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Abstract

The search for particle dark matter has been ongoing for several decades to date,

without any conclusive evidence of detection events. While large, tonne-scale experi-

ments accumulate exposure (larger masses and longer data taking) in hopes of finding

this elusive signal, other experiments are expanding the search to include novel de-

tector technologies and non-traditional dark matter candidates. Even more so than

usual, it is critical to have a robust understanding of the physics of these detectors

to make a credible claim of discovery, or to exclude the existence of dark matter.

Among these are the NEWS-G and SBC collaborations, which utilize spherical

proportional counters (SPCs) and scintillating bubble chambers (SBCs) respectively.

This thesis presents the progress made in the characterization and understanding of

the physics relevant to both technologies. This includes measurements of the ion-

ization yield of SPCs, the development of novel radon removal systems, and the

measurement of the bubble creation efficiency of nuclear recoils in both more tradi-

tional C3F8 bubble chambers, as well as a liquid xenon SBC. Also presented is the

full analysis and physics results of a NEWS-G dark matter search campaign in pure

methane gas, establishing world-leading exclusions limits on low-mass dark matter

with a spin-dependent coupling with protons.
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Chapter 1

Introduction

For nearly a century, the existence and nature of dark matter has been one of the

most intriguing problems of astrophysics, and by extension, particle physics [4]. The

persistent and nagging lack of discovery of postulated dark matter candidates has

prompted consideration of alternative, theoretically motivated solutions for the as-

trophysical quandary, such as low-mass particle dark matter [5–7]. Numerous ex-

perimental efforts are now underway to stake out this largely uncharted region of

parameter space in the hopes of either discovering a positive dark matter signal or

at least ruling out another plausible class of candidates [8, 9]. The New Experiments

with Spheres – Gas (NEWS-G) and Scintillating Bubble Chamber (SBC) collabora-

tions are two such groups. The former utilizes proportional counters with light-atom

gas mixtures, while the latter employs liquid noble bubble chambers. Like all exper-

iments in this field, both types of detectors must be constructed with a high degree

of radio-purity, operated in shielded environments, and are subject to the stringent

requirements of calibration and characterization.

Chapter 2 of this work introduces the long-running search for dark matter, and the

field of direct detection experiments more specifically. The context of the NEWS-G

and SBC experiments within this active area of study is presented, as well as the over-

all status of the field. Chapter 3 introduces the NEWS-G experiment and the physics

of Spherical Proportional Counters (SPCs). The mainstay calibration techniques of
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the experiment are presented, as well as their application to dedicated measurements

of the energy response properties of these detectors with a small, lab-based SPC

experiment. A similar prototype-scale detector was installed at the University of

Alberta, which has been used to develop and characterize a novel gas-handling appa-

ratus to remove radon from the target gas, and monitor the composition of the gas

in real-time. Future applications of this SPC are explored.

Over the course of my M.Sc. (during which time I worked with NEWS-G) and

Ph.D. studies, I have taken part in the entire development cycle of the collaboration’s

dark matter search experiment, from fabrication to analysis and WIMP results. This

included the construction of a next-generation detector, subsequent installation and

data taking at the Laboratoire Souterrain de Modane, which will soon culminate in

the publication of world-leading constraints on low-mass dark matter interactions on

a hydrogen-rich target. The details of this detector, and the methane target gas dark

matter analysis, are presented in Chapter 4.

The SBC collaboration is currently designing twin liquid argon detectors intended

to search for low-mass dark matter and coherent elastic neutrino scattering [10]. In

the meantime, existing calibration data taken with C3F8 (cooperatively with the

PICO collaboration) and liquid xenon bubble chambers was analyzed to measure

the response of both media to low-energy nuclear recoils. These efforts are given in

Chapter 5, which represents the most robust measurements of the nucleation efficiency

of bubble chambers to date. The C3F8 result has been published [3], with the liquid

xenon result to follow shortly. This quantity is critical for the calculation of these

experiments’ sensitivity to dark matter.
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Chapter 2

Particle Dark Matter

In the early 1920’s, the prevailing concept of the Milky Way was that of an island

Universe. Measurements of the local stellar density by Jeans and Kapteyn [11], and

later Oort in 1932 [12], lead them to conclude that more mass than was visible must

be present, speculated to be un-observable stars or gas. In 1933, Fritz Zwicky’s

measurement of the velocities of galaxies in the Coma Cluster allowed him to calculate

that the mass of the cluster was 400 times greater than its luminous contents could

account for [11, 13]. In the 1970’s, Vera Rubin et al carried out measurements of

the rotational velocities of objects within galaxies, starting with the nearby M31 [14–

17]. These measurements – which bore out the same conclusion in many separate

observations – demonstrated that the mass of the galaxies observed far out-weighed

their luminous content, reinforcing Zwicky’s proposed “dunkle Materie” – or dark

matter – but on a galactic scale. Following these ground-breaking observations, the

theory-based and experimental work to explain these phenomena began in earnest.
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Figure 2.1: The bullet cluster imaged in X-ray (colour-scale), with the contour lines
indicating the mass distribution reconstructed from gravitational lensing data. The
white bar is shown for scale (200 kPc at the distance of the cluster). This demonstrates
the separation between intergalactic gas/dust (prominent in X-ray) and the strongest
gravitational potential of the clusters. Taken from figure 1 of ref. [20].

2.1 Theories and evidence for Dark Matter

2.1.1 Modified theories of gravity

An early class of hypotheses to explain the apparent extra mass in the Universe (or

more accurately, unexplained gravitational force) posited that our understanding of

gravity on cosmic scales is incorrect. Thus these theories primarily involve correc-

tions to Newtonian gravity – MOND (MOdified Newtonian Dynamics) [18]. MOND

theories are capable of explaining the anomalous galaxy rotation curves measured by

Rubin and in other subsequent measurements [16, 18, 19]. Their central conjecture

is that the phenomenon of “dark matter” caused by an undiscovered scale depen-

dence in the strength of gravity, leading to stronger attractive forces between objects

spanning galactic or intergalactic distances.

However, some observed phenomena currently cannot be explained by MOND the-

ories, such as the Bullet Cluster [20, 21], pictured in Fig. 2.1. In this object, two
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galaxy clusters are observed post-collision, the act of which stripped away much of

the intergalactic dust and gas present in both clusters originally. This is observable

in X-ray imaging due to the heat imbued by the collision. Although this gas and

dust is known to make up the majority of the baryonic matter in galaxy clusters, a

gravitational micro-lensing observation of the object indicates that the majority of

their mass still resides in the clusters themselves [20, 21]. This is evidence that (in

this case) the majority of the gravitational potential of the clusters does not coincide

with the majority of their baryonic matter, refuting the MOND-picture of this event

which would posit no additional source of gravity, just an increased potential caused

by the luminous content of the clusters.

Recently, observations of galaxies with little or no dark matter (i.e. no anomalous

galactic rotation curve) have been made [22–24]. Somewhat counter-intuitively, this

also refutes MOND-like theories, which would predict the same “anomalous gravity”

behaviour for all galaxies in the Universe with no exception. Thus, galaxies lacking

dark matter suggest that the cause of this phenomenon is some substance exerting

additional gravitational attraction that is not uniformly distributed throughout the

Universe.

2.1.2 Non-luminous astrophysical objects

Another set of hypotheses proposes that the observed dark matter consists of normal,

baryonic matter that simply is not visible to telescopes (optically or in any other

wavelength band). Asteroids and comets, planets or planetesimals, and black or

brown dwarf stars are all credible examples of baryonic matter that would evade

detection by telescopes. This hypothesis is appealing because it does not require the

existence of undiscovered physics to explain the mystery of dark matter.

However, efforts to find such objects with gravitational lensing surveys (such as

EROS and OGLE) have not observed enough objects for them to account for all (or

even a significant fraction of) dark matter [25–28]. These searches monitor a wide
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field of stars for small fluctuations in their brightness caused by gravitational lensing

of astrophysical objects passing in front of the background stars; the resultant grav-

itational lensing can distort or multiply the image of the star, causing an increase

in brightness. While these surveys are only sensitive to objects in the mass range

of 30 to 107 solar masses [27, 28], if dark matter was dominated by smaller objects,

the number density required to achieve the gravitational effect observed would imply

the existence of many such objects even locally within our own solar system. Astro-

physical objects on larger mass scales have also been constrained by surveys looking

for stellar binary systems that would be disrupted by encounters with such objects

[29]. Moreover, specific survey results that do suggest the existence of populations

of compact objects indicate that they inhabit the disk of the galaxy, rather than the

spherical halo where dark matter is expected to reside [26, 30].

One specific case of a compact astrophysical object that remains a viable and

interesting dark matter candidate is primordial black holes (PBHs). These are hy-

pothesized black holes – with a wide possible mass range of 10−2 to 105 solar masses

– formed before recombination (the moment electrons became bound to nuclei) in the

early Universe from extreme density fluctuations in the primordial soup [31]. The

existence of PBHs could also help explain the prevalence of supermassive black holes

in the Universe at later times, with PBHs serving as possible progenitors [32]. Pulsar

timing array experiments (e.g. NANOGrav) and gravitational wave interferometers

(e.g. LIGO, LISA) have the potential to provide evidence of PBHs, rekindling interest

in this dark matter candidate [31, 33–35].

2.1.3 Non-baryonic particles and ΛCDM

The remaining category of hypotheses is that dark matter consists of one or more un-

discovered, fundamental particles. If present in sufficiently high density, electrically-

neutral (non-luminous) particles could provide the anomalous gravitational poten-

tial known since the 20th century, with the Milky Way and other galaxies residing
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in fuzzy clouds of these particles extending far beyond their luminous bodies. Al-

though the Standard Model (SM) of particle physics does include some seemingly

viable candidates, none can satisfy all the requirements of dark matter. Free neu-

trons decay too quickly to provide the pervasive, stable influence of dark matter, and

Standard Model neutrinos are relativistic, such that they cannot remain gravitation-

ally bound to structures such as galaxies. Thus, dark matter must come from beyond

the Standard Model. Undiscovered particle dark matter can be seen as a deductive

implication of the challenges faced by other hypotheses, described above, but the

general concept is supported independently as well. Perhaps the most compelling

evidence for this paradigm comes from the Cosmic Microwave Background (CMB);

the virtually uniform wall of photons arriving from the early Universe, red-shifted to

micro-wavelengths over the course of their 13.8 billion year journey.

This light, released during recombination, contains information about the interac-

tions of the constituents of the early Universe [37]. Despite the temperature of these

photons fluctuating by less than a milli-Kelvin, and the obscuring collage of astro-

nomical foregrounds to contend with, the temperature map of the CMB has been

measured to high precision by several experiments, notably WMAP and Planck [36,

38]. The angular size of the fluctuations are quantified in the power spectrum of the

CMB fit with spherical harmonic functions [36], shown in Fig. 2.2.

Evidence for dark matter comes from interpreting measurements of the CMB in the

context of the standard cosmological model, ΛCDM (Λ-Cold Dark Matter) [37]. This

paradigm assumes a Universe containing some component of Baryonic matter (with

density parameter ΩB), a non-relativistic (cold) non-baryonic dark matter component

Ωχ, radiation, and dark energy represented by the cosmological constant Λ. Fits of

the CMB power spectrum assuming a particle dark matter component that does not

experience radiation pressure (the relic density of which is one of six free parameters in

the model) provide strong support for the cold dark matter paradigm. The successful

application of this model to understand baryon acoustic oscillations and to predict

7



(a) Figure 6 from ref. [36].

(b) Figure 9 from ref. [36].

Figure 2.2: Recent results from the Planck experiment [36]. Temperature anisotropies
in the foreground-subtracted sky map (top panel) are shown with respect to the
average of 2.7K, with the galactic plane, outlined in gray. The temperature angular
power spectrum as a function of multipole moment l is compared to the best-fit
ΛCDM model (bottom panel).
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structure formation further reinforces this interpretation [39]. From the ΛCDM fit

of the CMB, there is approximately 5 times more dark matter than baryonic matter

in the Universe [40]. MOND-like theories are often incompatible with the CMB

temperature spectrum or else would lead to structure formation not consistent with

the Universe we live in [37, 41]. The requirement that dark matter exists in some

form before recombination rules out all compact astrophysical objects (such as dwarf

stars) except primordial black holes.

Despite the ΛCDM paradigm’s apparent agreement with observations on cosmo-

logical and galactic scales, unresolved issues remain, especially on smaller scales. For

example, the density profile of most galaxies does not seem to rise sharply at their

centres as predicted for straightforward cold dark matter (the “core-cusp problem”)

[42]. There is also a conspicuously small number of dark matter sub-halos observed

orbiting around or within our own Milky Way galaxy [42]. Tensions such as these may

be alleviated within the ΛCDM paradigm, however, by including more second-order

dark matter behaviours such as radiation pressure and interactions with SM matter

into structure formation N-body simulations [43].
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2.2 Particle Dark Matter

From the observations described in section 2.1, we can construct a list of properties

that particle dark matter must satisfy [4]:

• Particle dark matter must be stable on cosmological timescales [4].

• Dark matter must not couple strongly to SM particles (particularly electromag-

netically), and thus does not likely have an electric charge, but may interact

with other particles through the weak nuclear force (and gravity) [40].

• The ΛCDM paradigm requires that a large component – if not all dark matter

– is non-baryonic, i.e. that it does not experience radiation pressure. Further,

this matter must be non-relativistic (cold) in order to be gravitationally bound

to cosmological objects, and therefore participate in structure formation.

As there are no SM particles in compliance with all of these constraints, we are

forced to appeal to new physics for suitable candidates.

2.2.1 Candidate particles

Weakly Interacting Massive Particles (WIMPs) represent a general class of candi-

dates that follow this paradigm; relatively massive (10 - 1000GeV/c2), stable parti-

cles that interact gravitationally and very weakly through other forces with the SM

(note that “weak” does not imply that it interacts via the weak nuclear force specif-

ically). This class of dark matter candidate has been historically favoured because

of the “WIMP miracle”, the seeming coincidence that the predicted freeze-out relic

density of thermally-produced WIMPs – with a weak-scale mass and annihilation

cross-section – is close to the observed relic density [44]. One theoretical extension

to the SM that predicts a specific WIMP candidate is Supersymmetry, which calls

for boson/fermion partner particles for all SM fermions/bosons respectively [44]. The
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lightest supersymmetric particle – the neutralino – is a viable dark matter candi-

date [4, 40]. However, searches for evidence of Supersymmetry at the Large Hadron

Collider have not revealed any sign of new physics at this time [45].

The lack of evidence for classic WIMPs thus far has led to increasing interest in

other cold dark matter particle candidates [4, 8, 19, 46, 47], such as:

• Axions; meV/c2 - scale neutral particles proposed to solve the Strong CP prob-

lem of the Standard Model, which could also serve as dark matter [40, 48].

• Kaluza-Klein states; higher-dimension excitations of lighter particles (such as

axions) predicted by various quantum gravity theories [49–51].

• Sterile neutrinos; hypothesized additional mass eigenstates (possiblyO(keV/c2))

of neutrinos which could explain the very low masses and left-handed chiral-

ity of known neutrinos. These heavy neutrinos would not interact with other

matter directly, only when rarely oscillating to other neutrino flavours [52].

• Asymmetric dark matter; models that predict pairings of dark matter particles

with∼ 1GeV and∼ 5GeV masses to balance the matter-antimatter asymmetry

of the Universe [6, 53].

In general, there has been renewed experimental activity to search for low-mass

(on the order of 1GeV/c2 or less), WIMP-like dark matter of various theoretical

motivations in recent years [5–8, 53]. It is also possible that dark matter includes a

whole dark sector beyond the SM, of which we may be able to detect one or more

constituents [54]. Despite the myriad theoretical models, experimental searches can

exclude the existence of many different dark matter candidates by exploiting their

similar masses and couplings, such as ∼ GeV−TeV particles that couple to nucleons

(like the classic WIMP).
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2.2.2 Experimental observation

Assuming that there is some interaction between dark matter particles and the SM,

all dark matter search experiments can be categorized as follows:

• Collider production If dark matter can interact with SM particles at all,

then it should be possible to produce it during particle collisions of sufficient

energy. If dark matter was produced in a collider such as the LHC, it would

not be apparent directly in detectors like ATLAS or CMS, but the rapid decay

of an unstable dark matter state or missing momentum/energy carried out of

the detector by a dark matter particle could be observable. [4, 55].

• Indirect detection If particle dark matter can annihilate (either because it is

a Majorana particle, or part of a dark sector of particles that can interact), its

annihilation products may be visible in the form of x-rays/gamma rays, or high

energy neutrinos. Experimental searches may involve neutrino observatories

like IceCube [56] or space-based x-ray telescopes [57]. An x-ray signal from the

galactic core has been detected, but the many astronomical foregrounds make

it difficult to draw conclusions [57].

• Direct detection Particle dark matter may be able to scatter off of SM par-

ticles, through couplings with nucleons, nuclear spin, or electrons [58, 59]. A

large, low-background particle detector may be able to detect the recoils of SM

particles from such interactions. It is also possible that “dark photon” particles

could be detected via a photoabsorption-like process [5], or for axions to be

observed in “light shining through a wall” experiments (photons momentarily

transforming into axions in the presence of a magnetic field) or with resonant

cavity searches [47, 48].

The focus of the rest of this work is on direct detection experiments, searching

for WIMP-like dark matter specifically. This sub-field itself involves dozens of inter-

national collaborations using many different detector technologies (more on these in
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Figure 2.3: Direct detection experiments categorized by their energy observeables.
Note that “heat” may refer to nucleations in bubble chambers, or phonon production
in bolometers. Adapted from figure 4 of ref. [60].

section 2.4). These experiments can be further categorized by the observables that

they measure (typically as estimates of particle interaction energy), which broadly

speaking may be ionization, light (i.e. scintillation light), or heat. Fig. 2.3 shows

a 3-lobed Venn diagram of many current dark matter direct detection experiments

based on their respective observables. In particular, the NEWS-G (New Experiments

with Spheres - Gas) experiment detects only ionization, while the Scintillating Bub-

ble Chambers (SBC) detect both scintillation light and heat (in the form of bubble

production).
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2.3 Direct detection searches for WIMP-like Dark

Matter

Generally speaking, all direct detection searches consist of some particle detector ca-

pable of observing WIMP-induced events. To have a chance of making an observation

of these rare interactions, direct detection experiments go to great lengths to reduce

background event rates by:

• using radio-pure construction materials,

• applying rigorous cleaning procedures to prevent contamination,

• shielding detectors from external radiation with water, lead or other shielding

materials,

• placing experiments deep underground (in facilities such as SNOLAB [61] or

the Laboratoire Souterrain de Modane [62]) to attenuate the flux of muons

produced in the atmosphere by cosmic rays. These can produce background

events directly in a detector, or through the production of spallation neutrons

from interactions in nearby material.

To observe a statistically-significant signal, direct detection experiments also typically

maximize their sensitivity to dark matter by having large target masses and/or taking

data for long periods of time.

Another consideration for direct detection experiments is particle-species identi-

fication; that is, the ability to differentiate between interactions of lightly ionizing

particles (electron or photon events), nuclear recoils, or highly-ionizing interactions

(from alpha particles). This can greatly aid in suppressing non-nuclear recoil back-

ground events. Many detectors with multiple observables (see Fig. 2.3) are capable

of this, exploiting the relative yields of different observables from different interac-

tion types. For experiments like NEWS-G, it is also possible to discriminate against
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track-like events (from lightly-ionizing background events) or to suppress background

events coming from the impurity-laden surface of the detector with spatial recon-

struction [63]. In the case of bubble chambers, lightly-ionizing particle events are

naturally suppressed, and alpha particle recoils are identifiable acoustically [64, 65].

2.3.1 WIMP recoil energy spectrum

The WIMP nuclear recoil signal that would be hypothetically observed by a direct

detection experiment can be calculated following the treatments presented in refs.

[58, 66]. Recently, parameters associated with this paradigm were formalized by the

PHYSTAT collaboration (see section 2.4) in ref. [67], which has been adopted by

many collaborations.

The energy deposited by an elastic nuclear recoil interaction in the lab frame (ER)

by an incident dark matter particle with kinetic energy Ei and mass Mχ, assuming

isotropic scattering in the centre-of-momentum frame, is given as [66]:

ER =
1

2
rEi(1− cos θ) =

1

4
rMχv

2(1− cos θ) (2.1)

Here r is a kinematic factor similar to the reduced mass of the system:

r =
4MχMA

(Mχ +MA)
2 (2.2)

where MA is the mass of the target atom. This factor is maximized when Mχ = MA,

which means that direct detection experiments are generally most sensitive to (due

to the relatively larger recoil energies produced by) dark matter with a similar mass

to the target atoms employed.

To determine the differential rate of dark matter interactions, it is necessary to

know the velocity distribution of such particles. This is given by the standard halo

model of dark matter in the Milky Way, which assumes that our galaxy resides in the

centre of a large, isothermal sphere of dark matter particles [66–68]. Given this, the

distribution of dark matter particle velocities v⃗ on the earth is Maxwellian, given by:
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f(v⃗, v⃗E) = e−(v⃗+v⃗E)
2

/v20 ×Θ(vesc − ||v⃗||) (2.3)

where v⃗E = 232 km/s is the average of the time-varying velocity of the Earth relative

to the galactic frame, and v⃗0 = 220 km/s is the local circular velocity of the dark

matter [67, 68]. The Heaviside function serves to truncate the distribution at the

escape velocity of the galaxy, vesc = 544 km/s [69]. Next, we can write the differential

number density of dark matter particles locally, expressed in terms of the local mass

density ρχ = 0.3GeV/c2cm3 [67] :

dn =
ρχ
kMχ

f(v⃗, v⃗E)d
3v⃗ (2.4)

where k is a normalization factor given in [58]. Using this, the differential event rate

dR/dER is given as:

dR

dER

=
ρχ

kMχMA

∫︂ vesc

vmin

dσχ−N

dER

vf(v)d3v⃗ (2.5)

with dσχ−N/dER being the differential WIMP-nucleon cross-section. This equation

integrates over all dark matter velocities that lead to a given recoil energy ER, from

the minimum such velocity vmin =
√︁
2ER/rMχ up to the galactic escape velocity vesc.

