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Abstract

In this study, we analysed numerically the behaviour of a liquid drop immersed

into another immiscible liquid on a solid surface using a diffuse interface phase-field

lattice Boltzmann method proposed by Mitchell et al. (Mitchell et al., 2018). The

objective of the study is to assess the capabilities of the method when applied to

several benchmarks. Special attention is given to the implementation of the wetting

boundary condition, which poses a significant challenge in numerical modelling of a

contact line motion.

For the first benchmark study, we placed a semi-circular droplet on a solid surface

and let it equilibrate. The ability of the method to recover the static equilibrium con-

tact angle achieved at different characteristics of the solid surface (from hydrophilic

to hydrophobic) was assessed. The deviation between the numerical and analytical

predictions in terms of the maximum height of the drop at the equilibrium state is

within 3.3%.

Then, the simulations of a droplet sliding in a simple shear flow were performed

to explore the capability of the method to capture the contact line motion. The

numerical findings of the present work were compared to the reference data obtained

by molecular dynamics simulation. The comparison showed a reasonable prediction

for the receding angles, but not for the advancing angles. The possible reason and

discussion are provided.
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Chapter 1

Introduction

1.1 Motivation

Numerous chemical, biological, food, and pharmaceutical engineering processes in-

volve emulsion flow. An emulsion is a mixture of two or more liquids that are

typically immiscible. In emulsion, one liquid (the dispersed phase) is dispersed into

the other (the continuous phase). Consider water flooding as an enhanced oil recov-

ery method as an example: water is injected into the rock formulations containing

oil, and inclusion will be washed away as water enters into the oil mixture and forms

an emulsion system (Sheng, 2014). Predicting the success of oil recovery process is

difficult because of the complexity of the rock structure, the continuous interac-

tion between the pore walls and the fluid, and the interfacial effects between the

water and the oil phase (Desmond et al., 2017). Therefore, evaluating the perfor-

mance of such system requires a thorough understanding of the multiphase system

and drop-wall interaction. Other engineering applications for emulsion flow include

high-performance heat exchangers (Faghri and Zhang, 2006), polymer processing

(Han, 2012) and microfluidics (Günther and Jensen, 2006). It is of great industrial

importance to understand the physics behind such system and obtain a method

allowing to perform a quantitative analysis of it.

Multiphase flow, which is distinguished from a single-phase flow by the presence

of one or more interfaces separating the phases, can be considered as a field that

is divided into single-phase regions by the interfaces or moving boundaries between

phases (Faghri and Zhang, 2006). The interfaces can be created by the existence of

a physical state (gas, liquid, solid) or two immiscible fluids. The focus of the present

work is consideration of the system of two immiscible liquids and its interaction with

the solid surface. For instance, emulsion dispersion pipe flow that occurs during co-
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current flow of two immiscible liquids such as oil and water (Arirachakaran et al.,

1989). Along with the complexity of the multiphase flow on its own, we want to

understand what happens with this flow as it approaches the wall. Therefore, we

are interested in behaviour of drops dispersed in another immiscible liquid when

they approach and make contact with the wall.

The ability of the liquid drop to maintain the contact with the solid surface is

called surface wetting. Surface wetting phenomenon is widely encountered and is of

great significances in numerous industrial applications. This includes full wetting

and adhesion (Good, 1992), partial wetting and printing plates (Brochard-Wyart

and De Gennes, 1992), and non-wetting and water-proofing (Ma and Hill, 2006).

The exploration of surface wetting was initialized by Thomas Young at the 18th

century and has been under constant development since then. Early researchers tried

to understand the surface wetting and contact line motion using experiments. For

example, they studied the wetting on polymer surfaces (Geoghegan and Krausch,

2003), wetting on textured surfaces (Geoghegan and Krausch, 2003), and wetting

on surfaces with different roughness (Zhou and De Hosson, 1995). They generally

gave their attention to macroscopic scale change of the liquid behavior when it

contacts with different solid surfaces, and failed in capturing the actual physical

process of drop-wall interaction. One of the possible reasons might be that liquid-

liquid-solid interaction (in this thesis, the liquid-liquid-solid system refers to two

immiscible fluid that contacts with a solid surface) is a complex process that occurs

on multiple length and time scales. Take turbulent emulsion flow in a static mixer as

an example. During this process, emulsion flow is formed and liquid-solid interaction

also continuously happens. In the system, the thickness of interface between the

phases is approximately Ångstrom, drop diameter is around 0.1 to 500 µm, while

the macro length scale of the mixer can be several inches. The drops frequently

collide with the surface and break within milliseconds, while it takes hours for the

system to reach the equilibrium state. Capturing the process over entire range of

scales is challenging.

An alternative approach to study multiphase systems is to perform numerical

simulations. Numerical simulation has certain advantages over experiments in the

following aspects: highly resolved simulations can capture the microscopic process

on a scale of a single-drop up to the macroscopic processes of dispersed and contin-

uous phases evolution; simulations can change the flow domain without the cost of

redesigning the entire equipment as experiments do; simulation allow us to visualize

systems in much greater detail than experiments, and the simulation length scale

can normally go beyond the existing experimental capabilities.
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The main goal of the present research is to develop a numerical method to study

the surface wetting phenomena and contact line motion for a liquid-liquid-solid

system. The choice of the method is important and will be discussed and justified

later. For the following chapters, we briefly go through some existing methods and

current challenges, then present our choice of the numerical method with reasoning

behind.

1.2 Numerical Challenges for Interface Modelling

There are two main categories of the approaches to simulate multiphase flows, which

are interface tracking and interface capturing approaches. Interface tracking requires

Lagrangian marker points to explicitly track the interface. For such methods, in-

cluding marker-and-cell (MAC) (McKee et al., 2008) and front-tracking methods

(Tryggvason et al., 2011), the computational mesh elements lay in part or fully on

the fluid-fluid interfaces (Mirjalili et al., 2017). This gives the interface tracking

method a great accuracy because the equations and interface boundary conditions

are applied exactly without any simplification. In interface capturing methods, on

the other hand, the mesh elements do not lay on the interface, but rather the inter-

face evolves through the mesh. The common interface capturing methods include

volume-of-fluid (VOF) (Sussman and Puckett, 2000), level-set (Osher and Fedkiw,

2001), and phase-field methods (Yabe et al., 2001).

Sharp interface method and diffuse interface method are two common methods

to describe the interface. Sharp interface method considers the interface between

two immiscible fluids to have a zero thickness. Diffuse interface method presumes

that the interface between the phases is not sharp, but has a finite thickness and

is characterized by rapid but smooth transitions in density ρ, viscosity µ and other

physical parameters (Sun and Beckermann, 2007). The fluid properties profile for

the sharp interface and diffuse interface method is shown in Fig.1.1.
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Figure 1.1: Fluid properties profile for the sharp interface and diffuse interface
methods

Due to the intrinsic characteristic of the interface tracking approaches, these

methods belong to the sharp interface methods. A part of the interface capturing

methods also belongs to the sharp interface methods, including the aforementioned

VOF (Sussman and Puckett, 2000) and level-set methods (Osher and Fedkiw, 2001).

Various publications have described in detail how a sharp interface model can be ef-

ficiently implemented, which include the one on volume-of-fluid (Wang et al., 2009),

on front-tracking (Tryggvason et al., 2001), and on the immersed boundary (Pe-

skin, 2002) methods. For sharp interface method, the interface is a two-dimensional

boundary and is usually represented by a distinct computational mesh, so the mo-

tion of this interface needs to be explicitly tracked, and a Navier-Stokes solver is

required on either side of the interface. This leads to a high cost in terms of compu-

tational efficiency because that means tracking the interface needs a mathematical

reconstruction for every time step.

Another challenge posed by the sharp interface method is the existence of sin-

gularity in the flow variables when the interface interacts with a solid phase. Take

velocity singularity as an example (Yue and Feng, 2011). Consider the red circle

point shown in Fig.1.2. This point is located at the interface. If the drop has a

velocity U , this circled point should move along with the drop and also have a ve-

locity term U . On the other hand, this point is adjacent to the static solid wall and,

therefore, has to satisfy the no-slip boundary condition. This leads to a singularity

point, as one point cannot have two velocities.
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Figure 1.2: Sharp interface model. Red circle presents the velocity singularity at
the interface

To overcome the singularity problem, one common approach is to insert a slip

velocity boundary to an adjacent region of the contact line (Kusumaatmaja et al.,

2016). Spelt et. al (Spelt, 2005) used a level-set method to simulate the moving

contact lines of binary fluid system with equal densities. They successfully avoided

the singularity by replacing the no-slip condition with a velocity component defined

by the moving wall velocity. Other possible approach is to place a precursor thin

film ahead of the contact line (Pismen and Pomeau, 2000) (Eggers, 2005).

The diffuse interface method has the intrinsic capacity to avoid the singularity

problem, because the fluid discontinuities are smoothed via interface thickness and

the surface tension force is diffused over a thin layer near the interface to become

a volume force. Surface tension force is the incentive of singularity formulation for

the sharp interface method. Another important advantage of the diffuse interface

methods is that they do not require mesh ‘ad hoc’ cut-and-connect operations since

the interface is not represented by computational mesh. Instead it evolves through

the mesh, as shown in Fig.1.3.

Figure 1.3: Diffuse interface model
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However, the selection of the interface thickness is not trivial since the diffuse

interface thickness cannot be chosen as small as in reality due to the computational

restrictions (Khatavkar et al., 2006), while larger interface thickness might lead to

inconsistency between the numerical and experimental results. Therefore, only when

the interface thickness approaches a specific length scale, so-called sharp interface

limit, it can represent the reality (Xu et al., 2018).

We can see that sharp interface method is a powerful method but have difficulty

simulating through and past the transitions brought by the interfaces and solid

wall. This makes it challenging to simulate the multiphase systems, especially the

ones with drop-wall interaction as the aforementioned liquid-liquid-solid system.

The diffuse interface methods also have numerical challenges, such as the interface

thickness, but for this study, we chose to use the diffuse interface method in terms

of computational efficiency, stability, and accuracy.

Several diffuse interface models have been studied to handle the three-phase mov-

ing contact line dynamics (Rowlinson and Widom, 2013) (Jacqmin, 2000) (Jamet

et al., 2001). Among all the possible choices, phase-field method is widely used (Sun

and Beckermann, 2007) because it has several important advantages over other

methods. Phase-field method uses an order parameter φ to represent the differ-

ent phases in the system. The transport equation governing the order parameter is

modified by incorporating physical effects that govern thin interfaces (Mirjalili et al.,

2017). Except for its ability to implicitly track the interface, it is also an Eulerian

variable defined in the flow domain, which allows phase-field method to easily adapt

efficient solvers and be parallelized. Unlike interface-tracking methods, phase-field

model is an interface-capturing method and, thus, benefits from a reduced com-

putational cost because there is no need to track the interface deformation and

extension.

Traditionally, the phase-field methods are either based on the Cahn-Hilliard or

the Allen-Cahn equations to describe the time or space evolution of the phase field

parameter φ. These are two important gradient flows of the Ginzburg-Landau-

Wilson free energy functional (Mirjalili et al., 2017). In these two equations, the

Cahn-Hilliard equation can provide the mass conservation, but a fourth-order deriva-

tive that rises in taking the Laplacian of the chemical potential might lead to insta-

bility and reduce the accuracy of numerical approximations (Fakhari and Bolster,

2017). The Allen-Cahn equation, on the other hand, only handles the term with

the second-order derivation, but the total mass cannot be conserved (Mirjalili et al.,

2017). This has motived researchers to look for an equation that can combine the

advantages of both equations.
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In our research, we use a conservative phase-field method introduced by (Mitchell

et al., 2018). Motivated by the Allen–Cahn equation, Sun and Beckermann (Sun

and Beckermann, 2007) proposed a second-order PDE suitable for the two-phase

simulations for curvature-driven flow. Chiu and Lin (Chiu and Lin, 2011) was

later on inspired by conservative-level-set method and reformulated the phase field

method proposed by Sun and Beckermann to a conservative form. The description

of the conservative phase-field equation used here will be given in Chapter 2.

1.3 Numerical Methods to Solve Governing Equations

After outlining the approach to solve the problem, the next step is to find a powerful

numerical method to solve the governing equations. There are many numerical

methods that can be used to solve the governing equations for the multiphase system.

Generally, these methods can be classified into two categories. The first category is

the conventional numerical methods that are based on discretising the equations of

fluid mechanics, such as finite difference, finite volume, and finite element methods.

The second category is the methods that are based on microscopic, mesoscopic, or

macroscopic particles, such as molecular dynamics, lattice gas models, and multi-

particle collision dynamics (Krüger et al., 2017).

Conventional methods work on directly solving the governing equations and

coming up with a solution consisted of approximation term. The set of governing

equations normally includes continuity equation, Navier-Stokes equations and any

other additional equation (phase-field equation, in our case).

In the finite difference method (FDM), physical space is divided into a regular

grid of nodes. The principle of this method is to replace all the derivatives in the

equations by a finite difference approximation (Krüger et al., 2017). Although the

logic is simple, these are certain weakness inherent to this method: normally there

are several coupled unknowns in the set of governing equations, which makes the

implementation of FDM more complex; due to the existence of numerical errors,

the conservation of mass, momentum and energy cannot be guaranteed; and since

finite difference method is normally based on a regular grid, and therefore it is not

suitable to solve flow fluid with complex geometries (Ferziger and Peric, 2012).

In the finite volume method (FVM), space does not need to be divided into

a regular grid. Instead, we subdivide the simulated volume V into many smaller

control volumes Vi, which may have different sizes and shapes to each other (Ferziger

and Peric, 2012). This gives it the flexibility of dealing with complex geometry. In

the middle of each finite volume Vi, there is a node where each solution variable λ(x)

7



is represented by its approximate average value λ̄i within that volume. The finite

volume method is designed to solve conservation equations, and this gives FVM the

instincts of being conservative (Krüger et al., 2017). Researches aiming at improve

the accuracy of FVM can be found in (Moukalled et al., 2016).

In finite element methods (FEM), partial differential equations (PDE) are solved

using an integral form equation, where the PDE itself is multiplied with a weight

function ω(x) and integrated over the domain of interest. Each grid for FEM has

a discretised solution variable and the variable can be interpolated through given

conditions. The advantages for FEM include that it can be easy to achieve high

order accuracy and it is well equipped for unstructured grid. But just as FDM, it

is not conservative and it is way more complex than FDM and FVM. The ‘checker-

board instabilities’ might also show up for FEM if not deliberately designed to avoid

(Krüger et al., 2017).

Particle-based methods are not based on directly discretising the equations of

fluid mechanics, but they represent the fluid using particles. Depending on the spe-

cific method, a particle may represent an atom, a molecule, a collection of molecules,

or a portion of the macroscopic fluid. Thus, while conventional Navier-Stokes solvers

take an entirely macroscopic view of a fluid, particle-based methods usually take a

microscopic or mesoscopic view.

Molecular dynamics (MD) (Frenkel and Smit, 2002) is probably one of the most

commonly used particle-based methods. It tracks the position of atoms or particles

and use accumulation behavior to reflect the flow field. Coninck et. al (De Coninck

and Blake, 2008) did a concise research on the molecular dynamics simulations of

liquid drop wetting. They studied the droplet wetting ability for a liquid-liquid-

solid system, together with drop spreading on a flat surface and fibers surface. The

dynamic contact angle was also given a special attention.

Besides molecular dynamics, lattice gas models (Rivet and Boon, 2005), dissi-

pative particle dynamics (Hoogerbrugge and Koelman, 1992), multi-particle col-

lision dynamics (Malevanets and Kapral, 1999) (Malevanets and Kapral, 2000)

and smoothed-particle hydrodynamics (Gui-rong, 2003) are all nowadays prevail-

ing particle-based methods. These methods vary in methodology and interface-

describing strategies, and are often tailored to some kind of particular problems.

It is, therefore, difficult to give a general summary of these methods as a whole.

However, some particle-based methods have difficulty in making connection with

the macroscopic description of a fluid (Krüger et al., 2017). Thus makes it even

more difficult to be evaluated through experiments or other numerical simulations.
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Lattice Boltzmann method (LBM) (Ladd, 1994) is a mesoscopic method. Instead

of directly tracking the atoms, particles, small fluid volume (microscopic methods)

or directly solving general governing equations (macroscopic methods), it tracks the

particle distribution function and uses the collective behavior of particles to repre-

sent the entire fluid. In LBM, fluid volume is discretized in physical and velocity

spaces. Fictious particles are allowed to move through collision and streaming pro-

cess in certain directions so as to update the particle distribution function after

each time step. In LBM scheme, particles have certain distribution and movement

pattern, the commonly used are D2Q9, D3Q15, D3Q19, and D3Q27 model, where

D stands for dimension and Q provides a number of velocity direction.

Lattice Boltzmann methods have been successfully used in resolving the diffuse

interface method and modelling multiphase system regarding contact line motion

problems in recent years. Examples include the studies of droplet formation in T-

shape channel (Van der Graaf et al., 2006), droplet impacting (Ma et al., 2018),

droplet spreading and sliding (Derksen and Komrakova, 2019).

LBM is a powerful and efficient method for multiphase flow simulation. For

solving the incompressible Navier-Stokes equation, the LBM takes the advantage of

simplicity and scalability (Nourgaliev et al., 2003). It is conservative and suitable

for complex geometry simulation, it is grid-based so it can be easily parallelized. At

the same time, LBM is memory-intensive as the populations for each point of the

domain need to be stored and updated separately.

In conclusion, different solvers have different advantages and disadvantages, cer-

tain problems might need a specific method in order to accomplish an efficient

simulation. It is agreed by researchers that there is no one method which is superior

to all others. In our research, we chose to use LBM because of its suitability for the

multiphase flow simulation.
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1.4 Literature Review on Relevant LBM Simulations

Historically, there are four major classes of lattice Boltzmann models for multiphase

flows interacting with a solid phase. They are the color gradient model (Gunstensen

et al., 1991), the pseudopotential model (Shan and Chen, 1993) (Shan and Doolen,

1995), the free-energy model (Swift et al., 1995) and the mean-field model (He

et al., 1999). For most of the applications, these previous models suffered from the

numerically unphysical problem or a lack of Galilean invariance, and large spurious

velocities (Fakhari et al., 2017b). During the past decades, these models have been

under constant improvements and new LB models have also been proposed to deal

with the listed deficiencies.

In this section, we briefly go through some recent publications that report the

results of studies of the surface wetting phenomenon or contact line motion. In

particular, we focus on implementation of liquid-liquid-solid system and the way

the wetting boundary condition are applied.

Leclaire. et al (Leclaire et al., 2016) used a color gradient model to preform a

two-dimensional multiphase flow simulation, in order to test its ability to capture

the equilibrium static contact angle. A wetting boundary condition is proposed and

consisted of directly imposing the contact angle at the boundaries in much the same

way as the Dirichlet boundary conditions do. To achieve that, color gradient and

density gradient at the location near the solid lattices need to be calculated. Al-

though the proposed wetting boundary condition and coupled LBM produced good

agreement with the simulated contact angle and Young’s equation, the scheme has

difficulty in expanding to three-dimensional simulation in terms of computational

cost.

In order to deal with the large spurious currents at the fluid-solid surface,

Leclaire. et al (Leclaire et al., 2015) published another work on scaling the interfa-

cial thickness with the grid resolution. Other researchers also worked on improving

the stability of the color gradient model application in this area (Liu et al., 2012)

(Ba et al., 2016).

Briant et. al (Briant and Yeomans, 2004) studied the contact line motion in

binary fluids with a free-energy LBM. They focused on how the contact line singu-

larity can be overcome by diffusion over a length scale at the contact line. They also

derived a scaling form for the dependence of the length scale on system parameters.

In order to implement the wetting boundary condition, they added a surface term

to the free energy and then by minimizing the free energy, an equilibrium boundary

condition which directly related to the wetting contact angle was given.
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Pooley. et al (Pooley et al., 2008) considered the contact line dynamics in binary

fluids with a viscosity ratio of 12.5 using the free-energy LBM. The wetting boundary

condition was applied by altering the gradient of order parameter φ at the solid wall,

which is an exact result obtained through minimizing a free-energy expression. They

proved that using free-energy LBM, coupled with a single-relaxation-time collision

operator, will cause spurious currents arise in the system and make the contact line

dynamics hard to capture. They proposed a revised lattice Boltzmann method,

based on a multiple-relaxation-time algorithm, and showed that the method has

superiority over numerical accuracy with theory, both for the capture of equilibrium

contact angle, and for the advancing contact angle, measured in capillary filling

simulations.

Researches have also given their focuses to the wetting boundary condition im-

plementation coupled with a phase-field LBM.

Lee et. al (Lee and Liu, 2010) proposed a phase-field lattice Boltzmann method

for incompressible binary fluids to model the contact line dynamics on partially

wetting surfaces. The wall boundary conditions for both the particle distribution

functions and the intermolecular forcing terms were proposed and they were derived

based on the minimization of the free energy. They proved that the presented

LBM was capable of eliminating the parasitic currents to machine accuracy in the

presence of a wall boundary. The proposed boundary conditions were also capable

of reproducing the theoretical values of the contact angles for moderate equilibrium

contact angles, although become less accurate for very high contact angles.

Liu et. al (Liu et al., 2014) developed a phase-field lattice Boltzmann model to

simulate thermocapillary flows in a confined microfluidic geometry. An interfacial

force of potential form was proposed to model the interfacial tension forces and be-

cause only the first-order derivatives are involved in the scheme, the interfacial force

of potential form can be easily combined with a cubic wetting boundary condition

to account for the fluid–surface interactions. The cubic wetting boundary condition

was also an approximation energy minimization from, which neglected some higher-

order terms in the free-energy function (Lee and Liu, 2010). In their research, the

hydrodynamic equations are solved with a multiple-relaxation-time collision oper-

ator, which enhanced the numerical stability for solving a binary fluid with large

viscosity difference and produce correct equilibrium contact angles.

A study by Huang et. al (Huang et al., 2015) compared five different wetting

boundary conditions for the phase-field lattice Boltzmann method. Among the five

wetting boundary conditions, three used the linear, cubic, and sine form surface

energy, while the other two used the geometric formulation and the characteristic
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interpolation. It was found that although all wetting boundary conditions can pre-

dict the static contact angle accurately, the performances on the capture of contact

line motion varied with the setting of initial contact angle. Besides, a new imple-

mentation that may be used for all wetting boundary conditions was proposed to

mimic the wall energy relaxation and control the degree of slip, which helped the

model to match experimental measurements better.

Some other boundary conditon implementations can also been found at a work

published by Jahanshaloo (Jahanshaloo et al., 2016).

Fakhari et al (Fakhari and Bolster, 2017) presented a three-phase contact line dy-

namics work using a conservative phase-field LBM. They introduced a simple and

efficient lattice Boltzmann scheme for immiscible multiphase flows, and proposed

a new algorithm for specifying the three-phase contact angle on solid boundaries

within the framework of structured Cartesian grids. The proposed method has su-

perior computational accuracy and efficiency compared to the common approaches

which neither require an approximation from the free-energy expression nor a geo-

metric formula. The validation cases were achieved through simulations on wetting

and dewetting on a flat surface, on a cylindrical surface, and a droplet falling on

hydrophilic and superhydrophobic circular cylinders. The method was proved to be

powerful and promising. However, only two-dimensional situations were considered

and there were no cases accomplished on the capture of the contact line motion.

Both these issues presented important further research values.

From the literature review, we can see that at the moment, few researches looked

into the wetting boundary condition implementation for a phase-field LBM without

considering the minimization of free-energy expression nor a geometic formula. If

any, they hardly focused on three-dimensional cases nor contact line motion captur-

ing. Therefore, it is important to expand the wetting boundary condition introduced

by (Fakhari and Bolster, 2017) to the three-dimensional cases and study its ability

to capture the equilibrium state contact angle, as well as contact line motion.

12



1.5 Objective

The main goal of the present research is to develop a numerical framework that can

be used to study a drop behavior on a surface for a liquid-liquid-solid system. We use

a conservative phase-field lattice Boltzmann approach proposed by (Mitchell et al.,

2018) to investigate surface phenomena and contact line motion. Two studies are

performed and discussed in Chapter 3 and Chapter 4 of the thesis. All codes were

written in Fortran and were developed from scratch. The relative parallelization

work was also accomplished.

In Chapter 2, we give a detailed description of the numerical method we used.

Macroscopic governing equations are introduced and the lattice Boltzmann formu-

lation to solve these equations is provided. In particular, we focus on the implemen-

tation of wetting boundary conditions in Chapter 2.3 and provide a code workflow.

In Chapter 3, we applied the lattice Boltzmann method to study the surface

wetting phenomena. A semi-circular liquid drop is placed on a solid surface and

waited to reach its equilibrium state, then the contact angle and the maximum

height of the drop is measured and compared with the theoretical solutions. By

achieving such simulations, we are able to validate the current method to capture

the static contact angle.

In Chapter 4, we validate the model’s ability to capture the contact line motion.

Three cases were completed by applying numerical studies of drop sliding cases

between two parallel solid plates. We first placed a semi-circular liquid drop to the

surface and waited it to reach the equilibrium state, then started to shear the walls.

During the process, we observed the deformation and measured the receding and

advancing angle, the simulated results were compared to a reference data achieved

by molecular dynamics simulation.

Chapter 5 contains conclusions and outlook for the future work. There are also

four appendices, including the two-dimensional case we studied as a starting point.
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Chapter 2

Numerical Method

In this chapter, a detailed description of the numerical method used in the present

study is presented. The governing equations of the incompressible, multiphase flow

are introduced followed by a lattice Boltzmann framework proposed by (Mitchell

et al., 2018) to solve these equations. This approach is built on the improvement

of Zu and He’s method (Zu and He, 2013) to improve efficiency and numerical sta-

bility. An interface-capturing equation based on the conservative phase-field model

is employed to capture the interface. A velocity-based lattice Boltzmann equation

(LBE) is used to capture hydrodynamics. The method has many advantages over

efficiency, accuracy and stability: only one non-local variable is introduced in the

applied model (order paramter φ), for which finite-difference (FD) scheme is needed

to calculate its derivatives. Reducing the non-locality in the system greatly improves

its parallelization ability. For the FD scheme, instead of using biased or mixed (cen-

tered and biased) difference FD schemes as many free-energy models do (Lee and

Liu, 2010), we use a second-order, isotropic centered differences introduced by (Ku-

mar, 2004) (Ramadugu et al., 2013) (Thampi et al., 2013) to increase the model

stability, as mixed difference FD might affect mass and momentum conservation

(Guo et al., 2011). A simplified equilibrium distribution is used in order to decou-

ple pressure and velocity calculations. For the previous study (Zu and He, 2013),

the velocity and pressure are coupled, which requires a complex predictor-corrector

scheme. The superiority of the applied method will be discussed in detail in the

following sections.
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2.1 Macroscopic Equations

2.1.1 Governing Equations

The governing equations for the incompressible multiphase system are defined as

∇ · u = 0 (2.1a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (µ[∇u + (∇u)T]) + F (2.1b)

∂φ

∂t
+∇ · (φu) = ∇ ·M

(
∇φ− 1− 4(φ− φ0)2

ξ
n̂

)
(2.1c)

Eq.(2.1a) and eq.(2.1b) are the continuity and momentum equations, respectively

(Badalassi et al., 2003) (Ding et al., 2007) (Li et al., 2012) (Kendon et al., 2001).

Here ρ and µ are the fluid density and viscosity respectively; p is the pressure, u

is the macroscopic velocity vector, t is the time, term µ[∇u+ (∇u)T] is the viscous

stress tensor, and F = Fs + Fb is the volumetric force. The terms Fs and Fb

represent the forces associated with the surface tension and the body forces in the

system, respectively. In this work, surface tension force Fs is calculated as (Jacqmin,

1999)

Fs = µφ∇φ (2.2)

with the chemical potential µφ for the binary fluids being defined as (Mitchell et al.,

2018)

µφ = 1.5σ
[
32φ(φ− 1)(φ− 0.5)/ξ − ξ∇2φ

]
(2.3)

where σ is the surface tension, ξ is the interface thickness.

The body force Fb is calculated as

Fb = ρg (2.4)

where g is the gravitational acceleration.

Eq. (2.1c) is used to capture the interface between the phases. As introduced

before, previous phase-field methods are either based on the Cahn-Hilliard or the

Allen-Cahn equations. For our model, we adapt a conservative phase-field method

introduced by (Chiu and Lin, 2011). The method came from the development of Sun

and Beckermann’s method (Sun and Beckermann, 2007). Chiu and Lin (Chiu and

Lin, 2011) further improved the method and reformulated Sun and Beckermann’s

method to a conservative form. In this method, the phase field φ takes two extreme

values, φH and φL, standing for the heavy and light fluid; φ0 = (φH + φL)/2 stands
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for the interface. In eq.(2.1c), M is the mobility, and n̂ is the unit vector normal to

the surface, pointing out of the heavy fluid:

n̂ =
∇φ
|∇φ|

(2.5)

The equilibruim profile of the phase field for an interface at location x0 is written

as (Mitchell et al., 2018)

φ(x) = φo ±
φH − φL

2
tanh

(
x− x0

ξ/2

)
(2.6)

This equation is normally used to set the initial condition for the phase field. The

± sign is chosen such that the minimum value of the phase field is assigned to the

light fluid. In our case, we assigned φ = 0 to the light fluid and φ = 1 to the heavy

fluid, and φ = 0.5 indicates the interface between phases, as shown in Fig 2.1. After

rearranging eq. (2.6), we have

φ(x) =
1

2

[
1− tanh

(
|x− x0|
ξ/2

)]
(2.7)

Figure 2.1: The distribution of the order parameter φ for a phase field method
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2.1.2 Wetting Boundary Condition

When the fluid interacts with a solid surface and imposes a non-neutral contact

angle at the solid boundary, we have the following boundary condition (Jacqmin,

2000)

n̂W · ∇φ|xW = ΘφW (1− φW ) (2.8)

where n̂W is the unit factor normal to the solid wall, pointing away from the heavy

fluid. φW is the phase-field at the solid wall, and Θ is a parameter that related to

the contact angle by

Θ = −
√

2β

κ
cos θ (2.9)

Coefficients β and κ can be calculated from the surface tension σ and the interface

thickness ξ as

β = 12σ/ξ (2.10a)

κ = 3σξ/2 (2.10b)

For fluids with neutral wetting conditions (90◦) or no interaction with solid walls,

the wetting condition can be simplified as

n̂W · ∇φ|xW = 0 (2.11)

As we discussed in Chapter 1.5, the majority of previous studies used a geometric

formula (Ding and Spelt, 2007) or an approximation of the minimization of the free-

energy functional to impose the wetting boundary condition. These methods may

induce large parasitic currents or spurious velocities, or limit it only to the flat walls

where the normal vector to the surface aligns with the grid. The wetting boundary

equation we adapted in our research, on the other hand, is more flexible and is

consistent with the nature of the phase-field models (Jacqmin, 1999) (Jacqmin,

2000).

17



2.2 Lattice Boltzmann Formulation

In this study, the diffuse interface lattice Boltzmann method (LBM) proposed by

(Mitchell et al., 2018) is used to perform the multiphase simulation governed by the

system (2.1). Two particle distribution functions fi and gi are used to resolve hy-

drodynamic equations and interface capturing equation, respectively. In the system,

particles are allowed to move through collision and streaming processes. After each

time step, the particle distribution is updated, which allows for direct calculation of

the macroscopic fluid parameters in the system. The lattice structure is considered

as a uniform grid. We scale the lattice spacing δx and time step δt as δx = δt = 1,

and, thus, c = δx/δt = 1.

The lattice Boltzmann formulation to recover the governing equations are defined

as

fα(x + eαδt, t+ δt) = fα(x, t)−M−1ŜM
[
fα(x, t)− f̄α

eq]
+ Fα(x, t) (2.12a)

gα(x + eαδt, t + δt) = gα(x, t)− gα(x, t)− ḡeqα (x, t)

τφ + 1/2
+ F φα (x, t) (2.12b)

Eq.(2.12a) is a velocity-based LBE to capture the hydrodynamics. It is an

improved form of the velocity-based LB approach by Zu and He (Zu and He, 2013).

The recovery of hydrodynamics equation is achieved by lattice population fi using

D3Q27 model. The D3Q27 model helps to improve the isotropy and increase the

model accuracy. As shown in Fig.2.2(a), the weights ωfα and velocity direction efα

sets are defined as

ωfα =


64
216 , α = 0
16
216 , α = 1− 6
1

216 , α = 7− 14
4

216 , α = 15− 26

(2.13)
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Eq.(2.12b) recovers the conservative phase-field equation by lattice population

gi. D3Q15 model is used in this case. Its applicability has been studied in (Fakhari

et al., 2016a). This scheme is sufficient for modelling the phase-field equation as it

allows the resolution of the zeros- and first moments of the distribution. As shown

in Fig.2.2(b), the weights ωgα and velocity direction sets egα for D3Q15 model are

shown as

ωgα =


16
72 , α = 0
8
72 , α = 1− 6
1
72 , α = 7− 14

(2.14)

Figure 2.2: Lattice structure for the lattice Boltzmann formulation: (a) D3Q27
model, (b) D3Q15 model
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Coupled with this eq.(2.12a), a weighed multiple-relaxation-time (WMRT) col-

lision model (Fakhari et al., 2017a) was used to describe the collision operator, al-

lowing the model to have the potential to achieve relatively large viscosity contrasts

and simulate high Reynolds numbers.

The modified equilibrium distribution function f̄α
eq

in eq.(2.12a) is calculated

as

f̄α
eq

= f eqα −
1

2
Fα (2.15)

with

f eqα = ωfα

[
p∗ +

(
efα · u
c2s

+
efα · u)2

2c4s
− u · u

2c2s

)]
(2.16)

where p∗ is the normalized pressure calculated as

p∗ = p/c2sρ (2.17)

cs is the speed of sound of the system, defined as cs = c/
√

3.

Here, the modified equilibrium distribution function in eq.(2.15) is defined by

subtracting half of the forcing term (according to trapezoidal rule or Crank-Nicholson

discretization) from the regular equilibrium distribution function to simplify the col-

lision step (Fakhari et al., 2017b).

In eq.(2.12a), the collision operator is adapted from WMRT scheme as (Fakhari

et al., 2017a)

Ωα = −M−1ŜM
(
fα(x, t)− f̄α

eq)
(2.18)

where the orthogonal transformation matrix M is used to transfor the distribution

functions from physical space into moment space and is given in Appendix A. The

diagonal relaxation matrix is

Ŝ = diag(1, 1, 1, 1, sν , sν , sν , sν , 1, ..., 1) (2.19)

The relaxation parameter sν relates to the hydrodynamic time τ by sν = 1/(τ +

0.5) and the viscosity is set as µ = ρν = ρτc2s, where ν is the bulk kinematic viscosity,

µ and ρ is the bulk dynamic viscosity and density, respectively. Relaxation time τ

is calculated by

τ = τL + φ(τH − τL) (2.20)

where τL and τH are the bulk relaxation times in the light and heavy fluids, and φ

is the order parameter.
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The hydrodynamics forcing term Fα(x, t) in eq (2.12a) is given by

Fα(x, t) = ωfα
efα · F
ρc2s

(2.21)

where the forcing term is

F = Fs + Fb + Fp + Fµ (2.22)

The surface force Fs and the body force Fb are calculated from the eq.(2.2) and

eq.(2.4), respectively. The pressure force Fp and the viscous force Fµ are introduced

as a result of the recovery of the term [∇u+(∇u)T] in the velocity-based formulation

in eq.(2.1b) (Zu and He, 2013). The pressure force Fp can be determined as (Fakhari

et al., 2017b)

Fp = −p∗c2s(ρH − ρL)5 φ (2.23)

and the viscous force Fµ is (Fakhari et al., 2017b)

Fµ = ν(ρH − ρL)
[
5u + (5u)T

]
· 5φ (2.24)

where ρL and ρH are the densities of the light and heavy fluids, respectively, and

the derivative of velocity is recovered from the second moment of the hydrodynamic

distribution function as

Fµ,β = −ν(ρH − ρL)

C2
s

∑
α

efα,βefα,γ
∑
j

(M−1ŜM)i,j(fi − feqi )

 ∂βφ (2.25)

Macroscopic properties are recovered from the hydrodynamic distribution func-

tion as:

p∗ =
∑
α

fα (2.26)

u =
∑
α

fαe
f
α +

F

2ρ
(2.27)

21



In eq.(2.12b), the single-relaxation-time operator (BGK) is applied as collision

operator, where τφ = M/cs
2, and M is the Mobility.

The forcing term F φα is defined as

F φα (x, t) = δt
4φ(1− φ)

ξ
ωgαe

g
α · n̂ (2.28)

The term ḡeqi suggests that the equilibrium distribution is shifted by the forcing

term

ḡeqα (x, t) = geqα −
1

2
F φα (2.29)

where

geqα = φωgα

(
1 +

egα · u
c2s

+
egα · u2

2c4s
− u · u

2c2s

)
(2.30)

The distribution function gi can be related to the order parameter φ and ρ as

φ =
∑
α

gα (2.31a)

ρ = ρL + φ(ρH − ρL) (2.31b)

The gradient and Laplacian of the phase-field variable in the calculation of

eq.(2.23) and eq.(2.24) are determined using second-order, isotropic centred dif-

ferences, and then execute the dot product (Kumar, 2004) (Ramadugu et al., 2013),

here we use the calculation under D3Q15 model as an example:

5φ =
c

c2sδx

26∑
α=0

egαω
g
αφ(x + egαδt, t) (2.32)

52φ =
2c2

c2s(δx)2

26∑
i=0

ωgα [φ(x + egαδt, t)− φ(x, t)] (2.33)

For D3Q27 model, the implementation for eq (2.33) can be considered as (Thampi

et al., 2013):

52φ =
1

36

[
16

6∑
i=1

φ
(1)
i + 4

12∑
i=1

φ
(2)
i +

8∑
i=1

φ
(3)
i − 152φ(0)

]
(2.34)

where φ
(1)
i , φ

(2)
i and φ

(3)
i stand for the nearest, second-nearest and third-nearest

points nearby.

Notice that since different lattice structures are used for hydrodynamics and

interface-capturing, the ωgα and egα in eq.(2.32) and eq.(2.33) should be changed to
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ωfα and efα when calculating the surface tension force in eq.(2.2).

It is worthwhile to talk about the differences between the presented scheme and

the one proposed by Zu and He (Zu and He, 2013), in order to highlight some ad-

vantages of the applied model. Besides using a Cahn-Hilliard model to capture the

interface while we used a conservative phase-field model, there are also some differ-

ences in the calculation of hydrodynamics. First, Zu and He used finite difference

scheme to calculate the forcing term in eq.(2.24). This adds another nonlocal vari-

able to the system and, thus, impedes the efficiency of parallelization. In our scheme,

the only nonlocal variable is the order parameter φ. The second difference is the

way the equilibrium distribution function is calculated in eq.(2.15). We subtracted

half of the forcing term not only to simplify the collision step, but to calculate all

the equilibrium particle distributions at the same way. Zu and He distinguished

the particle distribution function at rest (α = 0) with other directions, which in-

creased the calculation and was not physical in reality. The third difference is that

the velocity and pressured was coupled in (Zu and He, 2013). A predictor-corrector

scheme is needed to update the bulk pressure and velocity at each time step. While

in our method, the velocity and pressure are updated separately through eq.(2.27)

and eq.(2.26), so there is no need for a predictor-corrector scheme. We only need to

make sure that the velocity is updated after the pressure.
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2.3 Boundary Conditions for LBM

When applying numerical simulation in a finite domain, the boundary treatment is

crucial. There are three different boundary conditions (BCs) used in our simulation:

the periodic BC, the bounce back BC, and the wetting BC. Periodic BC is used to

create a repeating flow pattern with a cyclic flow system, such that a large flow

field can be approximated by a repeating smaller flow field. Bounce back BC is one

of the most prevalent BCs to achieve the no-slip BC on liquid-solid interface. The

explanation and two-dimensional application for periodic BC and bounce back BC

using D2Q9 model is provided in Appendix B.

For this section, we focus on the implementation of the wetting boundary con-

dition. Fakhari and Bolster proposed a way to implement wetting BC in two-

dimensional cases using diffuse interface LBM in (Fakhari and Bolster, 2017). We

adapted this scheme and expand it to the three-dimensional applications.

We cut a slice to the three dimensional simulation domain, as shown in Fig. 2.3.

The blue nodes stand for the fluid nodes and the black nodes stand for the solid

nodes.

Figure 2.3: Node distribution on a two-dimensional lattice scheme, blue dots are
the fluid nodes and black nodes are the solid nodes.

Recall the general wetting boundary condition in eq.(2.35):

n̂W · ∇φ|xW = ΘφW (1− φW ) (2.35)

The left hand side of eq.(2.35) stands for the change rate of the phase field along

the vertical direction at the wall. After applying central difference scheme based on

24



the node distribution in Fig 2.3, the left hand side can be written as

n̂W · ∇φ|xW =
∂φ

∂nW

∣∣∣∣
xW

=
φi,j+1 − φi,j

2h
(2.36)

where h = |xi,j+1 − xw| and h = 0.5 in our case because we use a halfway bounce

back boundary condition and, thus, the wall should stay between the centers of the

two adjacent nodes.

The term φW on the right hand side of eq.(2.35) can be approximated as φW =

(φi,j+1 + φi,j)/2. Combined with eq. (2.36), eq.(2.35) can be rewritten as

φi,j+1 − φi,j
2h

= Θ
φi,j+1 + φi,j

2
(1− φi,j+1 + φi, j

2
) (2.37)

The quadratic equation gives us a solution as

φi,j =
1

a

(
1 + a−

√
(1 + a)2 − 4aφi,j+1

)
− φi,j+1 (2.38)

where a = hΘ.

In our case, φi,j+1 value can be adapted from the previous time step in the

iteration since the phase-field is not expected to change rapidly in our system.

For the neutral wetting boundary condition, eq. (2.11) has a simple solution as

φi,j = φi,j+1 (2.39)

Eq.(2.38) and eq.(2.39) give us the relationship of the φ field value between the

nodes inside the solid wall and the nodes outside the solid wall. The coefficient a

is related to the contact angle θ. The gradients and Laplacian at the solid wall

can, thus, be calculated by eq.(2.32) and eq.(2.33) and then the information can

be passed back to the entire system through the particle collision and streaming

processes, allowing the system to self-develop to the contact angle θ we specified.

Since the implementation of the wetting BC is not applied using a geometric

formula or an approximation form of the free-energy function, it can also be imple-

mented to the curved surfaces (Fakhari and Bolster, 2017). We only focus on its

implementation at the flat surfaces.
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2.4 Solution Algorithm

As briefly stated before, the update of the distribution functions fα and gα are

achieved through the collision and streaming processes. The solution algorithm is

explained on one population distribution gα for simplicity.

Recall eq.(2.12b) to capture the interface

gα(x + eαδt, t + δt) = gα(x, t)− gα(x, t)− ḡeqα (x, t)

τφ + 1/2
+ Fφα (x, t) (2.40)

We can decompose this equation into two distinct parts that are performed in

succession:

1. The first part is collision

g?α(x, t) = gα(x, t)− gα(x, t)− ḡeqα (x, t)

τφ + 1/2
+ Fφα (x, t) (2.41)

where g?α represents the distribution function after collision.

2. The second part is streaming (or propagation)

gα(x + eαδt, t + δt) = g?α(x, t) (2.42)

The LBE is consisted of two parts: collision and streaming. The collision is simply

an algebraic local operation. First, we calculate the density ρ, the macroscopic ve-

locity u and the forcing term F φα to find the modified equilibrium distributions term

ḡeqα (x, t) as in eq.(2.12b) and the post-collision distribution g?α(x, t) as in eq.(2.41).

After collision, we stream the resulting distribution g?α(x, t) to neighbouring nodes

as in eq.(2.42. When these two operations are complete, one time step is finished,

and the operations are repeated.

Fig.2.4 shows a typical process of particle’s streaming and collision.

Figure 2.4: Paricle streaming and collision processes
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In Fig.2.4, red particles are streamed from the central node to its neighbours,

while blue particles are streamed back. Left image shows the post-collision distri-

butions g?α and right figure gave us pre-collision distributions gα after streaming.

In our LBM based on diffuse-interface phase-field method, the calculation algo-

rithm is complex, especially when the boundary conditions come into play. Here

we give a detailed description about the solution algorithm to show our calculation

sequence and the update of variables.

1. Initialization:

(1) Initialize variables: normally we initialize our velocity field as u = 0, phase-field

as φ = 1 for the heavy fluid and φ = 0 for the light fluid, and pressure field as p = 1.

Density field can be generated from eq.(2.31b) and normalised pressure p∗ can be

generated from eq.(2.17).

