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Abstract 

Cost-utility analysis (CUA) assesses the cost-effectiveness of health technologies by comparing 

their costs and health outcomes. The utility is incorporated in the health outcome measures of 

CUA, and the EQ-5D-5L is one of the most common instruments to estimate utility values. 

When utility values are not available, mapping from non-preference-based instruments to a 

preference-based instrument is a popular technique. When CUAs use different preference-based 

measures, mapping between these measures can transfer the utility values and allow for better 

comparison across CUAs. However, there are many concerns regarding studies reporting 

mapped utility values, such as extrapolation issues and the uncertainty of this methodology. The 

quality of mapping studies has become an important criterion when using them in economic 

evaluations. The first study of my thesis assessed the reporting quality of mapping studies onto 

the EQ-5D-5L, especially their completeness of information for CUA applications. The second 

study developed a novel mapping algorithm from the Edmonton Symptom Assessment System 

Revised: Renal (ESAS-r: Renal) to the EQ-5D-5L among patients with end-stage renal disease 

(ESRD). 

The first objective of my systematic review was to identify new mapping studies onto the EQ-

5D-5L by updating a previous systematic search made by the Health Economics Research Centre 

(HERC). The second objective was to assess all the EQ-5D-5L mapping studies on their 

reporting quality, especially the completeness of information for CUA, with the use of two 

reporting quality checklists. The third objective was to explore whether using reporting quality 

checklists was associated with improved reporting quality. The review identified 14 new studies 

since 2018 which were not included in the HERC database. In the assessment of all 39 published 

studies (including 25 from the HERC database), the overall reporting quality was mostly good.  
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In several areas I identified problems that would require improvements including 1) estimation 

of predicted utilities, 2) reporting variances, covariances, and error terms, 3) final model 

calculation examples, 4) parameter uncertainty, and 5) individual uncertainty. A preliminary 

comparison showed that the checklists could help to improve the reporting quality of the studies.  

The second study of this thesis mapped the ESAS-r: Renal to the EQ-5D-5L in patients with 

ESRD using data from the Evaluation of Routinely Measured Patient-reported Outcomes in 

Hemodialysis Care (EMPATHY) trial, a multi-centre clustered randomized-controlled trial of 

routine measurement of patient-reported outcomes in hemodialysis units in Northern Alberta. 

Several models were explored in the mapping analysis using data from one study arm, including 

linear models, censored dependent variable models, mixture models and response mapping. 

Internal validation was conducted to evaluate the predictive power of the models, and the 

validation sample was from another arm of the EMPATHY trial. Statistical fit and predictive 

power were measured by mean absolute error (MAE) and mean squared error (MSE), which, 

along with theoretical backgrounds, were the selection criteria for the best model. The final 

sample size for model estimation was 506, after excluding missing records (missing rate: 57.6%). 

All models produced relatively similar statistical fit and predictive power (Estimation: MAE: 

0.056 - 0.120, MSE: 0.007 - 0.028; Validation: MAE: 0.136 - 0.155, MSE: 0.032 - 0.046). All 

models showed great prediction properties for relatively healthy health states, but poor prediction 

properties for worse health states. With the consideration of all selection criteria, the generalized 

estimating equations (Estimation: MAE: 0.120, MSE: 0.027; Validation: MAE:0.140, 

MSE:0.034 ) and generalized linear models (Estimation: MAE: 0.116, MSE: 0.028; Validation: 

MAE: 0.136, MSE: 0.034) on selected ESAS-r: Renal items were considered the best models. 
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Since the models have not been externally validated, they should be applied in populations with 

similar patient characteristics as our study sample. 

Overall, mapping is a feasible and useful technique to estimate the utility values for conducting 

CUA. The issues identified in current mapping studies could inform further mapping studies on 

how to improve reporting quality, especially ensuring the completeness of information for 

employing mapping algorithms in CUA. The empirical mapping study on ESAS-r: Renal 

provided mapping algorithms which could be used to predict utility values for patients with 

ESRD when only ESAS-r: Renal is available. 
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Chapter 1. Introduction 

1.1 Health Status Measures 

An influential definition of health says “health is a state of complete physical, mental and social 

well-being, and not merely the absence of disease and infirmity”, which is provided by the 

World Health Organization1. Health status and health-related quality of life (HRQL) are often 

used interchangeably, and they refer to the health domain ranging from negatively valued aspects 

of life, including death, to the more positively values aspects such as role function or happiness2. 

The health status measures typically use psychometric tools to create “constructs” or “domains 

of content” that have not had a basis in traditional patient assessment3.  

The recent history of health status measurement dates from the early 1970s4. The health status 

measures were motivated to measure the output of the whole health care system and identify 

changes in the level of health of the population5. Over the past years, the health status measures 

have gained importance because of a desire to measure and reflect the improvements in 

functional capacity and well-being2,4. The traditional physiologic measures provide information 

to clinicians but are of limited interest to patients, and they only reflect information on morbidity 

and biological functioning2,6. Another important reason to measure HRQL is that patients with 

the same clinical conditions could have substantially different HRQL2. Here is an example given 

by Guyatt et al, “two patients with the same range of motion and even similar ratings of back 

pain may have different role function and emotional well-being. Although some patients may 

continue to work without major depression, others may quit their jobs and have major 

depression.” 2. The health status measure which measures the health and HRQL from a more 

patient-focused perspective is known as patient-reported outcome measure (PROM)7. 

1.1.1 Generic Measures and Specific Measures 

Health status measures can be classified as generic measures and specific measures. The generic 

health status measures are “those purport to be broadly applicable across types and severities of 

disease, across different medical treatments or health interventions, and across demographic and 

cultural subgroups”8. The generic measures are designed for summarizing a spectrum of the 

concepts of HRQL, and therefore they could be applied to many different impairments, illnesses, 

patients, and populations8. The specific health status measures are “those designed to assess 
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specific diagnostic groups or patient populations often with the goal of measuring responsiveness 

or ‘clinically important’ changes”8. The specific measures could be disease-specific (e.g. cancer) 

or condition-specific (e.g. back pain)8. 

1.1.2 Profile Measures and Index Measures 

Another approach classifies the health status measures into profile measures and index measures. 

The profile measures are instruments that attempt to measure all important aspects of HRQL9. A 

profile measure provides a series of scores, one for each dimension of a patient’s health status9. 

The dimensions (or domains) may include general health, physical functioning, social 

functioning, etc9. The index measures summarize the HRQL into a single number by using 

population preferences or other methods2. The preference-based index measures place a value on 

a specific health condition by reflecting the preferences (utilities) of patients for the treatment 

process and outcome2. The preference-based measure (PBM) could be used in the cost-utility 

analysis (CUA), and the more detailed introduction was given in Section 1.2. 

1.2 Utility and Its Application in Economic Evaluation 

Budget constraints evoked the need for evaluation of health technologies to assess their value for 

money10. Economic evaluations could give the answer of whether a health technology is less 

costly or not, and whether it has more health gains; in other words, its cost-effectiveness11. CUA 

has been the dominant method in economic evaluation12, and also the recommended method in 

many countries’ economic evaluation guidelines13,14. Just as the name suggests, the utility is an 

important parameter of CUA. In the following sections, the definition and applications of utility 

were introduced.      

1.2.1 Utility Theory 

The utility theory currently being used in health economics could be traced back to the 1940s15, 

when John von Neumann and Oscar Morgenstern extended the “expected utility theory” as the 

decision making of a rational individual under undertainty16. The expected utility theory was a 

normative model that prescribed what the rational decision ought to be when an individual is 

facing uncertain outcomes15. The term “utility” tended to be synonymous with preference: the 

more preferable an outcome, the more utility associated with it11. But “utility” is a problematic 

term, as it did not mean usefulness in the typical use in language, and it also did not mean the 
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same as what it has meant in traditional economics and philosophy during the nineteenth century 

or in modern economics15. To avoid confusion, it is therefore recommended to use the term “von 

Neuman and Morgenstern utility” (vNM), but very few studies followed this15. In this thesis, the 

term “utility” represents “vNM utility”.   

The vNM utility is a cardinal utility17. Cardinal utility could tell how much more or less one 

utility is than another, in contrast to ordinal utility, which merely distinguishes the order of 

preference within the individual18. Applying cardinal utility to health status allows comparison 

across different individuals15, and the individual utility could be summed together to elicit the 

social utility on a specific health status19. Finally, the utility for health status is conventionally 

anchored from 0 to 1, with 1 meaning perfect health, and 0 representing dead19. But it is 

generally accepted that there are some health states considered worse than dead20, so it is 

possible to see negative values for utility. 

1.2.2 Techniques for Eliciting Utility 

Direct Approaches and Indirect Approaches 

The PBMs elicit utility through direct or indirect approaches. In the direct approach, respondents 

state the preference for their current health states or over a variety of hypothetical health states 

from the perspective of themselves living in those states or someone else living in those states20. 

There are various methods for direct measurements, such as Standard Gamble (SG) and Time 

Trade-Off (TTO). SG is considered as the “gold standard” of eliciting utilities on health status 

under uncertainty as it is rooted in von Neumann and Morgenstern utility theory21,22.  

The indirect approach to elicit utility is to use multi-attribute utility measures. Developed from 

the multi-attribute utility theory23, the estimation of utility in this approach has two steps: the 

first is to classify the health status, and the second is to generate the utility value using the pre-

scored preference-based formula20. The classification system (or descriptive system) is an 

instrument that uses several domains or dimensions to define health, and these domains or 

dimensions are the attributes of the multi-attribute utility theory24.  

The advantage of using direct approaches is that every perspective related to health status is 

considered during elicitation25. When using a multi-attribute utility measure, its dimension may 

omit or have little coverage on some perspectives of health status, or include perspectives that 
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are not closely related to that health status25. However, direct approaches are time-consuming 

and costly to use11. Therefore, the indirect approaches using multi-attribute utility measures to 

provide values are more popular11. 

The EQ-5D 

The EQ-5D is one of the most widely used multi-attribute utility measures26, and it is a generic 

PROM measuring HRQL in terms of 5 dimensions: Mobility, Self-Care, Usual Activities, 

Pain/Discomfort, and Anxiety/Depression26,27. The first version of the EQ-5D has 3 levels (3L) 

in each dimension for respondents to choose: no problems, some problems, and extreme 

problems27. During the use of the EQ-5D-3L, researchers found that the instrument lacks the 

ability to measure small changes in health in minor health problems, which is named as ceiling 

effect26. To deal with this problem, the 5-level version of the EQ-5D, the EQ-5D-5L, was 

developed. This new version has 5 response categories for each dimension: no problems, slight 

problems, moderate problems, severe problems, and unable to/extreme problems. Based on the 

EuroQol website (www.euroqol.org), the EQ-5D-3L and -5L have been valued in 34 and 21 

countries, respectively. The preliminary EQ-5D-3L Canadian value set was published in 201228, 

and the EQ-5D-5L Canadian valuation study was published in 201629. 

1.2.3 Quality-Adjusted Life Years and Cost-Utility Analysis 

Any type of economic evaluation involves the assessment of costs and health effects of health 

technologies11. When it comes to CUA, health effects are measured by quality-adjusted life years 

(QALY)21. The QALY was designed when there was a need for indicators not only focusing on 

mortality but also morbidity5. QALY is adjusting someone’s life expectancy based on the levels 

of HRQL experienced or predicted over the life-time or part of the life30. The QALY is 

determined as follows: 𝑄𝐴𝐿𝑌 𝑙𝑖𝑣𝑒𝑑 𝑖𝑛 𝑜𝑛𝑒 𝑦𝑒𝑎𝑟 =  1 × 𝑄, where Q is the HRQL weight 

attached to that one year of life30. The quality-adjusted life expectancy (QALE) would be the 

sum of QALYs in each year over the life-time, and if time preference is considered, a 

discounting term is incorporated to get discounted QALE30. The QALY model does not specify 

what the HRQL weights should be, but since it is used to assist decision-making on appropriate 

health technologies for groups of individuals, it is appealing to use weights reflecting preferences 

of the general population15. The utility-weighted QALY model is used, and the analysis is called 

CUA. Compared with other measures of health effects, the strengths of using QALY is that it 

http://www.euroqol.org/
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allows for a comparison of both quality and length of life on a wide range of therapeutic area, 

and the utility-weighted QALY can sit within an extra-welfarist framework of resource 

allocation11,31.  

1.3 Mapping to Obtain Utility Values 

While the CUA requires the use of PBMs, such as the EQ-5D-5L as an essential input, many 

clinical studies do not include these measures as the outcome of trials11. It is more common to 

see clinical studies include disease-specific or non-preference-based generic measures. The 

limitation of these measures in economic evaluation is that they do not have an associated 

scoring algorithm to elicit utility values11,32. For example, the Edmonton Symptom Assessment 

System Revised-Renal (ESAS-r: Renal) is a validated disease-specific PROM to capture 

symptom burdens for patients with end-stage renal disease33,34, but it does not have a preference-

based scoring system. The reason for not using PBMs is that the descriptive system of PBMs 

may not sensitively capture changes in symptoms or HRQL associated with the disease35. 

Besides, clinical trials often do not plan a concurrent economic evaluation, and in this case, 

researchers usually do not consider including a PBM in the studies36. Therefore, there is a gap to 

conduct CUA using the outcomes from trials32. Mapping is considered as a solution to fill the 

gap by creating a link between the non-PBM and the PBM32. The mapping analysis may also be 

conducted to convert one PBM to another; this may be done in cases where jurisdictions have 

requirements for CUA to be undertaken with a specific PBM, such as with National Institute for 

Health and Care Excellence in the UK13.   

1.3.1 Definition of Mapping 

Mapping is an approach involving the estimation of the relationship between a PBM and another 

PROM using statistical associations (also known as “cross-walking” or estimating exchange 

rates between instruments)37. The degree of overlap in descriptive systems of the PBM and 

another PROM makes it possible to convert the PROM to PBM with the use of regression 

techniques11. To conduct a mapping analysis, data are obtained from a population where both the 

PROM and the PBM are administrated37. The dataset being estimated for mapping functions is 

called the estimation sample38. Some studies also validate mapping functions in a different 

dataset, and this dataset is called the validation sample38. There are usually five elements of 

mapping: 1) defining the estimation dataset; 2) model specification; 3) model type (e.g. ordinary 
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least squares); 4) assessing performance (e.g. goodness of fit, predictive ability); 5) application38. 

Currently, there are three recommendations/checklists on conducting or reporting mapping 

analyses, which include the best practice recommendation developed by Longworth et al38, the 

Mapping onto Preference-based Measures Reporting Standards (MAPS) Reporting Statement39, 

and the ISPOR Good Practices Task Force Report on Mapping (ISPOR Good Practices)14. 

1.3.2 Previous Arguments on Mapping 

Mapping has been gaining popularity in economic evaluation literature11. Up to January 2019, 

the Health Economics Research Centre (HERC) mapping study database had identified 182 

papers conducting novel mapping analysis. It is commonly agreed that mapping meets the needs 

of using QALYs in appraising health technologies11,32,37,38,40. It is also important to note that 

using utilities estimated from PBMs is advantageous and mapping should be viewed as a second-

best solution38,41. Previous studies have critiqued that mapping may underestimate individual 

uncertainty40, and it might ignore the conceptual issues during the mapping process and when 

extrapolating the results41. To deal with these issues, the three recommendations/checklists 

recommend that mapping studies report detailed uncertainty information and conduct exploratory 

analysis to find overlaps in constructs32,38,39. But based on a recent reporting quality review, the 

seventeen papers (all published in 2016) being reviewed have mixed performance in reporting 

standard errors to reflect uncertainty and the methods of exploratory data analyses42. 

1.3.3 Possible Models Types for Mapping Analyses  

The typical characteristics of utility distributions, e.g. skewness and multimodality43, may need 

special regression techniques to deal with. Longworth recommendations suggested several 

options, including linear ordinary least squares, Tobit model, censored least absolute deviation, 

two-part model, generalized linear model, latent class mixture model, censored mixture model, 

and multinomial logit model38. The recommendations were published in 2013, and several new 

regression models have been applied in mapping analyses since then. In the remaining sections, a 

brief methodology review will be provided on the common models being used in mapping 

studies based on the HERC mapping database44. 
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Ordinary Least Squares 

Ordinary Least Squares (OLS) model is the most common technique that has been adopted in 

past mapping studies42. The OLS model predicts the linear relationship between the PBM-based 

utility value (outcome variable) and the summary index or domains/items of another PROM 

(explanatory variables) and estimates the parameters by the principle of least squares (Eq. 1). 

            Utility =  β
0

+ ∑ β
i
PROMii       (Eq. 1) 

The linear relationship is simple and easy to interpret, where the deterioration in the quality of 

life captured by the PROM is linearly associated with the deterioration of the utility values. But 

there are many assumptions behind the OLS method, including mean independence, normality, 

and heteroskedasticity45,46. Another issue of OLS, which has been pointed out by many studies, 

is that the mapped utility value may over- or under-shoot the utility boundaries45,47.  

Tobit and Censored Limited Absolute Deviation 

The Tobit model and the censored least absolute deviation models are censored dependent 

variable models and are applied in the mapping studies to solve the boundary issues48,49. In the 

context of health utilities, the upper and lower limits of the utility data are the constraints of the 

outcome variable. With additional restrictions added to the values hitting the two boundaries, the 

mapped utility values, therefore, lie within the range (Eq.2-3).  

Utility∗ =  β
0

+ ∑ β
i
PROMii                   (Eq.2) 

      Utility = {
Utility∗,                       if Utility∗lies within the range
upper/lower limits, if Utility∗lies out of the range

                (Eq.3) 

The interpretation of parameters is the same as in the OLS. The simplicity of OLS is not 

deteriorated but the accuracy of the estimation of parameters has been increased. The difference 

between Tobit and CLAD is that Tobit has homoscedasticity and normality assumption but 

CLAD does not require them48.  

Two-Part Model 

The two-part model (TPM) is another regression model for limited dependent variables50. Based 

on the framework of TPM50, to estimate utility values, the first function estimates the probability 

of an individual having perfect health (𝑛𝑜𝑡𝑒𝑑 𝑎𝑠 𝜑(𝑈𝑡𝑖𝑙𝑖𝑡𝑦)). When the observation has perfect 
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health, the perfect health utility value is assigned. Otherwise, a linear model (denoted as 

𝑔(𝑃𝑅𝑂𝑀)) is used to estimate the utility values. The final estimated utility value is an expected 

mean: 

𝐸(𝑈𝑡𝑖𝑙𝑖𝑡𝑦)  =  𝜑(𝑈𝑡𝑖𝑙𝑖𝑡𝑦) × 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 ℎ𝑒𝑎𝑙𝑡ℎ 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 +  (1 − 𝜑(𝑈𝑡𝑖𝑙𝑖𝑡𝑦) ) × 𝑔(𝑃𝑅𝑂𝑀) (Eq.4) 

Generalized Linear Models 

The generalized linear models (GLMs) include a group of models where the outcome variable 

has a distribution belonging to the exponential family, and the outcome variable is explained by a 

linear function of explanatory variables51. Some distributions in the exponential family are 

similar to the distribution of utility or disutility (= perfect health utility - utility)52,53. The model 

equation is as follows, where 𝐿(∙) is the link function for the exponential family. 

      𝐿(𝑈𝑡𝑖𝑙𝑖𝑡𝑦/𝐷𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦)  =  β
0

+ ∑ β
i
PROMii       (Eq. 5) 

Mixture Models 

The emerging new models on mapping studies fall into the mixture model category54,55. These 

models have been gaining popularity as they could solve the multimodality issues of the utility 

distribution54. Mixture models assume there are several sub-distributions for utility values. 

Mixture models estimate the probability of a respondent being in each sub-group and predict the 

group-specific utility values54,55. TPM is a special form of mixture model: one sub-distribution is 

perfect health, and another is the non-perfect health observations. There is no specific 

distribution requirement on mixture models, and the distributions commonly used are Tobit-like 

distribution and beta-binomial distribution54,55. Similar to TPM, the final utility predicted by the 

mixture model is the expectation of sub-group utilities.  

Response Mapping 

Response mapping is not a specific model type, and it simply means mapping from PROM items 

to the descriptive system of a PBM. The process of response mapping is independent of the value 

set of PBM, and therefore any value set could be used to generate utility given the estimated 

descriptive system56. The most common methods in response mapping are logistic models, either 

multinomial or ordinal56,57. Logistic regression models predict the relative probability of a 

respondents’ choice on each level within a dimension. The probability of a health state would be 
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the product of dimensional probabilities. The final utility is a weighted average of utility values, 

where the weight is the probability of each health state.  

Additional Options 

There are some additional options when it comes to specific modelling situations. If the 

estimation sample is a longitudinal dataset, the cluster effect should be considered. Models for 

longitudinal data include generalized estimating equations (GEE)58,59, fixed effect, random 

effect, and mixed effect models60,61.  

It is possible to directly apply the mean and standard deviation of utility values from the 

estimation sample to the target sample if two samples share very similar demographics and 

disease characteristics32. However, this is not often used as it is rare to see the patient populations 

across different trials to have similar outcomes and baseline information. 

1.4 Outline of the Thesis 

A gap in economic data can exist when preferred PBMs are not included in clinical trials. Given 

that mapping is the popular solution to this problem32, it is necessary to ensure that the reporting 

quality of the mapping analysis is high, and the information for conducting CUA is complete. 

Chapter 2 is a systematic review of published mapping studies onto the EQ-5D-5L. A reporting 

quality assessment on these studies was conducted based on the MAPS reporting statement39, 

and the ISPOR Good Practices32. Strengths and information gaps among the studies were 

summarized. The findings in Chapter 2 could be a reference to further empirical mapping studies 

on designing and conducting analysis and reporting results.  

Chapter 3 is an empirical mapping study that applied the key findings of Chapter 2. In the 

context of end-stage renal disease, patients are usually associated with a reduction in life 

expectancy and quality of life62. When a new treatment for end-stage renal disease is available 

for patients, a CUA would be conducted to decide its value for money. Given that PBMs are not 

usually included in every study, Chapter 3 aimed to conduct a novel mapping analysis from the 

ESAS-r: Renal to the EQ-5D-5L following the two guidelines on mapping guidelines32,39 when 

applicable. 

Finally, Chapter 4 summarized the findings, discussed the limitations, and provided 

recommendations for future research.   
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Chapter 2. A Systematic Review of Mapping Studies for the EQ-5D-5L for 

Use in Cost-Utility Analysis 

Abstract 

Background  

“Mapping” has been a popular technique to fill the gap when utility values are not available for 

cost-utility analysis (CUA). Reporting of mapping studies needs to convey the information 

needed by CUA. The Health Economics Research Centre (HERC) has developed a mapping 

study database. The last HERC review was published in 2018 and the most recent database 

search update was conducted in January 2019. Although the EQ-5D-5L is a recently developed 

instrument, it has become one of the most popular indirect preference-based measures in CUA, 

and the number of studies not included in the HERC database or the last HERC review may be 

increasing rapidly.  

Objectives 

In this study, we aimed to 1) identify new mapping studies onto the EQ-5D-5L by conducting an 

updated systematic search, 2) assess the reporting quality of all mapping studies onto the EQ-5D-

5L (including those included in HERC database), especially the completeness of information for 

CUA, with the use of reporting quality checklists, and 3) explore whether using the checklists in 

mapping studies can improve reporting quality. 

Methods 

An updated systematic search was conducted based on the HERC database from January 2018 to 

May 2020. We used the same search strategies and searched the same databases as the HERC 

database, except that we also performed searches on Embase. Studies reporting novel algorithms 

onto the EQ-5D-5L were included. The reporting quality of the study was assessed by criteria 

(including 31 items) developed from two checklists, the Mapping onto Preference-based 

Measures Reporting Standards Statement (23 items) and the ISPOR Good Practices Task Force 

Report on Mapping (12 items). For each item, three levels including “Completed”, “Partially 

completed”, and “No” were assessed. 
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Results 

Our review identified 14 new studies not included in the HERC database. Together with the 

previous studies included in the HERC database, a total of 39 studies were reviewed and 

assessed. 57% of the studies had a study sample of fewer than 500 respondents. 28% of the 

studies focused on the cancer population. Ordinary least squares method was the most commonly 

applied mapping approach (85%). In the quality assessment, 21 items were “Completed” or 

“Partially completed” with a rate greater than 95%. The 5 poorest performed items were: 1) 

estimation of predicted utilities, 2) reporting variances, covariances, and error terms, 3) final 

model calculation example, 4) parameter uncertainty, and 5) individual uncertainty. These five 

items would also impact the use of mapping algorithms in CUA. Finally, a preliminary 

comparison showed that the checklists had positive impacts on improving the reporting quality 

of the study. 

Conclusion 

This review highlighted the strengths and drawbacks of mapping studies onto the EQ-5D-5L, and 

this could inform the reporting of further mapping studies. 

 

2.1 Introduction 

There has been an increase in the use of cost-utility analysis (CUA) to inform decision making 

on health care resource allocation1. CUA evaluates the value of a health technology by 

comparing costs and outcomes across the technology options2, where outcomes are measured by 

quality-adjusted life years (QALY), which is a composite indicator of quality and quantity of 

life3. The quality is reflected by the preferences on health conditions, which could be estimated 

by direct approaches (e.g., using standard gamble or time trade-off) or indirect approaches (e.g.,  

through pre-scored indirect preference-based measures (PBM))4. The indirect measures are more 

widely-used than the direct measures as the direct approaches are time-consuming and costly2.  

Clinical studies of new technologies aim to assess clinical safety and efficacy and they usually 

do not include PBMs, but sometimes include generic or disease-specific non-preference-based 

measures (non-PBM) to measure patients’ health-related quality of life (HRQL)5,6. This is 

because compared with the non-PBMs being used in clinical trials, PBMs may not well capture 
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changes of symptoms or HRQL that is associated with a specific disease or treatment7. Besides, 

most clinical trials do not plan an associated economic evaluation, and in this case, researchers 

usually do not consider including a PBM in the study8. Since non-PBMs do not have a 

preference-based scoring system, there remains a gap to do CUA, where the effectiveness data of 

these trials are not applicable6. As such, the CUA may not be possible to conduct. One solution is 

to develop a mapping algorithm from the non-PBM to the PBM by regression or other possible 

statistical methods5. The mapping algorithm could convert the ratings or scores of the non-PBM 

to the utility values measured by a PBM. The mapping analysis may also be conducted to 

convert one PBM to another; this may be done in cases where jurisdictions have requirements for 

CUA to be undertaken with a specific PBM, such as with National Institute for Health and Care 

Excellence (NICE) in the UK9. 

The interest in using mapping techniques is growing10. Up to January 2019, the Health 

Economics Research Centre (HERC) mapping study database has identified 182 papers 

developing novel mapping algorithms onto a PBM from another PROM, and in total 386 

algorithms11. These algorithms varied in disease populations (134 different diseases or patient 

groups, such as cancer), source instruments (164 different instruments, such as Functional 

Assessment of Cancer Therapy-General), and target instruments (11 different instruments, such 

as the EQ-5D)11.  

The EQ-5D has been most frequently mapped to according to the HERC database11. The EQ-5D 

is an instrument defining health in five dimensions (Mobility, Self-care, Usual Activities, 

Pain/Discomfort, Anxiety/Depression) and was developed by the EuroQoL group12. The first 

version of the EQ-5D has 3 levels (3L) in each dimension: no problems, some problems, and 

extreme problems13. It has been found that the EQ-5D-3L lacks the ability to measure small 

changes in health and has ceiling effect (i.e. respondents’ scores reach the best possible score of 

the instrument14), and therefore the 5-level version of the EQ-5D, the EQ-5D-5L, was 

developed15. The EQ-5D-5L has 5 response categories for each dimension: no problems, slight 

problems, moderate problems, severe problems, and unable to/extreme problems. Based on the 

EuroQol website (www.euroqol.org), the EQ-5D-3L and -5L have been valued in 34 and 21 

countries, respectively. Some countries’ economic evaluation guidelines stated that the EQ-5D is 

the preferred measure to estimate HRQL, while some other countries do not state it directly but 
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recommend using instruments with their country-specific preference sets9,16. Therefore, the EQ-

5D is one of the most popular PBMs being used in CUA12,15. Given that the EQ-5D-5L provides 

more precise measurements than the previous 3L version, the use of the EQ-5D-5L in the cost-

utility analysis is increasing17. 

There are many concerns when using mapping algorithms in economic evaluations. The first is 

the extrapolation issue of the algorithm. It is believed that the study sample of the mapping 

analysis should be similar to the population of the economic evaluation when applying the 

algorithms18. Another concern is the uncertainty of the mapping algorithm. Any uncertainty 

associated with the algorithm and regarding the results should be accounted for in the cost-utility 

analysis to inform the decision-makers16. Therefore, there are many necessary elements to report 

in the mapping studies. Currently, two reporting quality checklists are available to guide 

mapping studies. They are the Mapping onto Preference-based Measures Reporting Standards 

Reporting Statement (MAPS reporting statement)19 and the ISPOR Good Practices Task Force 

Report on Mapping (ISPOR Good Practices)6.  

The concerns related to the reporting of studies have raised interesting questions. What are the 

strengths that previous studies have and should be retained or promoted? What are the common 

issues of previous studies and how to deal with them to improve reporting quality? This study 

tried to answer these questions by selecting the EQ-5D-5L as the target measure and 

systematically reviewing all of the published mapping studies onto the EQ-5D-5L. The reasons 

for selecting the EQ-5D-5L were as follows. The EQ-5D-5L provides more precise 

measurements than the 3L version, and the use of the EQ-5D-5L in the cost-utility analysis is 

increasing17. The last HERC review was published in 2018 and only four studies mapping to the 

EQ-5D-5L were included. The last HERC database search update identified 26 mapping studies 

onto the EQ-5D-5L up to January 2019. Aside from the significant number of new mapping 

studies published after the last update of the HERC database, there were already 22 studies never 

been analyzed. Meanwhile, since the EQ-5D-5L is a relatively new instrument and the mapping 

studies associated with it were published within the recent 10 years, these papers would be 

representative of most recently published studies in terms of reporting quality. The MAPS 

reporting statement (2015) and the ISPOR Good Practices (2017) would be used as references to 
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check the reporting quality and determine the strengths and weaknesses of the EQ-5D-5L 

mapping studies.   

There were three objectives of this study. The first objective was to identify all mapping studies 

onto the EQ-5D-5L by updating the systematic search of the HERC mapping study database. The 

second objective was to assess the quality of reporting of mapping studies, especially the 

completeness of information for CUA, with the reference of the MAPS reporting statement and 

the ISPOR Good Practices. The third objective was to explore whether using the checklists could 

improve reporting quality. 

2.2 Methods 

Search Strategy 

The first objective of this study was to identify all mapping studies onto the EQ-5D-5L. We did 

this by conducting an updated search based on the HERC mapping study database11. The 

database is an excel spreadsheet listing all of the mapping studies. The version 7.0 is based on 

searches conducted in January 2019, and an older version (6.0) was published in 20181,11. There 

were 26 studies using the EQ-5D-5L as the target instrument in version 7.011. In the updated 

search, we used the same search strategies, but we limited the target instrument to be only the 

EQ-5D-5L. Search terms included “Mapping” or its synonyms (“Crosswalk”, “Transfer to 

Utility” etc.) and “EQ-5D-5L” or its synonyms (“EuroQoL”, “eq5d”, etc.) (Appendix 2.1). We 

searched Medline (via PubMed), Embase, the EuroQoL website (https://euroqol.org/search-for-

eq-5d-publications/), the School of Health and Related Research Health Utilities Database 

(https://www.scharrhud.org/), the Centre for Reviews and Dissemination database 

(https://www.crd.york.ac.uk/CRDWeb/), and the publications citing 11 systematic reviews or 

guidelines on mapping studies (via Scopus and Google Scholar) 1,3,10,19–25. According to the 

developers of the HERC database, Embase was not searched due to time and resource limits1, but 

we included Embase in this updated review. The time frame of the updated search was supposed 

to be from January 2019 to May 2020. To allow for the time lag during databases indexing the 

articles, we set our search timeline from July 2018 till May 2020. However, the databases we 

used could only be searched by year instead of by month, so the final search timeline was from 

January 2018 to May 2020.    

https://euroqol.org/search-for-eq-5d-publications/
https://euroqol.org/search-for-eq-5d-publications/
https://www.scharrhud.org/
https://www.crd.york.ac.uk/CRDWeb/
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In the updated search, studies that conducted a mapping analysis (including, but not limited to, 

regression techniques) onto the EQ-5D-5L and reported model coefficients were included. The 

exclusion criteria were as follows:  

- Studies that were developing mapping algorithms onto other PBMs such as the EQ-5D-3L and 

the SF-6D were excluded. 

- Studies that validated an existing mapping algorithm onto the EQ-5D-5L were linked to the 

original mapping study and would not be counted as another record.  

- Studies such as CUA that adopted an existing mapping algorithm were excluded.  

- Conference abstracts, systematic reviews, studies generating utilities using valuation techniques 

such as time trade-off, studies exploring mapping techniques but with the use of simulation data, 

and frameworks or guidelines on mapping analysis were excluded. 

The process of deciding inclusion/exclusion was conducted by a single person (the author of the 

thesis). Studies included in the updated search together with the studies included in the HERC 

database of mapping studies (version 7.0) were further assessed.  

The second objective was to analyze these studies about their reporting quality, especially the 

completeness of information for use in CUA. We used a designed data extraction form 

(Appendix 2.2). Data from each paper were extracted into 12 major categories: basic information 

of the paper (title, author, etc.), study rationale and objectives, estimation and validation sample 

information, source and target measures, exploratory analyses, model types, model specifications 

and estimation, performance and validation, descriptive results, performance comparison and 

selection, final model report, conclusion, and other information. The data extraction and the 

following reporting quality assessment were all done by the author of the thesis.  

Reporting Quality Assessment 

The MAPS reporting statement19 focuses on reporting standards, and it was published in 2015. It 

has 23 items and provides recommendations on every section of a paper, i.e. title, abstract, 

introduction, methods, results, discussion, and other sections19. For each item, the MAPS 

reporting statement provides an example from published studies and therefore making it 

straightforward to understand. The ISPOR Good Practices, published in 2017, has 

recommendations on pre-modelling (6 items), modelling (5 items), and reporting (12 items)6. 
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The ISPOR Good Practices provides a step-by-step instruction on pre-modelling and modelling 

considerations, which could well-inform the researchers on how to conduct a mapping analysis 

formally. But we only used the reporting recommendations in this study. There are some 

overlaps in the reporting standards between the ISPOR Good Practices and the MAPS reporting 

statement1, but the ISPOR Good Practices focuses more on how to fully report the process of 

model analysis, while the MAPS reporting statement is more about how to make the study more 

informative to the readers and potential users. The lack of examples also makes following the 

ISPOR Good Practices on reporting studies not as easy as the MAPS reporting statement.  

The reporting quality assessment was conducted for each included study using an assessment 

form (Appendix 2.3) developed from the two aforementioned checklists. We combined the items 

which described similar requirements in the two checklists, and some items were divided into 

sub-items to better reflect the information. There were 31 items in our final assessment form. 

The form followed the same order as the MAPS reporting statement, starting from the title and 

the abstract section, and ending with the discussion section and other information sections. The 

additional items included in the ISPOR Good Practices were inserted into the assessment form 

with consideration of their orders in the manuscripts. According to the description of each item 

provided by the MAPS reporting statement19 and the ISPOR Good Practices6, there were several 

key items that are important for the application in CUA, including the estimation of predicted 

utilities, descriptive information on estimation sample, model coefficients, parameter and 

individual uncertainty, calculation example, and scope of application. These items were 

highlighted in the assessment form.  

This form was used to assess the achievement of each item. There were three levels, 

“Completed”, “Partially completed” and “No” to rate each level. Some items have multiple 

requirements, and only if all requirements of an item were achieved, that item could be rated as 

“Completed”.   

Assessing the Impacts of the Checklists 

The third objective was to explore whether using checklists could improve reporting quality. We 

conducted a preliminary comparison among the studies stating that they applied the checklists, 

the studies citing the checklists, and the studies not citing them. The items on which the studies 
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had common poor performance were identified for the comparison. We hypothesized that studies 

applying or citing the checklists would perform better on these items. 

2.3 Results 

General Descriptive Statistics 

The updated search included 30 mapping studies onto the EQ-5D-5L after full-text review. Of 

these 30 studies, 16 studies were already included in the HERC database (version 7.0)11, and 

there were 14 new studies. The HERC database (version 7.0)11 listed 26 mapping studies onto 

the EQ-5D-5L. Aside from the overlapping ones between the updated search and the database, 

there were 10 more studies. One study was an internal study report, not published and not peer-

reviewed, so we excluded it from our analysis. Therefore, 39 studies were eligible for the final 

reporting quality assessment (Figure 2.1, PRISMA diagram). There was an increasing trend in 

the mapping studies onto the EQ-5D-5L over the years, with an exception of 2019 (Figure 2.2).  

Research Objectives 

34 studies had the main objective to be exploring mapping algorithms between the instruments. 

Two studies focused on comparing the new methodologies used in mapping26,27. One study 

mapped the EQ-5D-3L to the EQ-5D-5L in order to explore the impact on the results of 

economic evaluation when transiting from the EQ-5D-3L to the EQ-5D-5L28. One study was to 

calculate the aggregated exchange rates across the health state utility instruments29. One study 

focused on a capability measure and had a comparison with the EQ-5D-5L on their association 

with depression instruments30.  

Study Sample 

Almost two-thirds (57%) of the studies had a sample of fewer than 500 respondents. 17 studies 

had a study sample of 200-499. 28% of the studies focused on the cancer population (Table 2.1). 

Modelling  

The majority (85%) of the studies explored OLS in their analysis as a basic method (Table 2.2). 

Among advanced methodologies, generalized linear model (GLM) (33%), Censored Least 

Absolute Deviations (CLAD) (28%), beta-binomial regression (28%) and Tobit model (26%) 

were more popular. Adjusted limited dependent variable mixture model (ALDVMM)31 and 
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mixture beta regression model (BETAMIX)32 were new methods specially developed for 

mapping studies within the past five years, and there were some studies using them (ALDVMM: 

13%, BETAMIX: 8%). Less frequently, robust MM-estimators26,33–39, logit/probit 

model26,34,35,37,40–42, fractional regression model33,36,38,42, two-part model43–45, linear equating 

model36,44, equipercentile regression27,46, mean rank method27,46, multivariate fractional 

polynomial34, conditional process analysis47, Gaussian mixture model43, extended estimating 

equations42, generalized estimating equations48, copula28, quantile regression29, and linear 

random effect model49 have also been applied in the 39 studies (Table 2.2). Regarding final 

models, although there had been considerable critiques of OLS50–53, it was still being selected as 

one of the final models in many studies (33%). 

The model specifications also varied (Table 2.3). 9 studies only included the source measure 

scores as independent variables, while others may also consider demographics (59%), clinical 

items (15%), and polynomial (41%), interaction (33%), or categorical (8%) terms.  

Reporting Quality of the Studies 

In general, 21 items were “Completed” or “Partially completed” with a rate greater than 95%. 

The 5 poorest performed items were 1) estimation of predicted utilities, 2) reporting variances, 

covariances, and error terms, 3) final model calculation example, 4) parameter uncertainty, and 

5) individual uncertainty. They had the lowest rates of “Completed” (smaller than 10%) and 

almost the highest rates of “No”. A detailed assessment by section is performed as follows 

(Table 2.4). 

Title, Abstract and Introduction Sections 

69% of the studies completed the requirements for the title, i.e. using the term “mapping” or its 

synonyms, reporting source and target instruments. 28% of the studies were rated “Partially 

completed”. Four studies only used a broad term “EQ-5D”, instead of making it clear as “EQ-

5D-5L”. Four studies which had multiple target instruments did not list the specific target 

instruments. Two studies did not use “mapping” or its synonyms. 23% of the studies fully 

completed the abstract requirements, and 77% partially completed. The “Partially completed” 

were mainly due to no reporting on validation methods (n=18)54, no reporting on specific 
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performance indicators of the best models (n=16)55. 97% of the studies fully completed the 

requirements for the study rationale and study objective in the introduction section (Table 2.4).  

Methods Section 

No study had multiple datasets to consider when estimating the mapping algorithm parameters. 

There was only one estimation sample for each study and all studies fully completed all 

requirements in introducing the basic information of their study samples, including study design, 

setting, collection, etc. Only one study used an external dataset to validate the mapping 

algorithm, and it met the requirements for reporting the external dataset. Limited reporting of 

missing data was an issue (missing data: 44% Completed, 23% Partially completed, 33% No) 

(Table 2.4). 

56% of the studies reported completely on source and target measures. 17 studies did not 

mention whether the higher score indicated better or worse outcomes and this made them rated 

“Partially completed”. Exploring the construct overlaps between the source and target measures 

is a helpful method to foresee the potential feasibility of developing a mapping algorithm. 51% 

of the studies used Spearman correlation to do this35,56, and a few conducted formal factor 

analyses or principle component analyses (13%)36,42. Some studies indicated that they did an 

exploratory analysis but did not show the results (5%)45,57 (Table 2.4). 

The demonstration of model approaches was detailed in most published studies (97%), but 92% 

of the studies did not report the methods for calculating predicted utilities. The raw predicted 

dependent variable may not lie within the feasible utility distribution. For example, the OLS 

predicted values were not bounded, while the utility data had upper and lower limits. How to 

estimate the final values needs to be addressed, and only 5% of the studies stated their methods 

to estimate the predicted values58. Lastly, over 80% of the studies fully completed the validation, 

model performance and selection criteria sections per the requirements (Table 2.4).  

Results Section 

In the results section, several common deficiencies were found. Many studies did not report the 

severity distribution of the estimation sample (49% Partially completed, 3% No)59. The utility 

data distribution plot was also frequently not shown (No: 54%). The overall model fit was 
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demonstrated clearly using the performance indicators, but the conditional fit was not frequently 

reported (8% Completed and 92% Partially completed) (Table 2.4).  

64% of the studies reported the basic information regarding model coefficients (e.g. coefficients, 

standard error, significance level). However, no study reported the variance-covariance matrix of 

the coefficients and error terms together, and 6 studies either reported variance-covariance 

matrix or error terms. These two terms would reflect the variation of the estimation in 

population- or individual-level. The lack of reporting variation leads to poor performance in 

reporting parameter uncertainty and individual uncertainty. Only a few (10%) studies fully 

completed the requirements in parameter uncertainty, and 5% of the studies fully completed the 

requirements in individual uncertainty (Table 2.4).  

Studies also had flaws in presenting a calculation example for the best model, with 5% of the 

studies giving a specific example in the calculation. Many studies only had model equations or 

the calculation process (39%), and a few studies provided a user-friendly program to calculate 

the utility values (13%)54,60 (Table 2.4).     

Face validity was stated either in the results section or discussion section. The statements were 

not strong enough to fully support face validity in many studies (model performance and face 

validity: 10% Completed, 46% Partially completed). Ideally, a statement should address whether 

the sign of coefficients was as expected and if not, also address how to deal with it. But 10 (26%) 

studies talked more about the effect size of the coefficients and the significance of the correlation 

between source measure items and target measures35,61 (Table 2.4). 

Discussion Section 

In the discussion section, 87% of the studies fully completed the requirements regarding 

comparison with other studies, and all studies discussed their limitations. The scope of 

applications was somewhat unclear (scope of applications: 54% Completed, 44% Partially 

completed). The studies rated “Partially completed” emphasized that external validation was 

required to validate and test the generalizability of their algorithms. However, this did not 

directly answer the question of whether a potential user could apply this algorithm to their study 

when the external validation was not available (Table 2.4).    
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Completeness of Information for CUA 

The items directly associated with the application in CUA were highlighted in Table 2.4. 

According to the reporting quality assessment, estimation of predicted utilities, reporting on 

variances, covariances and error terms, parameter uncertainty, individual uncertainty, and 

calculation example were the 5 poorest-reported items. The rates of “Completed” for these five 

items were less than 10%. “No” rating surpassed 80% for estimation of predicted utilities, 

reporting on variances, covariances and error terms, and individual uncertainty. Reporting on the 

descriptive information on estimation sample (including the severity distribution), basic 

information on model coefficients, and the scope of the application had “Completed” or 

“Partially completed” with a rate greater than 95%, but the rates of “Partially completed” for the 

three items were all greater than 30%. Especially, there were around 50% of the studies not 

reporting severity distribution when describing the study sample. 

Assessing the Impacts of the Checklists 

Less than one-third (12, 31%) of the studies applied the MAPS reporting statement, and 20 

studies cited the MAPS reporting statement (including those applied the checklist). For the 

ISPOR Good Practices, 3 studies applied it and 13 studies cited it. No study was found 

completing all of the items required in the checklist, and only one study that cited the ISPOR 

Good Practices fulfilled the recommendations at least partially (see Appendix 2.4 for complete 

extraction records). To explore the potential impacts of the checklists on these studies, we did a 

preliminary comparison on the items which had “Completed” rates less than 60% among the 

studies (Table 2.5). Better reporting performance was observed in most items for studies 

applying/citing the checklists. 

2.4 Discussion 

This study identified 14 new mapping studies to predict the EQ-5D-5L preference scores. We 

extended the search time to January 2018 till May 2020 to identify the new studies related to the 

EQ-5D-5L that were not included in the previous database. Together with the previous studies 

included in the database, we did a comprehensive review and reporting quality assessment on 39 

studies and summarized the common strengths and issues in conducting mapping analyses. 

Overall, the majority of the requirements were fulfilled completely in most studies, with 21 out 
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of 31 that had “Completed” and “Partially completed” rates greater than 95%. However, we also 

identified some issues which would deteriorate the reporting quality of mapping algorithms, and 

the top 5 issues are directly related to the application in CUA. 

There was an increasing trend in the number of published EQ-5D-5L mapping studies, except for 

2019. One possible reason for it was that NICE did not recommend the use of the EQ-5D-5L 

value set for Britain in 201962. But this may also just be a fluctuation of the trend. In the review 

by Dakin et al, there were fewer publications in certain years with an overall increasing trend1. 

Regardless of the EQ-5D-5L not being recommended in Britain, the new British EQ-5D-5L 

valuation study is under development, and the use of the EQ-5D-5L is expected to grow in the 

future.  

Dakin et al’s review observed a decrease in the number of studies with sample size fewer than 

500, which is inconsistent with our study, where 47% of the mapping studies had sample sizes 

smaller than 500. This might be due to the EQ-5D-5L being a relatively new instrument 

compared with the EQ-5D-3L. It is possible that not many large-scale trials have administered 

the EQ-5D-5L. 

This review showed that the structures of the current mapping studies were mostly good. The 

titles and abstracts of these studies were consistent. It is easy for readers to identify these articles 

and read them. Most items mentioned by the checklists were discussed in the mapping studies, 

making them more likely to be reliable and valid. Before conducting mapping analysis, many 

studies used Spearman correlation or other exploratory analyses to explore the relationship 

between the source and target measures. To deal with the characteristics of the utility data, 

abundant model types have been tried. Model specifications could include the instrument itself, 

sociodemographic information, health data, and polynomial, interaction, or categorical terms. 

This could further address the non-linear issue of the utility distribution and control the clinical 

and demographic effects on utility.  

Based on the review results, we identified several key issues of current mapping studies. 

Missingness was not often discussed. It was common that the study sample had some missing 

observations, but studies usually just indirectly stated the number of missing values, but did not 

discuss the pattern of missing and how the missingness was handled. Without this, the mapping 

analyses are likely to risk selection bias.   
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Conditional fit statistics could assess the model fit more clearly, but the use of these statistics in 

published studies was uncommon. The plot of predicted utility versus observed utility in many 

studies has shown that poor prediction was common in the lower values of the EQ-5D-5L60,63, 

with a systematic overprediction on these utility values. The overall fit statistic is a mean statistic 

over all of the observations, and it would shrink the effect of over-prediction when calculating 

for the whole sample. Brazier et al pointed out that using 0.5 as a cut point could see how the 

model performed in predicting the lower values and higher values of the EQ-5D21. The ISPOR 

Good Practices recommended providing information on fit conditional on disease severity as 

measured by the clinical outcome measures6. Given that the conditional performance statistics 

are more accurate in describing the model fit, there is a need to apply conditional fit statistics in 

the selection of final models in the future.  

Several poor-performance items are related to the application in CUA, which made the mapping 

algorithms less user-friendly and provide incomplete information to CUA. Therefore, there is a 

significant need to improve these items and ensure the completeness of information for CUA.  

The first is improving the quality of reporting the estimation sample. To use the mapping 

algorithm in the economic evaluation, the sample of economic evaluation should be similar to 

the study sample10. Both checklists have recommendations on this6,10,19. Since many mapping 

studies were conducted to inform a future economic evaluation, the detailed characteristics of the 

estimation sample should be provided to allow potential users to compare the populations. These 

include sociodemographic and disease severity6,19. However, the severity distribution was poorly 

reported among published studies, and the potential users would not be able to know the disease 

progression information.  

Advanced information on model coefficients and uncertainty should also be stated more 

transparently. Addressing uncertainty is crucial in CUA, and it is usually conducted via 

sensitivity analyses or scenario analyses64. Most CUA models are on the population level, and 

fewer models are on the individual level. When mapping algorithms were used in CUA to 

convert utility values, different types of the uncertainty of the mapped utility need to be 

considered19. The population-level uncertainty is reflected in the uncertainty of coefficients, and 

reporting the variance-covariance matrix would help. The individual-level variability was 
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reflected in the error term. As such, reporting the error term is necessary. Currently, the reporting 

of both types of uncertainty was very limited. 

The estimation of the predicted utility and the examples illustrating the use of final models were 

related to the instructions on how to use the models for calculation, but they were not frequently 

reported. Most of the current studies only provide final model equations in the results section65,66. 

Situations like how to deal with the predicted values out of the range of the utility values should 

be illustrated. Therefore, it is important to demonstrate how predicted utilities are estimated to 

the final value in the methods section, and an additional calculation example in the results 

section could help the users to see whether they understand the algorithms right. ISPOR Good 

Practices also recommends developing a user-friendly program for calculation6. We did find 

some papers which selected complex models as their final models54,60 and developed a program 

to help users for calculation.  

Compared with the review done by Dakin et al1, there were some consistencies in the reporting 

quality results. In Dakin et al’s review on titles and abstracts, studies published between 2014 to 

2016 had poorer performance on validation methods (45%) and reporting model performance 

(59%) (“other methods” was also not frequently reported, but this is not necessary for the 

mapping study). The studies we reviewed had similar results (validation: 54%, performance 

statistics: 59%). Dakin et al also did a full-text review of studies published in 20161. The review 

showed that the study rationale and study objectives of these studies were well-reported. 

Information on missingness, methods for calculating predicted utilities, reporting standard errors, 

exploratory data analysis were not provided clearly. We also observed similar results in our 

study. Meanwhile, we saw a better performance on validation methods illustration and measures 

of model performance among the studies we reviewed. However, Dakin et al's review did not 

include a sufficient number of EQ-5D-5L mapping studies (the first EQ-5D-5L mapping study 

was published in 2014) to allow us to head-to-head compare the quality assessment results on 

EQ -5D-5L mapping studies.  

We also did a preliminary comparison among studies applying, citing, or not citing the three 

checklists to see the impact of the checklists. For most of the items that were not commonly 

reported well, better reporting performance was observed in studies citing the checklists. The 

checklists could somewhat inform the mapping studies on what to report. One thing to highlight 
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regarding these checklists was that there are discrepancies among them. The ISPOR Good 

Practices does not emphasize internal validation is necessary but external validation is always 

preferred. The MAPS reporting statement requires statement and justification if no validation is 

conducted. Each checklist did have unique items that are important to the reporting quality of 

mapping studies, such as the requirements on face validity in the MAPS reporting statement and 

the requirements on conditional fit statistics in the ISPOR Good Practices. To ensure the 

reporting quality of a mapping study, it is recommended to apply both checklists during the 

analysis.  

The strength of our study was that we applied the two influential mapping studies checklists and 

did a reporting quality check on all of the published EQ-5D-5L studies. We summarized the 

strengths of the current mapping studies and pointed out the common weaknesses and the way to 

improve them. This would be an important message to inform further mapping studies and help 

them to provide more complete information for the application. We also had a summary of 

model types that have been used in previous mapping studies, which could be considered for 

further application. 

There were also several limitations in this study. First, we limited our target measure to be just 

the EQ-5D-5L. There were more mapping studies regarding the EQ-5D-3L, and the mapping 

studies regarding the EQ-5D-3L may also be informative and representative. Since the process of 

mapping analysis is independent of what target instrument is being mapped, reviewing the 

mapping studies onto other instruments, especially the EQ-5D-3L, is an extensive work but 

could provide a broader view on the reporting performance of the mapping studies. Second, this 

search was conducted based on a published systematic review and its associated mapping 

database. The search aimed to find new studies since 2018. If there was any mapping study 

published before 2018 and not included in the HERC database, we were not able to identify them 

and include them in our study. Third, this review was conducted by a single person (the author of 

this thesis). This might increase the likelihood of errors and biases in including/excluding and 

evaluating the studies. Fourth, we did not use a scoring system for the quality check, which could 

potentially enable us to do the inferential statistical comparison on the reporting quality of the 

studies. Currently, we only used descriptive statistics to summarize and compare the results. 
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2.5 Conclusions 

Overall, the quality of reporting is medium to high. However, several issues, especially those 

related to the application in CUA, including estimation of predicted utilities, reporting variances, 

covariances, and error terms, reporting final model calculation example, parameter uncertainty, 

and individual uncertainty, are worth noticing and improving in further studies.



32 

 

Figure 2.1  PRISMA flow diagram  

Note: HERC, Health Economics Research Centre
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Figure 2.2  Published mapping studies onto the EQ-5D-5L by year of publication 

 

Table 2.1  Study sample characteristics of the published mapping studies onto the EQ-5D-5L 

(n=39) 

Number of observations included in the estimation sample  

0-199 5(13%) 

200-499 17(44%) 

500-999 12(31%) 

1000-4999 3(8%) 

5000-10000 2(5%) 

Disease area  

cancer 11(28%) 

central nervous system 3(8%) 

endocrine disorders 1(3%) 

eye 1(3%) 

general population 3(8%) 

heart 2(5%) 

mental health and behavioural disorders 4(10%) 

musculoskeletal 5(13%) 

respiratory system 2(5%) 

skin 3(8%) 

urogenital 2(5%) 

various 2(5%) 
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Table 2.2  List of model types in mapping studies onto the EQ-5D-5L (n=39) 

Model type 

No. of studies 

used this model 

No. of studies selected 

this as final models 

Ordinary least square 33(85%) 13(33%) 

Generalized linear model 13(33%) 6(15%) 

Censored least absolute deviations model 11(28%) 1(3%) 

Beta regression 11(28%) 5(13%) 

Tobit model 10(26%) 2(5%) 

Robust MM-estimators 8(21%) 1(3%) 

Logit/Probit 7(18%) 4(10%) 

Adjusted limited dependent variable mixture model 5(13%) 1(3%) 

Fractional regression model 4(10%) 1(3%) 

Mixture beta regression model 3(8%) 1(3%) 

Two-part model 3(8%) 1(3%) 

Linear equating 3(8%) 0(0%) 

Equipercentile regression 2(5%) 0(0%) 

Mean rank method 2(5%) 1(3%) 

Multivariate fractional polynomial 1(3%) 0(0%) 

Conditional process analysis 1(3%) 1(3%) 

Gaussian mixture 1(3%) 1(3%) 

Extended estimation equation 1(3%) 1(3%) 

Generalized estimating equations 1(3%) 1(3%) 

Copula 1(3%) 1(3%) 

Quantile regression 1(3%) 1(3%) 

Linear random effect 1(3%) 0(0%) 

 

 

Table 2.3  Summary of model specifications of the mapping studies onto the EQ-5D-5L (n=39) 

Model specification options No. of studies 

Use of source measure index/dimension 39(100%) 

Use of categorical terms 3(8%) 

Use of interaction terms 13(33%) 

Use of polynomial terms 16(41%) 

Use of sociodemographic information 23(59%) 

Use of other health data 6(15%) 
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Table 2.4  Reporting quality assessment results of the mapping studies (n=39) 

Note: MAPS:  Mapping onto Preference-based Measures Reporting Standards Reporting Statement19, ISPOR: 

ISPOR Good Practices Task Force Report on Mapping14. The highlighted items are directly associated with the 

application in CUA. 

 

 Completed 

Partially 

completed No 

MAPS - Title 27(69%) 11(28%) 1(3%) 

MAPS - Abstract 9(23%) 30(77%) 0(0%) 

MAPS - Introduction: study rationale 38(97%) 1(3%) 0(0%) 

MAPS - Introduction: study objective 38(97%) 1(3%) 0(0%) 

ISPOR - Methods: candidate dataset description NA NA NA 

MAPS, ISPOR - Methods: estimation sample 39(100%) 0(0%) 0(0%) 

MAPS - Methods: external validation sample (only 1 study did 

external validation) 1(100%) 0 (0%) 0(0%) 

MAPS - Methods: source and target measures 22(56%) 17(44%) 0(0%) 

MAPS, ISPOR - Methods: exploratory data analysis  26(67%) 1(3%) 12(31%) 

MAPS, ISPOR - Methods: missing data 17(44%) 9(23%) 13(33%) 

MAPS, ISPOR - Methods: modelling approaches 38(97%) 0(0%) 1(3%) 

MAPS - Methods: estimation of predicted utilities 2(5%) 1(3%) 36(92%) 

MAPS - Methods: validation methods (8 studies did not have 

validation) 31(100%) 0(0%) 0(0%) 

MAPS - Methods: measures of model performance 37(95%) 0(0%) 2(5%) 

ISPOR - Methods: Approach to determine the final model (4 

studies had only one model) 34(87%) 0(0%) 1(3%) 

MAPS - Results: final sample size 33(85%) 5(13%) 1(3%) 

MAPS, ISPOR - Results: descriptive information (especially 

severity distribution) 19(49%) 19(49%) 1(3%) 

ISPOR - Results: Utility data distribution plot 21(54%) 0(0%) 18(46%) 

ISPOR - Results: Fit statistics, especially conditional fit 

statistics 3(8%) 36(92%) 0(0%) 

ISPOR - Results: Plot on observed and predicted utility values 30(77%) 0(0%) 9(23%) 

MAPS - Results: model selection (4 studies had only one model) 34(87%) 0(0%) 1(3%) 

MAPS, ISPOR - Results: model coefficients (size, sign, 

significance, stand error, error term) 25(64%) 12(31%) 2(5%) 

ISPOR - Results: model coefficients additional requirements 

(variance-covariance matrix, error) 0(0%) 6(15%) 33(85%) 

ISPOR - Results: Calculation example / user-friendly program 4(10%) 18(46%) 17(44%) 

MAPS, ISPOR - Results: uncertainty (parameter) 4(10%) 18(46%) 17(44%) 

MAPS, ISPOR - Results: uncertainty (individual) 2(5%) 0(0%) 37(95%) 

MAPS - Results: model performance and face validity 4(10%) 35(90%) 0(0%) 

MAPS - Discussion: comparisons with previous studies 34(87%) 4(10%) 1(3%) 

MAPS - Discussion: study limitations 39(100%) 0(0%) 0(0%) 

MAPS - Discussion: scope of applications 21(54%) 17(44%) 1(3%) 

MAPS - Other: additional information 37(95%) 0(0%) 2(5%) 
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Table 2.5  Comparison among studies applying, citing or not citing the checklists on selected 

items 

Selected items from checklists 

Among studies 

applying the 

checklists 

Among 

studies citing 

the checklists 

Among studies 

not citing the 

checklists 

MAPS reporting statement (n=12) (n=20) (n=19) 

MAPS - Abstract 5(42%) 7(35%) 2(11%) 

MAPS - Methods: source and target measures 7(58%) 13(65%) 9(47%) 

MAPS - Methods: missing data 8(67%) 11(55%) 6(32%) 

MAPS - Methods: exploratory data analysis 5(42%) 5(25%) 0(0%) 

MAPS - Methods: estimation of predicted utilities 1(8%) 1(5%) 1(5%) 

MAPS - Results: model coefficients 12(100%) 14(70%) 8(42%) 

MAPS - Results: uncertainty 0(0%) 3(15%) 3(16%) 

MAPS - Results: model performance and face 

validity 1(8%) 3(15%) 3(16%) 

MAPS - Discussion: scope of applications 6(50%) 9(45%) 12(63%) 

ISPOR Good Practices (n=3) (n=13) (n=26) 

ISPOR - Results: full details on dataset (including 

severity distribution) 1(33%) 4(31%) 3(12%) 

ISPOR - Results: Utility data distribution plot 1(33%) 8(62%) 11(42%) 

ISPOR - Results: Fit statistics, especially 

conditional fit statistics 0(0%) 2(15%) 1(4%) 

ISPOR - coefficients, error terms, variances, 

covariances 0(0%) 0(0%) 0(0%) 

ISPOR - Calculation example / user-friendly 

program 1(33%) 2(10%) 2(11%) 

ISPOR - parameter uncertainty 1(33%) 3(23%) 1(4%) 

ISPOR - individual uncertainty 0(0%) 2(15%) 0(0%) 

MAPS:  Mapping onto Preference-based Measures Reporting Standards Reporting Statement19, ISPOR: ISPOR 

Good Practices Task Force Report on Mapping14 
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Chapter 3. Mapping the Edmonton Symptom Assessment System 

Revised-Renal onto the EQ-5D-5L in Patients with Chronic Kidney 

Disease 

Abstract 

Background 

The Edmonton Symptom Assessment System Revised-Renal (ESAS-r: Renal) is a disease-

specific patient-reported symptom assessment scale focusing on symptoms related to end-stage 

renal disease (ESRD). It is widely used in Canada and internationally. There is no mapping 

algorithm from any form of the ESAS to the preference-based scoring system of the EQ-5D-5L 

to support its use in cost-utility analysis. 

Objective 

To develop a mapping algorithm from the ESAS-r: Renal to the Canadian EQ-5D-5L index 

scores. 

Methods 

We used data from the Evaluation of Routinely Measured Patient-reported Outcomes in 

Hemodialysis Care (EMPATHY) trial, a multi-centre clustered randomized-controlled trial of 

routine measurement of patient-reported outcomes in hemodialysis units in Northern Alberta. 

The EMPATHY trial collected both the ESAS-r: Renal and the EQ-5D-5L for ESRD patients. 

The model estimation explored direct mapping models which mapped the ESAS-r: Renal items 

to the EQ-5D-5L index scores directly (linear models, censored dependent variable models, and 

mixture models) and response mapping models which mapped the ESAS-r: Renal items to the 

EQ-5D-5L health states (ordinal logistic regression). We performed internal validation to 

evaluate the power of prediction. Mean absolute error (MAE) and mean squared error (MSE) 

were calculated to compare the models’ statistical fit on the estimation sample and predictive 

power on the validation sample. The final criteria for the preferred model included theoretical 

background, statistical fit, and predictive power. 
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Results 

A total of 506 patient records were included for model estimation, after excluding missing 

records (missing rate: 57.6%). All models produced relatively similar statistical fit and predictive 

power (Estimation: MAE: 0.056 - 0.120, MSE: 0.007 - 0.028; Validation: MAE: 0.136 - 0.155, 

MSE: 0.032 - 0.046). All models performed better in terms of prediction properties for relatively 

healthy health states, but worse for poorer health states. Considering all criteria, the generalized 

estimating equations (Estimation: MAE: 0.120, MSE: 0.027; Validation: MAE: 0.140, MSE: 

0.034) and generalized linear models (Estimation: MAE: 0.116, MSE: 0.028; Validation: MAE: 

0.136, MSE: 0.034) on selected ESAS-r: Renal items were considered the best models. 

Conclusions 

Mapping algorithms from the ESAS-r: Renal to the EQ-5D-5L could be used to predict utility 

values for patients with ESRD when only ESAS-r: Renal is available. Future research should 

evaluate the generalizability of these mapping algorithms among ESRD patients. 

 

3.1 Introduction 

Chronic kidney disease (CKD) is defined as kidney damage for a period of greater than three 

months1. There are five stages of CKD, classified by the severity of kidney dysfunction (i.e. 

glomerular filtration rate), and a higher state indicates worse situation2. Stage 5 CKD is also 

known as end-stage renal disease (ESRD), which requires dialysis or kidney transplantation3. 

CKD is prevalent both in Canada and worldwide4,5. Data from 2019 Global Kidney Health Atlas 

showed that approximately 10% of the world’s population were living with CKD, and around 

0.1% of the world’s population had ESRD6. The main burdens of symptoms of all stages of CKD 

include fatigue or lack of energy, feeling drowsy, pain, itchiness, and dry skin7. Patients living 

with CKD, especially those with ESRD, usually have a significant reduction in both life 

expectancy and health-related quality of life (HRQL)8. 

There are various instruments to identify symptom burdens of the patients with ESRD, such as 

the Edmonton Symptom Assessment System Revised-Renal (ESAS-r: Renal)9 and the Palliative 

Outcome Score-Renal (POS-renal)10. These symptom assessment tools identify the extent and 

severity of symptom burdens of the patients11, and they are shown to be responsive to changes in 
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symptoms12. Therefore, these measures are commonly used to assess patient outcomes in clinical 

trials and their symptom management. However, while symptom assessment instruments could 

capture the health outcomes of ESRD, the use of symptom assessment instruments in economic 

evaluation is limited by the comparability across different populations, as the results can only be 

compared with the evaluations that use the same measure. Furthermore, the ESAS-r: Renal does 

not provide an overall score, making it harder to use if it is selected as the effectiveness measure 

in economic evaluation.  

Cost-utility analysis (CUA), where Quality-Adjusted Life Years (QALY) is the typical outcome, 

aims for a more universal comparability of evaluations across all technologies. Therefore, CUA 

remains the base-case analysis in many guidelines for economic evaluations13,14. QALY is a 

weighted sum of life years, and the weight is estimated by preferences (i.e. utilities) for health 

status. There are two methods to estimate utilities, direct elicitation, or indirect estimation using 

multi-attribute preference-based measures (PBM). The direct approach is a process of 

interviewing participants about their preferences for health states using techniques like time 

trade-off, which is time-consuming and burdensome15. For indirect approaches, participants 

answer the questions in the descriptive system of the PBM, and this will generate a profile or 

health status which has an associated utility value. The EuroQol-5 Dimension (EQ-5D) is such 

an instrument which could indirectly estimate utility values16. Both the three-level (EQ-5D-3L) 

and the five-level version (EQ-5D-5L) have become the most widely-used PBMs wordwide16. 

The EQ-5D has also been recommended as an outcome measure for patients with CKD17. 

PBMs are not included in every clinical study on ESRD, either because economic evaluation is 

not an objective of these studies or symptom measures like the ESAS-r: Renal have been used to 

better capture the disease-related outcomes. Therefore, there often remains a gap in using the 

effectiveness data of those trials for economic evaluation. Mapping is a tool to convert scores of 

non-PBM to utility scores which could be used in CUA using regression techniques18. To our 

knowledge, there is no mapping algorithm from the ESAS-r: Renal to the EQ-5D on patients 

with ESRD. We, therefore, aimed to develop a mapping algorithm from the ESAS-r: Renal to the 

EQ-5D-5L following the recommendations from the Mapping onto Preference-based Measures 

Reporting Standards Reporting Statement (MAPS reporting statement)19 and the ISPOR Good 

Practices Task Force Report on Mapping (ISPOR Good Practices)20. 
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3.2 Methods 

Data 

Data were obtained from the Evaluation of Routinely Measured Patient-reported Outcomes in 

Hemodialysis Care (EMPATHY) trial. It was a multi-centre clustered randomized-controlled 

trial in hemodialysis units in Northern Alberta. One arm of patients completed both the ESAS-r: 

Renal and the EQ-5D-5L every two months. In this arm, there were 188 patients, and in total 

1193 patient records were collected over the one-year time frame. This was a short panel data, 

which means there were many individual units (clusters) but few time points21. Demographic and 

clinical information, including age, sex, race, and presence of diabetes were also collected. We 

used these data for estimating the mapping algorithm parameters. Another arm of patients in the 

EMPATHY trial voluntarily completed an anonymous outcome survey which had both the 

ESAS-r: Renal and the EQ-5D-5L every 6 months over the one-year time frame. There were 346 

original records. Age and sex were collected in the survey, but race and diabetes were not 

included. We used these data for validation of the mapping algorithms. We considered this as 

internal validation, as the patients are from the same randomized-controlled trial and the patient 

characteristics would be very similar. 

The variables considered in the models were ESAS-r: Renal items and demographic information. 

In the base case, we could not include race and diabetes in the mapping algorithms, as they were 

not collected in the validation set and we were not able to validate the results if we included them 

in the estimation models. However, we undertook a sensitivity analysis to see whether these two 

variables were additionally important to the final mapping algorithms.  

Outcome Measures 

The EQ-5D-5L is one of the most widely used generic PBMs16. It is an HRQL instrument and it 

has five dimensions: mobility (MO), self-care (SC), usual activities (UA), pain/discomfort (PD), 

and anxiety/depression (AD). Each dimension has one question, asking the extent of problems 

the respondent is experiencing today on five levels (1=no problems, 2=slight problems, 

3=moderate problems, 4=severe problems, and 5=extreme problems)22. This generates a total of 

3125 (=55) possible health states. The perfect health state is “11111”, while the worst health state 
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is “55555”. In Canada, there is a value set for the EQ-5D-5L based on the time trade-off method, 

and the estimated EQ-5D-5L utility values ranged from -0.148 to 0.94923.     

The ESAS-r: Renal is a symptom assessment scale used in the ESRD12. The original version of 

the ESAS-r covers 9 symptoms, including pain, tiredness, drowsiness, nausea, lack of appetite, 

shortness of breath, depression, anxiety, and wellbeing24. The renal-specific form has 3 

additional questions on symptoms specific to kidney disease, i.e. itching, sleeping, and Restless 

legs12. The response to each question is a scale from 0 to 10, with 0 meaning no problem, and 10 

the worst condition. The ESAS-r: Renal used by the EMPATHY trial asked for the average 

symptom burdens over the past week. Unlike some measures which could calculate a compound 

score25,26, the ESAS-r: Renal does not have a single overall score. 

There are three items in the ESAS-r: Renal measure similar constructs that the EQ-5D-5L 

measures. The ESAS-r: Renal pain item corresponds to the EQ-5D-5L PD dimension, and 

ESAS-r: Renal depression and anxiety items correspond to the EQ-5D-5L AD dimension. We 

performed a Spearman’s correlation test between the ESAS-r: Renal items and the EQ-5D-5L 

dimensions and utility scores to have an idea on the degree of overlap in constructs between the 

two instruments. A Spearman’s correlation of 0-0.3 is considered as negligible correlation; 0.3-

0.5, mild correlation; 0.5-0.7, moderate correlation; 0.7-0.9, high correlation; and 0.9 to 1, very 

high correlation27. 

Estimation Model Types 

Utility distribution is complicated and therefore it needs special modelling techniques. Previous 

evidence showed that utility distributions are bounded, skewed, multimodal, with large spikes on 

perfect health20. The EMPATHY EQ-5D-5L data had similar characteristics, where close to 20% 

of patient responses were on the level “11111” (Figure 3.1), and the distribution is left-skewed. 

Traditional linear models estimated by ordinary least square (OLS) may not be appropriate given 

the distributional characteristics28,29. Various methods have been used to deal with the issues of 

utility data, with two main types of modelling, direct mapping and indirect mapping (response 

mapping). The direct technique would map the ESAS-r: Renal item scores to the overall EQ-5D-

5L utility index. The indirect technique would map the ESAS-r: Renal item scores to each 

dimension of the EQ-5D-5L descriptive system. For direct mapping, previous studies used 

regression models whose distribution requirements for the dependent variable are similar to the 
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utility distribution. Indirect mapping could potentially minimize the distribution issue, as it 

estimates the overall or dimensional responses. 

In this study, we explored both direct and indirect (response) mapping techniques. We 

considered direct mapping techniques including linear models, censored dependent variable 

models, mixture models, and response mapping. The linear models include OLS, fixed effect 

model (FEM), random effect model (REM), generalized estimating equations (GEE), and 

generalized linear models (GLM). The censored dependent variable models include the Tobit 

model and Censored Least Absolute Deviations (CLAD) model. The mixture models include 

mixture beta regression model (BETAMIX) and adjusted limited dependent variable mixture 

model (ALDVMM). For the response mapping model, we used ordered logistic regression 

(OLR). 

- Linear models: Using linear relationship to explain utility scores from the ESAS-r: Renal is a 

simple and explicit method. But there is no bound for many linear models, and predicted value 

out of the range needs to be set to the upper/lower limits. The traditional method to estimate the 

parameters of linear models is OLS. Under assumptions of the linearity, independence, 

normality, homoscedasticity, and no multicollinearity, the OLS estimator is the Best Linear 

Unbiased Estimator (BLUE) and Best Unbiased Estimator (BUE)30. But using OLS models on 

utility data is very likely to violate these assumptions, especially the normality and 

homoscedasticity assumptions28,29,31,32. For our dataset, aside from the properties of utility 

distribution that might violate those assumptions, our dataset was a short panel data and within-

individual variation exists21. In this case, homoscedasticity would be a very strict assumption. 

Violating normality and homoscedasticity assumptions would make OLS estimators no longer 

the BLUE, and moreover, since the estimated standard errors are inaccurate, the hypothesis tests 

are invalid30. To deal with this issue, apart from switching to other model types, using a robust 

estimation of the variance could at least assure the validity of hypothesis tests under the situation 

of heteroscedasticity.  

During the modelling process, we first started with the traditional OLS and checked the 

assumptions. If the assumptions were violated, we then considered a robust estimation. 

Considering that the data were clustered by individual, the cluster-robust variance would be 

suitable for our data. The Stata option “vce(cluster)” calculates the cluster-robust variance for 
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regression models33. For the other types of models below, we also used the cluster-robust 

variance to ensure the validity of hypothesis tests when model assumptions were violated or hard 

to test. 

Individual effect and time effect may exist as our dataset was a short panel dataset. OLS model 

with cluster-robust variance treated the data in a pooled cross-sectional way, which ignores the 

two effects. One method to deal with this is to directly run a population-averaged model, using 

GEE34. The other method is to estimate the individual effect and time effect using FEM and 

REM35. For time effect, a variable “time” was included in the model. For individual effect, the 

FEM deals with this by assigning an individual intercept to each subject, and REM allows each 

subject to have an individual error term. After the regression estimation, the Hausman test could 

be used to test whether using the fixed or random effect model is preferred36.  

GLM is a generalized form of linear models. Instead of subjecting to the normal distribution, the 

conditional mean distribution for GLM models could subject to any distribution within the 

exponential family, while the independent variables still have a linear combination. The error 

terms in many of the GLMs do not need to conform to the normal distribution and they could be 

heteroscedastic. The exponential family includes normal distribution, Poisson distribution, 

Gamma distribution, etc. In many GLM models, the dependent variables are non-negative. To 

use GLM in the estimation of utility data, disutility values were typically used. Disutility is 

defined as the upper limit of utility values minus utility values. The disutility values would 

always be non-negative, while utility may have some negative values. Previous literature 

suggested Gamma distribution with an identity link, and normal distribution with a log link, are 

ideal to model the disutility data33,37. These two models could partially deal with the bounded 

issue as the estimated non-negative disutility values could ensure the estimated utility values not 

greater than the upper limits. The difference between the two models is that the normal model 

requires equal variances, but the gamma model allows heterogeneity. In our study, we continued 

to use these two methods. A preliminary comparison was made between the two models to 

choose one for the final performance assessment.  

- Censored dependent variable models: Tobit model and CLAD model are designed for 

limited dependent variables35, such as in the case of bounded utility data25,38,39. In the modelling 

process, the range of the estimated value is pre-designated, and usually is the same as the range 



51 

 

of the value set. The main model equation still has a linear form, but any estimated values out of 

the range would be replaced by the upper/lower limits. The difference between Tobit and CLAD 

models is that they use different parameter estimation methods. Tobit uses maximum likelihood 

estimation, which requires the error terms to be identical and independent, normally distributed 

with the same variances, while CLAD uses least absolute deviations (derived from the quantile 

regression), which only requires the error terms to be identically and independently distributed35. 

Therefore, the use of Tobit is more stringent. Previous literature showed that the assumptions of 

the Tobit model might be violated, and in this case, CLAD provides reliable estimation and 

could get rid of the issues25,38,39. In this paper, both Tobit and CLAD were considered. The 

assumptions for Tobit were checked, and if violated, we used the cluster-robust variance 

estimator for Tobit. 

- Mixture models: Mixture model is able to deal with two or more issues in utility distribution 

together. The principle of mixture models is assuming there are sub-distributions within the data. 

To link the sub-distributions together, a logistic or multinomial function is used for 

classification, and it calculated the probabilities of the observation belonging to each sub-

distribution. The mixture model is an advanced form of the two-part model. With sub-

distributions, it could solve the multimodality, as each sub-distribution would have a mode. The 

bounded issue is solved using a similar method as Tobit and CLAD. Lastly, skewness is 

indirectly solved by controlling the density of each sub-distribution. The final estimated utility 

value is an expected mean of all sub-distribution estimated values. Two popular mixture models 

that have been used for mapping studies are BETAMIX40 and ALDVMM41. The BETAMIX 

considers several components of beta regression40, while the ALDVMM considers several Tobit-

like distributions41. They have user-developed Stata programs that could directly be used for 

estimation. For our study, we considered both models for the estimation. Many of the 

assumptions for mixture models are not directly testable42, and we used cluster-robust variance in 

case there was any violation in assumptions which we failed to test and identify.  

- Dimensional response mapping: In response mapping, the scores of the source PROM are 

mapped to the dimensional responses of the target measure. We used ordinal logistic regression 

(OLR) to map the ESAS-r: Renal items to each of the EQ-5D-5L dimensions. The dependent 

variable of OLR is an ordered categorical variable, which is suitable for modelling the 
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dimensional responses of the EQ-5D-5L. These regression models calculate a probability of 

selecting “k” (k=1, 2, 3, 4, 5) within dimension “y”. The product of the probabilities on each 

dimension is the probability of an EQ-5D-5L health state. For example, the probability of a 

respondent reporting a health state of “11111” with a given ESAS-r: Renal profile would be the 

product of the probability of level 1 on MO given ESAS-r: Renal profile, the probability of level 

1 on UA given ESAS-r: Renal profile, the probability of level 1 on SC given ESAS-r: Renal 

profile, the probability of level 1 on PD given ESAS-r: Renal profile, and the probability of level 

1 on AD given ESAS-r: Renal profile. The final estimated utility score was an expected average 

of the utility scores from all possible EQ-5D-5L health states. 

Estimation Methods 

For each of the estimation methods above, four model specifications were considered:  

 - all ESAS-r: Renal symptoms (model 1); 

 - all ESAS-r: Renal symptoms plus age and gender (model 2);  

 - significant ESAS-r: Renal items selected by backward step-wise method (model 3);  

 - significant ESAS-r: Renal items and significant demographic variables selected by backward 

step-wise method (model 4).  

In models 3 and 4, we used a backward stepwise selection procedure, which is considered the 

best selection procedure for the model building when important independent variables are 

intended to be retained43. Pain, depression and anxiety of ESAS-r: Renal were considered 

important independent variables, as they have the same constructs as PD and AD of the EQ-5D-

5L, so they would not be excluded even if they were not statistically significant in the backward 

step-wise procedure. Similar for age, a recommended demographic information variable to 

include in the mapping algorithm20, and we would not exclude it if it was statistically 

insignificant.  

All regression analyses were conducted in Stata version 14 (Stata-Crop, College Station, TX, 

USA). All estimated utility scores greater than the upper limits of the Canadian value set (0.949) 

were converted to 0.949, and those smaller than the lower limits (-0.148) were converted to -

0.148. For response mapping, Stata could only calculate the probabilities of the selections of 
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each dimension. The combination of the health states and calculation of utility scores are 

conducted in Python (Python Software Foundation, DE, USA).  

Assessing Model Performance and Selection 

We did a preliminary selection within each model type and then systematically assessed all of 

the selected models. During this preliminary selection process, models which violated the 

assumptions or had worse fit statistics than alternative models being compared with were 

excluded. The fit statistics we used were the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC). Both statistics assess the goodness of fit of the model with 

a penalty on the increasing number of estimated parameters44,45. The penalty term in BIC is 

larger than in AIC, and therefore BIC tends to support models that are more parsimonious45.  The 

smaller the AIC and BIC are, the better the model fit is. After we did the preliminary selection, 

the preferred models for each type were compared together using fit statistics to see their 

statistical fit in the estimation sample and the predictive power in the validation sample. Overall 

and conditional fit statistics were used. Conditional fit statistics were also considered as it could 

show whether the errors were affected by poor health46. Previous literature suggested reporting 

fit statistics for subsets,  such as for EQ-5D ≤ 0.5 and EQ-5D > 0.546. The fit statistics we chose 

were mean squared error (MSE) and mean absolute error (MAE), both of which are common 

among published mapping studies46. MSE is the average of the squares of the errors, and here 

error means the difference between the observed EQ-5D-5L value and the estimated/predicted 

EQ-5D-5L value. MAE is the average of the absolute value of the errors. AIC and BIC were not 

considered as model selection statistics, because they are not applicable for response mapping, as 

the regression models only estimate the dimensions. Some models would have a raw estimated 

utility score out of the utility range of the Canadian value set, and we calculated the percentage 

of the out-of-bound estimation as an additional criterion of model fit and prediction power. The 

final selection of the model involved considerations of the theoretical background of the model, 

model fit, and prediction power. 
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3.3 Results 

Demographics and Outcome Distributions 

The final estimation sample had 506 patient records and the validation sample, 242 patient 

records, after removing the records that had missing values in the ESAS-r: Renal, the EQ-5D-5L, 

or demographic information (Table 3.1). Participants in the validation sample were slightly older 

than the participants in the estimation sample (estimation sample: (mean=64.4, s.d.=14.2), 

validation sample: (mean=65.5, s.d.=14.3)). The age and gender of the validation sample were 

comparable with the estimation sample. Based on the estimation sample, the participants in this 

trial were mostly diabetic. Caucasian was the main ethnicity of the participants, followed by 

Asian and Aboriginal. Participants in the estimation sample had a relatively better patient-

reported HRQL compared with the participants in the validation samples, according to the 

average EQ-5D-5L index, the proportion of participants in perfect health, the proportion of 

participants having an EQ-5D-5L index less than 0.5, and the proportion of participants having at 

least one moderate or severe ESAS-r: Renal symptom (Table 3.1). 

Pain, tiredness, drowsiness, and wellbeing were the most frequent and severe symptoms that 

patients were experiencing, as measured by the ESAS-r: Renal (Figure 3.2). Itchiness and sleep 

were also serious symptoms for these patients. For these key symptoms, less than 40% of the 

patients reported no problem (“0” in the scale), and more than 20% of patients reported moderate 

to severe problems (“5” and above in the scale).  

The five dimensions of the EQ-5D-5L had a similar diminishing distribution (Figure 3.3), with 

decreasing frequencies when going from “no problems” to each of the more severe problem 

level. Participants had fewer problems in SC compared with other dimensions, with over 60% of 

the participants having “no problems”. MO, UA, and PD were three key dimensions where 

participants had at least some problems (about 60%). In these dimensions, more participants had 

“severe problems” or “extreme problems” compared with SC and AD. Overall, the ceiling effect, 

i.e. respondents reporting “perfect health”, was about 20%, and the flooring effect, i.e. 

respondents reporting “worst health” was almost 0. 

Pain in the ESAS-r: Renal was highly correlated with the pain dimension of EQ-5D-5L (ρ = 

0.81, p<0.001). The ESAS-r: Renal anxiety (ρ=0.62, p<0.001) and depression (ρ=0.70, p<0.001) 
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items were each moderately correlated with the anxiety/depression dimension of EQ-5D-5L 

(Table 3.2). These three items were also mildly to moderately correlated to the EQ-5D-5L index 

(pain: ρ=-0.58, depression: ρ= -0.50, anxiety: ρ=-0.44). For the other items that do not have 

directly the same constructs as the EQ-5D-5L dimensions, mild to moderate correlations were 

observed with the EQ-5D-5L index (8/9). 

Preliminary Selection of Models Within Each Type 

- Linear models: We started with the OLS estimation with all ESAS-r: Renal items. Both 

assumptions of normality and heteroscedasticity were violated in our dataset (Appendix 3.1). 

Therefore, a linear model with cluster-robust variance was considered. We then explored FEM 

and REM to see if there was any individual effect or time effect. The time effect was not 

significant, even in crude regression analysis (Appendix 3.2). We then used the model predicted 

by all ESAS-r: Renal items as an example to illustrate the process of exploring individual effects 

(Appendix 3.3). We first tested whether FEM and REM were better than the pooled linear 

regression model, and we did observe the individual effect. The Hausman test showed that the 

FEM is better than REM for our dataset. Finally, since heteroscedasticity existed in our data, 

cluster-robust variances were used.  

For GLM, the dependent variable had various choices of distributions from the exponential 

family. Appendix 3.4 presents a table of the AIC and BIC statistics of models using gamma 

distribution with identity link and normal distribution with a log link. Since the likelihood 

functions were not concave for model specification 1 and 2 using gamma distribution with 

identity link, we chose normal distribution with a log link. For model specification 3 and 4, 

based on the fit statistics, gamma distribution with identity link was better than normal 

distribution with a log link, and therefore we chose gamma distribution with identity link. The 

normal model still required the equal variance assumption, while the gamma model did not have 

that requirement. As the equal variance assumption was violated for the normal model 

(Appendix 3.5), we used robust variance estimation. Besides, considering that our data were 

individually clustered, we used cluster-robust variance for the 4 GLMs. 

In summary, the linear models we explored for further performance comparison were: 1) OLS 

with robust estimation, 2) FEM with robust estimation, 3) GEE, and 4) selected GLM. OLS with 
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robust estimation was not as good as models considering individual effect but it was still 

included, as this is a very basic regression model. 

- Censored dependent variable models: We did not perform a preliminary comparison between 

Tobit and CLAD, as we intended to retain both of them for further assessment. However, we did 

an assumption check for Tobit, which supported using the cluster-robust variance estimation as 

the assumptions were violated (Appendix 3.6). 

- Mixture models: Within mixture models, the number of components, or sub-distributions 

needed consideration. The estimation functions for the two types of mixture models with three 

components were not concave. The one-component models were better than the two-component 

models for ALDVMM (Appendix 3.7), and the two-component models were better than the one-

component models for BETAMIX. In the final assessment, ALDVMM with one component and 

beta mixture models with two components were considered for further evaluation.      

- Response mapping: We only used model specification 4 (selected ESAS-r: Renal items and 

demographic information) for response mapping. This was because the model equations in 

response mapping were dimensional. It was considered meaningless to include independent 

variables that did not have potential similar constructs with the dependent variable in the 

regression model. Specifically, the pain item of the ESAS-r: Renal was an important variable for 

estimating PD of the EQ-5D-5L, and the anxiety and depression of ESAS-r: Renal were 

important variables for estimating AD of the EQ-5D-5L.  

Final Results and Model Selection 

Overall, nine estimation methods were explored, using four different model specifications, and 

producing 33 models in total. Overall, the model fit in the estimation sample and the predictive 

power in the validation sample were similar across all models (Table 3.3). The MAE ranged 

from 0.056 to 0.120 in the estimation sample (models with MAE < 0.110 were highlighted), and 

0.138 to 0.155 in the validation sample (models with MAE < 0.141 were highlighted). The MSE 

ranged from 0.007 to 0.028 in the estimation sample (models with MSE < 0.024 were 

highlighted), and 0.032 to 0.055 in the validation sample (models with MSE < 0.038 were 

highlighted). As such, within each statistical criterion, 9-10 models were highlighted. This 
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indicates that the highlighted models performed better when compared with the rest of the 

models based on the corresponding statistical criterion.  

FEM performed the best in terms of the four statistics, followed by CLAD models, which had 

relatively small MAE in the estimation and validation sample, and MSE in the validation sample. 

GEE models tended to perform better when assessed by prediction power, and they fit within the 

estimation sample was slightly worse than the other highlighted models, but still acceptable. 

Tobit models, BETAMIX, and response mapping tended to perform better when measured by 

statistical fit, but their prediction powers were relatively poor. The GLM models used different 

exponential family distributions across the four model specifications. GLM1 and GLM2 used 

normal distribution, where the statistical fit was good, but the prediction power was poor. GLM3 

and GLM4 used gamma distribution, where the predictive power was ideal, but the statistical fit 

was not as good as the highlighted models in Table 3.3, but still acceptable. Statistics for the 

ALDVMM and linear models were mostly fair, with the ALDVMM slightly better than the 

linear models. Lastly, the percentage of raw estimated values out of the scale range of the 

Canadian value set was relatively low for most of the models, with OLS and FEM having the 

most values out of the range (Table 3.3).  

Based on the analysis above, we selected FEM (model specification 3), GEE (model 

specification 3), CLAD (model specification 1), GLM with a gamma distribution (model 

specification 3), and ALDVMM (model specification 3) for further assessment. We plotted the 

observed utility values versus predicted values in Figure 3.4 (estimation sample) and Figure 3.5 

(validation sample). We further looked at the MAE and MSE for EQ-5D-5L subsets, i.e. EQ-5D-

5L < 0.5 and EQ-5D-5L >=0.5. The ALDVMM had a good prediction for poor health (EQ-5D-

5L<0.5), as the MAE and MSE statistics were mostly the lowest in the estimation and validation 

sample (Table 3.4). But this was a result of the systematic underprediction of the EQ-5D-5L 

values (Figure 3.4). Also, the MAE and MSE statistics of the ALDVMM for the EQ-5D-

5L>=0.5 subset were the largest (Table 3.4). The CLAD model had the opposite situation. It 

predicted well for good health and not well for poor health. In terms of MAE and MSE statistics, 

CLAD had the lowest statistics at the EQ-5D-5L>=0.5 subset, and the largest statistics at the EQ-

5D-5L < 0.5 subset (Table 3.4).  
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The FEM is a special situation because it accounted for the individual effect. In the estimation 

sample, it had a perfect prediction. This indicated that there were significant unobserved 

individual effects which could not be explained by the independent variables. Then in the 

validation sample, the fixed effect model had a very poor prediction. The estimated values 

almost lied within 0.4 to 0.8 (Figure 3.5).  

GEE and GLM models were the two best models, demonstrating the characteristics of the utility 

distribution, and having neither consistent underprediction nor overprediction. The MAE and 

MSE statistics were similar in the estimation and validation sample for the two EQ-5D-5L 

subsets. Therefore, we selected both GEE and GLM as the final models to predict the EQ-5D-5L 

from the ESAS-r: Renal (Figure 3.6 and Appendix 3.8).  The calculation of predicted EQ-5D-5L 

utility values for GEE and GLM models was shown in Table 3.5. For example, for a given 

ESAS-r: Renal profile with no symptoms in every item (all “0”), the GEE-predicted value would 

equal to 0.899 (= 0.899 – 0.017*0 – 0.009*0 – 0.007*0 – 0.012*0 – 0.014*0 – 0.012*0 + 

0.007*0). The GLM-predicted disutility value would equal to 0.026 (= 0.026 + 0.022*0 + 

0.011*0 + 0.007*0 + 0.016*0 + 0.015*0), thus the GLM-predicted utility value would be 0.923 

(= 0.949 – 0.026). The variance-covariance matrices and error terms were reported in Appendix 

3.9. 

Sensitivity analyses 

We performed sensitivity analyses to check if including diabetes and race as independent 

variables improved the GLM and GEE models. Diabetes and race were statistically significant in 

the models, and the new GEE and GLM models had smaller error statistics (MAE: 0.101-0.108, 

MSE: 0.019-0.021) compared with the GLM3 (MAE: 0.116, MSE: 0.028) and GEE3 (MAE: 

0.119, MSE: 0.027), but the difference was small (Appendix 3.10). Another issue was that the 

predictive power of the models with demographics (e.g. GLM2, GEE2) was not as good as the 

predictive power of GLM and GEE models without demographics (Table 3.3), especially for 

GLM2. This suggests that including more demographic variables could help to explain the EQ-

5D-5L index score in the estimation set, but this may reduce the generalizability on the 

validation set.      
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3.4 Discussion 

The ESAS-r: Renal is a simple and validated symptom assessment scale that has been widely 

used to identify and capture the symptom burdens of patients with ESRD.3,9  It does not, 

however, produce an overall summary score that is based on population preferences, and 

therefore can not be incorporated into QALY calculations and CUA. This study explored 

mapping algorithms that would allow the estimation of EQ-5D-5L index scores from the ESAS-

r: Renal, which could support such applications. We followed established mapping guidelines to 

conduct our study19,20, and various methods that have been used in the current mapping studies 

were considered. We identified two models to predict utility values from ESAS-r: Renal for 

conducting CUA.  

Among the methods we tested, the best models were GEE model and GLM models with gamma 

distribution and identity link on selected ESAS-r: Renal items. These two selected models had 

comparable fit statistics and prediction power. GLM provided slightly higher estimated values at 

the upper end of the utility-scale (relatively healthy states) and lower values at the lower end of 

the scale. Both models were in linear form, which makes them relatively easy to interpret. 

Meanwhile, they had less stringent model assumptions. The GEE model estimates the 

population-averaged result, averaging the utility deterioration estimated by ESAS-r: Renal items. 

There was no distribution assumption within GEE models. In the GLM model with gamma 

distribution and identity link, we modelled the disutility data. This combination allows the 

dependent variable to be consistently non-negative, and the error term could be heterogeneous. 

One issue with the GEE model was that “Restless legs” had a positive coefficient. “Restless 

legs” was not a common symptom burden in our dataset, and only a mild correlation was 

observed between “Restless legs” and EQ-5D-5L utility values. The model coefficient of 

“Restless legs” was statistically significant but unlikely to be clinically significant as the effect 

size is very small. Based on the above information, we recommended using the GLM on selected 

ESAS-r: Renal items as the primary model in future economic evaluations, while the GEE could 

be used in sensitivity analyses.  

Recently, Moskovitz et al explored the possibility of replacing EQ-5D-3L-derived health state 

utilities with the general form of the ESAS47. They did not provide a specific algorithm from the 

ESAS to the EQ-5D-3L, but they mapped the pain, depression, and anxiety of the ESAS to PD 
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and AD of the EQ-5D-3L and generated an ESAS-derived EQ-5D utility score. The Spearman’s 

correlations between the ESAS-derived EQ-5D utility scores and the original EQ-5D-3L utility 

scores were high (0.83-0.91)47. Although the instruments they used were not exactly the same as 

ours, some of their findings and issues were similar to ours. The ESAS/ESAS-r: Renal items that 

have the same constructs as the EQ-5D, (i.e. pain, anxiety, depression) were moderately to 

highly correlated to the corresponding EQ-5D domains and the overall indices. Some constructs 

of the EQ-5D were not covered in the ESAS or the ESAS-r: Renal, i.e. SC, UA, and MO, and 

these will weaken the ability to predict utilities from the ESAS. In other words, when using the 

ESAS to predict utility values, the deterioration in utility values induced by having problems in 

SC/UA/MO was ignored, as the ESAS did not capture the problems in these three dimensions. 

This led to an overprediction, with predicted utility values persistently greater than the observed 

values. For patients having more severe problems in these three dimensions, the extent of over-

prediction would be greater.  Therefore, it was also expected that the ESAS-r: Renal would not 

predict the EQ-5D-5L very well, especially for the lower-end of the EQ-5D-5L scale. 

Overprediction of utility values in the lower-end of the EQ-5D-5L was common in previous 

studies38,48. Aside from lacking enough overlaps in dimensions/constructs discussed above, 

another reason for this issue was the sample size. Ideally, the observed values should scatter 

evenly around the regression line, with some observed values greater than the predicted values, 

and some observed values smaller than the predicted values. Many studies had a relatively small 

sub-sample with poor health and a large number of observations accumulating with higher values 

of the EQ-5D. The subjects with higher values of the EQ-5D would have more weight in the 

estimation function as there were more observations compared to relatively few EQ-5D states 

with lower values. Therefore, the optimization would favour the pattern among subjects having 

higher EQ-5D values, and the predicted relationship between the independent variables and 

dependent variables would be better for observations with higher values of the EQ-5D. Even 

though there were huge deviations between the predicted and observed values in the lower-end 

of the EQ-5D, with only a small proportion of such records, it would not affect much in 

determining the best coefficients estimators. 

There were substantial unobserved individual effects among the relationship between the ESAS-

r: Renal and the EQ-5D-5L. The perfect performance of FEM in the estimation sample and poor 
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prediction in the validation sample supported this argument. The FEM used population equations 

when doing prediction in the validation sample, and the estimated population values had many 

deviations from the observed EQ-5D-5L utility values. This individual effect could be impacted 

by the problems in the SC, UA, and MO dimensions which were discussed above, or it could be 

the difference in the time frame between the ESAS-r: Renal and the EQ-5D-5L. The ESAS-r: 

Renal used by the EMPATHY trial asked for the average symptom burdens over the past week, 

while the EQ-5D-5L measured health only in the current day. While the ESAS-r: Renal 

measured the symptoms in a more persistent way, the utility values predicted by the EQ-5D-5L 

were more applicable to the immediate situation. It is possible that the average symptoms could 

not well explain the “immediate health”, and this unexplained variability fell into unobserved 

individual effects.  

We did observe common flaws in popular modelling techniques when using them in our dataset. 

The first was that linear models could not capture the ceiling effect32,49. In the estimation, we 

arbitrarily replaced all estimated values greater than the upper limits with upper limits. The 

second is the assumption violations in OLS estimation and Tobit models, which is commonly-

reported in the previous studies28,29,32,50. In this study, homoscedasticity and normality 

assumptions were also violated for both OLS and Tobit models. We used robust estimation to 

ensure the validity of hypothesis testing. In this case, the coefficient estimators themselves were 

not the best estimators to describe the linear- or Tobit-like relationships between the dependent 

variable and independent variables. The inefficiency of traditional regression techniques was due 

to the characteristics of the utility data, which were bounded, skewed, and had large spikes in 

perfect health20.  

There have been various new methods aimed to deal with the issues of the utility distribution, 

and we tested most of them in our study but did not observe better performance. The response 

mapping approach seemed to over-fit the data. It had a good prediction in the estimation sample, 

but it did not perform well in the validation sample. The limited construct overlaps between the 

ESAS-r: Renal and the EQ-5D-5L made it meaningless to predict MO, SC, and UA dimensions 

from the ESAS-r: Renal items. The estimated regression models for MO, SC, and UA were hard 

to extrapolate. Mixture models were designed to concurrently solve the common issues of utility 

data. In our sample, the ALDVMM model solved the bounded and skewness issue to some 
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degree. But the systematic underpredictions of the higher values of the EQ-5D were also 

significant. We only had one component in the ALDVMM model, and the absence of another 

potential sub-distribution dragged down the estimated values for the observations with higher 

EQ-5D values.  Strictly, for mixture models, there should be two components or more41. The 

one-component setting is similar to a Tobit model, which disobeys the underlying distributional 

requirements of mixture models. The reason which two-component models are not preferred by 

AIC and BIC may be due to limited observations to support multiple sub-distributions. Then in 

the BETAMIX model, two components were used. Again, good statistical fit but poor prediction 

power was observed, which indicated overfitting issue. 

The strength of our study was that we carefully followed the existing mapping guidelines19,20 and 

explored all of the commonly-used mapping techniques to develop the mapping algorithm. 

Therefore, the quality of the analysis and the reporting quality of the study was ensured. For 

example, the explicit information we gave on the estimation sample could help further studies to 

identify whether our algorithms are applicable to their population. Second, the two models we 

recommended were in linear terms, which were relatively user-friendly. One recommended 

algorithm did not include renal-specific items in the final model. This indicated that this model 

might be able to predict the EQ-5D-5L from the general form of ESAS, but this had to be 

validated in other disease samples.  

The main limitation of our study is that our dataset includes a lot of missing data, both in the 

estimation and validation samples. In addition, due to the limitation of the validation sample, we 

could not consider diabetes and race in the mapping algorithm. These two variables were shown 

to be statistically significant in the sensitivity analysis. Although the statistical fit of the models 

with these two variables improved, we were doubtful that the prediction power would also 

improve.  

The algorithms were only internally validated. Therefore, to apply these mapping models in 

future studies, there were several points that need further attention. Although demographic 

information was not included in the final model, the population to be applied should be 

comparable with this study. Here, the estimation sample was formed mostly by older people, and 

the majority of them had diabetes. The main symptom burdens among the population were pain, 

drowsiness, tiredness, and wellbeing. Itchiness and sleeping were common but not the most 



63 

 

severe symptoms in our dataset. This was probably due to the good management of ESRD, 

where the renal-specific symptoms were under control. To assess the generalizability of the 

mapping models, external validation is needed. Especially, given that we observed an 

unexpected sign for “Restless legs”, using a population where the prevalence of Restless leg 

symptoms is higher to do a further external validation is important. 

3.5 Conclusions 

This study has developed a mapping algorithm from the ESAS-r: Renal to the EQ-5D-5L in 

patients with ESRD. This helps to predict utility values when PBMs are not available for 

economic evaluation. The algorithm is likely to be robust for the population which is comparable 

to our estimation sample. The further steps are to evaluate the generalizability of this mapping 

algorithm to other patient populations and to explore possible mapping algorithms between the 

generic form of the ESAS and the EQ-5D-5L. 
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Figure 3.1  EQ-5D-5L utility value distribution in the final estimation sample (patient 

records=506) 

 

Figure 3.2  The distributions of the ESAS-r: Renal by items in the estimation sample (patients 

records=506) 
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Figure 3.3  The dimensional distributions of the EQ-5D-5L in the estimation sample (patient 

records=506, MO: mobility, SC: self-care, UA: usual activities, PD: pain/discomfort, AD: 

anxiety/depression) 

 

Note: fe3: fixed effect model on selected ESAS-r: Renal items, glm3: generalized linear model with gamma distribution and 

identity link on selected ESAS-r: Renal items, clad1: censored least absolute deviations model on full ESAS-r: Renal items, gee3: 

generalized estimating equations model on selected ESAS-r: Renal items, aldv1: adjusted limited dependent variable mixture 

model on full ESAS-r: Renal items 

 

Figure 3.4  Observed EQ-5D (x-axis) versus Predicted EQ-5D (y-axis) in the estimation sample  
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Note: fe3: fixed effect model on selected ESAS-r: Renal items, glm3: generalized linear model with gamma distribution and 

identity link on selected ESAS-r: Renal items, clad1: censored least absolute deviations model on full ESAS-r: Renal items, gee3: 

generalized estimating equations model on selected ESAS-r: Renal items, aldv1: adjusted limited dependent variable mixture 

model on full ESAS-r: Renal items 

 

Figure 3.5  Observed EQ-5D (x-axis) versus Predicted EQ-5D (y-axis) in the validation sample 

 

Figure 3.6  Predicted EQ-5D-5L utility values by the generalized linear model and the 

generalized estimating equations on selected ESAS-r: Renal profiles 
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Table 3.1  Patient characteristics information 

  Estimation set                

(Patient records=506) 

Validation set         

(Patient records=242) 

Age - years 64.42 (s.d. = 14.19) 65.48 (s.d.=14.30) 

Female sex  45.8 %  47.9% 

Diabetes 78.5% N/A 

Ethnicity Caucasian: 47.2% 

Asian: 12.4% 

Aboriginal: 11.66% 

Black: 6.3% 

Pacific: 5.3% 

Indian subcontinent: 4.0% 

Latin American: 2.3% 

Mid-eastern: 4.0% 

Multiracial: 0.40% 

Unknown: 10.7% 

 

EQ-5D-5L index score 0.7502 (s.d. = 0.22) 0.6959 (s.d. = 0.22) 

EQ-5D-5L in perfect health 19.7% 9.9% 

EQ-5D-5L index less than 0.5 13.54% 19.0% 

Having at least one moderate or severe 

symptoms (‘>5’) in ESAS-r: Renal 
53.4% 67.4% 
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Table 3.2  The Spearman’s correlation between the ESAS-r: Renal and the EQ-5D-5L 

dimensions/utility index 

  MO UA SC PD AD EQ-5D-5L Utility index 

Pain 0.40** 0.37** 0.23** 0.80** 0.29**         -0.59** 

Tiredness 0.38** 0.50** 0.34** 0.47** 0.39** -0.57** 

Drowsiness 0.32** 0.44** 0.29** 0.41** 0.37** -0.49** 

Nausea 0.21** 0.23** 0.12 0.43** 0.28** -0.36** 

Lack of Appetite 0.20** 0.33** 0.18** 0.36** 0.34** -0.38** 

Shortness of Breath 0.32** 0.35** 0.30** 0.32** 0.29** -0.39** 

Depression 0.31** 0.41** 0.19** 0.38** 0.72** -0.50** 

Anxiety 0.30** 0.37** 0.21** 0.35** 0.62** -0.47** 

Wellbeing 0.44** 0.50** 0.34** 0.43** 0.44** -0.57** 

Itchiness 0.12* 0.15 0.09 0.16** 0.26** -0.18** 

Sleep 0.23** 0.34** 0.16** 0.42** 0.34** -0.41** 

Restless Legs 0.13* 0.16** 0.10 0.29** 0.26** -0.27** 

Note: Patient records=506, Bold and italic indicates similar constructs. MO: mobility, SC: self-care, UA: usual activities, PD: 

pain/discomfort, AD: anxiety/depression. **: significant at p<0.001, *: significant at p<0.05 
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Table 3.3  Statistical fit and prediction power of the models 

 

 

Statistical fit Prediction power 

Model MAE MSE OFR % MAE MSE OFR % 

Ordinary least square 1 0.112 0.025 17 (3.4%) 0.147 0.040 8 (3.3%) 

Ordinary least square 2 0.110 0.024 25 (4.9%) 0.153 0.042 15 (6.2%) 

Ordinary least square 3 0.112 0.026 18 (3.6%) 0.146 0.039 10 (4.1%) 

Ordinary least square 4 0.110 0.024 30 (5.9%) 0.152 0.042 14 (5.8%) 

Fixed effect model 1 0.057 0.007 32 (6.3%) 0.139 0.033 0 

Fixed effect model 2 0.056 0.007 33 (6.5%) 0.147 0.037 12 (5.0%) 

Fixed effect model 3 0.057 0.008 26 (5.1%) 0.139 0.032 0 

Fixed effect model 4  0.057 0.008 29 (5.7%) 0.139 0.033 0 

Generalized estimating equations 1 0.120 0.027 0 0.139 0.034 0 

Generalized estimating equations 2 0.117 0.026 0 0.146 0.038 3 (1.2%) 

Generalized estimating equations 3 0.120 0.027 0 0.140 0.034 0 

Generalized estimating equations 4 0.117 0.026 7 (1.4%) 0.147 0.038 3 (1.2%) 

Tobit model 1 0.112 0.025 0 0.149 0.041 0 

Tobit model 2 0.109 0.023 0 0.154 0.043 0 

Tobit model 3 0.112 0.025 0 0.148 0.041 0 

Tobit model 4 0.110 0.023 0 0.153 0.043 0 

Censored least absolute deviation model 1 0.103 0.028 0 0.138 0.037 0 

Censored least absolute deviation model 2 0.101 0.026 0 0.145 0.041 0 

Censored least absolute deviation model 3 0.104 0.028 0 0.137 0.037 0 

Censored least absolute deviation model 4 0.101 0.026 0 0.147 0.042 0 

Generalized linear model 1 (normal + log link) 0.116 0.026 1 (0.2%) 0.152 0.046 2 (0.8%) 

Generalized linear model 2 (normal + log link) 0.110 0.023 0 0.162 0.055 3 (1.2%) 

Generalized linear model 3 (gamma + identity link) 0.116 0.028 0 0.136 0.034 0 

Generalized linear model 4 (gamma + identity link) 0.116 0.028 0 0.136 0.034 0 

Adjusted limited dependent variable mixture model 1 0.115 0.025 1 (0.2%) 0.147 0.039 0 

Adjusted limited dependent variable mixture model 2 0.113 0.024 6 (1.2%) 0.152 0.041 3 (1.2%) 

Adjusted limited dependent variable mixture model 3 0.116 0.026 0 0.148 0.039 0 

Adjusted limited dependent variable mixture model 4 0.114 0.024 6 (1.2%) 0.151 0.041 1 (0.4%) 

Mixture beta regression model 1 0.111 0.025 0 0.152 0.043 0 

Mixture beta regression model 2 0.107 0.023 0 0.155 0.046 0 

Mixture beta regression model 3 0.112 0.026 0 0.148 0.042 0 

Mixture beta regression model 4 0.106 0.024 0 0.154 0.046 0 

Ordered logistic regression model 4 0.101 0.021 0 0.150 0.044 0 

Note: MAE: mean absolute error, MSE: mean squared error, OFR %: percentage of estimated values out of the range of Canadian 

value set; Model specifications: 1: full ESAS-r: Renal items; 2: full ESAS-r: Renal items + demographics; 3: selected ESAS-r: 

Renal items; 4: selected ESAS-r: Renal items + selected demographics 
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Table 3.4  MAE and MSE statistics in the estimation and validation sample by EQ-5D-5L subset 

Performance statistics by model EQ-5D-5L index < 0.5 EQ-5D-5L index >= 0.5 

Estimation  Validation Estimation Validation 

Fixed Effect model 3     

  Mean Absolute Error (MAE) 0.112 0.294 0.048 0.102 

  Mean Squared Error (MSE) 0.022 0.102 0.005 0.016 

Generalized estimating equations 3     

  MAE  0.304 0.252 0.088 0.113 

  MSE 0.118 0.084 0.012 0.023 

Generalized linear model 3     

  MAE  0.308 0.246 0.083 0.111 

  MSE 0.125 0.081 0.011 0.023 

Censored least absolute deviations 1     

  MAE  0.312 0.258 0.068 0.109 

  MSE 0.133 0.094 0.010 0.024 

Adjusted limited dependent variable mixture model1     

  MAE  0.265 0.229 0.090 0.128 

  MSE 0.097 0.075 0.013 0.030 

Note: Model specification 1: full ESAS-r: Renal items; Model specification 2: full ESAS-r: Renal items + demographics; Model 

specification 3: selected ESAS-r: Renal items; Model specification 4: selected ESAS-r: Renal items + selected demographics 

 

Table 3.5  Model coefficients for GEE and GLM model 

 GEE (utility) 

index) 

GLM (disutility) 

Pain -0.017** 0.022** 

Tiredness -0.009*  

Drowsiness  0.011* 

Shortness of breath -0.007  

Depression -0.012* 0.007 

Anxiety -0.014* 0.016* 

Wellbeing -0.012* 0.015* 

Restless legs 0.007*  

_cons 0.899** 0.026** 

Note: * means p < 0.05, ** means p<0.001, gee: generalized estimating equations, glm: generalized linear model 
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Chapter 4. Discussion 

4.1 Summary 

Economic evaluations have gained importance as a way to improve efficiency when healthcare 

budgets reach their upper limits and more and more emerging and expensive health technologies 

are introduced. CUA is recommended as the base-case analysis for economic evaluation in many 

countries’ health technology assessment (HTA) guidelines1,2. The utility is a necessary parameter 

in the CUA. To obtain preferences on health states to estimate utilities, one could use direct 

measurement techniques, such as TTO, or use instruments having a preference scoring system, 

such as the EQ-5D-5L. When these utility values from PBMs are not available, mapping is a 

technique to convert health outcome data from non-PBM into utility values for CUA. Some 

studies also mapped one PBM to another PBM to allow for the comparison of CUAs that applied 

different PBMs. Over the years, there have been a great number of publications on new mapping 

algorithms for PBMs. The mapping study database by the Health Economics Research Centre 

(HERC) included 182 mapping studies as of January 20193.  

Though mapping is a feasible method to estimate PBM utilities from other PROMs, this method 

has drawbacks. Previous studies have critiqued that mapping may underestimate the uncertainty4, 

and it might ignore the conceptual issues during the mapping process and when extrapolating the 

results5. Two reporting quality checklists6,7 have been developed as a guide for authors to report 

necessary information of the analysis, such as uncertainty and conceptual overlap exploration. 

The checklists are the Mapping onto Preference-based Measures Reporting Standards (MAPS) 

reporting statement6 and the ISPOR Good Practices Task Force Report on Mapping7. This thesis 

assessed the reporting quality of studies which mapped onto the EQ-5D-5L, especially the 

completeness of information for CUA. The impact of applying checklists on the reporting quality 

of the study was also explored. The key findings will inform future mapping studies on how to 

ensure high reporting quality and completeness of information for CUA. These findings were 

further applied in the development of a novel mapping algorithm in the second part of the thesis.  

Chapter 1 introduced a taxonomy of health status measures, utility and its application, and 

mapping techniques. This chapter started with a general introduction with different health status 

measures, including generic measures and specific measures, and profile measures and 



76 

 

preference-based measures. The utility theory and the application of utility in QALY and CUA 

were then introduced. The third part of this chapter included the introduction of mapping, some 

arguments, and the popular model approaches for mapping.  

In Chapter 2, a systematic review and reporting quality assessment of mapping studies for the 

EQ-5D-5L was reported. The updated search identified 14 new mapping studies, and 39 studies 

(including the studies in the HERC database) were finally assessed for reporting quality. Various 

models have been utilized to deal with the special characteristics of the utility distribution in 

these studies, but the traditional OLS model still remains the base-case analysis model and is also 

selected as the final model in many mapping studies. Based on the reporting quality assessment, 

the published studies mostly followed the items on the checklists, which improved their 

reliability and validity. The five poorest performed items were 1) estimation of predicted 

utilities, 2) reporting variances, covariances, and error terms 3) final model calculation example, 

4) parameter uncertainty, and 5) individual uncertainty. These five items would also impact the 

use of mapping algorithms in CUA. Finally, a preliminary comparison showed that the checklists 

have had a positive impact on improving the reporting quality of the study. 

In the second study (Chapter 3), mapping algorithms onto the EQ-5D-5L were developed from 

the Edmonton Symptom Assessment System-Revised: Renal (ESAS-r: Renal) on a population of 

patients with end-stage renal disease (ESRD). Various model types and four model specifications 

were tested to determine the best performing model. Two models were selected: the generalized 

estimating equations (GEE) on selected ESAS-r: Renal symptoms, and the generalized linear 

model (GLM) using gamma distribution with identity link on selected ESAS-r: Renal symptoms. 

Both models produced a good fit of the data from the estimation sample and had good predictive 

power in the validation sample. The GEE model had an unexpected sign in an independent 

variable, “Restless legs” item from the ESAS-r: Renal. It was recommended to use the GLM 

model in the base-case analysis of CUA, while the GEE model could be used in the sensitivity 

analysis. The requirements of the checklists6,7 were followed in conducting and reporting the 

analysis, especially for the items which were not frequently reported in previous studies based on 

our systematic review. The algorithms can be used to predict utility values when the ESAS-r: 

Renal has been administered for patients with ESRD and the direct utility measures are not 
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available. The algorithms are likely to be robust for populations comparable to our estimation 

sample. 

4.2 Study Limitations 

The first limitation regarding the systematic review is that it was conducted by a single person 

(the author of this thesis). There was no second reviewer in the including/excluding processes, 

and the data extraction and quality check were all done by the author of this thesis. This might 

have increased the likelihood of errors and biases in including/excluding and evaluating the 

studies.   

The reporting quality assessment did not apply any scoring to rate each study. The analytical 

statistics on reporting performance were mostly descriptive. With scoring, inferential statistical 

analysis could be conducted. In Dakin et al’s reporting quality assessment on the title and 

abstract sections, they scored the performance with “0” meaning not fulfilled, “1” meaning 

fulfilled, and “0.5” meaning partially fulfilled in each item, and the sum of the item scores was 

the final score of the study8. They provided the distribution of the final scores and ran a 

regression to see whether the final scores were significantly associated with the publication year. 

This analysis answered their study objective of the impact of the MAPS reporting statement on 

the reporting quality of mapping studies. In our review, the primary objective was to highlight 

the specific strengths and weaknesses of published EQ-5D-5L mapping studies, so scoring was 

not developed when applying the two checklists. However, we did a preliminary comparison and 

observed that the studies which cited any of the checklists had better reporting performance on 

the least-reported items identified in the review. Scoring each study and using statistical 

inference could make the conclusions of the study more robust. 

It is important to note that the review focused on reporting quality instead of research quality. 

Studies with high reporting quality are not necessarily associated with high research quality, 

while studies with high research quality may fail to report everything and may be assessed to 

have low reporting quality. There are recommendations on how to conduct the mapping analysis. 

Longworth et al provided some recommendations based on best mapping practice in the 

overview of mapping to obtain EQ-5D-3L utility for use in the National Institute for Health and 

Care Excellence HTA9. The ISPOR Good Practices also suggests pre-modelling and modelling 

recommendations7. These recommendations could guide investigators in conducting their 
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analysis. However, it is hard to evaluate the research quality based on these recommendations. 

These recommendations have not yet been validated, and the level of quality of a study could not 

be determined by whether it is consistent with these checklists. 

In Chapter 3, one significant limitation was the large volume of missing data. Records with 

missing values in either the ESAS-r: Renal or the EQ-5D-5L were excluded in the study. Mean 

imputation or other missing data processing methods was not used. These methods were not tried 

as they would alter the distribution of the ESAS-r: Renal and the EQ-5D-5L, and therefore this 

may impact the relationship between the two instruments. Another limitation that is related to the 

data is that diabetes and race were not collected in the validation sample. Therefore, the 

important clinical and demographic information was not included in the final model. The 

sensitivity analyses showed that they were significant in GLM and GEE models with regard to 

the four model specifications in the estimation sample. Although they had a better statistical fit, 

it was possible that the predictive power of the models including these two variables would not 

increase. We observed that the GLM and GEE models with demographics (age and sex) fitted 

better in the estimation sample but predicted worse in the validation sample compared with the 

models without demographics. Since these two variables were not included in the final model, 

when extrapolating the mapping algorithm to another population, the patient group should have 

similar characteristics in the distribution of diabetes and sex. 

The “Restless legs” term from the ESAS-r: Renal in the GEE model has an unexpected sign. 

Controlling other variables, the increase in the severity of “Restless legs” led to an increase in 

the utility values. The “Restless legs” was not a common symptom burden in the dataset being 

used, and only a weak correlation was observed between “Restless legs” and the EQ-5D-5L 

utility index. The coefficient of “Restless legs” was statistically significant but it had a small 

parameter estimate. Therefore, in further applications for economic evaluation, it may be 

advisable that using the GLM model in the reference case, while the GEE model could be used in 

the sensitivity (scenario) analysis. To deal with this limitation, additional external validation 

could be conducted in a population where “Restless legs” is more prevalent. 

The mapping algorithms in Chapter 3 had an over prediction of the utility scores in the lower-end 

of the EQ-5D-5L range, which is a common limitation of mapping studies10,11. The possible 

causes of this limitation were the lack of construct overlaps between instruments and the small 
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number of observations with low utility values for estimation. This will deteriorate the validity of 

applying mapping algorithms in CUA and indicate the limitation of using mapped utility values 

in CUA.  

4.3 Future Applications and Directions  

The findings of this study may have a significant impact on future mapping studies and health 

economic studies related to ESRD patients. The systematic review of the EQ-5D-5L mapping 

studies pointed out the common strengths and issues in current studies. For future mapping 

studies, it is important to keep these strengths and also include and provide detailed information 

on those currently least-reported items.  

A more comprehensive systematic review of all mapping studies could be conducted. The review 

in Chapter 2 identified several problems among mapping studies onto the EQ-5D-5L. Many 

studies are not applicable to some requirements of the reporting quality checklists, such as 

recommendations on comparison and selection of candidate estimation sample and 

recommendations on external validation, while previous mapping studies onto other PBMs may 

be related to these items. It is impossible to make a conclusion and provide suggestions to future 

studies regarding these items based on the current review. A broader review which includes 

studies onto other PBMs could potentially indicate the reporting performance on these items. 

There is a need to develop an assessment tool on the research quality of the mapping studies. The 

quality of reporting does not necessarily represent the research quality. The current 

recommendations on conducting analysis are not robust to evaluate the research quality. A good 

research quality assessment tool should indicate the standard of a high-quality study, and the 

extent of deterioration in quality if specific requirements are not addressed.   

The empirical study which mapped the EQ-5D-5L from the ESAS-r: Renal provides a method to 

estimate utility values when PBMs are not available and allow for economic evaluations on 

ESRD patients to be conducted. Two algorithms were provided as the best models. This may 

cause confusion. But according to the Longworth et al recommendations, multiple possible 

mapping functions could give an indication of the uncertainty associated with the choice of the 

algorithm9. We also justified in Chapter 3 which model should be used in the reference case. 
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Besides, further external validation is still needed to see whether the algorithms could be used in 

an ESRD patient population with different patient characteristics. 

Another direction related to this empirical mapping study is to explore the possible mapping 

algorithms between the general (i.e., non-Renal) form of the ESAS-r and the EQ-5D-5L. With 

the results of the mapping study of this thesis, the ESAS-r: Renal is the first instrument in the 

ESAS family to have a mapping algorithm. The other forms including the general ESAS-r do not 

have mapping algorithms. For patients in other clinical areas where other forms of the ESAS-r 

are commonly used, there is still no algorithm to conduct economic evaluation when PBMs are 

not available. The GLM model mapping the ESAS-r: Renal to the EQ-5D-5L did not include any 

ESRD-specific symptoms. Therefore, it would be interesting to test whether the GLM model is 

applicable to the general ESAS-r.   

There were some studies exploring the impact of using mapping algorithms in CUA. It is 

commonly agreed that using mapped utility values would under-estimate uncertainty4,9,12. But 

one study also pointed out that if the sensitivity analysis showed that the cost-effectiveness result 

is insensitive to utility values, the issues of mapping studies are not critical to the results of 

CUA4. Further directions regarding mapping studies could focus more on addressing the 

uncertainty, improving the mapping methodologies, and the impact of using mapped utility 

values in CUA. 

4.4 Conclusion 

The review in this thesis highlighted the issues for the current EQ-5D-5L mapping studies based 

on the mapping studies checklists. This could inform future studies on how to improve the 

reporting quality of mapping analysis. The novel mapping algorithms developed in this thesis 

from the ESAS-r: Renal to the EQ-5D-5L could convert the ESAS-r: Renal to the EQ-5D-5L 

utility index for ESRD patients with similar patient characteristics as the estimation sample of 

the mapping study. 
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Appendices 

Appendix 2.1 Search strategies  

Searched terms: 

“Mapping” related: Mapping, Map, Mapped, Crosswalk, Cross-walk, cross walk, Transfer to 

utility, Transfer-to-utility, indirect utility       

“EQ-5D-5L” related: Eq-5d, Eq-5d-5l, Euroqol, eq5d 

 

EMBASE 

 

MEDLINE (via PubMed) 
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Appendix 2.2 Data extraction form 

Title:       Authors: 

Publication year:     Best model: 

Whether cited the three checklists? 

Abstract: 

Introduction – study rationale 

Introduction – study objective 

Methods – Data: estimation, external validation, missing 

Methods – Source and Target measures 

Methods – Exploratory analysis (overlaps?) 

Methods – Model types, specifications, and estimation (clinical important covariates?) 

Methods - Validation 

Methods – Performance 

Results – Final sample size, descriptive information (utility plot?) 

Results – Model performance, assumptions, plots, face validity 

Results – Model selection 

Results – Model coefficients 

Results – Uncertainty 

Results – Calculation example 

Discussion – Comparison with other studies 

Discussion – Limitation 

Discussion – Scope 

Other information – Source of funding, conflict of interest 
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Appendix 2.3 Reporting quality assessment form 

 

 

Completed 

Partially 

completed 

 

No 

MAPS - Title    

MAPS - Abstract    

MAPS - Introduction: study rationale    

MAPS - Introduction: study objective    

ISPOR - Methods: candidate dataset description    

MAPS, ISPOR - Methods: estimation sample    

MAPS - Methods: external validation sample     

MAPS - Methods: source and target measures    

MAPS, ISPOR - Methods: exploratory data analysis     

MAPS, ISPOR - Methods: missing data    

MAPS, ISPOR - Methods: modelling approaches    

MAPS - Methods: estimation of predicted utilities    

MAPS - Methods: validation methods     

MAPS - Methods: measures of model performance    

ISPOR - Methods: Approach to determine the final model    

MAPS - Results: final sample size    

MAPS, ISPOR - Results: descriptive information (especially 

severity distribution) 

   

ISPOR - Results: Utility data distribution plot    

ISPOR - Results: Fit statistics, especially conditional fit statistics    

ISPOR - Results: lot on observed and predicted utility values    

MAPS - Results: model selection     

MAPS, ISPOR - Results: model coefficients (size, sign, 

significance, stand error, error term) 

   

ISPOR - Results: model coefficients additional requirements 

(variance-covariance matrix, error) 

   

ISPOR - Results: Calculation example / user-friendly program    

MAPS, ISPOR - Results: uncertainty (parameter)    

MAPS, ISPOR - Results: uncertainty (individual)    

MAPS - Results: model performance and face validity    

MAPS - Discussion: comparisons with previous studies    

MAPS - Discussion: study limitations    

MAPS - Discussion: scope of applications    

MAPS - Other: additional information    

Note: MAPS:  Mapping onto Preference-based Measures Reporting Standards Reporting Statement19, ISPOR: 

ISPOR Good Practices Task Force Report on Mapping14. The highlighted items are directly associated with the 

application in CUA. 
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Appendix 2.4 Complete data extraction 

Abbreviations: OLS: ordinary least square, CLAD: Censored least absolute deviations, GLM: generalized linear model, robust MM: robust MM estimation, 

FRM: fractional regression model, LE: linear equating, CPA: conditional process analysis, BETAMIX: mixture beta regression model, TPM: two-part model, 

GMM: gaussian mixture model, ALDVMM: adjusted limited dependent variable mixture model, ER: equipercentile regression: MRM: mean rank model, GEE: 

generalized estimating equations, QR: quantile regression, CM: copula model, EEE: extended estimating equations, LREM: linear random effect model 

 

 

 Year Disease type 

sample  

size 

Instru 

-ment 

Multiple 

instruments 

Multiple value-

sets 

Final model 

type 

Model types 

considered 

Ameri 65 2018 cancer 252 QLQ-C30 2 targets  OLS 

OLS; Tobit; 

CLAD 

Ameri 66 2020 cancer 252 

EORTC-

QLQ-C30, 

QLQ-CR29  2 sources  OLS OLS 

Bilbao 59 2019 musculoskeletal 758 WOMAC   

GLM, Beta 

regression 

OLS; Tobit; Beta 

regression 

Dixon 55  2020 eye 1181    ALDVMM OLS; ALDVMM 

Kularatna 34 2020 heart 141 MLHFQ 3 targets  

Logit/probit, 

MFP 

OLS; CLAD; 

Beta regression; 

GLM; 

logit/probit; 

MFP; robust MM 

Lamu 33 2020 heart 943 MacNew  2 Beta regression 

OLS; Beta 

regression; GLM; 

robust MM; 

FRM; LE 

Lee 47 2020 skin 416 

UAS7 

UCT 2 sources  CPA CPA 

Liu 35 2020 cancer 607 

EORTC 

BR 2 targets  Tobit CLAD 

OLS; Tobit; 

CLAD; GLM; 

logit/probit; 

robust MM; 

BETAMIX 
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Noel 45 2020 cancer 209 

EORTC 

QLQ C30, 

EORTC 

QLQ 

HN35 

2 target, 2 

sources  OLS OLS; TPM 

Stephen 57 2019 cancer 209 UWQol 2 targets 

used 5l mapped 

to 3l value set OLS OLS 

Su 61 2020 skin 321 PDI   

OLS Tobit 

GLM 

OLS; Tobit; 

GLM 

Vilsboll 54 2020 skin 1232 DLQI   GMM 

OLS; Tobit; 

TPM; GMM 

Yang F 60 2019 Urogenital 163 

KDQOL-

36 2 targets 4 value sets ALDVMM 

OLS; 

ALDVMM; 

BETAMIX 

Yang Q 44 2019 cancer 446 FACT-B   TPM 

OLS; Tobit; 

TPM; LE 

Wong 67 2017 musculoskeletal 227 SRS-22r   

used 5l mapped 

to 3l value set OLS OLS 

Wijnen 56 2018 

central nervous 

system 283 

QOLIE-

31P  2 value sets OLS OLS; CLAD 

Wee 46 2018 general population 658 

WHOQOL

-BREF   MRM OLS; ER; MRM 

Chen 39 2016 Various 

4461-

6415 

6D HUI3 

15D QWB 

8D 5 sources 

multi-country but 

used 1 value set 

15D, 6D: OLS, 

8D, QWB: 

robust MM, 

HUI: GLM 

OLS; CLAD; 

GLM; robust 

MM 

Peak 68 2018 

Mental health and 

behavioural 

disorders 83 

COREOM, 

LDQ， 

TOP 3 sources  OLS OLS; Tobit 

Patton 40 2018 musculoskeletal 130 HAQ-DI   Logit/probit 

Beta regression; 

logit/probit 

Moore 41 2018 

central nervous 

system 595 ALSFRS-R   OLS 

OLS; Tobit; 

logit/probit 

Mitchell 30  2017 

Mental health and 

behavioural 

disorders 617 

DASS-D 

K10 K6 3 sources   OLS OLS 
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Meregaglia 
48 2019 cancer 332 

FACTG 

FAACT 

TACIT-F 3 sources   GEE GEE 

Lee 27 2018 cancer 238 FACT-B   

OLS; LE; ER; 

MRM 

OLS; LE; ER; 

MRM 

Lamu 36 2018 

Endocrine 

disorders 924 D-39  several vale sets FRM 

OLS; CLAD; 

Beta regression; 

GLM; robust 

MM; FRM 

Lamu & 

Olsen 42 2018 cancer 772 

EORTC 

QLQ-C30 2 targets  

Beta 

regression, 

EEE 

OLS; CLAD; 

Beta regression; 

GLM; 

logit/probit; 

FRM; EEE 

Khan 69 2016 cancer 985 

EORTC 

QLQ-C30 2 targets 

used 5l mapped 

to 3l value set Beta regression 

Beta regression; 

ALDVMM 

Abdin 58 2019 

Mental health and 

behavioural 

disorders 

239 

PANSS   OLS 

OLS; Tobit; 

CLAD 

Chen 37 2018 
central nervous 

system 
228 

PDQ8 

3 targets 

 Logit/probit 

OLS; GLM; 

logit/probit; 

robust MM 

Cheung 70 2014 cancer 238 
FACT-B   OLS 

OLS; Tobit; 

CLAD 

Collado-

Mateo 71 
2017 musculoskeletal 191 

FIQR   GLM OLS; GLM 

Coon 72 2018 Urogenital 352 MENQOL   GLM OLS; GLM 

Gamst-

Klaussen 29 
2016 various 7930 

6D HUI3 

15D 
3 sources 

  QR QR 

Gamst-

Klaussen 38 
2018 

Mental health and 

behavioural 

disorders 

917 DASS-21 

K-10 

2 sources 

 

Beta regression 

OLS; Beta 

regression; GLM; 

robust MM; FRM 

Gray 73 2018 
Respiratory 

system 
856 

AOLQS 

2 targets 

 

BETAMIX 

OLS; 

ALDVMM; 

BETAMIX 
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Hernandez 
74 

2017 musculoskeletal 5192 

EQ-5D, 

HAQ and 

pain on 

VAS 

3 sources 

  CM CM 

Kaambwa 26 2018 
General 

population 
303 

WHQ23 

2 targets 

 

Logit/probit 

OLS; CLAD; 

Beta regression; 

GLM; 

logit/probit; 

robust MM 

Kaambwa 75 2017 general population 642 

AQLQ-S 5 targets  GLM 

OLS; CLAD; 

Beta regression; 

GLM 

Kaambwa & 

Ratcliffe 49 
2018 

Respiratory 

system 
330 

opqol-brief   OLS 

OLS; Beta 

regression; 

ALDVMM; 

LREM 

 

MAPS reporting statement19: (“*” represents applied the checklist, and “cited” means cited the checklist) 

  Title Abstract 

Introduct

ion: study 

rationale 

Introducti

on: study 

objective 

Methods: 

estimation 

sample 

Methods: 

external 

validation 

sample 

Methods: source 

and target 

measures 

 Ameri 65 yes no implications yes yes yes NA 

partially, high/low 

score meaning 

 Ameri 66 yes yes yes yes yes NA yes 

 Bilbao 59 yes yes yes yes yes NA yes 

* Dixon 55  yes no performance stats yes yes yes NA 

partially, high/low 

score meaning 

cited 

Kularatna 
34 yes no performance stats yes yes yes NA yes 

* Lamu 33 yes 

yes, but performance 

stats only R2 yes yes yes NA yes 
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 Lee 47 

partially, 

"EQ-5D" 

no estimation & 

validation partially partially yes NA 

partially, high/low 

score meaning 

* Liu 35 yes no performance stats yes yes yes NA 

partially, high/low 

score meaning 

* Noel 45 yes no validation yes yes yes NA 

partially, high/low 

score meaning 

* Stephen 57 

partially, 

"EQ-5D" yes yes yes yes NA yes 

cited Su 61 yes yes yes yes yes NA yes 

* Vilsboll 54 

partially, 

"EQ-5D" no validation yes yes yes NA yes 

cited Yang F 60 yes no performance stats yes yes yes NA yes 

 Yang Q 44 yes no validation yes yes yes NA 

partially, high/low 

score meaning 

cited Wong 67 yes not structured yes yes yes NA 

partially, high/low 

score meaning 

 Wijnen 56 yes no validation yes yes yes NA yes 

* Wee 46 yes no performance stats yes yes yes NA 

partially, high/low 

score meaning 

 Chen 39 

partially, 

"six 

instruments" 

no validation no 

performance yes yes yes NA 

partially, high/low 

score meaning 

cited Peak 68 

partially, no 

"mapping" yes yes yes yes NA yes 

 Patton 40 yes 

no performance 

statistics yes yes yes NA 

partially, high/low 

score meaning 

* Moore 41 

partially 

"EQ-5D" 

no data source no 

validation yes yes yes NA yes 

 Mitchell 30  no 

only method, primary 

objective yes yes yes NA yes 

cited 

Meregagli

a 48 yes 

no performance 

statistics yes yes yes NA 

partially, high/low 

score meaning 

 Lee 27 yes 

no validation, results 

not clear yes yes yes NA yes 

* Lamu 36 

no 

population yes yes yes yes NA yes 
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* 

Lamu & 

Olsen 42 

 no 

population yes yes yes yes NA yes 

 Khan 69 yes validation not clearly yes yes yes NA 

partially, high/low 

score meaning 

 
Abdin 58 

yes 

no validation, no 

performance yes yes yes NA yes 

 

Chen 37 

partially, 

"health state 

utilities" 

no validation, no 

performance, no 

conclusion yes yes yes NA 

partially, high/low 

score meaning 

 
Cheung 70 

yes no performance stats yes yes yes NA 

partially, high/low 

score meaning 

 

Collado-

Mateo 71 

partial, no 

target no validation yes yes yes NA 

partially, high/low 

score meaning 

 Coon 72 yes no validation  yes yes yes NA yes 

 

Gamst-

Klaussen 
29 no mapping 

no validation no 

performance yes yes yes NA 

partially, high/low 

score meaning 

* 

Gamst-

Klaussen 
38 yes 

no validation no 

performance yes yes yes NA 

partially, high/low 

score meaning 

 
Gray 73 

yes 

no validation no 

performance yes yes yes NA yes 

 

Hernandez 
74 no mapping 

no validation no 

results no performance yes yes yes NA 

yes (introduction 

section) 

* 

Kaambwa 
26 yes yes yes yes yes NA yes 

cited 

Kaambwa 
75 

partially, 

"five 

MAUIs" 

no performance 

statistics yes yes yes NA yes 

cited 

Kaambwa 

Ratcliffe 
49 yes no validation yes yes yes yes yes 
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(continued) 

Name 

Methods: exploratory 

data analysis 

Methods: missing 

data 

Methods: 

modelling 

approaches 

Methods: 

estimation of 

predicted 

utilities 

Methods: 

validation 

methods 

Methods: 

measures of 

model 

performance 

Results: final 

sample size 

Ameri 65 No 

mentioned in 

results yes no yes yes yes 

Ameri 66 No 

mentioned in 

results yes no yes yes yes 

Bilbao 59 correlation yes yes no yes yes 

yes, but not 

consistent 

Dixon 55  correlation yes yes no 

no 

validation yes yes 

Kularatna 
34 correlation no yes no yes yes yes 

Lamu 33 yes yes yes no yes yes not clear 

Lee 47 correlation no no no 

no 

validation no yes 

Liu 35 correlation yes yes no yes yes yes 

Noel 45 

results section 

univariate, Wilcoxon 

signed-rank test (but no 

results) 

volume but no 

solution yes no yes yes yes 

Stephen 57 

Wilcoxon signed-rank 

test, but no results 

volume but no 

solution yes no yes yes yes 

Su 61 correlation yes yes no yes yes yes 

Vilsboll 54 correlation yes yes no yes yes yes 

Yang F 60 correlation no yes no yes yes yes 

Yang Q 44 correlation no yes no yes yes yes 

Wong 67 

previous literature 

correlation no yes no yes yes yes 

Wijnen 56 correlation 

mentioned in 

results yes no yes yes 

partially, stated 

in methods 

Wee 46 yes yes yes no yes yes no 
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Chen 39 No 

partially, 

illustrated bad-

quality data, not 

really missing data yes no yes yes 

partially, 

obtained from 

coefficients 

table 

Peak 68 No no yes no yes yes yes 

Patton 40 No stated in results yes 

partially, stated 

for one model yes yes yes 

Moore 41 No yes yes yes yes yes yes 

Mitchell 30  No no yes no 

no 

validation no yes 

Meregagli

a 48 correlation yes yes no yes yes yes 

Lee 27 No yes yes no yes yes yes 

Lamu 36 yes yes yes no yes yes yes 

Lamu & 

Olsen 42 yes no yes no yes yes yes 

Khan 69 No 

mentioned in 

results yes no yes yes yes 

Abdin 58 
no no yes yes 

no 

validation yes yes 

Chen 37 correlation yes yes no yes yes yes 

Cheung 70 no yes yes no yes yes yes 

Collado-

Mateo 71 correlation no yes no yes yes yes 

Coon 72 
correlation yes yes no 

no 

validation yes yes 

Gamst-

Klaussen 
29 correlation no yes no 

no 

validation yes in table 

Gamst-

Klaussen 
38 yes no yes no yes yes yes 

Gray 73 
no yes yes no 

no 

validation yes yes 

Hernandez 
74 correlation no yes no 

no 

validation yes yes 
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Kaambwa 
26 correlation yes yes no yes yes yes 

Kaambwa 
75 correlation 

mentioned in 

results yes no yes yes in table 

Kaambwa 

Ratcliffe 
49 correlation yes yes no yes yes yes 

  

(continued) Note: coef: model coefficients, sig: significance, cov: covariance matrix, indivi: individual uncertainty  

 

Results: 

descriptive 

information 

Results: 

model 

selection 

Results: model 

coefficients 

Results: 

uncertainty 

Results: model 

performance and 

face validity 

Discussion: 

comparison

s with 

previous 

studies 

Disc

ussio

n: 

stud

y 

limit

ation

s 

Discussi

on: 

scope of 

applicati

ons 

Other

: 

additi

onal 

infor

matio

n 

Ameri 65 yes yes only coef & sig no 

no face validity 

statement yes yes no yes 

Ameri 66 yes yes only coef & sig no yes yes yes partially yes 

Bilbao 59 yes yes yes no indivi 

partial face validity, 

discussed unexpected 

coefficients yes yes partially yes 

Dixon 55  yes yes yes no indivi 

no face validity 

statement first study yes partially yes 

Kularatn

a 34 yes yes only coef & sig no yes first study yes partially yes 

Lamu 33 yes yes yes 

no indivi, no 

cov 

no face validity 

statement first study yes partially yes 

Lee 47 yes 

only one 

model yes 

no indivi, no 

cov 

partially, only R2, no 

validation, partial 

validity, discussed the 

effect size first study yes yes yes 
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Liu 35 yes yes yes 

no indivi, no 

cov 

partial face validity, 

compared effect size 

with other studies yes yes partially yes 

Noel 45 yes yes yes 

no indivi, no 

cov 

partial face validity, 

discussed why some 

variables excluded yes yes partially no 

Stephen 
57 yes yes yes 

no indivi, no 

cov 

partial face validity, 

discussed why some 

variables excluded yes yes partially yes 

Su 61 yes yes yes 

no indivi, no 

cov 

partial face validity, 

discussed correlation 

and the highly 

significant variables in 

the model first study yes yes yes 

Vilsboll 
54 yes yes yes 

no individual 

variability yes first study yes yes yes 

Yang F 60 yes yes yes no cov 

no face validity 

statement first study yes partially yes 

Yang Q 
44 yes yes only coef & sig no but 

partial face validity, 

discussed why some 

variables excluded yes yes partially yes 

Wong 67 yes yes only coef & sig 

could 

calculated 

from CI, no 

individual 

variability 

partial face validity, 

discussed significance 

of some variables, not 

stated scale severity  first study yes partially yes 

Wijnen 56 yes yes yes 

no indivi, no 

cov 

no face validity 

statement 

no, 

compared 

performance 

statistics 

with not 

directly 

related study yes yes yes 

Wee 46 no yes no no 

no face validity 

statement first study yes yes yes 
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Chen 39 yes yes yes 

no indivi, no 

cov 

no face validity 

statement 

partially, a study 

mentioned in 

introduction did not 

re-discussed in 

discussion 

partially, 

discussed 

why 

transform

ation is 

not 

country-

specific no 

Peak 68 yes yes only coef & sig no yes                        first study yes partially yes 

Patton 40 yes yes yes 

no indivi, no 

cov 

no face validity 

statement yes yes partially yes 

Moore 41 yes yes no sig 

no indivi, no 

cov 

no face validity 

statement first study yes partially yes 

Mitchell 
30  yes 

only one 

model only coef & sig no 

no face validity 

statement no yes no yes 

Meregagl

ia 48 yes yes yes 

no indivi, no 

cov 

no face validity 

statement yes yes partially yes 

Lee 27 yes yes no no 

no face validity 

statement no yes yes yes 

Lamu 36 yes yes yes 

no indivi, no 

cov 

partial face validity, 

discussed correlation 

and the highly 

significant variables in 

the model yes yes yes yes 

Lamu & 

Olsen 42 yes yes yes 

no indivi, no 

cov 

partial face validity, 

discussed correlation 

and the highly 

significant variables in 

the model first study yes yes yes 

Khan 69 yes yes yes 

no indivi, no 

cov 

no face validity 

statement first study yes yes yes 

Abdin 58 
yes yes only coef & sig no yes yes yes yes yes 

Chen 37 
yes yes yes 

no indivi, no 

cov 

no face validity 

statement first study yes yes yes 
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Cheung 
70 yes yes only coef & sig no 

no face validity 

statement first study yes yes yes 

Collado-

Mateo 71 yes yes only coef & sig no 

no face validity 

statement first study yes yes yes 

Coon 72 yes no only coef & sig no yes first study yes yes yes 

Gamst-

Klaussen 
29 yes 

only one 

model yes 

no individual 

variability 

no face validity 

statement yes yes yes yes 

Gamst-

Klaussen 
38 yes yes yes 

no indivi, no 

cov 

no face validity 

statement yes yes yes yes 

Gray 73 
yes yes yes no cov 

no face validity 

statement yes yes yes yes 

Hernande

z 74 partially yes yes 

no indivi, no 

cov 

no face validity 

statement no yes yes yes 

Kaambw

a 26 yes yes yes no 

no face validity 

statement first study yes yes yes 

Kaambw

a 75 yes yes yes 

no indivi, no 

cov 

no face validity 

statement first study yes yes yes 

Kaambw

a 

Ratcliffe 
49 yes 

only one 

model yes 

no indivi, no 

cov 

no face validity 

statement first study yes yes yes 

 

ISPOR Good Practices14: (“*” represents applied the checklist, “cited” means cited the checklist) 

  

Candidate 

dataset 

descriptio

n 

Full details on 

selected dataset 

utility 

data 

distri

bution 

mod

el 

type

s overlaps comparison 

approach 

to 

determine 

fit, conditional fit, plot 

(predicted value vs 

observed value) 

 Ameri 65 NA 

yes, missing 

mentioned in 

results yes yes no yes partially, no conditional 
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 Ameri 66 NA 

yes, missing 

mentioned in 

results no yes no yes partially, no conditional 

cited Bilbao 59 NA no severity # yes yes correlation  yes 

no conditional fit but 

conditional predictions 

cited Dixon 55  NA severity # partially yes yes correlation  yes yes 

 

Kularatn

a 34 NA no missing yes yes correlation  yes partially, no conditional 

 Lamu 33 NA no severity # no yes yes yes partially, no conditional 

 Lee 47 NA no missing no no correlation  NA only R2, no plot 

cited Liu 35 NA yes no yes correlation  yes partially, no conditional 

* Noel 45 NA 

yes, missing 

volume but no 

solution no yes 

correlation by univariate, 

Wilcoxon signed-rank test, but 

no results yes 

partially, no conditional, 

indicators not fully 

reported 

cited 

Stephen 
57 NA 

yes, missing 

volume but no 

solution no yes 

Wilcoxon signed-rank test, but 

no results yes partially, no conditional 

cited Su 61 NA yes no yes correlation yes partially, no conditional 

* 

Vilsboll 
54 NA no severity # yes yes correlation yes partially, no conditional 

cited Yang F 60 NA 

no severity #, no 

missing yes yes correlation yes partially, no conditional 

 

Yang Q 
44 NA no missing yes yes correlation yes partially, no conditional 

 Wong 67 NA no missing no yes no yes partially, no conditional 

 Wijnen 56  NA 

no severity #, 

missing mentioned 

in results yes yes correlation yes partially, no conditional 

 Wee 46 NA no description no yes least square regression yes 

partially, no conditional, 

no plot 

 Chen 39 NA no missing yes yes no yes partially, no conditional 

 Peak 68 NA 

no missing, no 

severity # no yes no yes partially, no conditional 

 Patton 40 NA no severity # no yes no yes 

partially, no conditional, 

no plot 
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cited Moore 41 NA no severity # yes yes no yes yes 

 

Mitchell 
30  NA 

no missing, no 

severity # no yes no NA 

partially, no conditional, 

no plot 

cited 

Meregagl

ia 48 NA no severity # yes yes correlation yes partially, no conditional 

 Lee 27 NA no severity # yes yes no yes no conditional fit 

 Lamu 36 NA no severity # no yes yes yes partially, no conditional 

 

Lamu & 

Olsen 42 NA 

no missing, no 

severity # yes yes yes yes partially, no conditional 

 Khan 69 NA yes yes yes no yes partially, no conditional 

cited 
Abdin 58 

NA no missing yes yes no yes 

partially, no conditional, 

no plot 

 Chen 37 NA no missing yes yes no yes partially, no conditional 

 

Cheung 
70 NA no missing no yes no yes 

partially, no conditional, 

no plot 

 

Collado-

Mateo 71 NA no missing no yes no yes 

partially, no conditional, 

no plot 

 
Coon 72 

NA no missing no yes no no 

partially, no conditional, 

no plot 

 

Gamst-

Klaussen 
29 NA no missing yes yes correlation NA yes 

 

Gamst-

Klaussen 
38 NA no missing no yes yes yes partially, no conditional 

cited Gray 73 NA no missing yes yes no yes partially, no conditional 

 

Hernande

z 74 NA 

no missing, no 

severity # yes yes correlation NA partially, no conditional 

* 

Kaambw

a 26 NA no severity # no yes correlation yes 

partially, no conditional, 

no plot 

 

Kaambw

a 75 NA 

no missing no 

severity # yes yes correlation yes partially, no conditional 

 

Kaambw

a NA no severity no yes correlation yes partially, no conditional 
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Ratcliffe 
49 

(continued) Note: cov: covariance matrix, CI: confidence interval 

Name 

Model coefficients, error term, 

variance-covariance matrix 

Calculation example, 

program 

parameter 

uncertainty, 

feasible range 

individual

-level 

error 

validation not routinely 

required 

Ameri 65 only coefficients calculation equation no no 10-fold 

Ameri 66 only coefficients calculation equation no no 10-fold 

Bilbao 59 no error calculation equation yes no follow-up 

Dixon 55  no error no yes no no validation 

Kularatna 
34 only coefficients calculation equation no no 3-fold 

Lamu 33 

no variance-covariance matrix, no 

error calculation process 

partially, no 

cov no leave-one-out 

Lee 47 

no variance-covariance matrix, no 

error no 

partially, no 

cov no no validation 

Liu 35 

no variance-covariance matrix, no 

error calculation equation 

partially, no 

cov no 2 internal validation 

Noel 45 

no variance-covariance matrix, no 

error no 

partially, no 

cov no 10-fold 

Stephen 57 

no variance-covariance matrix, no 

error no 

partially, no 

cov no 10-fold 

Su 61 

no variance-covariance matrix, no 

error calculation equation 

partially, no 

cov no hold-out 

Vilsboll 54 no error program yes no no validation 

Yang F 60 no variance-covariance matrix program 

partially, no 

cov yes 10-fold 

Yang Q 44 only coefficients no no no 5-fold 

Wong 67 only coefficients calculation equation 

partially, have 

95% CI, no cov no 10-fold 

Wijnen 56 

no variance-covariance matrix, no 

error no 

partially, no 

cov no split sample by 50% 

Wee 46 no no no no split validation 
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Chen 39 

no variance-covariance matrix, no 

error no no no split validation 

Peak 68 

no variance-covariance matrix, no 

error calculation equation no no follow-up 

Patton 40 

no variance-covariance matrix, no 

error 

calculation equation, R 

code 

partially, no 

cov no bootstrap sample 

Moore 41 

no variance-covariance matrix, no 

error calculation equation 

partially, no 

cov no split validation (2:1) 

Mitchell 30  only coefficients no no no no validation 

Meregagli

a 48 

no variance-covariance matrix, no 

error no 

partially, no 

cov no split geographically 

Lee 27 only coefficients 

conversion table, 

calculation equation no no follow-up 

Lamu 36 

no variance-covariance matrix, no 

error no 

partially, no 

cov no 5-fold 

Lamu & 

Olsen 42 

no variance-covariance matrix, no 

error no 

partially, no 

cov no random-split 

Khan 69 

no variance-covariance matrix, no 

error calculation process 

partially, no 

cov no random-split 

Abdin 58 only coefficients calculation equation no no no validation 

Chen 37 
no variance-covariance matrix, no 

error no 

partially, no 

cov no hold-out 

Cheung 70 only coefficients no no no follow-up 

Collado-

Mateo 71 only coefficients calculation equation no no 5-fold 

Coon 72 only coefficients calculation equation no no no validation 

Gamst-

Klaussen 
29 no error yes yes no no validation 

Gamst-

Klaussen 
38 

no variance-covariance matrix, no 

error yes 

partially, no 

cov no cross-validation 

Gray 73 
no variance-covariance matrix no 

partially, no 

cov yes no validation 

Hernandez 
74 

no variance-covariance matrix, no 

error no no no no validation 
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Kaambwa 
26 no no no no split-out, k-fold 

Kaambwa 
75 

no variance-covariance matrix, no 

error calculation equation no no split-out, k-fold 

Kaambwa 

Ratcliffe 49 

no variance-covariance matrix, no 

error calculation equation no no external validation 
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Appendix 3.1 The normality and heterogeneity check of OLS estimation 

  

Illustrations: The residual plot does not fit the normal distribution, meaning the normality 

assumption is very likely to be rejected. 

 

 

Illustrations: The null hypothesis is residuals have constant variances, and p<0.001 means we 

have enough evidence to reject the homoscedasticity assumption.  
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         Prob > chi2  =   0.0000

         chi2(1)      =    27.03

         Variables: fitted values of EQ5D

         Ho: Constant variance

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 

. estat hettest, iid
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Appendix 3.2 Exploring the time effect in linear models 

 

The above Stata commands ran a crude regression by only including duration month as the 

independent variable. The joint F test shows that we do not have enough evidence to reject the 

null hypothesis that there is no significant time effect in the model. 

 

 

 

            Prob > F =    0.4091

       F( 13,   130) =    1.05

 (13)  duramo14 = 0

 (12)  duramo13 = 0

 (11)  duramo12 = 0

 (10)  duramo11 = 0

 ( 9)  duramo10 = 0

 ( 8)  duramo9 = 0

 ( 7)  duramo8 = 0

 ( 6)  duramo7 = 0

 ( 5)  duramo6 = 0

 ( 4)  duramo5 = 0

 ( 3)  duramo4 = 0

 ( 2)  duramo3 = 0

 ( 1)  duramo2 = 0

. test duramo2 duramo3 duramo4 duramo5 duramo6 duramo7 duramo8 duramo9 duramo10 duramo11 duramo12 duramo13 duramo14

                                                                              

         rho    .78738418   (fraction of variance due to u_i)

     sigma_e    .11487752

     sigma_u    .22107041

                                                                              

       _cons     .7449027   .0191406    38.92   0.000     .7070353      .78277

    duramo14     .0022456   .0591117     0.04   0.970    -.1146999    .1191911

    duramo13    -.0234846   .0250595    -0.94   0.350    -.0730618    .0260926

    duramo12     .0330132   .0357449     0.92   0.357    -.0377038    .1037301

    duramo11    -.0484552    .027074    -1.79   0.076     -.102018    .0051075

    duramo10     .0257853   .0328033     0.79   0.433    -.0391122    .0906828

     duramo9    -.0001744   .0312598    -0.01   0.996    -.0620181    .0616694

     duramo8    -.0031148   .0487812    -0.06   0.949    -.0996227     .093393

     duramo7    -.0187555   .0275605    -0.68   0.497    -.0732807    .0357696

     duramo6    -.0038825   .0318924    -0.12   0.903    -.0669779    .0592129

     duramo5    -.0064762   .0251482    -0.26   0.797    -.0562289    .0432765

     duramo4     .0118453   .0293201     0.40   0.687     -.046161    .0698516

     duramo3    -.0139777   .0228284    -0.61   0.541    -.0591409    .0311855

     duramo2     -.003627   .0339406    -0.11   0.915    -.0707744    .0635204

                                                                              

        EQ5D        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                                   (Std. Err. adjusted for 131 clusters in id)

corr(u_i, Xb)  = 0.0013                         Prob > F          =     0.4091

                                                F(13,130)         =       1.05

     overall = 0.0063                                         max =         10

     between = 0.0009                                         avg =        3.9

     within  = 0.0224                                         min =          1

R-sq:                                           Obs per group:

Group variable: id                              Number of groups  =        131

Fixed-effects (within) regression               Number of obs     =        506

. xtreg EQ5D duramo2 - duramo14, fe r
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Appendix 3.3 Exploring the individual effect in linear models 

  

   

The first regression is a fixed effect model using all ESAS-r: Renal items as independent 

variables. The last line of the Stata output is an F-test, and the underlying null hypothesis is that 

. 

F test that all u_i=0: F(130, 363) = 6.78                    Prob > F = 0.0000

                                                                              

         rho      .759889   (fraction of variance due to u_i)

     sigma_e    .10164259

     sigma_u     .1808193

                                                                              

       _cons     .8474508   .0169078    50.12   0.000     .8142012    .8807004

         rls     .0075385   .0027341     2.76   0.006     .0021618    .0129152

       sleep    -.0019713   .0027037    -0.73   0.466    -.0072882    .0033456

   itchiness     .0000538   .0029767     0.02   0.986    -.0058001    .0059076

   wellbeing    -.0017995   .0033933    -0.53   0.596    -.0084725    .0048735

     anxiety     -.011684   .0034034    -3.43   0.001    -.0183768   -.0049912

  depression    -.0126642   .0037737    -3.36   0.001    -.0200853   -.0052432

         sob    -.0045513    .003732    -1.22   0.223    -.0118903    .0027876

    appetite    -.0030336   .0029418    -1.03   0.303    -.0088187    .0027516

      nausea     .0053276   .0036081     1.48   0.141    -.0017677    .0124229

      drowsy     -.003434   .0032134    -1.07   0.286    -.0097532    .0028852

       tired    -.0060701   .0035997    -1.69   0.093     -.013149    .0010088

        pain    -.0127493    .002963    -4.30   0.000    -.0185761   -.0069225

                                                                              

        EQ5D        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

corr(u_i, Xb)  = 0.3874                         Prob > F          =     0.0000

                                                F(12,363)         =       9.17

     overall = 0.4632                                         max =         10

     between = 0.3697                                         avg =        3.9

     within  = 0.2326                                         min =          1

R-sq:                                           Obs per group:

Group variable: id                              Number of groups  =        131

Fixed-effects (within) regression               Number of obs     =        506

. xtreg EQ5D pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sleep rls, fe

LR test of sigma_u=0: chibar2(01) = 180.31             Prob >= chibar2 = 0.000

                                                                              

         rho     .6930182   .0397244                      .6113289       .7661

    /sigma_e     .1014631   .0038146                      .0942553     .109222

    /sigma_u     .1524488    .012063                       .130548    .1780237

                                                                              

       _cons      .869042   .0202632    42.89   0.000     .8293269    .9087571

         rls     .0066146   .0025546     2.59   0.010     .0016077    .0116216

       sleep    -.0003488   .0025316    -0.14   0.890    -.0053105     .004613

   itchiness     .0015673     .00272     0.58   0.564    -.0037637    .0068984

   wellbeing    -.0075918   .0032758    -2.32   0.020    -.0140121   -.0011714

     anxiety    -.0133771   .0032193    -4.16   0.000    -.0196869   -.0070673

  depression    -.0125173   .0034691    -3.61   0.000    -.0193166   -.0057179

         sob    -.0055948   .0033732    -1.66   0.097     -.012206    .0010165

    appetite    -.0023206   .0027818    -0.83   0.404    -.0077729    .0031316

      nausea     .0054908   .0032802     1.67   0.094    -.0009383    .0119198

      drowsy    -.0039036   .0030998    -1.26   0.208    -.0099791    .0021718

       tired    -.0072457   .0034064    -2.13   0.033    -.0139221   -.0005692

        pain    -.0155317   .0027885    -5.57   0.000     -.020997   -.0100663

                                                                              

        EQ5D        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  =  302.57171                    Prob > chi2       =     0.0000

                                                LR chi2(12)       =     166.46

                                                              max =         10

                                                              avg =        3.8

                                                              min =          1

Random effects u_i ~ Gaussian                   Obs per group:

Group variable: id                              Number of groups  =        132

Random-effects ML regression                    Number of obs     =        508

. xtreg EQ5D pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sleep rls, mle nolog
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there is no individual effect (i.e. all individual effects, u_i, equal to 0). In this situation, we have 

F-statistics<0.001, which means we have enough evidence to reject the null hypothesis. 

Therefore, the fixed effect model is better than the pooled regression. 

The second regression is a random effect model using all ESAS-r: Renal items as independent 

variables. The last line of the Stata output is an F-test, and the underlying null hypothesis is that 

there is no random effect (i.e. all within-subject variances equal to 0). In this situation, we have 

F-statistics<0.001, which means we have enough evidence to reject the null hypothesis. 

Therefore, the random effect model is better than the pooled regression. 

 

The null hypothesis for the Hausman test is that the random effect model is more consistent 

compared with the fixed effect model. The chi-square statistics is less than 0.001, meaning we 

have enough evidence to reject the null hypothesis, and the fixed effect model is better. 

The Hausman test could not be done if the model is estimated by robust variances. The above 

Hausman test was conducted on a fixed model and random model without robust variances. But 

in our data, we did observe heterogeneity among fixed effect models. Below test 1 is a test 

examining heteroskedasticity. The chi-statistics is less than 0.001, meaning there is 

heteroskedasticity in the residuals. Besides, autocorrelation also existed. Below test 2 is a test 

                Prob>chi2 =      0.0000

                          =       57.93

                 chi2(12) = (b-B)'[(V_b-V_B)^(-1)](b-B)

    Test:  Ho:  difference in coefficients not systematic

            B = inconsistent under Ha, efficient under Ho; obtained from xtreg

                           b = consistent under Ho and Ha; obtained from xtreg

                                                                              

         rls      .0075385     .0065644        .0009741        .0008446

       sleep     -.0019713    -.0002392       -.0017321        .0008448

   itchiness      .0000538      .001673       -.0016193        .0011207

   wellbeing     -.0017995    -.0079491        .0061496        .0009633

     anxiety      -.011684    -.0134722        .0017882        .0009247

  depression     -.0126642    -.0124904       -.0001738        .0013343

         sob     -.0045513    -.0056693         .001118        .0014831

    appetite     -.0030336     -.002267       -.0007666        .0007916

      nausea      .0053276     .0054925        -.000165        .0013777

      drowsy      -.003434    -.0039367        .0005026        .0005643

       tired     -.0060701    -.0073061         .001236        .0009553

        pain     -.0127493    -.0157152         .002966        .0009293

                                                                              

                     fe           re         Difference          S.E.

                    (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))

                      Coefficients     

. hausman fe re

. estimate store re

. quietly xtreg EQ5D pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sleep rls, re

. estimate store fe

. quietly xtreg EQ5D pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sleep rls, fe
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examining autocorrelation in fixed and random effect models. We get F-statistics = 0.025, 

meaning there is autocorrelation in our data. Therefore, the cluster-robust variance should be 

used for the fixed model and random effect model. When we compare the standard error 

estimated with or without robust estimation, they are quite similar both in the fixed effect model 

and the random effect model. Therefore, the results from the Hausman test are still applicable. 

 

   

Left: fixed effect model without robust estimation; Right: fixed effect model with robust 

estimation 

           Prob > F =      0.0250

    F(  1,      67) =      5.255

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sleep rls

. **Test 2: auto-correlation

Prob>chi2 =      0.0000

chi2 (131)  =   1.8e+35

H0: sigma(i)^2 = sigma^2 for all i

in fixed effect regression model

Modified Wald test for groupwise heteroskedasticity

. xttest3

. quietly xtreg EQ5D pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sleep rls, fe

. **Test 1: heteroscedasticity

. 

F test that all u_i=0: F(130, 363) = 6.78                    Prob > F = 0.0000

                                                                              

         rho      .759889   (fraction of variance due to u_i)

     sigma_e    .10164259

     sigma_u     .1808193

                                                                              

       _cons     .8474508   .0169078    50.12   0.000     .8142012    .8807004

         rls     .0075385   .0027341     2.76   0.006     .0021618    .0129152

       sleep    -.0019713   .0027037    -0.73   0.466    -.0072882    .0033456

   itchiness     .0000538   .0029767     0.02   0.986    -.0058001    .0059076

   wellbeing    -.0017995   .0033933    -0.53   0.596    -.0084725    .0048735

     anxiety     -.011684   .0034034    -3.43   0.001    -.0183768   -.0049912

  depression    -.0126642   .0037737    -3.36   0.001    -.0200853   -.0052432

         sob    -.0045513    .003732    -1.22   0.223    -.0118903    .0027876

    appetite    -.0030336   .0029418    -1.03   0.303    -.0088187    .0027516

      nausea     .0053276   .0036081     1.48   0.141    -.0017677    .0124229

      drowsy     -.003434   .0032134    -1.07   0.286    -.0097532    .0028852

       tired    -.0060701   .0035997    -1.69   0.093     -.013149    .0010088

        pain    -.0127493    .002963    -4.30   0.000    -.0185761   -.0069225

                                                                              

        EQ5D        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

corr(u_i, Xb)  = 0.3874                         Prob > F          =     0.0000

                                                F(12,363)         =       9.17

     overall = 0.4632                                         max =         10

     between = 0.3697                                         avg =        3.9

     within  = 0.2326                                         min =          1

R-sq:                                           Obs per group:

Group variable: id                              Number of groups  =        131

Fixed-effects (within) regression               Number of obs     =        506

. xtreg EQ5D pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sleep rls, fe

                                                                              

         rho      .759889   (fraction of variance due to u_i)

     sigma_e    .10164259

     sigma_u     .1808193

                                                                              

       _cons     .8474508   .0234895    36.08   0.000     .8009797     .893922

         rls     .0075385   .0030842     2.44   0.016     .0014368    .0136402

       sleep    -.0019713   .0026865    -0.73   0.464    -.0072862    .0033436

   itchiness     .0000538   .0030467     0.02   0.986    -.0059738    .0060814

   wellbeing    -.0017995   .0036323    -0.50   0.621    -.0089855    .0053864

     anxiety     -.011684   .0038378    -3.04   0.003    -.0192767   -.0040913

  depression    -.0126642   .0045629    -2.78   0.006    -.0216914    -.003637

         sob    -.0045513    .004519    -1.01   0.316    -.0134916    .0043889

    appetite    -.0030336   .0032008    -0.95   0.345     -.009366    .0032989

      nausea     .0053276   .0049193     1.08   0.281    -.0044047    .0150599

      drowsy     -.003434    .003686    -0.93   0.353    -.0107263    .0038582

       tired    -.0060701   .0039874    -1.52   0.130    -.0139587    .0018186

        pain    -.0127493   .0034513    -3.69   0.000    -.0195774   -.0059212

                                                                              

        EQ5D        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                                   (Std. Err. adjusted for 131 clusters in id)

corr(u_i, Xb)  = 0.3874                         Prob > F          =     0.0000

                                                F(12,130)         =       4.84

     overall = 0.4632                                         max =         10

     between = 0.3697                                         avg =        3.9

     within  = 0.2326                                         min =          1

R-sq:                                           Obs per group:

Group variable: id                              Number of groups  =        131

Fixed-effects (within) regression               Number of obs     =        506

. xtreg EQ5D pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sleep rls, fe r
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Left: random effect model without robust estimation; Right: random effect model with robust 

estimation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                              

         rho    .67373546   (fraction of variance due to u_i)

     sigma_e    .10150288

     sigma_u    .14586064

                                                                              

       _cons     .8708915   .0198499    43.87   0.000     .8319863    .9097966

         rls     .0065644   .0026004     2.52   0.012     .0014676    .0116611

       sleep    -.0002392   .0025683    -0.09   0.926     -.005273    .0047947

   itchiness      .001673   .0027577     0.61   0.544     -.003732    .0070781

   wellbeing    -.0079491   .0032537    -2.44   0.015    -.0143263   -.0015719

     anxiety    -.0134722   .0032754    -4.11   0.000    -.0198918   -.0070526

  depression    -.0124904   .0035299    -3.54   0.000     -.019409   -.0055719

         sob    -.0056693   .0034246    -1.66   0.098    -.0123814    .0010428

    appetite     -.002267   .0028333    -0.80   0.424    -.0078202    .0032863

      nausea     .0054925   .0033347     1.65   0.100    -.0010433    .0120284

      drowsy    -.0039367   .0031635    -1.24   0.213    -.0101369    .0022636

       tired    -.0073061   .0034706    -2.11   0.035    -.0141084   -.0005038

        pain    -.0157152   .0028135    -5.59   0.000    -.0212296   -.0102009

                                                                              

        EQ5D        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                                              

         rho    .67373546   (fraction of variance due to u_i)

     sigma_e    .10150288

     sigma_u    .14586064

                                                                              

       _cons     .8708915    .021679    40.17   0.000     .8284013    .9133816

         rls     .0065644   .0028337     2.32   0.021     .0010104    .0121183

       sleep    -.0002392   .0025809    -0.09   0.926    -.0052977    .0048193

   itchiness      .001673   .0028705     0.58   0.560     -.003953    .0072991

   wellbeing    -.0079491   .0038123    -2.09   0.037     -.015421   -.0004772

     anxiety    -.0134722   .0041008    -3.29   0.001    -.0215096   -.0054347

  depression    -.0124904   .0041621    -3.00   0.003     -.020648   -.0043329

         sob    -.0056693   .0041086    -1.38   0.168    -.0137221    .0023835

    appetite     -.002267   .0030704    -0.74   0.460    -.0082849     .003751

      nausea     .0054925   .0042608     1.29   0.197    -.0028585    .0138436

      drowsy    -.0039367   .0035071    -1.12   0.262    -.0108104     .002937

       tired    -.0073061   .0037157    -1.97   0.049    -.0145887   -.0000235

        pain    -.0157152   .0031436    -5.00   0.000    -.0218765    -.009554

                                                                              

        EQ5D        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                             Robust
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Appendix 3.4 The AIC and BIC statistics for different generalized linear models (GLMs) 

 

Note: generalized linear model (glm) 

          glm1- Normal + log link, model specification 1 (full ESAS-r: Renal items) 

          glm2 - Normal + log link, model specification 2 (full ESAS-r: Renal items + age + female) 

          glm3 - Normal + log link, model specification 3 (selected ESAS-r: Renal items) 

          glm4 - Normal + log link, model specification 4 (selected ESAS-r: Renal items + selected 

demographics) 

          glm5 – Gamma + identity link, model specification 3 & 4 (selected ESAS-r: Renal 

items/selected ESAS-r: Renal items + selected demographics) 

The likelihood functions for model specification 1 and 2 were not concave in gamma + identity 

link. So, we used forward step-wise to build the model corresponding to model specification 3 

and 4. 

The AIC and BIC showed that glm5 is better than glm3 and glm4. So, for glm models with 

model specifications 3 and 4, we used gamma + identity link. Then for glm models with 

specification 1 and 2, we did not have other options, so we still used normal + log link.  

 

 

 

 

 

 

               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

        glm5          506         .    438.929       6   -865.8581  -840.4988

        glm4          506         .   225.0224       6   -438.0448  -412.6856

        glm3          506         .   204.2375       9   -390.4751  -352.4363

        glm2          506         .   236.8145      15   -443.6289  -380.2309

        glm1          506         .   208.7938      13   -391.5875  -336.6425

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion

. estimate stats glm1 glm2 glm3 glm4 glm5
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Appendix 3.5 Model assumptions of GLMs 

The normal + log link GLM still has the equal variance assumption. We used the residual plot to 

see if this assumption was valid. 

 

The plot shows that equal variance may not be true as the residuals were more diverse among the 

large estimated values. 
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Appendix 3.6 The assumption check for Tobit model 

Normality check:  

 

Illustrations: The conditional moment (CM) is 34.36, which is much greater than the 5% percent 

level CM, which is 11.29. Therefore, we reject the null hypothesis that the residuals were 

normally distributed.  

Homescadesticity check: 

 

Illustrations: the chi-square statistics < 0.001, meaning that there is enough evidence to reject the 

equal variance assumption. 

   34.358   7.22987  11.291115 18.698471

    CM        %10       %5        %1

                   critical values

Conditional moment test against the null of normal errors

. tobcm,p

. 

N R^2 = 747.48652 with p-value = 4.85e-163

. display "N R^2 = " e(N)*e(r2) " with p-value = " chi2tail(2,e(N)*e(r2))

. quietly regress one gres3 gres4 $scores2, noconstant

. generate one = 1

. global scores2 score* score2* gres1 gres2

  3. }

  2. generate score2`var' = gres2*`var'

. foreach var in $xlist{

. quietly replace gres4 = -(3*threshold + threshold^3)*lambda if dy == 0

. quietly generate double gres4 = uifdyeq1^4 -3

(121 real changes made)

. replace gres3 = -(2 + threshold^2)*lambda if dy == 0

. quietly generate double gres3 = uifdyeq1^3

. quietly replace gres2 = -threshold*lambda if dy == 0

. quietly generate double gres2 = uifdyeq1^2 -1

. quietly replace gres1 = -lambda if dy == 0

. quietly generate double gres1 = uifdyeq1

. quietly generate uifdyeq1 = (lny-xb)/sigma if dy == 1

. generate lambda = normalden(threshold)/normal(threshold)

. generate threshold = (gamma-xb)/sigma

. scalar sigma = btobit[1,e(df_m)+2]

. matrix btobit = e(b)

. predict xb1,xb

. quietly tobit lny $xlist, ll

(121 real changes made)

. replace lny = gamma - 0.0000001 if lny == .

gamma = -3.9373429

. display "gamma = " gamma

. scalar gamma = r(min)

. quietly summarize lny

(121 missing values generated)

. generate lny = ln(y)

. generate dy = disutility > 0

. generate y =disutility

. global xlist pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sleep rls
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Appendix 3.7 The performance statistics for mixture models 

Adjusted limited dependent variable (aldv) mixture models: The one-component models were 

better than the two-component models. 

(Note: The estimation function for the two-component model for model specification 2 (whole 

ESAS items + demographics was not concave)  

 

Mixture beta regression models: The two-component models were better than the one-

component models. 

 

 

 

 

 

 

 

 

  

               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

    C2_aldv4          506         .   218.2827      11   -414.5654  -368.0735

    C1_aldv4          506         .   218.2827      10   -416.5654  -374.3001

    C2_aldv3          506         .   205.3559      10   -390.7117  -348.4464

    C1_aldv3          506         .   205.3559       9   -392.7117  -354.6729

    C1_aldv2          506         .   223.4596      16   -414.9193  -347.2947

    C2_aldv1          506         .   211.0822      15   -392.1644  -328.7663

    C1_aldv1          506         .   211.0822      14   -394.1644  -334.9928

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion

               Note: N=Obs used in calculating BIC; see [R] BIC note.

                                                                             

    C2_beta4          506         .   1491.801      23   -2937.602  -2840.392

    C1_beta4          506         .   1388.749      11   -2755.497  -2709.005

    C2_beta3          506         .   1520.552      19   -3003.105    -2922.8

    C1_beta3          506         .    1380.56       9    -2743.12  -2705.081

    C2_beta2          506         .   1545.149      33   -3024.298  -2884.822

    C1_beta2          506         .   1394.676      16   -2757.352  -2689.727

    C2_beta1          506         .   1528.728      29   -2999.456  -2876.887

    C1_beta1          506         .   1386.495      14   -2744.989  -2685.818

                                                                             

       Model          Obs  ll(null)  ll(model)      df         AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion
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Appendix 3.8 The selected ESAS-r: Renal profile for plotting Figure 3.5 
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Appendix 3.9 Uncertainty information of the final models 

The generalized linear model (gamma distribution, identity link): 

Variance-covariance matrix 

 

Deviance: 266.23 

Dispersion parameter of the gamma distribution: 0.5324 

 

The generalized estimating equations: 

Variance-covariance matrix 

 

Deviance could not be estimated. The generalized estimating equations model is not based on 

likelihood function and it is hard to define the distribution of the residuals. 
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Appendix 3.10 Sensitivity analyses  

 

This is a generalized estimating equations (GEE) model on the whole ESAS-r: Renal items and 

demographics. The variable diabetes and the variable race were significant (p=0.02, p<0.001 

respectively). As they were significant in this overall equation, during the backward step-wise 

procedure, they would still remain significant. 

 

This is a generalized linear model (GLM) on the whole ESAS-r: Renal items and demographics. 

The variable diabetes was partially significant, and the variable race was significant (p=0.06, 

p<0.001 respectively). During the backward step-wise procedure, the variable diabetes would 

become more significant. Both two would remain for the final model. 

Overall, for sensitivity analyses, we explored GEE and GLM with 2 model specifications. The 

first model specification includes the whole ESAS-r: Renal items and demographics, and the 

other model specification includes selected ESAS-r: Renal items and demographics. The GLM 

         Prob > chi2 =    0.0000

           chi2(  8) =  406.71

 ( 8)  Pacific = 0

 ( 7)  Multi = 0

 ( 6)  Mideast = 0

 ( 5)  Latin = 0

 ( 4)  Indiansubcontinent = 0

 ( 3)  Caucasian = 0

 ( 2)  Black = 0

 ( 1)  Asian = 0

. test Asian Black Caucasian Indiansubcontinent Latin Mideast Multi Pacific

         Prob > chi2 =    0.0179

           chi2(  1) =    5.60

 ( 1)  diabetes = 0

. test diabetes

> rls Aboriginal Asian Black Caucasian Indiansubcontinent Latin Mideast Multi Pacific if validation == 0, vce(robust)

. quietly xtgee EQ5D female age diabetes pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sleep 

         Prob > chi2 =    0.0607

           chi2(  1) =    3.52

 ( 1)  [disutility]diabetes = 0

. test diabetes

         Prob > chi2 =    0.0000

           chi2(  8) =  121.44

 ( 8)  [disutility]Pacific = 0

 ( 7)  [disutility]Multi = 0

 ( 6)  [disutility]Mideast = 0

 ( 5)  [disutility]Latin = 0

 ( 4)  [disutility]Indiansubcontinent = 0

 ( 3)  [disutility]Caucasian = 0

 ( 2)  [disutility]Black = 0

 ( 1)  [disutility]Asian = 0

. test Asian Black Caucasian Indiansubcontinent Latin Mideast Multi Pacific

> vce(cluster id)

> eep rls Asian Black Caucasian Indiansubcontinent Latin Mideast Multi Pacific if validation == 0, family(normal) link(log) 

. quietly glm disutility age female diabetes pain tired drowsy nausea appetite sob depression anxiety wellbeing itchiness sl
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used normal distribution with log link (the GLM with gamma distribution and identity link did 

not have a concave parameter estimating function). The table below summarized the mean 

absolute error (MAE), mean squared error (MSE), and percentage of estimated values out of the 

range (OFR %).  

 

 MAE MSE OFR % 

Generalized estimating equations (GEE): all ESAS-r: 

Renal + all demographics 

0.108 0.021 22 (4.3%) 

GEE: selected ESAS-r: Renal + selected demographics 0.108 0.021 23 (4.5%) 

Generalized linear model (GLM) with normal distribution 

and log link: all ESAS-r: Renal + all demographics 

0.101 0.019 3 (0.6%) 

GLM with normal distribution and log link: selected 

ESAS-r: Renal + selected demographics 

0.101 0.020 2 (0.4%) 

Final model of the study: GLM with gamma distribution 

and identity link: selected ESAS-r: Renal items 

0.116 0.028 0 

Final model of the study: GEE on selected ESAS-r: Renal 

items 

0.119 0.027 0 

Note: MAE: mean absolute error; MSE: mean squared error; OFR %: the percentage of out-of-range estimated values.  
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