The energy dependence of the differential cross-section can then be separated from

a WIMP-nucleon cross-section σχ−N that is energy-independent [66]:

dσχ−N

dER

=
σχ−NF

2(q)

4µ2
Av

2
(2.6)

where µA = (MχMA)/(Mχ +MA) is the reduced mass of the WIMP-nucleus system,

and F 2(q) is a structure form factor of the momentum transferred during a collision

q =
√
2MAER. The form factor is essentially the Fourier transform of the spatial

density of the nucleons (and therefore of scattering sites) inside the nucleus. The

standard choice for F 2(q) for the spin-independent interactions is the Helm form
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factor [58, 66], based on the Woods-Saxon potential as a choice of density distribution

for the nucleus [70]:

F (q) =

(︃
3j1(qRN)

qRN

)︃2

e−q2s2/2 (2.7)

where j1 is the first spherical Bessel function, s ≈ 0.9 fm is the nuclear “skin thickness”

[58], and RN is the effective nuclear radius [58]:

R2
N =

(︁
1.23A1/2 − 0.6 fm

)︁2
+

7

3
(0.52π fm)2 − 5s2 (2.8)

In the case of lighter target atoms such as hydrogen, helium, carbon, and neon,

F (q) is very nearly equal to 1 (in both the spin-independent and dependent cases) up

to interaction energies of ≈ 100 keV, far above the energy range of interest for exper-

iments such as NEWS-G and SBC. Higher-A target atoms loose coherence at lower

scattering energies, elevating the importance of form factor choices for experiments

employing these targets, which also tend to have higher energy regions of interest

[58].

The energy-independent cross-section of eq. 2.6 can be further divided into terms

representing spin-independent (SI) coupling with nucleons σSI
χ−N , and spin-dependent

(SD) coupling σSD
χ−N [66]:

σχ−N = σSI
χ−N + σSD

χ−N =
4µ2

A

π
(Zfp + (A− Z)fn)

2 (2.9)

+
32G2

Fµ
2
A

π

J + 1

J
(ap ⟨Sp⟩+ an ⟨Sn⟩)2 (2.10)

where GF is the Fermi constant, Z is the number of protons in the nucleus, and A

the total number of nucleons. fp/fn and ap/an represent effective couplings to proton

and neutrons in the SI and SD cases respectively, all usually taken to be ≈ 1.

In the SD coupling term, J is the total nuclear spin of the nucleus, and ⟨Sp⟩ and

⟨Sn⟩ are the expectation values of the spin of protons and neutrons within the nucleus
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Figure 2.4: Examples of WIMP-nucleon recoil energy spectrum (assuming a 1 pb SI
cross-section). Left: recoil spectra for different masses of WIMP-like dark matter
scattering off of a neon target nuclei. Right: recoil spectra for a 1GeV/c2 WIMP
scattering off of various target nuclei.

respectively (which would be 1/2 for free nucleons) [66]. A table of values for ⟨Sp⟩

and ⟨Sn⟩ of different target atoms is given in Ref. [71]. Experiments using C3F8 as

a target (e.g. the PICO experiment) benefit from having an odd proton in fluorine,

giving a relatively high SD-proton coupling of ⟨Sp⟩ = 0.477, but only ⟨Sn⟩ = −0.004

[71].

Examples of WIMP recoil spectra (SI interactions only) are shown in Fig. 2.4,

which show them to be approximately exponential but with a cut-off at a certain

recoil energy. From this one can see that the recoil spectrum terminates at lower

recoil energies for lower WIMP masses, and a given target atom. On the other hand,

the spectrum extends to higher recoil energies for a given WIMP mass but lower-

A target atoms. This highlights two fundamental realities of low-mass dark matter

experiments in particular:

1. low-mass dark matter experiments need very low energy thresholds to be sen-

sitive to candidate events, and

2. lighter target atoms increase sensitivity to low-mass dark matter.

The exponential nature of the recoil spectra also means that the majority of the
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sensitivity of any direct detection experiment comes from low-energy recoils and that

for low WIMP masses in general, the signal observed by an experiment comes only

from recoils at/below O(1 keV).

2.3.2 Calculation of exclusion limits

The statistical analysis of direct detection searches hinges on the fundamental ques-

tion of whether or not the experiment detects dark matter-like events with sufficient

confidence to claim a discovery, or to cautiously assume that all observed events are ac-

tually from background sources. In the latter case, an exclusion limit on the existence

of dark matter can be calculated in the parameter space of dark matter cross-section

vs. particle mass. The decision to claim discovery or publish an exclusion limit is

somewhat subjective; modern dark matter experiments are often confronted with the

difficult situation of observing events consistent with dark matter interactions that

exceed the expected background rate, but a lack of confidence in background mod-

elling and detector characterization often leads to exclusion limits being published

instead. This is especially the case for current low-mass dark matter experiments

(see section 2.4). In some such cases – with potentially compelling WIMP-like ob-

servations – experimental groups may publish both interpretations of their data, as

a possible discovery and exclusion limit [72]. The dark matter analyses discussed in

this work all lead to the publication of exclusion limits, and so a brief outline of their

calculation is given below.

Exclusion limit calculations are performed for a given particle mass (and then

repeated for a range of WIMP masses to define a continuous curve in the cross-section

vs. mass parameter space). First, the WIMP recoil spectrum for the applicable WIMP

mass and target atom is calculated, scaled by the exposure of the experiment (see

eq. 2.5). In real analyses, this is then multiplied by the WIMP signal acceptance due

to all data quality cuts, hardware and analysis trigger efficiencies etc. to obtain the

recoil spectrum actually observable by the experiment. For a given cross-section σ0,
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the total expected number of events is the integral of this recoil spectrum.

In the simplest scenario possible, an experiment observes 0 events. In this case,

the background-free exclusion limit can be calculated with the following steps:

1. Calculate the expected number of WIMP events N0 (as described above) for an

arbitrary reference cross-section σ0:

N0 =

∫︂
Ethresh.

dR

dER

(σ0)dER (2.11)

2. Given the observed 0 events, the upper 90% confidence limit on the expected

number of events Nexcl. (the standard choice of the field) is calculated using

Nexcl. =
1

2
F−1
χ2 (0.9, 2) ≈ 2.303 (2.12)

where F−1
χ2 is the inverse cumulative distribution of the χ2 distribution, and 0.9

corresponds to the desired confidence level [73].

3. The excluded cross-section can then be computed as:

σexcl. = Nexcl. ×
σ0

N0

(2.13)

In the case where the experiment observes N > 0 events, the subsequent treatment

depends on whether or not a subtraction of modelled background rates is performed.

Without well-understood background models (which is the case for many low-mass

dark matter experiments currently [74]), an exclusion limit may still be calculated by

conservatively treating all observed events as WIMP candidates (which is admittedly

somewhat counter-intuitive for an analysis claiming no detection of WIMPs). A

simple “Poisson statistics” exclusion limit can be calculated in the same manner as

a background-free experiment using the 90% limit on the expected number of events

given N observed [73]:

Nexcl. =
1

2
F−1
χ2 (0.9, 2N + 2) (2.14)
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For example, if 1 (resp. 2, 3) events are observed, then the 90% limit on the mean

number of events is ≈ 3.890 (resp. 5.322, 6.681). The overall exclusion limit as

a function of dark matter particle mass (see ahead to Figs. 2.5, 2.6 for example)

typically have a “check-mark” shape when plotted on a log–log plot. The most

strongly excluded cross-section is approximately at a WIMP mass equal to the target

atom mass. At low masses the exclusion limit weakens asymptotically as the WIMP

recoil spectrum cuts off at lower and lower energies, nearing and then reaching the

limit of detection by the experiment (see Fig. 2.4). The limit rises at higher masses due

to the 1/Mχ dependence of the WIMP recoil spectrum (see eq. 2.5). For background-

free experiments, the exclusion limit typically improves proportionally to increasing

exposure time (i.e. a ten-fold increase in exposure will result in an excluded cross-

section ten times lower). In the presence of background events, the excluded cross-

section only improves as approximately 1/
√
∆exposure.

More advanced statistical methods can produce stronger exclusion limits even if

an experiment’s background is not modelled, typically by defining targeted energy

regions of interest (ROIs) with an improved signal-to-noise ratio compared to the

whole energy range detectable by the experiment. One approach is to use machine

learning algorithms such as Boosted Decision Trees (trained on simulated data) to

find the ideal ROI for a given WIMP mass [63, 75, 76]. The Optimum Interval (OI)

Method [77] is another approach that is similar in spirit, but which uses the real data

of the experiment to define optimal ROIs constructed out of one or more consecutive

intervals between the data points. Using the actual dataset of the experiment for this

procedure incurs a “statistical penalty”, calculated to ensure that obtained limits have

the desired 90% coverage [77]. An example of a limit produced for a hypothetical neon

experiment using the OI method is shown in Fig. 2.5. This example demonstrates

how in some cases, the OI method can achieve an exclusion limit comparable to the

background-free expectation of an experiment even in the presence of a background

signal if there is some ROI with a favourable signal-to-noise ratio.
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A third method that strikes a balance between trained machine learning algorithms

and the OI method is an as-yet un-named technique employed by the Edelweiss and

XENON1T experiments [78, 79]. In this approach, a fraction of the experimental data

is “sacrificed” as training data, being used to manually find the optimal energy ROI

for each WIMP mass. Then, the exclusion limit is calculated using the untouched

remainder of the data, in the tuned ROIs. While this method does throw away some

of the collected physics data (and thereby reduces the exposure of the experiment),

this may be an acceptable loss for experiments faced with particularly high back-

ground rates (i.e. hundreds or thousands of observed events), for which the loss of

some exposure likely will have a negligible impact on the resulting exclusion limit.

Computation of OI limits for large datasets such as this is also often prohibitively

slow, making this data-tuned ROI method an attractive alternative. Compared to

typical machine-learning approaches, this method also has the advantage of not need-

ing to rely on the accuracy of simulated data to tune ROIs. It is worth noting that

all three of these limit-setting methods may be applied to any variable – not just

energy-estimators as is usually the case – with possible extensions to multivariate

analyses as well [63, 80].

The methods described above for calculating exclusion limits assume that all ob-

served events are WIMP-like, including no information/contribution from background

signals. If experimental backgrounds are known however (perhaps up to a normal-

ization factor), then a “background subtraction” can be performed as a part of a

likelihood fit of the data. In general, this involves a likelihood function for the ob-

served data (often as a function of energy) given a WIMP signal with cross-section

σ, and a set of nuisance parameters θ (often scaling parameters) describing the back-

ground contributions, L(σ, θ). The likelihood function is then used to form a profile

likelihood ratio λ(σ) for the hypothesis that there is a WIMP signal with a specific

cross-section σ vs. that there is not. “Profiling” refers to the process of optimizing the

nuisance parameters (usually denoted with a double-hat) for a fixed value of the pa-
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Figure 2.5: Demonstration of the OI method [77] applied to a hypothetical neon dark
matter experiment, for SI coupling. This assumes an energy-independent background
rate of 5/kg/day/keVnr, no ionization quenching factor or resolution effects, a 1 kg day
exposure, and an ROI of 180 eVnr to 1 keVnr. Shown are the results of 500 Monte Carlo
trials of the OI method at each WIMP mass (blue markers) resulting in a median OI
exclusion limit (purple curve), compared to the simple Poisson-statistics limit (red
curve) and background-free limit (green dashed curve) for the same experiment.
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rameter of interest, as opposed to simultaneously optimizing all parameters (denoted

with single hats) [81]:

λ(σ) =
L
(︂
σ, θˆ̂
)︂

L
(︂
σ̂, θ̂
)︂ (2.15)

This is then used to form the common test-statistic q = −2 log λ(σ), which in

ideal circumstances is known to follow the χ2 distribution with 1 degree of freedom

according to Wilk’s theorem [82]. To calculate WIMP exclusion limits, this test-

statistic can be modified as follows [81]:

qσ =

⎧⎨⎩−2 log λ(σ), σ̂ ≤ σ

0, σ̂ > σ
(2.16)

This definition inherently produces a one-sided confidence interval, considering

only σ̂ < σ to be at odds with the null hypothesis [67]. For this specific test-value

of σ and the null hypothesis that this signal is present, the distribution of q is then

calculated: f(qσ|Hσ). This can be done using Wilk’s theorem, or more prudently

with Monte Carlo simulations. The distribution f(qσ|Hσ) is then compared to the

observed value qobs.σ , to calculate a p-value [83]:

p =

∫︂ ∞

qobs.σ

f(qσ|Hσ)dqσ (2.17)

If this p-value is higher than the desired 0.1 (corresponding to a 90% upper confidence

limit), then the test value of σ is raised, or vice versa until σ is found such that the

null hypothesis is rejected exactly with p = 0.1 to obtain the cross-section that can

be excluded at 90% [81, 83], all the while including optimized contributions from

background signals.

A slightly modified, more robust version of the test statistic given in eq. 2.16 can

be constructed to allow for two-sided confidence intervals to be formed [67]:
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qσ =

⎧⎪⎨⎪⎩
−2 log λ(σ), σ̂ ≥ 0

−2 log
L
(︃
σ,θˆ̂

)︃
L(σ=0,θ̂)

, σ̂ < 0
(2.18)

In this case, σ̂ > σ is allowed (corresponding to an excess dark matter signal). This

construction also allows for negative values of σ (despite this being non-physical), but

restricts their likelihood ratio to the physical lower bound of σ = 0. The advantage of

this construction is that the same test statistic can be used for both exclusion limit

setting, and discovery claims in the case that a non-zero WIMP signal is favoured by

the likelihood ratio, at which point the one-sided limit automatically switches to a

two-sided limit with a lower bound on the WIMP cross-section [67].
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2.4 Status of the field

Direct detection searches have been ongoing for approximately 40 years to date, pro-

ducing no conclusive/widely accepted evidence of particle dark matter despite the

ever-increasing sensitivity of experiments [8, 9]. The field encompasses many differ-

ent detector technologies (roughly categorized in Fig. 2.3); a non-exhaustive summary

of the current status of experimental collaborations is given below.

Gaseous detectors Other than NEWS-G (the subject of chapters 3 and 4), gas-

phase dark matter experiments include the CYGNUS/CYGNO, DRIFT, and TREX-

DM projects, which typically employ proportional counter designs with MicroMegas-

type devices for readout [84–87]. These finely-pixelated gas chamber anodes offer

excellent spatial resolution, allowing for discrimination between point-like and track-

like events on the basis of event reconstruction. Gaseous detectors also benefit from

flexibility in target material choice, and the possibility of single-ionization energy

thresholds (although this is not yet achievable by experiments other than NEWS-G).

Proportional counters such as these (sometimes referred to as gaseous time pro-

jection chambers) have been used to search for traditional low-mass WIMP-like dark

matter nuclear recoils [87, 88]. However, ultra-low pressure proportional chambers are

also being considered for directional detection of WIMPs; in rarefied target materials,

the usually point-like interactions of nuclear recoils may be stretched into macroscopic

tracks (i.e. of an observable scale). Typically, slow-drift gases such as helium mixtures

of SF6 are used to reduce diffusion of the particle tracks, aiding in reconstruction [85,

86]. The prevailing travel of the Earth in the direction of the constellation Cygnus

means that WIMP recoils would originate primarily from that bearing in the sky,

as opposed to isotropically distributed (i.e. detector radioactive backgrounds) or lo-

calized background sources (like neutrinos from the Sun) [85]. Directional detection

would greatly boost the signal-to-noise ratio of any direct detection experiment and
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is the primary hope for overcoming the “neutrino floor” background from coherent

elastic neutrino-nucleus scattering [89–92].

Bubble Chambers Fluorocarbon bubble chamber experiments (i.e. PICO) have

already produced world-leading spin-dependent WIMP exclusion limits [93], bene-

fiting from intrinsic suppression of electronic recoil events. The first full-scale liquid

noble bubble chamber for dark matter detector (by the SBC collaboration) – addition-

ally sensitive to scintillation light, with possibly greater electronic recoil suppression

– is currently in the fabrication stage [94]. A full discussion of bubble chambers as

dark matter detectors is given in chapter 5.

Noble liquid noble detectors The search for traditional WIMP dark matter (with

masses from 10 to 1000GeV/c2) is currently dominated by liquid noble (cryogenic),

dual phase time projection chambers (TPCs) sensitive to ionization and scintillation

signals [9, 83]. The target liquid is held in a cylindrical vessel with an electric field

applied along its axis. Particle interactions can produce scintillation light directly

at the interaction site, detected by 2D arrays of photo-multiplier tubes (PMTs) on

the ends of the cylinder. Additionally, ionization electrons may be produced in the

liquid and pulled by the drift field toward a liquid/gas interface near the top of the

detector, at which points the electrons are converted into more scintillation light. The

2D PMT arrays offer X-Y position reconstruction, while the delay between prompt

(S1) and delayed (S2) scintillation light gives the Z position of an event. Fortunately,

nuclear and electronic recoils produce different relative yields of prompt and delayed

scintillation light, allowing for background discrimination [83].

The XENON [95], LZ [96], and PandaX [97] collaborations employ liquid xenon

(LXe) dual-phase TPCs. The 5.5-tonne fiducial mass LZ experiment currently leads

the field, with the lowest cross-section excluded to date; 9.2× 10−48 cm2 at a WIMP

mass of 36GeV/c2 [96]. The 5.9-tonne XENONnT [98] and 3.7-tonne PandaX-4T
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[97] devices have similar physics potential, and are expected to publish competitive

results in the coming years. Despite their large fiducial masses, these experiments

have also achieved the lowest background rates of all direct detection experiments,

rendering them sensitive to coherent neutrino scattering in the coming years [99].

In contrast, the DarkSide-50 and DEAP-3600 collaborations use liquid argon (LAr)

detectors [100, 101]. Although xenon is a higher-A target atom better suited to search

for high-mass WIMPs, argon benefits from scintillation pulse shape differences be-

tween electronic and nuclear recoil events, with a discrimination factor against elec-

tronic recoils as high as 3 × 109 [102]. However, this pulse-shape discrimination is

crucial for LAr detectors, which are afflicted by high activities of the beta emitter

39Ar (∼ Bq/kg). To mitigate this problem, future LAr experiments plan to use 39Ar-

depleted gas from underground reservoirs [103]. DarkSide currently operates a 46 kg

dual-phase TPC at the Gran Sasso lab in Italy [100, 104], with plans to construct

a 20-tonne detector [102]. DEAP-3600 is the sole example of a single phase noble

liquid detector for dark matter detection, detecting only S1 (prompt) scintillating

light [101]. The spherical geometry of the vessel allows for greater PMT coverage

than typical dual-phase TPCs, at the expense of S1/S2 electronic recoil discrimina-

tion. However, discrimination against electronic recoils is still possible, exploiting the

characteristically longer-lived triplet excimer state (compared to the singlet state) of

LAr. This is disproportionately produced by electronic recoil events, particularly by

the beta emitter 39Ar, motivating the ratio of prompt to late scintillation light as a

PSD variable [105]. Currently, a 3.3-tonne detector is operated at SNOLAB [106].

Both the LAr and LXe experimental collaborations are undergoing mergers (into

the GADMC and XLZD groups respectively) due to the similar designs of their de-

tectors, and the advantage of pooling resources to achieve larger combined fiducial

masses of their costly target materials [103, 107].
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Cryogenic solid-state detectors The SuperCDMS and Edelweiss collaborations

[72, 108] employ germanium (and silicon in the former case) semiconductor detectors

to search for dark matter. These consist of crystals (typically O(100 g) sized pucks)

cooled to O(mK) temperatures. Particle interactions may produce athermal phonons

in the crystal, detected by transition edge sensors sensitive to the associated minute

temperature fluctuations. Electron-hole pairs may also be produced, and drifted by

an electric field to anodes/cathodes for readout on the surface of the crystal block

[9]. As is often the case with two-channel detectors, the different relative energy

partitioning of electronic and nuclear recoils into ionization and phonon production

allows for background discrimination. Sensor arrays on the surface of the crystal

can also give some X-Y position reconstruction, and the spread of the signal in the

X-Y plane can be used to infer the Z-position, allowing for the rejection of surface

background events [72]. These detectors can achieve energy thresholds as low as a few

eV, benefiting from the low band-gap energies of these materials (2.9 eV and 3.6 eV

in Ge and Si respectively [9]).

SuperCDMS has operated various Ge and Si crystal detectors with total masses

on the order of 100s of grams (using an array of smaller crystals) [72, 109, 110], with

ongoing efforts to construct a kg-array of detectors at SNOLAB [111]. The Edelweiss

collaboration [108] has operated Ge cryogenic detectors at the Laboratoire Souterrain

de Modane in France [62, 76]. By applying stronger drift fields, ionization may be

converted into additional heat energy through the Neganov-Trofimov-Luke (NTL)

effect [112], allowing for single quanta energy thresholds. Both collaborations have

produced small, high-voltage devices designed to maximize this effect [78, 113, 114].

The SELENDIS project aims to tune the NTL effect (and exploit narrow energy

resolution) to discriminate between electronic and nuclear recoils even for single-

quanta events [115].

In addition to Si and Ge, polyatomic crystalline materials may be used for cryo-

genic detectors, such as calcium tungstate and sapphire. The former was chosen for
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its high scintillation light yield, and inclusion of low-A target nuclei (oxygen) [116].

The CRESST collaboration operates their LiAlO2 and CaWO4 crystals as bolome-

ters, collecting only the phonon/heat signal produced by particle interactions [117].

The low-A target materials (particularly the inclusion of lithium and oxygen) give

CRESST excellent sensitivity to low-mass dark matter, both through SI and SD cou-

plings [118]. The CRESST-III experiment has set the currently-strongest constraints

on WIMP-like dark matter below masses of 1GeV/c2 [117].

CCD experiments The DAMIC [119], SENSEI [120], and OSCURA collabora-

tions [121] re-purpose traditional silicon CCDs into dark matter detectors, reading

out the charge collected on each pixel over days-long exposures. These achieve the

best spatial resolution of any dark matter detector, while also retaining single ion-

ization energy thresholds, and sub-electron energy resolution (e.g. σ = 0.07 e− [122]).

The Skipper-CCD readout technique of SENSEI further reduces readout noise [120].

With these capabilities, CCD experiments are sensitive to low-mass WIMP-like dark

matter, as well as non-traditional dark matter candidates such as absorption of dark

photons (requiring excellent energy resolution) [123]. The main drawback of this

technology is scalability; the small silicon wafers used have masses on the order of

grams, although there are plans to scale up to kg year exposures [121].

Crystal scintillators Sensitive only to scintillation light, these detectors comprise

a scintillating crystal (usually NaI) instrumented with PMTs. This technology is

relatively lower-cost at full scale, withO(keV) energy thresholds. The most prominent

example of such an experiment is DAMA/LIBRA, which has long claimed detection

of an annually modulating signal consistent with dark matter nucleon scattering from

a particle with a mass around 10 or 50−100GeV/c2 [124]. Although such a signature

is expected from particle dark matter due to the revolution of the Earth around the

sun, this region of parameter space has been thoroughly excluded by other results, as
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Figure 2.6: Spin-independent WIMP-nucleon interaction exclusion limits from many
recent publications. The parameter space collectively ruled out is highlighted in green.
A version of the “neutrino floor” is shown in orange [9]. Taken from figure 3 of ref.
[9].

shown in Fig. 2.6.

There are dedicated experiments underway (i.e. COSINE-100, ANAIS-112) aiming

to directly refute DAMA/LIBRA’s claim with similar NaI detectors [125, 126], or to

explain the undeniably strange signal observed. Thus far these experiments cannot

strongly reject – but do not support – the existence of the modulation signal claimed

by DAMA/LIBRA, due to their limited statistics [127, 128]. Postulated explana-

tions for the modulation signal (other than dark matter) include diffusion of helium

into the glass bulbs of the PMTs [129], or that a false modulation signal could be

created by DAMA/LIBRA’s practice of subtracting annually-averaged background

rates [130, 131]. The latter hypothesis could be easily refuted/proven given access to

DAMA/LIBRA’s full dataset over time, something the collaboration has historically

(and recently) refused to make public [132].

With this controversy brewing quietly within the field, dozens of experimental

groups (many more than the sampling listed above) continue to publish increasingly
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Figure 2.7: Spin-dependent (proton) WIMP-nucleon interaction exclusion limits from
several recent publications. Taken from figure 4 of ref. [117].

stringent exclusion limits on the existence of WIMP-like dark matter. Examples

of many currently leading exclusion limits are given in Figs. 2.6 (for SI coupling)

and 2.7 (SD-p coupling). The search for classic WIMPs is currently led by LXe

dual-phase TPCs. As mentioned in sec. 2.2.1, many experiments are now looking

for low-mass dark matter particles that couple with nucleons [8]. The search in

this parameter space (the primary targets of the NEWS-G and SBC experiments) is

currently dominated by the CRESST-III experiment for spin-independent interactions

[133], and PICO-60 for spin-dependent proton interactions [93].

Departing even more from the classic paradigm, it has been postulated that dark

matter nucleon interactions may be enhanced by additional channels, namely the

Migdal effect [134] and the nuclear Bremsstrahlung effect [7]. Both signals extend to

higher recoil energies than elastic scattering for the same collisions, allowing existing
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experiments to probe sub-GeV dark matter particle masses [79]. Neither effect has

been demonstrated experimentally as of yet, although efforts to that end are ongoing

[135, 136]. Additionally, there have been experimental results exploring (and ex-

cluding for now) dark matter coupling with electrons [59, 79], the existence of “dark

photon” dark matter which would undergo a photoelectric-analogous process [78, 109,

113], and other non-traditional particle dark matter candidates [5].

2.4.1 Community efforts

There have been some hints of possible dark matter signals in recent years, or at

least a growing number of experiments reporting data that is not fully accounted

for by their background models. Perhaps not by chance, this has coincided with the

rise of low-mass dark matter experiments, which may point to poorly-understood

detector effects as an explanation. One example of an unexplained signal comes

from the XENON experiment, which observed a strong excess of electronic recoils in

the 2 − 3 keV range, which is consistent with solar axions as a dark matter particle

[137]. Many other low-mass dark matter experiments using different technologies have

also reported excess signals in recent years, including NEWS-G [63], SENSEI [123],

DAMIC [138], SuperCDMS [113, 114], CRESST-III [133], and others [74]. While

dark matter interpretations of these excess signals have been proposed [139], others

contend that detector pathologies are to blame, such as stress-fractures in crystalline

detectors [74]. Both interpretations struggle to reconcile the observations coming from

many detector technologies. A multi-part special workshop (EXCESS 2021, EXCESS

2022) was convened to collaboratively address this controversial issue, resulting in a

community white paper [74]. Although no firm conclusions have been reached, this

workshop led to greater transparency and sharing of data from the collaborations

involved.

Recognition of the challenges faced by low-threshold/low-mass dark matter exper-

iments is also growing; modelling new detector physics, addressing unknown back-
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grounds, and choosing appropriate statistical analysis protocols are all problems that

need to be addressed. To that end, the PHYSTAT low-threshold working group

was created to summarize the status of this field in a white paper (currently in

preparation). While solutions do not exist yet for all of these questions, a thorough

description of the problems and potential solutions may help guide future work; my

involvement has included different statistical techniques to calculate dark matter ex-

clusion limits including the optimal interval method [77], the use of machine learning

techniques [63], or training-based approaches [78, 79]. This white paper also presents

an opportunity to standardize certain modelling choices to describe the physics of low-

threshold detectors, such as my previous work on modelling ionization statistics (the

Fano factor) with the COM-Poisson distribution [140, 141]. This effort is a follow-up

to the PHYSTAT-DM conference [142] and subsequent white paper, aimed at cod-

ifying statistical best-practices for traditional dark matter experiments. This set of

standards has community endorsement from the NEWS-G, SBC, DAMIC, DarkSide,

DEAP-3600, LZ, PandaX, PICO, SENSEI, SuperCDMS, and XENON collaborations

[67].
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Chapter 3

The NEWS-G experiment: physics
and detector development

Gaseous particle detectors are among the earliest technologies developed for measur-

ing ionizing radiation, dating back to the beginning of the 20th century. Rutherford

and Geiger created a cylindrical detector in 1908 with a single wire anode, with a

tunable yield for incident radiation (by changing the voltage on the wire) [143, 144].

This device was the progenitor of both proportional counters and Geiger counters,

which are still in prolific use today. Since then, gaseous particle detectors have found

countless uses, and myriad forms to fit those needs. Prominent applications include

radiation dosimetry (measuring the amount of energy imparted per unit mass) for

oncological therapy [145], detection of high energy cosmic rays, particle identification

at colliders, and even muon tomography experiments used to map the interior of the

pyramids of Giza [146].

All gaseous detectors, regardless of their geometry, must include an anode structure

to which voltage is applied to collect charges produced when incident particles ionize

some of the gas in the detector. If the applied voltage is large enough, the incoming

charges will be multiplied in a process called the Townsend avalanche, wherein elec-

trons are accelerated to the point of further ionizing the gas, creating an exponential

cascade [143]. Therefore, different detector configurations can be broadly categorized

according to how the observed signal changes with anode voltage. The general trend
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Figure 3.1: Ionization/charge response of gaseous detectors as a function of ap-
plied voltage, indicating the ion chamber, proportional counter, and Geiger counter
regimes. Taken from ref. [147].

of this behaviour is shown in Fig. 3.1, highlighting the three regimes that are often

used [143]:

1. Ion chamber region: at the lowest voltages, no avalanche amplification occurs,

and the current measured on the anode is equal to the amount of charge pro-

duced. The chambers are often used in radiation dosimetry and can be made

very compactly.

2. Proportional region: at intermediate voltages, a Townsend avalanche does oc-

cur, with a tunable yield that increases proportionally with increasing anode

voltage. The current collected is also proportional to the amount of initial

ionization (hence “proportional counter”).

3. Geiger region: at the high voltages, a large Townsend avalanche always occurs

(involving a large fraction of the gas medium available), leading to a large,

clear signal that no longer depends on the energy of the incident radiation.
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Therefore, detectors operating in this range can only function as counters (i.e.

Geiger counters [148]).

Due to their tunable avalanche yield, and typical energy-linearity, proportional

counters are most often used in physics research applications. A major milestone in

their development was the Multiwire Proportional Counter (MWPC), a Nobel prize–

winning achievement of George Charpak [143, 149]. Instead of a single wire anode,

a grid of anode and cathode wires is used (often several stacked grids) to collect

charges from multiple wires. With separate readout for each anode wire, the planar

position of a particle interaction may be deduced [149]. This can be taken a step

further by using the timing information from different anode wires in a 3D grid to

reconstruct the perpendicular trajectory of the incident particle. This attribute of

excellent spatial reconstruction was carried forward by MicroMegas and GEM style

proportional chambers with sub–mm spaced anodes, which are used for some dark

matter direct detection experiments currently (see section 2.4) among many other

applications.

Spherical Proportional Counters (SPCs) are another example of gaseous detectors,

originating in 2008 for the purpose of rare event detection (i.e. dark matter, neutrino

searches) and neutron spectroscopy [150, 151]. Consisting of a single spherical an-

ode inside a spherical vessel, these detectors are designed to achieve high avalanche

amplification while still having a linear energy response, low electronic noise (due to

the low capacitance of this spherical geometry), with a high volume to surface area

ratio (where most radioactive contaminants reside). The target gases used are usually

noble gases with small admixtures of methane, operated at pressures ranging from

≈ 50mbar up to several bars. The ability to use light atomic gases such as helium

and neon (and hydrogen from methane), as well as the low energy threshold made

possible by the large avalanche yield, make SPCs particularly well suited to search for

low-mass dark matter. Examples of an SPC vessel and the anode within are shown
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Figure 3.2: The SEDINE detector (a 60 cm copper SPC), with a 6.3mm anode on
a grounded rod [63]. Taken from figure 1 of ref. [63] (left) and figure 3.22 from ref.
[152] (right).

in Fig. 3.2.

The rest of this chapter details the use of SPCs by the NEWS-G collaboration

to search for light dark matter, beginning with an overview of the physics of the

experiment and past results. Calibration techniques are described in section 3.2,

which are then applied in measuring the ionization yield of SPCs with methane gas

in section 3.3. A description of the device currently operated by the collaboration

is given in section 4.1, after which the analysis and physics results of a dark matter

search with pure methane gas are presented in section 4.2-4.5. The design of a small-

scale prototype SPC to develop radon trapping filters is discussed in section 3.4.
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3.1 SPC Physics

The first step in understanding the physics of SPCs is to examine the electric field

structure of the detector volume. A first-order approximation may be obtained by

assuming that the anode is a sphere floating in the middle of the grounded SPC vessel,

with no support rod. In this simple case, the electric field inside an SPC of radius r1

with an anode of radius r2 is given by [153]:

E(r) =
V0

r2

(︃
1

r2
− 1

r1

)︃−1

(3.1)

where V0 is the voltage applied to the anode. In reality, the grounded support rod

significantly distorts the electric field in volume near it, necessitating a finite element

simulation of the electric field. An example of such a simulation – performed with

the COMSOL software [154] – is given in Fig. 3.3 for a 60 cm SPC, with an applied

voltage of 2520V [63]. These simulations also require detailed modelling of the sensor

structure; typically these are either silicon or stainless steel balls attached to insulated

HV wires, fed through grounded metal rods. At the end of the rod, an “umbrella”

structure may be attached. These can include a cylinder of resistive material such

as Bakelite or glass, possibly containing a secondary electrode designed to make the

electric field more isotropic throughout the SPC volume [155, 156].

Another significant consideration for SPCs is the gas mixture used. Typically,

noble gases are chosen as they are monoatomic (simplifying the physics of ioniza-

tion), chemically inert, and have relatively low ionization thresholds. For NEWS-G,

this includes helium, neon, and argon gas. It is also possible to operate SPCs with

xenon gas, as is done by the R2D2 collaboration to search for neutrinoless double

β− decay [157]. In addition to the main gas constituent, a small admixture of a

molecular “quenching gas” is added [143], often chosen to be methane for NEWS-G

experiments. This gas (usually in concentrations of ∼ 1 to 7% by volume) serves to

suppress run-away ionization caused by the recombination of ions produced in the
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Figure 3.3: The electric potential (colour-scale) and electric field lines (right-hand
side, black curves) of a 60 cm diameter SPC with a 6.3mm anode at the centre, with
an applied voltage of 2520V. This finite element simulation was performed with the
software COMSOL [154]. Taken from figure 1 of ref. [63].

Townsend avalanches of past interactions. Molecular gases achieve this by introduc-

ing additional, non-ionizing channels of energy deposition, i.e. through rotation and

vibration of the molecule [143]. The addition of such gases can increase the gain of

the experiment through the Penning effect [158], by which excited noble gas atoms

may collide with a gas molecule with a lower ionization threshold, increasing the yield

of charges [159]. The strength of this effect depends on the composition and pressure

of the gas mixture.

The general principle of detection for SPCs is given below, corresponding to steps

1–5 in Fig. 3.4:

1. When ionizing radiation (be it dark matter or any type of background radia-

tion) interacts in the gas volume of the SPC, a stochastic number of primary

electron/ion pairs will be produced. For electronic recoil events (from photon-

s/electrons) this involves a sequence of photon scatters, photo-ionizations, and
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Figure 3.4: Cartoon depiction of an SPC, showing the steps of particle detection
from the primary ionization produced by the incident radiation (step 1) up to signal
formation and treatment (step 4/5).
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ionizations by electrons. For neutral particles, the recoiling nucleus after a colli-

sion ionizes the gas. The average number of primary pairs for a given deposited

energy is calculated using the W-value, and their dispersion is dictated by the

Fano factor, both of which are described in more detail in sections 3.1.1 and

3.1.2.

2. The HV anode attracts the primary electrons produced in the gas, which dif-

fuse as they travel through repeated elastic collisions with other gas atoms/-

molecules. The drift of electrons can take anywhere from 10s of microseconds to

more than 1 millisecond depending on the gas, size of the SPC, anode voltage,

and starting position of the electrons. More details on this process are given in

section 3.1.3.

3. When reaching within several millimeters of the sensor (again, this depends on

the geometry, gas and voltage of the SPC), primary electrons are accelerated

sufficiently to start a Townsend avalanche [143], producing 1000s of secondary

electron/ion pairs for every primary electron. These electrons travel the final

distance to the sensor almost instantaneously, while the ions can take as many

as several seconds to reach the SPC wall (the cathode). Empirical modelling of

this process is described in section 3.1.4.

4. At this point, the large number of secondary ions drifting away from the anode

region (rapidly at first, but quickly decelerating) induce a current on the anode

that is large enough to be observed. The current induced by qion ions as a

function of time is given as [153]:

Qind(t) = −qionρ

(︄
1

r2
− 1

(r32 + 3αt)
1/3

)︄
(3.2)

where α = µ0
ion

V0

P
×
(︂

1
r2
− 1

r1

)︂−1

, and µ0
ion is the mobility of the gas ions at atmo-

spheric pressure (typically O (10−6) cm2V−1µs−1 [160]). Examples of the signal
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shape induced by the ions are shown in Fig. 3.5, for various gas/voltage assump-

tions. At this stage, the signal passes through a charge-sensitive preamplifier

with an exponential response function (the manufacturer-given decay time is

usually τ ≈ 100µs). This integrates the induced current given by eq. 3.2 – and

multiplied by the preamplifier response function – to give the following voltage

signal over time [153]:

S(t) = −qionαρe−t/τ

∫︂ t

0

et
′/τ
(︁
r32 + 3αt′

)︁4/3
dt′ (3.3)

This voltage signal is then digitized by a DAQ (data acquisition) board which

also applies a trigger algorithm to store sections of the continuous signal trace

containing the pulses caused by particle interactions.

5. The raw signal recorded by the digitizer is treated (as described in section 3.1.5)

to produce an output such as the example shown in Fig. 3.4 step 5, which was

produced by a single primary electron in the gas.

The DAQ boards used by NEWS-G are either custom FPGA-based devices nick-

named “caliboxes” [63, 161], or commercially available Red Pitaya FPGA boards

[162]. In either case, the data is recorded at a sampling frequency of 1− 2MHz, with

each event consisting of a 1− 8ms long signal trace. The DAQ software is a custom

application called “SAMBA” [161], previously employed (along with the calibox) by

experiments such as Edelweiss and CUPID-Mo [163, 164]. When the DAQ algorithm

is triggered, Samba records an event window centred around the maximum of the

observed raw pulse.

3.1.1 Primary ionization

The stochastic process of primary ionization is traditionally characterized by two

quantities – the W-value and the Fano factor. The former is an energy-dependent,

gas-specific quantity that represents the average energy required to ionize a single gas
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Figure 3.5: The ion-induced current (according to eq. 3.2) in a 65 cm radius SPC,
with a 7mm radius anode, with typical values of the gain and ion mobility, under
various voltage/gas pressure conditions [153]. Credit to J. Derré.
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atom. The parameterization used by NEWS-G to describe its evolution with energy

is [165]:

W (E) = W0 ×
E

E − U
(3.4)

where W0 is the high energy limit to which W (E) converges (often quoted by itself as

the W-value), with values typically aroundW0 = 30 eV and UO(10 eV). U is meant to

roughly equal the average energy of sub-ionization excitation levels, but in practice

is an empirically derived value [165]. This model has been shown to be in good

agreement with measurements in various proportional counter gases, including for

sub-keV energies [166, 167]. Efforts to measure this quantity for NEWS-G operating

conditions are presented throughout this chapter. The average number of primary

ionizations µ produced by a particle interaction depositing energy E is therefore:

µ =
E

W (E)
(3.5)

The Fano factor gives the index of dispersion of primary ionization [168], that is:

F =
σ2
N

µ
(3.6)

where σ is its standard deviation. While a Poisson process would have F = 1, it is

known that for gaseous detectors F is typically around 0.2. Indeed the Fano factor

has been measured to be ≲ 0.2 for a variety of ionization detector media including

argon, xenon, germanium and silicon [169–172].

However, representation of the entire probability distribution of primary ionization

(rather than just the Fano factor as a descriptive quantity) remains something of an

unresolved issue in low-energy particle physics. While this can be simulated from

first principles using electron scattering cross-section data [173], this approach is

impractical for modelling an experiment’s energy response over the entire range of

its sensitivity and is known to produce results that do not agree with experiments
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Figure 3.6: Examples of the COM-Poisson probability distribution with a mean of 2
and various Fano factors.

[140]. Therefore, the COM-Poisson distribution was adapted for use as a flexible

statistical model of primary ionization in refs. [90, 140]. This probability distribution

– originally developed for modelling queuing behaviour [141, 174] – is a discrete

probability distribution with two shape parameters [175]:

P (X = x|λ, ν) = λx

(x!)νZ(λ, ν)
, for x ∈ N0, λ > 0, ν ≥ 0 (3.7)

where Z is a normalization factor:

Z(λ, ν) =
∞∑︂
s=0

λs

(s!)ν
(3.8)

While λ largely controls the mean of the distribution, ν mostly changes its disper-

sion (in the special case ν = 1, it reduces to the regular Poisson distribution). With

the ability to represent ionization distributions with any mean and any F (that is

mathematically possible [140]), the COM-Poisson PDF is a flexible choice that allows

NEWS-G to fit and model data with F < 1. Examples of this distribution are shown

in Fig. 3.6.
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The difficulty in using the COM-Poisson distribution comes from the fact that λ

and ν do not correspond directly to µ and F , and no closed-form expression relating

them exists. Thus, ref. [140] includes the calculation of lookup tables for λ and ν to

give the desired values of µ and F , as well as asymptotic approximations that are

valid for µ ≳ 20. The strategies used to employ the COM-Poisson distribution are

shown in Fig. 3.7, which correspond to the publicly available COM-Poisson code used

by NEWS-G [176].

3.1.2 Ionization quenching factor

The primary ionization yield of nuclear recoil events is reduced compared to electronic

recoil interactions, due to the predilection for nuclear recoils to deposit energy into

non-ionization channels, specifically heat and radiation from excited states [177]. This

effect is described by the so-called “quenching factor” Q, a scaling factor on the

W-value for electronic recoil events Wee (between 0 and 1) that gives the primary

ionization yield for nuclear recoil events using eq. 3.5):

Wnr =
Wee

Q(E)
(3.9)

The quenching factor is an energy-dependent, gas-dependent quantity. The main

model for predicting the quenching factor is due to Lindhard [177]. For some ioniza-

tion detector media (i.e. liquid argon and xenon), Lindhard theory has been shown to

be in rough agreement with experimental results [178, 179], but not in other instances

including measurements in various gas mixtures [180–182].

Another approach to predicting this quantity uses software such as SRIM [183],

which simulates ions slowing down in matter. Previous NEWS-G experiments used

SRIM to calculate the quenching factor for neon [63], which was parameterized as

Q(E) = α× Eβ (3.10)
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Figure 3.7: Strategies for using the COM-Poisson distribution for ionization mod-
elling in different regions of µ/F (upper panel) and µ/σ2

N (lower panel) parameter
space. This includes the use of pre-computed lookup tables (blue-shaded region), and
asymptotic approximations (red-shaded region), bounded by the minimum possible
dispersion as a function of µ (purple-shaded region). In the implementation of the
code used by NEWS-G, these strategies are verified to be accurate to within 0.1%
from F = 0.1 to F = 1 (orange dashed lines). Taken from figure 1 of ref. [140].
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with α = 0.216 and β = 0.163. However, this approach using SRIM is also not

thoroughly tested against measurements. Therefore, it is critical to obtain empirical

results for this SPC property. Quenching factor measurements are notoriously hard

to perform, in part because a source of nuclear recoil events is needed (e.g. from

neutrons), but also because of the many other correlated factors associated with a

detector’s energy response, such as the W-value and avalanche yield.

Despite these difficulties, the NEWS-G collaboration has performed measurements

in neon/methane gas mixtures using a neutron beam produced at the TUNL facility

[184]. In this case, the empirical results were found to disagree with both the SRIM

prediction and Lindhard theory, motivating future measurements. A semi-empirical

treatment for the quenching factor in methane is described in section 4.3.4.

3.1.3 Electron transport

Once primary electrons are created in the gas, they begin the process of drifting

toward the central anode, and are subject to diffusion along the way. In the absence

of an electric field, the thermal motion of the electrons would lead them to diffuse

outwards (with time-evolving spatial density ρ) through repeated elastic collisions

with other gas atoms according to Fick’s law [143, 185]:

dρ

dt
= D∇2ρ (3.11)

where D is a coefficient of diffusion, with dimension m2 s−1. Solving this equation

gives an essentially Gaussian distribution with σ =
√
2Dt for the spatial density over

time [185]:

ρ(r, t) =
(︂ ρ0
4Dπt

)︂3/2
e−r2/4Dt (3.12)

Determining the impact of the electric field on this diffusion is non-trivial. The

CERN simulation package Magboltz gives the coefficient of diffusion of electrons

in gas (with the pressure and composition specified) as a function of electric field
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strength [186]. The diffusion coefficient is different for parallel and perpendicular

motion relative to the electric field. Using this information, a custom MC is used

to model the diffusion and drift time of electrons starting at different positions in

the SPC. Note that analogous simulations have been performed by other members of

the NEWS-G collaboration (i.e. refs. [152, 160, 187]). In the version developed for

the work shown in this document, a simulated electron is propagated through the

following steps:

1. At the initial position of the electron, the electric field strength is determined

(either using the idealized electric field given in eq. 3.1 or using a finite element

simulation of the SPC).

2. Parallel and perpendicular diffusion coefficients – as well as electron drift veloc-

ity at this electric field strength – are obtained from Magboltz [186].

3. The electron is stepped towards the anode of the SPC according to its drift

velocity, for a fixed time step (O(µs)).

4. In addition to this drift step, random parallel and perpendicular diffusion dis-

placements are applied to the electron (drawn from a Gaussian with σ =
√︁
2D∥t

or σ =
√
2D⊥t respectively). The parallel diffusion moves the electron forward

or backward along its drift trajectory, while perpendicular diffusion moves it

along a spherical shell at the same radius, i.e. while maintaining the same

distance from the anode along the electric field line the electron follows. There-

fore, if the idealized electric field of eq. 3.1 is used, perpendicular diffusion is

irrelevant.

5. Steps 1 to 4 are repeated until the electron reaches within a preset distance of

the anode.

Note that in this MC scheme with fixed time intervals, the last few centimetres

before reaching the anode may occur in only a few MC steps (as the electron rapidly
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Figure 3.8: Electron drift time vs. initial radius simulated for a 15 cm diameter SPC,
with 800mbar, Ar + 2%CH4 gas. The spread in drift time represents the amount
of diffusion experienced by electrons. The colour scale is a 2D Gaussian KDE score
(arbitrary units) representing the density of points on the plot. Figure 3.5 from ref.
[90].

accelerates). This coarse stepping in the region is not problematic, however, as the

electron spends the majority of its drift time (and experiences the most diffusion) far

from the sensor, in low electric-field regions.

An example of the results of such a simulation – for many electrons at many

different starting radii in an SPC – is shown in Fig. 3.8. The spread in electron

arrival times, due to stochastic diffusion, leads to varying pulse shapes depending on

how much diffusion is experienced. Generally, diffusion is greater for events starting

at larger radii, allowing for limited pulse-shape discrimination between surface (large

initial radii) and volume events in an SPC. Several variables designed to characterize

this behaviour are described in section 3.1.5.

The other process to consider while primary electrons drift is charge trapping, or

“attachment”. This occurs when free electrons drifting through the gas collide with

electronegative gas particles (primarily molecular oxygen and water), which trap the
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Figure 3.9: The Polya probability distribution with different values of θ, plotted in
units of the mean gain in number of secondary electrons ⟨n⟩ such that the mean of
the distribution is always 1.

free electrons [63, 152]. In this way, charge trapping reduces the signal observed

from particle interactions, with events starting further from the sensor more likely

to be affected (due to their greater chances of encountering contaminants). This

can produce a noticeable impact with oxygen and water contamination as low as

O(ppm), necessitating great efforts to keep these contaminants out of SPCs (more on

the apparatus involved in section 4.1).

3.1.4 Townsend avalanche

If a primary electron has sufficient kinetic energy, it can ionize more gas atoms/-

molecules in the medium as it drifts toward the sensor. Typically this only happens

when the electric field is strong enough to accelerate electrons to this degree in be-

tween elastic collisions. If the mean free path length between ionizing interactions is

λ, then the inverse quantity α = 1/λ – the first Townsend coefficient – gives the av-

erage number of secondary ionizations produced per unit length [143]. This quantity
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depends on the gas composition and pressure – dictating the ionization cross section

and number density of atoms – and electric field strength, and can be determined

with the Magboltz software [186]. Each of the secondary electrons produced will go

on to ionize more atoms, creating an exponentially growing cascade (the Townsend

avalanche) [143]. The number of secondary electrons n produced by a single primary

electron grows with the travel distance x of the primary electron as [152]:

n = eαx (3.13)

In an SPC, this occurs within a millimetre (or less) of the anode, with typically

thousands of secondary pairs produced for every primary electron. The mean gain of

the detector is therefore defined as the yield of secondary electrons n produced by N

primary electrons:

⟨G⟩ = n

N
(3.14)

As with primary ionization, this is also a stochastic process. For large numbers of

primary electrons, the avalanche yield E (the observed energy, various units) will be

necessarily Gaussian in nature (with a mean of ⟨G⟩ × N) due to the Central Limit

Theorem [73], but for low energy events, this is not necessarily the case. The statistics

of the avalanche process are historically well-described by the Polya distribution [188–

192], which has a single shape parameter θ that allows the distribution to vary between

exponential (θ = 0) and Gaussian (θ →∞):

PPolya (E|θ, ⟨G⟩) =
1

⟨G⟩
(1 + θ)1+θ

Γ (1 + θ)

(︃
E

⟨G⟩

)︃θ

× exp

(︃
− (1 + θ)

E

⟨G⟩

)︃ (3.15)

Typically θ is close to 0 for SPCs [192]. This distribution is depicted with different

values of θ in Fig. 3.9. The avalanche response for N primary electrons is the N th
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convolution of the Polya distribution (each avalanche is assumed to be independent),

and is given by [192]:

P
(N)
Polya (E|N, θ, ⟨G⟩) = 1

⟨G⟩

(︄
(1 + θ)1+θ

Γ (1 + θ)

)︄N

×
(︃

E

⟨G⟩

)︃N(1+θ)−1

× exp

(︃
− (1 + θ)

E

⟨G⟩

)︃
×

N−1∏︂
i=1

B ((i+ iθ) , (1 + θ))

(3.16)

where B(x, y) is the beta function. Equation 3.16 can then be combined with the

COM-Poisson distribution section 3.1.1) to give the full detector response E to a

particle event depositing energy E0. This is achieved by multiplying the probability of

having N primary electrons with the corresponding avalanche response, and summing

over the possible numbers of primary electrons:

P(E|E0) =
Nmax∑︂
N=1

PCOM(N |µ(E0), F (E0))× P
(N)
Polya (E|θ, ⟨G⟩) (3.17)

where the mean number of primary electrons is µ = E0/W (E0), and the Fano factor

may also be a function of the particle energy. Nmax is the maximum number of

primary electrons possible to produce given the ionization threshold of the atom in

question:

Nmax =

⌊︃
E0

Eionization

⌋︃
(3.18)

The detector energy response E can be thought of in units of the number of sec-

ondary electrons, or the pulse amplitude observed by the detector as an estimate of

the energy response (more details on pulse treatment are given in section 3.1.5). In

the latter case, the mean gain ⟨G⟩ is in units of ADU (arbitrary digital units) per pri-

mary electron. This response function is shown for different values of E0 in Fig. 3.10,

for θ = 0 and F = 0.2. This demonstrates the relatively broad energy resolutions of
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Figure 3.10: The total energy response of a hypothetical SPC, for different deposited
energies, obtained using eq. 3.17. This includes the dispersion in primary ionization
with F = 0.2 and Townsend avalanche dispersion, with θ = 0 and ⟨G⟩ = W−1 such
that the resultant scale is equivalent to the deposited energy scale.

SPCs, which is nearly exponential at low energy due to both primary and secondary

ionization statistics.

Note that even though eq. 3.17 can be cast in terms of recorded pulse amplitudes,

it does not include the impact of electronic noise in the recorded data, or other

distortions due to pulse processing (in particular pulse smoothing, more on this in

section 3.1.5). Typically these effects are collectively taken into account by convolving

eq. 3.17 with a Gaussian distribution, with a standard deviation representing the extra

dispersion added to the amplitude of events by these processes.

3.1.5 Signal processing and Pulse-shape discrimination

The raw signal of a particle event in an SPC is a combination of the total energy

response in the gas (described in the previous subsection), and the induced signal on

the anode by the avalanche charges drifting away (given by eq. 3.3). Qualitatively,
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Figure 3.11: Example of a real SPC event (a 2.8 keV 37Ar event) in various stages
of treatment. First panel: the raw pulse, baseline-subtracted (y-axis in arbitrary
digital units). Second panel: the double-deconvolved, smoothed pulse. Third panel:
the cumulative integral of the double-deconvolved pulse (y-axis in arbitrary digital
units).

this appears as a sharply rising pulse, rounded slightly near its maximum, followed

by a long decaying tail due to the exponential response of the pre-amplifier. One uses

the height of this pulse as an estimate of the energy of the event. However, if primary

electrons arrive at the sensor spread out in time, the decaying preamplifier response

will reduce the signal height from one electron before the next arrives. Therefore, the

maximum amplitude of the raw pulse will be less than the sum of the raw amplitudes

of all the participating electrons, making this a non-linear energy estimator that

behaves differently depending on where the event originated from, gas conditions,

etc.

To solve the issue, the raw pulse is “corrected” for the preamplifier response func-

tion – as well as a similar pulse shape due to the changing induced current over time

– by deconvolving the raw pulse from both of these effects. The resulting treated

pulse is essentially a sequence of Dirac delta functions with amplitudes and times

corresponding to the avalanches from individual primary electrons. Pulse smoothing

and electronic baseline noise smear these into narrow Gaussian-like peaks. The pulse
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Figure 3.12: A double-deconvolved, integrated pulse (an 2.8 keV 37Ar event). The
red markers indicate the start and end of the pulse. The amplitude and risetime (10
– 90%) of the pulse are also labelled; in this case, the amplitude is ≈ 5940ADU and
the risetime is ≈ 11.3µs.

treatment algorithm used by NEWS-G is largely the work of F. Vazquez [160], and

is summarized below:

1. A trapezoidal filter applied to the raw pulse (the derivative calculated over a

span of samples) is used to determine the starting point of the event, i.e. when

the derivative exceeds a set threshold.

2. A span of samples before the start of the pulse is used to calculate the average

baseline, which is then subtracted from the pulse.

3. The pulse is then deconvolved from the preamplifier (exponential) response

function.

4. The trace is smoothed with a rolling average smoothing algorithm.

5. Next the pulse is deconvolved (in frequency space) from the ion-induced current

response.
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6. The double-deconvolved pulse is smoothed again with a rolling average algo-

rithm.

7. Finally, the cumulative integral of the double-deconvolved pulse is calculated.

An example of a pulse throughout various stages of this process is shown in Fig.

3.11. The main variables used in analyses are defined using the integrated, double-

deconvolved pulse, which are depicted in Fig. 3.12. The amplitude of the pulse (an

estimate of the event energy) is simply the difference between the pulse height after

and before the end and start of the pulse, respectively. This is sometimes denoted

by the variable name DD AmplADU throughout this work. Risetime is defined as the

time between the pulse reaching 10% and 90% (or sometimes 75%) of its maximum

height.

Risetime is useful as a pulse-shape discrimination (PSD) variable, as explained in

section 3.1.3. Events originating from larger radii within the SPC tend to experience

more diffusion of primary electrons as they travel to the sensor, and therefore will

have large risetimes on average compared to events uniformly distributed throughout

the volume (as dark matter would be). An example of this behaviour is shown in Fig.

3.13. As many sources of background events are surface contaminants, this limited

fiducialization of the detector can be used to reject many background events. This

approach does break down at low energy events consisting of just a few electrons; sin-

gle electron events have the same risetime (which is non-zero due to pulse smoothing

and baseline noise) regardless of where they originate in the SPC.

Some useful PSD variables are also extracted from the baseline-subtracted raw

pulse, namely the full-width half-maximum (FWHM) and risetime of the raw pulse.

These are employed to reject non-physical, discharge-like events thought to originate

from microscopic electrical shorts inside the sensor structure. Since these events do

not experience a Townsend avalanche in the gas, their pulse shape is an instantaneous

rise with a purely exponential decay due to the pre-amplifier. Therefore, one expects

58



Figure 3.13: 2D histograms of risetime vs. amplitude data from simulated volume
(top panel) and surface (lower panel) events, with a uniform deposited energy distri-
bution. This simulation is specific to the SEDINE experiment at the LSM [63], and
demonstrates the clear difference in risetime between these populations, except where
it breaks down at low energy. Taken from figure 3 of ref. [63].
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Figure 3.14: 2D histogram of the raw pulse risetime vs. FWHM from 37Ar data taken
in a 200mbar argon gas mixture. The majority of events are physical events, with a
small sub-population of discharge events at lower risetimes and FWHM values.

these pulses to have characteristically shorter FWHM and risetime values. Note that

the risetime calculated using the double-deconvolved pulse is not useful in this case,

as that algorithm deconvolves the discharge pulses for a shape component they do

not have, severely distorting them. An example of these different PSD populations

is shown in Fig. 3.14. More specifics on PSD cuts for specific analyses are discussed

later on in section 4.4.

When the diffusion experienced by primary electrons is very large, it is possible

to distinguish individual primary electrons in the double-deconvolved pulse signal,

as opposed to more typical examples like Fig. 3.11 where electrons arrive in rapid

succession and appear as one peak. The conditions required for this to happen include

having a slow-drifting gas, and a large SPC. To date, this has only been the case with

the recent LSM physics campaign (discussed in sections 4.2 to 4.5) in a 140 cm SPC

with methane gas. More details of this special pulse-processing are given in section

4.2.2.
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3.1.6 Previous NEWS-G results

The first dark matter physics result of the NEWS-G collaboration was derived from

physics data taken with the “SEDINE” detector at the LSM in 2015 [63]. This device

was a 60 cm copper SPC with a 6.3mm single anode (pictured in Fig. 3.2). A target

gas of 3.1 bar, Ne + 0.7%CH4 was used, with an applied voltage of 2520V. Almost

42 kg · days of data was collected, leading to the publication of the WIMP exclusion

limit shown in Fig. 3.15. At the time, this was world-leading at a WIMP mass of

0.5GeV/c2 [63].

Although this was a notable achievement (being the first dark matter result from

any gaseous detector collaboration at the time), the experiment was affected by several

shortcomings. The only calibration source used was 37Ar, which showed evidence for

strong anisotropies in the electric field produced by this early sensor with no corrective

umbrella anode. Because of the degeneracy between the W-value and ⟨G⟩, the lack

of independent UV laser calibration (see section 3.2.1) forced the assumption of the

W-value found in the literature for neon – 36 eV [63, 193]. No realistic model for

primary ionization statistics (like the COM-Poisson distribution) was known at that

time, so it was taken to be Poissonian. No neon quenching factor measurements

had been performed [184], so the SRIM simulation software was used despite its

known shortcomings [63]. The detector also observed a large, unexplained excess of

low energy events far exceeding any modelled background sources (similarly to other

low-mass dark matter experiments, see section 2.4.1).

Moving forward from this first result, the collaboration has put a great deal of

effort into correcting hardware deficiencies, improving calibration techniques, and

better understanding the physics of SPCs. Some of these improvements have already

been presented earlier in this section, with many more to be presented throughout

the rest of this chapter as part of the upcoming second NEWS-G dark matter result.
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Figure 3.15: Spin-independent WIMP-nucleon scattering cross-section exclusion lim-
its from a variety of experiments, including the NEWS-G exclusion limit from the
LSM obtained with the SEDINE detector (red curve), along with its sensitivity band
(green shaded bands). Also shown are several possible dark matter signal regions
from the CDMS, CoGeNT, DAMA/LIBRA and CRESST-II experiments (blue, grey,
turquoise, and pink-shaded regions respectively). Figure 10 from ref. [63].
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Figure 3.16: UV laser calibration setup for NEWS-G, including the internal compo-
nents of the laser, optical paths into an SPC and photodiode, and subsequent signal
acquisition. Examples of a photodiode (PD) pulse and treated SPC laser pulse are
also shown. Figure 1 from ref. [192].

3.2 Calibration strategies

3.2.1 UV laser calibration

A principle calibration tool used by NEWS-G is a UV laser system, used to produce

photoelectrons from the inner surface of the SPC via the photoelectric effect [192].

The standard setup employed in multiple labs uses a 213 nm pulsed laser, shone into

the sphere through a fibre optic cable and an optical fibre vacuum feed-through. The

lasers used are produced by Quantum Light Instruments [194]. A 10mJ/pulse infrared

(1064 nm) YAG laser is coupled to a (internal) 5th harmonic waveform generator to

ultimately produce the 213 nm light. The device also includes a variable transmission

neutral density attenuator to control the laser intensity. A split optical fibre is used

to simultaneously shine the light inside the sphere as well as on a ThorLabs silicon

photodiode for event tagging. The photodiode signal is captured by the same DAQ

system (optionally with external signal amplification) as the sphere to ensure proper

timing between these two channels. This setup is depicted in Fig. 3.16, with more

details given in ref. [192].

At peak intensity, the laser produces 0.5mJ pulses of 213 nm light, which corre-
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sponds to roughly 5.4×1014 photons. However, the transmission of this light through

the optical fibre and feed-through is very low (as they are not optimized for UV light).

Additionally, there is an unknown (but evidently very low) efficiency for these photons

to extract electrons that arrive at the sensor, rather than immediately recombining

with the SPC surface. Collectively, these factors can reduce the large initial number

of photons produced to O(100) photoelectrons per pulse. The laser is often operated

with a relatively low pump current and internal transmission, further reducing this

yield to O(1) photoelectron.

The primary application of the UV laser is to measure the avalanche response of

an SPC, specifically the parameters θ and ⟨G⟩. While other calibration sources can

also be used to measure these parameters (i.e. 37Ar data), the signal from particle

interactions in the gas are also dictated by the W-value and Fano factor, which are

degenerate with ⟨G⟩ and θ respectively. As the number of primary electrons produced

by the laser only depends on the laser intensity and work function of the metal (and is

subject to Poisson statistics), it provides a means to decouple these energy response

parameters with an independent measurement [192]. Typically for such calibrations,

the DAQ is set to trigger on the photodiode channel so that only laser events are

recorded. The intensity of the laser is tuned using the variable attenuator to produce

few-electron events in the SPC.

At a given laser intensity, the number of primary electrons reaching the sensor

is assumed to follow a Poisson distribution with mean µ. Each UV photon striking

the surface has a given probability to extract an electron (i.e. following a Bernoulli

distribution), so the probability for obtaining N primary electrons given K incident

photons follows a binomial distribution when K is small. In this case, the number of

incident photons in each pulse is so large that this tends towards a Poisson distribu-

tion [73] with a mean number µ. Therefore it is impossible to collect laser calibration

data with only single primary electrons – if mu ≲ 1, there will necessarily be contri-

butions of null (zero electron) events, and others with two, three, etc. electrons. It
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is worth noting that this assumption still holds in the face of charge trapping, which

may be present. In this case, the original Poisson distribution of primary electrons

reaching the sensor with mean µ would be convoluted with a Binomial distribution

with trapping probability p, resulting in a Poisson distribution with mean µ× (1− p)

(see Appendix of ref. [192]). As the laser intensity does fluctuate throughout data

taking (due to instabilities in the laser itself), the recorded photodiode data is used

to select events with as close to a constant µ as possible, typically taking a subsection

of the data with a photodiode amplitude within ± 5% of a given value [192].

Laser calibration data is processed largely as described in section 3.1.5. The only

difference is that the pulses are integrated within a pre-defined window, rather than

relying on a trapezoidal filter to determine the start of the pulse. This is necessary to

properly treat null events in the laser data, with no evident pulse. The fixed window

can be easily defined, as the DAQ software automatically attempts to center all pulses

in the middle of each event window. This also ensures that every event integrates the

same amount of baseline noise, which is not the case if the pulse integration window

is automatically determined. Therefore this noise can be represented as a Gaussian

signal with the same standard deviation for all events [192].

The amplitude (E) spectrum for laser events can be calculated analytically in a

similar way as eq. 3.17, but with the number of primary electrons being Poisson-

distributed rather than using the COM-Poisson distribution, and with an additional

term for null events:

P (E) =

(︄
PPoisson (0|µ)× δ (E − ωb) +

0∏︂
0

∞∑︂
N=1

PPoisson (N |µ)× P
(N)
Polya (E|θ, ⟨G⟩)

)︄
⊗ PNorm (E|ωb, σb)

(3.19)

where δ is the Kronecker delta function. PNorm (E|ωb, σb) represents the electronic

baseline noise with mean and standard deviation ωb and σb. An example of typical
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Figure 3.17: An example of a laser calibration amplitude spectrum (blue histogram),
taken in a 30 cm SPC with 50mbar of pure methane gas. The total fit of the spectrum
is shown (red curve), as well as the contributions from zero, one, and two-electron
events (grey and green curves). In this example, the best-fit parameters were θ =
0.0012+0.03

−0.0012, ⟨G⟩ = 53.8+1.3
−1.2ADU, and µ = 0.23 ± 0.01. Using these results, the

amplitude scale can be converted to units of the average amplitude for a single primary
electron (top scale). Note that the null electron peak is shifted above 0ADU (ωb > 0);
this is an occasional artifact of pulse processing, wherein the double-deconvolved pulse
has a slightly rising baseline.
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laser calibration data is shown in Fig. 3.17. This spectrum can be fit with eq. 3.19

(which is also shown in Fig. 3.17) to extract estimates for θ and ⟨G⟩. Although more

sophisticated laser analyses are presented in sections 3.3 and 4.3, this basic approach

developed in ref. [192] demonstrates the salient features of laser data. Specifically,

one can see the Gaussian peak centred near 0ADU from null events, and the approx-

imately exponential tail of mostly single-electron events, corresponding to the Polya

distribution with θ ≈ 0.

The UV laser may also be operated in a high-intensity mode, wherein potentially

hundreds of photoelectrons are produced in each event. The main application of

this type of data is real-time monitoring of the detector response [192]. The gain of

the detector may change over time due to changing electric field conditions, as well

as changing gas conditions (e.g. temperature/pressure fluctuations). The detector

response may also be affected over time due to increasing gas contamination, and

therefore electron attachment. All of these effects can cause measurable changes in the

amplitude of high-intensity laser events. As is shown in Fig. 3.18, these fluctuations

also apply to other physical events in the sphere and therefore can be accounted for in

analysis. The laser data can also optionally be used to correct for these fluctuations

over time if appropriate.

Another important output of laser calibration data is the measurement of electron

drift times. Because the photodiode and SPC signals are synchronized, this can be

directly calculated using the time difference between the start of the photodiode pulse

and SPC pulse (see ahead to section 4.2.2) – an example of this time difference can

be seen in Fig. 3.16. Electron drift times depend on the size of the SPC, the drift

properties of the gas (see section 3.1.3), and also on the rate of other events in the

detector due to space charge effects (see section 4.3). For the LSM methane campaign,

typical drift times ranged from ∼ 0.7 to 1.5ms.

67



Figure 3.18: A 2D histogram of the amplitude of high-intensity laser events over time
(top panel), as well as 2.8 keV 37Ar events (middle panel). The red markers indicate
the mean amplitude in different time segments. The bottom panel shows the same
37Ar events but corrected for fluctuations in the detector response over time using
the laser data. Taken from figure 6 of ref. [192].
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3.2.2 37Ar Calibration

A frequent calibration source used by NEWS-G is 37Ar. As a radioactive gas, 37Ar

provides calibration events from the entire SPC volume. Its decay also produces

events with a range of energies, which can be used to verify the energy-linearity of a

detector. Samples of this gas – with a 35 day half-life [195] – are produced regularly

by collaborators at the Royal Military College of Canada [196]. Samples of CaO

powder are inserted close to a SLOWPOKE-II research reactor. The neutron flux

from the reactor produces 37Ar via the reaction [196]:

40Ca + n→ 37Ar + α (3.20)

The 37Ar is then liberated from the CaO matrix by agitating and heating the vial,

then passively transferred to an un-irradiated sample container by allowing it to

diffuse through a HEPA filter (to ensure no CaO powder is carried through). The

quantity of 37Ar produced is calculated based on germanium counter measurements of

41Ar and other radio-isotopes produced as by-products of irradiating the CaO and air

trapped within it [196]. This technique provides a fast and efficient way to produce

37Ar, requiring only ∼ 15 minutes of irradiation to produce ∼ 1 kBq of 37Ar in a 0.5 g

sample of CaO powder [196]. Producing the sample under vacuum conditions ensures

that negligible gaseous contaminants (especially O2 and H2O) are introduced into the

SPC when the sample is allowed to diffuse into the detector [196].

37Ar decays via electron capture [70] – primarily K-shell or L1-shell capture, with

branching ratios of 90.4% and 8.4% respectively [197]:

37Ar + e− → 37Cl + νe (3.21)

The electron vacancy created leaves the atom in an excited state, which resolves

through the emission of photons and/or Auger electrons. The total energy emitted per

decay is 277 eV or 2.83 keV for L1 and K shell electron capture, respectively [198]. To
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Figure 3.19: An example of one atomic relaxation path following an L1-shell electron
capture decay of 37Ar. The level diagrams show the K, L and M shells, with electrons
being represented as white circles and vacancies as black circles. The atom starts off
with a vacancy in the L1 shell (1), followed by two Auger electron transitions (2-3),
and then photon emission (4).

use 37Ar as a calibration source, the different decay paths must be modelled. Knowing

the total energy deposited per event is not adequate due to the energy dependence

of the W-value. That is, the average number of primary ionizations produced by two

particles with energies EA and EB is not the same as the average yield of a single

particle with energy EA + EB, especially in the sub-keV regime. Additionally, the

different decay paths contribute different numbers of free electrons from the decay

itself (Auger electrons) that contribute to the total ionization signal as well.

Therefore, a detailed simulation of the electron-capture decay of 37Ar is necessary.

The MC produced for NEWS-G described in this work follows the method described

in ref. [199], as well as simulations of 37Ar performed by the DarkSide collaboration

[200–202]. Atomic transition data (including the types, energies, and probabilities of
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different transitions) was obtained with code “RELAX”, using the EADL2017 library

[198, 203]. For Auger electron transitions, this data specifies the initial vacancy, the

electron that fills the vacancy, and the electron that is ejected from the atom. These

three shells are specified in order. For example, a KL1L3 Auger transition involves

an electron falling from the L1 to K shell, and an electron being ejected from the L3

shell (in this case with kinetic energy 2.346 keV [198]), leaving two vacancies. Photon

(X-ray) transitions simply involve an electron from a higher shell filling a vacancy.

The atomic relaxation process terminates with low-energy photon transitions, with

the atom accepting free electrons from the environment to vacancies in an M shell.

An example of a complete decay path from an L1-shell capture is depicted in Fig.

3.19.

As there are 45 Auger and 17 unique X-ray transitions possible following K-shell

capture, there are thousands of possible decay paths to consider. This is done using

an MC of the relaxation process, according to the following steps:

1. Either a K-shell or L1-shell decay is randomly chosen according to their branch-

ing ratios [197].

2. The initial state of the atom is determined, with either a K or L1 shell vacancy

from the electron capture interaction. Note that there is a 2/3 chance of a

second electron residing in the M2 shell, or a 1/3 chance that it is in the M3

shell, according to the RELAX transition data [198].

3. A possible decay path proceeding from the current state is chosen (i.e. one

for which the initial vacancy is in the correction position, and other electrons

involved are present).

4. Vacancies are noted accordingly, with the previous one moving, and possibly an

additional vacancy being created by an Auger transition. The emitted particles

are recorded.
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Figure 3.20: The spectrum of electrons (blue) and photons (red) emitted from the
L1 and K-shell electron capture decays of 37Ar (left and right panels, respectively),
obtained by simulating 107 decays.

5. Steps 3 and 4 are repeated until there are only vacancies in the M shells, at

which point no Auger or X-ray transitions are possible.

6. The M-shell vacancies are resolved by photon emission, assuming that there is

an infinite supply of free electrons in the environment to participate.

This simulation was performed for 107 decays, resulting in the emitted spectra of

photons and electrons shown in Fig. 3.20. Typical decay paths involve one or more

Auger electron transitions (which are generally more probable than initial X-ray tran-

sitions), ending with several low-energy M-shell photon transitions, as expected. The

5 most common L1-shell decay cascades as given in Table 3.1, along with a list of the

particles emitted and the relative probability of that decay path.

In total, 2251 unique decay paths were obtained through this simulation (for K-

shell electron capture). Although this is less than the 5213 unique decays reported

by the DarkSide collaboration [200], this is likely due to the limited statistics of

this MC. To verify that this is the case, the simulation was re-run with the relative

probability of every transition automatically set to 1, to strongly favour decays that

would otherwise be so rare that even in 107 decays they may not occur. Using this

approach, 8469 unique decay paths were found, suggesting that many rare paths exist
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Decay transitions Auger e− Photons Relative

[eV] [eV] Probability

L1L3M1 Auger→ L3M3M3 Auger
46.46, 180.06 2× 12.97, 24.54 1

→ 2×M3, M1 photon

L1L3M1 Auger→ L3M2M3 Auger
46.46, 180.06 2× 12.97, 24.54 0.67

→ M3, M2, M1 photon

L1L2M1 Auger→ L2M2M3 Auger
44.46, 182.06 2× 12.97, 24.54 0.65

→ M3, M2, M1 photon

L1L3M1 Auger→ L3M1M3 Auger
46.46, 168.49 12.97, 2× 24.54 0.64

→ M3, 2×M1 photon

L1L3M3 Auger→ L3M3M3 Auger
58.03, 180.06 3× 24.54 0.60

→ 3×M3 photon

Table 3.1: The 5 most common decay paths following L1-shell electron capture of
37Ar, ordered by their relative probability
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Figure 3.21: Frequency of occurrence vs. decay path index number for K-shell electron
capture decays of 37Ar, from an MC with 107 events.

that can be missed without extremely large simulations. One can see that this is the

case by plotting the frequency of occurrence vs. a decay path index, using the original

MC results, which is shown in Fig. 3.21. Of course, these rare decay cascades will

not have an appreciable effect on the overall model of 37Ar decay because of their

scarcity.

One notable assumption made by this simulation pertains to the order in which

vacancies are filled when multiple exist at the same step of the simulation. One

approach would be to fill vacancies according to the order in which they are created

in the simulation. However, lacking any information on the lifetimes of the various

intermediate excited states from the RELAX code [198], it may be generally assumed

that the highest-energy states will have the shortest lifetimes [70]. Therefore in this

simulation, all existing vacancies in an event are sorted by their energy level following

each step, and filled in that order. The “chronological” approach was also attempted

for the sake of comparison. As shown in Fig. 3.22, this results in negligible differences

that are attributable to statistical uncertainty in the MC.

The next step in modelling the decay of 37Ar in an SPC is to consider the propaga-
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Figure 3.22: The energy spectra of emitted particles following L1-shell electron cap-
ture of 37Ar (Auger electrons and photons), simulated by filling vacancies in MC
chronological order (red histogram) as well as by their energy level (blue empty his-
togram).

tion of the decay products in the low-density gas environment of these experiments.

In particular, there may be a non-negligible (or indeed large) probability that high-

energy X-rays will escape the sphere without depositing any energy, or that electrons

may collide with the detector wall before depositing their full kinetic energy. These

effects were modelled with Geant4 simulations [204], specifically using the “Shield-

ings” physics list [205]. All of the possible decay products of 37Ar were simulated,

distributed homogeneously throughout the SPC, with isotropic trajectories. The

spectrum of energy deposited in the gas by each decay particle is obtained, giving a

probability distribution function for the energy deposited by that specific radiation.

The results of such simulations are dependent on the size of the SPC and target gas

(both composition and pressure) in question; therefore the modelling of 37Ar decays

becomes experiment-specific at this stage. Examples of the deposited energy spectra

of several 37Ar decay electrons and X-rays are shown in Fig. 3.23, for the conditions

of the pure methane gas physics campaign at the LSM (see section 4.1.3) as well as
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Figure 3.23: Deposited energy spectrum of several electrons and X-rays produced
by 37Ar decays, obtained from Geant4 simulations. These examples are given for
the conditions of the pure methane gas physics campaign undertaken at the LSM
(“LSM”, see section 4.1.3), as well as methane gas experiments done in a 30 cm SPC
at Queen’s University (“S30”, see section 3.3).

pure methane measurements in a 30 cm SPC (see section 3.3). One can see from these

select examples that, while low-energy X-rays and electrons are likely to deposit their

full kinetic energy in the SPC, high-energy particles often do not. The O(keV) X-rays

often Compton scatter before escaping, while the electrons may reach the vessel wall

before depositing their full energy.

Combining the cascade simulation results and Geant4 propagation spectra de-

scribed above, the total description of the decay of 37Ar inside an SPC is achieved.

An example of the spectrum of the number of decay particles vs. total energy de-

posited per decay is shown in Fig. 3.24. As many as 11 individual particles may be

produced in a single decay, or as few as 1 that actually deposit energy in the SPC. In

addition to the strong contributions at the full decay energies of the L1 and K shell

(277 and 2830 eV respectively [198]), there is a broad continuum of deposited energy

in between those peaks, as well as a prominent line at 200 eV from partially escaped

K-shell decays. A large number of 12.5 eV photons are produced from M-shell tran-
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Figure 3.24: A 2D histogram of the number of decay cascade particles (Auger electrons
and photons) vs. the total energy deposited in an SPC per event following the electron
capture decay of 37Ar. This result is simulated for a 30 cm SPC with 50mbar of pure
CH4 gas.

sitions, but these are below the ionization threshold of the gases used by NEWS-G.

A full study showing how these results are used to fit 37Ar calibration data is given

in section 3.3.
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Figure 3.25: Various measurements of the W-value in pure methane gas as a function
of energy. The measurements include those by Combecher [209] (square markers),
Krajcar-Bronic̀ et al. [207] (triangle markers), Waibel and Grosswendt [208] (plus-
sign markers), and Smith and Booz [206] (diamond markers). The ICRU report 31
high-energy W-value is indicated by an arrow [167]. Taken from figure 8.7 from ref.
[166].

3.3 W-value measurements in methane

As discussed in section 3.1.1, the W-value is central to describing the energy response

of SPCs. While measurements of this quantity have been made in a variety of target

gases and at varying energies [166], not all conditions relevant to NEWS-G have been

studied. In particular, few measurements exist of the W-value in pure methane gas.

Those that do exist are somewhat conflicting, as can be seen in Fig. 3.25 [166, 206–

208].

As this was the target gas used in the recent NEWS-G physics campaign at the

LSM (discussed for much of the rest of this chapter), dedicated measurements of the

W-value in methane were deemed necessary. An in situ calibration was performed at
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Figure 3.26: The S30 detector setup at Queen’s University (left), and the 2mm anode
employed for W-value measurements (right). Taken from figure 1 of ref. [63] (left)
and figure 3.22 of ref. [152] (right).

the LSM. However, the impossibility of performing repeat measurements in different

conditions prompted further study using a lab-based SPC. The “S30” detector at

Queen’s University – pictured in Fig. 3.26 – was purposed for this task. The device is

a 30 cm diameter stainless steel SPC [192]. The sensor used was a 2mm stainless steel

anode with a Bakelite secondary electrode (also shown in Fig. 3.26. Measurements

were performed with pure methane gas, primarily at a pressure of 50mbar. Other

pressures were studied as well, but as will be discussed in later subsections, this did

not yield data that is fully understood.

A Canberra Model 2006 charge-sensitive preamplifier was used (with a decay time

of ∼ 46µs) [210], and the data was digitized at a sampling frequency of 1041 kHz,

recorded by the custom calibox DAQ board and Samba software (see section 3.1).

37Ar produced by the RMCC was used as the primary calibration source for these

measurements. The rate of decays in the sphere was approximately 40 to 60Hz

for each measurement. Additionally, an aluminum foil-wrapped 241Am source was

inserted into the sphere. This setup produced a few Hz of 1.486 keV aluminum flu-
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orescence X-rays [198], induced by the 5.5MeV α-decay of 241Am [211]. Finally, the

UV laser system described in section 3.2.1 was used to measure the detector gain ⟨G⟩

for all W-value measurements.

Data was collected at anode voltages of 1200, 1250, and 1300V. This was done to

rule out (to the largest extent possible) changing detector gain/electric field conditions

having a systematic effect on the study results. Ideally a larger range of anode

voltages would have been tested. However, this was not practically achievable due to

the limited dynamic range of the DAQ, and the need to have a gain high enough to

detect single electrons. The data was processed following the double-deconvolution

algorithm described in section 3.1.5, with the only change being a fixed integration

window 75µs long in the middle of the overall 2ms event window.

An example of the collected data is shown in Fig. 3.27, showing both the high and

low energy peaks produced by 37Ar decay (the low energy peak also includes partially

escaped K-shell decays, see section 3.2.2). In between the 37Ar peaks, the aluminum

fluorescence events are also visible (at around 2800 ADU in this case), at a relatively

lower rate. Because of the close overlap between the high energy 37Ar and aluminum

fluorescence peaks, these two calibration lines were analyzed together, with the low

energy 37Ar data fit separately. In addition to these calibration lines, a large diffuse

background of muon events was present. These track-like events tend to have higher

risetimes than point-like calibration events. Therefore this background can be largely

removed by keeping only events with low risetimes (from approximately 7 to 11.7µs).

3.3.1 Laser measurements

For each W-value measurement (at a given pressure, anode voltage) it is necessary to

know the mean gain of the detector ⟨G⟩ to extract an estimate of the degenerate W-

value. Further, knowing the avalanche response (modelled with the Polya distribution

with shape parameter θ) allows for a disentangled measurement of primary ionization

statistics in the SPC, described by the Fano factor. Therefore, UV laser calibrations
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Figure 3.27: A 2D histogram (with the colour-scale giving counts per bin) of risetime
vs. amplitude data from the 1250V W-value measurement, showing 37Ar decays (the
high and low amplitude peaks), aluminum fluorescence (the middle peak), and muon
events (the broad population at high risetime).

were performed corresponding to each W-value measurement (with the laser pulsing

at 10Hz), with this data being taken immediately before/after the main dataset, in

the same gas and conditions.

As described in section 3.2.1 and ref. [192], the laser intensity is tuned to produce ≲

1 photoelectron in the SPC on average, and acquisition is triggered by the photodiode

coupled in parallel. In this way, even events where no photoelectrons reach the SPC

anode are recorded. This data is processed in the exact same way as the W-value

calibration data (described above), with a fixed integration window of 75µs within

the larger 2ms event window. To account for fluctuations in laser intensity, the data

is divided into segments based on the recorded photodiode amplitude of each event,

with each segment only accepting events with ± 5% of a given photodiode amplitude

[192].

Although the spectral shape of null (0 photoelectron) events is nominally expected

to be Gaussian, this was found to not be the case in these measurements. Due to
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the high rate of 37Ar decays occurring at the same time, a non-negligible fraction of

photodiode-triggered events were in near or total coincidence with other pulses. This

results in some laser events having very large amplitudes compared to the expected

few-electron events actually produced by the laser. This issue is easily addressed by

limiting the range of amplitudes in which the laser data is actually fit. However,

near-coincident events with parasitic pulses before or after the integration window

defined for pulse processing can noticeably distort the amplitude of laser events, but

not so much as to shift them outside of the analysis range completely. This effect can

be directly measured by recording photodiode-triggered data with no laser photoelec-

trons but including the same rate/types of coincident events. This was achieved by

simply removing the fibre-optic cable from the SPC, but still allowing the laser to

shine on and trigger the photodiode. Note that this is similar to collecting data with

a random trigger. An example of data with and without laser photoelectrons in the

SPC is shown in Fig. 3.28, from which one can see the slightly non-Gaussian tails

of the background amplitude spectrum. Although this effect is small (the spectrum

is still approximately Gaussian), the measured background data can be used to in-

form an empirical background model that matches the data better than the nominal

Gaussian approximation.

To that end, this type of no-photoelectron background data was recorded for ev-

ery laser calibration measurement. To obtain a functional model of the background

spectra (which has no clear parametric form), a Kernel Density Estimation (KDE)

is a possible choice [212]. KDE algorithms assign a Kernel function (which may be

a Gaussian, a “top-hat” function, etc.) for each data point, producing a continuous

approximation of the dataset. The type and relative width of each kernel function

(the “bandwidth”) may be tuned to achieve the desired result, ideally without over

or under-smoothing the data [212].

In this case, an additional complication comes from the fact that the background

spectra (such as the one shown in Fig. 3.28) span a large range of densities. A KDE

82



0 50 100 150 200 250
Amplitude

10 1

100

101

102

103

#/
bi

n

UV laser data
Background data

Figure 3.28: The amplitude spectrum of laser data taken with the fibre coupled to
the SPC (blue histogram) vs. without (red histogram), showing the spectrum of back-
ground events, with non-Gaussian tails and a possible small peak due to coincidences
with 37Ar decays. Note that the background histogram is scaled to have the same
maximum as the laser spectrum.
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Figure 3.29: An example of a laser background amplitude spectrum (blue histogram),
approximated by adaptive bandwidth KDEs with different values of α.

approximation using a single bandwidth value for such a dataset is likely to over-

smooth the high probability part of the spectrum if it models the low-probability

tails well, or conversely under-smooth the tails if it models the peak well.

A solution to this problem is to use an adaptive bandwidth KDE algorithm, where

the bandwidth changes based on the local density of data points [213]. An imple-

mentation of such an algorithm for Python is the package awkde [214, 215]. In this

approach, the kernel function is restricted to be a Gaussian. The bandwidth λ at low

density (for a single data point) is given, and a normal KDE f(X) with this single

bandwidth is calculated for the data X. Then, the bandwidth is recalculated locally

for each data point i by scaling the initial bandwidth according to the nominal density

at that data point:

λi = λ× (f(Xi))
−α (3.22)

where the parameter α is introduced to control the strength of this density-dependence
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Figure 3.30: The laser background amplitude spectrum for the 1250V W-value mea-
surement (blue histogram) with the corresponding KDE model, calculated with a
nominal bandwidth obtained using Silverman’s rule [212], and α = 0.3.

[214]. Examples of a laser background spectrum approximated with this adaptive

bandwidth KDE, using various values of α, are shown in Fig. 3.29. It is still possible

to over or under-smooth the data, but that with a judicious choice of α, it is possible

to represent the data well even as it varies in density by many orders of magnitude.

The parameter α of the KDE approximation was independently tuned for each laser

calibration, and the nominal bandwidth was chosen using Silverman’s rule [212], to

give results such as the example shown in Fig. 3.30.

The overall laser amplitude spectrum (with E being amplitude) can be represented

using eq. 3.19, substituting the normal Gaussian noise approximation with the new

measured background model PKDE(E):
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P (E) =

(︄
PPoisson (0|µ)× δ (E − ωb) +

0∏︂
0

∞∑︂
N=1

PPoisson (N |µ)× P
(N)
Polya (E|θ, ⟨G⟩)

)︄
⊗ PKDE(E)

(3.23)

Note that this (helpfully) reduces the number of free parameters in the model from 5

to 3. This can be used to construct a binned likelihood function for the histogrammed

laser data, with ci counts in bin i (also applying Stirling’s approximation [73]):

logL = ci log

(︃
νi
ci

)︃
− νi + ci (3.24)

where νi is the expected counts per bin given a model, νi =
∫︁
bini
P(E)dE. This

likelihood function is maximized for each laser dataset using a Markov Chain Monte

Carlo, implemented in Python with the emcee library [216] (see Appendix A for more

on MCMC approaches for this body of work). The statistical errors reported in this

section (or depicted in Fig. 3.32) assume Gaussian likelihood functions. However, the

application of these results to subsequent W-value analyses uses the MCMC samples

directly.

An example of the fit of a single laser data set (taken at an anode voltage of 1300V,

in the lowest photodiode amplitude segment considered) is shown in Fig. 3.31. The

non-Gaussian nature of the modelled background is evident in this example, although

its effect on the > 0 e− components of the model is not easily discernible. However,

the use of the KDE-modelled background does have an appreciable effect on the final

results of the fit. For this particular example, the data was fit using a Gaussian

background model for the sake of comparison. This resulted in estimates of ⟨G⟩ and

θ that differ by approximately 6% and 30% respectively, as shown in Table 3.2. For

the rest of this study, the only results used are those employing the KDE background

models.

In addition to fitting each photodiode-amplitude segment of the laser data sep-
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Figure 3.31: The laser amplitude spectrum from the 1300V measurement (one par-
ticular photodiode amplitude segment, blue histogram) along with the best-fit model
shown in red. Components of this best-fit model for 0 to 3 electrons are indicated.
Using the fit result, the amplitude scale is converted to units of average amplitude
for a single primary electron (top scale). The p-value of this particular fit is 0.29.

Gaussian Bkgd. KDE Bkgd.

⟨G⟩ [ADU] 97.9 ± 1.7 103.6 ± 1.5

θ 0.45+0.09
−0.07 0.64+0.07

−0.06

Table 3.2: Fit results for the 1300V laser data (one particular photodiode amplitude
segment, corresponding to Fig. 3.31), assuming a Gaussian background vs. the KDE
background model.
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Figure 3.32: Laser calibration results for data taken at an anode voltage of 1200V,
with varying photodiode (PD) amplitude data selections. The single fit results for
the mean number of electrons µ, ⟨G⟩, and θ are shown for each photodiode segment
(red markers), as well as for the joint fit of all data segments (blue markers/bands).
In all cases, the best-fit and 1 σ statistical uncertainties are shown. For the µ results,
linear fits of the single and joint values are also shown. The lower right panel gives
χ2/ndf values for the single and joint fit of each data segment.

arately as in Fig. 3.31, a joint fit of all data segments is performed for each laser

calibration [192]. For this joint fit, common values of ⟨G⟩ and θ are used to describe

all the data, with independent values of µ for each segment. This is done to confirm

that choosing laser data with different intensities does not bias the estimates of ⟨G⟩

and θ, only affecting the mean number of electrons µ [192].

The joint and single fit results for the 1200V laser data are shown in Fig. 3.32

as an example. The general agreement between the single and joint results for ⟨G⟩

and θ (and the lack of any noticeable trend as a function of photodiode amplitude)
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Anode voltage [V] ⟨G⟩ [ADU] θ

1200 37.83+0.07
−0.47 0.84+0.02

−0.07

1250 60.44+0.45
−0.23 0.63+0.03

−0.02

1300 97.27+0.42
−0.38 0.60+0.02

−0.02

Table 3.3: Laser calibration joint-fit results combining data at different laser pulse
intensities. As expected, the avalanche gain increases proportionally with anode
voltage.

confirms that there is no bias introduced by the varying laser intensity of each dataset.

This was found to be the case for the other datasets as well. As expected, µ varies

linearly with photodiode amplitude in both the joint and single fits, both exhibiting

a nearly identical trend. Finally, the χ2/ndf values of the joint and single fits of each

data set are shown to be comparable, confirming at least that the joint fit represents

the data as well as the more flexible single fits. This procedure – single fits of each

photodiode amplitude segment, a joint fit, and the examination of the results shown in

Fig. 3.32– is repeated for every laser calibration. The joint fit results (with statistical

uncertainty) of each are used for the rest of this study and are given in Table 3.3.

3.3.2 Low energy analysis

To fit the low energy 37Ar amplitude spectra (which includes L1 and K-shell electron

capture events), the decay cascade simulation results described in section 3.2.2 must

be used. A Geant4 simulation of the SPC used for these measurements was performed

to that end, namely of a 30 cm SPC with 50mbar of CH4. This can be used to

produce the 2D histogram of the number of decay particles vs. total deposited energy

per events shown in Fig. 3.24. However, since the primary electron yield depends on

the energies of all the individual particles in the decay cascade, the full information

of decay particles and their individual deposited energy was retained from the MC.

Using eq. 3.5, the total mean number of primary electrons µ produced by a single

89



101

103

105

107

#/
bi

n

0 initial e 1 initial e 2 initial e

0 20 40 60 80 100

101

103

105

107

#/
bi

n

3 initial e

0 20 40 60 80 100
Mean number of primary ionizations

4 initial e

0 20 40 60 80 100

5 initial e

Figure 3.33: Distributions of the mean number of primary ionizations produced by
37Ar decays in the S30 measurements, for different numbers of initial electrons. This
is calculated assuming W0 = 30 eV and U = 15 eV.

event with N total decay products can be written as

µ =
N∑︂
i

Ei

W (Ei)
(3.25)

which can then be expanded in terms of the W-value parameters W0 and U using eq.

3.4:

µ =
1

W0

(︄
N∑︂
i

Ei −N · U

)︄
(3.26)

Calculating µ for all of the simulated 37Ar events gives a probability distribution for

the mean number of primary ionizations produced, P (µ). This can then be “smeared”

with the COM-Poisson distribution (see section 3.1.1) to include dispersion in pri-

mary ionization, for a given Fano factor F . However, before this can be done, P (µ)

must be separated into events with different numbers of initial, Auger electrons from

the 37Ar decays (from 0 to 5 in this case). These electrons contribute to the total

primary ionization signal of the event, however, they are not subject to Fano factor
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Figure 3.34: Distribution of primary electrons produced by 37Ar, calculated for the
S30 measurements with W0 = 30 eV, U = 15 eV, and F = 0.2 as an example.

fluctuations.

The separate P (µ) for different numbers of initial electrons k is shown in Fig. 3.33

(with W0 = 30 eV and U = 15 eV chosen arbitrarily for example). Each of these

individual separate P (k)(µ) distributions is first convolved with the COM-Poisson

distribution, after which the appropriate number of initial electrons is added. Fi-

nally, all the separate distributions are added together to give the total probability

distribution of i primary electrons from 37Ar decays for given values of W0, U , and

F :

P (i) =
k=5∑︂
k=0

(︃∫︂
PCOM(i− k|µ, F )P (k)(µ)dµ+ k

)︃
(3.27)

The total primary electron probability distribution is shown in Fig. 3.34. This

is then combined with the avalanche response for i primary electrons, and summed

over i to give the total amplitude E spectrum. This is also convolved with a baseline

noise model PNoise(E). The KDE-modelled backgrounds used in section 3.3.1 are

not applicable because, in the case of relatively large 37Ar events, the DAQ software
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will preferentially center the larger of two coincident pulses, changing the behaviour

of coincident event reconstruction. However, the measured background spectrum

(such as the example shown in Fig. 3.28) does demonstrate that the baseline noise

is Gaussian to first order. Therefore, Gaussian distributions are fit to the peaks of

these measured background spectra to define PNoise(E).

In all of the W-value measurements, there exists a large background of low-energy

events, including single-electron pulses as well as non-physical spike events. Rather

than attempting to suppress these backgrounds and incur the issue of cut acceptance,

they are included in the fit and modelled with a generic exponential distribution

B1e
−B2E. This closely mimics the single electron distribution in an SPC if θ ≈ 0, as

well as non-physical events. Additionally, a flat background rate BFlat is included in

the model. Taking all of the above into consideration, the overall model P(E) for the

low energy 37Ar calibration data is given as:

P (E) =

[︄∑︂
i

(︄
k=5∑︂
k=0

(︃∫︂
PCOM(i− k|µ, F )P (k)(µ)dµ+ k

)︃)︄
× P

(i)
Polya(E| ⟨G⟩ , θ)

]︄
⊗ PNoise (E) +BFlat +B1e

−B2E

(3.28)

Note that this model is truncated at i = 30 primary electrons for the purpose of

fitting the low energy 37Ar events alone. The Polya distribution shape parameter θ

was fixed to the best-fit value obtained from the laser calibration results. Leaving

this as a free parameter proved to be very computationally expensive, requiring ap-

proximately 1 CPU · hour to compute the N th convolution of the Polya distribution

for all necessary values of N , for each new value of θ. While this may have increased

statistical uncertainty on the Fano factor F in this study (which might be varied

more to match the dispersion of the calibration data), F is not the main parameter

of interest. Indeed, F is already known to incorporate other resolution broadening

effects (i.e. from pulse-processing) beyond the true dispersion of primary ionization in

SPCs [192]. Further, the ∼ 5% statistical uncertainty on θ (see Table 3.3) translates
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to an even smaller uncertainty on the dispersion of avalanche fluctuations f , with is

given by [192]:

f =
1

1 + θ
(3.29)

For example, using eq. 3.29, a 5% change in θ = 0.6 results in a 1.8% change in f .

A binned likelihood function was constructed to fit this model to the W-value

data (with ci counts in bin i). The detector gain ⟨G⟩ was left as a free parameter

in this model but with a constraint term added to the likelihood function (logL⟨G⟩),

incorporating the laser calibration result and statistical uncertainty:

logL = ci log

(︃
νi
ci

)︃
− νi + ci + logL⟨G⟩ + logLW0−High E. (3.30)

where νi is the expected counts per bin obtained by integrating eq. 3.28, νi =∫︁
bini
P(E)dE. The constraint for ⟨G⟩ was calculated using the MCMC samples of

the laser calibration fit; by taking the boundary of all the MCMC samples, the profile

likelihood is obtained, as shown in Fig. 3.35. An additional constraint term on W0

was added to eq. 3.30 using the result of the high-energy W-value fit for each dataset,

which was performed first (described in the next section).

For this study, the model was fit to the data using a custom MCMC approach –

the “fast burn-in” method – which is described in Appendix A. An example of one

fit result (for the data gathered at 1250V) is shown in Fig. 3.36. The results for all

three datasets are summarized in Table 3.4.

3.3.3 High energy analysis

The high-energy analysis was performed on both the (predominantly) 2.83 keV 37Ar

peak, as well as the somewhat overlapping 1.486 keV aluminum fluorescence peak

[198]. The amplitude spectrum of the 37Ar events was modelled in the same manner

described in section 3.3.2, using the COM-Poisson distribution to characterize primary

ionization statistics, applied to the decay cascade simulation presented in section
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Figure 3.35: MCMC samples from the fit of the 1250V laser calibration data, pro-
jected onto the parameter ⟨G⟩ vs. the log-likelihood (2D histogram with the colour-
scale representing counts per bin). The red curve is therefore the profile log-likelihood
function for ⟨G⟩.
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Figure 3.36: Low energy 37Ar calibration data taken at 1250V (blue histogram)
compared to the best-fit model with 1 σ statistical uncertainty band (red curve and
shaded band). The p-value for this particular fit is 0.14.
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Anode HV [V] W0 [eV] U [eV] F

1200 32.1+0.7
−1.7 11.7+2.7

−1.5 0.51+0.03
−0.04

1250 31.1+0.9
−0.5 14.6+0.9

−1.4 0.43+0.01
−0.02

1300 33.1+0.1
−1.5 11.7+2.4

−0.4 0.61+0.01
−0.03

Table 3.4: Fit results of the low-energy spectrum at all anode voltages.

3.2.2. However, in the regime of this data, the evolution of the W-value with energy

is negligible, so W (E) was replaced with a single parameter W (equivalent to the

high-energy limiting value W0). Therefore the N · U term in eq. 3.26 was neglected.

Aluminum fluorescence produces monoenergetic, 1.486 keV X-rays. It was included

in the model with an independent Fano factor FAlum. and W-value, giving a mean

number of primary electrons:

µAlum. =
1486 eV

WAlum.

(3.31)

The relative branching ratio of this peak compared to the high-energy 37Ar peak is

denoted R. The overall model – building off of eq. 3.28 – is given as (without any

background components):

P (E) =

[︄∑︂
i

(︄
k=5∑︂
k=0

∫︂
PCOM(i− k|µ, F )P (k)(µ)dµ+ k

0∑︂
0

+R× PCOM (i|µAlum., FAlum.)

)︄
× P

(i)
Polya(E| ⟨G⟩ , θ)

]︄
0∑︂
0

⊗ PNoise (E)

(3.32)

Characteristically for O(keV) peaks in SPC data, the flat background of the am-

plitude spectrum is slightly higher for amplitudes below the peaks than above. This

is likely due to a combination of Compton scattering events depositing less than the

full energy of the interacting photon [70] (if applicable), as well as misreconstructed
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Figure 3.37: 2D histogram of amplitude data vs. time, specifically for the high-energy
1250V dataset. The red markers represent the mode amplitude of the high-energy
37Ar peak in segments of time.

events. To continuously connect the separate flat background components below and

above the calibration peaks (B1 and B2 respectively), the function model P(E) itself

is used. Specifically, the inverse CDF of the model eq. 3.32 connects the two flat

background components to complete the background model, which is then added to

eq. 3.32:

B(E) = B1 ×
[︃
1−

∫︂ E

P(E ′)dE ′
]︃
+B2 (3.33)

One potential systematic that can be addressed in the high-energy calibration data

is sensor discharges when operating at relatively high voltages. This can lead to small,

temporary changes in the gain of the detector. Indeed, plotting the amplitude data

vs. time (such as in Fig. 3.37) reveals small fluctuations of a few percent, on time

scales of thousands of seconds. A Lomb-Scargle periodogram of this time series data

reveals that the highest relative magnitude of the fluctuations occurs for periods of

approximately 500 to 5000 s [217, 218]. This effect causes extra dispersion in the

amplitude data, leading to an overestimation of F .
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To account for this as a systematic, these fluctuations were corrected in the data.

This was done by dividing the data into ∼ 170 s time bins, and calculating the mode

of the high-energy 37Ar peak in each, as shown in Fig. 3.37. The amplitude in each

bin was then translated so that the mode in that bin matched that of the first time

bin (an arbitrary choice). In this way, the dispersion caused by gain fluctuations was

removed. After this “corrected” amplitude data is fit, the maximum relative difference

in mode amplitude between all of the time bins was propagated to give a range of

corresponding values of W to report for the final result, using the proportionality

between W and amplitude E:

W ∝ ⟨G⟩
E

(3.34)

This is done to remain agnostic as to what the “true”, un-distorted value of the gain

is.

Examining the trend of the amplitude data over time is also useful to guard against

another potential source of systematic uncertainty in this study – charge trapping.

Increasing oxygen and water contamination in the gas can cause gradual decreases in

the detector gain over time (see section 3.1.3). However, no such effect was observed

in these datasets within the risetime range considered for analysis. Another way in

which attachment may manifest is to cause an anti-correlation between risetime and

amplitude. As shown in Fig. 3.38 for one dataset, this effect was also not observed.

However, there is a slight apparent increase in amplitude at the lowest risetimes.

This artifact is typical of all SPC data and may be caused by the pulse treatment

algorithm, or possibly evidence of non-zero charge attachment for all events except

those originating immediately next to the sensor. It has also been hypothesized that

this is evidence of a type of “space-charge” effect; high-rate conditions in the sphere

may produce a large enough flux of ions to significantly distort the electric field ex-

perienced by subsequent, incoming electrons. Such effects are more clearly observed

(albeit not fully understood) when operating at higher voltage. Higher pressure/volt-
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Figure 3.38: A 2D histogram of risetime vs. amplitude data, specifically for the high-
energy 1250V dataset. The red markers show the mode amplitude of the high-energy
37Ar peak in different slices of risetime. The red lines indicate the minimum and
maximum risetime cuts applied to select data for this analysis.
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Amplitude

Figure 3.39: 2D histogram (with the colour scale giving counts per bin) of risetime
vs. amplitude data, taken with 130mbar of methane gas, with an anode voltage of
1800V. The evident peak is 5.9 keV X-rays from 55Fe. The red markers denote the
mean amplitude in different slices of risetime.

age data was taken in methane gas for this study but was deemed unusable because

of the severity of this space-charge distortion. An example of this data (130mbar,

1800V) is shown in Fig. 3.39.

As this effect is not fully understood, a further correction was applied to the data

(after already applying the time-based correction described above). The mode ampli-

tude of the high-energy 37Ar data was found in slices of risetime as shown in Fig. 3.38,

within the risetime range considered for this analysis. The amplitude data was then

translated so that the mode in each slice matched the overall average of all slices. As

before, these translations were then propagated to give a range of values of W for the

final result after fitting the corrected data, so as to not make any assumptions about

the nature of this artifact. The corrected amplitude data is shown compared to the

original spectrum in Fig. 3.40; the operations described above did not amount to a

significant change in amplitude.
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Figure 3.40: The amplitude spectrum of the original high-energy calibration data
(blue histogram), compared to the data with time-based corrections applied (green
histogram), as well as data with both time and risetime based corrections applied
(red histogram).

As with the low-energy analysis, a log-likelihood function was constructed to fit

the model to the data, including a constraint term for the detector ⟨G⟩ based on the

UV laser calibrations (see eq. 3.30). This was optimized using the custom fast burn-

in MCMC method (see Appendix A) to give fit results for the corrected data. An

example of such a fit is shown in Fig. 3.41. The corrections described above were then

propagated to give additional systematic uncertainty on the W-value results of the

fits; note that these are reported as ranges with equal probability. The final results

of this study, including systematic uncertainties, are given in Table 3.5.

3.3.4 Results and discussion

The key results of this study – W (E) for both the high and low energy analyses – are

presented in Fig. 3.42. By using multiple calibration energies, these results span an

energy range of approximately 50 eV to 3 keV. There is no clear trend of W (E) vs.

anode voltage as expected, and the separate high and low energy results are consistent
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Figure 3.41: High energy 37Ar and aluminum fluorescence calibration data taken at
1250V (blue histogram) with the best-fit model with 1σ statistical uncertainty band
(red curve and shaded band). The p-value for this particular fit is 0.15.

Anode voltage [V] Peak W0 [eV] F

1200 Alum. (29.6→ 35.4)+0.2
−0.3 0.33+0.01

−0.01

1200 37Ar (31.5→ 35.1)+0.2
−0.3 0.39+0.01

−0.01

1250 Alum. (28.9→ 32.4)+0.2
−0.1 0.33+0.02

−0.02

1250 37Ar (29.4→ 31.9)+0.2
−0.1 0.30+0.01

−0.01

1300 Alum. (28.2→ 33.3)+0.2
−0.1 0.49+0.02

−0.02

1300 37Ar (29.7→ 35.3)+0.2
−0.2 0.43+0.01

−0.01

Table 3.5: Fit results of the high-energy peaks at all anode voltages. The W-value
results are shown given with ranges representing the systematic uncertainty of those
results, with additional statistical uncertainty.
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with each other.

When compared to results from the literature – particularly refs. [208, 209] –

it is apparent that there is a ∼ 10% discrepancy (although not with all historical

results [166, 206]). Specifically, the most probable W-value at 2.8 keV obtained in

this study is 12% higher than the combined results of refs. [208, 209]. A more precise

quantification of this disagreement is not possible because the results of refs. [208,

209] do not include any uncertainty.

Although several systematic effects were accounted for in this study (charge trap-

ping, sensor discharges), it is possible that these effects are underestimated. Other

phenomena that are not fully understood in SPCs (such as space charge effects) may

have also impacted these results. Therefore these measurements may be considered

“effective W-value” results, rather than measurements of the intrinsic W-value quan-

tity of methane gas. Regardless, the results of this study do reflect the true ionization

yield of methane gas in SPCs, which is what must be known to characterize the S140

experiment at the LSM. Future W-value measurements are planned with SPCs (with

some currently ongoing at the University of Alberta) to further investigate this dis-

crepancy. In particular, the dependence of the W-value on gas pressure (or lack

thereof, theoretically [166]) is being pursued.
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Figure 3.42: W (E) results for all three calibration data sets (at different anode volt-
ages). The low energy results are shown as best-fit curves and shaded bands repre-
senting the 1 σ uncertainty bands, terminating at the end of their fitting ranges (and
then continuing on more faintly). The high energy results (for 37Ar and aluminum
fluorescence) are represented with long markers for the systematic range of each mea-
surement, with additional error bars for statistical uncertainty. The black dashed
curve is the combined result of refs. [208, 209].
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Figure 3.43: The U of A SPC (left) on its support structure, and the 2mm sensor
with Bakelite umbrella (right).

3.4 SPC at the University of Alberta

An R&D-scale, 30 cm SPC has been constructed and operated at the University of

Alberta. Similarly to the SPC used for the measurements described in section 3.3,

having a small-scale experiment in a local lab offers easy access, and the opportunity

to develop hardware and analysis techniques in a way that is not possible with the

full-scale S140 device. Since becoming fully operational in spring 2023, this SPC

has already been used to perform W-value measurements (which are still ongoing),

utilized in the development of a Laser Absorption Spectroscopy system (LAS) to

measure the concentration of methane gas in the SPC in real-time [187]. Finally, the

device has been used in ongoing experiments to quantify the performance of novel

radon trap substrates and operating methods.

3.4.1 Detector setup

The U of A SPC – pictured in Fig. 3.43 – consists of a 30 cm diameter stainless steel

vessel, which may be operated with pressures up to 1 bar (it is not high-pressure

rated). Gas flow and the sensor insertion/support rod are both handled by a single
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Figure 3.44: Schematic of the basic U of A SPC setup, with gas and vacuum plumbing
identified.

40mm port on the top of the sphere. A series of internal support disks with set screws

allow for movement and alignment of the sensor support rod. Currently, a traditional

2mm stainless steel anode is used, with a Bakelite umbrella (also pictured in Fig.

3.43). Three additional ports on the side of the SPC allow access for calibration,

including one with a fiber optic cable feed-through for the use of a UV laser system

(as described in section 3.2.1). An Agilent turbo-pump setup is used to evacuate the

sphere. Currently argon and methane gas are available for use in the SPC (all 5N

quality). The general plumbing P&ID diagram of the SPC by itself is shown in Fig.

3.44.

A CAEN desktop HV supply is used in this setup [219], with a CREMAT CR-110

charge-sensitive preamplifier [220]. This particular pre-amplifier has a time constant

of 140µs, and a gain of 1.4V/pC. For a 1 keV event for example, with an avalanche

gain of O(103), this would result in a signal on the order of 10mV. The digitizer

board used in this case is a Red Pitaya, with the custom NEWS-G DAQ software
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Figure 3.45: Schematic of a low-pass filter used for the U of A SPC.

Samba installed (see section 3.1). A homemade low-pass filter – depicted in Fig.

3.45 – was added after the HV supply to dampen noise from it. While there is no

clear experimental evidence of it, it is possible that this filter causes a significant

voltage drop on the anode that may take some time to recover. If these voltage drops

following a particle event coincided with the avalanche of a subsequent event, this

would reduce the avalanche gain. Further analysis of this circuit is warranted (and

being undertaken) to understand this potential issue. The entire setup is connected

to the electrical ground of the building (through the metal frame the sphere rests on).

All of the coaxial cables are shielded with braided steel cable to reduce induced noise.

A radon trap setup – and radon source intended for testing the former – are de-

scribed in the following subsection. Accurate, real-time measurement of the compo-

sition of gas inside the sphere (particularly the amount of methane) is crucial (specif-

ically the concentration of methane); to that end, a Binary Gas Analyzer (BGA)

is included in the setup [221]. This device exploits the speed of sound in two-gas

mixtures to measure concentration [187].

However, this device is limited in that it can only perform in mixes of two gases,

and is highly dependent on temperature and pressure. To obtain more robust mea-

surements of methane concentration, a Laser Absorption Spectroscopy (LAS) system

has been constructed [187, 222]. This device – pictured in Fig. 3.46 – consists of an

infrared laser with a tunable wavelength, shone through a tube of gas. Wavelengths
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Figure 3.46: The laser absorption spectroscopy (LAS) system designed to measure
methane concentrations in the U of A SPC. This includes the infrared laser, photo-
diode, and electronics. Taken from figure 6.11 of ref. [187].

corresponding to the absorption lines of the gas in question are scattered, reducing

the intensity of light measured by a photodiode at the other end of the gas column

[223]. Similar setups with reflecting/integrating spheres are sometimes used to mea-

sure very low concentrations of gases, however for % concentrations, a linear tube of

approximately 10 cm is sufficient [222]. The amplitude of the absorption peak is pro-

portional to the concentration. This allows for real-time measurements of methane

concentrations in the U of A SPC [187]. A Moku:Lab device is used to drive the laser

wavelength scan, as well as to readout the signal from the photodiode [224].

3.4.2 Radon trap measurements

222Rn is a common gaseous radioisotope that is problematic for many rare-event

searches, including NEWS-G. It decays via 5.49MeV α emission, with a half-life of

3.82 days [225]. Additionally, its subsequent decay chain includes two other α emitters

(218Po and 214Po [226, 227]) before terminating in the production of 210Pb, itself a

prominent background source in SPCs. This decay chain is shown in Fig. 3.47. Steps
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Figure 3.47: The (simplified) decay chain of 222Rn, taken from figure 1 of ref. [229].

are taken for many rare-event searches to reduce the amount of radon introduced into

the experiment, such as storing devices in sealed, pure gas environments, see section

4.1. Detector vessels may also be etched to remove radon deposition, such as with

the DEAP-3600 experiment [228]. Still, radon persists as a major background source

in many experiments. In the case of NEWS-G, many of the gas filters used to remove

oxygen and water – such as the “getter” used for the S140 experiment – emit radon

themselves.

To counter this problem, radon traps are often employed [230–232]. These consist

of some form of substrate through which the detector medium is filtered to remove

radon. As radon is chemically inert, these devices operate on the principle of adhe-

sion of radon to the trap material through Van der Waals forces [233]. While this

adsorption is not permanent, if it delays the passage of radon for long enough, it

will decay inside the trap before being re-emitted [221]. Typical traps involved the

use of carbon-based substrates (such as activated, coconut charcoal) in filters cooled

down to approximately dry-ice temperatures (−78◦C) [233, 234]. While effective at
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cold operating temperatures, these traps can be inconvenient to operate in under-

ground laboratories. A further problem for NEWS-G is the unfortunately similar size

of Radon atoms and CH4 molecules. This causes methane gas to be absorbed by

the substrate as well. This can change the ionization properties of gas in the SPC,

as well as the amount of hydrogen target material that is sensitive to dark matter

interactions.

These drawbacks of typical carbon-based radon traps have spurred interest in alter-

native filter substrates. A particularly interesting prospect studied at the University

of Alberta is Silver Zeolite (SZ), produced by the company Extraordinary Absorbents

(based in Edmonton) [235]. This material (also known as Ag-ETS-10) consists of a

porous, titanium-based mineral with incorporated silver ions. Such materials are

known to function well as radon trap substrates [236]. Measurements of the proper-

ties of this specific substrate (i.e. performance at different operating temperatures)

have been carried out with a Rad7 device [221], showing that at room temperature,

SZ can remove orders of magnitude more radon than activated charcoal (more on this

below).

However, these experiments were adversely affected by leaks in the Rad7 setup,

leading to anomalous and unpredictable behaviour of radon activity over time in the

experiment. SPCs can also serve as α counters, and so it was deemed beneficial to

measure the performance of a room-temperature, SZ radon trap with the SPC at the

U of A. The detector was connected in line with the radon source and trap for these

measurements, with entirely Swagelok-type plumbing connections that leak less than

the barb-fitting connecting of Rad7 devices. The setup for this experiment included

an enclosed uranium ore source of radon (which diffuses out of the ore), and a SZ

radon trap in a 1/2-inch, ∼ 20 cm long stainless steel tube. Note that this radon trap

can be operated at room temperature or dry-ice temperatures [221]. A schematic

of the setup is shown in Fig. 3.48. Before the test, the radon trap was “purged”

of any remaining radon/gases by heating the trap to 160 − 200◦C while alternating

109



Figure 3.48: P&ID schematic of the U of A SPC setup for radon trap measurements.
This includes the SPC itself, radon source and trap used, as well as the LAS system
and binary gas analyzer (BGA) to measure gas composition. When circulating gas
through the SPC and radon trap, the flow is in the counter clockwise direction.

between a nitrogen flush and vacuum. Following this, the entire system was evacuated

for several days (to reach pressures O(10−6mbar)), and then filled with 200mbar of

Ar + 3%CH4 gas. The SPC was operated at an anode voltage of 800V.

First, background data was collected for approximately one day, consisting of pri-

marily atmospheric muons, although these are at much lower energies than the α

decays of interest in this study. Additionally, there was a constant 0.201 ± 0.002Hz

background of 210Po α decays (5.3MeV) [237], originating from depositions of the

radioisotope on the inner surface of the detector. Following the background measure-

ment, radon was injected into the sphere until a total activity of ∼ 70 − 90Hz was

achieved (the activity of radon itself was only ∼ 60Hz). This process took several

hours to allow for diffusion into the SPC. The decay of radon was then observed for

approximately two days to robustly measure the trend of activity. Finally, the radon

trap was opened, and a small diaphragm pump was used to circulate gas through the

system. Following the opening of the trap, the α rate was observed to drop precipi-

110



Figure 3.49: Event rate vs. time during the SZ radon trap test in the U of A SPC,
showing the different phases of the experiment; background data, radon injection
and decay monitoring, after which the trap is opened. PSD cuts and muon cuts are
applied to this data. Note that there are some visible gaps in the data due to brief
pauses in data collection.

tously over several hours, reaching the pre-radon background level again. Data was

taken for 2.5 days after opening the trap to accurately measure the post-trap rate,

and watch for potential re-emission of radon from the trap [221].

The data was treated using the usual double-deconvolution method (see section

3.1.5). Cuts were applied to remove muon events (specifically requiring Amplitude >

800ADU), as well as PSD cuts based on the raw pulse risetime and FWHM to

remove non-physical background events (see section 3.1.5). With both cuts applied,

the rate of events throughout the experiment is shown in Fig. 3.49, showing the low

background rate of events, injection and decay of radon, and rapid effect of opening

the trap. Note that there are some visible gaps in the data due to brief pauses in

data collection.

The track lengths of α particles in this gas are relatively long, i.e. 21.5 cm for 210Po

and 37.9 cm for 214Po (see ahead to Table 3.6 [183]). Because of this, many α particles
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Figure 3.50: Radon trap test data taken in the U of A SPC with 200mbar of
Ar + 3%CH4 gas. Background-only data consisting of predominantly 210Po α events
is shown in the left panel, compared to radon data with α decay populations produced
by 222Rn, 218Po, and 214Po (right panel).

strike the inner wall of the SPC before depositing their full kinetic energy in the gas,

leading to events recorded with a continuum of amplitudes below the full-energy peak.

In the case of 214Po, full energy deposition in the sphere was actually impossible. One

can see the impact of this effect by examining the risetime vs. amplitude data, shown

for both 210Po and 222Rn data in Fig. 3.50. Because of this, there was a great deal of

overlap between the background 210Po and radon decay events, making it impossible to

disentangle the two signals. The distribution of risetimes for these events is due to the

trajectory (and in the case of radon decays the position) of α events, with trajectories

directed radially tending to have longer risetimes. Contrastingly, in an infinitely large

sphere (i.e. with no wall effects for any αs directed away from the surface), the risetime

vs. amplitude plot would exhibit a single amplitude peak for each decay energy, with a

continuum of risetimes. Radon decays would access lower risetimes, since they occur

throughout the volume instead of exclusively on the surface. The progeny of radon

(218Po and 214Po) would exhibit a mix of surface/volume event behaviour, as they

deposit on the surface of the detector over time.

The measurement was also subject to increasing charge trapping over time (due to

out-gassing of oxygen and water in the system). This is evident from the changing
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Figure 3.51: 2D histogram of amplitude vs. time for the SZ radon trap test in the U
of A SPC, with PSD cuts applied.

amplitude spectrum over time shown in Fig. 3.51, which exhibits a linear decrease

in the amplitude of α events, with a slight increase in slope at the time the trap is

opened (the additional gas components increased the rate of out-gassing). Fig. 3.51

also makes clear how after the trap is opened, the radon events quickly disappear,

leaving only the same peak/spectrum from 210Po present in the background data.

To quantify the performance of the SZ trap, the radon reduction factor R (or R-

value) is defined as the ratio between the expected radon activity (if the trap wasn’t

used) and the observed activity:

R(t) =
Aexp.(t)

Aobs.(t)
(3.35)

Because of the natural decay of radon, this is necessarily a time-varying quantity. If

the trap worked instantaneously to remove radon, the optimum R-value would occur

at the moment of opening the trap (when the unadulterated activity would be the
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highest). However, the time constant of the trap is not known, so it is not trivial to

predict when the optimum measured R-value occurs. Therefore in this analysis, R

was calculated as a function of time, and then the optimal value across the duration

of the experimental period is reported for the final result.

To calculate R, it is first necessary to determine the expected activity of radon

over time without the intervention of the trap. This was done by fitting the radon

decay data (the green histogram of Fig. 3.49) with an exponential decay function:

A(t) = A0

(︃
1

2

)︃t/t1/2

+B (3.36)

where B is a constant background component, and A0 is the initial radon activity

at t = 0. A binned likelihood function was constructed for the data with a prior

probability for the background rate applied (using the measured background data),

and maximized with an MH-step MCMC, implemented with the python package

emcee [216]. 20 random walkers were runs for 5000 steps (∼ 100× the auto-correlation

time as determined by emcee), after a burn-in period of 500 steps. The result was

a measured half-life of 4.65 ± 0.08 days, an initial activity of 73.61 ± 0.41Hz, and

a background rate consistent with the prior measurement. Note that this is higher

than the expected 3.8 days for 222Rn [225]. While the contribution of 218Po and 214Po

decays does cause a ∼ 0.1% increase in half-life, the larger discrepancy is explained

later in this subsection. The fit of the data over time is shown in Fig. 3.52, including

statistical uncertainty from the MCMC. This result gives the extrapolated expected

activity over time Aexp.(t), if the trap were not opened.

The binned data over time (as shown in Fig. 3.52) is used to define the observed

activity over time Aobs.(t). Note that both Aobs.(t) and Aexp.(t) actually represent the

total α activity of radon and its two daughter isotopes which remain in equilibrium

with it, 214Po and 218Po. The activity of radon itself therefore actually only 1/3 of

this, but this factor cancels out in eq. 3.35.

The following likelihood function is used to find the best-fit value of R−1 at time
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Figure 3.52: Event rate vs. time during the SZ radon trap test in the U of A SPC,
showing the different phases of the experiment; background data, radon injection
and decay monitoring, after which the trap is opened. PSD cuts and muon cuts are
applied to this data. An exponential fit of the radon activity (green histogram) is
shown as well (magenta curve with shaded 1σ uncertainty band).
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Figure 3.53: Best-fit (blue curve) and 90% CL interval (shaded region) for R−1(t) for
the SZ radon trap test in the U of A SPC.

bin i (with counts ci):

LR = PPoisson(ci|A(i)
exp. ×R−1 +B)× PMCMC(A0, t1/2, B) (3.37)

where A
(i)
exp. =

∫︁
bini

Aexp.(t)dt is the expected counts in bin i given the radon decay

model. Statistical uncertainty on the radon decay trend is incorporated by leaving

these as free parameters in the fit, with a constraint term PMCMC(A0, t1/2, B) obtained

using the MCMC samples from the fit of the radon decay data described above.

The likelihood is expressed in terms of R−1 instead of R for convenience; having

essentially zero expected counts per bin (on top of the background rate) after the

trap is opened leads to a divergent range of values of R to consider. The python

function scipy.optimize.minimize is used to optimize the likelihood function, with

a Nelder-Mead algorithm [238, 239].

The Feldman-Cousins (FC) method was used to calculate a 90% CL uncertainty

band for R−1 [240]. The advantage of this method is that the choice to report a
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two-sided or one-sided confidence interval is determined automatically. Indeed, as

will be shown below, early after opening the trap the result is a two-sided limit. This

quickly transitions to a one-sided upper limit on R−1 once the rate returns down to

the background level. Application of the FC method in this study involves calculating

the profile likelihood ratio Λ, based on eq. 3.37:

Λ =
LR

(︂
R−1, ˆ̂A0, ˆ̂t1/2,

ˆ̂B
)︂

LR

(︂
R̂−1, Â0, ˆt1/2, B̂

)︂ (3.38)

where one circumflex symbol indicates parameters that are optimized globally (so R̂−1

is the global best-fit value of R−1). A double circumflex indicates that the parameter

has been profiled, i.e. optimized for a fixed value of the parameter of interest R−1

[73]. Λ is calculated for a (discrete, evenly spaced) range of values of R−1 relative to

the best-fit value (for any given time bin i). Test values of R−1 are sorted by order

of decreasing Λ, and added to the confidence interval until a total probability of 90%

is reached [240].

A smoothing algorithm (a rolling average over 15 bins) is applied to the best-fit

R−1(t) as well as the 90% CL interval, to ease statistical fluctuations in the data.

Note that this is a conservative approach that cannot over-inflate R(t) (including

the 90% LCL), but can slightly reduce it. This procedure also guards against lower

fluctuations in the post-trap data rate to some extent. The result for R−1(t) is shown

in Fig. 3.53, from which the final result is extracted: the 90% LCL on R for the SZ

room-temperature test is 2.69× 103 (from a 90% UCL on R−1 of 3.72× 10−4). Note

that even with the smoothing applied, one large fluctuation still exists (possibly due

to transient, external noise events in the dataset). While a best-fit value of R−1(t) can

be obtained, its relevance is questionable as the experiment is background limited.

Therefore, for the rest of this analysis, only the 90% LCL on R(t) (resp. the 90%

UCL on R−1(t)) is shown.

117



Figure 3.54: An event from the radon trap test data exhibiting potentially 3 α pulses
in coincidence.

Coincident pulse and attachment systematics When operating the SPC at

event rates approaching 100Hz, the probability of having coincident peaks increases

(as a function of rate) to the point of becoming common. The consequence of this is

that during the radon trap experiment described above, there was a significant chance

of “pileup”. If two or more α decay pulses are coincident with each other, then they

are under-counted – an example of such an event is shown in Fig. 3.54. Evidence of

these pileup events can also be seen at amplitudes (Fig. 3.51) and risetimes (Fig. 3.50)

higher than the main radon-decay populations. Another type of coincident event is

one in which an α pulse falls within the 1ms deadtime imposed by the DAQ after

each event. These pulses are permanently lost, but their existence can be inferred.

Both of these rate effects were more significant soon after the radon was injected

(when the total event rate was highest), before decreasing over time, until becoming

near-negligible again after the trap was opened. It is due to these effects that the

measured half-life of radon in this analysis was greater than the expected 3.8 days.

To further demonstrate this, the radon data was re-analyzed using a peak-finding

algorithm developed by F. Vazquez for the NEWS-G Kaluza-Klein axion search [49,

160]. The peak-counting results for the background 210Po data and radon data are

shown in Fig. 3.55. From this, one can see that although there are apparent pileup

events in the background data (some of which are likely false-positive peaks found by
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Figure 3.55: Left: peak-counting results for both background (210Po) and radon data.
Right: the amplitude spectrum of radon data, comparing all events to those with
more than one peak identified.

the algorithm), there is a far greater proportion of such events in the radon data. Us-

ing these results (albeit with many probable false-negative and false-positive peaks),

the effect of pileup can be partially negated by weighting the binned data in Fig. 3.52

according to the number of peaks found in each event, and re-fitting the radon decay

trend. This resulted in a lower measured half-life of 4.19 ± 0.06 days. However, the

peak-counting method likely misses many coincident α pulses, and does not at all

account for events lost in the deadtime of previous events.

While the issue of coincident pulses is not inherently problematic, any distortion

to the radon activity trend extrapolated from the fit shown in Fig. 3.52 would cause a

systematic error in the result for R presented in Fig. 3.53. Investigating this potential

systematic is complicated by the fact that pileup events themselves obscure the true

rate of radon decays in the SPC. Therefore, it was first necessary to infer the true

radon rate based on the observed rate affected by pileup. This was done by simulating

radon datasets with varying rates, including the radon daughters 218Po and 214Po.

Each MC dataset spanned the same amount of time as the real data, and was fit

with the same MCMC procedure to extract the observed rate and half-life. Pileup

and deadtime effects were emulated by considering any decays happening within 1ms

of each other (half the duration of a single event window) to be coincident, and any
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Figure 3.56: Effective half-life measured for MC datasets with varying initial radon
decay rates (red curve and shaded 1 σ uncertainty band) compared to the effective
half-life of the real data (blue curve and shaded 1σ uncertainty band). The 2D
histogram shows values randomly drawn jointly from both trends. The black dashed
line indicates the true half-life of radon, 3.8 days [225].

falling within 1 to 2ms of a preceding pulse to be lost to DAQ deadtime. This takes

into account the fact that the Samba DAQ software centers the maximum amplitude

in an event, so no two pulses can be more than half an event window apart and both

be captured.

The results were used to construct a relationship between the measured “effective”

half-life and true initial radon activity for this experiment, shown in Fig. 3.56. Ac-

cordingly, it was inferred that the true initial activity of radon (by itself, not including

other α decays) was 34.2±4.4Hz. As expected, this is higher than the apparent initial

radon activity (from the fit shown in Fig. 3.52) of 24.54± 0.14Hz.

One MC radon dataset generated with a true radon rate corresponding to the

real data is shown in Fig. 3.57. From this, it is apparent that while the exponential

fit seems to match the data within the original fitting window, there are visible
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Figure 3.57: Left: the exponential fit of the real data (magenta curve), compared to
an example of an MC radon dataset (with pileup accounted for) generated to match
the real data. Right: the ratio of 1000 spline fits of MC datasets to the exponential
fit of the real data, with the original fitting time window indicated by red dashed
lines.

discrepancies with the extrapolated decay trend at laser times. To determine the

systematic uncertainty on the radon decay trend, 1000 random values of the true

radon activity were drawn jointly from both the uncertainty on the measured effective

half-life for the real data and the MC trend of half-life vs. decay rate (also shown in

Fig. 3.56). MC radon datasets were then calculated using these, and fit with a cubic

spline [241] instead of an exponential decay function, to better represent the actual

(slightly non-exponential) activity trends. The ratios of these spline fits compared to

the exponential fit of the real data are shown in Fig. 3.57, which demonstrates that

there is an appreciable discrepancy between the extrapolated radon trend and MC

radon decay trends. Specifically, there is an average difference of ∼ 3% by the end of

the time period of the real data (∼ 520000 s).