(2) Initialize distribution functions: first, we calculate gradients and Laplacians of

φ through eq.(2.32) and eq.(2.33). The chemical potential µφ, normal vector n, and

forcing term F can be calculated accordingly from eq.(2.3), eq.(2.5) and eq.(2.22).

The hydrodynamic forcing for distribution fα and gα is calculated as eq.(2.21) and

eq.(2.28). The terms f eq, f̄ eqα , geq and ḡeqα are updated according to eq.(2.16),

eq.(2.15), eq.(2.30) and eq.(2.29), respectively. The initialized equilibrium distri-

butions are replaced by equilibrium values f̄ eqα and ḡeqα . Notice that since we use

different lattice structures for hydrodynamics and interface-capturing, the gradients

and Laplacians need to be calculated and stored separately. When applying them,

use the ones from D3Q27 model for all variables related to fα and use the ones from

D3Q15 for all variables related to gα.

2. Collision:

Since we have updated the variables in step 2, hydrodynamic forcing and equilibrium

distribution functions need to be updated too, as shown before. The collision oper-

ator Ωα is calculated from eq.(2.18), together with the diagonal relaxation matrix

from eq.(2.19) and relaxation time from eq.(2.20). fα is updated through WMRT

scheme as shown in eq.(2.12a), and gα is updated through BGK scheme as shown

in eq.(2.12b).

3. Streaming:

fα and gα is streaming everywhere in the system, as the example presented in

eq.(2.42). Bounce-back boundary condition is also applied in where there is a solid
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wall. The detailed explanation for bounce-back boundary condition is presented in

Appendix B.

4. Update the macroscopic variables:

(1) Variables ρ and φ are updated from distribution function fα and gα through

eq.(2.31a) and eq.(2.31b). Wetting boundary conditions is applied to update the

nodes near the solid wall as eq.(3.9)

(2) We repeat the calculation for gradients and chemical potential as introduced in

step 1.(2), to calculate surface forcing Fs and forcing term from F from eq.(2.2) and

eq.(2.22). The variables p∗ and u then can be updated from eq.(2.17) and eq.(2.27),

note that velocity is updated after the normalised pressure.

5. Update time step:

Increase the time step, setting t to t+ ∆t, and go back to step 2 until the last time

step or convergence has been reached.

6. Data output

In order to give a straightforward description, we also present an overview of

one cycle of our applied LB algorithm. As shown in Fig. 2.5, our LBM algorithm

is consisted of a cyclic sequence of sub-steps, with each cycle corresponding to one

time step. Notice that only main sub-steps are shown in the figure to keep it simple.

The internal order of these sub-steps is important, because later steps depend

on the results of earlier steps. Through continuous streaming and collision, the

distribution functions are continuously updated, as well as the macroscopic parame-

ters, until the entire system reaches an equilibrium state where there is no apparent

changes between the time steps.
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Figure 2.5: An overview of one cycle of the applied LB algorithm

2.5 Parallelization

Parallelization of the code is a crucial part of improving the efficiency of the sim-

ulations. In our research, we used message-passing interface (MPI) (Gropp et al.,

1999) for parallelization.

In our simulation, we divide the entire domain into several equal-sized sub-

domains. Each CPU is assigned one sub-domain. A receive-sent scheme is applied

for the communication between the sub-domains, and command MPI SENDRECV

is used. to Recall that the only non-local variable in the formulation is the order

parameter φ.

In our case, we only do parallelization for the z direction, not in x or y directions.

In Fig. 2.6, k represents the location in z direction and other two directions will be

written as x and y. We divide the entire domain into three sub-domains and each

domain length is (kend − ksta). When doing calculation for each domain, we add an

additional layer to both sides of the parallelized direction. These additional layers

are used to receive the φ value from the next sub-domain. Therefore, we have

φ(i, j, ksta− 1) = φ(i, j, kend) (2.43a)

φ(i, j, end+ 1) = φ(i, j, ksta) (2.43b)
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Figure 2.6: Sub-domains used for parallelization and variables exchange

We apply command MPI SENDRECV only before the update of the gradients

or Laplcians (in step 2.(2)).

Parallelization significantly reduces the simulation time, and allows us to con-

sider larger domain in order to obtain accurate results.
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Chapter 3

Drop Behavior on a Solid

Surface

In this chapter, the capability of the conservative phase-field lattice Boltzmann

method to capture the static contact angle is validated: a semi-circular drop is placed

on a solid surface and let to equilibrate. In the following sections, we introduce

the physical background of this process: what happens intermolecularly and what

contributes to the final equilibrated shape of the drop. The simulation is performed,

and the equilibrium contact angle is measured and compared to the theoretical value.

The focus is given to numerical implementation of the wetting boundary conditions.

3.1 Physical Background

If a liquid droplet is placed on a solid surface, it will reach an equilibrium state with

the surrounding phase and form a contact angle with the solid surface. The equi-

librium shape of the drop placed on the solid surface depends on certain properties

of the system. In this section, we explain the physics behind the surface wetting

phenomenon and identify the parameters that describe the system.

3.1.1 Surface Tension

Surface tension has the tendency of the fluid surfaces to shrink into the possible

minimum surface area (De Gennes et al., 2013). In microscopic view, a liquid is a

condensed state in which molecules attract each other (Graf et al., 2006). When

the molecular attraction is stronger than the thermal motion, molecules will change

from gas phase to liquid phase. Typically, the molecules inside the liquid volume

feel the cohesive forces from the neighbouring molecules and all the forces result in

31



a net force of zero. However, the molecules at the surface boundary only feel the

cohesive forces from one side of the neighbouring molecules and, therefore, have the

tendency to be pulled inside. This leads to internal pressure and forces the surface

to minimise its area, resulting in a spherical surface (De Gennes et al., 2013).

Another way to view the surface tension is in terms of energy. A molecule in

contact with a neighbour is in a low energy state, comparing to when it is not in the

contact. Therefore, the molecules inside the liquid volume are of low energy state,

while the ones at the surface boundary are of comparably high energy state. In order

to minimize the energy of the system, the number of high-energy molecules has to

be minimized, which results in a minimization of the drop surface area (De Gennes

et al., 2013).

At liquid–air interfaces, surface tension results from the greater attraction of

liquid molecules to each other (due to cohesion) than to the molecules in the air

(due to adhesion). The net effect is an inward force at its surface that causes the

liquid to behave as if its surface were covered with a stretched elastic membrane.

Thus, the surface comes under tension from the imbalanced forces, which is probably

where the term “surface tension” came from. The surface energy between the two

phases liquid L and gas G is normally characterized by an interfacial tension σLS ,

which is an important parameter in determining the shape of the liquid drop in such

system.

Although the surface tension σ can be explained at the molecular level, it is

a macroscopic parameter defined on a macroscopic scale (De Gennes et al., 2013).

Physically, surface tension can have the dimension of energy per area or force per

length. On the one hand, creating surfaces needs energy supply. Suppose one wants

to increase the surface area of a liquid drop by an amount of dA, the corresponding

number of liquid molecules have to be brought to the surface boundary of the liquid

volume and we can write the energy needed as

δW = σ · dA (3.1)

where σ is the interfacial tension and δW is the needed energy. Dimensionally,

[σ] = EL−2. The unit is expressed as mJ/m2. In other words, σ is the needed

energy to increase the surface area by one unit.

Surface tension also contributes to thermodynamic work. It can be defined as

the increase in free energy F with the an increase in surface area:

σ =

[
∂F

∂A

]
T,V,n

(3.2)
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where n is the number of molecules and V is the total volume.

On the other hand, surface tension can be viewed as a force per length. This

can be easily observed in many experiments. One of the most famous experiment is

the liquid membrane supported by a rigid frame experiment introduced in (Wick,

1997). It illustrates how much work is needed to increase a certain amount of the

surface area and how it relates to the interfacial tension of the system. As shown

in Fig 3.1, a flexible loop, secured by two threads to the frame, is embedded in the

membrane. Without any forces applying, the rob has the tendency to move left so

as to minimize the surface area. Therefore if the rob moves a distance dx (to the

right), the needed energy can be written as

δW = F · dx = 2σ · l · dx (3.3)

where the factor 2 reflects the presence of two interfaces of the system. In conclusion,

~σ is can be viewed as a force per unit length to the rod in the plane of the surface

and directed towards the liquid.

Figure 3.1: Experiment of the measurement of surface tension, adapted from (Wick,
1997)

3.1.2 The Capillary Length

Surface tension is not the sole determinant for the shape of the liquid volume after

being put on a solid surface. We also need to take gravity force into consideration.

There exists a particular length- capillary length κCL, beyond which the gravity

becomes important. It can be estimated by equating the Laplace pressure σ/κCL and

hydrostatic pressure ρgκCL. Where ρ is the density at a depth κCL and g = 9.8m/s2
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is the earth’s gravity acceleration.

κCL =

√
σ

ρg
(3.4)

As shown in Fig. 3.2, for small drops of radius less than κCL, the gravity force

is negligible. The capillary forces are the only forces that come into play and the

droplet forms a spherical cap after being placed on a solid surface. For larger drops,

the gravity force becomes dominant, thus the top part of the droplet can be flattened.

If the radius continues to increase, the drop might wet the whole surface and can

no longer maintain any shape.

Figure 3.2: Gravity effect on droplet final shape

The order of the capillary length κCL is typically within millimetres. The cases

we considered in our research are only for small drops for which the gravity force is

negligible. Therefore in our case, the shape of the liquid volume remains a spherical

cap after being placed on a solid wall.

3.2 Wetting and Contact Angle

When a liquid droplet is placed on a solid surface, it will stay in the shape of a

spherical cap due to the existence of surface tension (we do not take gravity force

into consideration due to the small drop size). The angle that the liquid surface

makes with the solid support is described as the contact angle.

As shown in Fig 3.3 , the equilibrium force balance in the horizontal direction

can be written as:

FLG cos θ = FSG − FSL (3.5)

where FLG, FSG and FSL refer to the interface forces of liquid-gas surface, solid-gas

surface and solid-liquid surface, respectively; θ is the contact angle.

This equation was proposed by Thomas Young in 1805. From the equation, it

is clear that if the interfacial tension force of the solid-gas interface is larger than
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the interfacial tension force of solid-liquid interface (FSG > FSL), the contact angle

cos θ has to be positive and θ is thus less than 90◦, the liquid has the tendency

to spread and partially wets the solid, the solid wall is then called the hydrophilic

surface (Graf et al., 2006). If the solid-liquid interfacial tension force is larger than

the solid-gas interfacial tension force (FSL > FSG), the contact angle will exceed

90◦ and the solid wall is thus called the hydrophobic surface. (Fakhari and Bolster,

2017) (See Fig 3.4).

Figure 3.3: Force balance under equilibrium

Figure 3.4: Hydrophilic surface (a) and hydrophobic surface (b)

Young’s equation is the foundation of wetting phenomena study, but it is very

difficult to be verified because the interface tension force measurement in reality

is quite difficult (De Gennes et al., 2013). In addition to the challenges exposed

by experiments, there are also some objections to the physical content of Young’s

equation (Hiemenz and Rajagopalan, 1997). The objections can be roughly classified

into two categories: first, the Young’s equation neglects the surface roughness and

chemical heterogeneity for the actual solid phase (Hiemenz and Rajagopalan, 1997).

