover that in di�erent classes	
di�erent mixes are required for e�ective performance�

� Tabu Algorithm

The Tabu algorithm in one sense is dual to the greedy algorithm� The
greedy algorithm generates independent sets by adding vertices one at a
time so that no con�icts are created� Tabu starts with a partition of the
vertices	 with vertices assigned at random	 and then tries to remove con�icts
by re�assigning vertices�

To be more precise	 suppose at step t we have a partition st � �V�� � � � � Vk��
We call st a point in the search space� We may generate a new point �re�
ferred to as a neighbor of st� by selecting at random any vertex in con�ict	
and moving it at random to any other partition element�

Tabu works by generating a set of such neighbors	 and then selecting
the neighbor with fewest con�icts to be the new partition at step st
�� To
prevent cycling through a small set of good but suboptimal points	 a list of
the last q moves is kept	 and the reverse of these moves are not allowed� As
each new move is generated	 the oldest move is removed from the Tabu list	
and the newest move is added�

Note that the number of con�icts could refer to either the number of
edges or the number of vertices	 or some function of the two� The choice
will a�ect the nature of the subgraphs of vertices that remain in con�ict as
the algorithm progresses� Minimizing vertices will generally tend to result
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in dense subgraphs	 while minimizing edges allows for sparser subgraphs�
Hertz and de Werra use the number of edges	 but do not discuss the trade�
o�s� In limited tests	 this seemed to be as good as any other measure we
found�

They do suggest a number of improvements to their algorithm� One is
the use of an aspiration function	 another is the immediate acceptance of a
neighbor if its con�ict value is less than the current value� They also use a
type of brute force search when the number of con�icts is small� We do not
use aspiration	 require at least a minimum number of neighbors be generated
even if a better solution has been found	 and use a type of brute force search
when the number of con�icts is small�

Parameters to our Tabu are the number of neighbors to be generated	
the minimum number of neighbors and the size of the Tabu list� Following
Hertz and de Werra	 we use a Tabu list of size �� For ���� vertex graphs
we usually generate ��� neighbors	 while for ��� vertices we generate only
���� The minimum number of neighbors is usually set between � and ���
The idea behind this last is that if it is very easy to generate an improved
neighbor	 then we are likely at a point where there are many improvements�
Perhaps one could say we are not believers in lucky breaks�

Using these techniques	 we were able to get results similar to those re�
ported in ���� for colorings down to the mid ���s on G����� �

�

� However	 we

had a further purpose in mind	 to be developed in the next section�

� Combining Tabu and IG

One of the problems inherent in the Tabu design is its all or nothing char�
acter	 at least if the goal is to �nd a proper approximate coloring� Tabu
starts with a partition of the desired size	 and attempts to remove con�icts
until there are none	 or terminates because it has exceeded some upper limit
on its search time� Of course	 it will always give an approximately correct
solution	 which may be useful if the goal is to color vertices with the given
number of colors while minimizing the number of con�icts�

We can build a composite algorithm as follows� First	 we start with some
valid k�coloring of the graph� We then set k� � k� c for some small value c	
sort the vertices using the current coloring by decreasing size of independent
sets	 use the �rst k� sets to seed the partition	 and then distribute the re�
maining vertices �from the c smallest sets of the current coloring� over these
sets� In our implementation	 each vertex is tested in turn to see in which
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independent set it creates the fewest con�icts	 and is added to that set� In
this way we hope to give Tabu a boost over a random partition as an initial
step�

Second	 if Tabu fails to �nd a correct coloring in the prescribed time	
then the partition number is incremented by one	 and the process continued�
This means that the newest partition element is initially empty	 but vertices
in con�ict can be moved into it� An untried improvement might be to move
some portion of the con�ict vertices into this new element immediately�

Third	 after repeating the second step c times	 which means the partition
is of the same size as the current coloring	 we can use IG to rearrange the
current best coloring and try again�

Our over all process can now be described�

�� Generate an initial coloring using some algorithm	 for example Br�elaz
or greedy�

�� Perform some number of IG steps�

�� Apply Tabu as described above�

�� Repeat steps � and � until the coloring criteria are satis�ed or time
limits are exceeded�

In step �	 we use the best result found by IG �the coloring with the
smallest coloring sum found so far� as the initializer� If Tabu fails to �nd a
reduced coloring	 then we allow Tabu to attempt to �nd a new coloring of
the same size	 and if it does we use that as the new coloring to initialize the
next IG step� In this way	 we have a chance of getting out of valleys that
can trap IG�

In case of failure	 the grand loop is terminated by a �xed upper limit
on the number of iterations	 usually from � to ��� IG and Tabu are ter�
minated after some upper limit of iterations have occurred since the last
improvement� For Tabu	 an improvement is a reduction in the least number
of con�icts seen so far� For IG	 an improvement is a reduction in the sum
of colors�

� Experimental Results using IG	Tabu

In this section we report on results using the combined IG and Tabu al�
gorithms	 and on Tabu alone� In �gure � and table � we showed how IG
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performed on the class G����� �
�
�k for various k� One of the features we noticed

was that after an initial rapid decline	 there was an increasingly long plateau
where progress was very slow� Then there was a rapid drop again after the
coloring dropped through the plateau�

In �gure � we show the rate at which con�icts are removed using Tabu
for graphs in classes G����� �

�
�k	 for �� � k � ���� Figure � demonstrates

that the number of iterations required for Tabu increase in a manner similar
to that for IG� In particular	 there seems to be a plateau	 and after it is
penetrated there is a rapid drop in the number of con�icts� As before	 we
choose a median from each class for inclusion in the �gure	 where for k � ��
it is the median of three runs� Notice that as the value of k increases	 the
initial number of con�icts decreases as we would expect�

In table �	 we list the minimum	 maximum and average iterations re�
quired by Tabu to color graphs in G����� �

�
�k for k from �� to ��� Because the

coloring times are so long	 we have limited our experiments to �� graphs each
for �� � k � ��	 � for k � �� and � on k � ��� It is obvious	 even allowing
for ine
ciencies in our code	 that this is not the right method for coloring
graphs in these classes� We note here that our program uses cpu time per
iteration very similar to that in ����	 but we do not have a good compari�
son of the processor speeds	 and suspect our code could be improved� The
longer run on G����� �

�
��� required ����� seconds on the SUN IPC� Extrapo�

lating from the last line of table � in ����	 theirs would use ����� seconds
for ������ iterations�

k Min Max Avg

�� ���� ���� ������
�� ���� ���� ������
�� ���� ���� ������
�� ���� ����� ������
�� ����� ����� �������
�� ������ ������ ��������

Table �� Iterations Required by Tabu on G����� �
�
�k

�We ran tests on k 
 �� also� but did not include them in the �gure because the runs
are so long they distort the graph too much to see the lesser runs�
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For graphs in G����� �
�

	 we found it best to let IG work for the �rst few

color reductions	 down to about ��� colors	 then to increasingly rely on
Tabu� This means we should vary the number of iterations before switching
according to how far the program has progressed� To this end	 our program
allows the input of a sequence of change over characteristics� Speci�cally	
the user enters a table of control values� Each row of the table consists of
four values� The �rst value is a coloring number	 such that the remaining
values are in e�ect when the current coloring is as large as this value	 but
smaller than the next larger coloring number� The other numbers are� a
step number	 indicating how many colors to reduce the current coloring by
when switching from IG to Tabu� and iteration limits for IG and Tabu	
indicating to each how long to continue a search before giving up� These
greatly increase the number of parameter combinations available for testing�

Table � lists the CPU times used in one experiment on ten graphs in
G����� �

�

�� A �xed set of parameter settings was used for the entire exper�

iment� These runs were on a SUN ��� which runs slower than the IPC�
Dividing these times by ���� to get times comparable to the IPC shows
that these searches for ���colorings range from ���� to ���� seconds	 which
compares with the average of ���� reported by Hertz and De Werra�����
This seems to re�ect favorably on the mixed algorithm	 given that an itera�
tion of our implementation of Tabu requires almost the same time as theirs�
However	 they report only a sample of � graphs and as table � illustrates	
variability is high� Also	 we used ��� instead of ��� neighbors in our search
step�

In another test on an IPC a ���coloring was found in ���� seconds	
while yet another reached �� in ��� seconds but was then unable to reduce
the coloring further even after a long time� It appears that luck plays a
large part in performance of these algorithms� A more careful series of
experiments should perhaps be done	 but results in the next section would
seem to supersede anything that is likely to be obtained from this approach
on graphs in G����� �

�

�

At this point one wonders whether using a mixed approach might im�
prove the coloring times on Gn�p�k for large n and k� Our initial results were
promising� the time to reach colorings in the �� to �� range on G����� �

�
��� was

reduced by a factor of nearly ��� Note these values are in the middle of the
plateau in �gure �� However	 the total time required to �nd the ���coloring

�Starred entries indicate a ���coloring was not produced� the times are for the next
smaller coloring�
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� ��� ���� ���� �����  
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� ���� ���� ���� ����� �����
� ���� ���� ����� �����  
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� ��� ���� �����   
� ��� ���� ����� �����  

�� ��� ���� ����� �����  

Table �� Mixed Algorithm CPU Times on a SUN ���

increased dramatically� One might suspect the long times used by Tabu as
indicated in table � are at fault	 and so reverting to pure IG after reaching
�� would give us the bene�ts of both approaches� a faster initial reduction
to the middle of the plateau	 and then the faster approach of IG to �nish�

This turns out not to be the case� In one typical test of three graphs	
IG required from ����� to ����� iterations to reduce the coloring to �� after
Tabu had helped it reach the mid�nineties� The total CPU time ranged from
���� to ���� seconds� Notice that graphs in this class required from ����
to ����� total iterations when IG was used alone �table ��� It took more
iterations just to get o� the plateau after being �helped� by Tabu than the
total used by IG working alone�

Other tests seemed to indicate that no amount of Tabu is useful in aid�
ing IG on these graphs	 unless k is very close to the expected coloring of
a random graph� Various parameter mixes were tried without success� We
suspect that applying Tabu to get a smaller coloring leaves the structure of
the independent sets in a di�erent form that hinders IG on these graphs�
Perhaps Tabu tends to equalize the set sizes	 while IG tends to build some
larger sets making the smaller ones easier to eliminate� A deeper under�
standing of this phenomenon could be useful in designing better coloring
algorithms�

There is an exception to this negative result� Very rarely	 IG will get
within a few colors of the speci�ed coloring	 and then fail to make any more
progress� Apparently IG is locked in a way similar to the Anti�IG graphs
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of section ���� In this case	 Tabu will very quickly �nd a reduction of one
or two colors	 and since we are far below the plateau of di
culty in these
cases	 IG can then quickly complete the coloring�

In a subsequent section we do a comprehensive set of experiments on
��� vertices	 letting k increase arbitrarily with various edge probabilities�
When k is su
ciently large	 IG is unable to �nd the speci�ed coloring in a
reasonable time� Here Tabu is helpful in reducing the coloring somewhat	
although it too often fails to �nd the speci�ed coloring� Sometimes when
we are very near the ridge on ��� vertex graphs	 Tabu is able to reduce the
coloring enough to allow IG to complete the coloring�

One wonders if we were to insist on the optimal coloring on random
graphs	 whether in fact Tabu or IG would be superior	 and whether a mix
would be an improvement� Unfortunately	 time considerations make this a
mute question on large graphs�


 The Maximum Independent Set Approach

Johri and Matula���� �see also Manvel����� and Bollob�as and Thomason���
developed extremely greedy coloring algorithms� These algorithms attempt
to recursively �nd a maximal independent set and assign a color to its ver�
tices� Of course	 �nding maximum independent sets is also NP�hard	 requir�
ing exponential time for the best algorithms known� Bollob�as and Thomason
used a backtrack approach with heuristic pruning that gave large if not max�
imal sets� When the uncolored subgraph was reduced to about ��� vertices
they switched to a brute force maximum independent set search	 and in the
range of �� to �� vertices they did a brute force coloring� The method of
pruning was based on several parameters to limit searches when large inde�
pendent sets were found� This approach resulted in an average coloring of
���� on a set of ten graphs from G����� �

�

�

The approach in ���	 ��� is similar and resulted in average colorings of
�����

We implemented a similar approach which we call MAXIS	 but simpli�
�ed the pruning somewhat	 asking the user to specify a cuto� number for
di�erent ranges of remaining vertices� We introduced some other ideas	 such
as sorting the vertices by degree in the hopes that the number of remaining
vertices would be increased	 and thus lead to larger independent sets� We do
not switch to brute force coloring for small remaining sets	 relying instead
on IG and Tabu to clean up after MAXIS� We do retain the idea introduced
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in ��� that when two or more independent sets of maximal size are found	
we retain the one with the largest total degree� This reduces the number
of edges in the remaining uncolored subgraph	 and so often improves the
coloring� Heuristics with similar intent are described in �����

MAXIS is used to obtain an initial coloring of a graph	 and then IG and
Tabu are used to try to improve the coloring� Many variations have been
tested and more details will be given shortly� On G����� �

�

one test on ��

graphs gave two ���colorings	 eight ���colorings and one ���coloring� The
coloring times ranged from ���� seconds to ���� seconds on a �� MIPS SUN
ELC�� All but the one graph received �� colorings in under ���� seconds�
The program was allowed to continue the IG�Tabu search for about ����
seconds total before terminating in each case�

However	 a bizarre bit of serendipity played an important part in these
results� A program bug caused what was intended to be a sort based on
degree to generate instead an essentially random permutation� When the
bug was removed	 the program did not perform as well� This led to further
research into heuristics applicable to this approach	 which will be presented
here�

In ��� it is pointed out that with high probability the coloring number
of graphs in this class is at least ��	 and with high probability the maximal
independent set approach	 even if the maximum independent sets could be
found	 would yield at best an �� coloring� Thus	 these colorings are quite
good�

��� MAXIS Details

The heart of the MAXIS program is a routine to �nd a large independent
set in an uncolored subgraph� Once a satisfactory set is found	 it is colored	
and the independent set routine is applied to the remaining subgraph� No
attempt is made within MAXIS to reorganize the independent sets that are
found�

The independent set routine is based on a simple backtrack approach
similar to the one described in ���� We describe the algorithm recursively
in �gure �� As mentioned previously	 NewSet is better than MaxSet if it
is either larger	 or its total degree in the original graph �i�e� the graph
in the top level call to IndSet� is larger� The purpose of this is to reduce

�Our tests showed that the SUN ELC was almost exactly ���� times as fast as the SUN
IPC on this program
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Function IndSet�Graph� returns Set
Initialize MaxSet to empty
While �Graph not empty� do begin

Select a vertex v and Delete it from Graph
Subgraph � vertices in Graph not adjacent to v

NewSet � IndSet�Subgraph�
if �NewSet � fvg� is better than MaxSet

MaxSet � NewSet � fvg
end
Return MaxSet

end�

Figure �� The Independent Set Routine

the number of edges in the uncolored subgraph in order to increase the
likelyhood of larger independent sets being found later�

The selection of the next vertex can be done at random	 or it can be
chosen based on some easily computed feature of the graph	 such as the
degree sequence� In MAXIS the vertices are sorted by the degree sequence
of the subgraph	 using one of three di�erent sorting criteria� The sort is
either by increasing degree	 by decreasing degree	 or the mean degree is
computed and the sort is by the absolute di�erence from the mean�

The vertices are sorted by degree sequence within each subgraph� We
may specify the sorting to be one of the three described above� The e�ects
of di�erent sorting mixes will be described in the next section� Basically	
we have tried schemes in which the vertices are always sorted by increasing
degree	 or the �rst vertex or two of the independent set may be selected
by maximum or mean degree	 with the remaining selected from smallest
degree� The switch point is speci�ed as a percentage of the initial number
of vertices	 below which we use increasing degree sort�

Notice that if we do a complete traversal of the backtrack tree	 the order
will make no di�erence in either the size or total degree of the independent
set found	 or in the amount of backtracking that is required� However	 in
this case sorting by decreasing degree is more e
cient	 since the size of the
subgraphs to be dealt with will on average be smaller� This observation has
been con�rmed by experiment on small graphs	 but if a complete search is to
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be made it is probably better to avoid sorting and use instead more e
cient
structures that are not as e�ective when sorting is used�

Of course	 this algorithm is hopelessly exponential if implemented as
described� To reduce the search time	 we prune the search by truncating
the while loop before the graph becomes empty� There are many possible
variations and heuristics� We have tried many in MAXIS	 including ones
similar to those described in ���� When sorting by increasing degree sequence	
we tried truncating when the degree of the next vertex exceeded a certain
value� We tried various percentages of the remaining vertices	 and even
at one point tried setting parameters that were then used to compute a
quadratic curve that speci�ed the percentage of the current subgraph to
explore� This variation held some promise�

Finally in order to provide more precise control	 we simply take as input
to the program a sequence of integer pairs	 with the �rst members taken in
decreasing order so they specify a set of intervals� MAXIS determines the
interval containing the number of vertices in the current subgraph	 and then
uses the corresponding second number of the pair as the truncation limit�
This hackers�delight allows us to �ne tune the truncation�

��� MAXIS Experimental Results And Analysis

As mentioned previously	 we obtained excellent colorings from an early ver�
sion of this program� Although we intended to use increasing degree sort
throughout this experiment	 we discovered that an error had caused the
initial degree sequence to be in error	 thus causing the initial permutation
to be essentially random� When the bug was �xed	 the program no longer
performed as well�

The idea behind using increasing degree is that if we use low degree
vertices then the remaining subgraph will be larger� This should increase
the likelyhood of �nding a larger independent set� In fact	 experiments
con�rm this�

On the other hand	 we are not interested in the largest independent sets
per se	 but rather in the minimal number required to cover the vertices� To
this end	 when two or more independent sets of the same size are found	
the one with the larger total degree �with respect to the initial subgraph� is
selected� The idea is that this leaves a sparser uncolored subgraph	 decreas�
ing the expected number of colors required for the remaining vertices� This
approach has been described by ����

It is clear that these two ideas con�ict with one another	 given that
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we only do partial searches� If we use larger degree vertices we may build
smaller sets	 but if we do manage to get large sets	 then we are more likely to
have a greater total degree� The interaction of selection criteria and pruning
then requires a balance between these di�ering objectives�

There is yet another consideration to be made� The coloring obtained by
MAXIS is reduced by the action of the IG%Tabu coloring process� Di�erent
colorings	 even when they require the same number of colors	 may respond
di�erently to this latter process� Recall for example the experimental results
on k�colorable graphs using IG and Tabu� At this point we are unable to
tell what e�ects there may be	 although it seems that increasing the search
done by MAXIS generally aids in reducing the �nal coloring�

To obtain some indication of these trade�o�s we report here and in the
next section results from a series of experiments�

First Sort By
Graph Mean Smallest Largest

� ��%�� ��%�� ��%��
� ��%�� ��%�� ��%��
� ��%�� ��%�� ��%��
� ��%�� ��%�� ��%��
� ��%�� ��%�� ��%��
� ��%�� ��%�� ��%��
� ��%�� ��%�� ��%��
� ��%�� ��%�� ��%��
� ��%�� ��%�� ��%��
�� ��%�� ��%�� ��%��

Total ���%��� ���%��� ���%���

CPU ������%������ ������%������ ������%������

Table �� Colorings Obtained by MAXIS

In table � we list the colorings achieved on ten graphs in G����� �
�

� The

�rst vertex of each independent set was selected according to the criteria
indicated at the head of each column	 while remaining vertices were selected
by minimum degree� Using a sort which places values near the mean �rst	
we obtain the best colorings	 with an average of ���� colors used per graph�
In each column a pair of colors is presented� The �rst member of each
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pair is the coloring number obtained by MAXIS	 while the second is the
coloring number after application of IG%Tabu� The �rst CPU time is the
average required for MAXIS �in seconds�	 while the second is the average
time to achieve the minimum coloring� � The parameters were chosen so that
the algorithm continued for about one hour total time before terminating�
Notice that the CPU times decrease as we select larger degree vertices for
the �rst vertex of the independent set� Although it seems clear that the
mean��rst is better than the smallest��rst	 the di�erence between the mean�
�rst and largest��rst is not so clear� In particular	 the largest��rst found an
���coloring not found by the mean��rst�

Mean��rst Smallest��rst

Index Number Index Number

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
�� � � �
�� � � �

total �� ��

Table �� Number of �� Sets Found

The role of �nding large sets can be put in perspective by examining
table �� Here we list the number of independent sets of size �� found by
IndSet� Index i means the set found was the ith independent set of some
graph� For example	 the second last line means that the mean��rst approach
found one independent set of size �� as the �fteenth independent set gener�
ated in a graph� Since all preceding sets were of size �� except for two of size
�� in that particular graph	 this means the �� set was found in a subgraph
of only ��� vertices�

Compared to these results	 the largest��rst approach only produced two

�Times in this section are all from the SUN IPC
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�� sets	 both from the same graph �with indices � and ��� In ���� it is pointed
out that ��! of ���� node random graphs should have a �� set as the largest
independent set	 and in ��� the �nding of �� sets is again noted as being of
importance� Comparing the results of the three approaches	 it is not clear
that �nding the maximum sets is really the most important aspect of the
search�

In each of the three experiments we used the cuto� speci�cations

����� ��� ����� ��� ���� ��� ��� ���

That is	 if there were ��� or more vertices in the subgraph we cuto� after
the �rst � vertices have been tried	 if ��� to ��� vertices are in the subgraph
the cuto� is after six vertices and so on� Many di�erent cuto� patterns have
been tried� It generally seems to be better to have a larger branching factor
near the root of the search tree	 with decreasing branching deeper in the
tree� Keeping other factors equal	 decreasing the branching factor for larger
subgraphs	 while increasing it for smaller subgraphs seemed to require more
CPU time to achieve similar results�

If we select any vertex v from a ��colorable graph	 then there is some
maximal independent set containing v which contains all vertices with the
same color as v� This leads to the idea that perhaps it is not necessary to
try more than one vertex as the �rst vertex of an independent set� Notice
that this seems to contradict the observations of the preceding paragraph�

This can be implemented in MAXIS by simply not backtracking on the
initial graph� The results of this approach are presented in table �� Here we
used only the largest��rst approach	 but present results from two di�erent
cuto� sets��

We see in table � that the time required by MAXIS more than dou�
bled for the more thorough search� Interestingly	 the colorings achieved by
MAXIS did not improve signi�cantly	 and actually became worse for graph
�� Comparing the results to table � we see support for the claim that it is
better to have a higher branching factor near the root of the search tree�

It also seems that putting some time into IG%Tabu is better than relying
solely on MAXIS� However	 IG%Tabu seems only capable of reducing the
coloring by a small amount	 even if the initial coloring is quite bad� In fact	
IG%Tabu was allowed to run for several minutes after the �nal colorings were
achieved in the �rst case without further improvement�

�Each set actually started with the pair ����� ��� but this is irrelevant given that no
backtrack over ��� vertices occurs under the given conditions�
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Cuto� Sets
Graph ����� ���� ��� �� ����� ���� ��� ��

� ��%�� ��%��
� ��%�� ��%��
� ��%�� ��%��
� ��%�� ��%��
� ��%�� ��%��
� ��%�� ��%��
� ��%�� ��%��
� ��%�� ��%��
� ��%�� ��%��

�� ��%�� ��%��

Total ���%��� ���%���

CPU �����%������ ������%������

Table �� Limited Backtrack Using MAXIS

Reducing the search time spent by MAXIS even further can still result
in good colorings	 with considerable savings in time� Using the cuto� set
����� ��� ���� ��� ��� ���	 with no backtrack on the �rst vertex selection	 on �
graphs we obtained a �� coloring in each case in an average time of �����
seconds� This was reduced by IG%Tabu to an �� or less coloring in an average
total time of ����� seconds�

� � � � � � � � � ��
��%�� ��%�� ��%�� ��%�� ��%�� ��%�� ��%�� ��%�� ��%�� ��%��

Total ���%��� CPU ������%������

Table �� Colorings Using Largest First	 Mean Second	 Smallest for the rest

Finally	 we show the best results we have for these ten graphs	 in terms
of coloring and time in table �
� In this case	 we used the largest degree �rst
to select the �rst vertex of the independent set	 the mean degree �rst for

�Using the bounded backtrack ideas described below� which do not change the colorings
in any way� preliminary tests indicate these times can be reduced by about ��� seconds
to ���������
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the next vertex	 and the smallest degree �rst for the remaining vertices� We
again achieve an ���� average coloring	 but this time the ���colored graph
is number one �that makes three of the ten graphs colored with �� colors��
Only two independent sets of size �� were found� Complete backtrack was
done with cuto�s ����� ��� ����� ��� ��� ��� Additional tests were made with
the �rst two or three vertices being chosen using mean degree �rst etc�	 but
no better mix has yet been found�

A second set of experiments was done on graphs in G����� �
�
���� Recall

that IG alone solved these graphs in about one hour� For MAXIS	 we found
the cuto�s ����� ��� ����� ��� ���� ��� ��� ��� gave us the best results� These
cuto�s are similar to the ones we used in the previous experiments	 except
that now the last pair	 ��� ��� helps prevent the formation of several small
sets when only a small subgraph remains to be colored�

Using these	 we tried the program using largest	 mean and smallest�
�rst sorting and present the MAXIS results in table �� Limiting IG to
��� iterations after the last improvement	 it always found the optimal ���
coloring using the mean��rst approach in an average of ������ seconds� that
is an additional ��� seconds on average� However	 it often failed to �nd
���colorings for the other two approaches within this limit� Although below
the plateau of di
culty	 it nevertheless sometimes requires more than ���
iterations in these cases between improvements�

Earlier	 the version of the programwith the sorting bug also found similar
good colorings for this class of graphs� Using mean��rst or largest��rst for
the second vertex selection generally did not lead to good performance�

The di�erences in the colorings obtained by MAXIS using di�erent sort�
ing approaches are quite large on these graphs	 and beg for an explanation�
First	 we try to explain why MAXIS should work as well as it does�

The basic feature of k�colorable graphs	 when k is small enough	 is that
the independent sets of the optimal coloring are larger than the �millions
of� remaining maximal independent sets� Suppose we have selected our �rst
vertex v	 and the maximum independent set containing it is S�v�� Then in
the subgraph of vertices not adjacent to v will be all vertices in S�v� n fvg	
and about one half of the vertices of the remaining independent sets� A
vertex in S�v� n fvg will be adjacent to about one half of the vertices in the
subgraph not in S�v�	 or about

Nin �
�k � ��n

�k

vertices on average� Any vertex in the subgraph not in S�v� will be adjacent
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Table �� MAXIS on ���colorable ���� node graphs

to about one half of the vertices not in its maximal set	 or about

Nout �
�

�

�
n

k
� � �

�k � ��n

�k

�
� Nin �

n

�k

For example	 for n � ���� and k � ��	 the average degree of a vertex in S�v�
will be about � more than one not in S�v�� This implies that the vertices
most likely to be of minimum degree in the remaining subgraph are those in
the maximum set containing v� Thus	 choosing a vertex of minimum degree
after the �rst is chosen enhances the probability of selecting a vertex of the
same set� This e�ect increases as further successful selections are made�
Notice that the probability of a good selection is also increasing because the
good set increases its proportion of the remaining subgraph�

Good approximations may still be made to some maximum set	 even if
the second selection is not from the same optimal set as the �rst� The third
vertex selected may be from either of the �rst two sets	 and then subsequent
selections will be enhanced towards that set in a similar manner to that
discussed in the previous paragraph�

If the coloring number increases much beyond ��	 then the largest sets
are no longer the ones induced by the k�coloring� When these sets are
at or near the expected size of the naturally occurring independent sets
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in a random graph	 the bias towards their selection disappears� However	
other maximum independent sets of this size will not lead to a k�coloring in
general	 and so the algorithm fails in this case�

There is an anomaly suggested by this heuristic analysis when compared
to the experimental results� It would seem that choosing a vertex of large
degree on the �rst selection would increase the likelyhood of good selections
later� The reason is that more vertices of other sets would be removed from
the subgraph� However	 the experimental results in table � provide dramatic
evidence to the contrary� This leaves open the question of why this should
be so� One possible answer �in part�� when we choose the independent sets
with the largest total degree	 the remaining subgraph will be sparser� But
this means the random sets will on average be closer in size to the speci�ed
sets	 and this will make it harder to �nd the speci�ed sets� The problem is
that we must distinguish the independent sets of the speci�ed coloring from
the background�

The analysis above could also be applied to those sets which	 when n �
����	 are in the range �� ��� This means the average degree di�erence
between a vertex in a speci�ed set and one in a �� set each containing the
initial selection for a ���colorable graph would be about �� In random graphs
on ���� nodes	 the degree sequence varies from about ��� to ���	 and so a
bias of � is not that large� Apparently it is signi�cant however	 since we do
manage to color these graphs consistently well�


 
 
 
 


This analysis suggested the intriguing possibility that for k�colorable graphs
it might be better to select a maximum independent set of minimum total
degree� The independent sets that remain might then tend to be more
distinguishable from their neighbors� Provided that we �nd a speci�ed set	
choosing one of minimum total degree would leave the remaining subgraph
more dense	 thus making the natural sets smaller�

Testing this idea	 using the maximum degree for the �rst vertex selected
in each independent set	 the colorings were in fact worse with a total of
��� colors used compared to ��� using maximum degree selected� These
numbers refer to the colors used by MAXIS before applying IG� Using the
mean degree for selection of the �rst vertex	 the minimum total degree also
proved worse with ��� colors used compared to ���� However	 in this case IG
was still able to reduce to ���colorings quite quickly� In sum	 the conjecture
appears false	 and selecting the independent set with the largest total degree
seems the right choice�
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To use MAXIS on k�colorable graphs for smaller k	 we needed to prevent
backtrack on small subgraphs when no possibility of �nding a better set
existed� For example	 on k � ��	 the speci�ed sets are of size �� �n � ������
When the partially complete independent set has more than �� vertices	 it is
likely that it is a subset of one of the speci�ed sets	 and that all vertices in the
non�adjacent subgraph are in fact also in the same speci�ed set� However	
if the last cuto� used is ��� ��	 we will search various combinations of this
set in vain� The execution times for MAXIS using the same set of cuto�s as
above was drastically increased when k was reduced to ���

To correct this	 we used a bounded cuto�	 in the manner of branch and
bound� The rule used is�

Bounded Cuto� Rule� If the number of untried vertices in the
current non�adjacent subgraph plus the number already in the
partial independent set is less than the number in the best inde�
pendent set found so far	 then backtrack�

If we replace �less than� in this rule by �less than or equal� we get a tighter
bound	 but restrict the search because equal sized sets are also tested for
total degree�

Applying this rule reduces the search times for ���colorable graphs sig�
ni�cantly	 and also reduces the coloring time of random graphs by ��!
or so� For example on one ���colorable graph the time was reduced from
������%������ to ������%������ for MAXIS%IG� As k is reduced in G����� �

�
�k	

the e�ect becomes more dramatic�
Using the tighter equality bound on the set of ten graphs in table � �with

the mean degree selection� resulted in even quicker speci�ed colorings with
average times ������%������� For the graph in the preceding paragraph	 the
time was reduced to ������%������� Note that the average time IG used to
complete the coloring increased slightly� This re�ects an increase in the total
colors used by MAXIS from ��� to ���	 for an average increase of ��� per
graph� Once again	 restricting the e�ectiveness of the maximum total degree
heuristic seems to cause a deterioration in the coloring ability of MAXIS	
but in this case IG is able to reduce the coloring quickly with an over all
time savings�

For k � ��	 using the cuto�s ����� ��� ��� ��	 the MAXIS%IG program
gave ���colorings with an average time of ���� seconds	 compared to about
��� seconds for IG alone� Using ��� �� as the cuto� left the coloring above
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the plateau	 so that IG took too long to complete� Looser cuto�s caused
MAXIS to take more time�

When we reduce to k � �� it becomes more di
cult to compete with IG
alone� At this value	 IG used only �� seconds on average� Using the same
cuto�s as for k � �� caused MAXIS to take too much time� Using MAXIS
with cuto� ��� �� followed by IG colored these in an average of ���� seconds�

With k � � IG alone used less than � seconds� Even with no backtrack	
MAXIS required ��� to ��� seconds	 and gave colorings from �� to ��� IG
very quickly reduced these colorings	 but IG alone was faster� Of course	
DSATUR would color these optimally�

��� Some Special Results

In ���� Johnson presents an algorithm that is guaranteed to give a coloring
within a factor of O�n� logn� of the optimal� The algorithm is similar to
MAXIS except there is no backtracking� During the independent set �nding
phase	 vertices are recursively selected from the subgraph of vertices not
adjacent to any in the current set� Selection is by minimum degree�

This algorithm is easily simulated by MAXIS	 since we need only re�
strict the backtracking �to none�� We present here some results from this
approach� In table �� we show the performance of this algorithm	 and some
interesting variations on graphs in G����� �

�

� A� is Johnson�s algorithm	 A�

uses maximum degree for the selection of the �rst vertex and minimum de�
gree after that	 A� uses maximum degree throughout	 A� uses mean degree
throughout and A� uses mean degree on the �rst selection with minimum
after that�

Not only did A� give a signi�cant color improvement over the Johnson
algorithm	 but it also reduced the execution time by about ��! to an average
of about �� seconds�

On the other hand	 A� increased the execution time	 likely because of
the extra calls to the independent set routine� These numbers are far above
those we would expect from the greedy algorithm� They may be a good
approximation to the canonical achromatic number����� These numbers are
a little less than double the best colorings for these graphs� The colorings
produced by this algorithm are easily seen to be canonical�

Finally	 notice that A� produces results similar to but slightly better
than the greedy algorithm applied to a random permutation�
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Table ��� MAXIS without backtrack

�� Summary of Mixed Algorithms

The results presented in this part of the report indicate that the mixed
algorithms can show improvement over any of the algorithms alone when
attempting graphs in Gn�p� In particular	 Tabu is a signi�cant help to IG	
and MAXIS yields further improvement	 but requires IG%Tabu to reduce
the coloring to close to optimal�

Tabu was not seen to be useful	 in fact possibly harmful	 when attempt�
ing to color graphs in Gn�p�k� MAXIS made signi�cant improvements in the
time required to color these graphs	 but IG is still required to reduce the
coloring to the speci�ed number� Generally	 it would seem to take an inor�
dinate amount of time for MAXIS to �nd the speci�ed colorings on its own�
It is not clear whether MAXIS could be tuned so that it �nds colorings a
little closer to the plateau	 but still below it far enough so that applying IG
would lead to further reductions in total time� The balance point between
MAXIS and IG is a subject requiring further research�

MAXIS seems at �rst glance to be the most powerful technique� It
should be noted that all of the tests described using MAXIS are on graphs
with p � �

� � When the density is much lower	 it may be di
cult to use this
approach because the size and number of the independent sets is so large�
The time to search grows exponentially with the size and number of the
independent sets	 and so for low density graphs the pruning must be made
much tighter� But then the e�ectiveness of the search is greatly reduced�

��



This is particularly true for low density k�colorable graphs in regions where
IG is usually successful as illustrated in the next section� Attempting to use
MAXIS on these graphs has proved frustrating�

Even when the density is �xed at p � �
� 	 it seems that to be competitive

with IG alone the cuto�s must be tuned according to the value of k� Note
that designing a reasonable automatic tuning mechanism would be di
cult
because the total density does not accurately re�ect the distribution of edges
in these graphs� It seems unlikely that MAXIS can improve the coloring
times over IG for small k�

Part IV

The Coloring Landscape

The coloring of graphs in Gn� �
�

has been the focus of much research in es�

tablishing the performance of coloring algorithms� However	 we can achieve
colorings near the expected optimal on ���� nodes	 and it is not clear how
much further we can go�

In order to establish some goals	 it seemed reasonable to further examine
the limits of our algorithms by pushing the limits at various densities on k�
colorable graphs� Since doing an intensive search on ���� node graphs is
quite time consuming	 this mapping is carried out on ��� vertex graphs�
Basically	 a set of ten graphs was attempted for each combination of k	
� � k � ��	 and for densities at every �! from �! to ��!� This set of
tests was started with an earlier version of the program� The �rst step was
Br�elaz�s DSATUR algorithm	 followed by IG%Tabu� The attack consists of
using IG and Tabu in a con�guration that is �xed for all classes� This may
not be the best approach for all classes	 but at least has the advantage of
consistency� The setup had to be a trade�o� between maximal search time
and how good we wished our results to be� Later tests using MAXIS on some
of the ranges showed little improvement� Using MAXIS at low densities is
di
cult	 because of the rapid increase in search time given large numbers of
large independent sets�

For this set of graphs	 we used up to �� iterations of the main loop� On
each loop	 the IG cuto� was set at ���� iterations after the last improve�
ment in the coloring sum	 and the Tabu cuto� was set at ���� iterations
after the last improvement� Tabu generated a sample of ��� neighbors on
each iteration� Tests which increased the search showed little improvement	
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although of course if Tabu were to run long enough	 with probability one it
would �nd the optimal coloring�

For densities in the range ��! to ��!	 a series of tests were run using
MAXIS as the �rst step	 followed by IG%Tabu� The main loop iterations
were limited to � or �	 and IG iterations were reduced to ���	 while Tabu
was reduced to ���� iterations�

In all of the graphs	 as soon as a coloring was found using no more than
the speci�ed number of colors	 the search was terminated�

Figure � plots the number of graphs not colored by the speci�ed number
of colors�i�e� the number of partitions�� Recall there are ten graphs at each
point� The lines indicate tests that were performed but for which every
graph was colored with no more than the speci�ed number of colors� Notice
that for densities in the range ��! to ��! there tends to be an immediate
drop o� from � or �� missed graphs to zero on the next partition number�
We refer to the band of graphs forming these peaks as the ridge of resistance�

Figure �� shows the total number of colors used in excess of the speci�ed
coloring� Negative excesses are shown on the right for some densities	 but
to keep the �gure readable	 the lines have been truncated when the excess is
less than ���� The negative regions could no doubt be extended to the left	
that is to lower partition numbers	 if we were to continue the search after
the speci�ed coloring number has been reached� However	 that would add
enormously to the cost of the experiment� The negative excesses that have
been found are due to DSATUR �nding colorings less than the speci�ed
coloring	 or occasionally due to IG reducing the coloring by more than one
during some iteration�

Notice that the excess tends to drop gradually to the right	 after an
initial sharp rise� This is even more signi�cant when we notice that the
number of missed graphs is usually lower on the left than the right of the
ridge� Figure �� plots the ratio of excess colors to the number of graphs not
colored with the speci�ed number� This clearly shows that on the left side of
the ridge	 i�e� for low partition numbers	 we tend to miss by a large margin	
although we do not miss too often� As the partition number increases	 we
tend to miss more graphs	 but reach colorings much nearer the speci�ed
coloring� Finally	 to the right of the ridge we �nd colorings as good as the
speci�ed coloring number� These are likely not the sets of the speci�ed
colorings� For a �xed p	 as k increases towards n the expected chromatic
number of graphs in Gn�p�k will converge to that for Gn�p� We may not �nd
the optimal coloring	 but we will �nd something as good as the speci�ed
coloring�
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As we increase the density	 the ridge gradually becomes lower in terms
of the number of colors wasted	 but broader� Clearly	 for densities of ���!
we would color all graphs optimally� Similarly	 for partition numbers of two
or less	 we will obtain optimal colorings using DSATUR�

However	 we can extend the ridge down to densities of ���! and ��
colorable graphs which are not ��colorable by our algorithms� �One has to
be careful� with probability one	 using Tabu for example for an arbitrary
length of time	 a three coloring would eventually be found� We have to
think in terms of reasonable time	 and our algorithm generally gives up in
twenty minutes to one half hour on these�� The fractional percentages are
necessary here� the algorithms succeed perfectly and quite quickly for k � �
and density of �!	 and reasonably often at �!� They fail up to nine out of
ten times for intermediate values�

All graphs to the upper left of the ridge are colored with the speci�ed
coloring very quickly	 often in under a second� We list in table �� the
maximum excess colors used at each density	 totaled over ten test graphs
for each�

It seems that the reason for the ridge�s existence is that it is the point at
which the maximum independent sets that occur naturally begin to coincide
in size with the sets of the partitioning� When the speci�ed coloring becomes
large enough	 other colorings are superior	 and there are lots of them so one
is easily found� When the speci�ed independent sets are slightly smaller
than the natural ones	 MAXIS for example will select the larger sets� These
sets will generally not contain one of the speci�ed sets� But this then forces
extra colors later on to color vertices that are left over from the speci�ed
sets� For example	 with k � �� and p � ����	 MAXIS found independent
sets of size � in two cases	 and many sets of size �	 even though the speci�ed
sets were of size �� In this case MAXIS found colorings ranging from �� to ��
in the ten graph sample	 and although IG reduced each coloring somewhat	
no graph in the set of ten received a ���coloring�

Cheeseman	 Kanefsky and Taylor ��� noted a similar threshold e�ect	
stated in terms of constraint satisfaction	 for three and four colorable graphs�
They related this phenomenon to several di�erent NP�complete problems�

This search only looked at graphs of ��� vertices� It would also be useful
to have a map of how the di
culty changes with a variation in the number
of vertices� Together these two approaches would yield a three dimensional
map of di
culty� In ���� for example	 Ellis and Lepolesa mention that their
algorithm has di
culty on graphs in Gn���� �

�
�����	 although it is e�ective on
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Density ! k Excess

� � �
�� � ��
�� � ��
�� �� ��
�� �� ��
�� �� ��
�� �� ��
�� �� ��
�� �� ��
�� �� ��
�� �� ��
�� �� ��
�� �� ��
�� �� ��

Altered Search
�� �� ��
�� �� ��
�� �� ��
�� �� ��
�� �� ��

Table ��� Maximum Excess Colors Used on ��� Vertex Graphs
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very small n� There is undoubtedly a ridge with respect to the number of
vertices and k at most given densities�

There is a tendency to think of the ridge as being the di
cult part of
the landscape to color� However	 it should be pointed out that below �and
to the right of� the ridge we do not necessarily have the optimal coloring�
Thus	 although it is easy to reach the speci�ed coloring in this region	 it is
undoubtedly hard to color these graphs optimally�

We end this section with a bit of speculation� As stated in the introduc�
tion of this paper	 the best worst case results are those of Blum ���	 with
colorings in &O�n���� of the optimal� We know from Gary and Johnson�s re�
sult ���� we are not likely to get closer than a factor of � in the worst case
in polynomial time� On the other hand	 here we see that we need to get
very close to the size of the naturally occurring set sizes with our speci�ed
sets before they are not distinguishable in reasonable time by our system�
Similar results seem to be holding for the ���� node graphs� The result is
that for our test suite	 the worst case ratio of coloring found to the spec�
i�ed coloring is ����� for p � ���� and k � �� �see table ���	 or ��� for
three colorable graphs at p � ������ Similarly	 the worst case ratio for ����
node graphs at p � ���� will certainly be less than ����	 since we have eas�
ily colored ���colorable graphs and have consistently obtained �� or better
colorings for graphs in G����� �

�

�

So the question arises	 will our system	 given polynomial time	 give a
coloring on average within a constant factor less than � of the optimal$ Or
can it be that choosing a threshold carefully	 we can demonstrate that the
coloring ratio grows unboundedly$ If we use small densities and large n can
we obtain arbitrarily large average colorings for k � �$

Part V

Other Results� Conclusions and

Questions

�� Other Programs

Iterated greedy seems so successful that we would like to try other iterated
approaches� We can do this using the MAXIS iteratively as follows� After
an initial coloring	 reorder the color sets as in IG	 and then using the vertices
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from the �rst set in the new ordering	 use �pruned� backtracking to try to
add as many vertices to this set from the vertices to its right in the new
ordering as possible� When the �rst set is as large as possible	 repeat the
process on the vertices that remain in the second set	 then the third and so
on� The idea is that if using the greedy iteratively is successful	 then this
super greedy iterative approach should do even better�

However	 it was not too successful when tried on graphs in G����� �
�

� The

smallest set produced by MAXIS has only a few vertices	 but the remainder
have m � � or �� or more vertices� The remaining vertices have probability�
�
�

�m
of not con�icting with one of the vertices already in the set	 and so

the expected number of vertices over which we could backtrack is about �
to �� Thus	 there is not much chance for backtrack to work� The idea of IG
is that it searches through the many combinations of moves	 but not many
vertices can be moved into any particular set�

We also tried unsuccessfully to create an iterated form of Br�elaz�s DSATUR
algorithm� The idea was that we would use the previous coloring to deter�
mine the order when we had more than one vertex with the same maximal
number of constraints� Unfortunately	 we did not �nd a way to guarantee
that the new coloring would be no worse than the previous one� As a re�
sult	 the coloring just thrashed around near the ��� to ��� mark	 with no
improvement discernible�

A super DSATUR algorithm was attempted	 based on using MAXIS to
�nd large cliques� These would then be ordered in decreasing size	 and this
order would be used by DSATUR when more than one vertex had the same
number of constraints� This approach showed no signi�cant improvement
over DSATUR using a random order�

This entire project grew from an initial trivial attempt to apply the
technique of Genetic Algorithms ���� to graph coloring� Several variations
were attempted without much success	 but in trying to determine what
should be preserved we observed that reordering the color sets and applying
the greedy algorithm would not produce a worse coloring� This led directly
to the IG algorithm�

�� Conclusions and Open questions

We have introduced a new coloring technique we call iterated greedy� This
technique seems to be more e�ective for coloring graphs in the class Gn�p�k
than other techniques we have tried� It is also useful in trying to reduce
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colorings obtained by other algorithms�
We have explored various heuristics that can be used in this algorithm�

In addition	 we have described a method for combining this technique with
Tabu coloring to give better results in certain classes� And we have looked
at an algorithm using the maximum independent set approach	 and brie�y
tried that in an iterative form as well�

Finally	 we have explored the di
culty of coloring k�colorable graphs in
the ��� vertex landscape	 identifying a ridge of di
culty	 extending down to
even ��colorable graphs� We issue this ridge as a challenge to researchers in
testing their coloring algorithms�

References

��� Bengt Aspvall and John R� Gilbert� Graph coloring using eigenvalue
decomposition� SIAM Journal on Algebraic and Discrete Methods	
�������� ���	 �����

��� Avrin Blum� An &O�n�����approximation algorithm for ��coloring �and
improved approximation algorithms for k�coloring�� In Proceedings of
the Twenty First Annual ACM Symposium on Theory of Computing	
pages ��� ���	 �����

��� B� Bollob�as� The chromatic number of random graphs� Combinatorica	
������� ��	 �����

��� B�ela Bollob�as and Andrew Thomason� Random graphs of small order�
In Random Graphs ��		 volume �� of Annals of Discrete Mathematics	
pages �� ��� North�Holland Publishing Co�	 ����� Section �� �Colour�
ing large random graphs��

��� Daniel Br�elaz� New methods to color the vertices of a graph� Commu�
nications of the ACM	 ��������� ���	 April �����

��� M� Chams	 A� Hertz	 and D� de Werra� Some experiments with simu�
lated annealing for coloring graphs� European Journal of Operational
Research	 ��������� ���	 �����

��� Peter Cheeseman	 Bob Kanefsky	 and William M� Taylor� Where the
really hard problems are� In International Joint Conference on Arti�cial
Intelligence	 pages ��� ���	 �����

��



��� F� D� J� Dunstan� Sequential colourings of graphs� In Proceedings of
Fifth British Combinatorial Conference	 pages ��� ���� Utilitas Math�
ematica	 �����

��� R� D� Dutton and R� C� Brigham� A new graph coloring algorithm�
The Computer Journal	 �������� ��	 �����

���� J� A� Ellis and P� M� Lepolesa� A Las Vegas coloring algorithm� The
Computer Journal	 ��������� ���	 �����

���� M� R� Garey and D� S� Johnson� The complexity of near�optimal graph
coloring� Journal of the ACM	 ����� ��	 �����

���� F� Glover� Future paths for integer programming and links to arti�cial
intelligence� Computers and Operations Research	 ������ ���	 �����

���� David E� Goldberg� Genetic Algorithms in Search� Optimization and
Machine Learning� Addison�Wesley Publishing Company	 Inc�	 �����

���� G� R� Grimmett and C� J� H� McDiarmid� On colouring random
graphs� Mathematical Proceedings of the Cambridge Philosophical So�
ciety	 ������ ���	 �����

���� A� Hertz and D� de Werra� Using tabu search techniques for graph
coloring� Computing	 ��������� ���	 �����

���� D� S� Johnson� Approximation algorithms for combinatorial problems�
Journal of Computer and System Sciences	 ����� ���	 �����

���� D� S� Johnson� Worst�case behavior of graph�coloring algorithms� In
Proceedings of 
th Southeastern Conference on Combinatorics� Graph
Theory and Computing	 pages ��� ���	 Winnipeg	 ����� Utilitas Math�
ematica�

���� A� Johri and D� W� Matula� Probabilistic bounds and heuristic algo�
rithms� Technical Report ���CSE���	 Southern Methodist University	
Department of Computer Science	 ����� Supposed to have appeared$

���� Lud#ek Ku#cera� Graphs with small chromatic numbers are easy to color�
Information Processing Letters	 ������ ���	 �����

���� Bennet Manvel� Extremely greedy coloring algorithms� In Graphs and
applications �Boulder� Colo�� ���
�	 Wiley�Intersci� Pub�	 pages ��� 
���	 New York	 New York	 ����� John Wiley ' Sons	 Inc�

��



���� D� W� Matula and L� L� Beck� Smallest�last ordering and clustering and
graph coloring algorithms� Journal of the ACM	 ��������� ���	 �����

���� David W� Matula	 George Marble	 and Joel D� Isaacson� Graph coloring
algorithms� In Graph theory and computing	 pages ��� ���� Academic
Press	 Inc�	 �����

���� Colin McDiarmid� Colouring random graphs badly� In Graph theory
and combinatorics �Proc� Conf�� Open Univ�� Milton Keynes� �����	
Res� Notes in Math� ��	 pages �� ��� Pitman	 San Francisco	 Calif�	
�����

���� J� Mitchem� On various algorithms for estimating the chromatic number
of a graph� The Computer Journal	 ������	 �����

���� S� Sen Sarma and S� K� Bandyopadhyay� Some sequential graph colour�
ing algorithms� International Journal of Electronics	 ��������� ���	
�����

���� Jeremy P� Spinrad and Gopalakrishnan Vijayan� Worst case analysis of
a graph coloring algorithm� Discrete Applied Mathematics	 �������� ��	
�����

���� Jonathan S� Turner� Almost all k�colorable graphs are easy to color�
Journal of Algorithms	 ���� ��	 �����

���� Janez #Zerovnik� A randomised heuristical algorithm for estimating the
chromatic number of a graph� Information Processing Letters	 ������ 
���	 �����

���� D� J� A� Welsh and M� B� Powell� An upper bound for the chromatic
number of a graph and its applications to timetabling problems� The
Computer Journal	 ����� ��	 �����

���� D� C� Wood� A technique for coloring a graph applicable to large scale
timetabling problems� The Computer Journal	 ������ ���	 �����

���� A� A� Zykov� On some properties of linear complexes� Mat� Sb�	 ������ 
���	 ����� English Trans� Amer� Soc� Translation no� ��	 �����

��


