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ABSTRACT

The work described in the first part of the thesis was stimulated by the very poor
quality of the images obtained with an animal-size MRI system at the University
of Alberta’s In vivo NMR Facility. This was mainly caused by eddy current fields
induced in the 40 cm bore Bruker superconducting magnet. The temporal and spa-
tial dependence of these fields were therefore measured using the offset frequency of
the proton signal from a small spherical sample. Three eddy currents were found,
with decay times ranging from 13 to 480 ms. These currents generated very large
gradients and significant field shifts, which led us to construct, in house, a set of
distributed current, shielded gradient coils of minimum inductance. During the in-
stallation of the gradient coils, it became apparent that very accurate registration
of the primary and shielding coils was required to achieve proper shielding. The
effect of misregistration of the coils was therefore studied by determining the arti-
facts that would be produced in typical imaging and spectroscopic protocols by a
small relative axial displacement of the primary and shielding coils in a shielded =
gradient set from their proper location. Numerical values of the tolerance required
for minimal artifacts ranged from 0.1 mm for STEAM proton spectroscopy to 1 mm

for SE, FLASH and MBEST imaging.

Another defect found in the animal-size MRI system was an axial (z) vari-
ation in the magnetic field, which was predominantly fourth order in z, and could
only be one-third compensated by the 2* shim coil provided by the manufacturer,
with a power dissipation of 100 watts. This led us to study, theoretically, the power

dissipation and field profile accuracy of 2¢ shim coils of various designs, and to con-

struct a shim coil that compensated the z* field variation with a power dissipation

of only 21 watts.

Many MRI protocols require strong gradients which can be switched rapidly.



T'his requires gradient coils of low inductance and low power dissipation in generat-
ing a given gradient. Since these are strongly derendent on the volume within the
coil, and since the Luman body is more elliptical than circular in “cross section”,
the second part of the thesis studies the design of gradient coils which utilize dis-
tributed currents flowing on the surface of an elliptic cylinder. General expressions
were derived for the magnetic field and stored energy associated with currents flow-
ing azimuthally and axially on the surface of an elliptic cylinder. It was then shown
how these expressions could be used to design elliptical z gradient coils of minimum
inductance. Allowing the current to flow axially as well as azimuthally greatly re-
duced the field nonuniformity in transverse planes. For a coil design with an axial
ratio of 0.75, the gradient nonlinearity along the z axis and field nonuniformity in
the transverse directions were < 0.1% out to 0.66a and 0.5a, respectively, over the

region |z| < 0.4a, where a is the semi-major axis of the ellipse.
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Chapter One

INTRODUCTION

1.1 Background to the Thesis

Since its discovery in 1945, nuclear magnetic resonance (NMR) has had extensive
applications in chemistry, biomedicine and physics. However, it was not until 1973
that it was widely appreciated that the proportionality of the NMR frequency of
magnetic nuclei, to the strength of the magnetic field experienced by them, enables
their spatial distribution in an object to be imaged by deliberately making the mag-
netic field spatially dependent (1, 2]. The development of the appropriate technology
onance imaging (MRI), usually achieves the spatial localization by superimposing
uniform magnetic field gradients on the large homogeneous main magnetic field.
When a field gradient is applied, the resonance frequency of the magnetic nuclei
will depend upon their location in the gradient direction. To achieve spatial en-
coding in three-dimensional space, three mutually orthogonal gradients are used, a
longitudinal one in the direction of the main field and two transverse ones which
are directed at orthogonal orientations in a plane perpendicular to the main field.
These gradients are generated by a set of three gradient coils inserted into the main

magnet. In most imaging protocols, the gradients are applied as short pulses.

Ideally, a gradient coil must be able to produce a uniform field gradient over
a large volume, be capable of being switched on and off rapidly, as well as being
characterized by a high coil efficiency (gradient per unit current) and low power
dissipation. In the early development of MRI, gradient coils were constructed using
discrete current path approaches, examples being Maxwell coils for generating longi-

tudinal gradients and Golay (saddle) coils for generating transverse gradients 3, 4].



Such coils are easy to construct. However, they have large inductances, so that the
gradient pulses have long rise and fall times. Moreover, the volume over which a
uniform gradient can be achieved in such coils is quite limited. Nevertheless, these
types of gradient coils were common in early MRI systems due to their simplicity.
MRI techniques developed more recently, in particular fast imaging [5, 6], require
much better performance by gradient coils. A number of improvements have been
made, in particular the use of coils with distributed windings, which approximate
a required continuous current distribution in a coil, and the development of the
target field approach [7] for designing such coils. The main advantage of a gradient
coil with distributed windings over that with discrete windings is that it is able to
generate a more uniform gradient over a larger volume. The target field approach,
on the other hand, not only facilitates designs of distributed winding coils, but also
enables one to optimize coil performance by minimizing the power dissipation or
the stored energy (which in turn shortens the switching time), or any combination

of the two [8].

The switching of magnetic field gradients induces several eddy currents in
the conducting structures of the main magnet. These are particularly troublesome
in superconducting magnets because of the presence of cryogenic shields made of
low resistivity material. The induced eddy currents decay exponentially, thereby
generating exponentially decaying inhomogeneous magnetic fields which cause im-
age artifacts [9, 10]. The eddy current fields also cause spectral artifacts in in vivo
NMR spectroscopy (MRS) [11], another important application of NMR in medicine,

when volume localization is achieved using gradient pulses.

One way to compensate the effect of eddy currents is to modify the shape of
the current pulses fed to the gradient coils using the so-called pre-emphasis unit in
the gradient system, so as to cancel the eddy current field in the region of interest.

In order to implement the compensation successfully, knowledge of the eddy current



fields is needed, so that amplitudes and time constants of the compensating currents
can be chosen accordingly. This compensation scheme requires little or no hardware

modification if the eddy current fields are primarily uniform gradients.

An entirely different approach is to prevent the eddy currents occurring in

passing a current through a suitably designed shielding coil which surrounds the
main gradient coil [12]. Although adding the shielding coil results in a loss of space
inside the main magnet and a reduced coil efficiency, shielded gradient coils can

greatly reduce artitacts caused by eddy current fields (13, 14].
1.2 Overview of the Thesis

The work described in this thesis is a result of collaboration with Dr. P.S. Allen,
director of the University of Alberta’s In vivo NMR Facility. It began in the late
1980s, when measurements on phantoms showed that a 40 cm bore, 2.35 T Bruker
MR system, used for animal studies in the In vivo NMR Facility, displayed serious
intensity artifacts in MRI, as a result of eddy current fields [10]. A preliminary
study made by measuring the offset frequency of the proton free induction decay
(FID) obtained from a small spherical water sample, after switching off a field
gradient, showed that the eddy current fields had very large amplitudes, and that
the pre-emphasis unit was poorly adjusted [15). In particular, the time constants
of the compensation currents did not match those of the eddy currents. A more
detailed study of the eddy current fields in this Bruker magnet was therefore carried
out. It showed that the eddy currents generated field gradients that were quite
uniform. However, the planes where the eddy current fields were zero did not
pass through the “isocentre” of the gradient set, the point where the three applied
gradient fields are zero. Thus, each eddy current could be regarded as generating

both an exponentially decaying gradient field which is zero at the isocentre, and a



large homogeneous field which decays exponentially at the same rate. This large
homogeneous field, sometimes called a field shift or a By shift, combined with the
very large gradient associated with each eddy current, showed that it was necessary
to use shielded gradient coils in the system, in order to obtain high quality images

and spectra.

Since shielded gradient coils that met our specifications were not available
at the time, three shielded, distributed current, cylindrical gradient coils of min-
imum inductance were constructed “in house” using designs kindly provided by
Dr. R. Turner at the National Institutes of Health in Bethesda, Maryland. Con-
struction of the = gradient coil was described in my M.Sec. thesis [16]. A y gradient
coil of similar design was fabricated around the z gradient coil, and a z gradient coil
was wound with wire around both coils. In constructing and installing these coils,
it became clear that an important aspect is the constructional tolerance required to
achieve minimal artifacts in MRI and MRS. This issue was addressed theoretically
by determining the artifacts generated in various imaging and spectroscopic proto-
cols resulting from a small axial displacement of the primary and shielding coils in

a shielded, distributed current, cylindrical z gradient set.

In upgrading the 40 cm bore, 2.35 T Bruker MR system with a view to using
it for fast imaging studies, it was also found that the axial variation of the field
strength, which was predominantly fourth order in the axial, z, coordinate, could
only be one-third compensated using the room-temperature z4 shim coil provided by
the manufacturer. Moreover, the associated power dissipation was about 100 watts,
leading to temperature increases in the sample space of up to 12°C in one hour.
The relative merits of different designs of 2* shim coils was therefore investigated
by studying the effects of changing various design parameters on the power dissi-
pation and field profile accuracy. A replacement z* shim coil, which provided full

compensation of the z* field variation with a power dissipation only 21 watts, was



built and installed on the shielded gradient set just mentioned.

Because of financial difficulties, this Bruker system had to be shut down in
1994 in order to concentrate available resources on a newly acquired 80 cm bore, 3 T
whole-body MR system. It was decided, therefore, to switch to a theoretical study
of elliptic cylinder gradient coil designs. Even though funding was later obtained
via an NSERC Collaborative Project Grant, it was decided to continue with this
project, especially since the work was relevant to the project for which the grant

was awarded.

As we have seen, two important characteristics of a gradient system are
its power dissipation and switching time. For a given gradient driver, these are,
respectively, governed by the resistance and inductance of the gradient coil. Because
the aspect ratio of a typical human body at its largest cross-section is significantly
different from unity, coils which are more elliptical than circular in section can
be advantageous in in vivo NMR since they allow a better “filling factor” to be
achieved, thereby reducing the power dissipation as well as the rise and fall times
of the gradient pulses. In the study of elliptic cylinder gradient coil designs, general
expressions were derived for the magnetic field and stored energy associated with
a distributed current flowing on the surface of an elliptic cylinder. During the
course of the work, we became aware of a proposed design of an elliptic cylinder

z gradient coil by Petropoulos et al. [17]. However, these workers restricted the

assuming that the current flows in both the azimuthal and axial directions. Our
expressions can, in principle, be used to design, not only elliptic ¢ylinder gradient
coils, but also elliptic cylinder coils that generate a uniform field or a higher order
shim field. Our expressions havé been used to design an elliptic cylinder z gradient
coil which generates a much more uniform gradient than can be achieved using a

purely azimuthal current alone.



In the rest of this chapter, relevant aspects of basic principles of NMR and
MRI are reviewed. The study of eddy current fields induced by gradient switch-
ing is presented in Chapter Two. In Chapter Three, constructional tolerances of
shielded gradient coil sets in relation to artifacts in MRI and errors in in vivo MRS
are treated. The design of a low-power-dissipation, cylindrical z* shim coil is pre-
sented in Chapter Four, followed by the design of elliptic cylinder gradient coils in

Chapter Five. Finally, some conclusions are given in Chapter Six.

1.3 Basic Concepts of NMR

1.3.1 Nuclear Magnetic Moments and a Classical Description of NMR

Many nuclei are known to possess a magnetic moment g and an associated spin

angular momentum %I. The two quantities are related by
K =7kl (1.1)

where 7 is the magnetogyric ratio which is different for different nuclei, and A
is Planck’s constant divided by 2r. When placed in a static magnetic field By,
whose direction is taken to be the z direction, say, an isolated nucleus of angular

momentum hI has 27 + 1 discrete energy levels given by
E = —ykBym;, (1.2)

where m; is the quantum number of the 2z component of the angular momentum
which takes the values I, I—1,..., —I. Transitions can be induced between adjacent

levels by applying a radio-frequency (rf) magnetic field of angular frequency
Wy = ’)’Bo (13)

perpendicular to By.



In general, the complete treatment of a nuclear spin system requires quantum
mechanics. If, however, the system contains a group of non-interacting spins, the
macroscopic magnetization of the spin system in a magnetlc field B obeys the

classical equation of motion [18§]

d]\l

B, 14
where M is the macroscopic magnetization, defined as the sum of the nuclear

magnetic moments per unit volume.

According to Eq. (1.4), a magnetization M, initially inclined at an angle #

to a steady field By, say, will precess around By with an angular frequency
wo = —7By, (1.5)

while keeping 6 constant. This angle can be changed by applying a field B, rotating
in the transverse plane perpendicular to By and in the same sense as the precessing
magnetization. Thus, for nuclei with a positive magnetogyric ratio, By is of the
form

B, = B, (icoswt — j sinwt), (1.6)
where w is its angular frequency, and i and J are unit vectors in the z and Y

directions.

To visualize the behavior of the magnetization M under the influence of By
and B; more clearly, a rotating frame (2',y',2') is used. This rotating frame rotates
at the same frequency, and in the same sense, as By about its 2/ axis which coincides
with the 2 axis of the previous laboratory frame. Thus, both By and B, appear to

be stationary in the rotating frame. The magnetization M can be expressed as
M = Mxli’-i-Mylj'-}-lek', (1.7)

where 2’, j' and k' are unit vectors along the z’ » ¥' and 2’ axes of the rotating frame.



The derivative of M with respect to time is then given by

M. _ (M, OMy ., OM., AN A AN
dt ( ot am Y at’“) (M a0t My gy + Magr at)‘ (18)

By using relations

o’ ay’ ok’ i
—BfT:uJKZ ?2&;}{3'3 féial?—m}fk’, (19)
where w is the angular frequency vector of the rotating frame, and by denoting

dM 5MI' ) BMQ' iy 8M§' - ; -
vy (9Me, ey OMa ) .
(ﬂ)t(BtH_&J+8t)’ (1.10)

Eq. (1.8) becomes

dM _ (dM o )
@ -(?)J“M' (41

Substituting for dM /dt using Eq. (1.4) and rearranging Eq. (1.11), one obtains
dM W
— =M % A 4+ — 1. 1.1°
() word) e
Alternatively, Eq. (1.12) can be written in terms of an effective field,
'dM . _ o
(—) =M x ’7Beff—, (1.13)
dt | _ '
/ rot
where

BQ:B+%. (1.14)

Equation (1.13) indicates that the motion of the magnetization in the rotating frame
is governed by the same equation of motion as in the laboratory frame, provided
that Bg, defined in Eq. (1.14), is used in place of B. Thus, in the rotating frame,

the magnetization precesses about B.g with an angular frequency v B.g.
If the ' axis of the rotating frame is taken along B1, Eq. (1.14) becomes
'Bﬁ‘J.P%—;)+th (1.15)
At exact resonance, i.e. when w is equal to 75‘9, the effective field By is given by

B =B, (1.16)



with an angular frequency 7B;. If the magnetization is initially in the 2 direction,
it will precess in the y’-2' plane. If B, is applied as a rectangular pulse of duration

tp, the magnetization will precess through an angle
0 = vBit, (1.17)

as shown in Fig. 1.1a. If ¢, is chosen such that = 7 /2, the magnetization will
rotate from the z’-axis to the y’-axis as shown in Fig. 1.1b. Such a pulse is referred
to as a “90° pulse”. If § = =, the magnetization is inverted so as to be antiparallel

to Bog as shown in Fig. 1.1c. Such a pulse is referred to as a “180° pulse”.

If the frequency of By is not equal to the resonance frequency v.B,, a situation
called off-resonance, the magnetization will precess about B.g which is no longer
along the z'-axis of the rotating frame as can be seen from Eq. (1.15). In this case,
inversion of the magnetization can never be achieved. Moreover, a pulse which would
cause a 90° rotation if “on-resonance” will, if applied “off-resonance”, leave some
longitudinal magnetization, thereby creating a smaller transverse magnetization.
While it is possible to adjust an “off-resonance” pulse to rotate the z magnetization

through 90°, it will no longer be directed along the y’-axis.

Up to now it has been assumed that the spins are non-interacting so that
their behaviour can be described by Eq. (1.4). However, in reality, nuclear spin gys-
tems undergo significant interactions. To take into account the interaction of spins,
both with each other, and with their surroundings, Bloch [19] assumed that their
magnetization M will undergo two distinct relaxation processes. One is relaxation
of the magnetization in the direction of By towards its equilibrium value denoted
by M. For a spin system with spin number I = 1 /2, this process is described by
a single exponential characterized by a time constant T}, and is called longitudinal
relaxation. The second relaxation process concerns relaxation of the magnetization

in the plane perpendicular to By towards its equilibrium value of zero. This pro-



(b)

(c)

x'

Figure 1.1: Precession of the nuclear magnetization M (for v > 0) in the rotating

frame about an “on-resonance” B field through an angle of (a) 6, (b) /2 and (c)

7, expressed in radians. The primes here refer to the rotating frame.
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cess is called transverse relaxation and is, in many cases, exponential with a time
constant T5. Bloch then made the assumption that the behaviour of M result.
ing from relaxation could be superimposed on the motion of the magnetization of
non-interacting spins in the magnetic field, as given by Eq (1.4). This leads to the

so-called Bloch equations, namely

d;‘fz = 4(M,Bo+ M. By sinwt) - % (1.18)
2

—_dgtl” = v(M.B; coswt — M_;By) - %{—y', (1.19)
2

d::;‘fz = —y(M.B;sinwt + M,B, coswt) ~ MLE_M—D (1.20)

The Bloch equations are valid for many liquid-like systems found in biomedical
applications of NMR. In liquids, the magnetic field that a spin experiences due
to adjacent spins tends to average to zero because of the rapid random motion of
the spins. In this so-called extreme narrowing limit, the transverse magnetization

approaches to its equilibrium value exponentially as assumed by Bloch.

1.3.2 Detection of NMR Signals

In an NMR spectrometer, the rf magnetic field that excites the spins is generated
by applying an rf voltage to a transmitter coil, which is wound in such a way that
the rf field is perpendicular to By. That generates a linearly polarized rf field which
can be decomposed into two contra-rotating components of equal amplitude. The
component which rotates in the same sense as the precessing nuclear magnetization
is the B referred to in Eq. (1.6). It generates a rotating transverse magnetization,

whereas the effect of the other rotating component is negligible.

The rotating transverse magnetization induces an rf voltage in a so-called
receiver coil. This voltage is subsequently amplified and detected. Because of

relaxation, the rotating magnetization decays to zero and so therefore does the rf

11



voltage induced in the coil. This decaying rf voltage is called a free induction decay

(FID). In many cases, the same coil serves as both the transmitter and recejver cojl.

The high frequency component of the rf signal is removed by phase-sensitive
detection in which the rf signal is, in effect, multiplied by a reference signal whose
frequency is normally the frequency of the rf pulse that excites the spins. The
resulting signal has two components with frequencies equal to the sum and difference
of the rf signal frequency and the reference frequency. A low-pass filter then filters
out the high frequency component. By using so-called quadrature detection, two
phase-sensitive detectors with reference signals differing in phase by 90°, one can
distinguish signal frequencies which are higher than the reference frequency, from
those which are lower. The use of such phase-sensitive detection is equivalent to
observing the motion of the magnetization from a frame rotating at the frequency

of the reference signal, instead of from the laboratory frame.

Fourier transformation of the detected FID converts it into a frequency spec-

trum. Provided the duration of the rf excitation pulse satisfies the condition
tp € (Av)™?, (1.21)

where Av is the width of the NMR spectrum, the Fourier transform of the FID
corresponds to the spectrum obtained in a continuous wave (cw) experiment, (18] in
which a weak rf magnetic field is continuously applied while the frequency or the
main magnetic field is swept through the resonance region. Eq. (1.21) implies that
the whole spectrum is uniformly excited. | |

1.3.3 The Spin-Echo Technique

If the static magnetic field is perfectly homogeneous, the transverse magnetization
decays with a time constant T, governed by the intrinsic relaxation mechanisms

of the spin system. However, the magnetic field is not perfectly homogeneous in
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practice, whether due to the NMR hardware, or due to variations in magnetic
susceptibility at regional boundaries in a heterogeneous sample, so that spins in
different regions experience different field strengths, and hence precess at different
frequencies. This results in a dephasing of the spins, which in turn results in more
rapid decay of the transverse magnetization. In many cases, the decay is roughly

exponential and the decay time is then given the symbol Ty. In liquid-like systems,

usually much larger than that of intrinsic relaxation mechanisms characterized by
T,. However, the process of spin dephasing due to the static field inhomogeneity
can be reversed, using a method pioneered by Hahn [20], by applying a 180° pulse
at a time 7, say, after the initial 90° pulse which rotated the magnetization from its

equilibrium position into the transverse plane.

cessing at different frequencies, spins with a lower precession frequency lagging
behind those with a higher precession frequency, resulting in a loss of phase co-
herence. Application of the 180° pulse causes the spins with a lower precession
frequency to be an equal amount ahead of those with a higher precession frequency.
It follows that all the spins come in phase, or refocus, at a time 27 after the 90°
pulse, thereby generating a transverse magnetization with an amplitude governed
only by the intrinsic decay with a time constant T;. The signal generated by such

a 90°-7-180° pulse sequence is called a spin echo.

If the 180° pulse is in phase with the 90° pulse, the spins will refocus to form

spin echo is therefore inverted as compared with the FID. If, however, the phase of
the 180° pulse is shifted by 90° relative to the 90° pulse, the spins will refocus to
form a magnetization in the same direction as the original magnetization, and the

spin echo is therefore of the same sign as the FID, as shown in Fig. 1.2. A spin



w/2 pulse along x' 7 pulse along y’

Mo P

M(t)=Mge VT2"

Figure 1.2: A spin-echo experiment. A 90° pulse along the z’-axis rotates the
magnetization on to the y’-axis. The signal arising from this magnetization decays
with a characteristic time T;. At a time 7, a 180° pulse is applied along the y'-axis
causing the magnetization to refocus at a time 27. The magnetization at 27 js

reduced from its initia] value of My because of the intrinsic T, relaxation.
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echo can be considered to be two “back to back” free induction decays with their

maximum amplitudes occurring at a time 27 after the 90° pulse, as shown in the

figure.

Spin-echo techniques were originally developed for measuring transverse re-
laxation times T,. Now they are widely used in high-resolution NMR spectroscopy

and in magnetic resonance imaging.
1.4 Basic Concepts of MRI

The basis of NMR applications to MRI is the fundamental relationship given by
Eq. (1.3). While conventional high-resolution NMR spectroscopy demands that
the applied magnetic field be homogeneous so that slight differences in local fields
associated with the unique environment of nuclear spins can be revealed in the NMR
spectrum, magnetic resonance imaging makes use of the fundamental relationship
in a rather different manner by requiring that the applied magnetic field be spatially
dependent. If the spatial dependence of the field js known, the spatial dependence of
NMR parameters, such as spin density and relaxation times, can be obtained from
the frequency domain representation of the NMR. signal. The spatial dependence
of the magnetic field is usually achieved by superimposing a uniform magnetic field
gradient on By. A field gradient is in general given by
G = VB,
.0B, +j3Bz + kﬁBz

Yoz 15y 3z
= G, +jG, + kG,, (1.22)

where G = 0B,/dz, G, = 8B, /8y and G, = 98, /0z are the z, y and z gradients,
respectively. When such a gradient is applied, the z component of the total field at

the location r becomes spatially dependent and is given by

B.(r)=Bo+G - r. (1.23)
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The transverse components of the gradient field, B;(r) and B,(r) are unimportant

since they are perpendicular to the large main field B,.

Since NMR imaging was initially proposed in the early 1970s, many imaging
methods, such as point, line, planar, and three-dimensional imaging, have been
reported. In this section, so-called two-dimensional Fourier imaging [21] will be
used as an example to illustrate the basic principle of MR, since it is a widely used
technique, which has been adopted on most commercial imaging systems, and is

the basis on which many MRI protocols were developed.

In two-dimensional imaging, it is necessary to isolate a slice of the object to
be imaged. This can be achieved by applying a selective 90° pulse in the presence
of a uniform field gradient whose direction, say the z direction, is perpendicular
to the slice. An ideal selective 90° pulse is one that rotates spins whose resonance
frequencies lie in a narrow range of frequency, Aw say, through 90°, but does not
excite spins outside this range. That is, the representation of the pulse in the
frequency domain is a rectangle which is centered at w, the frequency of the 1f field,
and has a width of Aw. It is known from Fourier tra.msform theory [22] that such a
representation in the irequency domain requires the time domain signal to be a sinc
function shown in Fig. 1.3a. Such a function is characterized by side-lobes extending
out to infinity, and is therefore entirely inappropriate in practice. However, if the
sinc function is multiplied by a gaussian function, the side-lobes of the sinc function
will be suppressed, as illustrated in Fig. 1.3b, without seriously compromising the

rectangular shape in the frequency domain.

After application of the selective 90° pulse in the presence of a uniform

gradient G, all spins in a slice of thickness

(1.24)
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Ty (a)

Time Domain

Frequency Domain

Figure 1.3: (a) A sinc function and its Fourier transform, and (b) a sinc function

multiplied by a gaussian function and the corresponding Fourier transform.
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normal to the z axis and centered at

w —vBy
= — 1.25
=2l (1.25)

will have been rotated through 90° into the z-y plane,. but will have accumulated
different phases in the process. For all the spins except those experiencing the
smallest gradient field offsets, the phase distribution is almost linearly dependent
on the displacement from the central plane. The accumulated phase is therefore
equivalent to that which would be acquired in the same gradient field as that applied
during the slice selection, for a time equal to half the duration of the slice selection.
Such spins can therefore be brought in phase by reversing the direction of the
z gradient immediately after the selective pulse is switched off, and leaving the

reversed gradient on for half the duration of the selective pulse, as shown in F ig. 1.4.

After slice selection has been achieved, the location of spins within the slice
is encoded into the NMR signal by employing two orthogonal gradients which are
perpendicular to the gradient used for the slice selection. If the slice is perpendicular
to the z direction, then a gradient G, say, can be used to encode z positional
information into the frequency of the NMR signal and a gradient G, can be used

to encode y positional information into the phase of the signal.

The frequency encoding in the z direction is achieved by acquiring the signal
in the presence of GG;. Since spins with different z coordinates precess at different
frequencies, their z coordinates are encoded into the frequency of the signal. To
conform to the sampling theorem, the rate at which the signal is sampled must be
at least twice as high as the highest frequency of the signal [22]. That is, the time

interval, At say, between samplings of the signal must satisfy the following relation,

At < —F

S TR (1.26)

where L. is the extent of the slice in the z direction. The total number of sample
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Figure 1.4: A pulse sequence for two-dimensional Fourier imaging.
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points determines the spatial resolution in the so-called frequency-encoding direc-

tion.

Encoding the y positional information of the spins into the phase of the
NMR signal is achieved by applying a y gradient pulse prior to acquisition of the
signal, as shown in Fig. 1.4. By the end of the gradient pulse, spins with different
y coordinates will have acquired different phases because they will have precessed
at different frequencies during the gradient pulse. To obtain a two-dimensional
image, the phase of the signal is incremented by repeating the imaging sequence
while incrementing the amplitude of the y gradient pulse by a constant amount
each time. A two-dimensional image can be obtained by two-dimensional Fourier
transformation of the resulting time domain signals. The required increment in the
amplitude of the gradient, Gymin, is governed, according to the sampling theorem,

by the following relation,
5 / T Gymin(t)dt < . (1.27)
0 L,

where L, is the extent of the slice in the y direction, and 7ypase is the duration of the
y gradient pulse. The number of increments is determined by the desired resolution

in the so-called phase-encoding direction.

The frequency encoding can, in principle, be achieved by applying only one
gradient pulse and recording the time domain signal during the pulse, as was de-
scribed earlier. However, dephasing of spins during the finite rise time of the gra-
dient pulse causes serious loss of signal. To overcome this problem, two gradient
pulses are applied in the frequency-encoding direction, as shown in Fig. 1.4, in com-
bination with the spin-echo pulse sequence. In Fig. 1.4, the first = gradient pulse,
called the read compensation gradient pulse, causes the spins to dephase. After the
gradient is switched off, a 180° rf pulse is applied, followed by a second z gradient
pulse, the so-called read gradient pulse, which has the same polarity as the first.

This causes the spins to rephase and a spin echo to form at a time when the time

20



integral of the read gradient pulse is equal to that of the read compensation gradient
pulse. By choosing the strength and duration of the read compensation gradient
pulse appropriately, it can be arranged for the echo to be formed in a constant
field gradient, well after the rise time of the read gradient pulse. An important
requirement is that the echo be formed at the same time 2 at which the echo is
formed in the absence of gradient pulses. Otherwise, there will be a loss of signal
due to inhomogeneity of the main magnetic field [10]. Since the spin-echo technique

is used, this imagiag protocol is often called spin-echo (SE) imaging.
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Chapter Two

QUANTITATIVE CHARACTERIZATION OF
THE EDDY CURRENT FIELDS IN A 40 CM
BORE SUPERCONDUCTING MAGNET!

2.1 Introduction

Slowly decaying eddy currents, induced in the structure of superconducting magnet
systems by the switching of magnetic field gradients, have been found to cause
intensity artifacts in MRI [1, 2] and phase and baseline artifacts in MRS [3, 4].

These can be especially troublesome in some smaller magnet systems manufactured

in the 1980s.

In a preliminary study [5], we analysed the time dependent magnetic field
generated by a rectangular gradient pulse in a 40 cm bore, 2.35 T Bruker magnet,
manufactured in 1984. Using a small spherical sample of doped water situated at
various locations in the sample space, measurements made with the pre-emphasis
(eddy current compensation) unit activated were quite well fitted to a sum of five
decaying exponentials. One was associated with the decay of the current in the
gradient coil, two were caused by eddy currents generated in the magnet structure
and two negative components were associated with the pre-emphasis itself. The
fact that the time constants and amplitudes of the fields generated by the pre-
emphasis were by no means equal to those of the eddy current fields, demonstrated
the inadequacy of adjusting the pre-emphasis by monitoring the proton FID from

an extended sample.

1A version of this chapter has been published. Q. Liu, D.G. Hughes, and P.S. Allen, Magn.
Reson. Med. 31, 73 (1994).
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To determine the specifications of an active compensation protocol for eddy
current fields, the spatial symmetries of the exponentially decaying components of
these eddy current fields must be determined, as well as their amplitudes and time
constants. In this chapter, we present accurate measurements of the spatial and
temporal dependence of the eddy current fields caused by switching off a gradient
with the pre-emphasis unit deactivated. The measurements were carried out for all
three gradient directions. Some of the data have been presented earlier in prelim-
inary form [6]. A very different approach using the proton FID obtained from an

extended sample has been described by Boesch et al. [7].

2.2 Experimental

A hard (non-selective) 90° rf pulse was applied to a 13 mm diameter spherical
sample of doped water at a variable time after switching off a long (10 s duration)
gradient pulse. The long duration ensured that the eddy current field generated
by switching on the gradient had already decayed before the gradient was switched
off. The reference frequency of the phase-sensitive detector, fi..f, was set to thev
proton resonance frequency in the absence of a gradient pulse, so that the detected
FID was a slowly decaying signal, the decay being mainly caused by the small
field inhomogeneity across the sample. Any change in the magnetic field, caused
by the switched gradient, would result in a change in the resonance frequency,
and the detected FID would be a decaying oscillatory signal. The frequency of
the oscillation, éf, is the difference between the resonance frequency and fi, and is
called the offset frequency. Because of the proportionality of the NMR frequency and
the magnetic field, given by Eq. (1.3), the eddy current field can be determined by
measuring 6f. Because the sample experiences a magnetic field gradient associated
with the switched gradient, the detected FID is modulated, both in amplitude

and frequency, as illustrated in Fig. 2.1. The offset frequency, 6f, was determined
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Figure 2.1: The pulse sequence used to measure the offset frequency of the proton
resonance from a 13 mm diameter sample of doped water as a function of the time

t after switching off a gradient.
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by measuring the time between cross-over points as indicated in the figure. The
procedure was then repeated, with the sample at the same location, using some
sixty different time delays, following switch-off of the gradient, ranging from 0.5 ms
to 3 s. The measurement of small offset frequencies, less than 100 Hz, was facilitated
by offsetting the reference frequency of the detector so that, in every case, the two
cross-over points occurred weli before the first zero of the envelope of the FID (see

Fig. 2.1).

Figure 2.2 shows offset frequency data obtained by switching off a —850 Hz/cm

(2.0 x 107® T/m) z gradient, when the center of the sample was located at
z = —4.0 cm, y = 0, z = 0 relative to the (nominal) magnet isocentre. (In our
coordinate system, the +z axis was vertically upward.) The data were successfully
fitted, using the BMDP subroutine [8].run on an Amdahl 5870 computer, to a sum
of four decaying exponentials

5f=§3:A,-exp(—t/T,~)+B (2.1)

i=0

where B is a time independent parameter which allows for a smail departure from
the exact “on resonance” condition. The data are in excellent agreement with
Eq. (2.1) which is illustrated by the continuous curve in Fig. 2.2, thereby confirm-
ing that the offset frequency is a sum of exponential decays, notwithstanding the
possibility of coupling between various eddy current loops [9]. The amplitudes A;
and the decay times 7; of the curve shown in Fig. 2.2 are listed in Table 2.1, ordered
so that 7o < 7 < 7, < 713. The sum of the amplitudes (Ap + A; + A, + As) is
(3440 £ 40) Hz, in excellent agreement with the offset frequency, (3460 & 80) Hz,
measured during the gradient pulse after the eddy currents caused by the switch-on
had died away. This offset frequency is shown in Fig. 2.2 as a horizontal dotted
line. The value of B was found to be (0.6 + 0.2) Hz, showing only a small departure

from the exact “on resonance” condition.

The measurements were repeated with the center of the sample at the loca-
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Figure 2.2: The offset frequency, 6f, of the proton resonance obtained from a 13 mm
diameter spherical sample of doped water situated at z = —4cm,y =0, z =0,
caused by switching off a —850 Hz/cm (—2.0 x 10-3 T/m) z gradient at time
= 0. The continuous curve shows a least squares fit of the data to Eq. (2.1). The
horizontal dotted line shows the offset frequency measured during a long gradient
pulse after eddy currents caused by the switch-on had died away. The broken curve

shows the expected behaviour of 6f in the absence of eddy currents.
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Table 2.1: Amplitudes and decay times of the exponentially decaying components

found by fitting the data obtained at z = —4 cm and shown in Fig. 2.2.

Component (i) Amplitude A; (Hz) Decay time 7; (ms)

0 1486 + 17 1.36 + 0.04
1 437 + 25 16.8 £ 1.7
2 646 + 25 93+5
3 867 £11 492 £ 4

tions r = —2,~1,1,2, and 4 cm, y = 0, z = 0. With the exception of the z = 1 cm
data, each data set was independently fitted to Eq. (2.1). The z = 1 ¢m data set
was successfully fitted to a sum of three decaying exponentials rather than four.
This was understood later when it was found that the amplitude of A, was coinci-
dentally near zero at that location. During these measurements, it was found that
to obtain robust fits to Eq. (2.1), the offset frequencie: :ad to be measured with a
precision of better than about 1%. This was accomplis® 4 without signal averaging

so that each data set took only about one hour to acquire.

The value of the shortest decay time, 79, found at each location was ap-
proximately equal to the time constant of the z gradient coil, L/R ~ 1.3 ms, and
is evidently primarily associated with the decay of the current in the gradient coil
itself. The corresponding values, 7, 73, and 73, found at each location were in agree-
ment within the error limits generated by the fitting procedure (roughly £10% for
71, £5% for 1, and £1% for 73). This evidence supports the very plausible as-

sumption that the z gradient generates just three discrete eddy currents (the i =2
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Table 2.2: Decay times given by "global fits” of the data obtained by switching off
—850 Hz/cm z, y, and z gradients.

Decay times 7; in ms for the

Components (i) =z gradient y gradient =z gradient
0 1.3240.01 1.32+£0.03 1.5940.04
1 149+06 13.5+1.8 13.8425
2 80.5+1.4 x5 0+£5

3 481 £ 1 478 £3 362+5

eddy current being masked by the effect of the pre-emphasis in earlier, less accurate,

be characterized by the same four decay times but a different set of amplitudes and
a different value of B. Values of 7; obtained from such a “global fit” to Eq. (2.1),
conducted using a modified BMDP subroutine [8], are listed in the second column
of Table 2.2 and the values of A; are plotted in Fig. 2.3a as a function of z. In all
cases, the values of B were < 1 Hz.

On the basis of the above, the data in Fig. 2.2 can be interpreted as follows.
The broken curve, which corresponds to a single exponential decay with an ampli-

tude of 3460 Hz and a decay time of 1.3 ms, illustrates the approximate behaviour

the = gradient coil falls to zero, the three eddy currents build up in accordance with

Lenz’s law, thereby generating, between them, an offset frequency of about 2000 Hz,
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Figure 2.3: (a) Amplitudes A;, A, and Az of the exponentially decaying com-
ponents of the eddy current fields, generated by switching off a —850 Hz/cm
(=2.0 x 107 T/m) & gradient, plotted as a function of z. The solid lines are
linear regressions of the data. The broken line shows half the amplitude of the z
gradient, measured prior to the switch-off in the absence of eddy currents. (b) and
(¢) Corresponding graphs for the y and z gradients. (Note the different ordinate

scale in (c).)
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more than 50% of the main gradient. This offset frequency then slowly decays to

Z€ro.

Eddy current fields generated by the y and 2 gradients were measured in a
similar manner by switching off y and # gradients of the same amplitude —850 Hz/cm
(=2.0 x 107 T/m) as used for the z gradient. Each data set was successfully fitted
to Eq. (2.1). The decay times obtained from “global fits” of the data are listed
in the third and fourth columns of Table 2.2 and the amplitudes are plotted in

Figs. 2.3b and 2.3c as a function of the corresponding coordinate.

The location of the true isocentre of the magnet, which is required for proper
interpretation of the data, was found by measuring the gradient field (in the absence

of eddy currents) as a function of the corresponding coordinate to be at
z=(0.02+0.01)cm, y=(0.31%0.01)cm, =z=(-028+ 0.04)cm, (2.2)

relative to the nominal isocentre.

2.3 Discussion

Two important pieces of information about the eddy current fields can be deter-
mined from the data obtained, namely, the decay times and the amplitude distribu-
tion of the components. While both are necessary for the complete design of active
compensation strategies, it is the amplitude characteristics which demonstrate the
key insight that the eddy current fields in our magnet manifest themselves as field

shifts and gradients.

The similarity between the decay times of the eddy current components

induced by the z and y gradient fields (see Table 2.2), supports the view that
conductors are essentially cylindrical and coaxial with the z axis of the magnet.
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The shorter decay times and smaller amplitudes of the eddy current components
induced by the z gradient are attributed to differences in the geometric coupling of
the z coil to the cryostat structure, from those of the transverse gradient coils. The
smaller error limits shown in Table 2.2 for the decay times associated with the
gradient arise because measurements for the & gradient were repeated several times
in a search for a possible dependence of the decay times on the level of the cryogens
in the magnet. No such dependence was found. The error limits associated with the
decay times found for the z gradient are larger than those of the z and y gradients

because of the smaller eddy currents generated by the 2 gradient.

The linear regression lines in Figs. 2.3a - 2.3¢ are in very good agreement
with the amplitude data, clearly demonstrating that the eddy currents generate
primarily uniform gradients, at least over a region extending 4 cm on either side

of the nominal isocentre. However, it can be seen in Fig. 2.3a that the individual

field shifts at the isocentre. The same is true to a lesser extent of the » gradient,
while, for the y gradient, zero field occurs very near the true isocentre. Values of
the individual gradients, G, and the accompanying field shifts, ABy, measured at

the location of the true isocentre (see Eq. (2.2)) are listed in Table 2.3.

The values of AB, seem to be associated with a small departure of the
magnet cryostat from exact symmetry about the isocentre, since the cryostat is
expected to be most symmetric about the vertical y = 0 (longitudinal) plane and

least symmetric about the horizontal z = 0 plane, as observed.

Our finding that the eddy current field distribution due to each gradient is
primarily composed of three gradient components plus accompanying zero order
field shifts is different from the conclusions drawn by Boesch et al. [7, 10] on the

basis of measurements made in a similar magnet to ours, but using an extended
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Table 2.3: Gradient, G, and field shift, ABy, at the true isocentre associated with

each eddy current component.

o Inducing gré,ﬂient
Eddy current component _ , —
T y z
G (Hzfom) | -904%10 —812431 —7084 3.6
t=1
AB, (Hz) 39+3 —8+6 -26+13
G (Hz/cm) =133 +1 —126+3 ~11243
1=2
AB, (Hz) 120 + 3 10 + 6 39 -+ 14
G (Hz/cm) —-250 +1 —-230 £ 1 =150 + 2
t=3
 AB, (Hz) ~116 + 2 4346 4410

12 cm diameter spherical sample. The highly nonlinear (nonuniform) gradients
observed by these workers may have been caused by eddy currents induced closer

to the sample space, e.g. in rf shields.

In summary, our results show that for one type of magnet, namely, a Bruker
40 cm bore, 2.35 T, 1984 vintage magnet, By shift compensation alone is unlikely
to accommodate phase distortions brought about by eddy currents fields. How-
ever, they also show that a measure of active eddy current compensation might be

achieved by feeding a combination of exponentially decaying currents to the zy shim
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coil and to the appropriate gradient coils. In the case of the horizontal transverse
() gradient, no By shift would be required. This may well be the case for other
types of magnet systems which display a high degree of symmetry about the vertical
longitudinal mid-plane.

As shown by Jehenson et al. [9], the amplitudes and decay times of such
compensating currents are different from those of the exponentially decaying com-
ponents of the eddy current fields. However, they can be calculated from the ampli-

higher order shim coils as suggested by Van Vaals and Bergman [11] would seem to

be unnecessary in our magnet.
We believe that the kind of measurements described above could be used to
determine the eddy current components in other types of magnets, provided the

number of important eddy currents is small.
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Chapter Three

CONSTRUCTIONAL TOLERANCES OF
SHIELDED GRADIENT COIL SETS IN

ERRORS IN IN VIVO MRS!

3.1 Introduction

Slowly decaying eddy currents, induced in the structure of superconducting magnet
systems by the switching of magnetic field gradients, can cause serious artifacts
in both magnetic resonance imaging [1, 2] and magnetic resonance spectroscopy
(MRS) [3, 4]. Such eddy currents and hence the consequent artifacts can be greatly
reduced by means of actively shielded gradient coils [5], in which a current flowing
in an outer, shielding coil, cancels the fringe field generated by the current flowing

in the inner, primary coil.

An important issue, since shielded gradient sets can be readily constructed
by well equipped machine shops, is the required constructional tolerance relative to
acceptable artifact trade-off for specific applicatiors in MRI and MRS. This issue is
addressed here by treating theoretically the effect of a relative axial displacement of
the primary and shielding coils in a z gradient set which utilizes distributed currents
flowing on two coaxial cylindrical surfaces. This is accomplished by evaluating the
eddy currents induced in a surrounding coaxial conducting cylinder when the current
in the gradient set is switched. This, in turn, allows the eddy current field on the
z axis of the coil to be determined. Expressions are then derived which enable the

maximum tolerable relative displacement of the primary and shielding coils to be

1A version of this gi’;apter has beex;published! Q. Liu, D.G. Hughes, and P.S. Allen, J. Magn,
Reson. B 108, 205 (1995).
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determined for different imaging and spectroscopic protocols. The consequences
are illustrated by incorporating in these expressions typical numerical dimensions
obtained for representative animal-size (Bruker) and whole body-size (GE) magnet
systems and shielded z gradient coil sets of minimum inductance design [6].

3.2 Theory

We shall present the theory of magnetic shielding of cylindrical coils in the first two
subsections. The derivation is based on what was briefly outlined by Turner and
Bowley [7]. The results obtained will then be used in the last subsection to treat
the problem of misregistration in the construction of shielded gradient sets, which

has not been addressed previously.

3.2.1 The Magnetic Field Generated by a Current Distributed on the

Surface of a Cylinder

Since the switching rate of the magnetic field gradient in MRI and MRS is low, of

the order of a kiloHertz, displacement currents may be ignored.

We shall consider the current confined to the surface of a cylinder, and use
a cylindrical coordinate system in which the z axis coincides with the axis of the
cylinder. The coordinates of a point in space (p, ¢, z) are thus related to its cartesian

coordinates (z, y, z) by

=
i

(3.1)

o+
jut]
=)
B
Il

y
z
z.

)
il

We suppose that a surface current of density J(r') which vanishes at infinity flows

on the surface of a cylinder of infinite length and of radius a. The three components
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of the vector potential A(7), caused by this surface current, are given by

Ay(r) = #Dﬂj d¢'sin(¢ — ¢') / dz' qu(f?,, (3.2)
Ag(r) = #Da / d¢' cos(¢ — ¢') / dllfirr)l (3.3)
As(r) = %{?Ldﬁf @ J(" 2| (3.4)

where pg = 47 x 1077 N/A? is the permeability of free space.

To derive the required expression for the current distribution, we use the
Green’s function expansion [8]

177— Z / dk e™®=%) cos k(z — 2') I, (kp<) Km(kps), (3.5)

IﬁT =T | m==0co

where I,(z) and Kp,(z) are the mth order modified Bessel functions of the first
and second kind, respectively, and p< (ps) is the smaller (larger) of p and a. If the
trigonometrical function cos k(z — z') is expressed in terms of exponential functions,

Eq. (3.5) can be written as [7, 9]

|;:7:,,i > [T dkem e (koo Kn(lklpy).  (36)

Mm=—oo

The Fourier transforms of the components of J(#') are defined as follows [7)

, 1 .
Jpk) = ﬁ " dg emime [ dst Ju(a, ¢, e (3.7)
J(k) = o /:_w d¢' emim¢' / dz' Ju(a, ', z)e"’k*, (3.8)

go that the inverse Fourier transforms are

(@ d,2) = 5= 3 [T dbapReneen (3.9)

é?m__m o
| 1 © oo . ,
J(a, ¢, 2") = i / _dk I (k)em et (3.10)
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By substituting Eq. (3.6) into Eqs. (3.2) - (3.4), and using the definitions (3.7)
and (3.8), one finds that the components of A inside the cylinder (p < a) are

Ar) = B SE [ G TP (k) s (b]6) Koo (b]a)

47r m=-—0o0

= Int1(1k]p) Kmy1 (|k|a)] (3.11)
Ag(r) = ‘;‘;am__w / dk I (k)e ™ (1, (1k10) Kms (|k]a)

+ L (417) K (1) (3.12)
A(r) = “““ E / dk J7(k)e™ e I, (1k]p) Km(|K]a). (3.13)

One can write similar expressions for the components of A outside the cylinder

(p > a) by exchanging p and a in the integrands in Egs. (3.11) - (3.13).

In order to obtain the expression for the magnetic field B, we use Egs. (3.9)
and (3.10) to derive an important relation between Ji'(k) and J™(k). In the absence

of charge accumulation, the equation of continuity states
V' I =0. (3.14)

If the current flows only on the surface of a cylinder of radius a, Eq. (3.14) reduces

to
1 8J¢,r aJ. _ I
Substituting Eqgs. (3.9) and (3.10) into Eq. (3.15) yields
0 00 o _ Y BT .
Loy /_m dk [_’;’:ng(k) + kJ;(k)] eimd'eiks’ _ g, (3.16)

For Eq. (3.16) to be satisfied, the sum of the two terms in the square brackets must

vanish for each value of m. Thus, J7H(k) and J™(k) are related as follows

Jm(k) = Egjg*(k)_ (3.17)

By taking the curl of the vector potential A and using Eq. (3.17) and the

recurrence relations for modified Bessel functions, namely (10]

Imoi(z) = 1;($)+§Jm($) (3.18)
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In(@) = ZIn(a) (3.19)

Impr(z) = :
Ko (z) = If;i(m)egffm(m) (3.20)
Kmyi(z) = aff;n(:r)-slé%!‘{m(s:) (3.21)

where I} (z) and K/, (z) are, respectively, derivatives of I,,(z) and K, (z) with
respect to z, the components of the magnetic field B inside the cylinder can be

written as follows

By(r) = igf i [ kb TRt (KK () (3.22)

By(r) = -4 i fm llgldué (R)e™ e ml, ([klp) KL (Jkla) (3.23)

27p St

Bi(r) = ‘“’aff [kl dk T3 (k)e™ e I (K{o) I ([Kla).  (3.24)

Exchanging p and « in the integrand in Eq. (3. 22), and replacing Im(lklﬂ)ff",,(jk]g)
by IL.(|k|a) Km(|k|p) in the integrands in Egs. (3.23) and (3.24), yield the compo-

nents of B outside the cylinder.

3.2.2 Magnetic Shielding of Cylindrical Coils

A current confined to the surface of a cylinder of radius a produces a magnetic field
both inside and outside the cylinder. To reduce the magnetic field to zero at a finite
radius outside the cylinder, let us introduce a second current of density 7 (b, 4" 2",
which is confined to the surface of a cylinder of infinite length and of radius b, where
b > a. According to the result obtained in Section 3.2.1, the components of the
magnetic field B outside the cylinder of radjus b, generated by the currents on the

surfaces of both cylinders, can be written as

B,(r) = “‘“’ Z f kdk [aJP (k)1 (1kla)

+ bgé (R) I, (1K[B)] emPet® k! (k| p) (3.25)
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By(r) = o / mczk a3 (k)2 (ko)

27rpm_

+by¢ (k)I’(lklb)] méeik Ko (|klp) (3.26)
B.(r) = ; / |kl dk [aJ3 (k) 1n(|k|a)

+byz‘(k)f'(|ub)] e K (1K| o) (3.27)

where J'(k) is given by Eq. (3.7), and Ja (k) is defined similarly as

‘m 1 ™ —ima’ o . - - —ikz! o
3Pk = = /_ dg"emime /_ _ds" (b, ¢, 2")em k" (3.28)

everywhere outside the larger cylinder to be zero, it is requu‘ed that
QTP (k)T ([kla) + b (k)T ([K]B) = O (3.29)

for all m, which leads to

aI’ (]kla)

Jg (k) = — o7 AP, o (k). (3.30)

Using Eqs. (3.17) and (3.30) one obtains a relation between the Fourier transforms

of J.(a,d',2') and j.n(b, ¢", 2"), nemnely

a’l;, (|kla)

i (k) = WJ"’(A) (3.31)

where J*(k) is given by Eq. (3.8), and j™(k) is defined as
] 1 ” —i 3" . .
Jz (k) = 5= /_ _dé"e ~imé / dz" jun (b, ¢", 2")e=i* (3.32)

Egs. (3.30) and (3.31) can be used to find the current distribution on the outer
cylinder that will magnetically shield a coaxial cylindrical coil of smaller diameter
which carries a current of known distribution.

Using Egs. (3.22) - (3.24) and Eq. (3.30), the components of the magnetic
field inside the shielded coil are found to be
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- ol [ M aimé iks
By(r) = 5 3] m/ kdk I (k)eimd ek
T (1k1p) K (Ela)(1 = Sp), (3.33)
- —_— ,Llnfl - e k tm tkz
) = 88 £ [ s
(lHP)K' |kla)(1 = Sm), (3.34)
B;(T') — #gt‘;‘l i f ,kldk Jm(k) zmix ikz
I (IKIP)K’ (1kla)(1 = Sn), (3.35)
where
S = I (|ka) K7 (|k[6) (3.36)

I3, (Ik[6) K (Jkla)

It can be seen that if the Sy, term is set to zero, Eqs. (3.33), (3.34) and (3.35)
reduce to Eqgs. (3.22), (3.23) and (3.24), respectively. Since the radius b is assumed
to be greater than the radius a, both I, (|k|a)/ I (|k|b) and K! (|k|b)/K! (|k|a) are
less than one. Also, since I} (|k|a)/1},(|k|b) and K] (|k|b)/K! (Jk|a) are positive,
Sm falls between 0 and 1. Therefore, shielding a coil, while maintaining the same
current distribution in it, reduces the magnetic field inside it. This is reasonable
because the magnetic field generated by the current in the inner or primary coil is

partially cancelled by that generated by the current in the outer or shielding coil.

The Sy term naturally varies with b for fixed k and a. If b is equal to q,
i.e., if the shielding coil coincides with the primary coil, S,, becomes unity and the
magnetic field vanishes everywhere in space. In this case, we know, from Eqs. (3.30)

and (3.31), that the required current in the shielding coil has the same distribution

go to infinity, which is equlvalent to removal of the Shjelding coil, then S,, goes to

zero, § (b ¢",z") becomes zero, and the rnagnetic field given by Egs. (3-33) - (3.35)
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3.2.3 Eddy Current Fields Caused by Misregistration in the Construc-
tion of Shielded Gradient Sets

We consider a shielded z gradient coil set, consisting of a primary coil cylinder of
radius a and a shielding coil cylinder of radius b, each carrying a surface current.
The set is located coaxially within a single long conducting cylinder of inner radius
c. This configuration will give rise to just one eddy current distribution, whereas
several eddy currents of different amplitudes and decay times are normally found
in practice [11, 12, 13]. Nevertheless, this simple model, by representing the most
significant eddy current, should provide a reasonable estimate of their effect. We
shall first evaluate the initial magnitude of the residual eddy current field as a

function of the relative displacement of the primary and shielding coils.

The magnetic field generated by a z gradient coil is independent of the
azimuthal angle ¢. Thus, only the m = 0 term exists in the expressions for the
magnetic field given in Sections 3.2.1 and 3.2.2. Moreover, the axial component of
the current density vanishes according to Eq. (3.17). Since the axial component of
the magnetic field is antisymmetric about the z = 0 plane, the azimuthal component
of the current density must also be antisymmetric about that plane. That is, the
current density is an odd function of 2. The Fourier transform of the current density
must have the same symmetry property with respect to k. By taking the above
constraints into account, the z component of the magnetic field, BP"™, generated
at an external point (p, ¢, z), where p > a, by a current flowing in the primary coil
alone can be written as

BY™(p,2) = =22 [Tk dk J3(k) sin ke Iy(ka) Ko(kp), (3.37)

T

where J(k) is the Fourier transform of J,(2’), the current density in the primary

coil, defined as

JO(k) = /_ ‘: dz' Jy(=')e ", (3.38)
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The field at a point within the primary coil is given by Eq. (3.37) with Ig(ka)Ko(kp)
replaced by Io(kp)Ki(ka). Using the identities Ij(z) = I1(2) and K§(z) = —K;1(2)
[10], the magnetic field on the z axis, generated by a perfectly shielded 2 gradient

coil, can be expressed as
B.(z) = o2 / k dk JO(k) sin kz K (ka)(1 — S), (3.39)

where
I (ka) K, (kb) o
50 = (B K (ko) (3.40)

If the primary gradient coil is displaced in the z direction by a small distance

Az from its proper location in the shielded configuration, BP"™ will become

z

BP™(p, z — Az) = —3&/ kdk JO(k) sin k(z — Az) Ii(ka)Ko(kp).  (3.41)

To a first approximation, BP"™ is given by

OBE™(p, z)

BFi™(p,z — Az) = BP™(p,z) = Az= “n (3.42)
where .
prim y (<=2 . i
aBza(P’z) = 9% [ 2dk JY(k) cos kz y(ka)Ko(kp).  (3.43)
z 0 S

Since the field generated by the current in the shielding coil cancels BPF™(p, z) in
the region p > b, switching on a current in the shielded gradient set will cause the
z component of the fringe field outside the shielding coil to increase from zero to

7,9 (py %)

ABprun(p’ ) 83

(3.44)

This change in field will induce an azimuthal eddy current in the surrounding con-
ducting cylinder, which will generate a magnetic field with the same spatial symme-
try as the fringe field ABP"™(p, z). To evaluate the magnitude of this eddy current,
we assume perfect passive shielding [7] and an eddy current that is essentially con-

fined to the inner surface of the cylinder. Thus, the z component of the magnetic

W
=



field produced in the region p > ¢ by the eddy current density, o4 (2') say, is given
by

B%y(p 5) = —Ho¢ / k dk 0S(k) cos kz I (k) Ko(kp), (3.45)

where

o§(k) = [ de'op(a)e (3.46)
Since this field, B:i%(p, z), totally cancels the fringe field given by Eq. (3.44) in the
region p > ¢, the eddy current density must satisfy the condition

alj(ka) o
clj(ke) ¢

oS(k) = ikAz Jo(k). (3.47)
The assumption of perfect passive shielding presupposes that the charac-
teristic decay time of the eddy current induced in the surrounding cylinder due to

resistive IQSSES, is much IDDgEI‘ than the time scale which characterizes the switching

in practice. The assumption that the eddy current is essentially confined to the
inner surface of the conducting cylinder also presupposes that the electrical con-
ductivity of the surr@uﬁding cylindez is sufficiently large that the skin depth at the
to the thickness of the cyhnder and much smaller than its radius c¢. This may well
be a good approximation for fast imaging modalities such as echo planar [14] where
bipolar gradients are switched at a frequency ~ 1 kHz, but for switched gradients
possessing a substantial dc component such as those used for slice selection, this is
not the case. Nevertheless, in these latter situations, Eq. (3.47) should provide an

upper limit for the initial eddy current density.

Since the initial amplitude of the z component of the magnetic field in the

region p < c, generated by the eddy current, is given by

Beddy(p 5) = —H0C / k dk o (k) cos kz Io(kp) K} (ke), (3.48)
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it follows from Eq. (3.47) that the initial amplitude of the eddy current field on the
axis of the shielded gradient set is given by

B () = Z/loaA / dekJo(k)costIu(Lc) (3.49)

In the absence of any further gradient switching, B:49(z) will decay to zero because

of resistive losses.

In most practical cases, JJ(k) is significant over the range 0 < k < 27/a.
Thus, provided z%/a? is much smaller than unity, sin k2 and cos kz can be replaced
by kz and 1 — (kz)?/2, respectively. In that case, from Eq. (3.39), the field gradient
produced by the shielded gradient set, when the primary coil current is Ja(k), is

given by

G. = B,(z)/z
ol [ N -
= f"WL /0 k2 dk JO(k) Ky (ka)(1 — Sp). (3.50)

Moreover, the initial amplitude of the eddy current field, caused by switching on

Jo(k), is of the form

2\ 2

B () p [1 —7 (2) } , (3.51)

where the homogeneous part of the eddy current field, P, is given by

_ hoa ® 2 1001 e ( 1oy J1(ka)
p=H2A, /0 K2k JG(R) K (ke) . (3.52)
and the dimensionless inhomogeneity factor, 7, is given by

2 [5° KAk JO (kYK (ke) Iy (ka) /Iy (K ,
c? [§° Kdk J3() K (ko) Iy (a) /Iy ke) .

" 257 k2dk JO(k) Kn (k) Iy (ka) /T (ko)

The n(z/a)? term in Eq. (3.51) will usually be unimportant, so that the predominant
effect of displacing the primary coil along the z axis from its correct position is to
generate a fairly uniform “Bj shift”. In most of what follows, we shall neglect the

z dependence of B9 (z) but will need to take its time dependence into account.
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Accordingly, we shall characterize the seriousness of the misregistration by the initial
amplitude of the eddy current field, which we shall denote by (B:99),, caused by
switching on the gradient field. It follows from Eqgs. (3.50) - (3.52) that

(BS¥)y = RG, Az, (3.54)

where

. Jo° k2dk Jo(k) K, (kc)l;(ka)/_fj(kg) (3.55)
S kdk JY(R) K (ka)(1 — Sp) 3499,
The ratio R depends upon the design of the shielded gradient set, and, for any
particular design, upon the ratios b/a and c/a. However, it is independent of the

scale of the gradient coils and the surrounding conducting cylinder.
3.3 Application to Some Imaging Protocols

For imaging sequences based on the two-dimensional Fourier transform method [15],

it is necessary to consider separately the switching of the slice selection, phase encod-
ing, and frequency encoding or read gradients, Gyjice, Gphase and Greaq, respectively,
as their effects are different. In each case, the artifact caused by the gradient switch-
ing is determined by the change in the eddy current field, denoted by 6B, which
occurs during a particular time interval. However, §B&Y is linearly dependent
upon (B5i%)o, the initial amplitude of the eddy current field caused by switching
on the z gradient, so that one can write

5E§ddy — &(Bsﬂdy)g- (3.56)

The parameter o will naturally depend upon the pulse sequence being considered.
However, it will also depend upon the role played by G, in that sequence, i.e.,

whether G, is the slice selection, the phase encoding, or the read gradient.

For simplicity, we shall assume, in what follows, that the switching of G,
is instantaneous. Derivation of the expressions for « in the rest of this chapter is

given in Appendix A.
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3.3.1 Effect of the Eddy Current Field Caused by Switching Gijce

The eddy current field generated during slice selection by the switching of Gyice,
i.€., Gz, will not only affect the slice selection but will also affect processes occurring
at later times due to the slow decay of the eddy current field. The effect on slice
selection will be to displace the slice from its “true” position while at the same time
modifying its profile. Because of the decaying, homogeneous eddy current field,
the slice will be thicker than the desired one, but spins near the two faces of the
slice will not be fully excited. Thus, the slice profile will be broader at the bottom
and narrower at the top. In many applications, a small displacement of the slice is
not a serious problem. However, changing the profile of the slice constitutes a real
artifact. We shall suppose that (§B5%%)pax, the maximum tolerable change in the

expressed in field units, so that

(6 BEIY) oy = BG.:(slice thickness). (3.57)

It follows from Egs. (3.54), (3.56), and (3.57) that (Az)max, the maximum allowable
misregistration of the primary and shielding coils in a shielded gradient set, is given
by

slice thickness)

R 3

(Az)max = (:5/‘1)( (3.58)

where
o =1 — g Tice/T (3.59)
Tslice 15 the duration of the slice selection gradient, and 7 is the decay time of the eddy

cases, the eddy current field which is present during the refocussing interval of the

slice selection gradient, will have little effect upon the refocussing,

In considering artifacts in the phase encoding direction, associated with eddy

currents generated by Gijce, it is important to distinguish between multishot and
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single-shot imaging techniques. In multishot imaging where phase encoding is
achieved by incrementally changing the amplitude of the gradient pulse between
each shot [16], the eddy current field generated by the slice selection gradient has
no consequence, since the phase shift due to the eddy current field is the same in
each “shot”. However, in “single shot” imaging such as echo planar, where the time
dependent phase shift imposed by the slice selection gradient is sampled sequentially

at different times, the phase shift is different at each sampling.

Consider, for example, the MBEST version of echo-planar imaging [17],
whose pulse timing diagram is shown in Fig. 3.1a. If we postulate that (§B29) ..,
the maximum allowable change in the eddy current field, which occurs during the
entire acquisition period due to switching Gace, is equal to the field increment

corresponding to the digital resolution in the phase encoding direction, then

G h L haseT3
§ Beddy ay = —b—c puase 9 .
( Bz )m Nph&seTz [ (3 60)

where 73 and Gphase are, respectively, the duration and amplitude of each gradient
blip, and Lphase and Mphase are, respectively, the field of view (FOV) and the number
of sampled points, in the phase encoding direction. Also, 7, is the duration of each
read gradient pulse. It follows from Eqs. (3.54), (3.56), and (3.60) that the maximum

allowable misregistration of the primary and shielding coils is given by

_ GphaseLphueTi?.
(Az)max - NphaseRlaleliceT2 ’ (361)

where « is in this case given by [18]

o= (1 + e~ 3Mlice /27 _ 26-T-uce/2f) (1 - e—m’z/T) e~ [m+(m2/2))/7 (3.62)

and n (= Mphase) is the total number of echoes. Here 71 1s the duration of the

prepulse in the phase encoding direction.

The artifact in the frequency encoding direction, caused by switching Gejce, is
much smaller than that caused by switching either Gphase OF Greaq and will therefore

be neglected.
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Figure 3.1: Pulse timing diagram for (2) MBEST imaging, (b)

FLASH imaging, and (d) STEAM spectroscopy. In (c),
angle.

SE imaging, (c)

a denotes a small flip
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3.3.2 Effect of the Eddy Current Field Caused by Switching Gppase

In multishot imaging where the amplitude of Gphase is incremented, the eddy current

than to shift the image, because the eddy current field itself is incremented in
proportion to Gphase. On the other hand, in MBEST imaging, the same criterion
as before, namely that §B% is equal to the field increment corresponding to the

digital resolution in the phase encoding direction, leads to

L*hasefg f 7
Az)may = —BhseTs 3.6
( 3) X NphaseRlQITE (3 63)

Here « is given by

rau (1 — u""") ,
rrp (3.64)

o= [(1 - fﬁ/") ul/? — :—3] (1—-u")+

where u = exp (—=73/7). In deriving Eq. (3.64), it has been assumed that 73/7 < 1,

and that the prepulse and the blips comprising Gphase all possess the same amplitude.

"The artifact in the frequency encoding direction, caused by switching Gphase,

is much smaller than that caused by switching Greaq and will therefore be neglected.

The maximum tolerable misregistration of the primary and shielding coils, governed
by the acceptability of artifacts generated by the switching of Greaq, is given by
(A2)mae = J\%ﬁ:m (3.65)
when 6B% during the (read) acquisition period is set equal to the field incre-
ment corresponding to the digital resolution in the frequency encoding direction.
In Eq. (3.65), Lread and MNeaq are the FOV and the number of sampled points, re-

spectively. For spin-echo (SE) imaging, a multishot technique whose pulse timing

51



diagram is shown in Fig. 3.1b, a in Eq. (3.65) is given by
o= [1 - (1 - E‘”Eq/g’i) e"f‘/"’] (1 - s’f"‘?ﬁ) , (3.66)

where 7,q is the duration of the read gradient pulse, and 74 is the interval between

switch-off of the read compensation gradient and switch-on of the read gradient.

and whose pulse timing diagram is shown in Fig. 3.1c,  is given by
a=(2-e™/7) (1 gmmlT), (3.67)

For MBEST imaging, «, characteristic of 68549 during the first echo, is [2 —

exp (—72/27)}[1 — exp (—72/7)]. However, a more appropriate expression is

state” has been achieved.

3.3.4 Numerical Estimates of (Az)nax

The above relations were applied to two different shielded z gradient systems, whose
dimensions, a, b, and c, together with their ratios b/a and ¢/a, are listed in Table 3.1.
System 1, installed in a 40 cm bore, 2.35 T Bruker magnet, is a shielded gradient
set of minimum inductance design [6], which was constructed using discrete wires
in our machine shop. The value of ¢ was taken to be 0.22 m, the radius of the first
(i.e. closest to the sample space) cryogenic shield in the magnet (Bruker Canada,
private communication). System 2 is based on the 1.5 T, whole-body GE magnet
that is widely used in clinical MRI studies. Here, again, ¢ (= 0.49 m) was taken
to be the radius of the first (80 K) cryogenic shield (GE Medical Systems, private

communication). The values of @ and b, used in the whole body case, were the same
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Table 3.1: Values and ratios of @, b, and ¢ which characterize the two shielded

gradient systems considered in the text®

System Magnet a{m) b(m) c(m) b/a c/a R

1 2.35 T 40 cm 013m 017m 022m 131 169 0988
bore Bruker

2 1.5 T whole-body GE 0.30m 042m 0.49m 1.40 1.62 0.294

“Also shown are the corresponding values of R derived using Eq. (3.55).

as those employed in some shielded gradient sets supplied by GE for their 1.5 T
magnets. For purposes of calculation, we assumed that the current distribution in

the primary coil of System 2 was an appropriately scaled version of that of System 1.
It is first necessary to evaluate R using Eq. (3.55). Since the current is
carried by discrete wires, at known locations t2, J4(z') is given by

N
Jo(2') = Z I[6(z'~ 25— 6(z' + 2)], (3.69)

where [ is the magnitude of the current flowing in each turn and N is the number

of turns in each half of the coil. It therefore follows from Eq. (3.38) that

N
Jo(k) = =21y sin k2!, (3.70)
“ |

By evaluating the integrals in Eq. (3.55) with the aid of Eq. (3.70) and as a
function of ¢/a, the graphs shown in Fig. 3.2 were obtained for Systems 1 and 2. As
expected, R falls off rapidly with increasing values of c/a, i.e. with increasing radius
of the conducting cylinder in which the eddy current is induced. The two dots on

the curves locate the parameters of the two systems being considered, the values of
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Figure 3.2: The ratio R, defined in Eq. (3.55), plotted as a function of ¢/a for
b/a = 1.31 and 1.40. The two solid circles refer to Systems 1 and 2, described in

the text.
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R being given in Table 3.1. Because of the competing demands of high coil efficiency
and large usable sample volumes, the b/a ratio of most shielded gradient sets used
in MRI is likely to lie between the two examples chosen, namely 1.31 and 1.40.
Since R varies relatively little with b/a in the range b/a = 1.31 to 1.40, for a given
¢/a, an approximate value of R for shielded gradient sets of minimum inductance
design with values of b/a in this range, can be found by linear interpolation between

the two curves in Fig. 3.2.

In order to determine values of (Az)max for the SE, FLASH, and MBEST
protocols, we used the typical experimental parameters listed in Table 3.2. (The
timings for MBEST are similar to those given in Ref. [17].) The effect of the eddy
current field generated by a switched gradient depends very strongly on the decay
time 7 of the eddy current. Analysis of the eddy current fields generated by switch-
ing the z gradient in our 40 cm bore 2.35 T Bruker magnet showed three distinct
eddy currents with decay times of (13.842.5) ms, (70+5) ms, and (362+5) ms [13].
Decay times of 17.5 ms, 29.7 ms, and 267 ms were found by Jehenson et . [12]ina
60 cm bore 3 T Bruker magnet. Since the decay time of an eddy current induced in
a shield depends on parameters which vary with magnet design such as the thick-

namely 10 ms and 100 ms. These values are representative of a rapidly decaying

and a slowly decaying eddy current, respectively.

We first consider System 1, which is characterized by R = 0.288. The value
gradient, is found by first determining a using Eq. (3.59). For an eddy current
with 7 = 10 ms, & is 0.375. If B is assumed to be 0.1, implying that the maximum
tolerable value of 6 B9 during the slice selection period is 10% of the typical slice

thickness expressed in field units, then Eq. (3.58) yields (A2)max = 1.9 mm. If 7 is
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and MBEST®

(a) SE®
Gaice = 1 G/cm, Ty)ice = 4.7 ms, Slice Thickness = 2 mm.
Gread = 1 G/cm, Lreaq = 10 cm, MNyeaa = 256, 7aq = 6 ms, 74 = 5 ms.

(b) FLASH?

Same slice selection parameters as in SE

[
.
3

Gread = 1 G/cm, Lread = 10 cm, Nyepa = 256, Taq
(c) MBEST

Same slice selection parameters as in SE

Gphase = 0.23 G/cm, Lphase = 10 cm, Mphase = n = 64.

T2 =1.0ms, 73 = 0.1 ms

®The parameters used for System 2 are the same, except that Lphase and Lyead are 20 cm, the

slice thickness is 4 mm, and Gilice, Gphase and Gread are reduced by a factor of two.
bParameters for the phase encoding gradient are not required for SE and FLASH.
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which are listed in Table 3.3, are characteristic of all three protocols, SE, FLASH,

Values of (Az)max, associated with artifacts in the phase encoding and fre-
quency encoding directions, caused by switching each of the three gradients, are
found in a similar manner and are listed in Table 3.3. Where there are no entries,
the artifact is either negligible, corresponding to a very large value of (A2)max, or
totally absent as in the case of the phase encoding direction when switching Giyjice

or Gphase in the multishot protocols.

It is evident from Table 3.3 that an eddy current with 7 = 10 ms requires
much more accurate shielding, and hence registration of the primary and shielding
coils, than does an eddy current with 7 = 100 ms. This is because Tilicey Tphase; and
Taq are all ~ 10 ms. If 7 ~ 100 ms, there is substantial cancellation of the eddy

current fields generated by the switch-on and switch-off of the gradient pulses.

For System 2, we take the FOV and the slice thickness to be a factor of two
larger than the values used for System 1 (see Table 3.2). The gradient amplitudes
are assumed to be a factor of two smaller than those used for System 1, thereby
maintaining the same timings and hence the same values of o as before. Since R
for System 2 is, coincidentally, almost the same as that for System 1, it follows that
the (Az)max values for System 2 are approximately a factor of two larger than for

System 1. They are therefore not listed.

3.4 Application to Proton Spectroscopy
To illustrate the effect of a misregistration of the primary and shielding coils in the

proton spectroscopy of uncoupled spins, we consider the stimulated echo (STEAM)

spectroscopy sequence [20] in which volume selection is achieved by applying three

selective 90° pulses successively in the presence of each of three orthogonal gradients,
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Table 3.3: Values of (Az)max, evaluated for System 1 and for two different values of

7, the decay time of the eddy current, for the imaging protocols considered in the
text®
Switched Gradient Artifact Direction Protocol 7 (ms) (A2z)max (mm)
Glice Slice All 10 1.9
10 15
Gilice Phase MBEST 10 2.1
100 13
Gphase Phase MBEST 10 1.5
100 8.8
Gread Read SE 10 3.6
100 24
Ghread Read FLASH 10 3.5
100 34
Glread Read MBEST 10 27

%Values of (Az)max for System 2 are approximately a factor of two larger than those shown for
System 1.
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as shown in Fig. 3.1d.

Since the three slice selection gradients are usually of equal amplitude, we
shall only consider the effect of the second Gljices pulse which we shall assume to be
G:. It follows from Egs. (3.54) and (3.56) that

(6827 ) max

Rle|G, (3.71)

The eddy current field caused by the second Gyces pulse will almost completely
decay during the data acquisition period, since acquisition is usually of the order of

several hundred milliseconds. Thus, a in Eq. (3.71) is given by

a= (1 - EET"'/”) gifﬁﬁ, (3.72)

the switch-off of the second Gijces pulse and the beginning of acquisition.

A reasonable value for (§B:% ),y in in vivo proton spectroscopy is 3 Hz or

typical values G; = 1 G/cm for the excitation of a small, 1 x 1 x 1 ¢cm, VOI in
System 1 and G, = 0.5 G/cm for the excitation of a small, 2 x 2 x 2 cm, VOI in
System 2, with 75 = 20 ms and 76 = 15 ms in both cases, it is found that a = 0.19
for 7 = 10 ms and 0.16 for 7 = 100 ms. Substituting values of (6B, .., G., «,
and R in Eq. (3.71) yields (Az)max for System 1 equal to 0.13 mm for 7 = 10 ms,
and 0.16 mm for 7 = 100 ms. For System 2, the values of (Az)may are essentially
twice as large, reflecting the difference in the dimensions of the VOI. It should be
noted that, in contrast to the imaging situation, the tolerances are roughly similar
for eddy currents with short and long decay times. This is because of the long

acquisition times and gradient pulses used in proton spectroscopy.

Ordidge and Cresshull proposed a correction method for a time-dependent

change in the homogeneous component of the eddy current field by phase correction
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in the time domain [3]. Firstly, the phase of an on-resonance signal from a sample of
single resonance, such as water, is measured as it evolves following a gradient pulse
sequence. This phase evolution is then subtracted from all subsequent time domain
signals obtained by the use of the same sequence in order to remove the effect of
homogeneous eddy current fields. However, even if the eddy current field effect is
reduced by an order of magnitude by this means, it is evident that an accuracy
of about 1 mm is still required in assembling a z gradient set for System 1. For

System 2, the required accuracy would be about 2 mm.

If the homogeneous component of the eddy current field could be totally
eliminated by a correction method, an artifact would still be caused by the inhomo-

geneous component, represented by the n(z/a)? term in Eq. (3.51). Evaluation of

over a region extending from z/a = —0.25 to z/a = 0.25, the inhomogeneous com-
ponent of the eddy current field is 3.6% of the uncorrected homogeneous component
for each system. Thus, the inhomogeneous component of the eddy current field, if
uncompensated, would require (Az)max to be 0.13/0.036 ~ 3.5 mm for 7 = 10 ms

and 0.16/0.036 ~ 4.4 mm for 7 = 100 ms, in System 1. In System 2, the values of

sequences.
3.5 Summary

The demands of in vive proton spectroscopy require tolerances of order 0.1 mm
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both animal-size and whole-body-size magnet systems. Corresponding tolerances
for systems to be used for SE, FLASH, and MBEST imaging are more modest,
being roughly 1 mm if the eddy currents have decay times of the same order as the
duration of the gradient pulses. If the eddy currents have much longer decay times,

the tolerances are significantly relaxed.

We note that a z gradient set can be aligned in the z direction by, for
example, plotting the fields generated by the primary and shielding coils separately
as a function of z, and ensuring that the centers of the two gradient fields coincide.
However, alignment to better than about 1 mm may not be easy to achieve in

practice.
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Chapter Four

DESIGN AND CONSTRUCTION OF A LOW
POWER DISSIPATION, CYLINDRICAL Z*4
SHIM COIL FOR A WIDE BORE NMR
MAGNET!

4.1 Introduction

An important feature of superconducting solenoids used for NMR is the compensa-
tion of the variation of the magnetic field strength in the z direction, arising from
the “end effects” associated with the finite length of the solenoid. Such compen-
sation is in practice imperfect, so that shim coils, either superconducting or room
temperature, are required to cancel the remaining variation in the z direction. Shim
coils are also required to compensate the field variations in the transverse directions,

though these are expected to be smaller.

The variation of the field strength in the transverse directions in our 40 cm
bore Bruker magnet of 1984 vintage could be quite accurately compensated using
low order shims (cf. Refs. {1, 2]) with a power dissipation of roughly five watts.
In sharp contrast, the axial variation, which is predominantly fourth order in the z
coordinate, could only be one-third compensated using the z* shim coil provided by
the manufacturer, the associated power dissipation being about 100 watts leading
to temperature increases in the sample space of up to 12°C in one hour, depending
upon the equipment located therein. This defect seems to be shared by several

other animal-size magnets manufactured during the 1980s.

1A version of this chapter has been published. Q. Liu, D.G. Hughes, and P.S. Allen, J. Magn.
Reson. A 107, 215 (1994).
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To overcome the problem, we designed and constructed a replacement z*
shim coil which allows full compensation of the 2* field variation with a power
dissipation of only 21 watts. The reduced power dissipation can be partly attributed

stems from the design of the coil itself.

Romeo and Hoult (3] have proposed a 2! shim coil design. However, they
did not consider factors which affect the power dissipation. In this chapter, we shall

show how various design parameters affect the power dissipation and field profile

be designed using the distributed current, target field approach [4], our discussion

rings, along the lines pioneered by Golay [5] and developed by others (3, 6]. We
first consider the design characteristics of z* shim coils which generate no 20 (field

their lower power consumption, we also consider z* shim coils, called Type 2, which

generate no 2% and 2° components but can generate a significant 20 component.
4.2 Theoretical Considerations

4.2.1 Design of Type 1, z* Shim Coils for Which the z°, 22, and All Odd

Power Terms Are Zero

The magnetic field at a point z on the axis of a circular ring of radius a, situated

at z; and carrying a current I, is given by

Bi(z) = £ [1 + (g_ziﬂ - (4.1)

a

A pair of such rings, located at 2z = =&z, and carrying identical currents I;, would

generate an axial field, all of whose odd derivatives are zero at the origin [3]. To
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obtain an axial field satisfying the conditions

I
o

(B:).=0 (4.2)

(d*B./dz?)

I
o

(4.3)

2=

which imply that the 2% and 2? terms are zero, an additional pair of rings of radius
a with z coordinates of +z,, say, is required, each carrying identical currents /.
The magnetic field on the 2 axis generated by the two pairs of current rings is given

by

B.(z) = EB{ L T A 3/2
2a [l-i-(z'—:.q)z/(zﬁ]J2 [1+(E+gl)2/a2]'ﬁ

I, ) I, 7
+ 3z T = 7 ( (4.4)
[+ (2= 22)? /a?] / [14 (2 + 2)° /22]3/ }

Substituting Eq. (4.4) into Eqs. (4.2) and (4.3) yields

1 1
h sa72 12

L+ @2/ T L (rafa) "
1~ 4(z/a)" 1=~ 4(ze/a)? |
L+ (a1/a2) T [+ (zafa)

=0 (4.5)

= 0. (4.6)

Each of Eqs. (4.5) and (4.6) gives rise to an independent condition on L/L,
which if simultaneously applied, can be solved to give the following relations between

design parameters:

_ (zl/a)2+§ 172 .
/e = [4(zl/a>2—1] , (&0
21/a = -;—[5(11/.[2)2/34'1]1/2 (48)
nfe = %[5(12/11)2’3“]1’2. (4.9)

The relation between z;/a and z;/a, i.e. Eq. (4.7), is plotted as a broken curve

in Fig. 4.1, together with representative values of I;/I,. The curve is symmetric
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Z/a

Figure 4.1: The broken curve shows conjugate values of z,/a and z2/a for Type 1,
2% shim coils, i.e. those which generate no z° and 2% components. The solid curves,
denoted by Type 2a, 2b, and 2c, show conjugate values of z;/a and z2/a for Type 2,
2% shim coils, i.e. those which generate no z? and 2 components. The points

and associated numbers show some representative values of I,/I;. The graph is

symmetric about the diagonal dotted line for which zi/a = z;/a.
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about the dotted line representing z;/a = 2z3/a and possesses two asymptotes at

z1/a = 0.5 and z3/a = 0.5.

It is evident from Eq. (4.7) that a symmetrical three-ring arrangement, e.g.
one in which 21 = 0, gives rise to an imaginary solution and is therefore not tenable.
Thus, the minimum number of rings for a Type 1 shim coil is four, a result which
is at variance with Romeo and Hoult’s assertion [3] that systems which provide a

variation as zP in B, (while all lower orders are zero) comprise (p + 1) rings.
A design which satisfies the condition

I/ I >~ —ny/ny, (4.10)

where n; and ng are small, positive, even integers can be conveniently implemented
by winding two pairs of coils at +z, and +z,, with each pair consisting of n,
and n, turns, respectively. A z* shim field will be generated by passing the same

current /, say, through the two pairs of coils, connected in series opposition so as

to accommodate the negative sign in Eq. (4.10).

In order to compare the power dissipation of z* shim coils of different design,
it is necessary to identify the parameters which govern the power dissipation of a
z* shim coil of given design, i.e. characterized by particular values of I,/1I;, z,/a,
and zz/a. We first consider the effect of scaling the linear dimensions of the coil, as
well as the wire (including its diameter) comprising it, by a factor A, say. The z*

field generated by a given current is scaled by a factor A~% [3]. Thus, to obtain the

same z* field, the current I would have to be scaled by a factor AS. However, since
the coil resistance R would scale as A=, the power dissipated, I ?R, in generating a

particular 2 field would scale as A?, a very strong dependence.

For a four-coil 2* shim coil, the power dissipation is given in terms of the

current / flowing in the coil, by

P= ’:P (ny + ng) I2, (4.11)

67



where p and A are, respectively, the resistivity and cross-sectional area of the wire,
and where the resistance of the leads and interconnections has been neglected. By
introducing the total or integrated cross-sectional area of all the turns of wire given
by

Ator = (n1 + n2) A, (4.12)

Eq. (4.11) can be rewritten as

P =P (n; £ y) I, (4.13)

where we note that A,y is a good measure of the space taken up by the windings.
Since, for a given design, in particular for a given ratio ny/n,, the amplitude of the
shim field is proportional to (n; + n,)I, it can be seen that the power dissipation
depends on Aiq, a, p and the amplitude of the shim field. It should be noted that
the power dissipated in generating a shim field of given amplitude is independent of
the cross-sectional area A or gauge of the wire, provided A, is fixed. Any change
in A requires a compensating change in (n; -+ nz) to keep Ay, fixed. That, in turn,
‘Tequires a compensating change in the current I to generate the same shim field,

the net result being that the power dissipation remains unchanged.

This result, which does not seem to be widely appreciated, allows a mean-
ingful comparison of the power dissipation of z4 shim coils of different design to be
made by requiring that A, in addition to a, p, and the amplitude of the shim field,
be the same in each case. Imposing this condition on Ator amounts to keeping the
space occupied by the windings the same, and different designs should be compared
on that basis, since space for the windings is in many cases the limiting factor.
It should be noted that the power dissipation of z* shim coils of different design,
but characterized by the same values of A, a, p, and shim field amplitude, will
nevertheless vary because of the influence of the [(n1 + n2)I)? term in Eq. (4.13).

(This term is constant for a given shim field amplitude only if n; /ny remains fixed.)
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To obtain the relationship between the power dissipation and I5/I;, the
amplitude of the 2* field, (d*B,/dz*),-¢, needs to be determined, From Eq. (4.4),
(d*B;/dz*).=0 is found to be given by

E)ure T @ T L (mfa
, w1920 /a)? b Rl e f )
N /_IE) 1= 12(z/a) +81g.;:§/a)}_ (4.14)
[1+ (22/a)?]""
If (d*B./dz*).=0 and a are the same in the different designs, we have
) | —12(z1/a)? + 8(z1/a)t I\ 1 — 12(25/a)? A N ,
I {1 12(21/a) +81g2/‘1)+ (_2) 1= 12(z/a)’ +§§f§/a) } ()
[T+ (aa e B) U (afa) T
Substituting Eqs. (4.8) and (4.9) into the above expression, and noting I/, =

=1

—ny/ny = ~|I;/1;|, we obtain

o (1 + lfz/z_rilzﬁ)ulg ,
' /T + 20T/ — 20/ L/ TiF = 8| L/ L, 75"
Combining Expression (4.16) and Eq. (4.13) yields a relationship between the power

(4.16)

I

dissipation and |I3/I;| given by

- ) _ A\ 11
» (L+ T/ 1)) (14 I/ 1L |°) w1
X — = = = — = = = = +.1
(BlL2/ L] + 20112/ 1|3 — 20| 1o/ 1, 2 — 3|1,/ 1|11/3)?

The dependence of the power dissipation on [I;/I;| for Type 1, 24 shim coils
is illustrated by the broken curve in Fig. 4.2 where it has been assumed that ze > 2
so that |Io/ 11| > 1. The curve possesses an asymptote at I/I, = —1, since, in that
limit, the two pairs of coils coincide and exactly cancel each other. It can be seen
that the most efficient configuration is one where I, /11 =~ —4, i.e. where ny/ny ~ 4,

the corresponding values of z;/a and z;/a, from Egs. (4.8) and (4.9), being 0.864

proposed by Romeo and Hoult (3] for which I,/I, = —9.
A second important criterion in assessing the performance of a shim coil is

the spatial region over which the field closely approximates the desired functional
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Figure 4.2: The broken curve shows the power, expressed in arbitrary units, dissi-
pated by Type 1, 24 shim coils, plotted as a function of |[I2/11]. The solid curves
are corresponding graphs for Type 2a and 2b z* shim coils. The dotted line shows
the asymptote (I/I; = —1) of the curves corresponding to Type 1 and Type 2b
shim coils. The end point P of the lower branch of the Type 2a graph represents
‘a three-ring design where z1/a = 0. The replacement shim coil was constructed

following the Type 2b design indicated on the graph. Romeo and Hoult’s Type 1



form. The linear dimensions of this region obviously scale with the radius of the
coil. Figure 4.3a shows the actual shim field and the ideal 2 behaviour, fitted at the
origin, for three different design parameters, namely L/l = =2, —4, and --8. The
range of |z|/a over which the shim field deviates from the ideal 2* behaviour, first,
by less than 5% and, second, by less than 10% of the ideal are listed in Table 4.1
for these three designs, While the shim field generated by a I/I, = —8 design
(and the Romeo and Hoult I,/1; = —9 design [3]) follows closely the 2% behaviour
for |2|/a < 0.5, the shim field generated by the I/I; = —4 design is a better
approximation over the range |2|/a < 1. Since this configuration is also the most
efficient in terms of power dissipation, it would seem to be the best Type 1, 2*
shim coil, especially if a 2* field is required over a large region. Even though, as
will be seen later, the Romeo and Hoult design is close to satisfying the condition
(d°B;/d2%).=0 = 0, in addition to those in Egs. (4.2) and (4.3), it generates a
significant 2® component. The I,/I; = —4 design, on the other hand, generates a

smaller 2% component which is largely cancelled by a 2% component of opposite sign.
4.2.2  Design of Type 2, 2* Shim Coils for Which the 22, 26, and All Odd
Power Terms Are Zero

In practice, it is not usually essential for the constant (2°) field to be zero. We

therefore relax this condition and, instead, examine Type 2, z* shim coil designs

rﬁi) ,
=] =0 4.18
( dz? / z=0 ( )

( dﬁi)gu = 0. (4.19)

As before, we consider two pairs of rings, one pair at z = £z carrying a current [,

which satisfy the conditions

the other pair at z = %2, carrying a current I,. The field on *he z axis is therefore
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Figure 4.3: (a) The solid curves show the axial field B,, expressed in units of

(#ol1/a), generated by Type 1, z% shim coils, plotted as a function of |z|/a for the
case where I /1 is equal to (i) ~2, (ii) - 4, and (iii) —8. The broken curves show
the corresponding ideal z* behaviour. (b) Corresponding curves for Type 2a, 2
shim coils where /1, is equal to (i) 4 on the upper branch in Fig. 4.2, (ii) 4 on the
lower branch in Fig. 4.2, (iii) 5.93 on the lower branch in Fig. 4.2, corresponding
to a three-ring design. (c) Corresponding curves for Type 2b, z* shim coils where

I/ 11 is equal to (i) —2, (ii) —4, and (iii) —8.
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Table 4.1: Values of |2|/a, < 1.0, where deviations of the shim field from the jdeal
z* functional form are, first, less than 5% and, second, less than 10% of the ideal

field for some representative Type 1, 2a, and 2b configurations

“Values of [z[/a where devia-
tions from the ideal z* func-
tional form are:

Shim field displayed

as curve in figure

Coil type I,/1 < 5% < 10%

Type 1 -2 < 0.296 < 0.430 4.3a (i)
Type 1 -4  <0.408,> 0.911 everywhere 4.3a (ii)
Type 1 -8 < 0.688 < 0.818 4.3a (iii)
Type 2a° 4 < 0.470 < 0.581 4.3b (i)
Type 2% 4 < 0.500 < 0.610 4.3b (ii)
Type 2a¢  5.93 < 0.457 < 0.562 4.3b (iii)
Type2b -2 < 0.579 < 0.704 4.3c (i)
Type2b —4 < 0.599 < 0.735 4.3c (ii)

Type 2b  —8 < 0.602 < 0.740 4.3c (iii)

“Upper branch in Fig. 4.2.
’Lower branch in Fig. 4.2.
¢Three-ring configuration.
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given by Eq. (4.4). Substituting Eq. (4.4) into Eqs (4.18) and (4.19) yields

ho_ [t/ =1 [1+ (afay] "

LT * 4.20

I [4(32/@2!1} [1_'_(21/&)]7/2 (4.20)
4(21/a —240 zi/a 120(z;/a)* = 5| 1 z 15/2

?igg[a(/) (/)+ (/) H+(/)]15/2(42)

I [64 (22/a)® = 240 (22/a)* + 120 (22/a)” ~ 8] [1 + (21/a)’]
Combining the two equations to eliminate I>/ 11 leads to an equation of fifth order in
(z1/a)? and (23/a)?, whose solutions significant to our problem form three distinct
branches, which are referred to as Type 2a, 2b, and 2c, and are shown ia Fig. 4.1,
together with representative values of I3/1;. The minimum value of I/1, for the
Type 2a branch is 2.23. Solutions corresponding to Type 2a and 2b have been
presented in somewhat different form by Bobrov and Punchard [6]). However, these
workers did not discuss the relative merits of different designs corresponding to the
various solutions.

In Fig. 4.1, the curves representing Type 1 and Type 2b designs intersect at
the point z)/a = 0.728, z,/a = 2.41, the corresponding value of I3/ 1, being ~9.45.
A design with these parameters therefore satisfies all three conditions (B, ),—o = 0,
(d*B./dz*).c0 = 0, and (d®B./dz%),_, = 0. However, as was shown earlier, such a
design, and that of Romeo and Hoult [3] which approximates it, is not the optimum

for minimizing power dissipation.

The solid curves in Fig. 4.2 show the power dissipated by Type 2a and 2b
shim coils in generating a z* field of the same amplitude as that chosen for the
Type 1 designs. Thus, the solid and broken curves can be directly compared. The
power dissipated by Type 2c shim coils is two orders of magnitude too large to
be shown on the graph and this design therefore receives no further consideration.
The graph representing Type 2a shim coils consists of two branches which merge
at Iy/I} = 2.27 where the z4 compone; ges sign and the power dissipated

becomes infinite. The lower branch terrais ates at the point P where LI = 5.93,
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the corresponding values of z;/a and z;/a being zero and 0.617, respectively. This
point therefore represents a three-ring system. All other designs in Figs. 4.1 and 4.2

involve four rings.

It can be seen that Type 2a designs dissipate the least amount of power over
much of the range considered, when generating a given z* component. This can be
attributed to the fact that, for such designs, I; and I, are of the same sign so that
the axial fields generated by the individual rings add rather than subtract, as they
do for Type 1 and Type 2b.

The fields generated by three representative Type 2a shim coils are shown in
Fig. 4.3b, together with the ideal 2* behaviour. It can be seen that they generate
large 2° shifts which may be unacceptable in some applications. The fields generated
by three representative Type 2b shim coils are displayed in Fig. 4.3¢c. The range of
|z|/a over which the actual shim field deviates from the ideal z* behaviour, first,
by less than 5% and, second, by less than 10% are listed in Table 4.1 for these six
Type 2 designs.

4.3 Construction and Evaluation of a 24 Shim Coil

The replacement z* shim coil was constructed following a Type 2b design with the
parameter I/I; = —2.5 (see Fig. 4.2, where the design coincidentally lies at the
intersection of the lower Type 2a curve and the Type 2b curve), the corresponding
values of z;/a and z,/a being 0.740 and 1.63, respectively. This design was selected
because it was expected to generate the most accurate z* shim field, while causing a
temperature rise of no more than 2°C in one hour in the sample space of our magnet,.

Moreover, the predicted z° shift was small enough to be easily accommodated.

Each inner and outer coil consisted of 18 and 45 turns, respectively, of

14 AWG copper wire, closely wound in four layers giving an average coil radius
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a of 13.9 cm, a value of Ao, of 2.6 cm?, and a resistance of 0.97  at room tempera-
ture. Values of da/a, 621/21, and 623/ 2,, where a, 621, and 6z, are half the spread
in the values of a, 21, and z; associated with the finite size of the wire, are a measure
of the departure of a real z* shim coil from an ideal delta function configuration.

For our coil, éa/a, é2z1/z1, and 6z;/z,, are 0.022, 0.042, and 0.045, respectively.

feeding a 1 A, 500 Hz sinusoidal current through the coil and measuring the voltage
induced in a small cylindrical search coil, which was placed at various points on the
axis of the shim coil. The search coil, approximately 10 mm in length and diameter,
was wound with 100 turns of 32 AWG copper wire. The area-turns of the search
coil is 9.08 x 107 m?. Values of the magnetic field were obtained by converting
measured voltage data using the following relation
B = g (4.22)
where V' is the voltage induced in the search coil, f is the frequency of the sinusoidal
current, and the product A,N, is the area-turns of the search coil.
The data points in Fig. 4.4 show the axial field per unit current generated by
the shim coil, plotted as a function of z. A least squares fit of the data in Fig. 4.4
to a polynomial of the form A + B(z/a)? + C(z/a)* gives

B, . : i z \* oz \1
= _(26.64 + 0.04) + (4.6 Il==1] +94+2)( — 1.9
i (26 6:&004)+(6:|:07)(13i9) + (94 £ 2) (13.9) , (4.23)

where B;// isin (mT/A) and z is in cm. The fit is shown as the curve in Fig. 4.4.
This is predominantly a z* variation but there is a small 2? component. While it
would be possible to eliminate the z? component by a small readjustment of the
locations of the inner or outer pairs of coils, this was judged not to be necessary since
it could be compensated using the existing 2 shim coil with an additional power
dissipation of only 0.6 watts. There was no evidence of any other components up

to and including z® The z* component for an ideal Type 2b, I/, = —2.5 design
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B,/ (uT/A)

Figure 4.4: The data points show the measured axial field per unit current, B,/I,
in uT/A, generated by the replacement 24 shim coil, plotted as a function of z. The
curve represents a least squares fit of the data (see Eq. (4.23)).
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of radius 13.9 cm, is 103(2/13.9)* (mT/A). The presence of the z? component and
the discrepancy of 8.4% between the experimental and theoretica] z* components

is attributed to deviations from the ideal delta function configuration.

Since the radius of the replacement shim coil is 13.9 c¢m, whereas that of the
down the Bruker coil to a radius of 13.9 cm would be to reduce the power dissipation
by a factor (18.75/13.9)° = 14.8, according to the relation of the power dissipation
to the coil dimensions derived in the previous section. The power dissipated in
the replacement shim coil when the z* field variation of the Bruker magnet is fully
compensated is 21 watts. This is a factor of 43 smaller than the power that would
need to be dissipated in the Bruker shim coil if full compensation was to be achieved.
The remaining factor, 43/14.8 ~ 3, must be attributed either to a difference in the
integrated conductor cross-sectional area (suitably scaled) or to a difference in the

design of the two ccils.
4.4 Discussicn

The magnetic field in several animal-size magnets manufactured in the 1980s is
believed to exhibit a substantial z* variation. Fully compensating such a variation
should greatly improve the magnet homogeneity over an extended region. However,
it may not be possible to achieve full compensation using the manufacturer’s 2! shim
coil, without excessive power dissipation and heating of the sample space. While
a substantial reduction in the power dissipation can be achieved by reducing the
size of the 2* shim coil, this approach is limited by the need to maintain adequate

sample space. Other approaches may therefore be required.

In this chapter, the influence of the design parameters of simple four-coil 24
shim coils on the power dissipation, accuracy of the 2* shim field, and magnitude of

the 2° shift, have been determined. This should enable the most appropriate design
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to be chosen in individual cases. The method used to compare the power dissipation
of different coil designs is not restricted to four-coil z* shim coils. However, its most
likely application is in the design of high order z" shim coils in wide bore NMR

magnets.
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Chapter Five

DESIGN OF ELLIPTIC CYLINDER
GRADIENT COILS OF MINIMUM
INDUCTANCE!

5.1 Introduction

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS)
normally require the generation of three linear, mutually orthogonal, magnetic
field gradients. For some applications, such as fast imaging [1, 2], strong gradients
~100 mT/m, capable of being switched on or off in a time ~100 s, are required.

A major advance in gradient coil technology that enabled such specifications to be

velopment allows one to determine the current distribution on a cylindrical surface
which will not only generate a magnetic field with specific values at a few target
field points, but will also minimize the power dissipation or the stored energy, which

in turn minimizes the switching speed [4, 5].

The power dissipation and stored energy associated with a given gradient
strength are strongly dependent upon the volume contained within the gradient
coil. For example, for circular cylinder coils, the power dissipation and stored
energy vary as the fourth and fifth powers of the radius, respectively [5, 6]. Because
the aspect ratio of a typical human body at its largest cross-section is significantly

different from unity, coils which are more elliptical than circular in cross-section

A ;'efsicn of this ché.i:xter has been éccepted for publication as two companion papers. Q. Liu,
D.G. Hughes, and P.S. Allen, J. Magn. Reson. B (1996).
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achieved, thereby reducing the power dissipation as well as the rise and fall times
of gradient pulses.

The design of elliptic cylinder gradient coils using the target field approach (3]
requires knowledge of the magnetic field generated by a current flowing on the sur-
face of an elliptical cylinder. Petropoulos et al. [7] have derived an expression for
the longitudinal (z) magnetic field inside an elliptic cylinder when a distributed
current on its surface is restricted to azimuthal flow, and they have used this ex-
pression to design z gradient coils of minimum inductance. In this chapter, we shall

derive general expressions for the magnetic field and stored energy of an elliptic

These expressions can be used to design elliptic cylinder coils which generate not
only uniform gradients but also other field profiles such as a uniform field or higher
order shim fields [8]. When specialized to purely azimuthal flow, our expression for
the magnetic field differs in an important respect from that of Petropoulos et al.

This stems from an error in their derivation.

A problem that has not been studied in any detail is the nonuniformity
of the longitudinal magnetic field of a 2 gradient coil in the transverse (z and y)
directions, that is associated with the elliptical geometry. We address this issue by
expanding, in ascending powers of z and y, the magnetic field associated with a
purely azimuthal current. It is then shown that the nonuniformity in the transverse
directions can be largely eliminated by allowing the current to flow axially as well

as azimuthally. The considerable improvement in the uniformity of the field in the

which nevertheless remains well below that of the corresponding circular cylinder
coil. It is shown that the expressions obtained by expanding the magnetic field in
powers of z and y are easily modified to cover the case where the current flows

axially as well as azimuthally.
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It is found that, even when the current is restricted to azimuthal flow, the
nonuniformity of the magnetic field in the transvers : directions in a z gradient coil
of minimum inductance is considerably smaller than that reported by Petropou-
los et al. [7]. We believe that this is mainly caused by the error in their expression

for the magnetic field.

5.2 Theory

We shall consider a current confined to the surface of an elliptic cylinder, and use
elliptic cylinder coordinates so that the current density on the elliptical surface
possesses at most two components. The target field approach (3] will be used to
find the optimal current distribution which will minimize the stored energy, and
hence the inductance of an elliptic coil. To do so, it is necessary to obtain the
the solutions of which, in elliptic cylinder coordinates, are expressed in terms of

Mathieu functions [9].

We begin by describing elliptic cylinder coordinates and Mathieu functions.
We then derive the expansion of Green’s function which enables general expressions
for the magnetic field and stored energy of an elliptic cylinder coil to be determined.
These expressions are used to obtain the current density distribution on an elliptic
cylinder z gradient coil of minimum inductance, firstly when the current is restricted

to the azimuthal direction, and secondly when this restriction is lifted.

5.2.1 Description of Elliptic Cylinder Coordinates

Largely adopting the notation of McLachlan (9], the elliptic cylinder coordinates, ¢,

n and z, are related to cartesian coordinates by

z = ccoshfcosn
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y = csinhésing (5.1)

z = =z
with domains of £, 7 and z being
0 <€ <o, —-r<p<m, —00 < z < oo. (5.2)

From the relations involving z and y, the following two equations can be derived,

2 2

T y ‘E Q)

— = 1 5.3

c?cosh®¢ * ¢?sinh®¢ (29
2 2

° Y =1 (5.4)

c2cos?n  c?sin’ n
Equation (5.3) represents a family of confocal ellipses with semi-major axes a =
ccosh{, semi-minor axes b = csinh¢, and common foci at z = +¢, y = 0, as
illustrated in Fig. 5.1. The eccentricity of each ellipse, e, is 1/ cosh £. Equation (5.4),
on the other hand, represents a family of confocal hyperbolae with the same foci
as the ellipses. The two families of curves intersect orthogonally. It can be seen in
Fig. 5.1 that 7 is a measure of angular position in the azimuthal direction, and is

related to the azimuthal angle ¢ = tan~! (y/z) in cylindrical coordinates by

tan ¢ = tanh ¢ tan 7. (5.5)

When e — 1, £ — 0, and the ellipse reduces to a straight line joining the
two foci (see Fig. 5.1). On the other hand, if e — 0 with a constant, ¢ — oo, and
the ellipse tends to a circle of radius a. In this case, ccosh ¢ and csinh ¢ tend to a,

and n tends to ¢.

The three components of any vector V in elliptic cylinder coordinates, V¢, V,
and V., are related to the three components of the vector in cartesian coordinates,
Ve, Vy and V,, by

cosh ¢ sinp
\/sinh2 ¢ +sin’yp

sinh{ cosy
\/sinh2 £ +sin’q

Ve = V. +V, (5.6)
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Figure 5.1: Illustration of elliptical coordinates. The bold curves are confocal el-
lipses corresponding to § = 0.5, 1.0, and 1.5. The light curves are confocal hyper-
bolae, corresponding to n = 7/6, 7/3, 7 /2, etc., each possessing the same foci as

the ellipses.
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~ sinh £ cos 77

Vi = —Veme—m—— 1), = (5.7)
\/sinh? ¢ + sin?p smhgf + sin?p
v = v ihbeosn  _, coshésing (58
sinh? £ + sinp
v, = v ~ coshsiny 4V, sé;hfcqsﬂj 7 (5.9)
\/smh2 £ +sin?n \/sinhgf +sin’p
V. = V. (5.10)
5.2.2 Mathieu Functions
Let us consider a function %(r) which satisfies Laplace’s equation, so that
Vi(r) = 0. (5.11)
In elliptic cylinder coordinates, Eq. (5.11) can be written as [9)]
521,[) Bzz,b L N e
7 + — o Ez—(c:osh 2¢ — cos 27])-3—32— =0. (5.12)

Separation of variables in Eq. (5.12) by substituting 9 = U()V(n)W (2) leads to

the following three equations,

d*U .
Pl = (h + 2gcosh 26)U (5.13)
d*V ) |
F + (h+2qcos2p)V =0 (5.14)
W
Tz + E*W = = 0, (5.15)

where A and k are separation constants, and ¢ = ¢?k?/4.

Equation (5.15) is the same as the differential equation with respect to z
in cylindrical coordinates. Thus, its solutions are of the form exp (+ikz). Equa-
tion (5.14) and its solutions are called Mathieu’s equation and Mathieu functions
for. —g, respectively. Similarly, Eq. (5.13) and its solutions are called Mathieu’s

modified equation and modified Mathieu functions for —q, respectively. The usual
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form of Mathieu’s equation and Mathieu’s modified equation, encountered in the
literature [9, 10], contain (k — 2gcos 2n) and (h — 2q cosh 2¢), respectively. However,
the solutions of Egs. (5.13) and (5.14) can be obtained from the solutions of those
equations by replacing ¢ by —g. We discuss the sclutions of Egs. (5.14) and (5.13),

in turn.

The solutions of Mathieu’s equation, Eq. (5.14), take different forms accord-
ing to the values of h and ¢. For our application, the solutions of Eq. (5.14) must
be periodic functions of 7 so that V(2pr + 5) = V(7), where p is an integer. Such
solutions are called periodic Mathieu functions of integral order for —g (or Math-
ieu functions for brevity). They consist of four functions, corresponding to four
characteristic values of A, usually expressed as [9]

cez(n,—¢) = (=1)"3_(~1) ALY cos2ry, (h=az) (5.16)

r=0

ceant1(,—q) = (=1)" 3 (=1 B cos (2r + 1)n,  (h = bzap) (5.17)

r=0
0

seznt1(7,—q) = (=1)" 3 (-1 AGT sin (2r +1)n, (h = ageps) (5.18)

r=0

seznta(n,—q) = (—1)" 3 (=1BEHY sin(2r +2)n, (b = bpnga) (5.19)

r=0
where a, and b, (m = 2n, 2n 4 1 or 2n + 2) are the characteristic values, and

n = 0, 1, 2, .... With this choice of subscripts, each of the above functions has

n real zeros in the range 0 < 7 < 7/2.

The Mathieu functions for —q are related to their counterparts for +¢ by 9]

cen(n,=a) = (=1)"cem (3 = 1,9) (5.20)
cernt1(n,~q) = (—1)"sezn (g—%q) (5-21)
seant1(n,—q) = (=1)"ceznpr (g' - n,q) (5.22)
sersa(1=0) = (=1)"semsa (5 =7,0). (5.23)
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Their orthonormal properties are the same as those of the Mathieu functions for

+¢ [9], and are given by

1 L

- L dn cen(n—q)cen(n,~) = b, (5.24)
1 "

~ [ dn sem(n,~q)sean,~q) = G, (5.25)
1 ¢r

. J/_ _dn cen(n,—q) sen(n,—q) = 0. (5.26)

Thus, the Mathieu functions (5.16) - (5.19) form a complete, orthonormal basis set.

In Egs. (5.16) - (5.19), the coefficients A{™ and B{™), as well as the char-
acteristic values a,, and Um, are functions of ¢, and can be determined using the
normalization of the Mathieu functions, given by Eqs. (5.24) and (5.25), and recur-
rence relations among the coefficients. These recurrence relatjons are obtainable by
substituting each series (5.16) - (5.19) in Eq. (5.14). For example, substituting the
series (5.16) in Eq. (5.14) yields
i(——l)’"(h -~ 47‘2)Agn) cos2rn + qi(—l)’Ag") [cos (2r — 2)7 + cos (27 + 2)7] = 0.
r=0 r=0 (5.27)
By equating coefficients for cos2rn of the same order in Eq. (5.27), the recurrence

relations among the coefficients of the series (5.16) are found to be
hA(()Z‘n.) _ quZH) — 0,
(h~4)AP™ — g [2AP™ 4 A%V =0, (5.28)
(h =4 AZY — g [ALY, + AQD] =0, r>2

Some low-order Mathieu functions, corresponding to ¢ = 1 and ¢ = 10, are shown

in Fig. 5.2 as a function of 7.

Since the Mathieu functions form a complete basis set, any periodic function

f(n) with a period 7 or 27 can be expressed in terms of Mathieu functions as

Jn) =Y Cnla)cem(ty~0)+ 3> Dla) sen(n, —q) (5.29)

m=0 m=1
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Figure 5.2: Graphs of the Mathieu functions (a) ceo(n7, ~1) and ceo(n, ~10), (b)

Cel(n"'l)’ Cex(ﬂ,—m), Ce2(7’1 -1) and Ce2(’71 —10), and (C) Sel(’h _l)a Sel(’)’ —10),
sez(n, —1) and sez(n, —10), plotted as a function of 7. Note the overlap of se,(y, —10)

and sez(n, —10) in the region —7/2 < 5 < /2.
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with

Dn(q)

Cnla) = = [ dn f(n) centn,
= 2 [ an fmysentr,

-q)

—~q).

(5.30)

(5.31)

Turning now to Eq. (5.13), Mathieu’s modified equation, its two independent

solutions are called modified Matnieu functions of the first and second kind, respec-

tively. The modified Mathieu functions can be expressed in different forms [9]. To

achieve quick convergence in numerical computation, the modified Mathieu func-

tions of the first kind can be expressed as

Cegn(f

,“'Q)

Ce2n+1 (67 -Q)

Se2n+1 (‘5’ ""Q)

Seans2(é,

and the modified Mathieu functions of the second kind can be expressed as

Fekyn (€, — AV L(Vie K

Fek2n+1 (63 -

Gekany1 (f, ‘Q)

Gekany2(€, —

-q)

= (=1)* 3 (~1)"AZY cosh 2r¢

r=0
co

r=0

= (1Y (-

r=0

= (Y-

r=0

M;,
WA(2n) =0
2n+1

B(2n+1) Z B

- r+1(\/-

2n+1

(D" (-

r+2

2r+1

QK (Ve

A(2n+l) Z Agn+l) []

+ Ir+1(\ﬁ6

M;n+2
(2n+2) Z B

- r+2(\/—e

VK- (Vge )]
0 [h(ve
OK(

(Vaed)],

1)" B2 cosh (2r + 1)¢
1)" A sinh (2r + 1)¢

B+ ginh (2r + 2)¢,

(Vaet)

i [(VAE) Krsa (V)

s)f(r+1(\/§6€)

e ) Kr12(v/g ef)

(5.32)
(5.33)
(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

corresponding to the characteristic values azn, banq1, 2041 and bonyo, respectively.

In Egs. (5.32) - (5.39), A;’") and B,(,’") are the same as those appearing in Egs. (5.16) -
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(5.19), I.(z) and K, (z) are, respectively, modified Besse! functions of the first and
second kind, and M¢, and M3 are given by

c -1)" s
M2n = (71(_2',-):)— Ce?n(Oa —q) Ce2n(§a _q) (540)
0
(1) T
Mi = ————=cen11{0,—q)ce}, . (=, —q) (5.41)
2 (2n+1) ’ 2n41 ) ?
Ve B
s (_l)n ’ Ll
M = W 5€9n+1(0, —9) se2n+1(§, —-q) (5.42)
1
s (-1)n+l ’ ’ 7r
M2n+2 = W se2n+2(0a _9) SeZn+2(§’ —Q)v (543)
2

where the primes in ce],(n,—¢) and se!, (7, —q) signify derivatives with respect to
n. The graphs of some low-order modified Mathieu functions are shown in Fig. 5.3,

plotted as a function of ¢, and in Fig. 5.4, plotted as a function of q.

When the fundamental ellipse reduces to a circle, A,(,m) and B;(,"‘) tend to
zero, unless p = m, in which case A{™ and B{™ tend to unity if m > 1, and A(()O)
tends to 2-1/2. It follows that Mathieu functions and modified Mathieu functions

in that case reduce to

ceo(n,—q) — 7 (5.44)
cen(,—g) — cosm (m>1) (5.45)
Sem(1,—q) — sinmg (m > 1) (5.46)
Cen(,~a) — Miln(lklp) (m > 0) (5.47)
Sem(6,-a) = MiIn(lklp) (m>1) (5.48)
Fekn(6,~0) ~ "2 Kn([klp) (m 2 0) (5.49)
Gekn(é,=0) ~ % Kn(lklp) (m 1) (5.50)

where p is the radius of the circle.

Throughout this chapter, the arguments of the Mathieu functions always

contain —g. With this understood, we shall henceforth omit the —gq.
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Figure 5.3: Graphs of the modified Mathieu functions (a) Ceo(€, ~0.1), Cey (£, ~0.1),
Se1(£,—0.1) and Sez(£,—0.1), and (b) Feko(¢, —0.1), Fek,(¢,~0.1), Gek,(¢,-0.1)
and Gek(£, —0.1), plotted as a function of ¢.
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(a)

Cen(E. -q) or Se (&, -q)

—————— Fek(1, -q)
- = = = “Feky(1,-9)
=sn== e Geky(l, -g)
srssssasssesnrass Gekg(lgéq)

()

Fekn(&, -q) or Geky(E, -q)

Figure 5.4: Graphs of the modified Mathieu functions (a) Ceo(1,~q), Cei(1,—q),
Sey(1,--g) and Sey(1,~q), and (b) Feko(l,~g), Feki(1,~¢), Gek,(1,—q) and
Geka(1, —q), plotted as a function of g. Note the different abscissa scales in (a)
and (b).
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The general method of expanding Green’s function in different coordinate systems
is well established [11]. However, the expansion in elliptic cylinder coordinates is
not trivial. Although Petropoulos et al. [7] addressed this issue, they only quoted
the final result. As will bacome apparent later in this thesis, we discovered several
errors in the work of Petropoulos et al., and so we present, in full, our derivation of
the expansion of Green’s function in elliptic cylinder coordinates.

Green’s function G(r,7') = |r — »/|~! satisfies the eqtation

ViG(r,r') = —dxb(v = 1'). (5.51)
In elliptic cylinder coordinates, §(» — »’) can be written as
6(r — 1) = N(1)8(€ ~ £)(n - 7)8(z — ), (5.52)
where N(r) can be determined using the normalization condition for §(r — 7*)
/; §(r =) dV' =1. (553)
The volume element dV’ in Eq. (5.53)is given by
dV' = c*(sinh® ¢ + sin®n') d€’ dn' dz' (5.54)
in elliptic cylinder coordinates. Substituting Eqs. (5.52) and (5.54) in Eq. (5.53)
and evaluating the integral yield |
¢*(sinh® ¢ +sinn)N(r) =1, (5.55)
which leads to
Nr) = 2(sinh? ffl%-sin2 n)
By substituting Eq. (5.56) in Eq. (5.52), and using the identity

(5.56)

(sinh? ¢ +sin’7) = %(cash 2¢ — cos 27), (5.57)
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6(r — 7') is found to be given by
2

— ) = g —1V6(z — 2. .
br =) = ot ey O =)~ 2). (5.59)
The z and 7 delta functions can be expressed in terms of orthonormal functions as
follows
P A S i_ e 11, otk(z~2")
f(z-2) = — /_ _dke (5.59)
1 o0
s(n~1n') = = [Z cen (') cem(n) + }: sem (7 )sem(n)] (5.60)
m=0

Because of the symmetry of Green’s function with respect to interchanging r and

7', its expansion in elliptic cylinder coordinates can be written as

G(r,r") / dk e*(z=%") [Z Im (& E') cem(n’) cem(n)

+ 3 g6 € senlr) semw)J , | (5.61)

where g7, (€, ¢') and g5, (¢, ¢') are radial Green’s functions. Substituting for G(r, r')
and the delta function in Eq. (5.51) using Eqs. (5.58) ~ (5.61), and noting that
cem(n) and sen(n) satisfy Mathieu’s equation, yields

P
/ dk e*(z=%) {Z [ddg;” — (A%, + 2q cosh 2£)gfnJ cem(n') cem(n)
m=0

+ 3 [%fﬂ (8 + 2005 26)0) sen()sen(r) |

= [ dn e >{"§ (=2) 866 = &) centn) cenr) |
+ 2;1(—2)5(6 f)sem(n)sem(n)} | (5.62)

where kS, = an and A2, = b, if m is even, and hf = b, and A, = a,, if m is
odd. By equating the coefficients of cen(y) and sen(n), the following differential

équations for the radial Green’s functions, g5, (¢ ,{’.) and g3, (&,¢), are obtained:

| %—(hfnﬂqcosh?ﬁ)g; = —%5(6—6’) (5.63)
d2 s
e~ (Bt 2gcosh20)gs, = —Zoe —¢). (5.64)
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Since Eqs. (5.63) and (5.64) are Mathieu’s modified equations when £ # £,

the radial Green’s functions are of the form

gm(fafl) = 901(£<)502(€>)’ (565)

where ¢, and ¢, are two independent solutions of Mathieu’s modified equation, and
€< (£5) is the smaller (larger) of £ and ¢’. By substituting for ¢g¢, in Eq. (5.63) or for
gs, in Eq. (5.64), and then integrating both sides with respect to £ over the range
£ —A<ELE + A with A — 0, the following discontinuity condition at ¢ = ¢’ is
obtained

o1 (E)(E) = (€ ol ) = =2, (5.66)

s

which is satisfied for all values of ¢'. Since g,,(€,¢’) must be finite at £ or ¢’ = 0,
and must vanish as € or ¢’ — o0, it follows from the properties of modified Mathieu
functions that ¢1(£<) = A Cen({<) and v2(&5) = Fekn(&5), or p1(€<) = B Sen(é<)
and @2(€5) = Gekn(é5), where A and B are constants to be determined from
Eq. (5.66). By substituting for ¢; and @2 and then evaluating the left side of
Eq. (5.66) as ¢’ — oo, it is found that

ACenm (') Fek (£) — ACE' (€') Fekn(€') = —é(M;l)z (5.67)
B Sen(€') Gekiy(¢) = BSel,(€) Gekn(€) = —2 (ML), (5.68)

so that Eq. (5.66) becomes

A o2 2 B o2 2
- (M:)" = - and - ~ (M2)" = —= (5.69)
From Eq. (5.69), A and B are found to be
2 2
A = B - . .
U (M) (5:70)
Thus, the radial Green’s functions are given by
, 2
(&, = ——Cep Fek,, .
9m(&:€') (Mﬁl)z em(€<) Fekm(&5) (5.71)
2
gm(6,€) = GLY Sen(£<) Gekp (£s). (5.72)

95



Substituting for g5, (£,¢') and g2 (¢,€') in Eq. (5.61) using Eqs. (5.71) and (5.72)
yields the expansion of Green’s function in elliptic coordinates

2 [ ket [ > cage con(n)ceni) Cen(6<) Pk (65)

msD( m
(

G(r,7')

L o= 1 - .
+ > = —5 8em(n) sem(n’) Sém(fg)GEkm(E:;)J- (5.73)

m=1 (Mm)
This expression is in agreement with the Green’s functjon expansion given by
Petropoulos et al. [7], except that (s}, +1)? in the last term of their expression

should read (s},,,)?, obviously a typographical error.

5.2.4 Magnetic Field Generated by an Elliptic Cylinder Coil

We shall ignore displacement currents since the switching rate of magnetic field
gradients in MRI and MRS is only of the order of kiloHertz. The vector potential
at 7 due to a current density J (7') at »’ on the surface of an elliptic cylinder is

therefore given by the volume integral

N ko [ J(dV 7

Since the current is confined to the surface of an elliptical cylinder characterized by

§' = &o, say, J(r') can be expressed as

6(E' - &) (5.75)

Jv”:j:’i—" o2
(r) J(WE)C(Slnhgfl'FSing 771)1/2’

where j(7n', 2') is the surface current density. In cartesian coordinates, the surface
current density has all the three components, Jzty Jy and j., whereas in elliptic

cylinder coordinates, it has only two, namely
i, E') = Jo (7', g’,)‘3?7’ + Ja (7712 El)gs" (576)

where e, and e, are unit vectors in the n' and 2’ directions, and Jn(n’,2') and

Jx(n',2') are the azimuthal and axial components. Substituting for dV’ and J (')
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in Eq. (5.74) using Egs. (5.54)and (5.75) yields

Hoc (sinh? &g + sin® 5’)1/2
Ar) =52 [ @' [" an' (o, 2 e 6

whose three cartesian components are given by

_  HoC (sinh? & + sin? g ni/z

Az("') - 47r [oo dz / dT] J.‘l:’ 7] ’ ) lr — T,Ifl_fo (5-78)
_ HoC (smh o + sin? )1/2

Alr) = 4 /_oo a2 / ' gy (') lr =7 'E'—Eo (5.79)
o Hoc ' v s s (sinh®&o + sin® ’)1/2

Ar) = EZ " a7 anf i, 2) = r’le:eo . (5.80)

By using Eqgs. (5.6) ~ (5.9), and noting that j (7', z') has no radial component, the
radial and azimuthal components of the vector potential, A¢(&,n, z) and A, (¢, 7, 2),

are found to be

HoC
A . z
el 2) = 47 (sinh? §+sm 7))1/2/ dz / ' (0, 2')

y cosh € sin 7 sinh £, cos p’ _/ sinh ¢ cos n cosh &y sin 7’ (5.81)
|7' -7 I€’=€o
HoC / dn’
An(é,m,2) = 47r(smh2§ + sin? 77)1/2/. n Jn 77 Z)
« cosh ¢ sin 7 cosh & sin ' + sinh € cos 7 sinh &g cos 77 (5.82)

LR g

By substituting for [r — »'|~! in Eqs. (5.80) ~ (5.82) using Eq. (5.73), and
evaluating the integrals in these equations, the components of the vector potential

in elliptic cylinder coordinates become

- Hoc * . tkz
AE(éanaz) - (sinh2§+sin277)1/'2 -/—oo dk e

X { >~ Fu[cosh¢singsinh & U, (k) — sinh £ cos 7 cosh & u?, (k)]

m—O

+ Z G [cosh € sin 7 sinh & v, (k) — sinh € cos 7 cosh & v® (’c)]} (5.83)

m=1

_ Hoc . ikz
Aﬂ(ﬁ’n, Z) - (Sinh2€+sin2 1’)1/2 ./—oo dloe
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{E Fy [sinh € cosnsinh & uf, (k ) + cosh € sin n cosh &y ul, (k)]

m-_O

+ Z Gm [sinh £ cos 7 sinh & vy, (k) + cosh € sin y cosh &g v?, (k)]} (5.84)

m=1
A&, 2) ,uoc/ dk e'* [Z Fowt i mwm(L)J (5.85)
m=0 m=1
Here

1 o
F, = 1< )2 cem(7) Cem(€<) Fekn(és) (5.86)

1 o,
Gn = (M: )2 sem(n) Sem (€<) Gekm (€5) (5.87)

c 1 @ 1 —ikz [T ’y L AN : ;

ug (k) = ﬂ/ dz'e . dn' jp(n', ') cos ' cem(n') (5.88)
v (k) = 27r/ dz' et /”dn'j,,/('q’,s’)casn’sem(n') (5.89)
unm(k) = 27r./ dz’ e~ . dn' ju(n', 2') sinp’ cepn(n’) (5.90)

S (L =__ dr—:z’ "d/-,lzl,i P en (!
(k) = oo [ d'e™ [ dn'ju(n',2)sinn’ sem(n') (5.91)

1 0 loot m . / : 1.2 P L 2 7 p
wi (k) = %/ dz' e~z /de']z;(ﬂ’,z)(51nh2§g+51n277)llzcem(n’) (5.92)

wh(k) = o / dz! =ik / dn' (0, #')(sin? & + sin® ') V2 sen(n), (5.99)

where {< ({>) is the smaller (larger) of ¢ and &. By comparing Eqgs. (5.88) - (5.93)
with Egs. (5.30) and (5.31), noting that the first integral in each of Egs. (5.88) -
(5.93) is a Fourier integral with respect to 2/, it can be seen that uf (k), v, (k),
un(k), v, (k), wi, (k) and wg, (k) are, respectively, coefficients of Mathieu-Fourier
expansions of jn(7',2') cos ', jy(n', 2') sin g’ and j. (7', 2')(sinh? & + sin? )1/, dif-
fering at most by a normalization factor. It can be shown, using Eqs (5.29) - (5.31)

and Fourier transformation, that

Jw(n', 2 )cosy’ = = / dk ™ [ Up (k) cem (n') + i U (k) sem(n')} (5.94)

m=0

Jn(n'y2)sing’ = —/ dk e+’ [ ul (k) cem(n') + Z s (k) sen(n )J (5.95)

m=0 m=1
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j=(n', 2')(sinh® & + sin? p’)/2
oo s oo
= l_/ dk et [Z wi (k) cem(n') + Y w? (k) sem(n’)J . (5.96)
T J-co m=0 m=1

The z component of the magnetic field inside the coil, found by taking the

curl of the vector potential, is given by

Bz(fanaz) = (V X A)z
- fo © ik | o~ Um (k)
" sinh? & +sin’y [-oo di et {n?;o )2 sinkh o Fekn{to)
x [sinh £ cos n Cej, (€) cem(n) — cosh € sin7 Cep (€) cel. (n)]
+ 3 (“];(")l cosh £ Fekn(£o)
X [cosh ¢ sinn Ce], (€) cem(n) + sinh £ cos 7 Cep (€) cel,(n)]
+ ni;l (v]:’gfs"k))z sinh &, Gek,,, (o)
X [sinh £ cos 7 Sel,, (€) sem (1) — cosh € sin 7 Sep, (¢) se, (n)]
ool 8:4“))2 cosh g Gek,, (o)
X [cosh ¢ sin7 Se;, (€) sem(n) + sinh & cos 7 Se,y (€) sel, (mM]}.  (5.97)

Here, the primes in Sep,(£) and Ce, (£) signify derivatives with respect to € (in
contrast to their use in Ref. [7]). The magnetic field outside the coil (¢ > &) can be
obtained by replacing Feky () by Cem (&), Cen(€) by Fek,, (€), Ce' m (€) by Fek! (£),
Gekm(&o) by Sem(&o), Sem(€) by Gekn(€), and Sel,(€) by Gek” (€) in Eq. (5.97).

5.2.5 Stored Energy in an Elliptic Cylinder Coil
Since the general expression for the stored magnetic energy in an elliptic cylinder
coil had not been obtained previously, we present our derivation in some detal.

The stored energy in an elliptic cylinder coil is given by
1
wo= ;[ a-Jav

- g »/—oo dz [.ﬂ df] (Sinh2 60 + Sin2 n)l/z(Anjn + Azjz)f:ﬁo (598)
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using Eqs. (5.54) and (5.75). The A,j, term can be expressed as

(Siﬂhg o + sin® ﬂ)jlg(ﬂﬂjﬂ)EZEn
/ dk Elk§ { - cem(ﬂ) CE (fﬂ) FEI‘m(é‘D)

B o (M)’
X [3,7 cos 7 sinh® &o ug, (k) + 7, sin g cosh? &, ufﬁ(L)]
L o= 8em(7) Sem (£o) Geknm (&)
+ —— e
b2 (M3,)? |
X [j,7 cos 7 sinh? & vE, (k) + jp sin n cosh? & v;"n(A)J } , (5.99)

using Eq. (5.84). By substituting for Jn cosq and j, sinn using Eqs (5.94) and (5.95),
and noting that uf,(~k) = [u5,(R)]", ufy(=k) = [u,(R)]", ves(—k) = [uf, (K)]" and
vy (—k) = [v3,(k)]", one obtains
G LA g N2,
f d;;/ dn smh2 €o + sin® ,77) (Anin)emg,

= 2muoc [ di {ice”‘(‘éﬁ‘jﬁm@“) [sinh® 6o ut (k) + cosh? 6o ut ()]

L = Sem(fﬂ) Gekm(é}g) ) . \ ) : .
+ 2 (A'f?)" [ nh”§o vy, (k)|? + cosh? & |v2, (k)| ]} (5.100)

Similarly, the A.j, term in Eq. (5.98) is found to be
[z / " dn (sinh® & + sin?n)'"* (A.7.),q,

= e [ { £ Sl s

Sem (o) Geky m(§o) ' £ 1py
E'E'; oy k)l } (5.101)

Thus, the general expression for the stored energy in an elliptic cylinder coil is given

by

x [sinhz b I, (F)P + cosh o ut, () + [ (k)]
Sem (E.G) GEkm (5‘3)
+2 (M)’

X [sinh2 €o [vr, (k)|? + cosh® & |vg, (k)| + |w;;(k)|2]} . (5.102)
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5.2.6 General Characteristics of a Current Distributed on the Surface

of an Elliptic Cylinder

In designing an elliptic cylinder coil to generate a specific field profile, for example a
uniform field B., a uniform field gradient, or a higher order shim field, it is necessary

to choose the 7 dependence of j,(n, z) appropriately. To conform to the symmetry

of the form -

Jn(n,2) = i Cm(z) cosmnp (5.103)
with m even and the m = 0 term danrziax?ant; To generate an = gradient, 8B,/0z,
Jn(m, 2) will be given by Eq. (5.103) with m odd and the m = 1 term dominant. For
a y gradient, 0B, /0y, j,(7n, z) will be of the form
i Sm(2) sinmn (5.104)

m=1

jﬂ(ﬁa z)

with m again odd and the m = 1 term dominant.

that j,(7,2) is separable, i.e. of the form a(n)B(z), so that the n dependence is
independent of z. If the relative amplitudes of the various orders are arbitrarily
chosen, the z dependence can be determined using the target field approach [4],

and the optimal values of the relative amplitudes found by trial and error.

The axial component of the current density, j.(7, z), can be determined from
Jn(n,2) using the continuity condition ¥V - J = 0. By taking the divergence of J
given in Eq. (5.75), one finds that

07y . . .07 ,
5%7 te sinh? & +51n2qé = 0. (5.105)

It is now necessary to introduce the Mathieu-Fourier transforms of the current
density defined as

1 je= N L
o _/;m dze™™* dn jn(n, 2) cen(n) (5.106)

-1

Il

5o (h)
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XN W] 1 e —ikz " 5 ) i
Jp" (k) = §/_m dz e Lﬁ dn jy(n, z) sen(n). (5.107)
The corresponding inverse transform is given by

Jn(n,2) == / dk e** [ZJ;“(k)cen(n +ZJ seﬂ(n)] (5.108)

n=0 n=1

By differentiation with respect to 7, it is found that

dj ' ' o
ﬁ . _3/ dk ' [Z IEmM(k) cey () + Z] "(k) sel, )] (5.109)
- n=0 n=1 .

The derivatives ce], () and sel,(7) can now be expressed in terms of Mathieu
functions by

() = 3 tinmsen(n), Where = = = [ dn celmsen(n) (5.110)

m-=1

se; (n) = Zuﬂ,mcem(ﬂ), where vy, -;/;dﬁ se; (n) cem(n), (5.111)

m=0
where (m + n) must be an even integer. Thus, when n is even (odd), m is even
(odd). Since
dn cel(n) sem(n) = — [ d sl (1) cen(n), (5.112)

of =1

as can be shown by integration by parts, it follows that g, = —vp, 4 so that

cel(n) = - i Vinn S€m (7). (5.113)

m=1

Substituting for se;,(7) and cef,(7) in Eq. (5.109) using Egs.(5.111) and (5.113) yields
gl = 1/ dke‘kz{z [ VnimJy ]cem(ﬂ)

2 [ 2 Vmndy” k)] Sem(ﬂ)} (5.114)

where the summation over n is from 0 to oo, with the restriction that (m + n)

is even. By substituting the expression for 8j,/8n, and the expression for 8j,/82
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obtained by differentiating Eq. (5.96), in Eq. (5.105), it is found that, to satisfy the
continuity condition for the surface current density,

ms

[kcwm(k )+ Sty (k)] cem(n)

il
o

ME

[gkcw (k)aZym,,];"(L)J sem(ﬂ)} = 0, (5.115)

1
ey

m

from which

wg, (k)

wn(k) = EEZEm,ﬂjf;‘i“(k). (5.117)

~ Z Vnamy" (k) (5.116)

It can be seen that Egs. (5.116) and (5.117) relate we, (k) and w3, (k) (which are
determined by j.(7, 2) via Eqgs. (5.92) and (5.93)) to Jy"(k) and jon(k) (which are
determined by j,(n,z) via Egs. (5.106) and (5.107)). Thus, if j,(5,2) is known
or specified, the corresponding j.(7,z) can be found using Eqgs. (5.106), (5.107),
(5.116) and (5.117), followed by Eq. (5.96).

5.2.7 Magnetic Field of an Elliptic Cylinder z Gradient Coil with Purely

Azimuthal Current Flow

If the current in an elliptic cylinder coil is entirely azimuthal so that j,; = 0 every-
where, wr, (k) and wy, (k), defined in Egs. (5.92) and (5.93) are obviously zero. More-
over, vy, (k) and uj, (k) are also zero because the integrands in Eqs. (5.89) and (5.90)
are odd functions of . The only non-zero ¢, (k) and v5. (k) occur when m is odd.
This can be seen by noting that cen(7’) and sen(y’) in the expressions for u¢, (k)
and v}, (k) (Eqgs. (5.88) and (5.91)) contain terms involving either cos m'n or sin m'y,
where m' is even (odd) if m is even (odd), as can be seen in Egs. (5.16) ~ (5.19).
Therefore, the integrands in Eqs. (5.88) and (5.91) contain either cos 7' cosm'np’ or

siny’sinm'y’. The integrals with respect to 7’ in these equations are nonzero only
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if m’ = 1. Hence m must be odd. In this case, it can be shown by performing the

integrations that

, B(Tﬂ—) 7
un(k) = (=)= (k) (5.118)
CoAm |
vi(k) = (~1)mIatig g (5.119)
where jy(k) is the Fourier transform of j,(2') given by
n(k) = /°° d’ jy(2')e™ (5.120)
—00
It follows from Eq. (5.97) that, for a purely azimuthal current,
Bal&n,2) =52 [ dk e, (W)P.(E7,0,0). (5.121)

Here P;(¢,7,&,q) is given by
P.(¢,n,60,9) = Z( 1)(m-1)/2 [ﬁ"‘ ié sinh £ Fekn (£o)

m=odd ( )
AT 6o Gek
m ) 5.122
+ (M )2 cos 60 e (ED) ( )
where m is restricted to odd positive integers, and
cosh { sinn Se;, (£) sem(n) + smh{;‘cas 1 Sem(€) sel, (n) s
m = (5.123)
sinh? ¢ £ + sin? n
6, = sinh € cos  Ce/, (£) cem(z) - t:oshfsm n Cenm(§) ce} (17) (5.124)
sinh? £ + sin? g '

Comparison of our expression for B, with Eq. (18) in the paper of Petropoulos et al.
[7] shows that these authors failed to include the factor (—1)m=1/2(y,/47), or
(=1)0"D/%(4o/47) in their notation. The omission of (uo/47) was obviously unin-
tended. However, omission of the factor (—1)("~1/2 introduces an error by changing
the sign of alternate terms, not only in Eq. (18) but also in their Egs. (13) and (14).
The error stems from the omission of (—1)("=1)/2 from the right-hand-side of their
Egs. (16) and (17), and cannot be attributed to differing definitions of the coeffi-
cients A" and B{", since, according to Egs. (36) ~ (43) in their paper, Petropou-
los et al. used McLachlan’s expressions for the Mathieu functions [9], as we have

done.
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5.2.8 [Expansion of the Magnetic Field Generated by an Elliptic Cylin-

der Coil in Powers of z and y

For an elliptical configuration, B, will vary with », i.e. with orientation in the
transverse plane. To investigate this variation, we expand B,, first in ascending
powers of z/c in the z-z plane, and then in ascending powers of y/c in the y-2
plane. When y = 0, it follows that ¢ = 0 and z = ccos n for |z| < e. The expression
for B, (Eq. (5.121)) then reduces to

B.0,,2) = B [% apein,(h

o (m)
& (m=1)/2 7[5 ] sinh & Fek,, (&) [ce (77)}
* =Z (=1) { cem(0) [cel (/2)]* | sinp

[A( )]/ cosh {o Gekn (&o) ,'SEM(W)J
sepn(0) [sen(n/2) | sinn | [

By expanding ce,(n)/sinn and se,,(5)/sin7 in ascending powers of z/c = cos 7, it

+ (5.125)

is found that
_ , ) . [x\? z\4 o
Bg(i, D, 5;) = C:'g -+ CQ; (E) + qu (;‘) + . (5;126)

where

Co = 1o 5 [ R0 Y (o) + tmlor)]s  (5.12)

m=odd

#V':, e 5 ikz : ;1.
O = B [ W anetj(h)

(=]

X Z _Egm(ggl Q) m=odd =) - —
m=odd i m’E,S:?)
m'=odd 7
. i (1 —-m?) Ai(ﬁ";‘)
+57m (60, )= — 3, (5.128)
Z A(m)
m'/=odd

Cp = Hoo / k2 dk e, (k)
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o0

- . 3 m'(1-m?)(9—m?) B
X z _ézcm(go’q) m'=o0dd °°-
m=odd Z m,BSnn'l)
m'=odd
. 55 (1-m?)(9 - m?) ALY
571 (60, )™ =odd = : (5.129)
3oaAlm
m'=odd

and

(_1)(m—1)/2 [Agm)]a
se!_(0) sen (7/2)
(—1)(m-1)/2 [B("‘)]s
cem(0) cel, (7/2)

Ym{€o,q) = cosh & Geknm (€o), (5.130)

sinh o Feko, (éo)- (5.131)

C‘m (60’ q) =

By putting z = 0 so that » = 7/2 and y = esinh{ in Eq. (5.121), and
expanding Cen(£)/ cosh ¢ and Se], (€)/ cosh ¢ in ascending powers of y/c, it is found

in a similar manner that
y\2 y\*
B:(0,y,2) = Co + Cgy (Z) + Cay (Z) + .- (5.132)
where
ng = ﬂoc/ kzdkeik"]n(k)
f: 1)/ (1~ m?) B
X Z _Cm(€0a ) =0 [o'e)

m=odd Z (—1)(’”"1)/23,(,:7)

m'=odd

i (_1)(m’—1)/2m/(1 _ mIZ) Asnﬂlt)
1 P
~57m(éo, 9) 2= : (5.133)
Z (_1)(mr—1)/2m/A$;r;)
m'/=odd

2 o .
Chy = "—‘éc— [ K dk e (k)
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=

i (— 1)(m'—1)/2(1 )(9 mlz)B(m)

= ) 1 m/zodd ) B
m=odd Z ( 1)(171 1)/25

m!=odd

Z (=1)™=D2m! (1 — m”) (9 — m?) AT

1 m'=o0 E ]
+§Z7m(§m(1) = = — - (5.134)
) ( 1 (mf—=1)/2mr,q(m)

m'=odd

The above expressions are valid, not only for the field generated by an elliptic
cylinder z gradient coil, in which case j,(k) is antisymmetric with respect to k, but
also for the field generated by any purely azimuthal current flowing on the surface
of an elliptic cylinder. It is shown in the next subsection how these expressions are

modified when the current flows axially as well as azimuthally.

5.2.9 Magnetic Field of an Elliptic Cylinder z Gradient Coil When the

Current Flows Axially as well as Azimuthally

To conform to the symmetry of the elliptic cylinder and to permit first order com-
pensation of the variation of B, in the transverse plane, we take the azimuthal
component of the current density to be modulated in both the azimuthal and axial

dimensions and to be of the form

Jn(2)(1 ~ 2a cos 2p) (5.135)

Ja(n,2)
so that j,(2) is the current density at n = 7/4. (The factor of 2 in the coefficient
of cos 27 is introduced to simplify subsequent equations.)

From the definitions of uf, (k), v¢,(k), u2,(k) and vm (k) given by Eqs. (5.88) -
(5.91), it is found that when j,(n,2) is given by Eq. (5.135), the only non-zero

quantities are

. _ 1—fa?B(m)+aB(m). ) .
u (k) = (_1)( 771)/2,(7 ,3) 127 203 o (k) (5.l36)
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ae1)/2 (1 + az) A" {m)
vi (k) = (_1)(m51)/z(jfﬂz) - ) + 0, A§ "), (5.137)

when m is odd.

Determination of wy, (k) and wy, (k), which are governed by j.(9, 2), requires
knowledge of jp"(k) and jy" (k). By evaluating Egs. (5.106) and (5.107) for j,(7, z)
given by Eq. (5.135), it is found that j3"(k) is always zero, and Jim(k) is given by

(=12, (k) [ASY + a2A"], ifn =0, 2, 4,.. .

I (k) = ' (5.138)

0, ifn=1, 3, 5,.
It then follows from Egs. (5.116) and (5.117) that w¢, (k) is always zero, and w?, (k)
is nonzero only if m is even and > 2, in which case
k ad \n/g n 0 e n ,
Wy, (k) = 72(k) N DY A ta S (1) AP (5.139)
ch n=even,=0 ﬂ=§v§1,;‘_§ﬂ i

The two summations on the right-hand side can be expressed as

00 . ) ) 7

Y (1) PunaaAl) = —/ dn sen(n) 30 (=1)"2Af cea(n) (5.140)
n=even,>0 n=even,>0

[e ] . ‘:é, ) o tn in )

> (D) AlY = - j dn sel, (=1)"2 AL ceq(n), (5.141)
n=even,>0 " n-g;gﬁ =0

- using the definition of vy, given by Eq. (5.111). Since

= n/2 4(n 1 .

> ()" A cenln) = 3 (5.142)
n=even,=0

S (1)"2AP cen(n) = —cos2n, (5.143)
n=even,20

"1t follows that

SRS

n=even,>0

— j_ﬁdnsemw)

= 0 (5.144)
o0 n 1 /7 '
Y ()P A = gf/ dn cos 2n sel,, (1)
n=even,>0 TS
= —g(=1)m-D/2pMm), (5.145)



Thus, w}, (k) is given by

ta

_3yj22ias B{™
2 (k) = (~1)m 2)/2%22'—]”(1“) (5.146)

w

where m is even and > 2.

Comparison of the above expressions for ug (k) and v3 (k), with those ob-
tained for a purely azimuthal current, namely Eqs. (5.118) and (5.119), shows that
A™ and B™ are replaced by [(1 + a;)A{™ + a2AS™) and [(1 - az)B™ + a, B{™),
respectively. The expression for B, is therefore of the same form as for a purely

azimuthal current, namely Eq. (5.121), but with

o - _ B(m) B(m)
Pz(f,%fo,Q) = Z (_1)(m—1)/2{'8 [(1 az) - 2+a2 2 }SinhfoFekm(fo)
m=odd (jwrgn)
- la A(m) Alm)
an |( “34 :)2+a2 2 ]coshgocekm(go)}. (5.147)

- It also follows that Co, Caz, Cay, Cy, and Cy, are still given by Egs. (5.127) - (5.129),
(5.133) and (5.134), but with v, (&, ¢) and ¢ (&, ¢) now given by

(=1)=072 [A{]*[(1 + a2) AT + @ 40
7m(£07 Q) = Sein(o) sem(ﬂ'/‘Z)

cosh & Gek,, (&o), (5.148)

(=17 B (1 = a) B £ anBy)

cen (0) cel,(7/2)

Cm(Eo,q) = sinh & Fekn (&), (5.149)

5.2.10 Minimization of the Inductance of an Elliptic Cylinder > Gradi-
ent Coil

When the current is purely azimuthal, the expression for the stored energy in an

elliptic cylinder coil, namely Eq. (5.102), reduces to

T oc?

W= T2 [ k1 (0FQu(fora), (5.150)
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where Q.(éo,q) is given by

=) (m) 2
Qz(anq) = Z {[ﬁ} ] Sinhzgocem(é.O)Fekm(gO)

m=odd 7‘:1
A7
+ [M’J cosh®€o Sem (£0) Gekm (£0) § - (5.151)

It should be pointed out that, although our expression for the stored energy 1is
of the same form as Eq. (20) in the paper of Petropoulos et al. [7] (apart from
a typographical error; (7% — 1) should read (2 — 1)), they differ by a factor of
7*(sto/47). In the limit when the ellipse becomes a circle (o — o0 and ¢ — 0 in our
notation), it is found that our Zgs. (5.150) and (5.151) agree with expressions for
the stored energy in a circular cylinder z gradient coil [4, 5, 12], whereas Eq. (20)
in Ref. [7] does not. The omission of the factor (—1)"-1)/2 jp Egs. (16) and (17) in
Ref. [7] is of no consequence in Eq. (20), since it is squared under the summation

sign.

When the current is no longer purely azimuthal, and the azimuthal compo-
nent of the current density is given by Eq. (5.135), the stored energy is still given
by Eq. (5.150) but with

Mc

m

- _ (m) (m)]?
Q:(é0,q) = D, { [(1 2)Bi” + 0,5, J sinh?¢o Cenm (£o) Fekm (&)

m=odd

+ [ (1 + az) A + gy AL™

2
Ms J cosh®4o Sen, (€o) Gekn, (fo)}

> 2agB§m)
P> [ Vi M,

m=even,>2
In order to minimize the inductance and hence the stored energy when the

J Sem (o) Gekm (&o). (5.152)

coil produces target fields B, at locations 7, = (€ns Ty 2n), where n = 1,2,..., N,

we rewrite Eq. (5.121) in the symmetrical form

Bz(f,ﬂ,z) = %9'/

o0

_dk [ia(k)e™* + 3 (k)e™%] Pu(€,m, 6o, 9), (5.153)
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and follow Turner’s method for circular cylinder coils [4] by constructing a functional

U=W — f A [Bn = By(72)] (5.154)

n=1

where A, are Lagrange multipliers. Setting the variation of U to zero results in the

following equations

oF oF
——— =0 and - =0 5.155
B3 (F) B7(R) (5:155)
where
T jtoc?

F [k, ga(k), 35(R)] = “Z=1n(B)PQs 6o, 9)
N
D2 AP (iR 4 G5 ()] by bora). (5.156)

In Eq. (5.156), P:(&,1,60,q) and Q.(&,q) are given by Egs. (5.122) and (5.151),
respectively, for a purely azimuthal current, and by Egs. (5.147) and (5.152), respec-
tively, for a current density whose azimuthal component is Jn(2)(1 = 2a3 cos 2n). By
solving either 0F/8j,(k) = 0 or dF/dj;(k) = 0, and imposing the condition that
Jn(2') should be antisymmetric with respect to 2/, so that Jn(k) is antisymmetric

with respect to k, it is found that

) 1
Jn(k) = mg Ansin kzy P (€n, 10, €0, 9).- (5.157)

The Lagrange multipliers can then be determined by solving the simultaneous equa-

tions

2\Smy I/my Q0 Pz({naﬂn:fO»Q)
Bro= S A2 [ dk sin bz, sin bz, L2(matim €0, 0) . (5.158
Z b Q-(6orq) (5:158)

wherem = 1,2,..., N. By substituting Eq. (5.157) in Eq. (5.150), the stored energy

is given by

W._.

o0 1 2
‘/(; dk ——— Qz(fo, ) [Z/\ Slnkzn (Enanm{an)J ’ (5159)

which can be rearranged to read

Ho P (éna Mny an q)P (gn', Mty 501 9)
; An er—l /\n: / dk sin kz, sin kz, 0.Goq) J
(5.160)

27rc2
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By comparing Eq. (5.160) with Eq. (5.158), it can be seen that the terms within
the square brackets on the right-hand side of Eq. (5.160) are simply equal to B,,
the specified values of the magnetic field at points r,, = (5,7, 2n). Therefore, the
minimum stored energy of an elliptic cylinder z gradient coil can be expressed in a

very simple form, namely

1 N
W=23 B, (5.161)

n=1

which is the same as that for a circular cylinder coil, as shown in my M.Sc. thesis [12].

5.3 Elliptic Cylinder Gradient Coil Designs

The theory developed in the previous section was first used to design an elliptic
cylinder z gradient coil which carries a purely azimuthal current. A representative
axial ratio, b/a, of 0.75 was chosen, where a and b are, respectively, the lengths of
the semi-major and semi-minor axes of the ellipse. Such a ratio corresponds to an
eccentricity of 0.661 and is roughly the value that might be utilized for whole body
MRI. All dimensions are expressed in terms of a, as a scaling factor, so that the de-
sign can be used for a coil of any size whose axial ratio is 0.75. Design specifications
are presented for coils that generate a gradient of 10 mT/m, irrespective of the scal-
ing factor. Eight target field points, located at z/a = y/a = 0 and 2/a = 0.05n with
n =1,2,...,8, were selected, the corresponding values of B, being (5 x 10~4na) T,

where a is expressed in metres.

As in the case of circular cylinder coils [5], very high accuracy is required in
evaluating the integrals in Eq. (5.158), if reliable values of the Lagrange multipliers
are to be obtained. This is especially true if, as in our case, a large number of
target field points is used. Since we were not aware of any software to evaluate
modified Mathieu functions, and the software to evaluate coefficients of Mathieu
functions is of insufficient accuracy, subroutines were developed in house. Our val-

ues of periodic Mathieu functions and their coeflicients are in agreement with those
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listed in Ref. {10], which are given to eight or more digits. We note that Petropou-
los et al.’s values of the leading coefficients of the Mathieu functions sometimes differ
from NBS values in the sixth significant digit [7]. We believe that the accuracy of

Petropoulos et al.’s values is inadequate for evaluating the Lagrange multipliers.

The current density distribution, evaluated using the method described in
the previous section, is shown in Fig. 5.5a for z/a > 0. Rapid oscillations in the
current density were removed by smoothing or apodization [4], multiplication by
exp (—0.0052k%a?) prior to the inverse Fourier transformation. The exponent in
the apodization factor was chosen so that the current did not change sign. The

integrated current, I;(2), given by
Tin(2) = / Jn(2") d2’, (5.162)
0

is shown in Fig. 5.5b. The location of N,, wires that would approximate the current
distribution was found by dividing Ly (o0) into N, equal increments, and then

placing the wires at positions z = zz; such that

Tint(i) = (z' + %) I—]‘V(%") (5.163)

where ¢ = 0,1,...,(n — 1). Figure 5.6a shows the location of 18 wires, all carrying
identical currents, that approximate, on the surface of the elliptic cylinder, the

smoothed current distribution shown in Fig. 5.5a.

was found, using Egs. (5.150) and (5.151), to be (479a®) J. For comparison, the
energy stored in a circular cylinder coil of radius a (metres) which also generates a
gradient of 10 mT/m was found to be (696a®) J. In this case, the apodization factor
was exp (—0.015ka?), again chosen so that the current did not change sign. The
reduction in the stored energy, and hence in the inductance, achieved by replacing

a circular coil by an elliptical one with an equal value of a, is therefore 31%. This
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Figure 5.6: (a) Configuration of 18 wires in the octant z > 0 and 0 < n < /2 of
the elliptic cylinder, that approximates the current distribution shown in Fig. 5.5a.
(b) The corresponding configuration of 18 wires that approximates the current dis-
tribution when the azimuthal component is of the form j,(z/a)(1 — 0.025 cos 2n).
The representation is on the cufved surface of the elliptic cylinder, and is therefore
linear in s, the length measured in the azimuthal direction from the line z = a,

y = 0, but nonlinear in 7.
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is comparable with the reduction found by Petropoulos et al. [7], and Du and

Parker [13] for an elliptic cylinder coil carrying a purely azimuthal current.

Along the z axis, B, was found to deviate from linearity by less than 0.1%
out to z/a = 0.61 (z/b = 0.81). However, there is quite a substantial nonunifor-
mity in the transverse directions. As can be seen in Fig. 5.7, B, /a increases quite
rapidly with z/a at y/a = 0 in the transverse planes z/a = 0.05 and 0.25, but
decreases equally rapidly with y/a at z/a = 0, at least in the region y/a < 0.4.
This is consistent with the fact that Cy,/a and Cyy/a, evaluated using Egs. (5.128)
and (5.133) at either z/a = 0.05 or 0.25, are almost equal in magnitude to each

other, but opposite in sign, as shown in Table 5.1. This is not a coincidence since,

Table 5.1: Caz/a, Cyy/a, Cyz/a and Cyy/a, evaluated at zfa = 0.05, 0.25 and 0.6,
for the first design where the current is purely azimuthal, the gradient is 10 mT/m,

and a is the length of the semi-major axis of the ellipse

z/a  Cy/a(T/m) Cy/a(T/m) Cufa(T/m) Cy/a (T/m)

0.05 521 x10™% —521x10"2 —3.05x10"% 3.37 x 10~3
025 3.183x1072 -3.09x1072 —249x10"2 2.17 x 102

06 242x107! 3.40 x10™%  —2.09 x 10~ —5.37 x 10-!

for a steady field, V2B = 0 in a current-free region, so that
0B, 8°B, 0°B,
5 + By + 5 0. (5.164)
If the z gradient, 8B,/8z, is independent of z, 0*B,/82* is zero, from which it

follows that

0’B, 0°’B,
6:1:2 = ——53—/7 or Cz_-,, = -—Czy. (5.165)
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Figure 5.7: The magnetic field B,, divided by the length of the semi-major axis a,
associated with a z gradient of 10 mT/m, shown as a function of z/a with y/a =0,
and as a function of y/a with z/a = 0 in (a) the z/a = 0.05 transverse plane and
in (b) the z/a = 0.25 transverse plane. The upper and lower curves refer to the
first design where the current is purely azimuthal. The other two curves refer to

the second design where the azimuthal component of the current is of the form

Jn(z/a)(1 = 0.025 cos 27).
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Since the z gradient in our elliptic cylinder coil design is almost independent of z
in the region 0 < z/a < 0.4, Cz; and Cyy at z/a = 0.05 and 0.25 are expected to

be almost equal in magnitude but opposite in sign, as obtained.