Some researchers have added empirical corrections to the equation in order to solve
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this problem. For example, if the surface is rough, the surface area where the liquid

is in contact with the solid phase is actually larger than estimated. A term cos θ is

thus added to the left hand side of the eq. (3.5) to balance the projection of FLG

on the solid surface:

cos θFLG cos θ = FSG − FSL (3.6)

where cos θ > 1, in order to make up for the underestimation of the surface area.

For heterogeneous surface, we simply identify two different surfaces to be chemical

type 1 and chemical type 2. Fraction f1 and f2 are assigned to be the percentage

of chemical type S1 and S2. Eq.(3.5) can then be revised as

FLG cos θ = f1(FS1V − FS1L) + f2(FS2V − FS2L) (3.7)

where f1 + f2 = 1. Although corrections are made to the original Young’s equa-

tion, the validations of both conditions are even harder than before. Therefore the

accuracy of eq.(3.5) is continued to be questioned.

Another objection to the Young’s equation is concentrated on whether the sur-

face is in a true thermodynamic equilibrium state. The core problem towards this

argument is whether the surface is thermodynamically the same as an ideal surface

without such system being placed above. From Fig. 3.3, we can see that FLG has

a projection term on the solid surface: FLG sin θ. On deformable solid surface, this

term will produce a ridge to the surface. On harder solid surface, we are not sure if

the term will cause a deformation of the surface. Clearly, only when θ = 0◦ can the

surface be in a true thermodynamic state.

Young’s equation is very controversial during the past decades because it over-

simplified several important factors in real physical process (Hiemenz and Ra-

jagopalan, 1997). However, the fact that it placed a solid foundation to surface

wetting research and its capability under ideal conditions analysis cannot be de-

nied. It gives us a sense of how the wetting phenomena is related to the contact

angle and the interface tension, which is exactly our starting point for this research.

Back to our case, when a semi-circular liquid drop is placed on a solid surface,

due to the existence of the surface tension and certain solid surface characteristic, the

drop will automatically deform and reach to an equilibruim state. Mathematically,

the relationship between the maximum height of a droplet and its contact angle can

be derived (Fakhari and Bolster, 2017) for the equilibrated system. As shown in

Fig. 3.5, the mass per unit density of the droplet can be written as A = r2(π−α+

sinα cosα), where α = π − θ. Recall that the initial mass per unit density of the

droplet is A0 = πR2/2. According to the mass conservation law, we have A = A0.
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Thus, we have
hmax
R

= 1− cosθ

√
π

2θ − sin2θ
(3.8)

Figure 3.5: Contact angle θ and the maximum height hmax of a droplet

To validate that the adapted numerical model can capture the static contact

angle, the following simulations cases were performed. First, a semi-circular droplet

was placed on the solid surface, then the system of the governing equations was

solved to reach the equilibrium state. Finally, the numerical simulation results of the

maximum height of the drop and the contact angle was compared to the theoretical

solution. The simulation was done with two fluid phases with equal density and

equal viscosity.

3.3 Numerical Model and Parameters

In LB simulation, we use lattice unit (lu) to describe the length scale of numerical

parameters. The simulation parameters were applied as: surface tension σ = 0.01,

interface thickness ξ = 3 (lu) , τφ = 1, mobility M = 1/3, density ratio ρH/ρL = 1,

viscosity ratio µH/µL = 1. The simulation domain size is of nx × ny × nz =

90×60×40 (lu), the initial drop was placed at (nx/2, ny/2, 0), the initial diameter of

the droplet is 36(lu). Periodic boundary condition was applied in x and y directions,

halfway bounce back was used on the top boundary to replicate no-slip boundary

condition, wetting boundary was applied to the bottom boundary.

37



3.4 Numerical Results

We tested four different non-neutral contact angles (θ = 30◦, 60◦, 120◦ and 150◦) and

observed drop deformation process and final equilibrium state. The final equilibrium

states for each case are presented in Fig 3.6.

To quantitatively assess the accuracy of the numerical results, the maximum

equilibrium height of the drop obtained numerically was compared to the theoretical

prediction given by eq (3.8). The comparison between the analytical and numerical

results is shown in Fig 3.3. The maximum relative deviation is 3.3% and it is

achieved at the contact angle of 120◦.

Figure 3.6: Equilibrium state of the drop with different contact angles
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Figure 3.7: Comparison between analytical and numerical results for the maximum
height of the drop, as a function of θ

3.5 Curve Fitting Method

In the previous section, we presented the equilibrium state of drops with different

contact angles in Fig.3.6 and the comparison between analytical and numerical re-

sults in terms of the maximum of the drop height for each case in Fig.3.7. In order

to get a further description about the accuracy of our method, we want to directly

measure the equilibrium contact angles and compare them to the proposed contact

angles when we initialize the simulation. This led us to consider the possible meth-

ods to calculate the contact angle. Several experimental methods to measure the

contact angle are introduced in (Law and Zhao, 2016). Here, we chose to apply a

curve fitting method to quantitatively identify the contact angle.

As shown in Fig 3.8, the dashed white curve is an arc that best fits the drop in-

terface (φ = 0.5). We plotted the whole simulation domain in Cartesian coordinates

such that we can easily get the point of intersections of the drop interface and our

x axis: (x1, y1) and (x3, y3). (x2, y2) is the position of our center of the fitted circle.

The intersection angle θ1 in Fig 3.8 then can be calculated directly from the above

coordinates:

θ1 = arccos

[
(x3 − x1, y3 − y1) · (x2 − x1, y2 − y1)

(|(x3 − x1, y3 − y1)| · |(x2 − x1, y2 − y1)|)

]
(3.9)
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Figure 3.8: The curve fitting method for (a) hydrophilic surface and (b) hydrophobic
surface

For a hydrophilic surface as shown in Fig.3.8 (a), the contact angle can be

calculated as θ = 90◦ − θ1 and for a hydrophobic surface as shown in Fig.3.8 (b),

the contact angle is θ = 90◦ + θ1. We used the curve fitting method to measure

the contact angle for each case. The interface was halved into two to measure the

left and right contact angle separately and the average is taken to minimize the

calculation error. The measured contact angle for four cases are shown in Table 3.1.

The largest deviation between measured contact angle and specified contact angle

is 4.3%, achieved at θ = 30◦. All the contact angles were measured after the system

came to an equilibrium state.
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Table 3.1: List of measured contact angles for each simulation

Specified contact angle Measured contact angle

30◦ 28.7◦

60◦ 61.6◦

90◦ 88.8◦

120◦ 125.2◦

150◦ 144.3◦

3.6 Conclusions

In this chapter, we briefly went through the physical background of the proposed

system and the surface wetting phenomenon. The capability of the current imple-

mentation of wetting boundary condition to capture the static contact angle was

validated by putting a semi-circular drop on a solid surface and observed its final

equilibrium state. We compared the differences between the numerical simulation

results and analytical results in terms of both the maximum height of the drop and

its equilibrated contact angle, the deviation was less than 6% and thus testified the

model accuracy.

The possible reasons accounting for the differences between specified contact

angle and measured contact angle include the existence of model error when we

chose the numerical method, round-off error led by computer precision and errors

that may appear when we applied the curve fitting method to measure the contact

angle.
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Chapter 4

Drop Sliding in a Simple Shear

Flow

This chapter is devoted to the validation of the wetting boundary condition to cap-

ture the three-dimensional contact line motion. The cases were done by applying

numerical studies of drop sliding cases between two parallel solid plates. In partic-

ular, we pay attention to its ability to capture the contact angle during the drop

motion.

4.1 Background

Studying the three-phase contact line motion is of great importance, as it is widely

encountered in many industrial applications and everyday life. Take multiphase flow

in porous media as an example, it requires us to study the drop behavior in very

confined channels and the dynamic interaction of the phases with each other and

with the adjacent walls (Derksen, 2015).

In this chapter, motivated by the aim to elucidate the dynamic interaction be-

tween fluid phase and solid wall for flow in porous media, we use LBM simulations

to study the drop behavior in a shearing flow, which requires an accurate capture

of the three-phase contact line motion.

To validate the capability of the method to capture contact line motion, we

simulated a single drop sliding in a simple shear flow. Similar simulations have been

done before, but using different numerical methods: Derksen (Derksen, 2015) used

molecular dynamic simulations to investigate contact line motion. In this study, a

sessile drop of Fluid 1, immersed in Fluid 2 was placed on a solid surface, the then

system was sheared. The specific focus was given to the relationship between the
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dimensionless sliding speed of the drop of Fluid 1 and the contact angles of the drop

on the substrate. Considering the limitation that molecular dynamic simulation can

only handle microscopic system, another paper (Derksen and Komrakova, 2019)

applied and tested the free-energy lattice Boltzmann method for the accuracy of

three different wetting boundary conditions for the same cases.

4.2 Problem Statement

We consider a fluid system with two parallel solid plates. First, we placed a semi-

circular droplet with a radius R0 consisting of Fluid 1 on the bottom solid surface

in the surrounding of Fluid 2, then let the system equilibrate to a specified angle.

Both fluid have the equal density ρ and viscosity ν. After the equilibrium state was

achieved, we generated a shear flow with shear rate G by moving the bottom and

top solid wall with opposite velocity directions, which allowed the droplet to deform

and move, as shown in Fig 4.1. θr and θa represented the receding and advancing

contact angle respectively.

For a multiphase system, there are two important kinetic effects: hydrodynamic

and thermodynamic, leading to a distinction between ‘static’ and ‘dynamic’ contact

angles (Berg, 2010). Hydrodynamic analysis shows that viscous effect is primarily

responsible for the dynamic wetting behavior, and it can be describe using the

Capillary number Ca as

Ca =
µV

σ
(4.1)

where µ is the dynamic viscosity of the liquid, V is a characteristic velocity and σ

is the interfacial tension between the two fluid phases.

The capillary number is a dimensionless quantity, and is the ratio of viscous force

and surface tension force term in the system. For low capillary numbers (normally

less than 10−5), flow is dominated by the capillary forces. Whereas for higher

capillary number (more than 10−4), the capillary forces are negligible compared to

the viscous forces. The capillary number plays a key role in the dynamics of moving

flow, in particular it governs the dynamic contact angle of a flowing droplet at an

interface (Lambert, 2013).

Similarly, several dimensionless parameters were chosen to describe the drop

shearing process for our LBM simulation: the capillary number Ca = ρνGR0/ξ ,

the Reynolds number Re = GR0
2/ν , the contact angle θ and the aspect ratio R0/h

with h the distance between two parallel solid plates. All the units conversion were

referred to paper (Derksen and Komrakova, 2019).
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Figure 4.1: Droplet moving under shear rate G

4.3 Numerical Results

Here we keep Ca = 0.16 and Re = 0.26 in order to align with the cases introduced

by (Derksen and Komrakova, 2019). The simulation domain size is designed as

nx×ny×nz = 90×60×40, the shearing rate G = 2.67 ·10−4, the shearing velocity

v = 5.334 · 10−3(lu) for the top wall and v = −5.334 · 10−3(lu) for the bottom wall.

For the boundary treatment of the domain, the bottom and top walls were assigned

with the wetting boundary condition and the left and right walls were assigned with

the periodic boundary conditions, which allowed the droplet to leave and come back

to the domain in horizontal directions.

In Fig 4.2, three cases with different initial wetting angles (65◦, 90◦ and 111◦)

were performed. During the shearing process, the drop would deform and move with

the bottom solid wall, then finally reach a terminal velocity.

