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ABSTRACT
In this thesis, we investigate the problem of quantizing the Witt algebra and

its representations over complex number field.

In chapter 1, we begin by introducing the quantum Witt algebra, the quantum
Virasoro aigebra and a g-analogue of the simplest affine Kac-Moody algebra
.9882). Each of these objects is an example of a new class of non-associative
algebras. We call this class of non-associative algebras the quantum Lie alge-
bras, which are defined by using a g—analogue of the Jacobi identity. Next, we
introduce the concept of the quantum universal central extension of a quantum
Lie algebra and study its basic properties. Finally, we determine the quantum

universal central extension of some quantum Lie algebras.

In chapter 2, after introduing quantum flexible algebras, we prove that ¢-
analogues of the two characterizations of the usual Witt algebra hold for the

quantum Witt algebra.

In chapter 3, we give our quantization of the enveloping algebra of the Witt
algebra; construct the g-analogues of the module of tensor fields over the Witt
algebra; study their properties and prove a g—analogue of Kaplansky’s thc .rem

concerning the module of tensor fields over the Witt algebra.
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CHAPTER 0. INTRODUCTION

‘The search for g-analogues of known mathematical objects, which is af-
fectionatelly called the “g-disease”, has a long history in mathematics. As
early as the 1840’s, A.-L.Cauchy, E.Heine and other mathematicians found a
g—analogue of the binomial theorem for |g] < 1. In 1869, J.Thomaec introduced
a g-analogue of the gamma function for 0 < ¢ < 1. The 19th century mathe-
matician F.H.Jackson devoted much of his mathematical career to developing
g-analogues of the hypergometric series. Over the past fifteen years, R.Askey,
his students 314} Lis i.ollaborators have produced a substantial amount of in-
teresting worlz ss; i theory of g-hypergermetric series. However, the general
area of algebru. was aot infected by vhe o, Jwicws ntil just ten years ago.

In 1981, P.Kulish and N.Reshetikhin [ii] introduced the C-associative alge-
bra Up(s€(2)) with the generators X+, X ~, H and the relations:

HX* - X*H = +2x%,
ehH _ o~hH
X*X"-X"Xt=——1——, heC,
et —e—!
which arose from their study of Quantum Inverse Scattering Method. The
associative algebra Us{s€(2)) can be regarded as a g-analogue of the enveloping
algebra of the 3-dimensional simple Lie algebra sé(2) because when ¢ := e®
approaches unity, U(s€(2)) becomes the enveloping algebra of $0(2). It was
this object that V.Drinfeld [2,3] and M.Jimbo [6,7] recently generalized to the
case of finite dimensional simple Lie algebras.

The main development in the representation theory of Lie algebras have been
with the finite dimensional Lie algebras, the Kac-Moody algebras and the Vira-
soro algebra. Although the enveloping algebras of the finite dimensional simple
Lie algebras and the Kac-Moody algebras have been quantized and ¢-analogues

of their representations have been found, this is not case for the Virasoro alge-
bra.

It is well-known that the representations of the Virasoro algebra with the
center acting trivially, i.e., the representations of the Witt algebra, play a fun-
damental role in the representation theory of the Virasoro algebra. Therefore,
the first problem in developing g—analogues of the representations of the Vira-
soro algebra is naturally to find g-analogues of the representations of the Witt
algebra. The purpose of my thesis is to first address the problem of quantizing
the Witt algebra, the Virasoro algebra and their enveloping algebras, and then
to investigate possible g-analogues of the representations of the Witt algebra.

Typeset by AasS-TEX



What follows is a summary of the results of my thesis.

Let q be a fixed non—zero complex number with g2 # 1 and let [m] denote
" qm — q-—m

——» where m € Z. Our quantization of the Witt algebra

the “g-integer

and its enveloping algebra originated by considering certain operators, { Dy |
n € 2}, called J-derivations on the Laurent polynomial ring C[t,t~!], where
the operators J and { D, | n € Z } defined by

J:t" — g™t

O

q

d
. — n+1
D, = —t (—dt>q.

It turns out that D := @,¢zCD,, consists of all J-derivations of C[¢,¢~!] and
the bracket on D, which is defined by

(0.1) [Dywy D) i= JD@mJ 'DpJ — JD,J"'DpJ  for m,n € Z,

satisfies

[Dm, Dn] = [m - n]Dm+,,,.

Clearly, these bracket relations can be obtained from those of the usual Witt
algebra by replacing the structure constants {m —n | m,n € Z} by their g~
analogues {[m — n] | m,n € Z}. So it seems reasonable to take D, with the
bracket (0.1), as a realization of the g—analogue of the usual Witt algebra. This
produces the quantum Witt algebra.

Parallel to the fact that the Lie bracket on the Witt algebra satisfies the
Jacobi identity, we will prove that the bracket on D above satisfies the following
g—analogue of the Jacobi identity:

(0.2) Uz, y], o(2)] + [y, 2], o(2)] + [[2, ], 0(y)] = O for z,y,z € D,
where o : D — D is a linear map defined by

m+ -1
(D) 1= 2___2_‘1_~

D, forme Z.
We call (0.2) the quantum Jacobi identity.

Using the quantum Jacobi identity, we will introduce a class of non-
associative algebras called quantum Lie algebras, which are a generalization
of Lie algebras. In order to discover the g-analogue of the Virasoro algebra, we
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will define the quantum universal central extensions (¢ U.C.E.) of quan-
tum Lie algebras and study the ¢-U.C.E. »f the quantum Witt algebra. We
will find that if ¢ is not a root of unity, then the ¢-U.C.E. of the quantum
Witt algebra is a 1-dimensional quantum central extension , and this object is
defined to be the quantum Virasoro algebra.

This completes our summary of the main development in chapter 1.

Before describing the contents of chapter 2, let us recall some interesting
results about the Wiit algebra. From M.C.Myung’s book [14] on Malcev-
admissible algebras and I.Kaplansky’s paper [9] on the Virasoro algebra, we
know that if A = ®nezAn ic a Z-graded algebra over compley aumber field,
then the following are equivalent:

e A is the Witt algebra.
» A is a flexible algebra and the attached minus algebra (A7,[, ]) is the Witt
algebra.

e A is a Lie algebra, dim(A4,) < 1,n € Z and
(AoA1) #0, (A1A_1)#0, (A24_4)#0, (A4,4_,)#0.

In chapter 2, after introducing the concept of the quantum flexible alge-
bras, we will prove that if ¢ is not a root of unity, then the quantizations of the
results above hold for the quantum Witt algebra. It is worth pointing out that
throughout this work, the quantum Jacobi identity plays an essential role and

we feel that the quentum Lie algebras are a class of non-associative algebras
which deserve more attention.

In chapter 3, we will investigate possible g—analogues of the representations of
the Witt algebra. The most important representation of the Witt algebra is the
one called the module of tensor fields V, 4, where o and 8 are complex numbers.
In 1982, B.L.Feigin and D.B.Fuchs [4] introduced this module and used it in
their proof of the Kac’s determinant formula. In the same year, I.Kaplansky
[9] proved the following remarkble property of the module of tensor ficlds Vag:
o If V =®,ezCv, is a Z-graded module over the Witt algebra W = @,,£2Cd,

and dy4,; are injective operators on V, then V is isomorphic to the module of

tensor fields V,4 for some complex numbers a and S3.

We call this result Kaplansky’s theorem. The basic idea in the proof of
Kaplansky’ theorem has greatly influenced mathematicians and physicists who
attacked Kac’s conjecture concerning the representations of the Virasoro algebra
(see [1],[10] and [12]). Therefore, we consider quantizing Kaplansky theorem
an important first step in developing g-analogues of the representations of the
Virasoro algebra.

Motivated by our work in chapter 1, we will define the g—analogue of the
universal enveloping algebra of the Witt algebra, denoted by U (Wy). Using the

3



operations on the Z-graded modules over the Witt algebra in [4], we will con-
struct two kinds of U(W, )-modules A(A, a, 8) and B(A, a, 8), where A\, a,8 € C
and A # 0. Both A(\ a,3) and B(\, a, 3) are g-analogues of the module of
tensor fields. It turns out that under conditions similar to the ones in Kaplan-
sky’s theorem, every Z-graded U(W,)-module V = ®,¢czCvy is isomorphic to
cither A(A, o, 3) or B(A, a, B) for some A,a,8 € C and X # 0. This is our
gquantization of Kaplansky’s theorem obtained in chapter 3.

=oWoN
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CHAPTER 1. QUANTUM CENTRAL EXTENSIONS

§1.0. Introduction

The purpose of this chapter is to give one possible solution to some questions
proposed by Y.I.Manin in [6]. In section 1, we will construct the quantuin Witt
algebra W, from the opertators called J-derivations on the Laurent polyno-
mial ring C[¢,¢~1]; it turns out that W, satisfies the quantum Jacobi identity.
Other objects which satisfy the quantum Jacobi identity are the quantum Vi-
rasoro algebra V, (where ¢ is not a root of unity and ¢ # 0) and the quantum
Kac-Moody algebra sEZ‘(Q) (where n is a positive integer and ¢*™ # 0,1). All
these examples are g-analogues of familiar objects and become those objects
when ¢ — 1. In section 2, we will define quantum universal central extension
and study its basic properties. In section 3, we will prove that quantum Vira-
soro algebra ¥V, and the quantum Kac-Moody algebra s(f;(z) are the quantum
universal central extensions of W, and C[f,t™'] ® s€7(2), respectively.

Throughout the chapter, all vector spaces are assumed to be vector spaces
over the complex number field C and the following notations are used:
e C*:={reCjz#0}.
¢ g is a complex number satisfying ¢° #£ 0, 1.

e o(q) :=1t if ¢ is a primitive t—th root of unity.
°
o(q), if o(q) is odd,
T:=
o_(2q_).’ if o(q) is even.
[ ]
m _ ,—m m —-m
[m] .= E__Ll__, < m >:= u—q———, where m € Z.
9—q” 2

e For any Z-graded vector space V = @nezVp, J € Hom(V,V) is defined by
J(vn) := q"v, for n € Z and v, € V,,.

-1
o € Hom(V,V) is defined by o := iiij———

§1.1. J—derivations and the quantum Witt algebra

Definition 1.1 Let A be a Z-graded algebra. A linear map D : A — A is
called a J-derivation if D(ab) = D(a)J(b) + J~!(a)D(b) for all a,b € A.

5



Define a family of linear operators D,, on the Laurent polynomial ring C{t,#7!]

by
D, := — "1 (i) , (i> A" [m]tm_l,
dt v dt q

for all n,n € Z. Set P := P,ezCD,, then D is a Z-graded vector space with
the Z-grading D,, := CD,,.

PROPOSITION 1.1. With the notations above, we have

(1) D is the vector space formed by all J—~derivations of C[t,t™1].
(2) The bracket [, ] on D, defined by

(D, Dy) := Dy J D, J — ID,J 'DyJ = [m — n]Dpyn,
satisfies the following the quantum Jacobi identity:

(1.1) ([z,y),o(2)] + (ly, 2], 0(z)}] + [[z’zlva(y)] =0

where z,y,z € D.

Proor: (1). For m,n, k € Z, we have

D (t™ - tF) = —¢mH! (%) (¢ Ry = — " [m o kR
9

= —([mlg* + [k]g~m)tm+m+E
— (_tn+1[,rn]tm-—l)(qktk) + (q—mtm)(_tn+l [k]tk—l)
= Da(t™)J(¢*) + I (™) Da(th),

so D, i~ a J-derivation of C[t,t7!]. Conversely, if D is a J-derivation of
Clt,t™!}, then D(t) € C[t,t7']. Using induction on m, we have that

D@™) = [m}t™ ' D(t) = D{t) (%) (t™) formeZ.
q

d
Hence, D = D(t) (71?) € ®nezCD, =D.
'/ q
(2). For k € Z and t* € C[t,t™'], we have

JD,J D, J(t*) = —¢™*[n + k] Dmyn(t5),
JDJ 7 Dy J(t*) = —g"**[m + k] Dmya(t*),

6



SO

(JDnJ 'D,J — ID,J ' D, J)(t")
=(g""*[m + k] — ¢"**[n + k]) Dy nlt*)
=[m — n]Dm+n(tk)’
or JD®J 'D,J — JD,J 'D,J = [m — n]Dyyn. In order to prove that the

bracket { , ] on D satisfies the quantum Jacobi identity (1.1), it suffices to prove
the following:

< k > [[Dm,Dy), Dk}l + < m > [[Dyn, Di], D]
(1.2) + < n > [[Dx, D], Dn] = 0,

where m,n,k € Z. Using [Dm,D,] = [m — n]Dpyn, we get
<k> [[Dm,Dn]sDk]

=<k >[m—n)[Dmgn, D] =<k >[m —nlim+n — kDpinis

=(qk + q-—k)(qzm—k + qk—2m _ q2n—k _ qk_gn Dm+,,+k_
2(q —q1)?
=((¢*™ +¢7*™) + (¢*F 7™ + g*m )

. D
— (ag2" —2ny\ _ ¢ 2n-2k 2k—2n m+n+k
(¢°" +¢ ") —(q +gq ))——————2(q_q_,)2,

or

< k > [[Dm, Dy, D]
(1.3)

Dmn
=(<2m>+<2m—2k>—<2n>——<2n—2k>)z——+—;+T’;—2.
q-—dq

Replacing m,n and k by n,k and m in (1.3) respectively, we get

<m> [[Dn, Dk], Dm]
(1.4)

Drnn
=(<2n>+<2n-—2m>—<2k>—-<2k——2m>)————-—————( +_f’;2,
q—9q

Replacing m,n and k by n, k and m in (1.4) respectively, we get
< n > [[Dk, D}, Dy}
(1.5)

=(< ‘2k>+<2k——2n>—<2m>_<2m_2n >)(Dru+1:{1>i;2.
q—4q

7



Now (1.2) follows from (1.3) + (1.4) + (1.5). B

Definition 1.2 A Z-graded vector space L = @,ezL, is called a quantum
Lie algebra if there is a skew—symumetric bilinear map [, ] : L x L — L which
satisfies the quantum Jacobi identity (1.1) for all z,y,z € L and preserves
Z-grading, i.e. [Lyy,Ly] € Lypyn form,n € Z.