Also shown in Table 5.1 are C4z/a and Cyy/a, evaluated using Egs. (5.129)
end (6.134). They too are of opposite sign but unequal in amplitude, thereby
accounting for the shape and asymmetric behaviour of the curves in Fig. 5.7 when
z/a or y/a is greater than 0.4. The behaviour of B,/a in the transverse plane
z/a = 0.6, well outside the target field region, is shown as the upper and lower
curves in Fig. 5.8, and is seen to be quite different from that in Fig. 5.7. This is
reflected in the values of Cy;/a, Cyy/a, Cy,/a, and Cysy/a at z/a = 0.6, which are
also listed in Table 5.1.

To achieve an accuracy ~ 1 part in 10° in calculating the coefficients C,, /a,
etc., it was necessary to carry out the summation over m out to m = 7 or m = 9.
It should be noted that the coefficients were evaluated using the apodized current
distribution. Without apodization, the numerical values of C,; /a and Cyy/a (Cyz/a

and Cyy/a) are roughly 10% (30%) smaller than those listed in Table 5.1.

The fact that C3;/a and Cyy/a are of almost equal magnitude but opposite
sign in the target field region, indicates that it should be possible to largely elim-
inate the parabolic component of B,/a in the z and y directions, by introducing
a small cos 2y dependence into the azimuthal current, even though this introduces
a concomitant axial component. We therefore consider a second design where the

azimuthal component of the current density is given by
Jn(n,2/a) = jy(z/a)(1 — 0.025 cos 2n), (5.166)

so that a; in Eq. (5.135) is 0.0125. When the apodization factor is taken to be
exp (—0.0063%%a?), so that the current does not change sign, j,(z/a), the azimuthal

current density at n = x/4, is very similar to that shown in Fig. 5.5a for a purely
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Figure 5.8: The magnetic field B,, divided by the length of the semi-major axis a,
associated with a z gradient of 10 mT/m, shown as a function of z/a with y/a = 0,
and as a function of y/a with z/a = 0 in the z/a = 0.6 transverse plane. The upper
and lower curves refer to the first design where the curreni is purely azimuthal. The
other two curves refer to the second design where the azimuthal component of the

current is of the form j,(z/a)(1 — 0.025 cos 25).



azimuthal current. The behaviour of B,/a in the planes zfa = 0.05 and 0.25,
evaluated using Eqs. (5.121) and (5.147), is shown in Fig. 5.7. It can be seen that
the variation of B./a in the transverse directions is less than 0.1% out to z/a or
y/a = 0.53, as compared to being less than 0.1% out to z/a or y/a = 0.2 when the
current is purely azimuthal. Moreover, the linearity of the gradient along the z axis

is slightly better than before.

While it is possible to choose a, to eliminate the parabolic component of B,
accurately in both the z and y directions when z/a < 1, this parameter was chosen
empirically to be 0.0125 so as to yield an extended region of essentially uniform
B; in those directions. Values of Caz/a, Ciz/a, Coy/a and Cay/a, calculated using
Eqs. (5.128), (5.129), (5.133) and (5.134) but with Ym(€0,q) and (n(&o,q) given by
Egs. (5.148) and (5.149), are listed in Table 5.2. Comparison of the values of Caz/a

Table 5.2: Cyz/a, Cyy/a, Ciz/a and Cyy/a, evaluated at z/a = 0.05, 0.25 and 0.6, for
the second design where the azimuthal component of current is given by Eq. (5.166),

the gradient is 10 mT/m, and a is the length of the semi-major axis of the ellipse.

¢/a Cpfa(T/m) Cyyfa(T/m) Ci/a(T/m) Cyfa (T/m)

0.05 2.60x10™* —2.60x10"* —2.21x10"3 243 x 10-3
0.25 4.99x107° —488x1073 —1.74x10~2 1.77 x 10-2

06 1.29x107! 6.61x10° —1.75x10-! —3.67 x 10!

and Cyy/a in Tables 5.1 and 5.2 shows that a large measure of cancellation of the
parabolic component of the field has been achieved using the current distribution

given by Eq. (5.166). The values of Cy;/a and Cyy/a in Tables 5.1 and 5.2, on the
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other hand, are comparable. This is, however, to be expected since the 7 dependence
of the azimuthal component of the current density given by Eq. (5.166) was chosen

to mainly cancel the parabolic component.

Figure 5.6b shows the location of 18 wirés, all carrying identical currents,
that approximate the current density distribution of Eq. (5.166) on the curved
surface of the elliptic cylinder. Here, s is the length measured on the surface of the
elliptic cylinder in the azimuthal direction from the line z = a, y = 0. The ordinate
scale is linear in s/a but nonlinear in 7, since s/a = E[(w/2)\a] — E[(7/2) — n\a],
where E[(7/2)\a] and E[(r/2) — n\o] are, respectively, complete and incomplete

elliptic integrals of the second kind [14] and sine = ¢/a.

The energy stored in a coil of this second design, when it generates a gradient
of 10 mT/m, is (514a®) J, 7% larger than that associated with the first design,

because of the energy associated with the axial component of current.

5.4 Discussion

We have shown, as can be seen in Fig. 5.7, that the nonuniformity of B, in the
transverse directions, which is characteristic of elliptic cylinder coil designs where
the current is purely azimuthal, can be largely eliminated by introducing a cos 2n
dependence of appropriate amplitude into the azimuthal component of the current
density. This results in a z gradient coil with much improved linearity. Higher order
compensation can be achieved by modifying the n dependence to cancel the (z/a)?,
(y/a)*, etc. dependence of B, when z/a < 1, if the region of interest extends close

to the coil or if the coil is highly elliptical.

Our first design where the current is purely azimuthal displays considerably
better gradient linearity along the z axis, and field uniformity in transverse planes,

than do the coil designs of Petropoulos et al. [7]. For example, in our first design
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where b/a = 0.75, the nonuniformity of B, in the transverse directions is less than
0.5% out to z/a or y/a = 0.5. In Ref. [7], the nonuniformity at y/a = 0.5 is about
5% for a coil with b/a = 0.82 and 9% for a coil with b/a = 0.73, as can be seen
in their Figs. 4 and 7. While the much poorer gradient linearity in Ref. [7] may
be partly due to the choice of target field points very close to the z = 0 plane, we
believe that the differences are mainly due to the omission of the factor (—1)(=1)/2
from Egs. (27) and (30) in Ref. [7] and the fact that there is no summation over a
second index, r’ say, in Eq. (27). (The summation over j in Eq. (30) should be over

r/, though this is presumably a typographical error.
g g

A coil with b/a = 0.75 and carrying a purely azimuthal current, but with
other parameters the same as those used in Ref. [7], namely a = 0.275 m and
a gradient of 15 mT/m, was found to have a stored energy of 1.70 J. This is
substantially larger than the stored energies found in Ref. [7], namely 0.76 J for
b/a =0.73 and 0.97 J for b/a = 0.82. This difference is mainly due to our selection
of target field points out to z/a = 0.4, which yields a far better field profile over
an extended region than that achieved by Petropoulos et al., but at the expense
of a larger stored energy. A calculation of the stored energy in a coil with their
dimensions, a = 0.275 m and b = 0.2 m, their gradient strength, 15 mT/m, and
using their target field points and no apodization, gave a stored energy of 0.74 J, in
comparison with their value of 0.76 J. We note that their Eq. (28), the expression for
the stored energy, is in agreement with ours (apart from the fact that their integral
should be from 0 to oo instead of from —oo to oo, pfesumably a typographical
error). The omission of the factor (—=1)("=1)/2 is of no direct consequence in their
Eq. (28), and its predecessor Eq. (20) as explained in Section 5.2.10. However, its
omission from their Eq. (30) will affect values of the Lagrange multipliers, which
may be responsible for the small discrepancy between their value of stored energy

and ours.
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Chapter Six

SUMMARY AND CONCLUSIONS

The work presented in this thesis falls into two distinct parts. The first part involves
upgrading a 40 cm bore, 2.35 T Bruker MR magnet system, used for animal studies
in the University of Alberta’s In vivo NMR Facility. The second part deals with

the design of elliptic cylinder gradient coils.
6.1 Upgrading of the Bruker Magnet System

The work of an earlier graduate student, Mr. Scott Robertson [1], had clearly shown
that the Bruker magnet and gradient system had serious deficiencies which pre-
vented “state of the art” protocols being implemented. Moreover, the required
upgrades could not be made using equipment commercially available at the time.

Thus, it was decided to do the upgrading “in house”.

Particularly : ‘oublesome were magnetic fields associated with slowly decay-
ing eddy currents i1 iced in the structure of the magnet by switched gradients. The
temporal and spatiai dependence of the eddy current fields were therefore studied
by measuring the offset frequency of the proton FID obtained from a 13 mm di-
ameter spherical sample of water, as described in Chapter Two. By analysing the
data, it was found that there were three exponentially decaying eddy current fields

associated with each of the z, y and z gradients. Decay times of these eddy current
eddy current fields showed that, while all the eddy current fields were primarily
uniform gradients, those associated with the z and z gradients were accompanied

by time dependent homogeneous field shifts. The data analysis also showed that
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the amplitudes of the eddy current field gradients were extremely large, more than
50% of the main gradient in the case of the z and y gradients, and about 40%
of the main gradient in the case of the z gradient! Moreover, the amplitudes of
the field shifts were as large as 120 Hz, large enough to cause serious problem in
observing proton spectra, for example. The large eddy current field gradients and
field shifts, as well as very slow switching times of ~ 1 ms for the main gradients led
to the conclusion that, in order to carry out in vivo NMR. studies, especially fast
imaging experiments, on this Bruker system, an actively shielded gradient set [2]
was required. Accordingly, three shielded, distributed current, cylindrical gradient

coils of minimum inductance of Turner design were constructed in house [3].

When these gradient coils were installed in the magnet, it was found that
very accurate positioning of the primary and shielding coils in the axial direction was
required to achieve proper shielding. In a theoretical study of shielded 2 gradient
coils, presented in Chapter Three, it was found that a small relative axial displace-
ment of the primary and shielding coils from their correct juxtaposition, gave rise
primarily to a homogeneous field shift. Analytical expressions were derived which

enabled the artifacts caused by such a field shift to be evaluated for various MRI and

ment of the primary and shielding coils, which would give rise to minimal artifacts,
to be estimated. It was found, using typical timing parameters, that the maximum

tolerable relative displacement in the case of spin-echo, FLASH [4] and MBEST (5]

imaging was roughly 1 mm, if the decay times of the eddy currents are less than
or of the order of the duration of the gradient pulses. If the eddy currents have
much longer decay times, there is substantial cancellation of the eddy current fields
generated by the switch-on and;switch-éff of the gradient pulses. In that case, the

maximum allowable relative displacement is much larger than 1 mm.

By applying the analytical expressions to the STEAM pulse sequence [6] for
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proton spectroscopy, it was found that the demands of in vivo proton spectroscopy

require a maximum relative displacement of roughly 0.1 mm, much smaller than in

MRI

While we have restricted ourselves to an axial relative displacement of the
primary and shielding coils in a shielded z gradient set, the results obtained should
give a good indication of the tolerance required in the construction of the individual
coils in transverse gradient sets, as well as in their alignment in the transverse

directions.

Our calculated tolerances should be useful, not only for manufacturers of
gradient coil systems, but also research groups in the forefront, of MRI, since shielded

gradient coils can be constructed by well equipped machine shops.

It is important in MRI and MRS that the main magnetic field be homoge-
neous over an extended region. This requires an effective shimming system. How-
ever, the axial variation of the field strength in the Bruker magnet, which is pre-
dominantly fourth order in the z coordinate, could only be one-third compensated
using the 2* shim coil provided by the manufacturer, the associated power dissipa-
tion being about 100 watts leading to temperature increases in the sample space
of up to 12°C in one hour. To overcome this problem, we studied the influence of

various design parameters on the power dissipation and field profile of z* shim coils.

We considered two types of four-ring z* shim coils, namely those that gener-
ate no 2° and z? field components (Type 1 coils), and those that generate no 22 and
28 field components (Type 2 coils). Type 2 coils therefore generate a field shift in
addition to the z* shim field. This may be a disadvantage in some cases, especially
if the field shift is large. Relations between the design parameters, namely the z
coordinates of the inner and outer pairs of rings, and the respective currents, I;
and I,, flowing through them, were determined for both types of coils. The power

dissipation and field profile of various designs were compared in order to find the
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optimal design.

The most efficient Type 1 design was found to be one where L/ =—-4. 1t
has a better field profile and a power dissipation 40% less than Romeo and Hoult's [7]
design for which I3/I; = —9. Most of the Type 2 designs were found to dissipate
much less power than Type 1 designs, while at the same time approximating the
desired z* field profile over an extended region without generating an inordinately
large field shift. This led us to construct a replacement shim coil for the Bruker
magnet using a Type 2 design with I;/I; = —2.5. This enabled the z* field variation

of the magnet to be fully compensated with a power dissipation of only 21 watts.

In summary, our results from this study enable the most appropriate z* shim
coil design to be chosen in individual cases. The method used to compare the power
dissipation of different coil designs is not restricted to z* shim coils. However, its
most likely application is in the design of high order z" shim coils in wide bore

NMR magnets.
6.2 Design of Elliptic Cylinder Gradient Coils
The demands of new, rapid imaging sequences for fast and efficient production of

cylinder as a preferred geometry over the circular cylinder for the former of gradient
coils. However, these workers assumed that the current on the surface of the elliptic -
cylinder is purely azimuthal. Moreover, their treatment is in error because of the
omission of an important factor from the expression for the magnetic field. Their

numerical results are therefore of questionable validity.

We began our work by deriving general expressions for the magnetic field
and stored energy associated with a distributed current on the surface of an elliptic

cylinder, which is allowed to flow axially as well as azimuthally. We note that these
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expressions can be used to design not only elliptic cylinder gradient coils but also
coils which generate other field profiles such as a uniform field or higher order shim
fields [7). Relations between Mathieu-Fourier transforms of the azimuthal and axial
components of the current density were derived in order to design elliptic coils of
minimum inductance using the target field approach [9], when the current is not

restricted to azimuthal flow.

When the general expressions were used to design an elliptic cylinder 2 gra-

dient coil carrying a purely azimuthal current, it was found that, near the z axis, B,

in the y direction. This is a direct result of the ellipticity, when the current is purely
azimuthal. It was shown that it should be possible to eliminate this variation of B,
in the transverse directions by introducing a cos 2y dependence of the appropriate
amplitude into the azimuthal component of the current density, even though this

introduces a concomitant axial component.

The theory was used to design two elliptic cylinder z gradient coils of min-
imum inductance, with an axial ratio of the ellipse of 0.75 and eight target field
points along the z axis. In the first design, the current was assumed to be purely
azimuthal. Even though the gradient was found to deviate from linearity by less
than 0.1% out to z/a = 0.61, where a is the length of the semi-major axis of the el-
lipse, there was substantial nonuniformity of B. in the z and y directions, the region
where B, varies by less than 0.1% being limited to z/a or y/a < 0.2 in the target
field region. In the second design, the n dependence of the azimuthal component of
of B, was in this case less than 0.1% out to z/a or y/a = 0.53, a considerable

improvement over the first design. Moreover, the linearity of the gradient along the

The stored energy in generating a given gradient in the first design is 31%
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less than that of a circular cylinder 2 gradient coil whose radius is equal to the
semi-major axis of the ellipse. The stored energy of the second design was 26% less
than that of the circular cylinder coil. Despite the fact that the stored energy of the
second design is somewhat larger than that of the first design, the second design

should be preferred, because of its more uniform gradient.
6.3 Future Research

Since a general theoretical treatment of elliptic cylinder coils has been accomplished,
the next obvious task is to apply the theory to design elliptic cylinder transverse
gradient coils. The theory can also be extended to cover the situation where the
power dissipation, instead of the stored energy, is minimized,

Elliptic cylinder gradient coils, like gradient coils of other geometries, should
be shielded to eliminate eddy current effects. The current distribution in a circular
cylinder shielding coil surrounding an elliptic cylinder gradient coil can probably
be derived numerically from the current distribution in the inner coil by means of
optimization. On the other hand, the current distribution in an elliptic cylinder
shielding coil, which is confocal with the inner coil, may be derived analytically, in
a similar way to that for circular cylinder shielded gradient coils.
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Appendix A

DERIVATION OF EXPRESSIONS FOR. «

A.1 Derivation of Eq. (3.59)

The initial amplitude of the eddy current field caused by switching on the slice
selection gradient is (Bgd9),. After the selective rf pulse is switched off, and be-
fore the slice selection gradient is reversed, the eddy current field has decayed to
(B2%%)o exp (—Taice/7). The change in the eddy current field, 6 B39 during slice

selection is given by

6B = (1= e7miee/) (BEi%)

(A.1)
By comparing Eq. (A.1) with Eq. (3.56), it is found that
o=1— E’fgliié/Ti (A_z)

which is Eq. (3.59).
A.2 Derivation of Eq. (3.62)

Immediately after reversal of the slice selection gradient, the amplitude of the eddy

current field is

(Eg + Eéfgliself) ( E’jdd?")

/o0’
which decays to
(Eg + Eimice/f) e~ Tilice /27 (E;ddy),

[}
before the gradient is switched off. By switching off the gradient, the eddy current

field becomes

(1 + g 37stice/27 __ Qésmigglzf) (E?jdy) ?

/0
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At the beginning of the phase encoding period in MBEST imaging, the eddy current
field has decayed to

(1 o+ g~ 3mlice /27 __ gé—fsuce/?*r) e~ n+(n/2)/r (B;fddy)ﬂ )

current field during this period is given by
§B§dd§f — (1 + Eﬁafllir:e/g’" — Qa-fsli:glgf) (l — Eéﬂﬁ/f) EE[T1+(7’2/2)]/T (Bﬁddy)o , (AB)

from which Eq. (3.62) is obtained.
A.3 Derivation of Eq. (3.64)

Assuming 73/7 < 1, and that the prepulse and the blips comprising Gphase in
MBEST imaging all possess the same amplitude, the amplitudes of the eddy current
fields caused by the prepulse and each blip are given by [1 ~ exp (—7;/7))(B2%),
and (—73/7)(B)o, respectively. At the beginning of the first echo, the total eddy
current field caused by the prepulse and the first blip is given by

[(1 _ E_i-l/ar) W12 %J ( gﬂ.ﬂy)g3

where u = exp (—73/7). This field is reduced by a factor of u™ at the end of the nth
echo. At this instant, the eddy current field caused by the rest of (n = 1) blips is
given by

- (BE) 2 (utu ot = — (B2, TS”T% E_i;‘l)i (A.4)

Thus, the change in the eddy current field caused by Gphase in MBEST imaging
during the phase encoding period is given by
e peddy _ 1 — o=T/T) ., 1/2 _ E ™Y Tau,(l — u?,—l) " peddy .
6B = {[(1 e/ ) u T] (1-u )+§—i—ﬂ1_ﬂ) - ¢ (Bt r)oi (A.5)
Equation (3.64) is then obtained by comparing Eq. (A.5) with Eq. (3.56).
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In SE imaging, the eddy current field at the beginning of the acquisition period,

caused by the read compensation gradient pulse, is given by

0

By switching on the read gradient, the total eddy current field becomes

[1 _ (1 _ EETQQIET) EEH/T] (Bgddy) .

0

At the end of the acquisition period, this field is reduced by a factor of exp (—7aq/7).
Therefore, the change in the eddy current field during the acquisition period is given

by

8B = [1 - (1 — em™/27) e=™/7] (1 — e7™0/7) (B2d) | (A.6)

It follows that
a= [1 - (1 - E’f“?/g'f) é’gf‘/f] (1 - e"’“‘/f) , (A.7)
which is Eq. (3.66).

The derivation of Eq. (3.67) is similar to that of Eq. (3.66).
A.5 Derivation of Eq. (3.68)
Before the first gradient reversal in MBEST imaging, the eddy current field caused

nth echo, this field will have decayed to

_ (By::d«:ly) e~ In=(1/2)m/~ and _ (Bg‘fﬂdy) Ei[ﬁ+(1/?)]fg/f,
z A = 0

\ 4] .
respectively. The eddy current field caused by n gradient reversals is given by

2(1+e)
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at the beginning of the nth echo, which is reduced by a factor of exp (—72/7) at
the end of that echo. Here, we have assumed that n is odd. If n is even, the eddy
current field at the beginning of the nth echo, caused by the n gradient reversals,

is given by 7 )
2(1—e /Ty
(1 T e_,e,:;[%* (Eeddy)n .

The change in the total eddy current field during the nth echo, caused by switching

=

Giead, is therefore given by

2 71 agsTgff 1+E—ﬂ7‘g/? L
LoD o

(A9)

DS

6B:ddy - [__ (e—(n—%)nlr _ e-(n+%)1'2/1-) +

when n is odd.

For echoes near the end of the acquisition period, where n is large and

exp (—n72/7) < 1, Eq. (A.9) reduces to

— p=T2/T
2(1-e )(Bgddy)w (A.10)

5 eddy — -
B: 14 e-m/7

from which Eq. (3.68) is obtained.

A.6 Derivation of Eq. (3.72).

The eddy current field at the beginning of the acquisition period, caused by the
second Giiices in the STEAM spectroscopy sequence, is given by

(B:ddy)o (1 —_ Eii‘g/—f) E_E/"'i

Since the eddy current field will almost completely decay during the long acquisition
period, « is given by
a=(1—e/m) el (A.11)

which is Eq. (3.72).
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