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Abstract

Animal movement and space-use patterns influence the distribution and abundance

of species, predator-prey interactions, and many other ecological processes. Different

approaches are used to study individual’s space-use strategies and each approach suffers

from unique challenges. The mechanistic underpinning of some movement models have

led many to confuse patterns with process, while coarse space-use analyses have led

many to miss critical aspects of animal behaviour. In this thesis, I address these

challenges by refining models of animal search strategies and developing new methods

to incorporate drift in home range analyses.

Understanding how animals find resources with incomplete information is a topic of

interest and controversy in ecology. Two search strategies have become prominent: the

Lévy walk and area-restricted search (ARS). Although the processes underlying these

strategies differ, they can produce similar movement patterns and current methods

cannot reliably differentiate between them. I present a method that can simultaneously

assess the strength of evidence for these two strategies, and assess the empirical support

for the use of each strategy by a range of species: woodland caribou (Rangifer tarandus

caribou), grizzly bears (Ursus arctos), and polar bears (U. maritimus). Although

previous methods would have found evidence for the Lévy strategy, my method shows

greater support for the ARS strategy. My results also show that species and individuals

vary in their search strategies. While the ARS was sufficient to explain the movement

of some caribou and grizzly bears, none of the models examined adequately explained

the movement of polar bears. These results demonstrate the usefulness of this method

when evaluating the evidence for the Lévy and ARS strategies, and highlight the need

for additional mechanistic search strategy models.
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A home range represents the area an animal use to perform the majority of the

activities required for survival and reproduction. As such, measuring home range size

has been an important tool to quantity the amount of habitat an animal requires.

However, in moving habitats, traditional home range estimates may be ill-suited to

this task. I present a new approach to estimate the amount ice habitat encountered

by polar bears. These estimates showed that the traditional geographic home range

underestimates both the movement of bears and the amount of ice habitat that they

encounter. The results also indicated that bears living on highly mobile ice might be

exposed to higher energetic costs, and potentially larger energetic gains, than bears

inhabiting more stable ice.

By improving methods to identify search strategies and developing new approaches

to investigate the effects of drift on animal home ranges, I provide ecologists a set of

new tools to study animal space use and contribute to the flourishing field of movement

ecology.
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analysis when different threshold angles are used to define biologically

relevant steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xiii



Chapter 1

Feedbacks between scales of animal
space use: studying both movement
strategies and ranging patterns is
essential to understand their
dynamics

The movement and space-use patterns of animals have important consequences for

many ecological processes. They not only affect the distribution of species, they

have the potential to influence population abundance, predator-prey dynamics, dis-

ease transmission, as well as community and ecosystem structure (Börger et al., 2008;

Nathan et al., 2008). For example, dispersal strategy can influence important aspects

of population dynamics, such as the extinction-colonisation balance of metapopulations

(Bowler and Benton, 2005). Seasonal migrations of herbivores outside their predators’

range can affect the population dynamics of other species, including their predators

and the alternative resident prey that predators are forced to rely on (Fryxell and

Sinclair, 1988). Both long-distance movement and home range behaviours can affect

disease transmission (Altizer et al., 2011; Habib et al., 2011; Schauber et al., 2007).

For instance, home range overlap can increase direct and indirect contact rates be-

tween individuals and thus increase disease transmission (Habib et al., 2011; Schauber

et al., 2007). Because drivers of home range size and overlap are tightly linked to

individuals’ energetic needs, habitat quality, and population density (Jetz et al., 2004),

home range behaviours and patterns can be used to predict a variety of broader scale

ecological patterns. Some ecologists define a species’ geographic range as the area

encompassing the home ranges of all individuals in the population (Gaston, 1991).
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Others predict community structure in heterogeneous landscapes using the spatial dis-

tribution of home ranges constructed according to body size, resources needs and costs

of locomotion (Buchmann et al., 2011). Because movement and home range patterns

affect a plethora of ecological processes, it is important to understand the mechanisms

driving varied space-use strategies and the links between them.

The basic drivers of individuals’ space-use strategies will be the trade-offs between

acquiring the resources required for survival and reproduction, and limiting the costs

and risks associated with acquiring these resources (e.g., Adams, 2001; Mitchell and

Powell, 2004; Zollner and Lima, 1999). Individuals require a variety of resources,

including food, mates, and shelters (Bell, 1991). The importance of these resources

in shaping the space-use behaviour of individuals will vary with species, sex, age class

and reproductive status (Bell, 1991; Law and Dickman, 1998; Maher and Lott, 2000).

Moreover, the costs and risks associated with resource acquisition will depend on factors

such as the spatial distribution of resources, number of competitors, and presence of

predators (Bell, 1991; Grant, 1993; Maher and Lott, 2000).

There is a hierarchy of trade-offs to consider (Fig. 1.1). At the higher level, an-

imals need to trade-off the energy and time devoted to acquiring different resources,

as well as other important activities such as escape from predation and offspring care

(e.g., Houston et al., 2012; Markman et al., 2002). These trade-offs affect not only the

time, energy, and behavioural budgets of these animals, they also influence their spa-

tial patterns (Bernstein and Jervis, 2008; Heithaus and Dill, 2002; Mysterud and Ims,

1998). At the lower level, individuals need to balance the costs and benefits associated

with a specific activity. For example, territorial defence helps an individual maintain

exclusive access to resources, but evicting intruders increases energy expenditure and

the risk of injuries (Low, 2006; Riechert, 1988). Such trade-offs are reflected in the

movement behaviours of species that chases intruders over different distances depend-

ing on the intruder’s characteristics (e.g., Kohda, 1991; Whiting, 1999). These lower

level trade-offs can also be exhibited in the choice of movement strategies used for a

specific activity, such a searching for food (Fig. 1.1B). In general, many movement

and home range models focus on the energetic benefits of acquiring food resources and

the locomotion costs associated with reaching them (e.g., Mitchell and Powell, 2004;

Rhodes et al., 2005; Van Moorter et al., 2009; Zollner and Lima, 1999). Each of the two

levels in the hierarchy of trade-offs is more closely associated with a particular scale

of space use (Fig. 1.1). At the lower level, small-scale movement models can specify

detailed movement rules and trade-offs involved in performing one activity, or perhaps
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a small set of activities. Home range analysis and other larger-scale space-use patterns

are a composite of all behavioural activities and higher level trade-offs.

1.1 Bottom-up approach: using movement models

to understand animal space use

Ecologists can examine movement and space-use patterns in a bottom-up approach:

understanding the mechanisms of movement strategies before linking them to emergent

space-use patterns. A recent unifying paradigm for movement ecology proposed that

movement is composed of four mechanistic components: the internal state, the motion

capacity, the navigation capacity, and external factors (Nathan et al., 2008). We can

relate each of these building blocks to the motivations, constraints, costs, and benefits

underlying varied movement strategies. The internal state quantifies the motivation

for a specific set of activities (e.g., searching for food, mating) and could, for example,

be used to represent the behavioural trade-offs or resulting energy/time budget of an

individual. The motion capacity reflects the different physiological constraints on an

individual’s movement. For example, how far can a fish swim and how far can it drift

with the current. The navigation capacity represents the ability to use perception or

memory to create goal-oriented movement. The external factors encompass abiotic

(e.g., temperature and currents) and biotic factors (e.g., presence of competitors or

predators) that can affect movement. External factors have the potential to affect all

other components of movement. For example, a snowstorm might reduce an animal’s

motivation to forage, its ability to walk long distances, and its capacity to perceive

visual or auditory cues. All of the components of this framework are interrelated to

describe the movement strategies for a set of behaviours, and the resulting lifetime

movement path emerges from this set of movement rules.

Other ecologists have divided movement into similar components, but with a fo-

cus on the ranging patterns they form. Mueller and Fagan (2008) divided movement

into non-oriented, oriented, and memory-based mechanisms. They argued that spa-

tiotemporal dynamics in resource distributions affect the benefits gained from these

movement mechanisms, which in turn shape population-level ranging patterns. Börger

et al. (2008) discussed the four important components that lead to the emergence of

stable home ranges: focal point attraction, memory effects, habitat and resource distri-

butions, and social interactions. For example, models that incorporate wolves’ (Canis

lupus) attraction to den sites, territory marking behaviours, and prey distribution can

predict the stable boundaries between the territories of different packs (Lewis and Mur-
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ray, 1993; White et al., 1996). The assumption of these modeling frameworks is that

ranging patterns emerge out of the specific movement behaviours. Although this is

consistent with Burt’s (1943) definition of a home range as an area used by an animal

for its usual activities such as foraging, mating and caring for offspring, it does not

reflect how specific ranging patterns might, in turn, affect the benefits gained from

specific movement strategies.

1.2 Top-down approach: using broad scale patterns

to inform movement models

While it is clear that the movement strategies of an individual will influence its space

use, we can also take a top-down approach and investigate how different space-use

behaviours can affect the costs and benefits of movement. A simple, intuitive example

is how the territorial behaviour of an animal will affect most aspects of its movement.

A territorial animal will largely restrict its search for food and mates to its territory,

will spend time patrolling its periphery, and will chase away intruders. Other space-

use behaviours also have the potential to affect animal movement, albeit in potentially

subtler manners. While memory is likely an important process in the formation of a

stable home range (Börger et al., 2008; Van Moorter et al., 2009), one could also argue

that memory-based search strategies might emerge because animals have stable home

ranges. The emergence of a stable home range could be the results of a spatial anchor,

such as a nest site. In fact, as Börger et al. (2008) explained, most models that lead to

emergence of stable home ranges only do so because of the presence of a fixed point of

attraction. Due to this spatial anchor, a central-place forager is repeatedly exposed to

the same environment, allowing the animal to memorise spatial information and develop

a memory-based foraging strategy. Some ecologists have argued that territories and

home ranges exist as cognitive maps in animals’ brains and that animals use them to

make movement decisions (Fagan et al., 2013; Powell and Mitchell, 2012).

The top-down approach is used extensively in studies investigating the importance

of different habitat types to animals (e.g., Aebischer et al., 1993; Johnson, 1980; Meyer

and Thuiller, 2006). Johnson (1980) proposed that habitat selection at a given scale is

conditional on selection at larger spatial scales. Within this framework, an animal first

selects a home range based on general habitat preference. Then, the animal selects

for specific habitat types based on the availability of these within their home range.

Thus, the movement decisions made at relatively small spatiotemporal scales are highly

dependent on the larger space-use decision made by an individual. For example, how
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far an animal is from the home range centre was shown to alter the probability of

moving into different habitat types (Rhodes et al., 2005). Animals are not necessarily

free to choose an optimal location for their home range. Whether and where an animal

will disperse is dependent on many factors and constraints (Bowler and Benton, 2005).

For example, the quality and size of territories of Eurasian beaver (Castor fiber) decline

with settlement date because good territories are claimed first (Campbell et al., 2005).

Because displacing a home range can incur high costs and mortality risk, animals have

a tendency to remain in potentially suboptimal home ranges, unless there are drastic

changes in the environment (e.g., Isbell et al., 1990; McDougall and Kramer, 2007;

Morris, 1987). Thus, without capturing the dispersal and establishment phases, it is

difficult to infer an individual’s large-scale home range selection based on its smaller

scale movement decisions.

In addition to affecting which resources are available to an individual, the estab-

lishment of a home range has the potential to alter the distribution of the resources

themselves. For example, wolf predation can cause prey densities to be highest in the

buffer zone between the territories of neighbouring packs (Lewis and Murray, 1993;

White et al., 1996). Such patterns result from the heavier use within the home range,

and the avoidance of aggressive encounters with neighbours. Resource depletion within

the home range has also been observed in non-territorial animals. For example, “Ash-

mole’s halo” is a zone of local food depletion surrounding seabird colonies (Elliott et al.,

2009; Gaston et al., 2007). By affecting resource distributions within their home range,

individuals are required to alter their movement strategies. For example, as the size of

the Ashmole’s halo increases through time, seabirds are forced to travel longer distance

to forage (Elliott et al., 2009; Lewis et al., 2001).

1.3 Importance of using both approaches

As I hope I have conveyed above, there are feedbacks between larger scale space-use

patterns and smaller scale movement strategies. Ideally ecologists could address both

scales in a single cohesive framework and this may be the eventual outcome of the new

and ambitious movement ecology paradigm (Nathan et al., 2008). However, for this

bottom-up approach to be sufficient by itself, it would require modeling an individual’s

complete set of movement behaviours, including rare events such as dispersal, and how

the individual alters the environment. For such an endeavour to be feasible, it will

require new techniques that handle complicated feedbacks, such as the dynamic rela-

tionships between the resources distribution and animal movement, and multiple levels
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of hidden states, such as the memory maps of individuals. Independently address-

ing some of these aspects, such as modeling the hidden memory process, is already

challenging (Fagan et al., 2013). Tackling all of them simultaneously, and applying

such models to data, represents a formidable challenge. Thus, in the meantime, one

way to incorporate the effects of spatial patterns on movement and to increase our

understanding of both scales is to continue to refine both approaches.

While studying small-scale movements and large-scale space-use patterns are both

useful, each involves unique challenges. With smaller scale studies it is possible to

model the details of a behavioural strategy and infer whether there is evidence for it

by applying the model to data. However, such approaches can be misused. The mecha-

nistic underpinning of such models has misguided many to confound pattern with pro-

cess. In particular, different movement strategies, such as the Lévy walk and the Area

Restricted Search (ARS), can produce similar movement patterns even though their

underlying behavioural mechanisms differ (Benhamou, 2007). Differentiating between

these two strategies is challenging, and identifying whether they are a good reflection

of animal behaviour has proven difficult. Large-scale analyses facilitate the under-

standing of broader scale ecological processes because they summarise the results of

all the behaviours expressed by animals over the period of the analysis. However, such

summarisation can obscure important features, such as the spatiotemporal variation in

resource distributions and the effects of currents on observed patterns. While wind and

water currents affect movement strategies (e.g., Campbell et al., 2010; Klaassen et al.,

2011), their influence is rarely incorporated in analyses of broader space-use patterns.

In my thesis, I address problems in the analysis of animal movement and space-use

pattern at both scales.

1.4 Dissertation outline

Chapters 2-4 address multiple aspects related to the difficulties in differentiating be-

tween the movement patterns created by two of the most prominent search strategies

in the literature: the Lévy walk and the ARS. As mentioned above, these two popu-

lar random search strategies differ in their underlying behaviours, but create similar

movement patterns. In Chapter 2, I start by identifying the problems associated with

differentiating between these two strategies and suggesting potential solutions. This

is in the form of a comment on Plank and Codling (2009), a paper demonstrating

that current methods would misidentify the movement generated by an ARS as be-

ing evidence for the Lévy walk. I argue that comparing the relative fit of the Lévy
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walk against a null model is insufficient for the identification or misidentification of a

movement process. To differentiate the Lévy walk from the ARS, we need to develop

a simple likelihood function for the ARS. In addition, it is important to recognize that

the best model according to relative measures of fit might still be a poor representa-

tion of the underlying process. Thus, a minimum requirement for assessing whether

a movement pattern is consistent with a process is a verification of the absolute fit of

this model.

In Chapter 3, I develop comparable likelihood functions to represent the Lévy walk

and the ARS. Unlike previous attempts to do so, these likelihood functions include

both important measures of movement: the turning angles and the steps lengths.

My model for the ARS is a hidden Markov model that incorporates autocorrelation

in behaviour, which is a hallmark of the intensive phase of the ARS. These likelihood

functions can be used to assess both the relative fit of the models (i.e., identify the best

model) and the absolute fit (i.e., verify whether the best model adequately explains the

data). Through a simulation study, I show that my method allows one to differentiate

between the ARS and the Lévy walk. I show that it can be easily applied to real

animal movement data, by using a small and complex data set from polar bears (Ursus

maritimus) from Hudson Bay, Canada.

In Chapter 4, I use the method developed in Chapter 3 to assess the evidence for the

Lévy walk and ARS strategies in the movement data of three species: the polar bear,

grizzly bear (U. arctos), and woodland caribou (Rangifer tarandus caribou). I show

that, although previous methods would have found some evidence for the Lévy walk,

there is stronger support for the ARS than for the Lévy walk in these three species.

The strength of the support for the ARS varies among species and individuals. The

ARS is sufficient to describe the movement of some, but not all, individuals. Random

search models might be inappropriate for these animals, indicating a need to develop

search strategy models that incorporate factors such as their perceptual and cognitive

capacities. For species that inhabit a habitat with currents, such as polar bears on

the drifting sea ice, movement models will also need to differentiate between voluntary

movement and drift.

In Chapter 5, I move away from random search strategies and investigate the effects

of drift on polar bear home ranges. Home range size estimates are often used to

assess the amount of space required for animals to perform the activities essential for

their survival and reproduction. While traditional home range size estimates based on

geographic locations are an adequate representation of the space required by terrestrial
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species, they are inadequate for animals living in drifting habitats. In particular,

traditional home range estimates are inaccurate representations of the amount of sea

ice encountered by a polar bear. The sea ice is the prime foraging habitat of the

bear, and estimating the amount of ice encountered by bears may provide a better

approximation of the habitat space they require. In this Chapter, I develop a technique

to make these estimates. I demonstrate that polar bears encounter larger areas of ice

habitat that traditional home range estimates would suggest, and that the amount of

ice habitat encountered increases with drift. Moreover, when investigating correlates

of home range size, I show that it is possible to explain more of the variation in the

area of ice habitat used by individuals than in their geographic home range size.

In Chapter 6, I conclude by discussing how this work can inform research on species-

habitat relationships. Many movement models used to identify foraging behaviours are

based on search strategy theory, but their predicted foraging areas are not always linked

to known foraging events. Correctly specifying animal search strategies is essential if

ecologists are to accurately identify foraging habitats using movement data. Many

animals exploit the moving habitats of oceans, rivers, and the atmosphere. Incorpo-

rating drift into home range models for these species will provide a more accurate

understanding of their habitat use. My work contributes new approaches and ideas to

the flourishing field of movement ecology. While movement ecology is providing un-

precedented insights into how animals interact with their environment, I believe that

coupling these new developments to fitness data is the key to moving beyond pattern

description, and towards an understanding of their broader ecological and evolutionary

significance.
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Chapter 2

Sampling rate and misidentification
of Lévy and non-Lévy movement
paths: Comment�

In a recent paper, Plank and Codling (2009) critique the use of Lévy walks to describe

animal movement, arguing that non-Lévy walk processes could be misidentified as Lévy

patterns and, conversely, movement patterns actually generated by Lévy processes may

be wrongly attributed to other mechanisms. The authors suggest that this ambiguity is

partly caused by sampling paths at scales that do not reflect actual movement decisions

and this despite the theoretical scale-independence of Lévy walks. These findings, if

true, would be an important contribution, as the Lévy walk is a popular, although

controversial, model in the animal movement literature.

Here, I support Plank and Codling’s (2009) contention that movement patterns

must be attributed to the correct process and that animal movement is likely not truly

scale-invariant. However, I challenge their methodology, and hence that they showed

that Lévy and non-Lévy processes could be misidentified for one another and that this

ambiguity partly depends on the sampling scale. My main criticism is that using the

relative fit of poorly chosen models, without verifying for the absolute fit of the best

model, is insufficient evidence for either the identification or the misidentification of

a process. To demonstrate this methodological problem, I first describe the models

used to simulate the data and thus representing the movement processes. Then I

describe how the models that were fitted to the data differed from the ones used to

�A version of this chapter has been published as: Auger-Méthé, M., C. C. St. Clair, M. A. Lewis,
and A. E. Derocher. 2011. Sampling rate and misidentification of Lévy and non-Lévy movement
paths: Comment. Ecology 92:1699-1701.
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simulate the data. Finally, I argue that the authors failed to consider the importance of

examining the absolute fit of the best model. Without this information, it is impossible

to determine whether either model provides a reasonable explanation for a given data

set, whether those data are generated by simulations or actual animals.

2.1 Simulating ecological processes: the movement

simulations of Plank and Codling (2009)

Plank and Codling (2009) simulated two types of datasets: one representing a Lévy

walk and one representing a composite correlated random walk (CCRW). To simulate

the Lévy walk they used a non-correlated random walk with a truncated Pareto dis-

tribution for the step length distribution. The CCRW was chosen as an alternative

movement process to the Lévy walk because this distinct behavioral process produces a

similar movement pattern to the Lévy walk (Benhamou, 2007; Plank and James, 2008).

The CCRW was composed of two phases: an intensive phase with tortuous movement

and small step lengths and an extensive phase with nearly straight movement with

long step lengths.

2.2 Discrepancy between the models used to sim-

ulate the processes and those to explain the

patterns

The two models Plank and Codling (2009) fitted to recover the simulated process

differed from those used to produce the data, making it likely that the absolute fits of

these models would be poor. The authors fitted a non-truncated Pareto distribution

to recover a process simulated with the truncated version of this distribution. The

non-truncated distribution is scale-invariant at all measurable scales. In contrast, the

truncated Pareto distribution has an upper limit on the size of the step lengths and

is thus only scale-invariant for a limited range of scales. Plank and Codling (2009)

state that they used the non-truncated Pareto distribution to fit the data because it is

the distribution most commonly used. However, most studies using the non-truncated

Pareto distribution also used the now-obsolete histogram-based method to test for Lévy

walks (but see Focardi et al., 2009). This histogram-based method did not allow for

a truncated version of the Lévy walk. Because the more modern maximum likelihood

method used by Plank and Codling (2009) allows to fit a truncated Pareto distribution

(Edwards, 2008; White et al., 2008), the authors should have additionally fitted the

truncated Pareto distribution to their simulated data.
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Not only did Plank and Codling (2009) use two different models to simulate and

recover the Lévy process, they used two different models to simulate and recover the

CCRW. In this case these two models are not merely two different versions of the

same model but completely distinct. Thus, the absolute fit is expected to be poor.

They fitted an exponential distribution to recover a process simulated with CCRW. An

exponential distribution is often used to model a simple random Poisson process and has

been an alternative model against which Pareto distribution has been compared in Lévy

walk studies (Edwards, 2008; Edwards et al., 2007; Humphries et al., 2010). However,

the exponential distribution is not a good representation of a CCRW and we cannot

expect the exponential distribution to adequately fit a CCRW. Plank and Codling

(2009) state that they used the exponential distribution because the only likelihood

function that could recover a CCRW process is complicated and uses Bayesian statistics

(see Morales et al., 2004). This indicates the need for a simple likelihood function that

describes the step length distribution of a CCRW.

2.3 Comparing two poor models with Akaike weights

is insufficient evidence for process identification

The main goals of the study by Plank and Codling (2009) were to verify whether

a Lévy walk can be misidentified for a Poisson process and whether CCRW can be

misidentified as a Lévy walk. To do so, they compared the fit of the non-truncated

Pareto and the exponential distributions using Akaike weights. By definition, Akaike

weights can only measure the relative fit of the candidate models, not their absolute fit

to the data (Burnham and Anderson, 2002). Thus, the best model according to Akaike

weights may still be a poor model for the data. However, when the Akaike weights

favored the wrong model, Plank and Codling (2009) concluded that a misidentification

was likely to occur. For example, when Akaike weights favored the Pareto over the

exponential distribution for data simulated with the CCRW, Plank and Codling (2009)

concluded that the CCRW was likely to be misidentified as a Lévy walk.

For Plank and Codling (2009) to suggest that CCRW could be misidentified as a

Lévy walk, they would have needed to investigate the absolute fit of the best model.

While Akaike weights can identify the best of the candidate models, only a measure of

absolute fit can identify whether the best model adequately fits data. In the articles

that introduced Akaike weights as a method to compare Lévy walks to other movement

models (Edwards, 2008; Edwards et al., 2007), goodness-of-fit tests (G-tests) were used

to verify that the best model fitted the data. In other recent studies that applied Lévy
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walks to animal movement using maximum-likelihood methods similar to Plank and

Codling (2009), the absolute fit was demonstrated by the analysis of the residuals (e.g.,

Focardi et al., 2009), statistical tests (e.g., Schreier and Grove, 2010), and by visual

inspection of the fit of the best model to the data (e.g., Focardi et al., 2009; Humphries

et al., 2010). Without such verification of absolute model fit, the conclusion that

CCRW can be misidentified as Lévy walks is unwarranted.

A visual assessment of Fig. 3 in Plank and Codling (2009) suggests that neither the

Pareto nor the exponential distribution fits the CCRW. This reveals that, even if the

Pareto distribution fits the data simulated with a CCRW better than the exponential

distribution according to Akaike weights, the Pareto distribution does not appear to

adequately describe the CCRW. Whether a goodness-of-fit test, such as a G-test, would

have confirmed such discrepancy needs to be investigated. Therefore, even though

Plank and Codling (2009) importantly showed that Akaike weights can be misleading,

their suggestion that CCRW is easily misidentified as a Lévy walk is unfounded. This

reasoning also extends to their other conclusions, such as that a Lévy walk could be

misidentified for a Poisson process and that the assumption of scale-invariance of Lévy

walks is tenuous.

2.4 Conclusion

The important study by Plank and Codling (2009) appropriately cautions ecologists

not to blindly assume that pattern is equivalent to process in the study of animal

movement and that animal movement is likely not truly scale-invariant. Despite the

identification of these potential problems, Plank and Codling (2009) have not provided

definitive tests for their detection, and my analysis of their study should extend the

caution to promote the investigation of both the relative and the absolute fit of move-

ment models. Because Plank and Codling (2009) did not emphasize the importance of

the absolute fit of the best model, they did not demonstrate whether a CCRW actually

would be misidentified as a Lévy walk, or a Lévy walk as a Poison process. Nonetheless,

Plank and Codling (2009) highlighted an important and perennial problem associated

with applying the Lévy walk to empirical data. The Lévy walk is too often compared

to simplistic alternative models, and rarely against strong alternative models. The

two-phase search strategy associated with a CCRW produces a similar movement pat-

tern as the Lévy walk strategy, yet the CCRW is rarely used as an alternative model in

studies of Lévy walks. One reason for this tendency is that there is no simple likelihood

function for CCRWs. A logical next step is to develop such a function so ecologists
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can rigorously compare the Lévy walk against this strong alternative model. By dis-

tinguishing between these two processes, we will be a step further in elucidating the

mechanisms that diverse organisms, including humans, use to find resources.
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Chapter 3

Differentiating between the Lévy
and the area-restricted search
strategies

3.1 Introduction

Search strategies that allow targets to be found with incomplete information are rele-

vant to diverse fields of study (Bénichou et al., 2011). In particular, they have received

much attention in the animal movement literature, where the two most prominent

are the Lévy strategy and area-restricted search (ARS) strategy (Dragon et al., 2012;

Fauchald and Tveraa, 2003; Viswanathan et al., 2008). The Lévy strategy is often

represented by the Lévy walk, a popular but controversial movement model (e.g., Ben-

hamou, 2007; Edwards et al., 2007; Humphries et al., 2012; Sims et al., 2012). The

Lévy walk is defined as a random walk with a power-law distribution describing the

step length frequency. This distribution has a characteristic heavy tail that allows

for extremely long step lengths. The ARS (also known as area-concentrated search)

strategy involves two behavioral modes and is used for animals searching in hetero-

geneous environments (Benhamou, 1992). It can be modeled with composite random

walks (Benhamou, 2007). Such two-behavior models are often used to identify forag-

ing events and to locate food patches from movement data (e.g., Dragon et al., 2012;

Jonsen et al., 2007; Knell and Codling, 2012). Each behavior is related to a specific

part of the landscape. The intensive search behavior is triggered by the encounter

of a food item. This behavior is called ARS because the animal uses low speed and

large turning angles to remain within a food patch and thus increase the probability of

detecting prey. As this behaviour is key for the increase in prey detection, it gives its
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name to the overall strategy. The extensive search behavior is resumed after repeated

unsuccessful searches. It uses fast and nearly straight movement to find the next food

patch. Both the Lévy and the ARS strategies have been claimed to be optimal under

certain conditions (Benhamou, 1992; Viswanathan et al., 1999, but see James et al.

2011) and both have empirical support (e.g., Dragon et al., 2012; Humphries et al.,

2012).

Although the processes underlying these two search strategies differ widely in their

biological interpretation, their movement patterns are similar and difficult to differen-

tiate. Many have argued that the ARS strategy could be confounded with the Lévy

strategy (Benhamou, 2007; Codling and Plank, 2011; Plank and Codling, 2009; Plank

and James, 2008), and this, partly due to a lack of comparable models for these strate-

gies (Chapter 2). In response, new methods to identify the Lévy strategy have been

developed (Gautestad, 2012, 2013; Reynolds, 2012, but see Auger-Méthé et al. 2014).

However, these improved methods cannot be used to quantify the evidence for the ARS

strategy. Quantifying the level of evidence for each strategy is important as it both

reduces the potential for misidentification and allows for a more comprehensive anal-

ysis of search strategies. Recently, methods have been proposed that simultaneously

fit the Lévy walk and models approximating the ARS strategy (Jansen et al., 2012;

Plank et al., 2013). Although these methods represent significant improvements over

previous approaches, they do not fully represent the ARS strategy as they lack turn-

ing angles and temporal correlation in behaviors. Turning angles are an essential part

of movement and are crucial for distinguishing between the two movement behaviors

found in the ARS strategy (Benhamou, 1992). Temporal correlation in behaviors is an

inherent characteristic of the ARS strategy because it is required to create the tortuous

movement that allows the animal to remain in a food patch.

Here, I present a new method for differentiating between the Lévy and the ARS

strategies. In the proposed method, the likelihood function for the ARS strategy is

a hidden Markov model that incorporates turning angles and behavioral persistence

(similar to Langrock et al., 2012). For comparability, the common likelihoods for the

Lévy strategy and two null models are modified to incorporate turning angles. These

likelihoods are created because they are essential for a set of statistical measures that

assess both the relative and absolute support for each strategy. Using a simulation

study, I show that my method can be used to successfully differentiate between the

Lévy and ARS strategies and to assess the relative and absolute fit of the models. I

demonstrate the applicability of my method by applying it to the movement paths of
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two polar bears (Ursus maritimus).

3.2 Methods

3.2.1 Development of the proposed method

My proposed method consists of likelihood functions representing each search strat-

egy and statistical measures that use these likelihoods to assess the support for each

strategy.

Likelihood functions

The likelihood functions use the information from both movement measures of a step at

time t, dt � �lt, θt�: step length, lt, and turning angle, θt. The step length, lt, is defined

as the distance between the starting and ending locations of the step. The turning

angle, θt, is defined as the angle of a step relative to the previous step direction. I

focus on the case where the animal is moving (i.e., not resting), and so do not include

steps with identical start and end points. Excluding these steps is possible because the

models either assume that each measure of movement is independent and identically

distributed or, in the case of the hidden Markov model, are built to handle missing

steps. In this section, I present the development of the likelihood functions representing

the ARS strategy, the Lévy strategy, and two null models. The four likelihoods differ

mainly in the probability density functions (PDFs) chosen to describe the step length

and turning angle frequencies.

Similar to others (e.g., Dragon et al., 2012; Plank and Codling, 2009), I represent

the ARS by a composite correlated random walk (CCRW). A CCRW is a combina-

tion of two random walks, representing two behavioral modes. I describe the tortuous

movement of the intensive search (hereafter denoted with subscript i) with a Brownian

walk and the directed movement of the extensive search (hereafter denoted with sub-

script e) with a correlated random walk. The Brownian walk and correlated random

walk are two common models that differ in their turning angle distribution. While

an animal following a Brownian walk has no preferred turning direction, one following

a correlated random walk has a tendency to continue in the same direction as the

previous step (Codling et al., 2008). The differences between the two behaviors are

incorporated in the likelihood function by ascribing them different turning angle and

step length PDFs.

For each behavior, I define the turning angle frequency with one of two specific

von Mises PDFs, v0�θ� or v�θSκ� (Appendix A: Table A.1). I chose the von Mises
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distribution to be consistent with recent studies comparing Lévy strategy models and

the CCRW (Plank et al., 2013; Plank and Codling, 2009). The von Mises distribution

has two parameters: α, which is the location parameter and can be interpreted as

the mean angle between steps; and κ, which is the scale parameter and can be inter-

preted as the size of the directional correlation. To represent the intensive search as

a Brownian walk, I set κi � 0. This reduces the von Mises distribution to an uniform

circular distribution and makes the value of αi irrelevant (Evans et al., 2000). This von

Mises distribution is represented as v0�θ� (Appendix A: Table A.1). To represent the

extensive search as a correlated random walk, I set αe � 0 and estimate κe. This von

Mises distribution is similar to a circular version of the Gaussian distribution centered

at 0 (Evans et al., 2000) and is represented as v�θSκ� (Appendix A: Table A.1).

For each behavior, I define the step length frequency with a slightly modified expo-

nential distribution, φ�lSλ, a� (Appendix A: Table A.1). The exponential distribution

was used in previous attempts to compare multiphasic movement to Lévy walk (Jansen

et al., 2012; Plank et al., 2013) and defines the probability of a step length as expo-

nentially decreasing with increasing size. My exponential distribution starts at the

minimum step length, a, rather than starting at 0. This modification is equivalent to

applying the exponential distribution to the difference between the step length and the

minimum step length, l�a, and makes the CCRW more comparable to the models used

for the Lévy strategy (Edwards et al., 2007; Jansen et al., 2012). Each exponential

distribution has two parameters to estimate: the minimum step length, a, and the rate

parameter, λ. While the minimum step length, a, is assumed to be the same for both

behaviors, λ differs between behaviors: λi and λe. We can interpret λ as the inverse

of the mean step length (Evans et al., 2000), or more precisely as the inverse of the

mean difference between step lengths and the minimum step length, λ � n~�Pn

t�1 lt�a�.
Thus a difference between λi and λe captures differences in the distances moved in

each behavior. By combining the exponential and von Mises distributions, we get the

following observation PDFs associated with each behavior:

pi�lt, θt� � φ�ltSλi, a� v0�θt�, (3.1)

and

pe�lt, θt� � φ�ltSλe, a� v�θtSκe�. (3.2)

The observation PDFs describing the movement of each behavior are combined

through what is referred as a mixing distribution. The choice of mixing distribution

is an important difference between my model and the previous attempts to compare

18



multiphasic movement to Lévy walk (Jansen et al., 2012; Plank et al., 2013). Pre-

vious models combined the observation probabilities through an independent mixing

distribution, where the probability of intensively searching, I, and that of extensively

searching, E, are independent of previous probabilities and constant through time. Al-

though these models provide good approximations to the movement of an animal that

has two behaviors, they do not represent the temporal correlation in behaviors that

a hidden Markov model can provide. Behavioral persistence is crucial when modeling

the ARS strategy without including environmental variables as the trigger for behav-

ioral switches. In my case, I implicitly represent the spatial correlation that a patchy

landscape would create with temporal correlation in behavior. Thus, unlike models

with an independent mixing distribution, the order of the observations is important in

a hidden Markov model.

I used the methods of Zucchini and MacDonald (2009) to create a hidden Markov

model from my observation probabilities. The mixing distribution is a first-order

Markovian process, where the probability of being in a behavior at time t, e.g., It,

depends on the previous time steps probabilities, It�1 and Et�1, and on the transition

probability matrix:

Γ �

�
�
�

γii 1 � γii

1 � γee γee

�
�
�
, (3.3)

where γii and γee are the probabilities of remaining in the intensive and extensive

search behaviors, respectively, and 1 � γii and 1 � γee are the probabilities of switching

from intensive to extensive and from extensive to intensive, respectively. Because

the duration of each movement phase follows a geometric distribution, 1~�1 � γii� and

1~�1 � γee� can be interpreted as the mean number of steps the animal remains in the

intensive and extensive search, respectively. Thus, an animal that remains on average

more than two steps in the same search behavior will have γii and γee A 0.5. As the

probability of being in a behavior depends on the previous probabilities, I need to

define the initial probability of being in each behavior:

δ � �δi 1 � δi� , (3.4)

where δi and 1�δi are the probabilities of starting in the intensive and extensive search

behaviors, respectively. The likelihood of the CCRW is:

Lccrw�ΘSl,θ� � δP �l1, θ1�
n

M
t�2

�ΓP �lt, θt�� 1, (3.5)
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where 1 is a column vector of ones and P �lt, θt� is the observation probability matrix

that incorporates the probability of being in each behavior as defined by Eqns. 3.1 and

3.2:

P �lt, θt� �
�
�
�
pi�lt, θt� 0

0 pe�lt, θt�
�
�
�
. (3.6)

The expanded formula of the likelihood can be found in Table 3.1.

To make the likelihood of the Lévy strategy comparable to the CCRW, I used a

PDF for the turning angle in addition to the PDF that is generally used to describe the

step lengths of the Lévy strategy (Table 3.1). The turning angle of the Lévy strategy

is generally assumed to be uniform (Bartumeus et al., 2005; Plank et al., 2013). Thus,

I used the same circular uniform PDF, v0�θ�, as described above (Appendix A: Table

A.1). Two step length PDFs can be used to described the Lévy strategy. One represents

the pure Lévy walk, the other represents the truncated Lévy walk (TLW). Unlike the

pure Lévy walk, the TLW places an upper bound on the size of possible step lengths,

making it biologically plausible (Viswanathan et al., 2008). As a result, the TLW is

often used as a Lévy strategy model for animal movement (e.g., Sims et al., 2012). The

step length PDF of the TLW is the truncated Pareto, ψt�lSµt, a, b� (Appendix A: Table

A.1). This distribution has three parameters to estimate: the shape parameter, µt,

which increases the probability of long step length as it decreases, the minimum step

length, a, and the maximum step length, b, which represents the greatest step length

an animal can make. While I focused on the TLW in Chapter 3, I present analyses of

the pure Lévy walk in Appendix A.

To verify that the complexity associated with the CCRW and TLW is required to

explain the data, it is important to compare these models against simpler ones. There-

fore I developed likelihood functions for two simpler models: the truncated Brownian

walk (TBW) and the truncated correlated random walk (TCRW; Table 3.1). The

TBW is an absolute null model representing an individual moving randomly in space,

while the TCRW represents movement with directional persistence. These models are

closely related to the null models used in Lévy walk studies (Bartumeus et al., 2005;

Edwards et al., 2007). Similar to the observations PDFs of the CCRW (Eqns. 3.1 and

3.2), the likelihoods use the von Mises PDF for the turning angle and the exponential

PDF for the step length. To make the models analogous to the TLW, which has an

upper bound on the step length size, I used the truncated version of the exponential

distribution, φt�lSλt, a, b� (Edwards et al., 2007) (Appendix A: Table A.1). Analyses

of the non-truncated version of these two models are available in Appendix A.
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Statistical measures

To assess the support for each search strategy, I used the likelihood functions described

above with a set statistical measures. First, I estimated the model parameters and their

confidence intervals with maximum likelihood estimate (MLE) and through likelihood

surface analyses. Second, I compared the fit of the models with Akaike Information

Criterion (AIC) and Akaike weights. Finally, I tested the absolute fit of the models

through analyses of pseudo-residuals. I performed these analyses with R 2.15.2 (R

Development Core Team, 2012).

I used maximum likelihood to estimate the parameters of the models described

above (Table 3.2). I used known analytical solutions for the MLE of a and b (Edwards

et al., 2012). For the remaining parameters, I used numerical optimizing functions

and, in the case of the CCRW, I used the Expectation-Maximization (EM) algorithm

described by Zucchini and MacDonald (2009). I used the EM algorithm for the CCRW

because it is orders of magnitude faster than the direct numerical maximization of its

likelihood. Given that I fit the CCRW to 633 000 simulations, computational efficiency

was an important consideration (see Section 3.2.2). The disadvantage of using the

EM algorithm over the direct maximization is the need to estimate δi (Zucchini and

MacDonald, 2009), a parameter with little biological relevance.

To estimate the confidence intervals of the parameters, I used the quadratic ap-

proximation described by Bolker (2008). This method uses the Hessian of the negative

log likelihood at its minimum value. As the analytical solution of a and b is to use

the minimum and maximum observed step lengths (Edwards et al., 2012) and the es-

timated value from EM algorithm for δi depends only on the observations of the first

step (Zucchini and MacDonald, 2009), it is difficult to estimate confidence interval for

these three parameters. I only provide point estimates for them.

The main goal of my likelihood functions is to identify which model fits the data

best. To do so, I compared the relative fit of the models using AICc and Akaike weights

(Burnham and Anderson, 2002). The model with the lowest AICc is considered to be

the best model. To measure the weight of evidence the best model has over the other

models, I calculated Akaike weights, w, from the AICc values of the models (Burnham

and Anderson, 2002). Akaike weight values vary between 0 and 1, with a weight

close t 1 suggesting that the data strongly support this model over the other models

investigated.

As the best model according to AICc and Akaike weights can still be a poor rep-

resentation of the data, it is important to verify its absolute fit (Chapter 2). In the
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context of Lévy walk analyses, the suggested test of absolute fit is a G-test (Edwards,

2011; Edwards et al., 2007), a test that assumes that observations are independent of

one another. This assumption is violated in the case of the CCRW because this model

incorporates temporal autocorrelation. Hence, I modified the test of absolute fit by

applying the G-test to pseudo-residuals rather than to observations. I used ordinary

uniform pseudo-residuals, which are residuals that account for the interdependence of

observations and are uniformly distributed when the model adequately describes the

data (Zucchini and MacDonald, 2009). I performed a G-test that compares the ob-

served frequency of these pseudo-residuals to a discretized uniform distribution. To

reduce the potential bias associated with bins that have small expected values, I used

William’s correction and ensured that each bin had 10 expected pseudo-residuals (Sokal

and Rohlf, 1981). I applied the G-test to the pseudo-residuals of step length and turning

angle independently and subsequently combined their p-values using Fisher’s method

(Sokal and Rohlf, 1981). Appendix B describes the test of absolute fit in more detail.

3.2.2 Simulation study

I used simulations of the TLW and CCRW to assess whether my method can differ-

entiate between the Lévy and the ARS strategies. Because parameter values affect

the resemblance of these strategies, I simulated the CCRW and TLW on a range of

parameter values. For each set of parameters, I ran a 1000 simulations, each creating

a movement path of 500 moves. For each simulation, I used my proposed method to

estimate the parameter values and calculate the Akaike weights of all models. This

allowed me to verify that the method could accurately estimate parameters and appro-

priately differentiate between models. To assess whether the true model was rejected at

the appropriate α-level, I also calculated the p-value of the absolute fit test associated

with the simulated model.

To simulate the CCRW, I initialized the movement path by selecting the starting

behavior, either I1 or E1, using a Bernoulli distribution with probability of being in

the intensive search behavior defined by δi. If the behavior was the intensive search,

I randomly selected a turning angle from a circular uniform distribution and a step

length from an exponential distribution with λi. If the behavior was the extensive

search, I randomly selected a turning angle from a von Mises distribution with κe and

a step length from an exponential distribution with λe. After selecting the turning

angle and step length for the first step, I selected the next behavioral state with a

Bernoulli distribution that used the transition probability appropriate for the current
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behavior (i.e., γii if in intensive search and γee if in extensive search). As for the first

step, I then selected a step length, a turning angle and the behavioral state for the

next step from the appropriate distributions. This process was continued until the

last step of the movement path. The CCRW has seven parameters (Tables 3.1 and

3.2). I fixed the values of δi, λi, and a, to 0.5, 0.01, and 1, respectively. I varied the

value of κe to �0.5,1,5,10�, that of λe to �0.005,0.001,0.0005,0.0001�, that of γii to

�0.6,0.7,0.8,0.9�, and that of γee to �0.1,0.2, ...,0.9�. By choosing λi A λe, the step

lengths from the extensive search behavior were longer on average than those from the

intensive search. I chose the values of γii to be A 0.5 because the intensive search of the

ARS strategy is efficient only if the animal remains multiple moves in a food patch. In

contrast, I allowed γee to be @ 0.5 because an efficient extensive search can be produced

in one move. All 576 combinations of these parameters were simulated.

For each step of the TLW simulations, I randomly selected a turning angle from a

circular uniform distribution, and a step length from a truncated Pareto distribution.

The TLW has three parameters (Tables 3.1 and 3.2). I set a � 1 and varied the value

of µt to (1.1, 1.2, ..., 2.9) and b to (100, 1000, 10000). All 57 combinations of these

parameters were simulated.

3.2.3 Application to empirical data

To demonstrate its usefulness, I applied my method to the movement path of two polar

bears from the Western Hudson Bay, Manitoba, Canada. These two females were cap-

tured in September 2010 using the standard immobilization techniques (Stirling et al.,

1989) and were collared with Gen IV collars from Telonics (Telonics Inc., Mesa, AZ,

U.S.A). The collars were programmed to collect GPS locations at varying frequencies

throughout the year. I used data from the month of April 2011, the longest period

with high frequency locations (location taken every 30 minutes) and a period where

bears search for food (Pilfold et al., 2012; Thiemann et al., 2006). These two bears

were on the sea ice during this period.

I applied my method (Section 3.2.1) to the data from each individual separately af-

ter estimating biologically relevant steps from the raw GPS data. Multiple techniques

can be used to transform locations collected at regular time intervals into a time-series

of biologically relevant steps (e.g., Codling and Plank, 2011; Humphries et al., 2013).

In part for its ease of use, I used the local turn technique, which creates one step out of

all consecutive sampled steps with a turning angle smaller than a threshold angle (see

Codling and Plank, 2011). Using these types of techniques can results in misidentifying
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CCRW for LW (Codling and Plank, 2011; Plank et al., 2013). However, such misiden-

tification occurs mainly when high threshold angles are used (Codling and Plank, 2011;

Plank et al., 2013). I chose a threshold angle of 10X, meaning that any sampled step

within the 20X forward sector is interpreted as part of a biologically relevant step.

Thus resulting steps are created from movement in the same general direction and the

threshold is small enough that it is unlikely to result in misidentification. I applied

my method to empirical data to demonstrate how to interpret results and to show the

performance of my method with real animal movement paths, which, unlike simulated

movement, are complicated by factors such as missing data.

3.3 Results

3.3.1 Simulation results

The Akaike weights could differentiate between the Lévy and the ARS strategies. When

the CCRW was simulated, 91.2% of the Akaike weight values of the CCRW exceeded

0.99 and the Akaike weight values of TLW never exceeded 0.01 (Fig. 3.1A). Although

the CCRW simulations were never misidentified as a TLW, 3.0% of the summed Akaike

weight values of the null models, wTBW�wTCRW, exceeded 0.5. This occurred only when

the step length distribution of the extensive search was relatively close to that of the

intensive search, λe � 0.005. In addition, this was generally limited to cases when the

tendency to continue in the same direction was relatively low, κe B 1. When the TLW

was simulated, 96.2% of the Akaike weight values of the TLW exceeded 0.99 (Fig.

3.1B). While 3.8% of the Akaike weight value of the CCRW exceeded 0.01, only 0.3%

exceeded 0.5. The frequency of these rare misidentifications increased with increasing

µt. Note that, due to underflow, I was unable to estimate the AICc value of the

CCRW for 0.3% of the simulations. The Akaike weights results presented above and

MLE results below ignore all of the problematic simulations.

In addition to differentiating between the two processes, my method was capable of

recovering the parameter values of the CCRW and TLW. As some parameter estimates

can help identify whether the data are consistent with the Lévy or the ARS strategies,

it is important for my method to adequately estimate their values. The ARS strategy

requires the CCRW to have specific values for γii, λi, λe, and κe. Similarly, µt of

the TLW requires specific values to be consistent with the Lévy strategy. For most

parameters of the simulated CCRW and TLW, the median of the estimated values

was close to their true value (Figs. 3.2 and 3.3). There were three exceptions. First,

the estimated values of the initial probability of being in the intensive search of the
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CCRW, δi, approached either 0 or 1, not 0.5 (Fig. 3.2F). Second, some estimates of the

minimum step length, a, were positively biased, and those of maximum step length, b,

were negatively biased (Figs. 3.2G and 3.3B-C). Third, similar to the Akaike weights,

the estimates of most parameters of the CCRW were less accurate when the movement

patterns of the two behaviors were similar. Specifically, the estimates were less reliable

when the simulations values of λe were relatively close to λi. The estimated values of

most parameters were much closer to the true value when simulations with λe � 0.005

were excluded.

Finally, my tests of absolute fit had rejection rates adequate for the selected α-

level of 0.05 (p-value @ 0.05). The proportion of simulated CCRWs that were rejected

from being CCRW was 0.062. Similarly, the proportion of simulated TLWs that were

rejected from being TLW was 0.065.

3.3.2 Empirical results

The best model for the two empirical movement paths was the CCRW (Table 3.3).

For Bear 2, the Akaike weights indicated that the CCRW was a much better model

than the other alternatives. However, the Akaike weight of the CCRW for Bear 1 was

only 0.77, with some evidence that the TCRW may have been a more parsimonious

description of the movement data (Table 3.3 and Fig. 3.4). While the best model was

the CCRW, both movement paths were significantly different from it (Table 3.3). The

movement path of Bear 1 was also significantly different from the TCRW (p @ 0.01).

A visual representation of the fit of the models is presented in Fig. 3.4.

To identify whether the movement paths were consistent with the best model, I

verified whether the parameter estimates of γii, λi, λe, and κe were consistent with the

ARS strategy. For Bear 2, all parameters were consistent: γii A 0.5, λi A λe, and κe A 0

(Table 3.2). In contrast, not all parameters for Bear 1 were consistent with the ARS.

While κe A 0 as expected for the ARS, γii @ 0.5 and the confidence intervals of λi and

λe overlapped (Table 3.2). These results further suggest that Bear 1 had movement

consistent with the TCRW.

3.4 Discussion

Through the analysis of TLW and CCRW simulations, I have demonstrated that my

method can differentiate between the Lévy and the ARS strategies. The Akaike weights

identified the correct underlying search strategy, except for a few instances. The rare

misidentifications between the Lévy and the ARS strategies were primarily limited to

TLW simulations with high µt values. As µt increases, the probability of very long
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step lengths decreases and the TLW increasingly resembles more conventional random

walks. The tendency for TLW to be mistaken for other processes at high µt values has

been observed previously (Plank and Codling, 2009).

The Akaike weights also distinguished the TLW and CCRW from the two null

models. The rare exceptions occurred when both the intensive and extensive search

behaviors of the CCRW simulations had similar step length and turning angle distri-

butions. This was not surprising. Other methods developed to distinguish between the

two behaviors of the ARS are also less efficient when the movement of these behaviors

are similar (Knell and Codling, 2012). When the two behaviors are similar, models

describing them as one behavior can be sufficient. The ability of my method to dif-

ferentiate between the CCRW and the null models would likely increase with sample

size.

The simulation analyses also indicated that most parameter estimates of the TLW

and CCRW were reliable. The estimates of the important parameters of both models

(i.e., γii, λi, λe, κe, and µt) were generally reliable and accurate. These are the only

parameters that should be used to help identify whether the empirical data support

the Lévy or the ARS strategies. No biological interpretation should be based on the

probability of starting in the intensive search behavior, δi. As described by Zucchini

and MacDonald (2009), the estimates from the EM algorithm for this parameter ap-

proached either 0 or 1. Caution should be taken when interpreting the minimum,

a, and maximum, b, step lengths. Even though using the minimum and maximum

observed step lengths are the MLEs, and is the suggested method to estimate these

values for TLW (Edwards et al., 2012), some of their estimates were biased. One likely

explanation, is that 500 steps was too small a sample to accurately estimate these

parameters. The estimates of most parameters of the CCRW suffered when the two

search behaviors were not substantially different.

I have not assessed the accuracy of the confidence intervals through the simulation

study because doing so would have significantly increased computational time. How-

ever, I note a few known limitations of the method I used to estimate the confidence

intervals of the empirical data set. Because precise methods, such as the likelihood

profile, become highly unpractical and computationally demanding when models have

more than 2 or 3 parameters to be estimated, Bolker (2008) recommends the use of the

quadratic approximation for estimating confidence intervals. Because the CCRW had 7

parameters to be estimated, I chose to use this approximation. However, the quadratic

approximation can be inaccurate when the parameter estimated is at the boundary

26



of its parameter space (Zucchini and MacDonald, 2009). In fact, this approximation

is symmetric around the MLE, thus might exceed the boundary of parameter space.

This occurred for a few of the empirical estimates of the confidence intervals (Table

3.2). With these caveats in mind, I believe that such approximation is sufficient for

my analyses.

The simulation results showed that my test of absolute fit was adequate, albeit

with observed rejection rates that were marginally greater than the expected rate of

0.05. Thus my test had a slightly higher level of type I error than specified by the

α-level. This problem could be associated with the known negative bias in p-values

of G-tests when sample size and expected values are small (Sokal and Rohlf, 1981). I

have also explored the use of a number of other tests, such as tests of normality on

normal pseudo-residuals (see Zucchini and MacDonald, 2009, for description of normal

pseudo-residuals). None have outperformed the one presented here.

I have not explored the impact of data sampling and handling on the accuracy of

my method. Some sampling procedures, in particular subsampling and the definition

of steps by the significant turns, are known to cause Akaike weights to select the LW

when CCRWs are simulated (Codling and Plank, 2011; Plank et al., 2013; Plank and

Codling, 2009). Although my method is likely to be affected by such procedures, it

has features that are known to decrease misidentification errors. In particular, it was

shown that including an approximation of the CCRW and tests for the absolute fit

mitigates the risks of such errors (Plank et al., 2013). Future work should study how

sampling procedures impact the capacity of my method to differentiate between the

two strategies.

I demonstrated how to interpret the results of my method by applying it to empirical

data. My results suggested that the two bears differed in their movement patterns.

For Bear 2, the Akaike weights and parameter estimates suggested that the movement

path was better represented by the CCRW and was consistent with the ARS strategy.

For Bear 1, the Akaike weigths and parameter estimates suggested that although the

CCRW was the best model, the TCRW, a one-behaviour null model, might be sufficient

to explain the data. These two bears differed in their reproductive status: Bear 1 was

accompanied by a yearling at capture while Bear 2 was accompanied by a cub-of-

the-year. Females with cubs-of-the-year are known to move smaller distances and use

different sea ice habitats than other females (Amstrup et al., 2000; Stirling et al., 1993).

Thus, it is possible that females with cubs-of-the-year used different search strategies

than other females and this difference could have resulted in the difference observed
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between the two bears.

An additional explanation for the difference between these two bears is that the

quality of their movement paths differ (Fig. 3.4). The results for Bear 1 demonstrated

that my method can handle large amount of missing data. However, as with most

analytical methods, missing data can impact biological interpretation. Specifically,

reduced sample size likely hinders my method’s ability to differentiate between models

and between the two behaviours of the CCRW. In addition, missing locations divides

the path into smaller steps, which has the potential to impact model fit. Thus, I

advise ecologists to be cautious when interpreting results for movement paths with

many missing locations.

Finally, the movement path of each bear was significantly different from the best

model, indicating that my models might be missing important characteristics of polar

bear movement. For example, polar bears are known to move against sea ice drift

and ignoring drift can impact interpretation of movement paths (Gaspar et al., 2006;

Mauritzen et al., 2003). Thus, an important extension for polar bears might be the

inclusion ice drift in search strategy models.

3.4.1 Conclusion

I have developed likelihood functions for models representing the ARS and Lévy strate-

gies that make it possible to directly compare the evidence for these two prominent

hypotheses. Unlike recently developed methods, my method uses information from

both step lengths and turning angles, and incorporates the temporal autocorrelation

inherent in the ARS strategy. My simulation study showed that my method could

differentiate between the two strategies. By applying my method to the movement

path of two polar bears, I showed that my method can give easily interpretable results

and handle complex movement paths. I hope that application of this method to em-

pirical data will further our understanding of the mechanisms used by animals to find

resources.
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Table 3.1: Likelihood functions and number of parameters to estimates, k, of the four
models. The ARS strategy is represented by the CCRW, the Lévy strategy by the TLW,
and the two null models by the TBW and TCRW. Table A.1 of Appendix A describes
the PDFs, φ��, φt��, v��, v0��, and ψt��. Table 3.2 describes the parameters.

Model Likelihood function k

CCRW � δi 1�δi � � φ�l1Sλi,a�v0�θ1� 0

0 φ�l1Sλe,a�v�θ1Sκe�
� Ln

t�2�
γii 1�γii

1�γee γee
�� φ�ltSλi,a�v0�θt� 0

0 φ�ltSλe,a�v�θtSκe�
� � 1

1
� 7

TLW L
n
t�1 ψt�ltSµt, a, b� v0�θt� 3

TBW L
n
t�1 φt�ltSλt, a, b� v0�θt� 3

TCRW L
n
t�1 φt�ltSλt, a, b� v�θtSκ� 4
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Table 3.2: Description and empirical estimates of the model parameters.
The parameter estimates and associated confidence intervals (CIs) are pre-
sented for each bear.

Symbol
(unit)

Description Bear 1 Bear 2

a
(m)

Minimum step length of all four models 21 2

b
(m)

Maximum step length of the TLW, TBW, TCRW 12614 11789

δi Probability of starting in the CCRW’s intensive
search

0 0

γii Probability of remaining in the CCRW’s intensive
search

0.48
(-0.07-1.02)

� 0.83
(0.75-0.91)

γee Probability of remaining in the CCRW’s extensive
search

0.91
(0.79-1.03)

� 0.97
(0.95-0.99)

κ Size of the directional correlation of the TCRW 1.41
(1.17-1.66)

1.21
(1.09-1.32)

κe Size of the directional correlation of the CCRW’s
extensive search

1.74
(1.29-2.19)

1.22
(1.09-1.36)

λt
(m�1)

Rate parameter of the exponential distribution of
the TBW and TCRW

0.0009
(0.0008-0.0010)

0.0010
(0.0009-0.0010)

λi
(m�1)

Rate parameter of the CCRW’s intensive search 0.0031
(0.0008-0.0053)

0.0100
(0.0071-0.0129)

λe
(m�1)

Rate parameter of the CCRW’s extensive search 0.0008
(0.0007-0.0010)

0.0008
(0.0008-0.0009)

µt Scale parameter of the truncated Pareto
distribution of the TLW

1.00
(0.93-1.07)

� 1.00
(0.97-1.03)

�

� Because I used the quadratic approximation to estimate CIs, some CIs exceed the
boundary of their parameter space (see Section 3.4 for details).
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Table 3.3: Relative and absolute fit of the four models on the move-
ment paths of two polar bears. For each bear, the ∆AICc and Akaike
weight for each model, the p-value for the test of absolute fit of the best
model according to AICc, and the number of steps of the movement are
presented.

Individual n ∆AICc Akaike weight p-value

CCRW TLW TBW TCRW CCRW TLW TBW TCRW Best model

Bear 1 235 0 302 172 2 0.77 @ 0.01 @ 0.01 0.23 @ 0.01

Bear 2 887 0 1480 651 139 1.00 @ 0.01 @ 0.01 @ 0.01 @ 0.01
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Figure 3.1: Violin plots of the Akaike weights of each model for all simulated CCRWs
and TLWs. High Akaike weight values represent strong support for a model relative to
the other models. Violin plots are combinations of kernel density plots (gray polygon)
and box plots. Because the range of most model values was orders of magnitude smaller
than the y-axis, the box plots are only represented by the Y symbols that identify the
median. Panel A shows that for simulated CCRWs mostly CCRW had strong support.
Panel B shows that for simulated TLWs mostly the TLW had strong support.

32



Simulated γII

E
s
ti
m

a
te

d
 γ

II

l

l

l

l

0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0
A)

Simulated γEE
E

s
ti
m

a
te

d
 γ

E
E

l

l

l

l

l

l

l

l

l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0
B)

Simulated λI

lE
s
ti
m

a
te

d
 λ

I

0.01

0.00

0.01

0.02

0.03

0.04

0.05
E)

Simulated λE

E
s
ti
m

a
te

d
 λ

E

l
l

l

l

0.0001 0.0005 0.005

0.000

0.005

0.010

0.015

Simulated κE

l
l

l

l

0.5 1 5 10
0

5

10

15

20

E
s
ti
m

a
te

d
 κ

E

D)

Simulated δI

E
s
ti
m

a
te

d
 δ

I

l

0.5
0.0

0.2

0.4

0.6

0.8

1.0
F)

Simulated a

E
s
ti
m

a
te

d
 a

l

1

2

4

6

8

10
G)

Figure 3.2: Violin plots of the MLE values for the CCRW simulations. The x- and
y-axis represent respectively the values used in the simulations and those recovered by
MLE. The gray line shows their one-to-one relationship. (A) Probability of remaining in
intensive search. (B) Probability of remaining in extensive search. (C) Rate parameter
of extensive search. (D) Directional correlation of extensive search. (E) Rate parameter
of intensive search. (F) Probability of starting in intensive search. (G) Minimum step
length. For visualization, I have cropped out extreme outliers from the plots of λi, λe,
and κe, but I removed @ 0.7% of results per parameter value.
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Figure 3.3: Violin plots of the MLE values of the TLW simulations. The x- and y-axis
represent respectively the values used in the simulations and those recovered by MLE.
The gray line represents their one-to-one relationship. (A) Scale parameter of the
truncated Pareto. (B) Minimum step length. (C) Maximum step length. Estimated
values of µt are restricted between 1 and 3.
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Figure 3.4: Fit of the models to the movement paths of two polar bears. Panels A-
C show the results for Bear 1. Panels D-F show the results for Bear 2. (A & D)
Movement path, with black lines representing the steps and the dotted line the missing
data. (B & E) Step length frequency with the PDF of each model, on log-log axes. (C
& F) Turning angle frequency with the PDF of each model. The p-value of the test of
absolute fit for the step length and turning angle distributions of the best model are
indicated in the legend.
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Chapter 4

Evaluating the evidence for random
search strategies in three mammals
from distinct feeding guilds

4.1 Introduction

Searching is among an animal’s most important activities as it provides the means to

find food, mates, shelter, and other resources essential for survival and reproduction

(Bell, 1991). Search efficiency will affect performance and fitness, and thus we expect

animals to use movement strategies that minimize the costs of locating resources (Con-

radt et al., 2003; Zollner and Lima, 1999). The importance of this behaviour has driven

ecologists to focus on animals’ search strategies (e.g., Bell, 1991; Benhamou, 1994;

Viswanathan et al., 1999), and the recent increase in the availability of movement data

has allowed this field to flourish (e.g., Fauchald and Tveraa, 2003; Humphries et al.,

2010; Nevitt et al., 2008). One focus has been to assess whether animals use the search

strategies that theory predicts will be optimal in their environments (e.g., Humphries

et al., 2010; Sims et al., 2012). Using movement data for this assessment remains chal-

lenging because the efficiency of search strategies changes over environmental gradients

and the movement patterns they produce can be difficult to differentiate (Bartumeus

et al., 2002; Benhamou, 2007; Plank and Codling, 2009; Zollner and Lima, 1999).

The efficacy of movement strategies are dependent on the variability and pre-

dictability of resources distributions (Mueller and Fagan, 2008). When resources are

unpredictable in space and time, random search strategies are expected to emerge.

Although animals are known to use perceptual cues to detect nearby resources, em-

piricists have found support for the use of random search strategies (e.g., Humphries
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et al., 2010; Sims et al., 2012). Theorists have proposed a set of random search strate-

gies that are thought to be optimal under different conditions. While simple Brownian

motion may be sufficient in productive areas, the Lévy walk may be advantageous

in sparse environments because its rare but extremely long steps enable animals to

explore new areas (Bartumeus et al., 2002; Humphries et al., 2010). Relative to Brow-

nian motion, this prominent search strategy is increasingly efficient with decreasing

food density (Bartumeus et al., 2002; Viswanathan et al., 1999). When food density

is low, the Lévy walk is also more efficient than a correlated random walk (Bartumeus

et al., 2005). The correlated random walk is a search strategy characterized by nearly

straight movement that was shown to be efficient at finding sparsely distributed patches

(Zollner and Lima, 1999). The area-restricted search (ARS) is a two-behaviour strat-

egy that is more efficient than single-behaviour models in heterogeneous landscape

(Benhamou, 1992; Knoppien and Reddingius, 1985; Plank and James, 2008). This

prominent strategy combines the nearly straight movement that makes the correlated

random walk efficient at finding patches with slower, more tortuous movement once a

food item is discovered. The first behaviour is referred as the extensive search, while

the second as the intensive search. These two behaviours allow animals to adjust their

movement according to local food density and the intensive search enables them to

stay within patches, even when patches have no perceptible boundaries (Benhamou,

1992; Knoppien and Reddingius, 1985). Many environments are sparse, heterogeneous,

and unpredictable. While Brownian motion and correlated random walk might not be

sufficient in these instances, both the Lévy and ARS may be advantageous random

search strategies.

The movement patterns of the Lévy and ARS are similar and difficult to differentiate

(Benhamou, 2007; Plank and Codling, 2009). In recent years, new methods have been

developed to distinguish between these strategies (Plank et al., 2013, Chapter 3). It

is now possible to simultaneously assess the evidence for the Lévy and the ARS, as

well as the simpler Brownian motion and correlated random walk (Chapter 3). In this

Chapter, I investigate the movement of three mammals for evidence of random search

strategies. These species vary widely in the foraging behaviours, with each of them

belonging to a different feeding guild. However, previous evidence or the nature of

their environment suggests that they may use random search strategies.

My first study species is a large herbivore, the woodland caribou (Rangifer tarandus

caribou). I study them in winter, when resources are scarce (Adamczewski et al., 1987;

Parker et al., 2005), and thus, they may be more likely to use random search strategies.
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Previous research has indicated that their movement is consistent with a two-behaviour

model similar to the ARS and a different subspecies has been suggested to use the

Lévy strategy (Johnson et al., 2002b; Mårell et al., 2002). Thus applying these newly

available tools may help us better identify which of these strategies caribou use.

My second study organism is a large Arctic omnivore, the barren ground grizzly

bear (Ursus arctos). My population inhabits the Mackenzie Delta region of Canada,

an area of low productivity (McLoughlin et al., 1999). Unlike grizzly bears that rely

on predictable sources of protein, such as salmon, the barren ground grizzly bears

of the Mackenzie Delta have a small body size and drifting home ranges (Edwards

et al., 2009; Hilderbrand et al., 1999). Because the benefits of familiarity are limited

in scarce, heterogeneous, and unpredictable environments (Mueller and Fagan, 2008;

Switzer, 1993), site fidelity was suggested to be maladaptive for these bears (Edwards

et al., 2009). Thus, random search strategies may be effective for barren ground grizzly

bears, making these bears good candidate for this study.

My third species, the polar bear (U. maritimus), is a specialized marine carnivore.

Polar bears, like many other predators that have been the focus of search strategy

studies, exploit the unpredictable marine environment (e.g., Humphries et al., 2010).

Polar bears exhibit site fidelity (Mauritzen et al., 2001). However, this is also true for

the central foragers that have been shown to display random search strategies (e.g.,

Humphries et al., 2012). Polar bears use the sea ice as a platform to hunt seals (Stirling

and Derocher, 2012). Sea ice extent changes seasonally and local ice concentration can

vary drastically over short time scales (Johannessen et al., 2004; Maslanik and Barry,

1989), which may make random search strategies advantageous for these bears despite

annual site fidelity.

Using movement data collected when these three species are expected to be search-

ing for food, I investigate the support for the use of four random search strategies. I

show that for these species there is more evidence for the ARS than for the Lévy walk,

Brownian motion, and correlated random walk. The ARS and Brownian motion were

sufficient to explain the movement of some individuals, but none of the strategies were

adequate for many others. My results demonstrate how species and individuals vary in

their searching behaviours, and highlight a need for the development of new strategies.
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4.2 Methods

4.2.1 Modeling search strategies

I used the method described in Chapter 3 to assess the support for the search strate-

gies in the movement data of the three species. This method provides a likelihood

function for each of the four search strategies (Table 4.1). Each likelihood function was

applied simultaneously to the time series of step lengths, lt and turning angles θt. The

movement of the Brownian motion was represented with by a truncated Brownian walk

(TBW), which uses a modified truncated exponential distribution for the step length,

φt�l�, and a circular uniform distribution for the turning angle, v0�θ� (Table 4.2).

The correlated random walk was represented by a truncated correlated random walk

(TCRW), which uses a modified truncated exponential distribution for the step length,

φt�l�, and a von Mises distribution centered at 0 for the turning angle, v�θ� (Table

4.2). The ARS was represented by a combined correlated random walk (CCRW), which

uses a hidden Markov model with two searching behaviours (Table 4.1). The intensive

search was represented by a Brownian walk with a modified exponential distribution

for the step length, φ�l�, and a circular uniform distribution for the turning angle,

v0�θ� (Table 4.2). The extensive search was represented by a correlated random walk

with a modified exponential distribution for the step length, φ�l�, and a von Mises

distribution centered at 0 for the turning angle, v�θ� (Table 4.2). The Lévy strategy

was represented by a truncated Lévy walk (TLW), which uses a truncated Pareto dis-

tribution for the step length, ψt�l�, and a circular uniform distribution for the turning

angle, v0�θ� (Table 4.2).

To identify the model that best fit the movement data of each individual, the relative

fit of these likelihood functions was assessed using AICc and Akaike weights (Burnham

and Anderson, 2002). I evaluated whether the best model adequately explained the

movement data using a test of absolute fit, which comprises of a G-test on uniform

pseudo-residuals (Sokal and Rohlf, 1981; Zucchini and MacDonald, 2009). The CCRW

and TLW need to have specific parameter values to be consistent with the ARS and

Lévy strategies. Thus parameter estimates can serve as additional measures to iden-

tify whether the data are consistent with these strategies. I used Maximum Likelihood

Estimation (MLE) to estimate the parameters of each model and a quadratic approxi-

mation to estimate their confidence intervals (Bolker, 2008). See Chapter 3 for further

details.
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4.2.2 Description of movement data

To capture rare events, such as the long steps characteristic of the Lévy strategy, I

attempted to get time series representing close to a year of searching behavior. However,

I also tried to limit the time series to movement performed while searching. As detailed

below, I removed all sections of the datasets known to be associated with reproduction

and resting, as such behaviour can impact animal movement (e.g., DeMars et al.,

2013). I also started each time series a minimum of two weeks after the collaring event

because capturing procedures associated with collaring affect the movement of some

species (e.g., Morellet et al., 2009; Thiemann et al., 2013). The time series of some

individuals were further reduced by missing observations and collar failures.

First, I used the movement paths of 22 female caribou from the boreal plains re-

gion of northeastern British Columbia, Canada. These females were captured during

February and March 2011 and fitted with G2110E collars from Advanced Telemetry

Systems Inc. (Isanti, MN, USA). The collars provided daily GPS locations. I removed

the calving and the rut periods, as well as the two weeks post collaring, by limiting

the time series to locations collected between November 1st 2011 to April 30th 2012

(Ferguson and Elkie, 2004). Next, I used the movement paths of 20 grizzly bears from

the Mackenzie Delta, Northwest Territories, Canada. These bears were collared in May

and June (close to den emergence) 2003-2009. For each individual, I used one year of

data from July 1st until November 30th or den entrance. Starting July 1st excluded the

peak of the mating season (MacHutchon, 1996) and the two weeks following the collar-

ing events. Finally, I used the movement paths of 12 polar bears from the Beaufort Sea.

These bears were collared in April and May 2008-2010. To exclude the two weeks after

collaring, I started the time series June 1st. I used one year of data. As some pregnant

females of the Beaufort Sea give birth in dens on the moving sea ice (Amstrup and

Gardner, 1994), it is difficult to identify den location. To exclude denning individuals,

I included only juveniles and females accompanied with cubs-of-the-year or yearlings

when collared. Restricting the analysis to these individuals also removed the potential

for mating events in the time series. The locations of both the grizzly and polar bears

are Global Positioning System (GPS) locations taken every 4hrs with Gen II-IV collars

from Telonics Inc. (Mesa, AZ, USA).

The collars of all of these animals were programmed to collect locations at regular

time intervals. Transforming sampled steps into biologically relevant steps is among the

most difficult challenges of using GPS data in ecology (Hebblewhite and Haydon, 2010),

and various methods have been proposed (e.g., Codling and Plank, 2011). I chose to use
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the local turn method, a technique that creates one step out of all consecutive sampled

steps with a turning angle smaller than a threshold angle (see Codling and Plank, 2011).

It has been shown that this technique, as well as other similar methods, can cause the

misidentification of the CCRW for the LW (Codling and Plank, 2011; Plank et al.,

2013). However, misidentifications are more likely to occur when high threshold angles

are used (Codling and Plank, 2011; Plank et al., 2013). In part to limit the potential

for misidentification, I chose a threshold angle of 10X. This threshold angle was also

chosen because a biologically relevant step should be defined by movement in the same

general direction. With this threshold, any sampled step within the 20X forward sector

is interpreted as part of a biologically relevant step. Because the choice of threshold

angles can be somewhat arbitrary, I have also explored a range of threshold angles and

fit the models to the raw data. I show in Appendix C that the results are broadly

similar regardless of the threshold angle used. Note that this method can impact the

test of absolute fit (Appendices B and C), and I present only the test of absolute fit for

the step length distribution in the main text of this Chapter. Because missing locations

can affect the identification of biologically relevant steps, I included only individuals

that had a time series with @ 30% of the locations missing. I also limited the time

series to those with a minimum of 50 steps (Appendix C: Fig. C.3 presents the range

of sample size). I applied the models to the data from each individual separately.

4.3 Results

According to AICc, the CCRW was the best model for more than 98% of all movement

paths and for at least 95% of the movement paths of each species (Table 4.3). For all

species, the mean Akaike weight of paths with the CCRW as best model was A 0.92.

According to the test of absolute fit, many of the movement paths best described by

the CCRW were not significantly different from it: 43% of caribou, 25% of grizzly

bears, and 0% of polar bears. For a visual representation of the fit of the models under

both step definitions see Fig. 4.1. While the TLW and TCRW were never the best

model of a movement path, the TBW was the best model for one of the 22 movement

paths of the caribou. The Akaike weight of this TBW was 0.61 and this path was not

significantly different from the TBW.

For comparative purposes, I also present the results when only the TLW and TBW

are considered as alternative hypotheses. Both models have a uniform probability

density function to describe the turning angle frequency, and the same step length

probability density functions as in Edwards et al. (2007). Thus comparing the AICc
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of these two models can be considered equivalent to current methods used by others

to identify the Lévy strategy. The TLW was better than the TBW for almost half of

the grizzly bears (9/20) and one polar bear (1/12). The rest of the movement paths,

including all caribou paths, were better described by the TBW. While the TBW was

sufficient to explain the movement of 11 caribou, it was not sufficient for any of the

grizzly or polar bears. All movement paths were significantly different from the TLW.

Many of the parameter estimates of the CCRW were consistent with the expecta-

tions of the ARS strategy (Table 4.4). First, the step lengths of the intensive search

are expected to be shorter than those of the extensive search behavior. This was the

case for all species, as the mean λi were greater than the mean λe and their confidence

intervals did not overlap. Second, the extensive search movement is expected to be

more directed than the intensive search movement. This was the case for the grizzly

and polar bears, as the mean κe and confidence intervals were A 0. However, I had

weaker support for caribou, for which the mean κe was A 0, but not the lower bound of

its confidence interval. Third, the intensive search is expected to exhibit behavioural

persistence. This was the case for polar bears and caribou, for which the mean transi-

tion probabilities, γii, and their confidence intervals were A 0.5. However, I had weaker

support for the grizzly bears. Although the upper bound of confidence intervals was

A 0.5, their mean γii � 0.46.

4.4 Discussion

I found substantial support for the CCRW model, and thus the ARS strategy. The

CCRW was the best model for 98% of the movement paths, and provided an adequate

fit to 26% of them. Moreover, many of the estimated parameters from the CCRW

were consistent with the ARS strategy. As expected, the extensive search had higher

mean step length and directional persistence than the intensive search. In addition,

some animals exhibited behavioral persistence characteristic of the intensive search.

However, not all movement paths were consistent with the ARS. The movement paths

of many caribou, grizzly bears, and all polar bears were significantly different from the

CCRW. In addition, the confidence intervals on some parameter estimates indicated

that the evidence for directed movement and behavioral persistence was not strong for

some species. These discrepancies indicate that although the CCRW can approximate

the movement better than the three other models investigated, it might not completely

represent the search strategy of the animals studied.

I found little support for the Lévy strategy. No movement path had the TLW as its
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best model (although one movement did when using high threshold angle, see Appendix

C). The lack evidence for the Lévy strategy is consistent with recent studies, which

indicate that the Lévy strategy may not be as common as originally thought (Edwards

et al., 2012, 2007; James et al., 2011, but see Humphries et al. 2012; Sims et al. 2012).

Although I found little support for the Lévy strategy when all models were considered,

support for it increased when the CCRW was excluded from the set of alternative

models. When the TLW was compared only to the TBW, close to half of the grizzly

bears and one polar bear had the TLW as their best model. This re-emphasizes the

importance of comparing the Lévy search strategy to strong alternative models such

as the CCRW (Chapter 2; Jansen et al., 2012; Plank et al., 2013). It also supports the

contention that some Lévy walk movement patterns might emerge from intermittent

movement, rather than providing evidence for the Lévy strategy per se (Benhamou,

2007; Plank and James, 2008). Finally, the fact that all empirical movement paths

differed significantly from the TLW further indicates that it was an inappropriate

model for my data. This reiterates the importance of testing the absolute fit of a

model (Chapter 2; Plank et al., 2013).

The fact that I found support for the CCRW is not surprising given that there is am-

ple evidence of species showing similar biphasic movement behavior (e.g. Dragon et al.,

2012; Jonsen et al., 2007; Morales et al., 2004), including evidence for such behavior

in caribou (Johnson et al., 2002a,b; Tyson et al., 2011). However, my results contrast

with previous research on semi-domesticated reindeer (R. t. tarandus), an Eurasian

subspecies of caribou. The movement of reindeer in spring and early summer was

more consistent with the Lévy strategy than with null models (Edwards, 2011; Mårell

et al., 2002). This was not the case with the winter movement of my caribou. The

TBW was a better model than the TLW for all individuals. While I found support for

the CCRW, reindeer showed no evidence of increased ARS movement behaviour with

increased food density (Mårell et al., 2002). One reason for these apparent differences

may be that the movement of many caribou is well explained by the CCRW but is not

consistent with the ARS strategy. The ARS strategy assumes that the intensive search

behavior is triggered by the encounter of a food item and associated with food patches

(Benhamou, 1992). Many studies have indicated that movement consistent with the in-

tensive search are not always associated with food encounters or other foraging proxies

(Robinson et al., 2007; Thums et al., 2011; Weimerskirch et al., 2007). However, these

differences might also be due to behavioural variation between subspecies or between

wild and domesticated animals. They may also results from differences in the sam-
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pling scale, habitat, and season examined in the studies. Mårell et al. (2002) showed

that reindeer changed their movement strategies over the course of the summer. For

caribou, Johnson et al. (2002a) showed stronger support for a two-behaviour model in

winter than in summer and attributed the difference to increased patch heterogeneity

due to snow conditions and lichen distributions. Thus, it is possible that caribou use

ARS in the winter but not during the summer.

Unlike the grizzly and polar bears, some caribou had the TBW as their best model.

In addition, many of the caribou movement paths were not significantly different from

the TBW and the parameter estimates indicate that the distinction between the two

behaviors of the CCRW were not strong. The caribou movement paths had the smallest

sample sizes (see Fig. C.3 in Appendix C). This may have favoured finding evidence for

a simpler model in this species, and might have contributed to the relatively low rate of

rejection for caribou. However, Edwards (2011) also found that null models similar to

the TBW were sufficient to explain reindeer movement in late summer, supporting my

results that the TBW is sufficient to explain the movement of some caribou in winter.

The CCRW was the best model for all grizzly bears and was sufficient to explain

the movement paths of many individuals. Evidence for a random search strategy,

such as the ARS, was anticipated because the bears in this population inhabit sparse

and unpredictable environments and display home range drift (Edwards et al., 2009).

Bears in this population vary in their foraging behaviours from a spectrum of near

complete herbivory to carnivory (Edwards et al., 2011). Such specialisation was shown

to be related to changes in movement behaviours, with carnivores moving faster than

herbivores (Edwards et al., 2011). Indeed, we would expect carnivores and herbivores

to use different search strategies, and such individual variation might explain why the

movement of only some individuals is adequately represented by the CCRW. We might

expect the ARS strategy to be more effective for the herbivorous bears exploiting

vegetation patches than for canivores preying on large herd animals. Further research

could investigate how difference in diet are reflected in the search strategies used by

grizzly bears.

The CCRW was the best model for all polar bears, but was insufficient to explain

their movement. The parameter estimates indicate that there is a strong differentiation

in both step length and directional persistence between the behaviours. Thus, while

the movement is not consistent with the ARS strategy, this suggests that polar bear

have two movement modes. Difference in these modes could be driven by a variety

of factors, including alterations in movement according to sea ice condition. As polar
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bears adjust their movement to compensate for sea ice drift (Mauritzen et al., 2003),

neglecting sea ice drift may partially explain why my models were insufficient to explain

their movement. Although previous studies have found evidence for random search

strategies in animals experiencing drift from ocean and wind currents (e.g., Fauchald

and Tveraa, 2003; Humphries et al., 2012; Sims et al., 2012), it has been shown that

neglecting currents can distort inference made from foraging movement models (Gaspar

et al., 2006). This distortion may be attributed to the difficulty of distinguishing

between voluntary movement and drift, but it may also arise from the fact that many

species use currents strategically when traveling (e.g., Weimerskirch et al., 2000).

The test of absolute fit revealed that the four strategies failed to accurately represent

many movement paths. There are multiple potential reasons for the high rejection rate

of this test, the first three of which are methodological in nature. First, animals

are unlikely to move exactly as modeled by our idealized representation of search

strategies, and with large sample sizes, any small deviation could result in rejection.

In particular, there are many ways in which the ARS strategy could be modeled and

certain changes to the CCRW could increase its absolute fit. My CCRW used specific

distributions for the frequency of step lengths and turning angles. The choice of such

distributions can affect the movement behavior of random walks (Codling et al., 2010)

and other distributions have been used in some multiphasic movement models (e.g.,

Langrock et al., 2012; Morales et al., 2004). While my choices were made to reduce

the number of parameters to be estimated or to ensure that certain characteristics of

the ARS were respected, other choices might increase the absolute fit of the CCRW.

Second, it is unlikely that I have sampled the movement paths at the exact scale

at which the animals are making their decisions. Sampling scale affects behavioral

inference made from movement data (e.g., Andersen et al., 2008; Codling and Hill,

2005; Plank and Codling, 2009). Thus, a lack of strong evidence for the Lévy and ARS

strategies at the scale at which I have sampled my movement paths does not preclude

the possibility for such evidence at different scales. Further studies that investigate the

evidence for movement strategies at multiple scales should be performed (e.g., Fryxell

et al., 2008; Gautestad, 2013). Third, although the models are good representations

of a movement path composed of biologically relevant moves, they are not necessarily

good representations of observed movement. I used a method to estimates biologically

relevant moves, but these methods can distort movement paths (Codling and Plank,

2011; Plank et al., 2013). Thus, although I found consistent results over a range of

threshold angles (see Appendix C), it may be beneficial to develop a new class of models
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that directly represent the impact of data handling on the observed movement paths.

In addition to these methodological reasons, there are at least four potential bi-

ological reasons for the lack of fit of the two search strategies. First, the Lévy and

ARS strategies were developed for animals with scant knowledge of their environment

(James et al., 2011; Knoppien and Reddingius, 1985). Species like the caribou and

polar bear have been shown to exhibit some degree of site fidelity (Faille et al., 2010;

Mauritzen et al., 2001; Tracz et al., 2010), thus we can expect them to be at least

moderately familiar with their environment. As many species display site fidelity and

are capable of storing information on their habitat, there is increasing interest in, and

evidence for, memory-based movement models (Börger et al., 2008; Fagan et al., 2013;

Smouse et al., 2010). Memory-based search strategy can be more efficient than random

search strategy (Benhamou, 1994) and may provide better representations of the search

strategies used by animals with knowledge of their environment. Second, the Lévy and

ARS strategies were developed for animal searching outside of their perceptual range

(Benhamou, 1992; James et al., 2011). Many species have an acute sense of smell and

are thought to use olfactory cues to find their prey (Conover, 2007). Such species

include the grizzly and polar bear (Conover, 2007; Stirling, 1999), as well as species

that have been suggested to follow a random search strategy (e.g., the wandering al-

batrosses (Diomedea exulans), Humphries et al., 2012; Nevitt et al., 2008). As with

knowledge of the environment, the ability to use olfactory cues is likely to make other

search strategies optimal. Third, landscape features can alter animal movement pat-

terns and affect their search strategy. Including these features into movement models

can enhance our understanding of animals’ foraging success (McKenzie et al., 2012).

Fourth, animals have an extensive behavioral repertoire and their movement paths

often include behaviors other than searching for food. Neglecting to remove other be-

haviors has been shown to distort analysis of search strategies (Edwards et al., 2007).

I removed two types of resting periods, the denning period of bears and all steps where

locations remained constant. In addition, I removed the main reproductive and mating

periods of all species. However, given that my sampling interval was coarse and that

the movement paths encompassed months, it is likely that many behaviors, including

nursing, predator avoidance, and socializing, are still present in the movement paths.

These four explanations for the lack of fit of simple search strategies emphasizes how

difficult it is to understand how animal search for food, and echoes recent calls for more

mechanistic movement models (Nathan et al., 2008; Schick et al., 2008).

While I have found evidence for the ARS and Brownian movement, there is likely
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no universal search strategy. Both species and individuals differ. Thus, we will only

be able to accurately represent how animals search for food once we incorporate into

movement models aspects such as memory, perceptual capacities, currents, landscape

features, as well as the scale at which the animal search for food and the impact of

sampling on observed movement paths.
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Table 4.1: Likelihood functions and number of parameters to estimates, k, of the four
models. The ARS strategy is represented by the CCRW, the Lévy strategy by the
TLW, the Brownian motion by the TBW, and the correlated random walk by the
TCRW. Table 4.2 describes the probability density functions, φ��, φt��, v��, v0��, and
ψt��.
Model Likelihood function k

CCRW � δi 1�δi � � φ�l1Sλi,a�v0�θ1� 0

0 φ�l1Sλe,a�v�θ1Sκe�
� Ln

t�2�
γii 1�γii

1�γee γee
�� φ�ltSλi,a�v0�θt� 0

0 φ�ltSλe,a�v�θtSκe�
� � 1

1
� 7

TLW L
n
t�1 ψt�ltSµt, a, b� v0�θt� 3

TBW L
n
t�1 φt�ltSλt, a, b� v0�θt� 3

TCRW L
n
t�1 φt�ltSλt, a, b� v�θtSκ� 4

Table 4.2: Formulas for the probability density
functions (PDFs) used in the models and the re-
strictions on their variables and parameters. The
variables l and θ represent step length and turn-
ing angle, respectively.

Symbol PDF Restrictions

φ�lSλ, a� λ e�λ�l�a� a B l, λ A 0

φt�lSλt, a, b� λt e�λtl

e�λta�e�λtb
a B l B b, λ A 0

ψt�lSµt, a, b�
�µt�1� l�µt

a1�µt�b1�µt
a B l B b, 1 @ µ B 3 �

v�θSκ� 1

R
π
�π

eκ cos�θ�dθ
eκ cos�θ� � κ A 0

v0�θ� 1

2π

� Although the truncated Pareto distribution allow for
a greater range of values for µt, I am restricting its
values to those relevant to the Lévy strategy.

� This is a simplified and expanded equation of the von
Mises PDF. The same equation is often written with a
modified Bessel function of the first kind and of order
0.
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Table 4.3: Relative and absolute fit of the four models on the movement paths of 20
grizzly bears, 12 polar bears, and 22 caribou. For each model, I present the number
of movement paths selected as best model with AICc and the mean Akaike weight,
w, of these selected paths. I also present how many of the selected paths are not
significantly different from this model according to a test of absolute fit based on the
step length distribution.

Model NX as best model w of best model NX p-value A 0.05

Caribou Grizzly Polar bear Caribou Grizzly Polar bear Caribou Grizzly Polar bear

CCRW 21 20 12 0.92 1.00 1.00 9 5 0

TLW 0 0 0 – – – – – –

TBW 1 0 0 0.61 – – 1 – –

TCRW 0 0 0 – – – – – –

Table 4.4: Parameter estimates for the best models. The mean parameter estimates
and associated confidence intervals (CIs) are presented for each species. Only the
movement path of individuals that had the model as its best are used. The locations
of caribou were taken daily, those of grizzly and polar bears were taken every 4 hrs.

Symbol
(unit)

Description Caribou Grizzly Polar bear

a
(m)

Minimum step length of the TBW and
CCRW

53 3 23

b
(m)

Maximum step length of the TBW 15056 – –

γii Probability of remaining in the CCRW’s
intensive search

0.98
(0.94-1.01)

� 0.46
(0.34-0.58)

0.84
(0.75-0.92)

γee Probability of remaining in the CCRW’s
extensive search

0.92
(0.80-1.05)

� 0.86
(0.79-0.92)

0.96
(0.93-0.99)

κe Size of the directional correlation of the
CCRW’s extensive search

0.25
(-0.23-0.74)

� 0.41
(0.20-0.62)

1.20
(0.97-1.44)

λt
(m�1)

Rate parameter of the exponential
distribution of the TBW

0.00055
(0.00043-0.00066)

– –

λi
(m�1)

Rate parameter of the CCRW’s intensive
search

0.00076
(0.00053-0.0098)

0.06002
(0.02946-0.09057)

0.01607
(0.01247-0.01967)

λe
(m�1)

Rate parameter of the CCRW’s extensive
search

0.00035
(0.00022-0.00048)

0.00056
(0.00048-0.00064)

0.00019
(0.00018-0.00021)

� Because I used the quadratic approximation to estimate CIs, some CIs exceed the boundary of
parameter space (see Chapter 3 for details).
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Figure 4.1: Fit of the models to the movement path of each species: (A-C) caribou,
(D-F) grizzly, and (G-I) polar bear. In Panels A, D, & G, the black lines represent
the movement path using the 10X threshold angle and the gray dashed line the missing
data. Panels B, E, & H display the step length frequency with the probability density
function (PDF) of each model, on log-log axes. Panels C, F, & I displays the turning
angle frequency with the PDF of each model. The best model for these three individuals
was the CCRW with wCCRW A 0.99. The p-value of the test of absolute fit for the step
length and turning angle distributions of the best model are indicated in the legend.
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Chapter 5

Home ranges in moving habitats:
polar bears and sea ice

5.1 Introduction

The formation of a home range is a ubiquitous space use behaviour that affects many

of the fundamental ecological processes influencing the abundance and distribution of

organisms (Börger et al., 2008). As such, the concept of home range has become an

important part of ecological research and wildlife management. Burt (1943) formalised

the definition of home range as the “area traversed by the individual in its normal

activities of food gathering, mating, and caring for young”. Although this basic def-

inition is imprecise (Cooper, 1978; White and Garrott, 1990), two notions emerge as

central to the home range concept. First, home ranges are associated with site fidelity

and an animal’s familiarity with an area (Cooper, 1978; Powell and Mitchell, 2012;

Spencer et al., 1990). This familiarity may provide knowledge that confers fitness ben-

efits (Powell and Mitchell, 2012). Consequently, there has been increased interest in

the importance of memory and cognitive maps in the formation of home ranges (e.g.,

Powell and Mitchell, 2012; Van Moorter et al., 2009). Second, home ranges have long

been used to represent the amount of space required by animals to acquire the re-

sources necessary for their survival and reproduction (e.g., Kelt and Van Vuren, 1999;

McNab, 1963; Reiss, 1988). This aspect of home ranges is at the heart of studies that

explain variation in home range size across species or individuals (e.g., Kelt and Van

Vuren, 1999; McNab, 1963; Tufto et al., 1996). It is also central to studies assessing

optimal home range dimensions in terms of the costs and benefits of reaching spatially

distributed resources (e.g., Mitchell and Powell, 2004, 2007), and those that seek to

identify important habitats (e.g., Edwards et al., 2013; Millspaugh et al., 2006; Tufto
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et al., 1996).

These two central aspects of home ranges are spatially linked for terrestrial species,

and can be assessed simultaneously using statistical tools such as the kernel-based

utilisation distribution (Worton, 1989). By delineating the geographic area repeatedly

visited by an individual, these statistical tools also capture the amount of habitat used

by the animal to gather resources. However, for many species that live in drifting

habitats (e.g., oceans, rivers, sea ice, and the atmosphere), the direct spatial link

between the geographic area and resources encountered is lost. If resources are drifting

in and out of a geographic area, the area cannot be assigned the fixed habitat quality

needed to easily relate its size to the amount of resources it provides. The amount

of resources encountered in a given location will depend on the strength of currents

and the productivity in the area from which the current emerge. Thus, the amount

of resources provided by the same geographic area could vary widely through time.

In addition, the movement direction of an animal in relation to the drift direction

will impact the costs and benefits of space use. First, whether an animal is passively

drifting with the current or actively moving against the flow will influence the amount

of resources encountered. Second, because moving with or against current significantly

impacts the energy expenditure of an animal (Gaspar et al., 2006), we can no longer

use distance moved as a proxy for the energetic cost of reaching a food patch.

Here, I provide a first attempt to incorporate drift in home range analyses and

demonstrate the potential benefits of this approach. I use polar bears (Ursus mar-

itimus) as my study species, as their interaction with the two-dimensional sea ice plat-

form provides a relatively simple illustration of the challenges associated with studying

home ranges in drifting habitats. Polar bears hunt seals on the sea ice, and many

bears spend a significant part of the year on drifting pack ice (Amstrup et al., 2000;

Mauritzen et al., 2003; Stirling et al., 1993). Sea ice can move many kilometres per day

(e.g., Hakkinen et al., 2008). Individual polar bears tracked for multiple years return

to the same location to forage in the spring and recreate similar movement patterns

yearly (Amstrup et al., 2000; Born et al., 1997; Mauritzen et al., 2001). Thus, the geo-

graphic area used by bears corresponds to the site fidelity aspect of their home range.

However, resource-linked aspects, such as the amount of sea ice visited, the amount

prey encountered, and the energy they expend cannot be related to this geographic

area without incorporating ice drift. This is particularly important for polar bears

because the distribution of their main prey, the ringed seal (Pusa hispida), is linked

to the sea ice. Ringed seals must maintain breathing holes and lairs to prevent them
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from freezing closed from freeze-up to melting, and thus are tied to a specific piece of

ice for much of the year (Kelly et al., 2010; Smith and Stirling, 1975). Many ringed

seals choose stable landfast ice to construct their lairs, but others inhabit drifting pack

ice (Kelly et al., 2010; Pilfold et al., 2014; Smith and Stirling, 1975; Wiig et al., 1999).

Thus, for polar bears, the area of sea ice visited will better represent the resource

aspect of their home ranges than the geographic area.

In this Chapter, I develop a method to estimate the area of sea ice visited by

polar bears. I compare these estimates to the sizes of bears’ geographic home ranges.

First, I show that mean area of habitat encountered is significantly larger than that

of the geographic home range, but that the area of ice encountered by individuals

can range from less than 3~4 to twice the size of the geographic home range. Second,

I show that although the areas of both the geographic home range and the habitat

encountered are associated with some of the same environmental covariates, only the

area of habitat encountered is correlated with the amount of ice drift. Finally, I show

that by incorporating drift to create an estimate of habitat encountered I increase

the amount of variation explained when relating the home range size to intrinsic and

extrinsic covariates.

5.2 Methods

5.2.1 Polar bear GPS data

I used the movement data of 21 polar bears collared in the Beaufort Sea from April and

May 2007-2011 to estimate annual home ranges. The bears were located by helicopter

and immobilized using standard methods (Stirling et al., 1989). Collars (Telonics Inc.,

Mesa, AZ) were programmed to collect a GPS location every 4 hrs for one or two years.

Following immobilisation, most bears recover their normal movement within three days

of capture (Thiemann et al., 2013). Thus, I excluded locations during this period. Any

subsequent capture event ended the data series for that bear. I limited the analysis to

individuals that had data for close to a whole year, and only included bears if the collar

functioned for C 343 days. In addition, to insure that home range estimates were based

on similar data sets, the analyzed bear were restricted to those with B 8 consecutive

days of missing data. As the calculation of the home range estimates depended on

daily sea ice drift data at the location of the bear, I also excluded any bear year that

were missing more than 150 days of drift data (see below for sea ice data description).

I had sufficient data from five individuals to create multiple annual home ranges. For

these, I selected the year that had the least missing sea ice data.
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5.2.2 Sea ice movement data and differentiating drift from
voluntary movement

One of my primary objectives was to incorporate ice drift into my home range analyses.

I used polar pathfinder daily 25 km Ease-Grid sea ice motion vectors (Fowler, 2003).

These 25 by 25 km pixel rasters provide estimates of the daily movement of sea ice

in terms of displacement in the x and y direction. These estimates are based on var-

ied sources of data, including Special Sensor Microwave/Imager and the International

Arctic Buoy Programme buoy data (Fowler, 2003). I interpolated the ice drift value at

each bear location with the iwd function of the R 3.0.2 (R Development Core Team,

2012) package gstat (Pebesma, 2004), setting the distance weighting power to 3. All

locations with fewer than three pixels with drift data within 36 km were categorized

as missing data. Pixels that lacked sea ice movement data did so because of proxim-

ity to water, the coast, or low ice concentration, which makes the estimation of sea

ice movement by satellite imagery difficult (Schwegmann et al., 2011). Many missing

data are close to the coast, in areas where stationary landfast ice is found in winter

and spring. I identified instances where missing ice movement data were on landfast

ice using Canadian Ice Service Arctic Regional Sea Ice Charts (Canadian Ice Service,

2009) and assigned a drift of 0 to these locations.

To incorporate drift in my home range analysis, it was important to differentiate

the voluntary movement of the bear from movement caused by sea ice drift. The

movement observed from the collar is a combination of both voluntary movement and

drift (Gaspar et al., 2006). To estimate the voluntary movement, I subtracted the

daily displacement of the sea ice from the observed daily collar displacement (Fig.

5.1B). Both missing collar locations and missing sea ice data precluded the estimation

of the daily voluntary movement of a bear. Data gaps B 8 days required interpolated

locations for missing days and I used the straight-line distance between the two most

recent locations. For days with missing sea ice data, I used the observed displacement

of the collar as an estimate of the voluntary movement of the bear. This may result in

underestimates of the difference between the geographic home range size and area of

habitat encountered

5.2.3 Estimating the area of the geographic home range and
of the habitat encountered

Both the area of the geographic home range and of the habitat encountered were es-

timated using a utilisation distribution with fixed bivariate normal kernel (Worton,
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1989). For the smoothing parameter, h, I used the maximum observed daily displace-

ment of each bear (range: 8.4 - 32.2 km~day). I used the observed collar displacement

as it represents both the movement of the bear and the ice drift, which affects both the

geographic area and the habitat encountered. I chose the maximum observed displace-

ment because more commonly used methods did not converged or gave nonsensical

results. The smoothing parameters estimated with the reference bandwidth method

were much larger than the maximum observed displacement, resulting in over-smoothed

home ranges. The least-square cross-validation method had convergence problems for

many individuals and under-smoothed the home range of the others. The problems

associated with these methods have been discussed elsewhere (see Hemson et al., 2005;

Kie, 2013). I used the 95% contour of the utilisation distribution to delineate the home

range. These calculations were made using the package adehabitatHR (Calenge, 2006).

The main difference between the two area estimates lies in the locations used to

calculate the utilisation distributions. For the geographic home range, I used the

observed and interpolated collar locations (Fig. 5.1A). For the habitat encountered,

I used the locations associated with a movement path recreated from the voluntary

movement of the bear (Fig. 5.1C). I wanted to determine if and how the area of sea

ice habitat encountered by individual bears differed from their geographic home range.

The two estimates were not normally distributed, so I compared them using a Wilcoxon

Signed Rank test for paired samples (H0 � areahe � areaghr,Ha � areahe A areaghr).

5.2.4 Identifying the determinants of home range size

I wanted to assess the determinants of home range size and whether these differed

between the geographic home range and the area of ice habitat encountered. To do

this, I used multiple linear regressions with a variety of intrinsic and extrinsic variables.

The intrinsic variables I assessed were age class (adult, subadult), sex, and whether or

not a cub accompanied the individual at the beginning of the time series. I included age

class and sex as explanatory variables because similar factors have been investigated

in the movement of individuals (Amstrup et al., 2000; Laidre et al., 2012; Mauritzen

et al., 2001). The majority of the individuals collared were adult females, however some

were subadults of either sex. I included the presence of cubs because caring for young

can alter home range patterns (Mitchell and Powell, 2007; Tufto et al., 1996). In two

instances, I selected the second year of movement data because it was of better quality

than the first (see above) and thus I could not ascertain whether cubs accompanied the

females at the beginning of the year. Following Mauritzen et al. (2003), I assigned cub
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status in these cases based on the normal reproductive cycle of polar bears and whether

there was evidence for denning in the movement path. Polar bears only den to give

birth to cubs and females from the Beaufort Sea normally weaned their young at 2.5

years of age (Stirling, 2002). As bears with cubs-of-the-year have different movement

patterns and habitat preference than other females (Amstrup et al., 2000; Pilfold et al.,

2013), cub age might be an important explanatory variable. However, my small sample

size of cubs in certain age classes limited my analysis to presence/absence of cubs.

The extrinsic factors I assessed included both static and dynamic features of the

habitat. The static features were the mean ocean depth within the geographic home

range and whether the bears spent more than a week on land, the latter denoted by

a binary variable. I estimated the mean ocean depth using the International Bathy-

metric Chart of the Arctic Ocean version 2.23 with 2 by 2 km grid cells (Jakobsson

et al., 2008). My two dynamic covariates were associated with sea ice features: mean

daily drift experienced by a bear (described above) and a proxy for the proportion of

good sea ice habitat that an individual encountered. To assess the quality of the sea

ice habitat, while also accounting for the daily changes in sea ice quality, I used the

proportion of days that a bear spent at sea in ice concentration A 85%. I used this

threshold to be consistent with Sahanatien and Derocher (2012) who used 85% ice con-

centration to define the best polar bear habitat. They also used a threshold of 60% ice

concentration to designate good habitat. Because preliminary analyses indicated that

this second threshold was highly correlated with the 85% ice concentration variable

and performed less well, I excluded it from my final analysis. I used daily estimates of

sea ice concentration for 25 by 25 km pixels generated from satellite brightness temper-

ature data (Cavalieri et al., 1996). For the analysis of the area of sea ice encountered,

I used an additional variable, the number of days with missing sea ice data, to account

for its potential effect on my estimates.

Before conducting my analyses, I assessed collinearity between my predictor vari-

ables, using the correlation coefficient, r, as an indicator and the commonly used

threshold of SrS A 0.7 (Dormann et al., 2013). None of the variables in my final analysis

were collinear.

To identify which covariates are important determinants, I fit a series of linear

regression models. I examined all combinations of covariates, because I had no a

priori expectation for combinations of variables that would produce the best model.

Moreover, I wanted to assess the relative importance of different variables using their

importance weights, which requires that all variables be used in an equal number of
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models (Burnham and Anderson, 2002). Because of my small sample size, I did not

include interactions between covariates. I compared the relative fit of the models using

AICc (Burnham and Anderson, 2002). I evaluated the absolute fit using R2 and by

testing whether each variable in the best models was statistically significant.

All analyses and spatial data manipulations were performed in R 3.0.2 (R Devel-

opment Core Team, 2012), and relied heavily on the sp, raster, and rgdal packages

(Bivand et al., 2013; Hijmans, 2013; Pebesma and Bivand, 2005). All spatial analyses

used the Northern Hemisphere azimuthal equal-area EASE-Grid map projection de-

veloped by the National Snow and Ice Data Center for polar sea ice data (Brodzik and

Knowles, 2002).

5.3 Results

On average, the area of habitat encountered (232 597 km2, range: 15 109 - 466 823

km2) was significantly larger than that of the geographic home range (202 442 km2,

range: 14 983 - 472 287 km2; Wilcoxon test, V=42, p @ 0.01; Fig. 5.2A). However,

the magnitude of the difference between these two area estimates ranged widely among

individuals (126 - 102 000 km2). Two thirds of the individuals (14/21) had larger

areas of habitat encountered, while the rest had larger geographic home range areas

(Fig. 5.1B). When travelling on ice, the annual average drift experienced by individual

bears ranged between 2.3 and 8.0 km~day (mean = 4.5 km~day). The annual average

of individuals’ voluntary movement ranged from 4.1 to 21.5 km~day (mean = 13.9

km~day).
The variation in geographic home range area was largely explained by mean ocean

depth and time spent on land. Depth and land were the only two covariates in the

best model, were in most models with ∆AICc B 4, and also had the highest importance

weights (Tables 5.1 and 5.2). F-tests revealed that removal of either of these variables

significantly reduced model fit (Table 5.2). Geographic home range size increased

with mean depth, regardless of whether mean depth was investigated alone, or while

accounting for the effect of the land covariate (Fig. 5.3A,C). Bears that spend more

than a week on land had smaller home ranges than those that did not (Fig. 5.3B,D).

Together, these two variables explained a large part of the variation in the size of

geographic home ranges (R2 � 0.69).

The variation in area of habitat encountered was largely explained by mean ocean

depth, time spent on land, and mean daily ice drift. Depth, land, and drift were

the only three covariates of the best model, were in all but one of the models with
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∆AICc B 4, and had the highest importance weights (Tables 5.1 and 5.2). Removal of

any of the variables significantly reduced the fit of the model (Table 5.2). As for the

geographic home range area, the area of habitat encountered increased with depth, and

if the bear spent B 1 week on land (Fig. 5.4A,B,D,E). The area of habitat encountered

also increased with increasing ice drift (Fig. 5.4C,F). These three variables explained

a large part of the variation in the area of habitat encountered by different bears

(R2 � 0.80). I was better able to explain variation in the area of habitat encountered

than geographic home range size even if I only used the variables in the best model for

the geographic home range size (areaHE � β0 � β1depth � β2land, R2 � 0.75).

5.4 Discussion

The home range concept is characterised by two central aspects: 1) the importance

of familiarity and fidelity in animal space use, and 2) a representation of the habitat

space animals need to survive and reproduce, which can be used to assess the costs

and benefits of using that space. For terrestrial animals, these two aspects of home

ranges are spatially linked because the habitat within familiar geographic areas is

motionless and relatively stable over time. Ecologists can thus delineate the space

familiar to an animal at the same time as the amount of habitat required for survival

and reproduction. For species such as the polar bear, which inhabit drifting habitats,

the geographic link between these two aspects is lost. While space use analyses based

on geographic locations can capture the fidelity of an individual to a certain region,

they inadequately quantify the amount of habitat an individual encounters in moving

habitats.

Because sea ice drifts in and out of a bear’s geographic home range, the amount of

ice habitat it encounters and the amount of energy it requires to reach resources will

depend largely on whether it is moving with or against sea ice. The sea ice is the prime

habitat polar bears use to forage (Derocher et al., 2004; Stirling et al., 1993; Stirling

and Derocher, 2012). Thus, it is difficult to use home range size as an indicator of

polar bear’s habitat, resources, and energy expenditure without considering ice drift.

I have presented a new means to estimate the area of habitat encountered for animals

that inhabit drifting sea ice. My results for polar bears indicate that most individuals

encountered more habitat than estimated by the geographic home range, and that in

extreme cases the difference between these two estimates were close to 100 000 km2

(i.e., A 50% of the mean geographic home range size). I was able to explain more of the

individual variation in area of the habitat encountered than that of the geographic home

58



range. This suggests that correcting home range area estimates with drift information

is important in facilitating our understanding of the factors that govern polar bear

space use.

5.4.1 Population and individual differences in area estimates

Polar bears have geographic home ranges orders of magnitude larger than expected

for terrestrial carnivores of similar weight (Ferguson et al., 1999). This suggests that

polar bears require more space than terrestrial carnivores to acquire resources. It also

suggests that they can energetically afford to travel long distances to reach resources,

even though the metabolic cost of walking is unusually high for polar bears (Hurst

et al., 1982). Because previous home range size estimates did not correct for sea ice

drift, the larger home ranges of polar bears could have resulted from bears passively

drifting over large geographic areas. Thus, accounting for ice drift could have revealed

that polar bears use a similar amount of habitat to terrestrial carnivores. My results

suggest that this is not the case. My estimates of the area of habitat encountered

were generally larger than my estimates of geographic home range size, although both

estimates fell within the range estimated by others (e.g., Amstrup et al., 2000; Ferguson

et al., 1999). This is consistent with results from Mauritzen et al. (2003) indicating that

the observed displacement of polar bears is dominated by voluntary movement rather

than passive drift. These findings support the suggestion that polar bears require a

larger area of habitat than their terrestrial counterparts, and that factors such as large

seasonal changes in habitat quality might force polar bears to travel long distances to

maintain access to food resources (Ferguson et al., 1999).

The larger size of the area of habitat encountered compared to the geographic home

range suggests that bears generally move in the opposite direction to the ice. Such

movement behaviour has been shown in the Barents Sea, where there is a continuous

southward ice drift, and this behaviour was suggested to be necessary for bears to

remain in ice-covered habitat (Mauritzen et al., 2003). In the Beaufort Sea, it is less

obvious that moving against the clockwise sea ice drift caused by the Beaufort gyre

would be necessary for bears to avoid ice-free regions (Coachman and Aagaard, 1974).

Polar bears, including those from the Beaufort Sea, exhibit site fidelity. They return

to the same geographic region annually, use the same core area across years, and follow

similar movement patterns between seasonally important regions (Amstrup et al., 2000;

Born et al., 1997; Mauritzen et al., 2001; Stirling, 2002; Wiig, 1995). Thus, bears may

walk against sea ice drift to remain within a familiar geographic region. However, this
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behaviour could also be explained by bears following cyclical changes in the spatial

distribution of good habitat. Previous research in the Barents Sea has shown that

the magnitude of bear displacement and ice drift were not correlated, suggesting that

tracking of good quality habitat, rather than fidelity to a particular geographic region,

was the primary driver of such behaviour (Mauritzen et al., 2003).

Regardless of what causes bears to move against the sea ice, my results indicate that

most bears encounter more habitat than their geographic home range would suggest.

These results highlight that the geographic home range is usually not an adequate

representation of the ice habitat a bear covers in a year. The difference between the

estimates of area of habitat encountered and geographic home range area spanned

three orders of magnitude, with some individuals displaying the reverse pattern from

the majority of the population (i.e., appear to encounter less habitat than estimated

with geographic locations). The individual variation further emphasizes that studies

of the physiological and ecological factors affecting home range size should account for

the drift experienced by each bear.

5.4.2 Determinants of home range area

The home range sizes of polar bears are highly variable, ranging from a few hundred

to several hundred thousand square kilometres (e.g., Ferguson et al., 1999; Mauritzen

et al., 2001). Previous investigations of the determinants of home range size found that

two factors were important in explaining this intraspecific variability. Home range size

is influenced by both the amplitude of the seasonal change in ice extent, and whether

an individual responds to the sea ice retreat by taking refuge on land (Ferguson et al.,

1999; Mauritzen et al., 2001). These relationships reflect polar bears’ use of sea ice

as a platform to hunt seals and requirement for high sea ice concentration to travel

effectively (Derocher et al., 2004). Although bears can swim long distances, swimming

requires more energy than walking on ice and the drop in body temperature associated

with being in the water is dangerous for cubs (Durner et al., 2011; Monnett and Gleason,

2006). When the sea ice melts in the summer, many bears avoid open water and

low ice concentration by either moving onto land or migrating to areas of higher ice

concentration (e.g., Cherry et al., 2013; Mauritzen et al., 2001).

An important part of the variation in polar bear home range size has been explained

by large population differences in terms of the seasonal ice dynamics (Ferguson et al.,

1999). For example, Arctic Archipelago bears experience less temporal variation in ice

cover and have smaller home ranges than bears exposed to the large flux in ice extent
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of the Baffin Bay. The highly dynamic ice of the Beaufort Sea likely explains why my

home range estimates, and those of Amstrup et al. (2000), are at the higher end of

the size spectrum. Not all variation in home range size can be ascribed to population

differences. Large intrapopulation variation in the Barents Sea has been attributed to

individual specialization, with pelagic bears making long movements north to follow

the retreating sea ice and nearshore bears taking refuge on land (Mauritzen et al.,

2001). My results and those of Amstrup et al. (2000) show that bears in the southern

Beaufort Sea have less variation in their home range size. In addition, all of my bears,

except for three females likely to have denned, remained on the sea ice during low-ice

periods. This suggests that broadly defined habitat specialization might not as easily

differentiate the space use strategies of the bears in my population. I investigated the

covariates that might explain the subtler differences in home range size of Beaufort Sea

polar bears and found that mean ocean depth, time spent on land, and ice drift were

important predictors of my area estimates.

Ocean depth was positively correlated with both the geographic home range area

and area of habitat encountered, which may be explained by three mechanisms. First,

it could be driven by spatiotemporal differences in seasonal ice melt. Bears experiencing

larger seasonal flux in ice extent may have larger home ranges because they need to

move further offshore, to deeper regions, to remain in ice-covered habitat. Most of my

bears used overlapping regions of the Beaufort Sea, suggesting that they experience,

and would have to react to, relatively small differences in seasonal ice extent. Second,

the relationship could result from individual differences in strategies used to cope with

seasonal ice loss. As mentioned above, bears in my sample did not use of land as

a refuge during the low-ice season. However, some of them remained close to the

coast, while others ranged far offshore. These differences might involve a trade-off.

Bears staying in shallower regions travel less and have smaller home ranges, but they

might be exposed to low sea ice concentration and the risk of being caught in open

water. In that case, we would expect depth to act as a proxy for the time bears spend

in good habitat. However, depth was not strongly correlated with the proportion of

days in high ice concentration (Pearson correlation: 0.24), nor was the latter variable

important in my analyses. Using yearly estimates for these variables may have masked

relationships that occur during the low sea ice season and could be uncovered with

analyses of seasonal home ranges. Third, the relationship may result from a decrease

in foraging habitat quality with depth. The diet of polar bears in the Beaufort Sea

comprises seal species that are most abundant in the relatively shallow waters of the
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continental shelf (Frost et al., 2004; Pilfold et al., 2012; Stirling et al., 1977; Thiemann

et al., 2008). Theory predicts that individuals in poorer habitat should compensate for

lower resource density with larger home ranges (Ford, 1983). My results are consistent

with this hypothesis, but seal density is not linearly related to depth. A better test

of this hypothesis, and a more complete analysis of home range determinants, would

require extensive data on seal distributions. The relative importance of these three

mechanisms is unclear. Nevertheless, there is a clear relationship between depth and

polar bears’ space use patterns. It is an important variable in predicting polar bear

habitat use (Durner et al., 2009) and a strong predictor in my analyses of home range

size.

The area of habitat encountered by bears and the size of their geographic home

range also depended on whether a bear spent more than a week on land. Those that

did had smaller home ranges. In previous studies, the influence of time on land on home

range size was generally associated with bears taking refuge during the ice-free season

(Ferguson et al., 1998, 1999; Mauritzen et al., 2001). This appears not to be the case in

my study. Of the four bears that made extensive use of land, two of them denned and

one had a movement pattern consistent with the use of a maternal den. The fourth

female remained in the same location from December 10th to February 9th, less than

the usual time spent in a den. This is suggestive of a failed reproductive event or the

use of a winter shelter (Amstrup and Gardner, 1994; Messier et al., 1994). These results

suggest that these females had small home ranges because they spent multiple months

immobile on land and are consistent with previous findings that denning females have

small home ranges (Mauritzen et al., 2001).

Although none of the intrinsic variables appeared to be important predictors, the

smaller home ranges of denning females indicate that reproductive status affects polar

bears’ space use. Moreover, the only female from my sample that had cubs-of-the-

year at capture was also the only bear that had a much larger geographic home range

than area of habitat encountered (Fig. 5.2B). This suggests that her movement was

dominated by drift. One potential explanation is that her cubs could not walk at a

speed sufficient to counteract ice drift. Females with cubs-of-the-year move shorter

distances and normally choose more stable landfast ice than other females (Amstrup

et al., 2000; Pilfold et al., 2013; Stirling et al., 1993). This choice may prevent these

females from drifting, and might have contributed to their underrepresentation in my

data set due to missing ice data close to the coast.

The last covariate that appeared to be an important explanatory variable was ice
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drift, which had a significant positive relationship with area of habitat encountered,

but was not important in explaining geographic home range size. These results suggest

that polar bears compensate for ice drift. This behaviour has two implications. First,

it suggests that bears exposed to higher levels of ice drift walk more to cover the same

geographic area. If food resources are geographically fixed, such bears expend more

energy to acquire the same amount of food. Second, compensating for ice drift means

that with increased movement, there is an increased amount of ice habitat encountered.

Polar bears heavily use drifting ice habitat, where they kill a significant proportion of

seals (Pilfold et al., 2014; Stirling et al., 1993). Bears walking against faster moving ice

will encounter more resources if seals are tied to the ice, as is the case of ringed seals

when they maintain breathing holes and lairs (Kelly et al., 2010; Smith and Stirling,

1975), and the ice encountered has the same level of seal density. This increase in

foraging opportunities may counteract the cost of walking against ice drift. Thus, the

costs and benefits of compensating for ice drift will depend on whether seals are more

tightly linked to particular geographic areas or particular ice floes, as well as how seals’

space-use strategies are affected by differences in ice drift. Nevertheless, the impacts

of drift on polar bear space use identified with my estimates of habitat encountered

have implications on both their energy expenditure and food intake. The importance

of drift on polar bear space is also emphasized by its large magnitude (4.5 km~day)
relative to the bears’ voluntary movement (13.9 km~day).
5.4.3 Challenges involved in incorporating drift in home range

analyses

I presented a first attempt to incorporate drift into home range analyses. My estimate

serves as better approximation of the ice habitat encountered, and of the movement

required to access resources, than assuming the sea ice is immobile, as using the ge-

ographic home range does. However, this approach could be developed further. My

estimate is based on the simplifying assumption that ice drifts as one large piece, or

many pieces moving in unison, and thus that the voluntary movement of the bears

maps the amount of ice encountered. This assumption may be met for large parts of

the year when the Beaufort Sea is composed of westward moving floes wider than 2 km

(Canadian Ice Service, 2009). However, sea ice fractures and compresses, wind affects

the direction of ice drift, and sea ice configuration can change rapidly during break up

(Comiso, 2010). Although logistically challenging, further developments could account

for these factors by modeling the movement of individual floes. Any estimates will
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depend on the availability, accuracy, and spatiotemporal scale of ice drift data. Sea ice

data is generally accurate, but can be inaccurate or unavailable close to the coast and

where ice concentration is low (Schwegmann et al., 2011). In addition, the ice drift

data I used is only available at coarse spatial scale, and on a daily basis. Improved ice

drift data would enable us to refine estimates of the area of ice habitat encountered.

One of the reasons polar bears are thought to have large and variable home ranges is

that they depend on the marine environment, which is highly variable in space and time

(Ferguson et al., 1999). Perhaps because of the complexity associated with studying

the space-use patterns of marine animals, comparatively fewer home range studies have

been performed on marine than terrestrial species. Studying the home range of marine

animals will require us to differentiate between the trade-offs of using resources that

are geographically fixed and those that are drifting. My method is directly applicable

to other species walking on the sea ice (e.g., arctic foxes, Vulpes alopex, Pamperin et al.,

2008) and useful for other ice-dependent species, such as ringed seals. The more fluid

and three-dimensional ocean will present additional challenges. However, the concepts

presented here can serve as a foundation for new approaches to study the space-use of

marine species.
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Table 5.1: Relative fit of the best models (∆AICc B 4)
explaining the area of the geographic home range and
of the ice habitat encountered.

Covariates included df ∆AICc Akaike weight

Geographic home range area

depth + land 4 0.00 0.325

depth + good ice 4 1.52 0.152

depth 3 1.87 0.128

depth + land + sex 5 2.78 0.081

depth + land + cub 5 3.14 0.068

depth + land + drift 5 3.22 0.065

depth + land + good ice 5 3.29 0.063

depth + drift 4 3.35 0.061

depth + land + age 5 3.48 0.057

Area of habitat encountered

depth + land + drift 5 0.00 0.459

depth + land 4 1.93 0.175

depth + land + drift + iceNA 6 3.12 0.096

depth + land + drift + cub 6 3.69 0.073

depth + land + drift + sex 6 3.82 0.068

depth + land + drift + age 6 3.92 0.065

depth + land + drift + good ice 6 3.94 0.064
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Table 5.2: The model averaged coefficient and importance weight of all co-
variates investigated. The average coefficients and their confidence intervals
(CIs) are based on the Akaike weight of all models investigated. The F-value
and p-value associated with testing whether the variables in the best model
significantly change the fit of the model. The variables in the best model of
each area are bolded.

Covariate Coefficient CI Importance weight F-value p-value

Geographic home range area

age (subadult) 2.87 -7.33-13.08 0.18 – –

cub (true) -1.98 -9.37-5.41 0.17 – –

depth 0.012 0.007-0.017 A 0.99 31.12 @ 0.01

drift 1.04 -1.82-3.89 0.19 – –

good ice 21.32 -15.52-58.15 0.31 – –

land (true) -7.93 -16.87-1.00 0.53 4.79 0.04

sex (male) -3.88 -14.82-7.06 0.20 – –

Area of habitat encountered

age (subadult) -0.053 -7.55-7.45 0.12 – –

cub (true) -1.71 -7.64-4.23 0.14 – –

depth 0.009 0.005-0.014 A 0.99 20.10 @ 0.01

drift 2.34 0.07-4.62 0.70 5.01 0.04

good ice 1.50 -40.26-43.25 0.13 – –

ice NA 0.02 -0.06-0.11 0.15 – –

land (true) -12.47 -20.36- -4.58 0.97 12.59 @ 0.01

sex (male) -0.71 -8.78-7.37 0.12 – –
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Figure 5.2: Differences between the size of the geographic home range and of the area
of habitat encountered. Panel A represents the population difference between these
two estimates. Panel B represents the differences between these two estimates for
each individual, with positive differences indicating that the geographic home range
is larger than the area of habitat encountered and negative differences indicating that
the geographic home range is smaller than the area of habitat encountered.
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Figure 5.3: Relationships between the geographic home range and the covariates of its
best model, mean depth (A & C) and whether the bear spend more than a week on
land (B & D). Panels A & B represent the individual effect of each covariate, while
panels C & D represent the effect when the other variable is accounted for.
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Figure 5.4: Relationships between the area of habitat encountered and the covariates
of its best model, mean depth (A & D), whether the bear spend more than a week
on land (B & E), and mean daily ice speed (C & F). Panels A, B, & C represent the
individual effect of each covariate, while panels D, E, & F represent the effect when
the other variables are accounted for.
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Chapter 6

Using movement data to
understand habitat use: currents
frontiers and future prospects

Characterizing species’ habitats is fundamental to our understanding of their distribu-

tions and to many other objectives of ecologists (Boyce and McDonald, 1999). Thus,

ecology has long been a habitat-centered science (Noss et al., 1997). Habitat can be

conceptualised as the area with the resources and environmental conditions necessary

for individuals to survive and reproduce, and thus promote their occupancy (Hall et al.,

1997; Morrison et al., 2006). Understanding species-habitat relationships is not only

crucial to the field of ecology, it is essential for the management and conservation of

species. The purpose of many environmental laws, such as Canada’s Species at Risk

Act and the United States’ Endangered Species Act, is to provide a means to protect

the habitat of endangered species (CSAR, 2013; ESA, 2003). Characterising a species’

critical habitat is an important step in assessing whether human altered landscapes

will maintain the features required for species to survive (Krausman, 1999). As such,

the growing impacts of habitat fragmentation and climate change on ecosystems are

increasing the significance of species-habitat studies in ecology and management (Betts

et al., 2014; Guisan and Thuiller, 2005; Pearson and Dawson, 2003).

The enduring interest in species-habitat relationship has driven the development of

a wide variety of tools to characterise a species’ habitat (Elith and Leathwick, 2009;

Guisan and Thuiller, 2005; Hirzel and Lay, 2008). For example, species distribution

models, and their associated habitat suitability maps, range from simplistic models

used to predict large-scale biodiversity patterns to detailed models used to identify

important features of the local environment. For instance, impacts of climate change
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on continent-wide biodiversity can be predicted with bioclimatic envelopes, which focus

primarily on the climate components of the fundamental niche of species (Pearson

and Dawson, 2003). In contrast, identifying highway crossing zones for species of

conservation priority requires the thorough habitat characterisation provided by tools

such as resource selection functions and least-cost path analyses (e.g., Chetkiewicz and

Boyce, 2009).

The appropriateness of different approaches depends on a species’ mobility (Elith

and Leathwick, 2009; Guisan and Thuiller, 2005). Characterising the environment of

sessile organisms, or animals with small home ranges, is relatively simple compared to

doing so for wide-ranging animals that can use patchily distributed resources (Elith

and Leathwick, 2009). First, unlike sessile organisms that use a single habitat, vagile

animals might require a set of different habitats to accomplish their diverse activities.

For example, the nesting habitat of seabirds is distinct from the one they use to forage

(e.g., Elliott et al., 2009; Weimerskirch et al., 1993). As such, evaluating the impor-

tance of a given habitat requires understanding how a species uses it. While species

distribution models, such as resources selection functions, are useful for identifying

the habitat where organisms can be found, they do not address why the animals use

these habitats (Boyce and McDonald, 1999). Second, while it is trivial to quantify

the amount of habitat required by a sessile organism, measures such as home range

size are required for highly mobile animals. Considering an animal’s home range size

is important when constructing habitat suitability models, because small patches of

suitable habitat might be insufficient for many large and wide-ranging species to sur-

vive (Gurnell et al., 2002; Hirzel and Lay, 2008). Movement and home range models,

such as those described in my thesis, are increasingly used to relate habitat to specific

behaviours and to quantify the amount of habitat that mobile animals require.

6.1 Understanding search strategies to better re-

late habitat to foraging behaviour

Models that categorise segments of movement paths into behavioural modes are used to

relate habitat to specific behaviours (e.g., Breed et al., 2009; Frair et al., 2005; Morales

et al., 2004). In particular, these movement models have been used to differentiate

between foraging and travelling habitats. These models are often based on search

strategy theory and the rarely tested assumption that foraging is associated with slow

and tortuous movement, but not with fast and directed movement (Wakefield et al.,

2009). However, a few studies showed that this assumption can be violated: some
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animals can successfully catch prey during fast and directed movement, and areas

associated with putative foraging movement are not always related to prey capture

or other foraging proxies (Catry et al., 2004a,b; Robinson et al., 2007; Thums et al.,

2011; Weimerskirch et al., 2007). These results indicate that these models are at times

inadequate for identifying foraging areas out of movement data, and that the search

strategy they rely upon may be inappropriate for some species.

While most movement models used to identify foraging events are based on a single

search strategy model, the area-restricted search (ARS, Dragon et al., 2012), many

others have been suggested (e.g., Bell, 1991; Fronhofer et al., 2013; Nevitt et al., 2008;

Zollner and Lima, 1999). The Lévy walk is a controversial alternative that has garnered

significant interest in recent years, partly due to empirical evidence for this strategy in

a large number of species (Focardi et al., 2009; Humphries et al., 2010, 2012, but see

James et al. 2011). Unlike the ARS, the Lévy walk strategy does not predict that a for-

ager will increase its tortuousity and decrease its speed after encountering a prey item.

While the ARS and the Lévy walk make different assumptions on the relationship be-

tween movement and successful foraging events, they have similar emergent movement

patterns and are difficult to differentiate (Benhamou, 2007; Plank and Codling, 2009).

Thus, the use of the Lévy strategy by some species could partly explain why move-

ment models based on the ARS cannot always predict foraging events (e.g., wandering

albatross, Diomedea exulans, Humphries et al., 2012; Weimerskirch et al., 2007).

Research on the ARS and Lévy strategies has developed in parallel, with each

strategy used by ecologists with different goals and modeled in different statistical

frameworks. Recent work on the ARS has focussed on using its predictions to dis-

tinguish behavioural movement modes, with many methods using either metrics, such

as first passage time, or Bayesian statistics (e.g., Dragon et al., 2012; Fauchald and

Tveraa, 2003; Morales et al., 2004). In contrast, most recent Lévy walk studies have

been directed towards finding empirical evidence for the search strategy itself, and of-

ten use information-theoretic tools such as maximum likelihood estimate and Akaike

Information Criterion (AIC, e.g., Humphries et al., 2012; Sims et al., 2012). Finding

empirical evidence for the Lévy strategy has been surrounded by controversy because

many of the methods used in the past were flawed (Edwards, 2011; Edwards et al.,

2012, 2007). Even recently proposed methods can misidentify movement produced by

ARS as a Lévy walk (Auger-Méthé et al., 2014; Plank and Codling, 2009).

In Chapter 2, I argued that to differentiate between these two search strategies, we

need to model them in a comparable statistical framework. In particular, I called for
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the development of a likelihood function for the ARS that can be directly compared

to the Lévy walk model using tools such as AIC. Because the best model according to

AIC may still be a poor model, I further argued that it is important to investigate the

absolute fit of the best model. This is particularly important when movement models

are used to identify a behavioural process, such as the underlying search strategy,

rather than simply describing the movement pattern. This work has helped spur the

development of new methods to differentiate the Lévy walk from the ARS (Plank et al.,

2013; Reynolds, 2012) and to investigate the absolute fit of movement models (Potts

et al., 2014). In addition, it has been used to emphasize the importance of investigating

absolute fit in research overturning evidence for the Lévy walk (Edwards et al., 2012).

In Chapter 3, I developed a method to differentiate between the ARS and Lévy

strategies. Although a number of useful methods have been developed concurrently,

mine has a number of advantages. Some newly proposed methods focus on limiting

misidentification errors when assessing evidence for the Lévy walk (Gautestad, 2012,

2013; Reynolds, 2012, but see Auger-Méthé et al. 2014). My method simultaneously

assesses the evidence for both the Lévy walk and ARS. This reduces the potential for

misidentification errors and provides a fuller investigation of animal search behaviour.

Other new methods compare the Lévy walk to models similar to the ARS (Jansen

et al., 2012; Plank et al., 2013). However, unlike my method, they do not model turn

angles and behavioural autocorrelation. These two features are essential to accurately

describe the ARS. My hope is that our ability to differentiate between these two promi-

nent search strategies will further the understanding of how animal find resources. In

addition, it could help assess the appropriateness of models used to identify foraging

areas with movement data. While this method cannot replace testing whether puta-

tive foraging movement is associated with prey capture, it can be used to determine

whether models based on ARS are likely to be appropriate for the animals studied.

To demonstrate the usefulness of the method, and gain insight into the search

strategies used by different mammals, I applied it to the movement data of three

species (Chapter 4). Although previous methods would have found evidence for the

Lévy walk for some individuals, a comparison of the Lévy walk to the ARS showed

stronger support for the latter. While the ARS was the best model of the vast majority

of individuals, there was a range of support its absolute fit. The ARS was sufficient to

explain the movement of nearly half of herbivorous caribou (Rangifer tarandus caribou)

and a quarter of omnivorous grizzly bears (Ursus arctos), but was insufficient to explain

the movement of all polar bears (U. maritimus), which are strict carnivores. Although
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this variation could be explained by multiple factors, including differences in sampling

scales, it suggests that research into how feeding guilds differ in their search strategies

may be fruitful.

The efficiency of many search strategies depends on the distribution of resources and

whether a resource item is destroyed at capture (e.g., Bartumeus et al., 2002, 2005;

Zollner and Lima, 1999). Characteristics of resources, such as their size, mobility,

and gregariousness, can impact the time and energy animals allocate to searching,

pursuing and handling prey (Bell, 1991). They are also likely to impact the efficiency

of different search strategies. For example, slowing down and turning more often after

encountering a berry bush might help an animal find other nearby bushes. However,

this ARS movement is unlikely to provide further hunting opportunities after making

a kill within a herd of ungulates, as the herd is likely to run away following the capture

of one of its members. Some of these characteristics may be related to resources

distribution and renewal, but their influence on the search strategies of different feeding

guilds has not received much attention.

The empirical support for the ARS for the three species also suggests that sep-

arating habitat use analyses by behaviour could reveal relationships that would be

obscured by analyses of the undivided datasets. Using models similar to ARS, John-

son et al. (2002a,b) found that the cover types, energetic costs, and predation risks

differed between areas caribou used for “intrapatch” and “interpatch” movement. The

cover types for the intrapatch movement were consistent with those where caribou are

expected to forage. These findings combined with my results, suggests that some cari-

bou might use ARS as a search strategy, and that this may be a species we should

use to investigate whether actual foraging events are linked to putative foraging areas.

Despite the ARS not being sufficient to explain the movement data of many individ-

uals, it outperformed the three single-behaviour models for the three study species.

This suggests that separating habitat analyses by behaviour could also be informative

for grizzly bears and polar bears. Such analyses could help us understand how these

animals are using different habitats and provide insights into why my ARS model was

not adequate for some individuals.

Animals use perceptual cues and memory to navigate in their environment (e.g.,

Conover, 2007; Mendl et al., 1997). Long ranging perceptual abilities and knowledge

of the environment are likely to make search strategies other than the Lévy and ARS

optimal. Use of alternative strategies could explain why the ARS was insufficient to

explain the movement of many individuals. Many alternative search strategies have
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been proposed in the literature, including systematic-, olfaction-, and memory-based

strategies (Bell, 1991; Fronhofer et al., 2013; Nevitt et al., 2008; Zollner and Lima,

1999). Many of these may produce movement similar to both the Lévy and the ARS.

Thus, a next step for future research would be to model these alternatives in the same

framework used to differentiate the Lévy and ARS, so the empirical evidence for a

broader selection of strategies can be directly compared. This could be particularly

useful for species such as the wandering albatross, which has been suggested to use

the Lévy strategy, olfactory search and, at small scales, ARS (Humphries et al., 2012;

Nevitt et al., 2008; Weimerskirch et al., 2007). As additional search strategy models

are developed, it may prove beneficial to consider how they could be used to identify

foraging habitat. For this to be possible, the strategies must predict a change in

movement behaviour when an animal is in proximity to food, as the ARS does. Current

Lévy strategy models do not make such predictions, making them unsuited to this

task. However, other strategies will involve predictable changes in relation to prey

detection. For example, olfactory search models predict changes in movement relative

to wind direction that could be used for such purposes (Nevitt et al., 2008). Such

new movement models may provide more robust methods to detect foraging areas and

habitat.

6.2 Measuring home ranges in moving habitats to

quantify the amount of habitat animals require

Home range analysis aims to encapsulate the space animals use to reproduce and

survive. Home range size is related to energetic requirements, as demonstrated by its

allometric relationship with body size (Harestad and Bunnell, 1979; McNab, 1963). As

a consequence, home range size is expected to depend on the density and distribution

of resources, as well as on the cost of movement associated with reaching them (Ford

1983, Mitchell and Powell 2004). Thus, home range size is a key metric that can be use

to measure how animals respond to environmental and habitat variation (e.g., Rivrud

et al., 2010; Tufto et al., 1996; van Beest et al., 2011). Because of its importance in

ecological and applied research, a variety of tools have been developed to study home

ranges. These include tools for delineating home ranges, as well as methods relating

home range size to habitat variables and traits of individuals (e.g., Börger et al., 2006;

Getz et al., 2007; Worton, 1989). Understanding the factors affecting the home range

size of animals living in moving habitats (e.g., ocean, atmosphere, rivers) is more

difficult. As currents constantly move resources through an area, they can have a large
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influence on the amount of resources available, the energy expended in movement, and

thus an animal’s space use pattern. For example, animals are able to forgo movement

where currents provide a steady stream of resources, making sessility a common trait

among marine invertebrates. In contrast, currents do not renew the resources available

to animals drifting with them. Moving against the flow can be energetically demanding,

and the distance moved is not necessarily representative of the cost of locomotion

(Gaspar et al., 2006). Thus, in moving habitats, variation in geographic home range

size is less likely to represent differences in energetic requirements, locomotion costs,

and animal behaviours.

In Chapter 5, I provided a first approximation of the effects of drift on home ranges

using polar bears as my study species. Their interaction with the two-dimensional sea

ice platform allowed for the simplifying assumption that the voluntary movement of

bears maps the amount of ice encountered. Estimates of the area of habitat encoun-

tered confirmed that polar bears require more habitat than terrestrial carnivores, and

showed that the geographic home range underestimates both the movement of bears

and the amount of ice habitat that they encounter. The large individual variation in

the difference between the estimates suggests that investigating only the geographic

area used by bears and ignoring the area of ice habitat could lessen our understanding

of the home range behaviour of polar bears. In particular, ice drift was an important

covariate only when area of habitat encountered was investigated, and indicated that

bears living in highly mobile habitat might be exposed to higher energetic costs, and

potentially larger energetic gains, than bears inhabiting more stable ice.

Climate change is altering wind patterns and the magnitude of extreme conditions,

leading to increases in the speed of ice drift in the Arctic (Spreen et al., 2011; Young

et al., 2011). While we have a growing understanding of the negative impacts of sea ice

loss on the survival and reproduction of polar bears (Stirling and Derocher, 2012), it

is unclear how increasing ice drift might alter polar bears’ resilience to climate change.

For wandering albatrosses, faster wind speeds have led to increased movement rates,

shifted distributions, and altered foraging and breeding success (Weimerskirch et al.,

2012). As such, accounting for effects of climate change on drift may be critical for the

management of species living in moving habitats.

Incorporating drift into the home range analyses of species other than polar bears

is likely to be more challenging. For example, a full representation of marine space use

involves three dimensions, and metrics such as two-dimensional home range size are

likely to misrepresent the density of resources and the distances travelled by animals.
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Moreover, while the assumption that ice moving as a solid and somewhat cohesive block

is acceptable, such assumption is less reasonable in the more fluid habitats of rivers,

oceans, and the atmosphere. Turbulence, mixing, and diffusion, change the composi-

tion and distribution of resources within water and air masses, and these small-scale

processes are often obscured by the coarse spatiotemporal scale of the data available

for these systems (Alvarez et al., 2013; Fossette et al., 2012). These factors will hinder

using currently available information to map the amount of habitat space encountered

by animals. Regardless of whether my method or other methods are most suited to

address them, these habitats expose limitations to our understanding of animal space

use. One of these is the importance of variability of resources in driving space use

patterns. Ferguson et al. (1999) suggested that marine animals had large home ranges

due to the variability of marine environments. Although habitat composition changes

through time in terrestrial systems (e.g., snow cover, plant growth), it is often assumed

that moving habitats, such as oceanic waters, have particularly high variability and low

predictability (Weimerskirch, 2007). Small scale variability in habitat composition was

typically ignored until researchers studying polar bears demonstrated that account-

ing for temporal changes in habitat availability improved resource selection analyses

(Arthur et al., 1996; Moorcroft, 2012). Mueller and Fagan (2008) proposed a theo-

retical framework predicting population-level space use patterns based on large-scale

resources dynamics. However, the impacts of small-scale variability in habitat com-

position on broad space use patterns, and whether it contributes to the larger home

ranges of marine animals, remain to be investigated.

6.3 Accelerating progress by relating space-use pat-

terns to field observations and fitness proxies

Movement and space-use models have enriched our understanding of how animals in-

teract with their environment. In recent years, increasingly mechanistic models have

allowed ecologists to relate complex animal behaviours with habitat and space-use

patterns (e.g., Moorcroft and Lewis, 2006). Ecologists increasingly rely on satellite

telemetry and mathematical models to understand species-habitat relationships, and

the number of movement studies has boomed (Holyoak et al., 2008). As a consequence

of the fast progress of this field, many methodological problems and new avenues have

been overlooked. The research presented in this thesis identifies pitfalls in currently

available methods and suggests improved approaches to understand search strategies

and home range patterns. By applying these refined approaches to empirical data, this
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work demonstrates that species and individual differ in their search strategies and that

drift influences the home range patterns of polar bears. My work also highlights a need

for the development of new search strategy models, as well as space-use analyses that

incorporate drift for a broader range of animals. Although there is ample space for

further developments of both smaller scale movement models and larger scale space-use

analyses, I believe that progress will accelerate with increased emphasis on combining

these approaches with field observations and fitness data. This echoes a recent call

for ecologists to link movement to population processes and ground-based observations

of behaviour and resources (Hebblewhite and Haydon, 2010). Field observations al-

low us to evaluate our model assumptions and develop new hypotheses for space-use

behaviours that may not be obvious from movement alone. Fitness proxies, such as

brood size and changes in body condition, will allow us to link movement behaviour

to their ecological and evolutionary consequences.
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Appendix A

Extended model set

As mentioned in Chapter 3 there exist non-truncated versions of the TLW, TBW,

and TCRW. Unlike the truncated versions, the probability density function (PDF) of

the non-truncated versions do not have an upper bound on step length size (Table

A.1). Such difference is important for the Lévy strategy because the non-truncated

Lévy walk (LW) has a non-negligible probability of extremely long step lengths. As

mentioned in Chapter 3, only the TLW is biologically plausible (Viswanathan et al.,

2008). However, the LW is often used as a model for the Lévy strategy in both empirical

and theoretical studies (e.g., Bartumeus et al., 2005; Edwards et al., 2007). As the

probability of infinitely long step lengths is negligible for the non-truncated Brownian

walk (BW) and correlated random walk (CRW), such distinction is less important.

However, to differentiate between the Lévy strategy and the null models based on

the main characteristics of each model rather than on the potential presence of a

sharp upper bound in the step length distribution, it is advisable to be consistent in

the incorporation of a truncation point. While I focused on the truncated models in

Chapter 3, in this Appendix I present analyses that also include their non-truncated

versions. The only difference with the method proposed in Chapter 3 (section 3.2.1) is

that I am fitting to data three additional likelihoods: LW, BW, and CRW (Table A.2).

Unlike the TLW, the LW uses the non-truncated Pareto distribution, ψ�lSµ, a� (Table

A.1). Similarly, unlike the TBW and TCRW, the BW and CRW use the non-truncated

version of the exponential distribution, φ�lSλ, a� (Table A.1).

There is little difference between the results of the four-models method of Chapter

3 and seven-models method of this Appendix. When applied to the simulations of

the CCRW and TLW, my method performed as well when the seven likelihoods were

used. The Akaike weights could differentiate between the Lévy and ARS strategies.
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The main difference was that the Akaike weights could not differentiate between the

TLW and LW (Fig. A.1B) and thus the weights of these two models needed to be

summed, wLW � wTLW, to represent the Lévy strategy. When I used the summed of

the Akaike weights I had similar results to those presented in Chapter 3. When the

CCRW was simulated, 90.1% of the Akaike weight values of the CCRW exceeded 0.99

and the summed Akaike weight value of the LW and TLW never exceeded 0.01 (Fig.

A.1A). When the TLW was simulated, 96.8% of the summed Akaike weight value of

the LW and TLW exceeded 0.99 (Fig. A.1B). While 3.2% of the Akaike weight value

of the CCRW exceeded 0.01, only 0.2% exceeded 0.5. Again the frequency of these

misidentifications increased with increasing µt values.

Similarly, there was little difference in the empirical results of both methods (com-

pare Tables 3.3 and A.3). The Akaike weights of Bear 2 continued to show strong

support for the CCRW over the other alternatives. The Akaike weights of Bear 1

continued to show that, although the CCRW was the best model, the TCRW, and its

non-truncated version, were important alternatives. However, in this case, the summed

Akaike weights of the CRW and TCRW showed stronger support than the CCRW and

the CRW was had a ∆AICc @ 1 (Table A.3).

Adding new models does not affect the parameter estimates of the four models

already presented in Chapter 3. However, two new parameters were estimated, λ and

µ. These can be compared to the values of their truncated analogue, λt and µt (Table

A.4). There was no important changes in the λ values, but the non-truncated µ values

were bigger than their truncated version, µt.

In summary, including the likelihoods of the LW, BW, and CRW in my analyses did

not change the overall results. My method could still differentiate between the Lévy

and the ARS strategies. However, the method cannot reliably differentiate between

the truncated and non-truncated versions of the same model.
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Table A.1: Formulas for the PDFs used in the
models and the restrictions on their variables
and parameters. Tables 3.2 and A.4 describe
the parameters.

Symbol PDF Restrictions

φ�lSλ, a� λ e�λ�l�a� a B l, λ A 0

φt�lSλt, a, b� λt e�λtl

e�λta�e�λtb
a B l B b, λ A 0

ψ�lSµ, a� �µ�1� l�µ

a1�µ a B l, 1 @ µ B 3

ψt�lSµt, a, b�
�µt�1� l�µt

a1�µt�b1�µt
a B l B b, 1 @ µ B 3 �

v�θSκ� 1

R
π
�π

eκ cos�θ�dθ
eκ cos�θ� �κ A 0

v0�θ� 1

2π

� Although the truncated Pareto distribution allow
for a greater range of values for µt, I am restricting
its values to those relevant to the Lévy strategy.

� This is a simplified and expanded equation of the
von Mises PDF. The same equation is often written
with a modified Bessel function of the first kind and
of order 0.

Table A.2: Likelihood functions and number of parameters to estimates, k, of the seven
models. These models include the four models of Chapter 3 and the three additional
models used in this Appendix. Unlike Table 3.1 of Chapter 3 there are two different
models describing the Lévy strategy, TLW and LW, as well as four null models, TBW,
BW, TCRW, CRW. Table A.1 describes the PDFs, φ��, φt��, v��, v0��, ψ��, and ψt��.
Tables 3.2 and A.4 describe the parameters.

Model Likelihood function k

CCRW � δi 1�δi � � φ�l1Sλi,a�v0�θ1� 0

0 φ�l1Sλe,a�v�θ1Sκe�
� Ln

t�2�
γii 1�γii

1�γee γee
�� φ�ltSλi,a�v0�θt� 0

0 φ�ltSλe,a�v�θtSκe�
� � 1

1
� 7

LW L
n
t�1 ψ�ltSµ, a� v0�θt� 2

TLW L
n
t�1 ψt�ltSµt, a, b� v0�θt� 3

BW L
n
t�1 φ�ltSλ, a� v0�θt� 2

TBW L
n
t�1 φt�ltSλt, a, b� v0�θt� 3

CRW L
n
t�1 φ�ltSλ, a� v�θtSκ� 3

TCRW L
n
t�1 φt�ltSλt, a, b� v�θtSκ� 4
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Table A.3: Relative fit of the seven models on the move-
ment paths of two polar bears. For each bear, the ∆AICc

and Akaike weight for each model and the summed Akaike
weight for the models with both truncated and non-
truncated versions.

Model ∆AICc Akaike weight Summed Akaike weight

Bear 1 Bear 2 Bear 1 Bear 2 Bear 1 Bear 2

CCRW 0 0 0.47 1.00 0.47 1.00

LW 466.8 2465.0 @ 0.01 @ 0.01
@ 0.01 @ 0.01

TLW 302.4 1479.7 @ 0.01 @ 0.01

BW 170.3 648.6 @ 0.01 @ 0.01
@ 0.01 @ 0.01

TBW 172.4 650.6 @ 0.01 @ 0.01

CRW 0.4 137.2 0.39 @ 0.01
0.53 @ 0.01

TCRW 2.5 139.2 0.14 @ 0.01

Table A.4: Description and empirical estimates of the model parameters.
Only the new parameters, λ and µ, and their truncated analogues, λt and µt

are presented. See Table 3.2 of Chapter 3 for the other parameter estimates.

Symbol
(unit)

Description Bear 1 Bear 2

λ
(m�1)

Rate parameter of the exponential distribution of
the BW and CRW

0.0009
(0.0008-0.0010)

0.0010
(0.0009-0.0010)

λt
(m�1)

Rate parameter of the exponential distribution of
the TBW and TCRW

0.0009
(0.0008-0.0010)

0.0010
(0.0009-0.0010)

µ Scale parameter of the non-truncated Pareto
distribution of the LW

1.30
(1.26-1.34)

1.18
(1.17-1.19)

µt Scale parameter of the truncated Pareto
distribution of the TLW

1.00
(0.93-1.07)

� 1.00
(0.97-1.03)

�

� Because I used the quadratic approximation to estimate CIs, some CIs exceed the
boundary of parameter space.
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Figure A.1: Violin plots of the Akaike weights of each model for all simulated CCRWs
and TLWs. High Akaike weight values represent strong support for a model relative
to the other models. Violin plots are combinations of kernel density plots and box
plots. Kernel density plots are represented by the dark gray polygon. Box plots are
represented in black and light gray, with Y identifying the median. Because the range
of values for some models was orders of magnitude smaller than the y-axis, some box
plots are only represented by their median. Panel A shows that for simulated CCRWs
only the CCRW had strong support. Panel B shows that for simulated TLWs only the
LW and TLW had strong support.
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Appendix B

Description of the test of absolute
fit

When trying to identify the process producing a movement pattern it is important to

perform a test of absolute fit (Chapter 2). As mentioned in Chapter 3, the G-test was

suggested as the test of absolute fit for Lévy strategy studies (Edwards, 2011; Edwards

et al., 2007). However, this test is inadequate for my method because it assumes

that the observations are independent. This assumption is violated in the case of the

CCRW as it explicitly models correlation in observations. Therefore, I have modified

the original test of absolute fit by applying the G-test to the pseudo-residuals rather

than to the observations. In this Appendix, I describe in details my test of absolute

fit. I start by describing how I calculate pseudo-residuals. I then describe how they

are used in the G-test.

Pseudo-residuals can be interpreted as a type of model residuals that accounts

for the interdependence of observations. I used ordinary uniform pseudo-residuals

(Zucchini and MacDonald, 2009), which are defined as:

ut � Pr�Dt B dt� � Fit�dt�, (B.1)

where dt is the observation associated with the step at time t and Fit is the cumulative

distribution function (CDF) of dt under the model of interest, i, at the MLE. In the

case of all models except the CCRW, Fit remains constant for all time steps and

can thus be simplified to Fi. For the CCRW, Fit changes at each time step and

incorporates the dependence of the observation at time t, dt, on all other observations,
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d��t�
� �l��t�,θ��t��, (Zucchini and MacDonald, 2009):

ut � Pr�Dt B dtSD��t�
� d��t�� � Fit�dt� (B.2)

�
δP �d1� Lt�1

s�2 �ΓP �ds�� ΓQ�dt� Ln

z�t�1 �ΓP �dz��1
δP �d1� Lt�1

s�2 �ΓP �ds�� Γ Ln

z�t�1 �ΓP �dz��1
(B.3)

where δ is the initial probability vector as defined by Eqn. 3.4, P �dt� is the observation
probability matrix as defined by Eqn. 3.6, Q�dt� is the cumulative distribution matrix

as defined below in Eqns. B.4 and B.5, Γ is the transition probability matrix as defined

by Eqn. 3.3, and 1 is a column vector of ones.

To simplify the analysis, I calculate the pseudo-residuals independently for the step

length, lt, and the turning angle, θt. Thus for each model I have two separate definition

of Fit . Each of these definitions of Fit is either one CDF, or a weighted combination

of CDFs in the case of the CCRW. In the cases where I did not find a simple CDF, I

numerically integrated the PDF of the model of interest from the minimum possible

value to the observed value. For the CCRW, I defined two different CDF matrices, one

for the step length:

Ql�lt� �
�
�
�
Φ�ltSλi, a� 0

0 Φ�ltSλe, a�
�
�
�
, (B.4)

and one for the turning angle:

Qθ�θt� �
�
�
�
V0�θt� 0

0 V �θtSκe�
�
�
�
. (B.5)

In both cases, the elements of Q are the cumulative distribution functions of the

observation probabilities (Eqns. 3.1 and 3.2) associated with the appropriate measure.

By definition, the uniform pseudo-residuals, ut, are uniformly distributed (Zucchini

and MacDonald, 2009) and to verify the absolute fit of the model, I performed a G-

test (Sokal and Rohlf, 1981) that compares the distribution of the pseudo-residuals to

the uniform distribution. To do so, I discretise both the expected and the observed

distributions of the pseudo-residuals. To reduce the potential bias associated with bins

that have small expected values (Sokal and Rohlf, 1981), I discretise the distributions

into equal size bins so each had an expected value of approximately 10 pseudo-residuals

and I use William’s correction. The degrees of freedom, df , of the G-test depends on the

number of bins, c, and the number of parameters estimated, k: df � c� k � 1. As I was

estimating the pseudo-residuals of the step length and the turning angle independently
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I only included the parameters associated with each of these measures, which was at

maximum 3. This means that to get df A 0, a minimum of 5 bins was needed. As

each bin had a minimum of 10 expected values, a minimum of 50 steps was needed to

perform this test of absolute fit.

Because I am calculating the pseudo-residuals independently for the step length and

the turning angle, I apply the G-test to each set of pseudo-residuals independently. I

subsequently combined the p-value of the G-test for the step length and the turning

angle using Fisher’s method (Quinn and Keough, 2002; Sokal and Rohlf, 1981). This

method of combining p-values is for independent tests (Quinn and Keough, 2002). This

is violated in the case of the CCRW (see eq. B.3), and thus this method only approxi-

mates the overall p-value. The simulation results presented in Chapter 3 indicate that

such approximation is adequate. In particular, the similarity between the rejection

rates of the CCRW (0.062) and the TLW (0.065) suggests that the violation of the

assumption of independence specific to the CCRW results in no obvious bias compared

to the TLW.

Note that the combined p-value can be inappropriate when the movement path is

processed using methods such the local turn method to identify biologically relevant

steps, especially when the threshold angle is large. The reason is unrelated to statistical

independence. Rather, it stems from the fact that while this technique reduces the

number small turning angles, none of the models allow for low turning angle frequency

at 0. When using this type of techniques, one should also investigate the absolute test

of fit that use only the step length pseudo-residuals. I verified whether my empirical

results changed if I used only the step length pseudo-residuals. For both bears, the

movement paths remained significantly different from the CCRW (p @ 0.01). The

movement path of Bear 1 also remained significantly different from the TCRW (p @

0.01).
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Appendix C

Variation in threshold angle

In Chapter 4, I used a threshold angle of 10X to estimate biological relevant steps out of

the sampled steps. In this Appendix I show that the results remain largely unchanged

when other threshold angles are used. As mentioned in Chapter 4, I used the local turn

definition to identify significant turns (Codling and Plank, 2011; Reynolds et al., 2007).

This method creates a step by amalgamating any consecutive sampled steps that have

a turn angle in any direction smaller than the threshold angle (Fig. C.1). Thus under

the significant turns definition a new step is started every time a turn angle, as defined

by the sampling time interval, is greater or equal to the threshold angle. There are

two additional cases that can results in the start of a new step. The first is associated

with locations of an animal that did not move. As a pause in movement is a clear

sign of the end of biologically relevant step, consecutive locations that have exactly

the same coordinates are considered a feature used to identify the ending location of a

step. The “steps” between such locations are removed from the time-series and a new

step is started with the last of the series of locations with the same coordinates. The

second is associated to missing locations. Although missing locations can be handled

by the models, the occurrence of missing locations affects steps defined by significant

turns. There are two alternative methods to handle missing locations when creating

steps defined by significant turns. One alternative is to ignore the missing locations

and calculate the step based on the locations before and after the missing location.

The other is to stop the step at the location before the missing location and start a

new step after the missing location. I chose to use the second method because the first

might misrepresent the movement during the missing locations. Note however that

the second option will potentially break down long moves. Because missing locations

could potentially impact the analyses, I restrained my analyses to movement paths
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that had @ 30% of the location missing. Fig. C.2 demonstrates the impact of variation

in threshold angle and missing locations on a movement path.

To look at the impact of the threshold angle on the results, I have reapplied the

models to my data using threshold angles ranging from 0�60X. Using a threshold angle

of 60X includes as forward movement the third of a circle. I constrained the analysis to

movement path with at least 50 steps and with @ 30% of the location missing for all

threshold angles investigated. This ensured that the analyses with different threshold

angle included the same individuals and thus were comparable. Because movement

paths defined using high threshold angles have fewer steps, this constraint resulted in

a reduced data set compared to the one presented in Chapter 4.

Increasing the threshold angle decreased number of paths that have the CCRW as

their best model and increased number of paths that have the TLW and the TBW as

their best model (Table C.1). While increasing the threshold angle resulted in seven

movement paths to change from CCRW to TBW, only one changed from CCRW to

TLW (Fig. C.2). The mean Akaike weight for the CCRW remained high for all thresh-

old angles, with its lowest value being 0.88 (Table C.1). Regardless of the threshold

angle used, some movement paths were not significantly different from the CCRW. If

the threshold angle resulted in paths having the TLW as their best model, the mean

Akaike weight for the TLW was 1.00. However, all movement paths remained signifi-

cantly different from TLW (Table C.2). As for the results presented in Chapter 4, when

only the TLW and TBW were considered as alternatives there was substantial support

for the TLW (Table C.2). Such support increased with increasing the threshold angle.

Using the threshold angle impacted the test of absolute fit. When the sample steps

were used (threshold angle is 0X), the tests that included both the distribution of the

step lengths and turning angles were similar to those that used only the step length

distribution (Table C.1). Including the turning angle distribution in the absolute test

of fit of movement path with high threshold increased the rejection rate of the test of

absolute fit (Table C.1). This is not surprising. The local turn method removes small

turning angles, but none of the models allow for low turn angle frequency at 0X. This

is why I only present the test that used the step length distribution in Chapter 4. As

the sample size is also likely to impact the rejection rate of the test of absolute fit I

present the relationship between the sample size and p-value in Fig. C.3.
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Table C.1: Relative and absolute fit of models when different threshold angles are used
to define biologically relevant steps. For each model, I present the number of movement
paths selected as best model, their mean Akaike weight, and how many of them are
not significantly different from this model when both step lengths and turn angles are
included, and in bracket when only the step lengths are considered. My dataset included
the movement paths of 22 caribou, 20 grizzly bears, and 11 polar bears.

Threshold
angle (X)

Model NX as best model w of best model NX p-value A 0.05

Caribou Grizzly Polar bear Caribou Grizzly Polar bear Caribou Grizzly Polar bear

0 CCRW 20 20 11 0.96 1.00 1.00 11(11) 8(7) 0(0)

TLW 0 0 0 – – – – – –

TBW 2 0 0 0.65 – – 0(0) – –

TCRW 0 0 0 – – – – – –

10 CCRW 21 20 11 0.92 1.00 1.00 9(9) 0(5) 0(0)

TLW 0 0 0 – – – – – –

TBW 1 0 0 0.61 – – 0(1) – –

TCRW 0 0 0 – – – – – –

20 CCRW 21 20 11 0.92 1.00 1.00 5(14) 0(6) 0(0)

TLW 0 0 0 – – – – – –

TBW 1 0 0 0.68 – – 0(0) – –

TCRW 0 0 0 – – – – – –

30 CCRW 21 20 11 0.90 0.98 1.00 0(12) 1(7) 0(1)

TLW 0 0 0 – – – – – –

TBW 1 0 0 0.71 – – 0(0) – –

TCRW 0 0 0 – – – – – –

40 CCRW 21 19 11 0.90 1.00 1.00 0(11) 0(10) 0(1)

TLW 0 1 0 – 0.98 – – 0(0) –

TBW 1 0 0 0.73 – – 0(0) – –

TCRW 0 0 0 – – – – – –

50 CCRW 18 19 11 0.88 1.00 1.00 0(10) 0(9) 0(0)

TLW 0 1 0 – 1.00 – – 0(0) –

TBW 4 0 0 0.60 – – 0(2) – –

TCRW 0 0 0 – – – – – –

60 CCRW 15 19 11 0.94 0.99 0.99 0(6) 0(9) 0(1)

TLW 0 1 0 – 1.00 – – 0(0) –

TBW 7 0 0 0.59 – – 0(6) – –

TCRW 0 0 0 – – – – – –
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Table C.2: Relative and absolute fit of the two models generally used in Lévy walk
analysis when different threshold angles are used to define biologically relevant steps.
For each model, I present the number of movement paths selected as best model with
AICc and the mean Akaike weight of these selected paths. I also present how many of
the overall paths are not significantly different from the TLW and TBW when only the
step lengths are considered. My dataset included the movement paths of 22 caribou,
20 grizzly bears, and 11 polar bears.

Threshold
angle (X)

Model NX as best model w of best model NX p-value A 0.05

Caribou Grizzly Polar bear Caribou Grizzly Polar bear Caribou Grizzly Polar bear

0 TLW 0 10 1 – 0.97 1.00 0 0 0

TBW 22 10 10 1.00 1.00 1.00 10 0 0

10 TLW 0 9 1 – 1.00 1.00 0 0 0

TBW 22 11 10 1.00 0.99 1.00 11 0 0

20 TLW 0 9 1 – 1.00 1.00 0 0 0

TBW 22 11 10 1.00 0.97 1.00 8 0 0

30 TLW 0 11 2 – 0.99 1.00 0 0 0

TBW 22 9 9 1.00 0.98 1.00 9 0 0

40 TLW 0 12 2 – 1.00 1.00 0 0 0

TBW 22 8 9 1.00 1.00 1.00 9 2 0

50 TLW 0 13 2 – 0.99 1.00 0 0 0

TBW 22 7 9 1.00 0.94 1.00 11 1 0

60 TLW 0 16 2 – 0.98 1.00 0 0 0

TBW 22 4 9 1.00 1.00 1.00 11 1 0
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Figure C.1: Transforming steps defined by regular time intervals into biologically rele-
vant steps using the local turn method. (A) Representation of three different threshold
angles. The arrow depicts the direction of the previous step. (B) Movement path with
five steps as defined by regular time intervals, which correspond to a threshold angle of
0X. (C-D) The same movement path when defined by significant turns with a threshold
angle of 45-90X.
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Figure C.2: Movement path of one grizzly bear for the threshold angles of: (A) 0X,
which is the equivalent to using the sampled steps, (B-H) 10-60X, as indicated in the
figure. Panel G shows the locations assigned as immobile and for missing, the last
location before a missing location is represented. The best model according to AICc

is the CCRW for threshold angles 0-30X and TLW for threshold angles 40-60X.
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Figure C.3: Relationship between the absolute fit of the best model and the size of
movement paths. The p-values are based solely on step lengths. The color of symbols
represents the species, while their shape represents the model selected as best. The
gray line indicates the critical value used for the analyses: α � 0.05.
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