The receding angle θr and the advancing angle θa for all three cases are measured

after the droplet reached their terminal velocity. Fitting curve method introduced

in chapter 3.4 was used to quantitatively measure the contact angles. Our lat-

tice Boltzmann simulation results were compared to the molecular dynamics results

presented by ((Derksen and Komrakova, 2019)) as shown in Fig 4.3.
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Figure 4.2: Drop deformation and movement for initial contact angle (from left
to right) θ = 65◦, 90◦ and 111◦ respectively. Time increases from the top to the
bottom: Gt = 0, 0.2136, 0.4272, 0.8544, 1.7088

In Fig 4.3, the simulation results for receding angles and advancing angles were

presented. The maximum relative deviation for receding angle is 5.9%, achieving at

111◦ and the maximum relative deviation for advancing angle is 41.6%, achieving

at 65◦. Overall, we report a good agreement for the receding angle, but not for the

advancing angle.

The wetting boundary condition that we applied was,

φi,j =
1

a

(
1 + a−

√
(1 + a)2 − 4aφi,j+1

)
− φi,j+1 (4.2)

where a = hΘ with Θ = −
√

2β/κcosθ.

For each single time step, we put the desirable contact angle into calculation

and that led to the further update of the particle distributions in the entire system.

For static contact angle simulation cases as introduced in Chapter 3, the desirable

contact angle was specified each time step and the final equilibrium was achieved

until the boundary condition was satisfied. For the cases introduced in this chapter,

however, using initial contact angle as an input to the wetting boundary condition

might lead to underestimation of the actual contact angle. The simulated contact

angle generally have the tendency to be closer to the initial contact angle, as shown
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for case θ = 65◦ and 90◦, than the actual contact angles are. In other words, the

development of the contact angle was supposed to be independent of the initial

contact angle, and that is probably the reason why our model cannot preciously

capture the contact line motion and dynamic contact angle. Similar conclusions

have also been drawn by (Derksen and Komrakova, 2019).

Figure 4.3: Comparison of receding angle θr and advancing angle θa in current lattice
Boltzmann method study and results adapted from (Derksen and Komrakova, 2019)

4.4 Conclusions

The simulations of a droplet sliding in a simple shear flow were performed, so as

to explore method’s capability to capture the contact line motion. The numerical

findings of the present work were compared to the reference data obtained from the

molecular dynamics simulations in (Derksen and Komrakova, 2019). The compar-

ison showed a reasonable prediction for receding angles, but not for the advancing

angles. The participation of initial contact angle in the implementation of wet-

ting boundary condition might help to explain the huge deviation, therefore further

modifications are needed in order to have an independent circulation scheme for the

numerical simulation of contact line motion capturing.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this study, we developed a Fortran code from scratch to numerically study the

behaviour of a liquid drop on a solid surface. A diffuse interface method was chosen

and a phase-field equation was coupled with the continuity and Navier-Stokes equa-

tions to solve the flow field. A lattice Boltzmann method proposed by (Mitchell

et al., 2018) was used to solve the macroscopic equations and a two-dimensional

implementation of wetting boundary condition proposed by (Fakhari and Bolster,

2017) was extended to the three-dimensional cases.

The overarching focus of this project is to study the surface wetting phenomenon

and contact line motion, so as to obtain a thorough understanding of a multiphase

system and drop-wall interaction, as exist in many emulsion systems. Two distinct

cases were preformed to study the capability of the applied model to capture the

static contact angle and contact line motion, respectively; and discussions were also

provided to analyse the deviation between the numerical results and reference data.

In Chapter 3, we first placed a semi-circular droplet on a solid surface and as-

sessed the ability of the method to recover the static equilibrium contact angle

achieved at different characteristics of the solid surface (from hydrophilic to hy-

drophobic). The deviation between the numerical and theoretical predictions of the

maximum height of the drop at the equilibrium state is about 3.3%. The maximum

deviation in terms of contact angle is 4.3%.

Then in Chapter 4, the simulations of a droplet sliding in a simple shear flow were

performed and to explore method’s capability to capture the contact line motion.

The numerical findings of the present work were compared to the reference data

obtained by molecular dynamics simulations (Derksen and Komrakova, 2019). The
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comparison showed a reasonable prediction for receding angles, but not for the

advancing angles. The possible reason behind this might be the participation of

initial contact angle in the wetting boundary condition.

The current implementation of the wetting boundary condition is not ideal be-

cause it provided less accurate results when comes to the study of contact line

motion. However, our applied diffuse interface phase-field LBM is powerful and the

applied wetting boundary conditions give us very nice prediction for static contact

angle and a satisfying prediction for dynamic contact angle. All the aforementioned

advantages give us a nice starting point for future study.

5.2 Future Work

The promising of the current model motivates further study so as to perform more

physically reasonable cases which allows us to directly apply into industry applica-

tion. As for the future work,

• The current implementation of the wetting boundary condition needs to be

further modified as it relies on the initial specified contact angle. The detailed

reason has been provided in chapter 4.3. During this study, we noticed that no

matter the macroscopic wetting boundary condition in eq.(2.35) or our imple-

mentation in eq.(2.38), the equations involve initial contact angle θ. Perhaps

a entirely new form of wetting boundary condition for capturing the contact

motion line is needed.

• The current simulation scheme should be further studied to acquire the ability

to simulate a system with high density and viscosity ratio to gain more gener-

ality (gas-liquid-solid system, as an example). Many pore-scaled phenomena

in industry is accomplished in gas-liquid-solid system, like the CO2 storage

(Saraji et al., 2013).

• The study of interface thickness ξ needs to be done to make sure our simulation

result is well aligned with the theoretical ones. As mentioned in chapter 1.2,

the choice is the interface thickness is extremely important and inappropriate

value might lead to inaccuracy. Due to the time limitation, we adapted the

interface thickness value from a previous study (Fakhari and Bolster, 2017),

thus further study is required.
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• The dimension convertion from lattice units to physical units (SI units, for

instance) should be further studied, especially when the system can be applied

to simulate the gas-liquid-solid system. By then, a lot of experimental data

will be available, which calls for the consistency between two dimensions.
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Appendix A

WMRT transformation matrix

The orthogonal transformation matrix M is adapted from WMRT(weighted-multiple-

relaxation-time) scheme, proposed by Fakhari et al (Fakhari et al., 2017a).
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Appendix B

Boundary Treatment

For this section, we give a precise introduction to periodic boundary condition and

bounce-back boundary condition. The examples are given using D2Q9 model as

shown in Fig.(2.1), in order to give a clear illustration. The applications have been

extended to three dimensional for the simulations in chapter 3 and chapter 4.

Figure 2.1: The D2Q9 model

2.1 Periodic Boundary Condition

Periodic boundary condition is designed to create a repeating flow pattern with a

cyclic flow system. It is normally used in the simulations where a finite part of the

flow field can be approximated by a repeating smaller flow field. Its logic is quite

straightforward: the fluid leaving the domain on one side will, instantaneously, re-

enter at the opposite side. Consequently, periodic boundary conditions conserve

mass and momentum at all times. Periodic boundary condition is suitable and

efficient for the cases like generating a fully developed flow.

The way to implement the periodic boundary condition is straightforward. As

shown in 2.2, we can add additional layers of nodes at location x0 = x1 −∆x and
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Figure 2.2: Boundary for a periodic field, nodes at location x0 and xN+1 are imag-
inary and only added for calculation. x0 = x1 −∆x and xN+1 = xN + ∆x

xN+1 = xN+∆x to help pass the population. The boundary of the simulated system

are at xin = (x0 +x1)/2 = x1−∆x/2 and xout = (xN+1 +xN )/2 = xN +∆x/2. The

periodic length L = xout − xin = N∆x. Before streaming, the population f?α are

copied into these nodes from the opposite periodic boundary of the system. During

streaming, the unknown incoming populations f?α on one side are given by those

leaving the domain on the other side:

f?α(x, t) = f?α(x + L, t) (2.1)

where L describes the length of the flow pattern, as well as the periodicity direction.

Eq.(2.1) in D2Q9 model can be implemented as

f?1 (x0, y2, t) = f?1 (xN , y2, t) (2.2a)

f?5 (x0, y2, t) = f?5 (xN , y2, t) (2.2b)

f?8 (x0, y2, t) = f?8 (xN , y2, t) (2.2c)

For the other side, we have

f?3 (xN+1, y2, t) = f?3 (x1, y2, t) (2.3a)

f?6 (xN+1, y2, t) = f?6 (x1, y2, t) (2.3b)

f?7 (xN+1, y2, t) = f?7 (x1, y2, t) (2.3c)

An alternative way to apply periodic boundary conditions is to passing the func-

tions without the participation of the additional layers of notes. We consider the

periodic boundaries of the domain as they were attached with each other as shown

in 2.3. In this case, periodic boundary conditions are implemented only in streaming
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process. Post-streaming distributions functions which enter the domain on the one

side are replaced by the post-collision populations which leave the domain on the

opposite side:

Figure 2.3: Boundary for a periodic field, nodes at location x0 and xN+1 are imag-
inary and only added for calculation. x0 = x1 −∆x and xN+1 = xN + ∆x

fα(x, t+ ∆t) = f?α(x + L− eα∆t, t) (2.4)

The implementation in D2Q9 model can be written as

f1(x1, y2, t+ ∆t) = f?1 (xN , y2, t) (2.5a)

f5(x1, y2, t+ ∆t) = f?5 (xN , y1, t) (2.5b)

f8(x1, y2, t+ ∆t) = f?8 (xN , y3, t) (2.5c)

Similarly, on the other side, we have

f3(xN , y2, t+ ∆t) = f?3 (x1, y2, t) (2.6a)

f6(xN , y2, t+ ∆t) = f?6 (x1, y1, t) (2.6b)

f7(xN , y2, t+ ∆t) = f?7 (x1, y3, t) (2.6c)

For our simulation, we use the alternative method as shown in eq.(2.4) wherever

applicable, in order to avoid introducing new layers of nodes.

2.2 Bounce Back Boundary Condition

One of the most common boundary conditions for fluid-solid system is the no-slip

boundary condition. For Lattice Boltzmann Method, the oldest but still prevalent

boundary condition is bounce-back method. The principle of bounce-back method

is that the fluid populations hitting a rigid wall will be bounced back to where they

originally came from, as shown in Figure 2.4.
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Figure 2.4: a moving particle hitting before (a) and after (b) a rigid wall

Although not straightforward at the first glance, bounce-back method follows

the no-slip boundary condition in a macroscopic way. In no-slip condition, the

wall is impermeable to the fluid and thus fluid transports no motion across the

boundary. The total motion is thus conserved. As to bounce-back method, the

fluid populations are bounced back to the original place and there is also no relative

motion transportation between the fluid and the boundary.

Different from other boundary conditions, bounce-back boundary condition is

stable even for a small time discretization step where τ → ∆t/2. It is also a strict

mass-conservation method that no correction terms are needed to be introduced to

preserve total mass. It can obtain higher-order accuracy if surfaces are aligned with

the lattice, so it is especially suitable for our case. The exact location of the no-slip

boundary may be viscosity-dependent when the bounce-back scheme is used with

BGK collision model, but this problem can easily be eliminated when using TRT or

MRT collision model instead.

The bounce-back method can be categoried as fullway bounce-back method and

halfway bounce-back method. In fullway bounce-back method, particles will travel

the whole path from the boundary to the solid node and therefore the particle

is bounced back during the next collision step. In halfway bounce-back method,

particles travel only half of the path between the boundary and the solid node, the

particle inversion thus happens at the streaming step.