Let L = @nezLn be a quantum Lie algebra. Theset L(Z) :={n € Z|L, #0}
is called the degree set of L. A graded subalgebra (resp. a graded ideal)
of L is a subalgebra (resp. an ideal) of L which is, in addition, a Z-graded
subspace of the Z-graded vector space L.

Let L = ®nezLln and L' = @,z L), be quantum Lie algebras. A linear map
f: L — L'is called a homomorphism of type r if f([z,y]) = [f(=), f(y)] for
z,y € L and there exists a rational number r such that rL(Z) C Z, f(L,) € L;.,,
for n € L(Z). A homomorphism f of type r is called an isomorphism of type
r if f is a bijection. A homomorphism of type 1 is also called Z-grading
preserving homomorphism.

Example 1. By Proposition 1.1(2), the Z-graded vector space W, :=
@,ezCd, with the Z-grading (W), := Cd, becomes a quantum Lie algebra
under the following bracket:

[dn,dn] :=[m — nldmsin, where m,n € Z,

which is called the quantum Witt algebra.
For a fixed positive integer n, we use s€3(2) to denote the three dimensional
graded subalgebra Cd_, $Cdo®Cd,, of W,. Note that s¢;(2) has the Z-grading;:

(s€3(2)), := Cdi, where k = 0, £n.

If ¢*" # 1 and A € C*, then the linear map f defined by

2n ,

fla) = Bt ) = A, f) = [y
is an isomorphism of type -11; from s£3(2) to s£;(2) := Cd_, & Cd; & Cdy, where
[d}, ] := [i — jld}y, for i,j € {0,%1}.

Example 2. Let ¢ be not a root of unity. We define the quantum Virasoro
algebra V, by

V, = @®nezCdn & Cc,

i Cdo®Cec, ifn=0,
(vq)n = .
Cd,, if n #0,

8



[n—Yimlfm +1,
[2][3] <m> m+n, 00

where m,n € Z. One can check directly that V} is a quantum Lie algebra.

[dm,dn] :=[m — n]ldm4n +

Example 3. If A is an associative algebra and L = ®,ezL, a quantum Lic
algebra, then A ® L becomes a quantum Lie algebra under the bracket defined

by
[a®z,bQ@y] :=ab® [z,y], where a,be A, z,y€ L,

and the Z-grading:(A® L), := AQL, for n € Z. In particular,C[t,!']Qs€7(2)
is a quantum Lie algebra.

Example 4. Let n be a fixed positive integer. If ¢*" # 1, then we define the
simplest quantum Kac—Moody algebra s¢37(2) as follows:

’n . -1 n
s€3(2) := C[t, 17| ® s£3(2) ® Cc,

0, if £ #£0,+£n,
(seﬁ;(z))k .= { CJt,+'] ® Cdx, if k= +n,
Clt,t='] @ Cdy ® Ce, if k =0,
[u®@do,v @dy] : = —Res (uég) c,
du

[u ®do,v ® dir] : = FlnJuv @ din,

[u®@dp,v®d_,]:=[2nJuv @ds + o ][inr]z >Rr9 (u—)

[u®@dp,v®d,]:=u®d_p,v®@d_,] := ¢, 323(2)] =0,

d . C .
where u,v € C[t,t71], Res and — arc the usual residue and derivation, respee-
tively. Using the following well-known fact:

s uv———- + Res vwd— + Res wud’—li =0,
dt dt

where u,v,w € C[t,t™1}, it is easy to check that s@?,‘(.?) is a quantum Lie algebra.

A quantum Lie algebra L is called graded simple (resp. simple) if [L, L] #
0 and L does not have any graded ideals (resp. ideals) which are different from

{0} and L.

PROPOSITION 1.2. For quantum Witt algebra W,, we have

(1) W, is graded simple <= q is not a root of unity or o(q) # 4.
(2) W, is simple <=> q is not a root of unity.

9



PROOF: (1). <=: Let 0 # N be a graded ideal of W,. We have two cases to
discuss.
e If ¢ is not a root of unity, then
dn, €N for some m € Z.
Since N 3 [dyn,d—-m] = [2m]dy, we have
(1.6) do € N.
Therefore, N 3 [di,do] = [k]dk, for k € Z. This implies that
(1.7) dy € N for k € Z \ {0}.

It follows from (1.6) and (1.7) that N = W,.
e If g is a root of unity and o(q) # 4, then [2] # 0 and

dir4+i €N forsomekeZ and0<:< T —1.
If 2: ¢ TZ, then [2:] # 0 and
N> [dkT+i,d—kT—i] = [2kT + 2i]d0 = [2i]d0,

which implies (1.6).
If 2. € TZ, then [2i + 1] # 0 and

N> [dkT+i, d—kT—i] = [2kT + 2z + l]dl = [2i + 1]d1.

So
di €N and N € [dl')d—l] = [2]d0,

which also implies (1.6).
Hence, we proved that (1.6) always holds.
In order to prove that N = W,, it suffices to prove
(1.8) dnT+r €N formeZand0<r<T-1
If r # 0, then, by (1.6)
N> [me+ra dO] = [mT + 7']me+1' = qu[T]me+,..
So
(1.9) dmnT4r € N formeZand1<r<T-1.
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If r =0, then dp741 € N by (1.9). Hence,

N 3 [dm1+1,d-1] = [mT + 2ldpr = ¢ T [2ld s
ie,dnpr € Nformel.

(1). =: If o(q) = 4, then N := ®,ezCd2n4 is a graded ideal of Wy, so W,
is not graded simple.

(2). <=: Let 0 # N be an ideal of W, and let
(1.10) 0#z=a1dn, +ardp, +---+ardy,, €N,

where a; € C*, m; € Zand m; #m;if 1 <t #j <.
We chonse r € N \ {0} such that ¢ in (1.10) is minimal. Then € = 1. In fact,
if £ > 2, we have

N> [dml’x] = a2[ml - mZ]dmg + -+ al[ml - ml]dnl“
a;lmy —m.]#0 for2<:<¢,

which contradicts to the choice of 2.

Therefore, we have proved that there exists some d,,, € N. As above, this
implies that N = W,.

(2). =: If q is a root of unity, then N(a;,k;,0 < i <€) defined by

¢
N(a; ki, 0<i<#8):= @ C (Z aid(k;+k)7‘+s>

kcZ 1=0
0<s<T-1

is an ideal which is different from {0} and W,, where ¢ is a positive integer,

ao,al,..ﬁ,agEC*, ko,kl,...,kgEZ, k,—kJ€2Z and k,#k),fO!‘OSZ(}S
£. Therefore, W, is not simple. §

§1.2. Quantum central extensions

In this section, we assume that all homomorphisms betwteen quantum Lie
algebras are Z—grading preserving homomorphisms.

An exact sequence of quantum Lie algebras

(2.1) 0 » C i:E "'L — 0

11



is said to be a quantum extension of L by C, which is denoted by |i,7]. This
quantum extension is said to be a quantum central extension if [i(C), E] = 0.
A morphism of the quantum extension (2.1) to another extension

.y '

(2.2) 0 yC — W E — L —— 0

is a pair (3, ¢) of quantum Lie algebra homomorphisms such that the diagram

c —» E—".1L

oLl |

.1 '
1

¢ —— E —— L
is commutative. A quantum central extension (2.1) of L is called quantum
universal central extension if, given any quantum central extension (2.2) of
L, there is a unique morphism from (2.1) to (2.2). Two quantum extensions E
and E' of L by C are equivalent if there is an isomorphism ¢ : E ~ E' making
the following diagram commutes:

0 - C » F — L » 0
| di I
0 s> C » E' » L » 0

Let V be a Z-graded vector space and L a quantum Lie algebra. A skew-—
symmetric bilinear maps a : L X L — V is said to be a quantum 2-cocycle
of L with coeffients in V if a satisfies the following conditions:

(23) OI(L,-,, Lm) C Vatm,
(2.4) a([z,y],0(2)) + a(ly, 2] o(z)) + a([z, 2}, 5(y)) = 0
foralln,m € Z and z,y,z € L.
Let ZZ(L, V') be the space of all quantum 2-cocycles of I, with coefficients in

V and Bg(L, V') the space of all skew—symmetric biinear map ¢ : L x L — V
satisfying (2.3) and

(2.5) a(z,y) = f([z,y])

for z,y € L and some Z-grading preserving linear map f : L — V. It is clear
i Z3(L,V) .
that B2(L,V) C Z%(L,V). The quotient HZ(L,V) := -B?W is called the

quantum second cohomology group of L with coefficients in V.
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Let (2.1) be a quantum central extention of L by C, where [C,C] = 0. Then
the equivalent class [|{, #]] containing the quantum central extension (2.1)
is defined to be the set of all quantum central extentions of L by C which are
equivalent to {2.1). Let CE,(L,C) denote the set of all equivalent classes of
quantum central extensions of L by C.

Thus, if L and C are quantum Lie algebras with [C,C] = 0, then

H}(L,C) = {[a] := a + BX(L,C)la € Z(L,C) },

CE,L,C) = { (Liyr]] | g;:;]o;s; l();;lacntum central exten- } ’

Now we construct two maps F and G between H:(L,C) and CE,(L,C) as
follows:

e F: HZ(L,C) — CE,(L,C) is defin. ' by F([a]) = {|ia,7Ta]] where

T

(2'6) 0 » C o - F, » L + 0

is defined by
Ey = @nGZ(Ea)nv Where(Ea)n =L, ®Cn,

[(x’u)7(y7 v)] = ([$7 y]’a($7 y))’
iq s u+ (0,u), Mo (T, u) — x
for z,y € L and u,v €C.
e G:CEy(L,C) - HZ(L,C) is defined by
G({le, 7 =[a],  ao=ia,

ao(z,y) := [B(2), B(y)] - B([z,y])  forz,y € L,
where §: L — E is a Z-grading preserving linear map satisfying 8 = id|,,.
Using the notations above, we have
PROPOSITION 2.1. The map F is a bijection with inverse G.
PROOF: What we need to check is the following:
() F is well-defined;

(i7) G is well-defined;
(i27) FG =1 and GF = 1.
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(¢). For z,y,z € L and u,v,w € C, we have

[[(z,u), (¥, v)], o((z, w))] + [[(y, V), (z,w)], o ((z, u))]
+ [[(z, w), (z,u)], o ((y, v))]
=(([z,y], a(z, y)), (a(2), o(w))] + [([9, 2], a(y, 2)), (o (z), 7 (u))]
+ ([, z], a(z, 7)), (c(y), o(v))]
=([[z, y], o(2)], o([=, yl,0(2))) + ({[y, 2], o(z)], a(ly, z],0(z)))
+ ([[z, =], o(9)), a([z, 2}, o(¥)))
=0

Also, it is easy to check that

[(Ea)m,(Ea)n] - (Ea)m+n for m,n & Z,
[(z,u),(y,v)] = —[(y,v), (z,u)] for z,y € L and u,v € C.

Therefore, E, is a quantum Lie algebra. It is obvious that i, is injective and
m is surjective. So we have proved that (2.6) is a quantum central extension
of L by C.

Next, we prove that (2.6) is independent of the choice of a.

Suppose that a and o' € Z2(L,C) and o' — « € B2(L,C), i.e., there exists a
Z-grading preserving linear map f : L — C such that

(! —a)(z,y) = f([z,y]) forz,y€ L.

We define ¢ : E, — E, by
p:(z,u)— (z,u+ f(z)), where z € L and u € C.

On one hand, if we denote the bracket on E, and E4 by [, ]« and [, ]o,
respectively, then, for z,y € L and u,v € C,

2(z,u), (y,v)]a) = ¢(lz,y], a(z,y))
= ([z,y], a(=z,y) + f([=,v]))
= ([$7 y],a'(m, y))
= [(:z,u), (yvv)]a’
= [(z,u + f(2)), (¥, v + f{y))lo
= [p((z,u)), p((y,v))] -

It follows that ¢ is an isomorphism from the quantum Lie algebra E, to the
quantum Lie algebra E,..
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On the other hand, ¢ makes the following diagram comumutative:

0 » C ia—> E, =, L » 0
I el |
0 » C —Z s B —— L » 0

Therefore, |iqa, 7o) and |iqar, 7| are equivalent.
This proves (7).

(#2). Fix a Z-grading preserving linear map # : L — E which satisfies
wf =id|r. Define ag : L x L — E by

(2.7) ap (z,y) = [B(2), B(y)] — B([z,v]), for r,y € L.

Then ag (z,y) € Ker(w) = Im(7). Using the injectivity of 7, we can construct
a: L x L — C such that a9 = ta. For z,y,z € L,

oo ([z,y],0(2)) + a0 ([y, 2], 0(2)) + a0 ([2, 7}, 0(y))
= ([iB(=), By)], o (B())]) + ({[B(y), B(2)], o (B())])
+ ([[8(2), B(=)}, o(B(y))])
— B([lz,yl, 0()] + lly, 2], o(2)] + [[2, 2], o (9)]) = O,
by (2.7) and the fact: 08 = fBo. This implies that « is a quantum 2-cocycle.
Now we prove that the equivalent class [«] constructed from f is independent
of the choice of 8. Suppose 8’ : L — E is another Z-grading preserving linear

map satisfying 78’ = id|,. Using the same procedure as above, we can construct
ag and a quantum 2-cocycle o' suzh that

ap =i, ag(z,y) = [B'(x),8'(y)) - A'([=,y]),

where z,y € L. That Im(B8' — B) € Ker(n) = Im(z) produces a Z-grading
preserving linear map f : L — C satisfying ' — 8 = ¢ f. It follows that

e —a')(z,y) = (a0 — ap)(z,y)
=[(8 — B')(=), By} + [B'(2), (B — B Y] + if([z,9]) = if([=,y]).

Thus (a — a')((z,v)) = f([z,y]), i.e. a —a' € B(L,C), or [a] = [a'].
(222). Let [|i, 7|} € CE,(L,C), then FG([|7,7]]) = [|Za: Ta]], where |7, 7] and

|?a, Ta] denote the quantum central extensions (2.1) amd (2.6), respectively.

In order to prove that |z, 7| and |74, 7o | are equivalent, we define ¢ : E, — E
by

w((z,u)) := B(z) + i(u), where z € L and u € C.
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Then, for r,y € L and u,v € C, we have

e({(z,u), (y,v)]) = ¢([z, y], x(z,y))
=p([z,y}) + ia(z,y)
=B([z, y]) + ao(z, y) = [B(z), B(y)]
=[B(z) + i(u), B(y) + i(v)]
=[p((z,u)), ((y,v))]-

This proves that o is a Z-grading preserving homomorphism.
Furthermore, ihe following diagram is commmutative:

for N

3 -—— C > FEo » L » 0
| di |
] 4
0 » C » FE + L + 0

In fact, for z € L and u € C, we have

wia(u) = ¢((0,u)) = B(0) + i(u) = i(u)

and

mo((z,u)) = 7(B(z) +i(un)) = z = ma((z,u)).

It follows that ¢ is a Z-grading preserving isomomorphism. This means that

|z,7] and |iq, 7o) are equivalent, i.e., [|i, 7]] = [|ia,7a]]
Thus, we have proved that FG = 1.

Similarly, one can check GF = 1. §

PROPOSITION 2.2. Let L be a quantum Lie algebra. If [L,L] = L, then L has

a quantum universal central extension.

PROOF: Let L = @, ezL, be a quantum Lie algebra. We define the g—analogue
of the usual second homology group of L with trivial coefficients by H(L,C) :=

AX(L)

the form
[z, y] A o(2) + [y, 2] A o(z) + [2, 2] A o(y),

where r,y,2z € L.

Let «: L x L — H}(L,C) be the map defined by
a:(z,yy—zAy+1 for z,y € L.
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Then a € Z:(L, HJ(L,C)). Let F(la]) be the quantum central extension:

(2.8) 0 —— H}L,C) —— E, —2, L , 0
as constructed prior to Proposition 2.1.

Suppose that
(2-9) 0 VO — B L 0

is any quantum central extension of L. We denote the bracket on E' by [, ]'. Let
us write I’ as a direct sum of subspaces ®nez( L), ®i'(C},)), where L' := @, eczL!,
is a preimage of L under «n’'. Identifying L with L' and C’ with /(C’), we have
E' = ®pez(E")pn, where (E'), = L, ® (C')n.

Then we have a quantum 2-cocycle 8: L x L — C' with

[z,y] = [z,y] + B(z,y)  forz,y € L.
It follows that there is an induced map 8 : A%(L) — C' vanishing on the
subspace I C A?%(L) defined above. This allows us to define a linear map
Y : HI(L,C) — C' by

Y(a(z,y)) = Bz, y), where r,y € L.

Next, we define the linear map ¢ : E, — E’ by

pl(z,u)) =z + P(u), where z € L and v € HJ(L,C).

Then the following diagram is commutative:

HI(L,C) —> s E, — L

ol | |

.y ’
4

(64 B T
In fact, for z € L and v € HJ(L,C), we have

' o((z,u)) = 7'(z + ¢(u)) = = = ma((z, u))

and
Pia(a(z,y)) = ©((0, a(x,y))) = Ypa(z,y) = i'P(alz,y)).
It follows that 7' = id - 7o and @i, = "9
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If z,y € L and u,v € Hj(L,C), then

e([(z,u), (y,v)]) = ¢(([z, ], a(=,¥)))
= [z, y] + Pa(z,y)
= [z,y] + B(=, y) = [z, y]'
= [z + ¥(u),y + ¥ ()] = [¢((z,v)),¢((y,))]-
So ¢ is a Z~grading preserving homomorphism.
This proves that (i, ) is a morphism from (2.8) to (2.9).
Let E := [Ea, E,). Since [L,L) = L, mo(E) = L and Eq = E+Im(ia). Thus

E = [E4,E.] = [E + Im(ia), E + Im(i,)] = [E, E].

Let C := ENIm(i,). We will prove that

"

0 - C . L E — L » 0

is the quantum universal central extension of L, where ¢ is the imbedding map
and 7 is the restriction of n, to E.

Indeed, given any other quantum central extension (2.9) of L, we have the
following commutative diagram by what we have proved:

™

0 —— ¢ — E . } y 0
'l’ol ‘Pol i

0 —— HYL,C) —= 1 E, —=> L ' 0
di o| |

0 — ¢ — e T, — 0

where ¢y is the imbedding maps and ¢ is defined by
Yo s ta(u) — u for ia(u) € C and u € H(L,C)

Hence, (40, o) is a morphism from |z, 7] to |/, ='].
Suppose that (', ') is any other morphism from i, 7] to |, #'], i.e.,

0 » C ' > FE " L - 0
vl el ||
0 » C' R E' -~ L » 0
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Then, for all z € E, we have 7'(¢po)(2) = m(z) = n'p'(z) and

(ppo)(z) — ¢'(2) € Ker(n') = 4'(C").

Now let z,y € E, then

(pwo)([z,y]) = [(wwo)(z), (veo(y)]

= [((ppo)(x) — ¢'(2)) + ' (z), (o) ¥) — @' (¥)) + ¢'(¥)]
= [¢'(2), ¢ (¥)] = &' ([, ¥]).

It follows from E = [E, E] that

Ppo = '

and
i'(Y1ho) = (ppo)i = i = i’y
or
Pipo = 3’
because ¢’ is injective.

Thus, we have proved that for any quantum central extension [/, 7’| of L,

there exists a unique morphism (9350, ppo) from |i,7| to |i',7']. Thercfore,
lé, ] is the quantum universal central extension of L. B

§1.3. The quantum universal central extension of
W, and C[t,t7'] ® s£7(2)

In this section, we will study the quantum universal central extension of

the quantum Witt algebra Wy and the quantum Lie algebra Cl[t,t7!] @ s€7(2),
respectively.

THEOREM 3.1. If q is not a root of unity, then the quantum Virasoro algebra
V, is the quantum universal central extension of the quantum Witt algebra W,,.

PROOF: Let

0 —s C » L + Wy —— 0

be an arbitrary quantum central extension of W, with corresponding quantum
2-cocycle a. By (2.4), we have

a([dm,dn],0(dr)) + a ([dn, di], 0(dm)) + ([2k,dm],0(dn)) = 0,
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or
< k> [m —nla(di,dmin)+ < m > [n — kla(dm, dnt)

(3.1) + <n>[k—-mla(dn,ditm) =0
Letting £ = 0 in {3.1), we get
(3.2) [m — nla(dy,dm+n) + [m 4+ nja(dm,dn) =0
Setting k = 1 and n = —m — 1 in (3.1), we obtain

<m+1> [7n — l]a(dm_,,],d_m_;)
(3.3) =< 1>[-2m —1]a(d;,d-1)+ <m > [m + 2]la(dp,d_m)

Set 1
— —al \
d, [n]a\do,dn,, for n #£ 0,
1
(2]
On one hand, if m + n # 0, then

£, =
do +

a(dy,d~-), forn =0.
[em, en] = [dms dn] = [m - n]dm-i-n + a(dma dn)

=[m — n] (em+n + [?i‘_?]'a(do, dm+n)) + a(dm, dn)

m — nl
%;;—;—;—ia(do, dm+n) + a(dm’ d")) -

—[m = n)lmrn + (
By (3.2), we have
(3.4) [bons€n] = [ — n)lmyn i m-4n 0.
On the other hand,
(s €] = [dos d—rm] = [2m]do + a(dom, d—m)
= [2m] (fo - [';TO'(dl,d—l)) + a(dm, d—m)

(3.5) = [2m]éy + (—%a(dl,d_l) + a(dm,d_m)) .

Now we define 8: Wy x W, — C by

0, if m+n #0;
3 dn‘ndn = 2 :
A ) —[[;T]a((ll,a_1)+a(dm,d_m), ifm+n=0.
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It follows from (3.4) and (3.5) that

(3.6) [y €n] = [m = n}mn + Bdm, dn).

Note 8 is a quantum 2-cocycle with 8(d;,d—;) = 0. Hence, by (3 3)
<m+1>[m-—1]fdnt+1,d—m—1) =<m > [m+2]3(dm,d-p:)-

This implies that

= 1)pmlim + 1]
Bldm,d-—m) = 218 < m >

< 2> pB{dy,d-3), m > 2.

Setting ¢ =< 2 > f(d2,d_2), (3.6) becomes

= Upnllm + 1],
[2][3] <m> m+n,0%,

[l ln] = [m —n}lyn +

which proves that V, is the quantum universal central extension of W,. §

THEOREM 3.2. If ¢g*" # 1, then sé:']'(Q) is the quantum universal central exten-
sion of C[t,t7!] ® s€7(2).

PROOF: Set ur :=u @ z for u € C[t,t7'] and z € s€}(2). Let

0 y C » L —— Clt,t7'] @ s2(2) —— 0

be an arbitrary quantum central extension of C[t,t~ '] @ s£€(2) and o’ € L such
that n(a’') = a, then [a’,d'] is independent of the choice of the preimages of a
and b, where a,b € C[t,t7'] @ s€3(2).

For u € C[t,t7!], we define ud!,, and ud} in L by

1 1

() iy = Fogldo(uden)],  udhim posldh, (ud
Set
(3.8) {u,v} := [(udp)', (vdy)'] € C, u,v € Clt,t71]
Then we have
m(udy) = o [n(dy), T((udon))] = o ldn, ud_p] = uds,

[2n] [2n]

21



and
m(udy, ) = q:[TtT[ﬂ'(dE,), m((udsn))] = q:[%-]—[do, udin] = udin.

It follows that

(3.9) (udy, vdb] = {u, v},
1 /] ’
(310) Ud’:l:n = :Fm'[d09U'd:hn]'
Since

w([vdy, udy,]) = [7(vdp), 7(udy,)]
= {vdy, uds,] = F[njuvdin,

so we get
(3.11) [vdy, udly ] — (F[n]uvdy,) € C.
From
[vdy, [dh, udly, )] + [dh, [udlyn, vda]l+ < 7 > [udls,, fody, dy]] = 0,
we get, by (3.8) and (3.2°
(3.12) [vdy, [dy, ud'y,]] = [dy, [vdy, ud'y,]).

Using (3.10), (3.11) and (3.12),

, 1
[vdy, udy,] = [vdy, ¢—]-[d8, udy,]]

[n

—F [%][vda, [dh, udly,]] = ¢[—}1—][da, [odh, udly,]]

= F rldy, Flnuvdy,] = [dh, uodl,] = Flnluvds,
This proves that
(3.13) [vdy, udly,]) = F[njuvd,,,.
In particular, let « = 1 in (3.13), we have
(3.14) fody, di] = Flnlody,.
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From

< n > [[udg, dy, ], vd_,] + [[dy, vd_ ], udf]+ < n > ([vd.,,,udg]l,dy] = 0
and

(3.15) [, vd_,,] = [2n]vdy,

we get
‘)

(3.16) [[udg, d,,], vd_,] = [[udy, vd__),d.] + <[..n]> [udy, vdy].
n

So, by (3.9), (3.13), (3. 14) and (3.16)

[udly, vd!_,)] = [~ [udp, dy, v,

[ ]

= _[_—][[ud;,,d',,],vd’_n]

= [ ][[ud’ Jod_ ], d] — ] [;"l T = < dos velg]
= [[n]uvd_,,, ]—mi‘i",]?{u,v}
= [d'n,uvd'__n] - W[ifi-;{u,v}-
it follows from (3.15) that
(3.17) ledy,,vd_,] = [2n]uvd, — ] [in,]l oo twy)

Similarly, after using quantum Jacobi identity for (dj, ud’,,, vdY,,), we obtain
(3.18)

<n> [[dﬁ,"d';tn]’vd n] + [[ud:i:n, n.] d ]+ <n> [[vd_l:n’dz)]vud’in] =0.

Since W([ud;:n,vd':tn]) = [W(udin),‘;r(vdin)] = [udin,vdin] = wol[din,dsy,) =
0, [udl,,,vdy,] € C. It follows from (3.18) that

(3.19) ([do, ud'yp], vdly,] = [[dp, vdlip ], udly,].
We have, by (3.10) and (3.19)

[udy,, vd's,] = :F—l—]nda,ud;.n],vd;nl

[n
= ¥ (ldp, vl ], udly,]
{n] 0> *nl +n
1
= F—[F[r]vdy,, udy,
[n][ [ ] + + ]
= [vd':}:mud':tn] = "'[ud’imvd,in]’
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1e.,
(3.20) (udy,,vd},] =0.
Finally, applying the quantum Jacobi identity to (udy, vd),, wd_ ) gives that
{u,vw} + {v,wu} + {w,uv} =0.

By the Lamma (2.16) in [3],
dv -1 -1
(3.21) {u,v} = —Res u—y {t,t7'}, u,v € C[t,t7"].

Now the Theorem 2.4 follows from (3.9), (3.13), (3.17), (3.20) and (3.21) B
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CHAPTER 2. THE CHARACTERIZATIONS OF
THE QUANTUM WITT ALGEBRA

§2.0. Basic definitions and main theorem

In [1] and [3], two different characterizations of the Witt algebra were found by
I.Kaplansky and M.L.Tomber, respectively. In this chapter, we prove that the
quantizations of the two characterizations hold for the quantum Witt algebra.

The following notations will be used chiroughout the paper:
Z := the set of all integers.

C := the set of all complex numbers.

[m] := g-——q_]—-, where m € Z, ¢ € C\ {0} and ¢ is not a root of unity.
[0]! := 1 and [m]! := [m][m —1]...[2][1] for m € Z and m > 0.

g™ +q7"

< m >:i=
For any Z-graded vector space ®nezVn, J € Hom(V,V) is defined by

J(vy) := q"v, forn € Z and v,, € V,.
A J!

, where m € 7.

5 .
Let A = @nczAn be a Z-graded algebra over C with mutiplication denoted

by zy for z,y € A. As usual, we define the Z-graded algebras (A~,[, ]) and
(A*,0) by

AT = @nGZ(A:t)n, where (A%) := A,,

[z,y] : = zy — yz,
zy + yx

rToy:= 5

where z,y € A. Let
(z,y,2)q : = (zy)o(z) — o(x)(yz2),
Jo(z,y,2) : = (zy)o(z) + (yz)o(2) + (zz)o(y).
where z,y, 2 € A.

Definition Let A be a Z-graded algebra over C with multiplication denoted
by zy.
(1). Ais called 2 quantum flexible algebra if (z,y,z), =0 for z,y € A.
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(2). A is called a quantum Lie algebra if zy = —yz and the following
guantum Jacobi identity holds:

Jo(z,y,2) =0 for z,y and = € A.

One example of quantum Lie algebras is the quantum Witt algebra W,
defined by

W, : = ®Bnez(Wy)n, where (W, ), := Cd,,

dmdy, : = [m —nldmin, where m,n € Z.

Another interesting example of a quantum Lie algebra is the quantum Vi-
rasoro algebra V, = ®,cz(V;)n defined by

Cdo®dCec, ifn=0,
(Vo) == { Cd,, if n #£0,
[m — 1][m][m + 1]

dmdy 1 = [m — n]ldmyn + 2Bl < m > m+n,0C,

cdy : =dypc:=0,
where m,n € Z.

Remark. If we define a family of linear opertors d, on the Laurent polyno-
mial ring C[¢,t7!] by

d d
dy 1= —t™+? (—) . (—) 1™ s [mt™ !
dt q dt q

for all m,n € Z, then the Z-graded vector space @,ezCd,, over C becomes the
quantum Witt algebra under the following multiplication:

dm - dp = JdpJdyJ — Jd T d i J

Now we can state the main theorem.
THROREM. Let A = @, ez A, be a Z-graded algebra over C. Then the following
are equivalent:

(1) A is the quantum Witt algebra.

(2) A is a quantum flexible algebra and (A~,{ , ]) is the quantum Witt
algebra.

(3) A is a quantum Lie algebra, dim(A,) <1 for all n € Z and
(AoA1) #0, (A1A_1)#0, (A24-1)#0, (A24,)#0.
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Because it is clear that (1)=>(2) and (1)=-(3), we only nced to prove that
(2)=(1) and (3)=(1).

§2.1. The proof of the theorem: (2)=(1)

Using the same argument as in [2], we can prove:

LEMMA. Let A be a Z—graded algebra and (a), (b),(c),(a’), (¥') denote the fol-
lowing statements:

(a) A is quantum flexible.

(b) (z,y,2)q + (2,y,7)g = 0 for z,y,z € A.

(e) [o(z),yozl=[z,y]00(z) + o(y) o]z, z2] for z,y,z € A.

(a") A is quantum flexible and (A~,[ , ]) is a quantum Lie algebra.
(b') [o(2),y2] = [z, ylo(2) + o(y)[z, 2] for z,y,z € A.

Then (a) < (b) & (¢) and (a') & (b').

PROOF: (a) = (b): Since A is quantum flexible, we have

((x + 2)y)o(x + 2) = o(x + 2) (y(x + 2)), where r,y, 2 € A
(zy)o(z) + (zy)o(z) + (2y)o(z) + (zy)o(z)
= o(z)(yz) + o(z)(yz) + o(z)(yz) + o(2)(yz),
(2.1) ((zy)o(z) — o(z)(y2)) + ((zy)o(z) — o(2)(yz)) = 0,
which is

(z,y,2)g + (z,y,2), =0, where z,y,z € A.
() = (¢): It follows from (b) that

(z,9,2)g + (2,9,2)g + (x,2,y)g + (¥, 2,7)qg = (y, T, 2)g + (2,2,Y)q,

where z,y,z € A, or

(zy)o(z) — o(z)(yz) + (2y)o(z) — o(z)(yz)
+(z2)o(y) — o(z)(2y) + (y2)o(z) — o (y)(zz)
= (yz)a(2) — o(y)(z2) + (27)a(y) — o(z)(zy).
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This implies that

(2.2) [o(z),y 0 z] = [z,y]00(2) +0o(y) o[z, 2] for z,y,z € A.

(c) = (a): Let z =z in (2.2), we get
[o(z),y o 2} = [z,y] 0 (=),

o(z)(yz) + o(z)(zy) — (yz)o(z) — (zy)o(z)
= (zy)o(z) — (yz)o(z) + o(z)(zy) — o(z)(yz)-

It follows that
o(z)(yx) = (zy)o(x) for z,y € A.

(a') = (b'): Let z,y,z € A. On one hand, by (a) = (c), we have
(2:3) [o(z),y 0 2] = [z,y] 0 0(2) + o(y) 0 [z, 2].
On the other hand, since (47,[, ]) is a quantum Lie algebra, we also have
lo(2), [y, 2]l + [o(y), [z, 2]] + [o(2), [z, y]] = O,
(2.4) [o(2), 513, 71) = 3llz, wlo()] + 3o (), [z, 2]]

It follows from (2.3)+(2.4) that

[o(2),u7] = [o(2), y 0 = + 3[3: 7l] = [o (@), 0 2] + [o(2), 3y, 2]
= (Iz,5] 0 o(2) + 3[lz 5], o()]) + (o(w) o [7, 2] + 3o (w), [z, #1])
= [z, ylo(2) + o)z, 2.

(') = (a'): Let z = z in (b'), we get

[o(2), y2] = [z, ylo(),

o(z)(yz) — (yz)o(z) = (zy)o(z) — (yz)o(z),
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e o(z)(yz) = (zy)o(z)  for ,y € A.

This proves that A is a quantum flexible algebra. Therefore, (c¢) holds for the
algebra A.

Next, we prove that (A7,[, ]) is a quantum Lie algebra. For x,y,z € 4, we
have, by (c) and (¥')

L [o(a). by, 2l = [o(2), 1y, 2]

= [o(z),yz —yo 2] = [0(z),yz] — [o(z),y 0 2]
= ([z,ylo(2) + o(¥)lz, 2]) — ([z,¥] 0 0(2) + o(v) o [z, 2])
= ([z,4]o(2) — [z, 9] 0 0(2)) + (o ()[z, 2] — a(y) o [z, 2])

= 5llz, 9}, ()] + o), =, 2
This implies that
[z, yl,0(2)] + [ly, 2], o(2)] + [z, ], o(¥)] = 0,
i.e.,, (A7,[, ]) is a quantum Lie algebra. §

Now we begin to prove: (2)=>(1).

By the Lemma above, we know that (c¢) and (b') hold for the algebra A in
the theorem. Because (A7, [, ]) is the quantum Witt algebra, we can choose a
C-basis {e, | n € Z} of A such that

[en,em] = €nem — emen, = [n — mlepim, where m,n € Z,
emen € Cemqn.

In particular, egeqy = aeg for some a € C.
Using (') to the triple e,, e and e,,, we get

(2.5) < n>len, e0em] =<m > [nleqenm + [ — mlegenim for n,m € Z.
Let m = 0 in (2.5}, then
< n > a[nle, = [n](eneo + eoen).
Hence,
(2.6) < n>ae, = €epeo + €pen forn € Z \ {0}.
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On the other hand,
(2.7) [n]len = eneo — €oen forn € Z.
It follows from (2.6) and (2.7) that

(2.8) enen = —1 >2“ +tinl, . fornez \ {0}.
<n >2a - [n]en

Let m = —n # 0 in (2.5), we get

(2.9) €g€n = for n € Z \ {0}.

<n> [en, e0e—n] =< —n > [nlene_n + [2n]egeo.

By (2.9), the equation above becomes

2 —
(2.10) <n> af <2n > [n] — 2a [2n)eq =< n > [nleje_n forn e Z)\ {0}.
2 -
Computin <n>Yat<n>[n]-2a 2n)[nle, by using (2.8), (2.10) and
& 2
(b"), we have
2 —
<n>°a+ <2n > [n] — 2a 2n][n]en
<n>%?a+ <n>[n]-2a
- ar<n > 2w, el

= [en, < 7 > [nrlene—n] = [n]{o(en), ene—_n]
=< n > [n][2n]eneq

= %<n>[n][2n](<n>a+[n])e,, for n € Z \ {0}.

It follows from %[n] [2n] # 0 that a = 0. Therefore, we have proved that

€n€o = —€p€n = %[n]en for n € Z.
Hence,
(2.11) enoe =0 forneZ.
Now we prove that
Em o€y =0 for m,n € Z.
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In fact, we can assume that m # 0 by (2.11). (¢) in the Lemma implies that
[o(em), €0 0 €p] = [em,e0] 0 0(en) + a(egp) 0 [em, en).
Using (2.11), this gives us the following equation
O=[m]<n>emoen,

or

emoe, =0,

Finally, we get

1

1
lem,en] +emoe, = -2-[6,,,, en] = §[m —n]emtn.

N

€m€En =

Let d,, :=2!""e,, for n € Z, then

A= Dnezin, where A,, = Cd,,,

dpnd, =[m —nldy4n, where m,n € Z,
i.e., A 1s the quantum Witt algebra.

§2.2. The proof of the theorem: (3)=-(1)

As usual, we can choose 0 # d; € A;, where i = 0, &1, such that

(3.1) d,‘dj = [‘i - j]d,‘+j for i,j =0, 1.

Since Ay A_; # 0, A2 # 0. Hence, A; = Cu, where uy # 0. Let d_juy = td,
for some t € C, then t # 0. Let dy := — [8]u, , then
(3.2) dy #0, d_,d; = —[3]d,.

For z € A, we define ad(z) € End(A) by
(ad{z))(a) := za for a € A.

For k > 2, we define

. (=1)*(ad(d1))*~?(d>)
(3.3) dy = =i .
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It is clear that
(34) dldk...l = [2 - k]dk for Iﬁ' Z 0.
Now we use induction on k to prove the following facts:
(3.5) di #0, dodi = —[k]dg, d_1di = —[k + 1}dg—1 for k > 2.
If £k = 2, then that d; # 0 and d_;d, = —[3]d; follow from (3.2). Let
dodg = agdg. It follows from Jq(do, d_l,dg) = 0 that ag = —[2].
Assume that (3.5) is true for k —1 where k£ > 3, so there exist ax,bx € C such

that
dody = ajay, d_1dg = bydi_;.

Using (3.4), the induction assumption and J¢(ds,d;,dr~1) = 0, we have

0= do(dldk_1)+ <1l> d](dk_ldo)-}- <k—-—1> dk._l(dodl)
= [2 — k]ldodi+ <1 > [k — 1]d1dg—1— < k —1 > drp_1d;
=[2—klaxdi+ <1 > [k —1][2 - k]di— < k — 1 > [k — 2]d.

Since k > 3, [2 — k] # 0. Hence, we get
(3.6) apdy = (— <1>[k—1]- <k -1 >)d;.
Similarly, it follows from J,(d_1,d),dx_1) = O that
3.7 <1>[k—=2bgdr—y =(— <1>[k—=3]k]- <k —1>[2][k - 1])dk-1.
Since dg_» # 0, it follows from (3.7) that

<l1>k-2by=—<1>[k-3lk]l-<k—-1>[]2][k—1]
- <1>[k—-2][k+1]

So bx = —[k + 1] # 0. Hence,
d_1dy = —[k + 1)dx—; # 0=>di #0.
Going back to (3.6), we have
ar=—<1>[k-1-<k—-1>=—[k].
Therefore, (3.5) holds.
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By (3.1) , (3.4) and (3.5), we have proved that

(3.8) d.’dk = [Z - k]d,‘+k for ¢ = 0, +1 and & Z —1.

Our next step is to prove that (3.8) is also true for ¢ = 2, i.e.
(39) dgdk = [2 et k]d2+k for k Z ~1.

Let dydiy = cixdayr where ¢, € C and £k > -1. Using (3.8) and
J¢(d2,d—1,dr) = 0, we have

— < 1> [k+3lckdrs1 =< 1> erd_jdiyr =< 1> d_ (dad})
=< 2 > da(d-1dp)+ < k > dr(dad—1)
=—< 2> [k+4+1]ldodi—1+ < k > [3]drd,
=—- < 2> [k+1)ck—1di41+ < k > [3][k — 1)dg41,

ie.,
—<1>k+3lexk=—<2> [k+1cg+ < k> [3][k —1].

By (3.8), c—1 = [3]. Assume that cx—; = [3 — k], then

—<1>[k+38lex=—<2>[k+1][3—k]+ < k> [3][k - 1]
=—<1>[k+ 3][2— &kl

So ¢ = [2 — k]. By induction, (3.9) is true.

Now we can prove that
(3.10) dnd, = [m —nldpin for m,n > —1.

Because of (3.8), we can assume that 2 < m < n. We use induction on m.
(3.9) tells us that (3.10) is true for m = 2. Assume that m > 3 and (3.10) is
true for m — 1. From J,(dy,dm-1,d,) = 0, we get

<n>[2—-mldnd, =<n > [2—-m]m — n]ldnin.

Since m > 3, [2 — m] # 0. It follows that dnd, = [m — n]dm4n-
Therefore, we have proved that

® Fact 1. The subalgebra @,>_1An of A has a C-basis
{dn In Z _ladn € An}
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such that
A, =Cd, #0, dmdn = [m —n]ldm4n for m,n > —1.
Similarly, if we choose 0 # d_ € A_» such that did—; = [3]d; and define

_ (ad(d_i))"*?(d_>)

= < -2.
dx k=2 for k < -2

Then we can prove the following:

e Fuct 2. The subalgebra @n<i1An of A has a C-basis
{dnin<1,dn € An}
such that

A, =Cd, #0, dmdn, = [m — n]dmin for m,n < 1.

Furtherinore, we have
(3.11) dad_2 = [4]d,.
In fact, let dod_., = rdg, where r € C, then

(3.12) Jq(dl,d_g,d;;) =0 = d4d_2 = [6]d2
(313) Jq(d],d_.f_),d4) =0 and (312) = dsd_.z = [7]d3.

(3.14) Jy(di,d—2,d2) = 0=<2> dyd_2 = (< 2> [3?~- < 1> r)d;.
Using J,(d,,d3,d_3) = 0, (3.13) and (3.14), we get
(<1>+<3>[8)r=<2>(7]+[3]%),

or < 2> [4lr=<2> 4]%,ie,r = [4].

In order to complete the proof, we have to prove that
(3.15) dpd_p=[m+n]ldn_yn for m,n € Z.

By fact 1 and fact 2, we can assume that m > 2 and n > 2. Now we use
induction on m to prove (3.15).
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e m = 2, in which case, we hav. to prove
(316) dgd_n = [? + Tl]dg_n for n Z 2.

Let d2d—n = gndz—r. then g2 = [4] by (3.11). Assuming that g, = [2+ 1], it
follows from J¢(d_1,d2,d_,) = 0 that

<2>[n—1lgnp1 =<1 > [n —3lg+ < n > [3][n + i]
=<2> [n~-1][n+ 3]

This implies that g,4+; = [n + 3]. Hence, we have proved (3.16).

e Assume that (3.15) holds for 2 < m < k — 1, then we will prove that (3.15)
also holds for m = k. In fact, using J,(dy,dk—1,d-n) = 0, we have

<n> [2 - k]dkd_n =n > [2 - k][k -+ 7l]dk—n-

It follows from < n > [2 — k] # 0 that did_, = [k + n]di_,.

Thercfore, we have proved that (3.15). In other words, A is the gquantuin

Witt algebra.

Although the g-analogue of the Theorem 1 in [1] holds for the quantum
Witt algebra, the g-analogue of the Theorem 2 in [1] does not hold for the ¢-
analogue of the enveloping algebra of the Witt algebra. In fact, ¢-deformations
of the module of the tensor fields over the Witt algebra are not unique up to
isomorphism. We are going to discuss them in chapter 3.
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CHAPTER 3. QUANTIZATIONS OF THE MODULE OF
TENSOR FIELDS OVER THE WITT ALGEBRA

§3.0. Introdution

The representation V,s of the Witt algebra on the space of “the tensor fields”
of the form P(z)z%(dz)? is usually called the module of tensor fields over the
Witt algebra. Here a and  are complex numbers and P(z) is an arbitrary
polynomial in z and z7!. The mod '3 V,g of the Witt algebra plays a very
important role in the representatior :.eory of the Virasoro algebra. In 1982,
I.Kaplansky proved in (3] that if ®,ezCv, is a Z-graded module of the Witt
algebra W = ®,¢zCd, and di; are injective operators on V, then V is iso-
morphic to the module V,5 of tensor fields for some o, € C. We call this
result Kaplansky’s Throrem. The main purpose of this chapter is to prove a
g—analogue of Kaplansky’s Theorem.

Throughout this chapter, we assume that

e All vector spaces are the vector spaces over the complex number field C.
e C*:={zx€C|z#0}.
¢ ¢ is a complex number satisfying ¢? # 0, 1.
e ¢n(z) is the principal value of the logarithm.
o ¢ := e for o € C.
Sl S
L) [a]::—_l—fOI‘QEC.
9—4q

In section 1, after defining g—analogue U(W,) of the envoloping algebra of
the Witt algebra, we will construct two kinds of U(W,)-modules A(A, a, ) and
B(), a,8) by using a version of the operations over Z-graded modules of the
Witt algebra introduced by B.L.Feigin and D.B.Fuchs in [1], where (A, a, 8) €
C* x C x C. Both A(),a,f) and B(\, a, ) become the module of tensor fields
over the Witt algebra when ¢ — 1. In section 2, we will find the necessary and
sufficient conditions for X(\, a, 8) ~ Y (N, a', ') (where X,Y € { A,B}) and
study the reducibility and unitarity of X (A, a, 8). In section 3, we will prove a
g—analogue of Kanplansky’s theorem.

§3.1. The construction of U(W; )—modules X(, a, 3)

Based on Proposition 1.1 in chapter 1, we introduce the following definition:
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Definition 1.1 g-analogue U(W,) of the envoloping algebra of the Witt
algebra is defined as the associative algebra with generators { J*',d,, | m € Z }
and the following relations:

(1.1) JIT' =717 =1, Jd,Jt = q™d,,,

(1.2) ¢"dndnJ — ¢"dpdnJ = [m — nld 40,
where m,n € Z.

Definition 1.2 A U(W,)-module V is called a Z-graded module if V =
®nezVn and din(v,) € Vg for myn € Z.

For every A € C*, we define an algebra isomorphism () of U(W,) as follows:

e(A) : JE o AED gEL dp — A" Nd,, form e 7.

'V = ®nezVn is a Z-graded U(Wy)-module with J(v,) = ¢"v, for all
n € Z and v, € V,, the{l we can construct three more modules from V: con-
tragradient module V := @,ez(V),, adjoint module V* := @,cz(V*),
and inverted module V?° := @&, ¢2(V°),,, where

(V)n := Hom(V,,C), J (V) :=q" - id;
(V)p := Hom(V_,,C), JI(V*)p:=¢™ " id;
(V) :=V_,, JNI(V®)p:=q¢ "-id
and the definitions of the operators d,, on V, V* and V° are the same as in [1].

It is easy to check that V is a Z-graded U(W,)-module and V *, as well as
V?,is a Z-graded U(W,-1)-module. As U(W,)-modules, (V*)° ~ V.

In particular, if V' = @®xezCus is a Z-graded U(W,)-module with the natural
Z—-grading and the following module action on V:

(13) J(vk) = qukv dn(vk) = a(qan, k)vn+k

where n,k € Z and a(g,n,k) € C, then we can describe the contragradient
module V', the adjoint module V* and the inverted module V° as follows:

(14) V = ®kezCus, J(v) = q*ui, dn(vi) = a(q, —n,n + k)vagi;

(1'5) V= ®rezCuk, J(vk) = quvka dn(vk) = '—a(q’n7 "'n_k)vn+k;
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(1.6) V° = ®rezCux, J(vi) = ¢ %o, da(vi) = —a(g, —n, —k)vntk.

For a,f € C, set
(1'7) a(q7 n, k) = ([k + a]qa + [Tl + 1][,3]qn+k) ,

where n,k € Z. Then (1.3) and (1.7) define a U(W,)-module action on
V(a, B) := @rezCus-
Let us check (1.2), i.e.

(1.8) ¢™dmdn(vi) — ¢"dpdm(vy) = [m — n)dmynd " (vi) for m,n,k € Z.

Let qmdmdn(vk) = Am,n,kvm+n+k, then qndndm(vk) = An,m,kvm+n+k- By
(1.7), we have

Amonk = q" 2%k + alln + k + o] + @™ HEFE 4 af[m + 1](8]
+ g™t n L 1[B]n + k + o]
+ ¢?m 242 [ 4+ 1)[m + 1][6)
It follows that
qmdmd,,(vk) — q"dpdn{vi) = (Am.nx — Anm k) Vmtntk
=([k + a)(g"***[n+ k + o] — ¢"*?**[m + k + q])
+ ¢ BI(g™ ek + allm + 1] + ¢%[n +1][n + k + a])
—(¢"t?lk+a)ln + 1]+ ¢ + 1][m + k + 0)))Vmtntk
=([k + a](—qg™*q%[m — n))
@B (—g ™ [m — n)lm + 1 + 1]))vmanak
=~ . —n)([k+a)g* + [m +n+ 1[Blg™ " )g Fvmints
=[m — n)dmind "' (v),
so (1.8) is true.

By the discussion above, we can construct the contragradient module V(a, 8)
from (1.4). By (1.7),

~ a(g,—n,n+ k) = [n + k + ala® + [-n + 1][Bl¢*

1—n n~1
=([n + k]¢> + [alg™" *)g* + [ﬂ]q—;—_:;g,——q"
=qn+k - q—n—k 2o + q2a -1 —n-—k + [,B]q ~n+k __ [ﬂ]q—l n+k
g—g 1 1 g—g! g—g-117 g—g 17
q "tk 2n —2k\, 20 20 —2k -1 _2n
=q_q_1((q — g7 ) +(¢** —1)¢™*" + [Blg — [Blg™"¢"")
—-n+k

=;1—:_-1-(—q-2" + (¢** - [Blga™")¢*" + [Bla)-
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Hence, the contragradient module V(«, 8) can be described as

V(a,B) : = ®rezCus, J(uk) = g ux,
(1.9)
dn(ur): = —([n + k + olq® + [1 — n][Blg"unsx
q—n+k

Iy (—q7%* + (®* — [Bla™M)e*" + [Bla)unts.

If we replace ¢ by ¢! in (1.5), then we get a Z-graded U(W,)-module
V(a, B)M):

V(e, )V : = ®rezCur, J(ug) := q*uy,
(1.10)
dn(ug) : = —a(qg™ ', n,—n — k)unqsx
=([-n — k+alg™ + [n + 1[Blg" yunts
—n+k
- _—qq_ q..l (___q—2k + (q—2a - Q[ﬂ])qzn + q“l [ﬂ])lln+k.

Similarly, if we replace ¢ by ¢! in (1.6), then, by (1.7)
a(g™, —n, —k) = —([~k + ag™ + [-n + 1]{B]¢"**)
= [k — a]g™* + [n — 1][B]¢"**

qk
(g7 + ¢ [Blg*" + (¢72> — q[A])) -

Cg—gq?
Choose a',3' € C such that
gl8']=g72" —g[8] and ¢** —q7'[B]=q7"[Al,
then we get a Z-graded U(W,)-module V(a, ) as follows :

V(a,ﬂ)(z) : = @rezCus, J(vi) 1= qFu,
(1.11)
dn(vi) : = —([n + k + alg™*™ + [1 - n][Blg"* *)vris
k
= —q—:q—q—:f(—q_zk +(&** — a7 [B)e*" + alB)vnti-
Finally, let us rewrite the Z-graded U(W,)- module as:
V{a,B) : = @irezCus, J(ve) := q*ux,
(1.12)
dn(vi) : = —([k + o]g* + 1+ n][ﬂ]qn+‘k)vn+k
k
q

p— (=g 2% + 9[B1¢°" + (4> — ¢ 7' [B]))vn+k-
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Let
v = q Fuy for k € Z.

By (1.9) and (1.11)
(1.13) V(a,B) = ®rezCor = V(a, 5)@.
If we choose o', B’ € C such that
g[8 = q7** —g[B] and ¢ —¢7'[B']=q¢7"(8],
then, by (1.10) and (1.12)
(1.14) V(a, B)V) = @rezCor = V(, 8).
(1.13) and (1.14) implies that the contruction which produces the module

V(a,B) (resp. V(a,B)V) does not take us out of the class of the Z-graded
U(W,)-module V(a, B)? (resp. V(a,B)).

Hence, for any (A, a,B) € C* x C x C, we can construct two kinds of Z-
graded U(W,)-module A(\,«,B) and B(), a, ) by using (1.11), (1.12) and
() as follows (where n,k € Z ):

A\ a, B) : = GkezCux, J(vg) := /\quk,

(1.15)
du(vi) : = =271 ([k + alg® + [L + n](Bl¢" ) vtk
A_l k
=~ qq_l (g7 + qlBlg®™ + (** — ¢ [B])) vntk
and
B(\ o, B) : = ®rezCuox, J(vi) = Ag¥ux,
(1.16)
da(vk) : = =27 ([n+ k + a]g" "™ + [1 — n][B]g"+*) vass
/\—1 k
- —# (—a™%* + (4% — ¢ [B))¢*™ + q[B]) vn+k

§3.2. The properties of U(W,)-modules X(\, «, )

In this section, we assume that ¢ is not a root of unity.
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Let X be A or B, we define
(X)) :={X(M\a,B)|(Na,B)eC*xCxC}.

A U(W,)-module V is said to be in cf(X) if V ~ X(\ a,B) (as U(W,)-
modules) for some X (\, a, ) € c€(X).

PROPOSITION 2.1. For any fixed h € Z, X(\,a,8) >~ X(Ag",a + h,5") as
U(W,)-modules, where ' € C with [§'] = [B]q?".

PROOF: Let
XA, a,8) = ®rezCvi and X(Ag",a + h,B') = ®rezCus.
We define a linear map ¢ : X(\, o, 3) = X(Agh, a + 1, 3') by
Qo Vg Up_p for ke Z.

It is clear that  is bijective. Now we prove that ¢ preserves the U(W,)-module
actions.

From

I (vk) = p(Ag*vr) = Ag¥p(vi)
= Ag*up—n = (A" )(¢* "ur_n)
= J(ur—n) = Jp(vi),

we get that o J(vr) = Jp(vg).
Let

g en([Blg** + /[B12¢**(q — ¢~ 1)? + 4) — ¢n(2)
o éng

3

then [8'] = [B]¢*".
If X = A, then, by (1.15)

A~1qF 2k 2 2 1
pdn(vr) = 7= (—¢7*% + q[Blg™" + (¢"* — ¢7 ' [B]))p(vn+x)
A—lqk X
l—— (—a7** + q[Bl¢*" + (¢** — ¢ [B))untk—n
hy~-1_k—h
~ _(/\(51 1 q(_ll (=g 2P 4 g[B'1¢*" + (2D — ¢ [B']) ) untk—n

= dn(uk—n) = dnp(vi).

41



If X = B, then, by (1.16)

k
pin(o0) = = 2L (=g 4 (2 = g B + alBDe(n)
~1 k
= q)‘— q—x( %% + (** — ¢ [B)G*" + a(B)tn+k—n
(/\qh) -1 k h

o (g (@D — g FDG + gl Dtk

= dn(uk—n) = dnp(vk).
This proves Proposion 2.1. §i

PROPOSITION 2.2. If ¢ € R, then U(W,) has an antilinear anti-involution 6
such that G(Jil) = J*! and 0(dn) :=d_, for alln € Z.

PROOF: Let F be the free associative algebra on the set { JX!, dm | m € Z}.
Let I be the ideal of F' generated by

J.'Ji—]-’ E'l_l’ lflﬂ_'l_—_l—qmd_m,

9" dm - dnd — q"dn - dmJ — [ — nldm+n,

where m,n € Z. Then U(W,) := ?

Define an antilinear map 6 : F — U(W,) by
0(J*1) = J, 8(dp) == d—m

0:az;-Ty...Ty > @Ty... L0,
where a € C, z; € { J¥,dp, | € 1}, z; := z; + I and ¢ is a natural number.

Then
0(uv) = 6(v)8(u) for u,v € F.

If ¢ € R, then [m] € R for m € Z. So

0(q™dmn - dud — qdy - dd) = g™O(D)B(de)O(dem) — 4" J)B(den)8(dn)
=gq"(Jd-pn)dom — ¢"(Jd_sm)d_n
=q"(¢""d—nJ)d—p —q" (g "d_pJ)d_»
=q¢" "d_p(Jd_pn) — ¢"""d_n(Jd_,)
=q" "d_n(¢gTMdonJ) — q" T dn(gT A T )
=q "d_pd_pJ —q Md_pnd_,J
= [m — nld_(m4n) = [m —n]0(dm4n)
= 0([m — nldm4n),
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or

0(¢"dm - dnd — ¢"dn - dmd — [m — n)dm4n) = 0.

Similarly, we have
0(J - J L —-1)=6(J"'-J-1)=6(Jdmd " — q"dm) = 0.

Therefore, 8 vanishes on I. This induces an antilinear anti-homomorphism
6 :U(W,) — U(W,) such that

0(Jx1)=J* and 6(d,)=d_, fornelZ.

It is clear that 6% = 1. So, 8 is an anlinear anti-involution. §

Definition 2.1 Let ¢ € R. A U(W,)-module V is unitary with respect to
6 if there is an Hermitian form < .| . > on V such that

<v|v>>0 forveV and v # 0,

) <z(u) |v>=<u|b8(z)v > for u,v € V and = € U(W,).

An Hermitian form < .| . > satisfying (*) is called a contravariant form.
Let X(a, ) := X(1, e, 8), then the following proposition is clear:
PRrROPOSITION 2.3. For (A,a,8) € C* x C x C, we have

(1) X(A, a,B) is reducible if and only if X(«, ) is reducible.
(2) If g € R, then X( )\, «, B) is unitary with respect to 8 if and only if A € R,
A # 0 and X(a, B) is unitary with respect to 6. i

Now we prove

PROPOSITION 2.4. Let X,Y € { A,B}. Then
(1) X(\,a,B) ~ Y(A\1,a;1,81) < there exist some h € Z such that A =
A1¢* and some Z-grading preserving isomorphism ¢ such that
¢:X(a,B)=Y(c,B"), where a' = a; + h and [B'] = [B1]¢*".
(2) Every submodule of X()\a,B) respects the Z-grading ot
X\ a,pB).
PROOF: (1). =: Let
X(Aa &, ﬂ) = ®k€zcvk7 Y(Alaala ﬂl) = €Bkelcuk1
’(/) . X(Aa Q,ﬁ) = Y(Al’al’ﬂl)v d)(vk) = aj uj, +--+ a; Uj ,
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where a;, € C* and j, # j, if s # t. That ¥J(vx) = J¢¥(vi) gives that
A= A;¢’ "k for all 1 < s < r. Because q is not a root of unity, r = 1. It follows
that

1/)('0};) = k)Y f(k)> where f(k) €z

Since ¢/(F)—F = :{\—’ f(k)—k = f(k')— k' for all k,k' € Z. Let h := f(k) — K,
then '
‘l/)(’vk) = Qk4hUk+h fecke 2.
By Proposition 2.1, 7 : Y(A1,a1,4) ~ Y(Aig*,a',B'), where o = a1 + h
and [B'] = [B1]¢**. Let ¢ := 51, then ¢ preserves the Z-grading and ¢ :
X\ a,8)~Y(\a',B). Using the automorphism ¢(A) of U(W,), we get that

¢: X(a,B) Y (d,p").
«: If X(a,B) =Y (a,8'), then

X\ o,B)~Y(N\d,8)
= Y(Alqhval + h, :3’) = Y(Alaa17ﬂl)’

(2) Let V be a submodule of X(A, a, 8) = ®rez Cvk.
IfveV, then

v = a;v; +...6;.9;,
where a;, € C* and j, #j: if 1 <s#t < r.

Applying the operator J to v, J(v),...,J""2(v), respectively, we get a system
with respect to a;j,v;,,a;,vj,,...,a; vj.:

v = a; vj + a;,v5, + .-+ a;,v;,,
’\-l'](v) = qJ‘(aJ'l v.ix) + qn(a.izvjz) +---+ qh(ajrvjr)’

..................

ATTD I () = (¢7) (@5 95) + (977) N ej,v5) + - - + (¢7) 7 (@5, v5,)-

The determinant of its coefficients matrix is a Vandermonde determinant with
respect to ¢!, ¢’,...,¢% . Since ¢+ # ¢’ for 1 < 5 #£ t < r, the determinant is
not zero. Thus each of the aj,v;, (s = 1,2,...,r) can be expressed as a linear
combination of v, A"} J(v),..., A"~V J™=1(y) e, ajvj € V, or vj, € V,
proving (2). B

The proposition above tells us that if ¢ is not a root of unity, then in order to
study the properties of the U(W,)-module X (), a, 8), it suffices to study the
properties of the U(W,)-module X (a, 8).
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PROPOSITION 2.5. Let (a,8) € C x C. Then B(a,B) € cl(4) > ¢q2+! +
(¢* —D)[Bl #0.

PROOF: <=: Since ¢?**! 4 (¢* — 1)[B] # 0, we can find (a’, ') € C x C such
that

¢** —q7'B'1=qlB] and q[f]= ¢ — ¢ '(4].
Hence, B(a, B) = A(a', 8') € c€(A) by (1.15) and (1.16).
=: If B(w,B) € cf(A), then , by Proposition 2.4, there cxists a Z-grading

preserving isomorphism ¢ such that

¢ : A(a', ') ~ B(a, B) for some (a’,') € C x C.

Set
A(d, ') = @rezCuy, B(a, ) = ®rezCux,
p(v}) = arvg, where ax € C,
and
(2.1) Gap i=q"" =g '[Bl, bapi=ass—1, c5:=q[B]~1

Using (1.15), (1.16) and ¢d,(v}) = dnp(v}), we have

(2.2) (=2 +q[B'ly + aarp)anti = (—7 + aapy + q[B])ax,

where

x =g 2k and y:i=gq

It follows from (2.2) that

2n

(2.3) (barprz + q[B'1Y)antk = (cpx + anpy)ao,

(2.4) (barprz + q[B'])ar = (cpz + aag)ao.
Mutiplying the both sides of (2.2) by

(barprz + q[B')y)(bargr z + 4(B'],
we get by using (2.3) and (2.4)

(—z + q[B'ly + aar g M cpz + aapy)(barg x + q[B')])
= (—x + aagy + 9[B])(barpr = + q[B'ly)(cpz + ang).
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Comparing the coefficients of z2y and zy? gives us the following identities:

(2.5) —aagba'ﬂo + q[ﬂ']Cgbalﬂr = —q[ﬁ']cﬂ + aaﬂbaoﬁ:cﬂ,

(2.6) [3'laagbarp = [B'lcpaas-
Let n = 0 in (2.2), we have

(2.7) q[ﬂ’] + Anr g = q[ﬂ] + aaﬁ.
¢ If anp = 0, then [B] = ¢?**! by (2.1). Hence,

q20+1 + (q4 _ 1)[3] — q2a+5 7é 0.

e If asp # 0 and [B'] # 0, then, by (2.1) and (2.6), we get

(28) % — ¢ (8] = qlB]-
It follows from (2.7) and (2.8) that
(2.9) ¢*® — q7'[B] = q[B'].

Using (2.8) and {2.9), we have that

0 # ¢** = ¢~ [8'] + q[B]
= ¢7*(¢** — ¢ [B)]) + 4[B]
= ¢ 3(g*** + (¢* — 1)[B]),

so g2+ + (¢* —1)[B] # 0.

e If ang # 0 and [B'] = 0, then borgr # 0 by (2.4). It follows from (2.5) that
cg = —1, i.e. [B] = 0. Hence,

@M +(¢* - D[Bl =g £0. B

PROPOSITION 2.6. Let ¢ be a Z-grading preserving linear map and
a,f,0,8' € C. Then ¢ : A(a,B) ~ A(a,B') if and only if one of the fol-
lowing conditions holds:

(1) ¢** = ¢** and [] = [8'];

(2) (¢** = 1)(¢*>* —1) # 0 and [B] = [8'] = 0;

(8) ¢*F = [B] = >, [#'] =0 and ¢**" ¢ {** | k€ Z};

(4) M =[B]=g¢%"1, [8] =0 and ¢>* ¢ {¢** |k € Z}.
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PROOF: Assume that ¢ : A(a, 8) ~ A(a', 8'). Let

A(a, ﬂ) = @kezcvk, A(a',ﬂ') = @kezcl);‘,
e(vk) := apvy, where k € Z and ax € C*,

and aag, bag defined by (2.1).

Using (1.15), ¢dn(vk) = dnp(vi) and the same argument as the one in the
proof of Proposition 2.5, we have

(2.10) (bapz + g[Bar = (barpx + ¢[B'])ao,

(—z + ¢[Bly + aap)(bapz + q[B])(barpr = + q[B']y)
(2.11) =(—z + q[B'ly + aa g )(barp' + q[B'])(bupz + q[Bly),

where z := ¢~ 2% and y := ¢".
Comparing the coefficients of zy, %, z and y in (2.11), we get

(2.12) a[B1barp + [B'laapbas = (8’1 bap + [Blaa: g bar
(2.13) [B1°(8') = [B'1*[8),

(2.14) [Blaagbarg = [B'laasgrbag,

(2.15) (B][B'laas = [BllB']aar -

s if {B][B'] # 0, then (1) follows from (2.13) and (2.15).
o If [3] = [B'] = 0, then, by (2.10)
(@** — Dar = (¢** — 1)ao.

So ¢?* —1 =0« ¢2 —1=0, i.e., either (1) holds, or (2) holds.

o If [,B] # 0 and [3'] = 0, then [,B]aaﬂba:ﬂr =0 by (214) Since bOl'B' 7é 0 by
(2.10), aop = 0. Hence,

(2.16) >t = [B] = >

3

whes+ the last equation in (2.16) follows from (2.12).
By (2.10), we have

(_q—2k + qz"")ak = (baﬂz + Q[,B])ak = ba.ﬂ:zao -j/- 0
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for all k£ € £. This implies that
(2.17) ¢ ¢{¢* | kel}.

(2.16) and (2.17) implies that (3) in Proposition 2.6 holds.

e If [3] = 0 and [3'] # 0, then [#'lag gbag = 0 by (2.14). Since bag # 0 by
(2.10), aqrgr = 0. Hence,

(2.18) gt =[] = ¢*"1,

where the last equation in (2.18) follows from (2.12).
It follows from (2.10) that

P ¢ {q*|kel}.
By (2.18) and (2.19), (4) in Proposition 2.6 holds.

Conversely, if one of the conditions in Proposition 2.6 holds, thenn the Z-
grading preserving linear map ¢ defined by

(® — a7 [B'] —1)g~2F + 9B .
(2> — g~ 1[B] — 1)g=2k +¢[B] *

is an isomorphism from A(a, ) to A'(c’,5'). R

forkelZ

plox) =

PROPOSITION 2.7. Let ¢ be a Z-grading preserving linear map and
a,B,a',38 € C. Then ¢ : B(a,) >~ B(a',8') if and only if one of the fol-

lowing conditions holds:

(1) ¢** = ¢*>* and (8] = [8');

(2) ¢** =q71[8], q2°' = g~ '{B'] and (¢q[B] — 1)(¢[B'] — 1) # 0;
(3) ¢***! =[B] =¢** 7}, [8'] =0 and @ ¢ {g* |kel};
(4) ¢®* ' =[B]l=4¢%", [Bl=0andg®** ¢ {¢** | ke Z]}.

PROOF: Assume that ¢ : B(a, ) ~ B(a'3"). Let

B(CY, :B) = ®k€zcvka B(ala IB') = GBkeZCU;w
o(vg) = axvg, where k € Z and a; € C*,

and a,g, ¢z are defined by (2.1).

Using (1.16), @dp(vr) = dnp(vi) and the same argument as the one in the
proof of Proposition 2.5, we have

(2.20) (csz +acglar = (cpgx + aqrpr)ag.
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(=7 + aagy + ¢[B))(cpz + anp)cp T + aarpy)
(2.21) =(—z + aargy + q[B')cpz + aap )(cpz + aapy)-

Comparing the coefficients of z2, ry, y?, r and y in (2.21), we get
P E y g

(2.22) —cgraap + q[Bleges = —cgaarg + q[Blesey,
(2.23) cprang + alBlepan g = cpad p + glB'lcpraas,
(2.24) A% gGatpt = A% Gag,

(2.25) [Blacacg = [B'laa g cp,

(2.26) (Fansia g = [B'lacgaa g -

o If angaqss # 0, then (1) in Prepositiopn 2.7 follows from (2.24) and (2.26).
o If Ao = aorgr = 0. theo o 1 72.20)
(¢i] = 1ar = (¢{8'] — ae.
So (q[fl —1) =0« ¢[3'] -1 =0, i.e., either (1) holds, or (2) holds.

eIfa,z =0and ay, o # 0, then

(2.20) = Cg 95 0.

(2.25) = [B'] = 0.

(2,23) = q[IB}Cﬁaalﬂl = cﬂa?l'ﬂ' = q[lB] = Qqrgr = q2a' = [ﬁ] - q?a'_l.

aog = 0 = [B] = ¢?*F.

Furthermore, by (2.20)

0 # cpzax = {cprT + aarpr)ao = (—q72% + ¢** ing = ¢**" 3 ¢72*,
where k € Z, i.e.,
@ ¢ (¢ |kez}).
So (3) holds in this case.
e If any # 0 and aq g = 0, then
(2.20) = cp # 0.
(2.25) = [B'] = 0.
(2:23) = cpagg = qlB'lep aap = ¢ = aap = q[A') = [A'] = ¢* 7.
aap =0=¢" ¢ {¢* |keZ}
(220; > g* ¢ {¢** |keZ}.
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Hence, (4) is true.

Conve sely, if one of the conditions in Proposition 2.7 holds, then the Z-
grading preserving linear map ¢ defined by

_ @B =g * + (% —¢ B, .
P(ok) == B T (g —gTIA] for k € Z

is an isomorphism from B(a,3) to B(a',5'). B

PROPOSITION 2.7. For (a,8) € C x C, we have

(1) A(a, ) is reducible < either ¢?* —¢?* = [B] = 0 or g?*+! = [B] = ¢~ %}
for somet € Z.

(2) If B(a, ) ¢ cf(A), then B(a, B) is irreducible.

PROOF: (1).= : Let N be a non-zero submodule of A(a, 8) with N # A(«, B).
Then N is a direct sum of some of the 1-dimensional subspace Cvj. Let v, € N.

e If there exist two distinct vectors vy, and v, (m # n) in A(a, 8) \ N, then,
by (1.15)

t

N 3 dmoi(v) = — L (=07 +alBl* 0 (67 = g7 B))om,
t
N 3 dui(ve) = ~ _qq_, (=g +q[B1g*" ™Y + (¢°* — a7 [B]))vn.
Hence,
(2.27) —q7 % + q[B)*™ Y + (¢** — ¢~ [B]) =0,
(2.28) ~q7 % + q[Bl¢* ™Y + (¢** — ¢ [B]) = 0.

It follows from (2.27)—(2.28) that [3] = 0. Going back to (2.27), we get that
¢%?* = ¢~?! and t is unique. In other words, N = Cuv, in this case.

e If N = ®rezCui, then we choose vy, v, € N with m # n. By (1.15),

kF#t
N3 de—m(vm) =~ f:-l (—g7%™ +¢[Blg°* ™™ + (¢°* — ¢ [BD)ve,
N 3 de—n(vn) = — q;_, (—q72" + q[B1g* ™™ + (¢** — ¢ [B]))ve.

q —
Since v ¢ N, we have to have

(2.29) _q—-Zm + q[B]qﬂt-—m) + (q2a _ q—l[ﬂl) — 0,
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(2.30) —¢7*" + q[B1* ™™ + (¢** — ¢ MB]) = 0.

It follows from (2.29)—(2.30) that

(g7 — g7 ") (¢ [B - 1) =0,
or
q2t+1['3] = 1.

Going back to (2.29), we get
" =[B].

(1).<=: If ¢** — ¢72* = [B] = 0, then Cuv, is a submodule of A(a, 3).

If g?o+! = [B] = ¢72*"!, then DrezCux is a submodule of A(a, B).
k£t
Therefore, A(a, ) is always reducible in these cases.

(2). If B(a,B) ¢ cf(A), then, by Proposition 2.5,
(2.31) ¢t + (! — 1B =0.

Assume that N 3 0 is a submodule of B(a, ), it follows from Proposition 2.4
that N = ®resCvy for some non—empty subset S of Z.

o If there exists v, ¢ N and v, ¢ N with m # n, then by (1.7 .

k

—_— q 2k 20 __ —1 2(m s i
N3 dpok(on) = = (a7 + (@* ~ ¢7'[B])q ) v,
qk { . k
N 3 dui(ve) = e \_q_zk +(¢** — ¢ B + q{ﬂ]) Vi,

where vg € N. So the coefficients of v,, and v,, have to be zero. This implies

that ¢?* — ¢~ !'[8] = 0. Going back to (2.31), we get that [3] = 0, which
contradicts (2.31).

o If Z\ S = {s}, then we can choose v,, € N and v, € N with m # n. As
above, it follows from d,_;,(vm) € N and d,_p(v,) € N that [8] = 0, which is
impossible. §

For t € Z, we define

Ale,B) o 24 _ -
Lol g — g = [f] = 0
Ala,B) = Coe S v

®rezCog, if ¢2°H! = [B] = ¢~ 21,
k£t
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Then, A(a, ) is an irreducible U(W,)—-module by the proof of (1) in Proposi-
tion 2.7.

PROPOSITION 2.8. Let ¢ € R, then with respect to the antilinear
anti-involution 8 of U(W,),

(1) A(a,p) is unitary <=> ¢ > 0 and ¢?* = ¢~ '[B] + q[B].
(2) A a,B) and B(a, B) are not unitary, where B(o, ) ¢ ct(A).

PROOF: (1). =: Assume that A(a,8) = ®rezCuvx is unitary and < .|. > the
contravariant form on V. So

< dm(vk) |ve >=< vi | d_mn(ve) > for m,k,L € Z.

Let n := € := m + k, then we have, by (1.15)

¢* (=g + q[Bld* " +(¢** — ¢ [B]) < vn |vn >
(2.32)

=q" (~g7" + qlBlg ™"+ + (%= — ¢ [BD) < vk | vk >,
where n,k € Z. Let k = 0 in (2.32), we get
(2-33) (q[B1g°" + bag) < vn | v, o= ¢™(Caa ™" +Tap) < vo | vo >,

where aqg, ba,s and cg are defined by (2.1).
It follows from (2.32) and (2.33) that

(—z + q[Blzy + aap)(basz + 4[B])(@apy + 5)

(2.34) = (—z + @apzy + 9[8])(Tsz + Tap)(a(Bly + bas),

where r := ¢~%¥ and y := ¢2". Comparing the coefficients of r2y, zy and y, we
get

(2.35) —@apbap + qBCabas = —qlB)CF + Cpaagbap,

(2-36) ¢*[B)°CF + @apl@apdap = Tap bas + ¢°1B)(BlE7,

(2.37) [Blaasdas = qlBlIBlaas-

Suppose that [3] = 0, then ao3 = ¢** # 0, cg = —1 and b,s # 0 by (2.1) and
(2.33). It follows from (2.36) that asg = @55. So (2.33) becomes that

(P =D < v, |va >=q¢(@** —q7 ) < vy | vo > for n € Z.
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2a 4n

This implies that f(n) := q?':_‘l_l__ > 0 for all n € Z, which is impossible

because f(n)f(—n) < 0 for large n > 0. Therefore, we have proved that
[8] # O.

Similarly, we can prove that a,z # 0 by__using (2.35). L

Going back to (2.37), we have a,g = q[B], i.e. ¢°* = ¢~ (3] + ¢[A).

Finally, choose an odd ng¢ € Z such that ¢[8]¢®™ + bas # 0, then (2.33) gives
that

< VUp, I Uny >= g " < v I vo >,

which imllies that ¢ > 0.

<«=: Define a Hermitiam form <.|.> on V by

< vp vy, >i=6umge™" foralln,me Z.

It is easy to check that < .| . > is a contravariant form.

(2). Assume that 4,(a, 83) is unitary, then, using the same argument as above,
we can get

a** = q7'[B] + q[B].

which is impossible because we have either ¢?* —¢2* = [8] = 0 or ¢2°*! =[] =
g~%'~1. This proves that A,(a, ) is not unitary.

Finally, we prove that if B(a, ) € cl(A), then B(a, ) is not unitary.

Suppose that B(a, 8) has a contravariant form < .|. > and < v{v >> 0 for
0 #v € B, then

(2.38) < dm(vg)|ve >==< vi|d—m(ve) > for m,k, ¢ € Z.
By (1.16) and Proposition 2.5,
qk 2k 3 2 .
(2.39) dn(v;) = —q—:F(—q" + ¢” [Ble°™ + q[A)vn+; forn,j € Z.
Let n := € :=m + k, then, by (2.38) and (2.39)
qk(_q—-'Zk +q3[ﬁ]q2n—2k +Q[ﬂ]) < vnlvn >
=qn(_q—2n +q3[—ﬂ']'q—2n+2k +Q[ﬁ]) < 'Uklvk > .

Let n = k in (2.40), we get

¢*18] + ql8] = ¢*[B] + ¢[B] or (8] =3I
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Hence, (2.40) becomes

g5 (—g7 % + ¢®[Blg*"~%* + ¢[B]) < valvn >
(2.41) =¢"(—¢7 " + ¢*[Bla 2" *** + ¢[B)) < vlvk > .

Using (2.41) and the same argument as the one in the proof of (1), we have

(—z + ¢*[Blzy + ¢[B)(qlBly + (¢*18] — 1))((alB] — )= + ¢*[B])
=(q[Blzy — = + ¢*[BN(¢*[8] - D)z + q[B))(¢*[Bly + (4[] — 1)),

where = := ¢~ %% and y := ¢?". Comparing the constants in the equation above,

we conclude that

g[8l - (18] — 1) - ¢* (8] = ¢*[B] - qIB] - (¢[B] — 1).
Since [3] # 0, ¢® = ¢, i.e., ¢ = 1, which is impossible. §

§3.3. g—analegue of Kaplansky’s theorem

LEMMA 3.1. Let q be not a root of unity, then for all integers n and all positive
integers s, we have in U(W,)

—en [27][s7]
[]

+ [sn]{(s — n]d*} T 2.

dod?, = ¢ *"d% dn +q Al ded !

PROOF: We use induction on s. It is clear that the Lemma is true for s = 1.
Now we assume that the Lemma is true for s, then

dnda_-t‘l - (dndin)d-—n
— (q—2nada_ dn + q—an Lg_'ll_[_f_n_]da—ldoJ—l
" ] 7"
+ [sn][(s — Dn]d* 1T ~2)d_,
=g~ 2*d? (g7 2"d_ndn + ¢ "[2n]doJ )
+ [sn]{(s — 1)n]¢*"d> T2
—an [27][sn]
[z]
= g g g g~ (g=on (] 4 glen)) 2 g dp

[]

+q d*1q" (¢ " d_ndo + [n]d_J V)T T}

+(g7C7V"[2n] + ¢*"((s — D)) [snld

= g InletDgitlyg, 4 g=(s+n ot [112]711[272] d2 ,doJ !

+ [(s + D)n}[sn]d>,,J 2.
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This proves the Lemma. B

THEOREM 3.2. Let ¢ be not a root of unity and V = @rezCrvx a Z-graded

U(W,)~module with J(vi) € Cuvy fork € Z. If dy and d_, are injective operaiors
onV and 1

q9—4q
then V >~ A()\, a,8) or V >~ B(\, a, B) for some (\,a,8) € C* x C x C.

(Jdyd—3J — Jd_1dy T)(vo) #

—T Vo,

PROOF: Since J(vi) € Cug, dy(ve) # 0 and JdiJ "' (vi) = gd;(vr), there exists
some A € C* such that J(vi) = Ag¥v, for all k € Z. Using the automorphism

¢(A71), we can assume that A = 1, in which case, we will prove that either
V ~ A(e,B) or V ~ B(a, ) for some (a,8) € C x C.
Set
do(ve) = avy, did_, vj) = z;v;, d_,d,(v;) = yjvj,

where a,z;,y; € C and j € Z. We consider the system (i) with respect to a
and gG:

(3.1) —([ala® + [8)) = a,
(3.2) lalg® (l — 1]g™ + [2][B]) = =0

and the system (27) with respect to a and j3:

—([alg® +[8) = q,
(3.3) [o + 1) ([ + [2][Bg) = wo.

First, we assume that there exist a and 3 such that (¢) holds. Using induction
on j and (3.1) gives us

(3.4) do(v;) = —([a + jlg* + [Blg’)v;  forj €L
Since (gd1d_1J — ¢~ 'd_1d1 J)(v;) = [2]dov;, we have by (3.4)
(35) ¢z — ¢y =~ (2l +jl¢* - [2][8l¢’  forj € Z

Furthermore, computing did_;d;(vj—1) in two ways produces the following
relation between z; and y;:

(3.6) T; = yj—1 for j € Z.
Going back to (3.5), we get
37) Pt - e = —Plla+ il — 2Bl forjel.
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Now we claim that
(3.8) z; = [a +jlg*([a +j — 1]g™ + [2][Bl¢’)  forje€Z

By (3.2), (3.8) is true for j = 0. Assume that (3.8) is true for j, then (3.8)
is also true for j + 1. For example, let us prove that (3.8) is true for j + 1. By
(3.7),

ziv1 = ¢°z; + [2le + 7)g® 7+ + [2][Ble
= ¢*la + jlg*(la + j — 1]¢* + [2][8l¢°) + [2)[@ + 71g*~7** +[2](Ble
= [a + jlg®*(®le + 5 — 1] + 2777 F)
+ [2][Ble*([a + j1¢**7 +¢* ™)
= [a + jl¢**[a +j + 1] + [2](Blg°¢" ' [ + j + 1]
= [ +j + 1]g°([a + jlg* + [21[Blg’*).
Hence, (3.8) is true for all j € Z by induction.

Let j = 1 in(3.8), we get (3.3). So we have proved that if a and g satisfy (2),
then a and g also satisfy (z).

Similarly, we can prove that if o and g sutisfy (ii), then a and 3 also satisfy
(2)-
Now we prove that either (¢) has a solution or (i¢) has a solution.

Choose 3, 8' € C such that

(3.9) (=a = [B])((—a—[BD)g™" — 1 + [2][8]) = =0,
(3.10) ((—a —[8Tg + 1)((—a — [8']) + [2][8']9) = vo.
Suppose that both (Z) and (i7) has no solution, then we have to have
q2a -1 )
(3.11) - (q—q"‘ +[B]) #a for all a € C;
(= ) e foranl o
(3.12) (q 4 + {8 ]) # for all o' € C.

2 ___
In fact, if — (‘1 -
q9—q

(2.1). Hence, by (3.9)

+ [,B]) = a for some a € C, then a and j satisfies

zo = [a]g*([alg® - ¢~ — 1+ [2](8])
= {ag®([a — 1]¢* + [2][B]),

56



i.e., o and f also satisfies (3.2). So (a, B) is a solution of (7), which contradicts
our assumption. This proves (3.11).

q2a' -1
Similarly, if — (q—_—q—_— + [,3']) = a for some a' € C, then
~(fo's ¢ +[B) =a
and, by (3.10)
yo = ([a']g™ - g+ 1)([a']¢* + [2][8')q)
= [& +1]g*' ([o']g*" + [2][8']q)-

Hence, (o, 8') is a solution of (iz), which is impossible by our assumption.
So (3.12) holds.

It follows from (3.11) and (3.12) that
(3.13) 8] =[8'] =
By (3.9) and (3.13), we have

o = (—a—[B))(—aq™! -1+ ([2] — ¢71)[B])
= (—a—[B])(—aq™! — 1+ q[B)])
1 . 1
T Tg—g¢ 7 (_aq ~1te g—gq! _a)>

1

g—g! (—a(q+q—l) * (—1 T3 —QQ“)>

—1

=—— (—a(q+q")+ ? )

1
g—gq!

— .

9—q q—q~!
= e - - g,
ie.,
(3.14) a(¢® —¢7%) —¢7! = (g - ¢ ") 0.

By (3.10) and (3.13), we have
Yo = ((—a—[#g + 1)(~a+ (2g - D[

() (v ()

—1 2
q 2 q
= — la(¢*+1) — _)
q-q‘(( qg—q!

(q—_l;_—,)-z‘(a(qz ~q7%) —9q),

Il
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i.e.,
(3.15) a(g® —q¢7*)—qg=1(a-97")v-
(3.14)—(3.15) gives us

g—qg ' =(g— g ") (zo — %),

or
1

9—q~’

which contradicts the assumption in Theorem 3.2. This proves that either (7)

has a solution or (zz) has a solution. Therefore there exists (o, 8) € C x C such
that (2) holds.

Using (3.4) and (3.8), we can choose a basis of V, say {vi | k € Z}, such
that

= o — Yo,

(3.16) da(v;) = —([a + 71¢* + [n + 1][Bl¢" 7 Jvn+;,

where n = 0,+1 and 7 € Z.
For j € Z, set

d2(vj) := e(J)vj+2, d_2(v;) := g(j)vj—2,

(3.17) e(7) : = f(3) — ([j + alg® + B1(Bl¢"*?),
(3.18) 9(3) : = h(j) — (Ij +ale® — [Blg"™?),

where e(j),9(7), f(4), h(s) € C.
Using (3.16) and following identities:

(qzdgd..lJ bt q_ld_ldzJ)('Uj) = [3]d1 ('UJ‘),
(¢72d_2dyJ — gdyd_2J)(v;) = —([3)d_1(v;),

we get
¢* T a4 + 2e(§) — " o + jle(G - 1) = —[3)([e + jlg™ + [2[Ble’*),
¢’ (la+ 5 — 2lg* + [2][Bla")e(5)
— ¢ ([ + 7lg” + [218lg7 " )9(5 + 1) = [3][e + j]g*.
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It follows from (3.17) and (3.18) that

l[@+37+21f(5) = Pla+51f(7 — 1),
([ +51¢* + 2Bl THRG + 1) = ¢*(a + 5 — 2Jg™ + [2)[Blg" )R (H).

These identities imply that

(3.19)
o Yo+ 1]la+ 2]
£G) = [+ + 1fa+J +2]f(0)’
(3.20) _
h(j) = ¢*([a = 1}g* + [2)[B])([a — 2]9* + [2}[Bl¢™")

o +7 —2l¢= + RIBle- (e + j = Tl + 2IEle7) O

where 7 € Z. Note, that denominators in (3.19) and (3.20) are non- zero follows
from (3.16) and d4;(v;) # 0 for all j € Z.

Let z := g77[j]. We can rewrite (3.17)—(3.20) as follows:

(3.21)
g77e(j —2) =q7If(5 — 2) — (g®z + [a — 2]¢* + [3][A]).
(3.22)
a779(3) = ¢77R(5) — (= + [a]g™ — [Blg™2).
(3.23)
—ipy _ ¢ % a + 1}[a + 2]£(0)
R O P O | o 1 i P ey oy o e
(3.24)
aTh() = (lo — g + [2][B])([e — 2]g* + [2}[Blg")R(0)
(gz + [@ — 1]g™ + [2][B])(¢%2 + [a — 2]¢* + [2][Blq¢~ ")
where j € Z.

By Lemma 3.1 and a direct computation, we can get
(3.25) g7e(1—-2)-¢77g(j) =2 + ez + 2 for large even j,

where ¢; and c; are complex numbers, which are independent of j.

Using (3.21)—(3.24), we have

(3.26) e -0 =~ F g =~



where

Ry :=(z+[a—2]¢° %+ 3][Blg7%)(z + [ + 1]¢°° — [2]¢g7?)x
X (z + [@ +2]g°~2 — [2]¢™?)
— ¢** %l + 1o + 2]£(0),
Ry :={z+[a+1]¢"° - [2l¢7?)(z + [a + 2]g°~? — [2]¢7?),
Ty : = (z + [alg™ — [Blg™%)(z + [a — 1]¢*7! + [2][Blg ™) x
X (z + [@ —2]¢>2 + [2][Bl¢™?)
— ¢ %([a — 1]¢* + [2}[B])([a — 2]¢™ + [2][Blg ™" )R(0),
Ty : = (z+ [a— 1]g* 7 + [2][Blg ™)z + [@ — 2]¢* 2 + [2][Blg2).

(3.25) implies that as the polynomials with respect to z, we have
(3.27) RyT, divides R;Th

Now we have two cases to discuss:

¢ Case 1. f(™2(0) = 0, in which case, either f(0) = 0 or g(0) = 0. I
f(0) = 0, then {3.27) becomes

T, divides (z 4+ [a 272 +[3){Bl¢")T1.
It follows that

(3.28) _ ¢*(la — 1]g° + [2][BD(= — 2]g* + [2][Blg ™" )h(0)
. .

is a polynomial of z, hence, it is zero. Since dy(v-1) # 0 and d;(v—2) # 0, the
coeflicient of h(0) in (3.28) is not zero. So we have to have h(0) == 0.
Similarly, if 2(0) = 0, then we also have f(0) = 0.
Therefore, f(0)g(0) = 0 implies that f(0) = ¢(0) = 0. By (3.17)—(3.20),
(3.16) is also true for n = *2 and j € Z. This proves that V = A(«a, B) because
U(W,) is generated by { J*!,do,d+1,dx2 }.

e Case 2. f(0)g(0) # 0. Since d4,(v;) # 0 for all j € Z, the coefficients of
f(0) and ¢(0) in R; and T} are non—zero. It follows from (3.27) that R, divides
T1 and T2 divides R], ie.

T =(z+[a+Ug"™® - 2lg7)(z + e+ 2] — 2g7*)(2 + G)
Ry = (z+[a—1)¢"" + [2[Blg™" )z + [o — 21¢° 7% + [2)[Blg*)(= + H)
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where G, H € C. Comparing the coefficients of 22, we get

=[a—2]¢°* + [3][Bl¢™%,  H =¢°a] - [Blg%
Going back to (3,26), we have
q7e(d)
(2 + [+ 2]g**2 — [Blg*)(= + [+ 1]g°*! + [2][Blg°)
(z +[a+1g* 1 )(z + [o + 2]g=+2)

(3.29)
x (z + [a]g™ + [2](Bla),
9779(5)
__(ztla+1]g*70 — 2¢7%)(z + [a +2]¢"7% — [2]g72)
(z +[o = 1)g* + [2][Blg ! )(z + [a — 2]¢~~2 + [2][Blg~?)
(3.30)

x (z + @ —2]¢* 7% + [3][Blg™?)

for large even j. In particular, the rational fuction g~ 7¢e(j) of z and the rational
fuction of the right side of {3.29) take the same values at infinitely many different
points:
{q77[4] | for large even j }
It follows that (3.20Y is true for all y € Z.
Similarly, (3.30) is alsc true for all 7 € Z.

Now we choose ag = 1 and ¢; € C* for j € Z such that

a5+k z+ [a+ k + 1]gotk+? o
31 i+ — for i ke Z.
(331 Cjrk+1 2z + a4 k]gotk + [2]{3]q1 +2F er j,k €
Set uJ = ajvj) we get
(3.32) Jn(uj) = _ql(z -+ [Ol + n]qa'f-n + [1 . 71}[,3]q")un+j

= —([a+n +71¢"*" +[1 ~ n][Blg" 7 Jun+;

forn =0,%+1,+2 and j € Z.
For example, let us check that (3.32) is true for n = 2 and all j € Z. By
(3.31), we have

(3.33) aj (z + [a + 1]g* ) (2 + [a + 2]¢°*?)
oivz (2 + [o]g® + 2][Bla)(z + [ + 1]g*+! + (2][8lg*)
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(3.29) and (3.33) imply that
aj+2
i (z +[a +1]g** )z + [o +2)¢) 9
T =+ [ale® + 2IBle)(z + [a + 1]g°+T + [2][8]¢®)
L Erlat 2]q°*2? — [B]¢®)(z + [a + 1]¢**! +[2][Bl¢*)
(z + [a + 1}go+1)(z + [& + 2]g>+?)
x (z + [a]g®™ + [21[Blg)uj+2
= —¢’(z + [a + 2]¢°*? — [Blg®)u,42-

da(u;) = a;(v;) = aje(j)vjsz = ¢’ g e(j)us+2

Thercfore, V = ®nezCu, = B(a, 8) by (3.32). 8
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CONCLUSIONS AND SOME OPEN PROBLEMS

After finishing this thesis, I become aware that a group of physicists have
also begun to study g-deformations of the Virasoro algebra in their papers: {1],
(3], [4], [5], [6] and [9]. Comparing these physicists’ papers with my thesis, 1
find the following facts:

1. In spite of physicists have several methods of constructing the quantum
Witt algebra, none of these methods is the same as my methord of constructing
the quantum Witt algebra.

2. Although the authors of {1], of [4] and I independently discovered the ¢
deformation of the Virasoro algebra under the condition that ¢ is not a root of
unity, the methods of computing the g-analogue of the Virasoro algebra central
term are the same one, which is a g-version of the method of computing the
Virasoro algebra central term in [2].

3. Physicists’ work in (1], [3], [4], [5], [6] and [9] only overlap some work in
Chapter 1 of this thesis.

4. Let Uy(W) be the associative algebra generated by {d,, | m € Z} with
relations:

q"  "dmdn — ¢" " " dpdm = [ — n]dp 40 for m,n € Z.

‘This algebra was construcred by T. L. Curtright and C. K. Zachos iu [6]. Using
Definition 1.2 in Chapter 3 to define a Z-graded U,(W ) module, I note that
V = @nrezVn is a Z-graded Uy(W)-module if and only if V is a Z- graded
U(Wg)-module with J | V;, = ¢™-id. So we can restate those results in Chapter
3 in terms of the algebra U,(W).

The facts above show that the work in this thesis has physics background.
Recently, I have found that quantizing the Kac Conjecture proved by C.Martin
and A.Piard in [8] is in connection with g~-Gamma functions. Therefore, study-
ing the quantization of the representation theory of the Virasoro algebra is
closely related to both physics and some other areas in mathematics. The work
in Chapter 3 is just a beginning on quantizing the representation theory of the
Virasoro algebra, but it make me to believe that the work produced in devel-
oping the g-analogue of the representation theory of the Virasoro algebra will
interest both physicists and mathematicians. In addition to this, studying the
structure of quantum Lie algebras is also a quite interesting problem. I would
like to conclude my thesis by proposing the following open problems about the
structure of quantum Lie algebras:
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Problem 1: Classify all complex finite dimensional Z-graded simple quantum
Lic algebras.

Problem 2: Let L = @neczLln be a quantum Lie algebra. If ¢* # 1, then

L_, i = -usdule over the Lie algebra L,. Therefore, one natural question is
thet " ¢ ag the analogue of the Theorem in [7] for quantum Lie algebras. In
oti:.  ..zds, find all complex infinite dimensional Z-graded simple quantum

Lie algebras L = @nez L, which satisfy the following conditions:
(1) dim(L,) < oo, for all n € Z.
— fn(dim(L,))
(2) lim, - tnln 0o.
(3) L_; ® Lo @ L, generates L and the mondule L_; over Lie algebra Lg is
irreducible.

Problem 3: Is the quantum Witt algebra the unique complex infinite dimen-
sional graded simple quantum Lie algebra L = @,z L satisfying the condisions
(1) and (2) above if g" # 1 for r=3,4,6,8 and L_; @ Lo @ L, does not generates
L?
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