The fullway bounce-back method requires solid nodes’ participation where the

populations are stored and then bounced back during the next collision step. Halfway

bounce-back method, on the other hand, does not require solid nodes’ participation

since the particles only travel half path between the distance so the reflection only

happens at the streaming step. Mathematically, we only need to change collision

step for fullway bounce-back method or streaming step for halfway bounce-back
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method.

In terms of simplicity, the fullway bounce-back method always wins over the

halfway bounce-back method and the reason is quite straightforward: mathemat-

ically, we only need to check if the particle has reached the solid node or not for

fullway bounce-back method, while for halfway bounce-back method, we need to tell

if the particle has reached the solid node (which indicates a bounce-back condition)

or it has reached a boundary or fluid node (which indicates a normal streaming step).

This process may lead to huge consumption of time and memory in real implemen-

tation. However, the fullway bounce-back method can degrade the time accuracy

of LB method because it requires 2∆t while the halfway bounce-back method only

requires ∆t to return the particle information back to the bulk. This time-delay

problem would cause quite a few problems in unsteady-state problem, especially for

transient problems. The halfway bounce-back method, on the other hand, does not

have to consider the solid nodes, which enables it to model thin plates where the

solid lattice width is infinitely small. Therefore for our simulation, we choose halfway

bounce-back method over fullway bounce-back method in terms of efficiency.

Unlike the names of these two methods may imply, the locations of the boundary

are both assumed as midway between solid and boundary nodes, not on the solid

nodes themselves. The reason behind is that the assumption of placing boundary on

the solid nodes introduces a first-order error while placing boundary in the middle

is of second-order accuracy.

Similarly, in order to give a better illustration of the halfway bounce back

method, we used the two dimensional D2Q9 model as an exmaple here to show

all the bounce equations.

In Fig. 2.5, node xf stands for the node inside the solid wall and node xf stands

for the node in the fluid. Populations leaving node xf at time ∆t will meet the

boundary at time t+ 1
2∆t and then bounce back at time t+ ∆t to xf . For resting

walls, streaming steps of these populations are written as

fi(xf , t+ ∆t) = f∗i (xf , t) (2.7)

In D2Q9 model, equation 2.7 can be written as (see Fig 2.5)

f2(xf , t+ ∆t) = f∗4 (xf , t) (2.8a)

f5(xf , t+ ∆t) = f∗7 (xf , t) (2.8b)

f6(xf , t+ ∆t) = f∗8 (xf , t) (2.8c)

64



For moving walls, where the bounced-back populations need to gain or lose some

Figure 2.5: D2Q9 model before (a) and after (b) streaming at a solid wall

momentum after hitting, the right side of eq. (2.7) needs a correction, as

fi(xf , t+ ∆t) = f∗i (xf , t)− 2ωiρw
ei · uw
cs2

(2.9)

where ωi is the weights of lattice model, subscript w indicates the properties defined

at the wall location xw = xf+ 1
2ci∆t (the midway between the solid and fluid nodes).

uw is the velocity of the moving boundary. The equations are therefore revised as

f2(xf , t+ ∆t) = f∗4 (xf , t)− 2ω4ρw
e4 · uw
cs2

(2.10a)

f5(xf , t+ ∆t) = f∗7 (xf , t)− 2ω5ρw
e5 · uw
cs2

(2.10b)

f6(xf , t+ ∆t) = f∗8 (xf , t)− 2ω6ρw
e6 · uw
cs2

(2.10c)

In standard LB model, the density value is usually not known at the wall. One of

the solutions is to estimate ρw as the local fluid density ρb. For steady flow, the

difference between ρw and ρb is normally of O(Ma2), where Ma is the local Mach

number.
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Appendix C

Two-dimensional Case

For this chapter, two-dimensional cases for static contact angle capturing is pre-

sented. The LB scheme is adapted from (Fakhari and Bolster, 2017), which is also a

diffuse interface phase-field method, but has slight differences in terms of implemen-

tation with the one introduced by (Mitchell et al., 2018). The lattice Boltzmann

formulation is provided in the following sections, as well as the two-dimensional

simulation results. The macroscopic governing equations and the implementation

of wetting boundary condition is identical as the three-dimensional cases, they can

be found on chapter 2.1 and 2.3, respectively.

3.1 Two-dimensional lattice Boltzmann method

3.1.1 LBM for interface tracking

Particle distribution function gα is used to recovery the interface tracking equation

(Geier et al., 2015) and the equation can be written as

gα(x + eαδt, t+ δt) = gα(x, t)− gα(x, t)− geqα (x, t)

τφ + 1/2
(3.1)

where τφ is the phase-field relaxation time, and eα is the microscopic velocity set

for D2Q9 lattice, which is

eα = c


(0, 0), α = 0

(cos(θα), sin(θα)), α = 1− 4

(cos(θα), sin(θα))
√

2, α = 5− 8

(3.2)

where c = δx/δt = 1 and δx and δt are the lattice length and time scale, respectively

(on uniform gridsδx = δt = 1 ). The weights and velocity sets for D2Q9 model can
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be find in Fig. 2.1.

The equilibrium phase-field distribution function is given by

geq = φΓα + ωα
M

C2
s

[
4

ξ
φ(1− φ)

]
(eα · n̂) (3.3)

where

Γα = ωα

[
1 +

eα · u
Cs

2 +
(eα · u)2

2Cs
4 − u · u

2Cs
2

]
(3.4)

cs = c/
√

3 is the speed of sound in the system and ωα is the weight coefficient set,

where ω0 = 4/9, ω1−4 = 1/9, ω5−8 = 1/36. Mobility M is related to the phase-field

relaxation time by

M = τφcs
2δt

In LBM, Eq 3.1 is normally solved by a two-step collision-streaming approach as

g∗α = gα −
gα − geqα
τφ + 1/2

∣∣∣∣
(x,t)

(3.5a)

gα(x + eαδt, t+ δt) = g∗α (3.5b)

where the asterisk (∗) denotes the pre-streaming and post-collision state. The colli-

sion progress is using Bhatnagar-Gross-Krook (BGK) model and collision operator

Ωα = 1/τφ. After the streaming step, the phase field is updated by taking the zeroth

moment of the phase-field distribution function

φ =
∑
α

gα (3.6)

the density ρ is circulated as

ρ = ρL + φ(ρH − ρL) (3.7)

where ρL and ρH are the densities of the light and heavy fluids, respectively. For

the two-dimensional two-phase flow systems in this chapter, the phase-field variable

of the heavy fluid is taken as φH = 1, the light fluid is taken as φL = 0, while the

interface variable φ = 0.5.
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3.1.2 LBM for hydrodynamics

We use an improved hydrodynamic evolution equation(Fakhari and Rahimian, 2010)

to update pressure and velocity fields. The lattice Boltzmann equation for incom-

pressible multiphase flows can be written as

f̄α(x + eαδt, t+ δt) = f̄α(x, t) + Ωα(x, t) + Fα(x, t) (3.8)

where f̄α is the modified hydrodynamics distribution function for the incompressible

fluids (He et al., 1999; Fakhari and Lee, 2013), Ωα is the collision operator and the

force term is (Fakhari et al., 2016b)

Fα = δt
[
(Γα − ωα)(ρH − ρL)cs

2 + Γαµφ
]

(eα − u) · ∇φ+ δtΓα(eα − u) · Fb (3.9)

For hydrodynamic distribution function, we use a multiple-relaxation-time (MRT)

model for the collision operator (Lallemand and Luo, 2000), which is more stable

than traditional BGK model. The MRT collision operator is

Ωα = ΩMRT
α = −M−1ŜM(f̄α − f̄ eqα ) (3.10)

where the modified distribution function is defined by

f̄ eqα = f eqα −
1

2
Fα (3.11)

and

f eqα = pωα + ρ(Cs)
2(Γα − ωα) (3.12)

is the equilibrium distribution for nearly incompressible fluids. M is an orthogonal

transformation, which transforms the distribution functions from physical space into

moment space (Lallemand and Luo, 2000)

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1


(3.13)
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Ŝ is the diagonal relaxation matrix, which is chosen to be

Ŝ = diag(1, 1, 1, 1, 1, 1, 1, Sν , Sν) (3.14)

where

Sν =
1

τ + 1/2
(3.15)

where τ is the hydrodynamic relaxation time (or simply the relaxation time), which

is related to the kinematic viscosity of the system by ν = τCs
2δt and is calculated

by using a harmonic interpolation from the phase field

1

τ
=

1

τL
+ φ

(
1

τH
− 1

τL

)
(3.16)

where τH and τL are the relaxation rates for the heavy and light fluids. After solving

Eq 3.8 using a routine collision-streaming scheme, pressure and velocity fields are

calculated as

u =
1

ρCs
2

∑
α

f̄αeα +
δt

2ρ
(Fs + Fb) (3.17a)

p =
∑
α

f̄α +
δt

2
(ρH − ρL)Cs

2u · ∇φ (3.17b)

Note that velocity is updated before pressure.

Similarly, it should come to our notice that the only non-local macroscopic quan-

tity in the proposed LB equations is the phase-field variable φ. Gradients and Lapla-

cian for the phase field in Eq are calculated using second-order, isotropic centered

differences (Kumar, 2004). The centered difference method is used to preserve the

mass and momentum conservation. And the combination of conservative phase-field

method and isotropic centered differences can attain an enough stable scheme for

large ratio density and viscosity analysis as we are about to do for gas-liquid-solid

system.
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3.2 Validation case

2D validation case is done by putting a semi-circular droplet on solid wall. Different

contact angle will then be imposed to the model and the system will develop to a

new equilibrium state. The simulation is done with two phases of equal density and

equal viscosity, and the simulation parameters are considered as: surface tension

σ = 0.01, interface thickness σ = 4.0, Mobility M = 0.02 and relaxation time

τg = 0.06. The simulation domain is resolved as 100 × 100(lu), the initial droplet

diameter is 30(lu), and the initial droplet is located at (50,0). Periodic boundary

condition is applied on both the left and right wall, bounce-back boundary condition

is applied for top wall to achieve no-slip boundary condition and wetting boundary

condition is applied on the bottom wall.

Numerical simulation results of four different non-neutral contact angles is pre-

sented in figure 3.2 and neutral condition is presented in figure 3.1.

To testify the accuracy of simulation results, recall equation 3.8, the conservation

of mass leads to a height change with different contact angles imposed. The compare

of analytical and numerical results are shown in fig 3.3. The maximum relative

deviation is 4.26% and it is achieved at the contact angle of 150◦. This level of

accuracy is acceptable for these complex systems.

Figure 3.1: Semi-droplet equilibrium with neutral boundary condition (θ=90◦)
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(a) θ=30◦ (b) θ=60◦

(c) θ=120◦ (d) θ=150◦

Figure 3.2: Equilibrium state of the drop with different contact angles

Figure 3.3: compare between analytical and numerical results
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3.3 Conclusion

In this chapter, the two-dimensional cases of a droplet behaviour on a solid surface

was modelled using a diffuse interface phase-field lattice Boltzmann method. The

ability of the current implementation of two-dimensional wetting boundary condi-

tions to capture the static contact angles was tested. Numerical simulation results

showed a reasonable deviation with the theoretical results, which offered us a nice

starting point for the further three-dimensional study.
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