Charge attachment – which results in a linearly decreasing amplitude for α events

over time – gradually decreases the signal acceptance of the cut applied to remove

muon/non-physical events at low amplitudes. Taking this effect into account as a

systematic is complicated by the fact that the attachment trend discretely changes at

the time the radon trap is opened, likely because the plumbing components associated

with this system out-gas more than the rest of the system. This change in trend can
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Figure 3.58: 2D histogram of amplitude vs. time for the SZ radon trap test in the U
of A SPC, with PSD cuts applied. The 210Po amplitude trend is fit before and after
the radon injection, and fit with first order polynomials (red and cyan markers and
curves, respectively).

be seen in Fig. 3.58, in which the 210Po amplitude trends are fit before and after the

trap is opened. The mean amplitude is determined in multiple time segments, which

are then fit with first-order polynomials.

To determine the trend that radon α events would follow over time if the trap was

not opened, the last 10000s of radon decay data was used to boot-strap simulated

radon data [242], which was then scaled over time using the post-trap trend shown

in Fig. 3.58. One such set of this boot-strapped data is shown in Fig. 3.59. This

data is then directly used to calculate the cut acceptance of selecting only events

with Amplitude > 600ADU. This procedure was then repeated 1000 times, with the

resulting cut-acceptance trends shown in Fig. 3.59.

Both of these systematic effects were then incorporated into the calculation of

R−1(t). This was performed as described above, except using the spline fits of MC

radon datasets in place of the exponential fit of the radon decay data, and with the

time-varying cut acceptance applied. Ultimately, both of these systematics had very
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Figure 3.59: Left: the original background and radon data (“viridis” colour-map)
and bootstrapped radon data (“inferno” colour-map) obtained using the last 10000s
of radon data scaled by the post-trap 210Po amplitude trend. Right: the resulting cut
acceptances for radon events as a function of time (with 1000 trials).

small effects on the original result. The 90% UCL on R−1 increased by 4% compared

to the original result shown in Fig. 3.53 at the end of the time period of the dataset.

However, the final reported value of R was taken to be the optimum value of the

90% LCL, which occurred early enough in time that these systematic effects had a

near-negligible impact: the 90% LCL on R changed from 2.69× 103 to 2.66× 103.

Test with the radon trap pre-saturated with methane As discussed earlier

in this subsection, the tendency for radon traps to also remove CH4 is a critical

problem for the NEWS-G collaboration. One potential operating procedure that

could mitigate this problem is to pre-saturate the radon trap with methane. To

determine if the trap would still remove radon under these conditions, the experiment

described above was repeated (with the SZ trap operated at room temperature).

However, prior to the test, the radon trap was saturated with methane gas. CH4 was

injected in small bursts, after which the pressure was often observed to quickly drop as

the gas became trapped in the porous substrate. This titration was repeated until the

pressure no longer dropped after injection, at which point the trap was sealed. The

experiment was then carried out following the same procedure described for the first
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Figure 3.60: Preliminary measurements of methane concentration over time in the U
of A SPC, measured with the LAS system (direct LAS output on right axis) [187],
during a normal radon trap test (red) and one in which the trap was pre-saturated
with CH4. Credit to C. Garrah.

test. The analysis was also performed as described above, including the procedures

to account for charge trapping and pileup/rate effects as systematics. The resulting

90% LCL on R obtained for this test was 3.70× 103 – this is slightly higher than the

original test due to a slightly higher initial radon activity, improving the sensitivity

of the experiment. This demonstrates an equal ability to remove radon from the gas

despite the pre-saturation of the trap.

The LAS system described in section 3.4.1 was also used to monitor the methane

concentration of the gas in real-time for both experiments. The preliminary results

(the LAS system still requires absolute calibration at this time [187]) are shown in Fig.

3.60. In the second experiment, no methane was lost to the trap, and in fact, the pre-

saturated trap may have re-emitted CH4 during the experiment. This demonstrates

that the goal of removing radon while maintaining a constant CH4 concentration in

an SPC is feasible, given the correct operating procedure. The LAS system may be

used in the future to more precisely pre-saturate the radon trap, as well as inform

periodic methane concentration corrections for long-running experiments.
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Comparison with Rad7 tests As discussed above, tests of SZ radon traps (in

different operating conditions) were carried out by P. O’Brien using a setup with a

Rad7 device in place of the SPC [221]. The general procedure of these tests was the

same; radon was injected, and monitored for some time, following which the radon

trap was opened. Full details of these tests are given in ref. [221], as this is beyond the

scope of this work. However, the original analysis of this data used a slightly different

definition of the R-value, prohibiting comparison with the SPC results. Specifically,

R was defined to be the ratio of the radon activity just before the trap was opened,

compared to the (averaged) activity observed afterwards. To facilitate a more accu-

rate comparison, the Rad7 data was re-analyzed using the definition of R given by

eq. 3.35.

Similarly to the SPC analysis, the trend of radon decay before opening the trap was

fit with an exponential decay function to estimate the extrapolated radon activity if

the trap was never opened (Aexp.). This was then compared to the observed activity

after the trap was opened to calculate the best-fit values of R−1(t), with 90% CL

intervals again calculated using the FC method [240]. Examples of this data and the

resulting R(t) trends are shown in Fig. 3.61. Note that in cases where the post-trap

rate was not low, the analysis was done in terms of R(t) instead of R−1(t). These tests

often ended in noticeable, oscillating re-emission of radon from the trap after long

latency periods [221]. Additionally, in cases where the radon activity was not reduced

to background levels, there were oscillations in the activity on short time scales after

the trap was opened [221]. To avoid these time periods, the calculation of R−1(t) was

truncated to times after the oscillations dampened to < 3σ of the post-trap trend.

The Rad7 data includes measurements of radon traps with SZ as well as activated

charcoal – specifically the substrate Carboxen® 1000 (Sigma Aldrich). Data was

taken at room temperature (and dry-ice temperatures in some instances). Various

carrier gases were also used: N2, pure argon, as well as Ar + 3%CH4. The latter

surprisingly seemed to lead to generally worse outcomes with the Rad7, for unknown
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Figure 3.61: Select examples of Rad7 radon trap test data (blue histograms) with the
resulting R(t) (or R−1(t)) trends, which best-fit and 90% CL intervals shown in blue.
The pre-trap decay trend is shown in red, and the post-trap trend (where needed)
is shown in orange. These experiments were performed with a room temperature SZ
trap with N2 carrier gas (top left), Ar + 3%CH4 carrier gas (top right), and pure
argon carrier gas (bottom).
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Figure 3.62: Left: preliminary R-value results from the Rad7 tests [221] with carboxen
and SZ radon traps, with different carrier gases operating temperatures, re-analyzed
for this work. Right: R-values for room temperature SZ obtained from the SPC
tests. Data points with upper and lower error bars represent the two-sided 90% CL
intervals, while the markers with arrows represent one-sided 90% LCLs for R.

reasons [221]. All of the re-calculated Rad7 R-values are presented in Fig. 3.62. These

promising results confirm – as in ref. [221] – that SZ functions approximately as well

at room temperature as activated charcoal does at dry-ice temperatures. On the other

hand, the Carboxen traps performed orders of magnitude worse at room temperature.

The different results for R with repeated measurements are due to different initial

activities of radon in each test (a higher initial activity potentially results in a higher

90% LCL for R).

The room-temperature SZ tests performed with the Rad7 are compared to the

SPC result in Fig. 3.62 as well. One can see that these results are generally com-

patible. The SPC tests yield a slightly lower 90% LCL for R in most cases, which is

due to the limited sensitivity of the experiment. Although injecting higher amounts

of radon into the SPC could lead to better results, the issue of coincidences would

become significantly worse. Future improvements to the SPC experiment method-
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Pressure [mbar] 210Po 214Po 218Po 222Rn

200 21.5 cm 37.9 cm 25.9 cm 22.7 cm

500 8.62 cm 15.1 cm 10.3 cm 9.09 cm

Table 3.6: Ranges of α particles produced by radon decay-chain isotopes in
Ar + 3%CH4 gas (at 20◦C), calculated using SRIM [183].

ology are discussed in section 3.4.3. While this re-analysis of the Rad7 data allows

for better comparison with the SPC results, it does suffer from the shortcoming that

the measured half-lives of radon decay in the Rad7 data vary significantly (with val-

ues both higher and lower than 3.8 days [225]), for unknown reasons. Unlike the

SPC tests, rate effects alone cannot explain this phenomenon. Therefore, more study

and/or repeated measurements are required.

3.4.3 Future work

Further radon trap tests are planned with the U of A SPC. This includes a full series

of measurements of the performance of SZ under different operating conditions, as

well as tests of charcoal and carboxen traps for direct comparison. Following the

measurements presented in this work, the operating conditions of the radon trap

procedure have been improved somewhat. By operating the SPC with a higher-

pressure gas (500mbar of Ar + 3%CH4 instead of 200mbar), the range of the α

particles in the gas is significantly reduced. The ranges of radon decay chain αs as well

as 210Po in these different conditions are given in Table 3.6, calculated using the SRIM

simulation software [183]. Consequently, a smaller portion of events will collide with

the SPC wall, depositing their full energy in the gas instead. Thus, a higher proportion

of events from radon and its progeny will be distinguishable in amplitude from those

of 210Po, the main background of these measurements. Examples of background

210Po and radon data in this higher pressure gas are shown in Fig. 3.63, showing the

improved separation between these different populations compared to Fig. 3.50. Note

that the lower risetimes of some radon events compared to 210Po is partially due to
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Figure 3.63: Radon trap test data taken in the U of A SPC filled with 500mbar of
Ar + 3%CH4 gas. Background-only data including 210Po α events is shown in the
left panel, compared to radon data with visible α decay lines from 222Rn, 218Po, and
214Po (right panel).

the fact that radon decay isotopes may emit αs from within the volume of the SPC

rather than on the surface. This is also likely affected by the different space-charge

conditions caused by the high-rate conditions of the radon data.

By selecting only 214Po events (above ∼ 18000ADU in Fig. 3.63), the signal-to-

background ratio of the experiment will be significantly improved. As 214Po activity

will be in equilibrium with 222Rn, it can be used as a proxy for radon activity over

time. The goal of these future measurements will be to definitively quantify the

performance of SZ vs. traditional radon trap substrates and to identify optimal op-

erating conditions for future NEWS-G experiments. Using the LAS system installed

in this setup, the effect of radon traps on methane concentration can be measured,

and procedures to correct/reduce this effect can be further improved.

The U of A SPC is also currently being used to carry out W-value measurements,

following similar methods to those presented in section 3.3. Specifically, tests in

Ar + 3%CH4 gas at various pressures are being performed to check for any depen-

dence in the W-value. Future tests will expand to neon and helium gas mixtures, as

well as varying methane concentrations (which again will be aided by the use of the

LAS system). The work of other graduate students in the Piro group also includes

129



studies of space charge effects in SPCs; data taken while varying the intensity of UV

laser events can be used to directly test simulations of electron/ion transport in the

sphere.

Finally, a long-term goal of the NEWS-G collaboration is to perform quenching

factor measurements via the neutron-capture method [90]. While such experiments

have been carried out/are planned with other detector technologies [243–246], this

method has not been applied to gaseous detectors or any NEWS-G target materials.

In this approach, a neutron source is used to induce (n, γ) reactions in the gas. The

recoiling nucleus provides a source of low-energy nuclear recoil events with which to

measure the quenching factor, and the emitted high-energy γ-rays can be used to tag

events/specific de-excitations. As with any quenching factor experiment, confounding

energy response parameters such as the W-value and detector gain must be measured

in situ. Therefore – with the proven capacity/equipment to do so – the U of A SPC

is well-suited to this task. An additional advantage of this detector is its multiple

calibration ports, which may be used for γ coincidence detectors in a neutron capture

experiment. A potential schematic of such an experiment with an SPC is shown in

Fig. 3.64.
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Figure 3.64: Schematic of a hypothetical neutron capture experiment with the U
of A SPC, to measure quenching factors. A neutron source (such as an Am-Be
source [247]) placed outside the sphere induces (n, γ) reaction inside the gas, with the
emitted γs being observed by backing detectors outside the SPC. A polyethylene layer
serves to thermalize the neutrons, while lead would help attenuate any non-neutron
backgrounds produced by the source.
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Chapter 4

The NEWS-G experiment: dark
matter search results in methane
gas

After the SEDINE experiment at the LSM concluded (see section 3.1.6), the main ef-

fort of the collaboration has been the construction and operation of a larger 140 cm di-

ameter detector named S140 (sometimes “SNOGLOBE” unofficially) [1, 248]. While

temporarily installed at the Laboratoire Souterrain de Modane, a dark matter search

experiment was carried out with a methane gas target. The subsequent analysis

– involving many novel techniques and improved SPC characterization – produced

a world-leading exclusion limit on low mass WIMPs with a spin dependent proton

coupling.
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Figure 4.1: The S140 detector (inner copper sphere) is encased in shielding layers
of archaeological lead, low-activity lead, and high-density polyethylene. Taken from
figure 1 of ref. [248].

4.1 The S140 detector

A 3D model of the S140 detector is shown in Fig. 4.1. This SPC has a single port

at the top of the sphere for vacuum/gas handling, through which the sensor is also

inserted. The vessel is constructed of 99.99% pure, C10100 oxygen-free copper [1].

Two disks of the commercially-available copper were spun/pressed into hemispheres,

that were later electron-beam welded together. Copper is a common choice of material

for rare-event search experiments, as there are relatively few long-loved radioisotopes

that can be produced cosmogenically from copper [2].

The shielding setup for the experiment – also depicted in Fig. 4.1 – includes (start-

ing with its outermost layer) a 40 cm thick octagonal castle of high-density polyethy-

lene (HDPE) blocks, intended to shield against neutrons from the environment [1].

The blocks have saw-toothed, interlocking edges to avoid direct line-of-sight paths

through the HDPE shielding. These components were manufactured at the Univer-

sity of Alberta. Inside this, a spherical assembly of commercial low-activity lead

encloses the detector, forming a 22 cm thick layer [1]. These pieces are held in place
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with a stainless steel “skin” structure and scaffolding. Finally, the innermost layer of

shielding consists of 3 cm of Roman archaeological lead [249]. This material, taken

from a Roman shipwreck in the Mediterranean, has been shielded from cosmic ray

activation for thousands of years. Thus, it is expected to have exceptionally low

radioactivity, making it a valuable shielding material. A plug made of Roman ar-

chaeological lead is designed to complete the shielding setup, with spiral channels

running through it for gas flow, with additional channels for the UV laser optical

fibre and electric connections [1]. In this way, there is no direct line-of-sight path

through the detector shielding that would permit γ-rays into the SPC.

The spaces inside the HDPE are constantly flushed with boil-off nitrogen to reduce

radon and dust levels in the vicinity of the detector [1]. The SPC itself is also always

kept under vacuum or filled with inert gases to avoid the introduction of radioactive

contaminants, as well as water and oxygen. The electronics of the detector (for specific

hardware, see section 4.1.3) are housed inside a sealed glovebox, attached to the top

flange of the sphere. A separate, air-tight tube houses the sensor and support rod

and can be connected to the glovebox. Using this system, the top flange of the SPC

can be opened, the sensor inserted via a winch at the top of the sensor storage tube,

and electrical connections made without any exposure to air [1].

In such a large SPC volume, the electric field produced by a typical 2mm anode is

relatively weak at the outer reaches of the sphere, even with O(kV) voltages applied.

In these circumstances, there is a significant probability that primary electrons will

diffuse backwards and collide with the vessel wall. To avoid this problem, a larger-

radius sensor could be used (as large as a few cm), but this would lead to weaker

electric field strengths near the anode, resulting in smaller Townsend avalanches.

A new sensor design – the “ACHINOS”, from the Greek word for sea urchin – was

designed for S140 to solve this problem [250, 251]. The sensor consists of 11 individual

1.7mm anodes arranged in an isotropic fashion relative to the centre of the overall

sensor structure. A central electrode supports this arrangement, coated in a resistive
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Figure 4.2: An example of a diamond-like carbon-coated ACHINOS sensor. Taken
from figure 2 of ref. [1].

material such as diamond-like carbon to prevent discharges from the anodes [251].

Each anode is equally displaced from the centre by ≈ 1 cm. An example of this

sensor design is shown in Fig. 4.2.

When used, this sensor provides a strong drift field at the surface of the sphere

(due to the collective field of all 11 anodes), but locally each anode produces strong

Townsend avalanches. Critically, the electric field remains roughly isotropic in the

vicinity of each anode, providing (in principle) uniform avalanche yields from all

anodes [251, 252]. Studies of the gain and resolution of ACHINOS sensors as a

function of incoming particle trajectory have been carried out for some sensors [251],

but notably not of the specific sensor used in S140 for the first physics campaign at

the LSM.

The electric field produced by the S140 ACHINOS is shown in Fig. 4.3, which ex-

hibits an oscillating pattern (rotating about the central axis) due to the arrangement

of the anodes. Currently, ACHINOS sensors are fabricated so that all 6 anodes far

from the support rod are grouped together into a single channel for readout (with

connected wires), and all 5 near the support rod are grouped into a second channel.
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Figure 4.3: A finite element simulation of the electric field near an ACHINOS sensor
(performed using COMSOL [154]), with the colour map showing the electric field
strength (in V/m) in the y = 0 plane. Figure 4.69 shows electric field lines from the
same simulation.

These are sometimes dubbed the “south” and “north” channels respectively, due to

their orientation inside S140. The fiducial volume of these two channels is discussed

in section 4.4.3. Future NEWS-G experiments may be able to support individual

readout of all 11 ACHINOS anodes.

The single largest source of background radiation for the S140 experiment is from

210Pb in the copper of the vessel itself. Measurements of this contaminant and mit-

igation strategies are discussed in the following two subsections. Another significant

contribution of background events is from cosmogenic activation of the copper [1,

152]. Cosmic ray exposure on the surface of the Earth produces the radioisotopes

56Co, 57Co, 58Co, 60Co, and 64Mn, which then produce backgrounds of electronic

recoil events. While the detector materials were kept underground for storage and

fabrication as much as possible, there was some inevitable exposure. Fortunately,

these isotopes all have relatively short half-lives, with the longest being 5.27 years for
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Figure 4.4: Simulated differential background rate in the S140 sphere from different
components in the experiment/environment. This simulation was carried out for a
target gas of 135mbar, at the time of the LSM physics campaign (see section 4.1.3).
Taken from figure 10 of ref. [1].

60Co [253]. This means that the background rate from cosmogenics in the experiment

will decrease over time, but also means that simulations of this background must take

the age of the detector into account [1].

Naturally occurring 238U, 232Th, and 40K is found in small concentrations in the

SPC copper, lead shielding material, and lab environment. 210Pb is also found in

the lead shield. The concentrations of these contaminants was measured using the

ICP-MS technique at PNNL [152]. Considering all of the above-listed sources of

background events, a Geant4 simulation of the total expected background spectrum

in S140 was carried out, which is shown in Fig. 4.4. More details of this background

model and contamination assays are given in refs. [1] and [152].

4.1.1 210Pb Assay

As determined by Geant4 simulations [152, 204], 210Pb is a dominant background

signal in SPCs. In particular, Bremsstrahlung emission induced by the decay of 210Pb

137



Figure 4.5: The evolution of measured 210Po over time for different initial activities
of 210Po and 210Pb, using the exact solution (eq. 4.1, red curve) and approximate
formula (blue dashed curve).

(and its short-lived daughter 210Bi) inside the copper of the S140 vessel leads to a

homogeneous background of low energy events that cannot be discriminated against

with PSD variables. Being a long-lived isotope with a 22 year half-life [254], it is

impractical to plan to let it decay away. Therefore, effort was directed towards both

reducing and precisely quantifying this background. To pursue the latter, NEWS-G

worked with the XMASS collaboration to measure the 210Pb content of the C10100

copper used for the S140 detector. The method employed by XMASS for similar

previous studies [255] involves measuring the α-decay activity of 210Po (the grand-

daughter of 210Pb) with an XIA UltraLo-1800 ionization chamber [256]. This chamber

uses an active veto anode layer to reject α events not originating from the sample

being assayed. The detector is also flushed with argon gas to reduce backgrounds

from radon gas. For the measurements performed by XMASS, the assay sample tray

of the detector was replaced with an electroformed copper tray to further reduce
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Measurement date Count rate

[α/cm2/hour]

July 2-25, 2018 2.3 ± 0.4 × 10−4

October 5-17, 2018 2.2 ± 0.4 × 10−4

December 28, 2018 - January 9, 2019 1.4 ± 0.3 × 10−4

April 19 - May 7, 2019 1.4 ± 0.3 × 10−4

Table 4.1: Raw 210Po count rates measured from the S140 copper sample by the
XMASS collaboration [2].

backgrounds [255].

The measured 210Po activity originates from a combination of whatever initial

quantity of 210Po is present in the copper sample after casting, as well as that which

builds up over time from decaying 210Pb. As equilibrium between these isotopes

is broken during the casting process [255], multiple measurements are required over

time to disentangle the initial quantities of 210Po and 210Pb. To that end, the XMASS

collaboration performed 4 measurements of a sample of NEWS-G copper over a period

of ∼ 1.5 years since the manufacture of the copper sample [2]. This sample was

treated and electro-polished at the Pacific Northwest National Lab (PNNL [257])

following the same procedure as the copper of S140 itself. The count rates of these

four measurements are given in Table 4.1.

The activity of 210Po over time can be calculated using the Bateman equation,

which gives the quantity N(t) of the nth isotope in a decay chain over time:

Nn(t) =
n∑︂

i=1

(︄
Ni(0)×

(︄
n−1∏︂
j=i

λj

)︄
×

(︄
n∑︂

j=i

e−λjt∏︁n
p=i,p ̸=j λp − λj

)︄)︄
(4.1)

where λi are the lifetimes of the isotopes involved, and Ni(0) are their initial activities

[258]. It is worth noting that one could take an approximate form of this result by

neglecting the intermediate isotope 210Bi, which has a short half-life of ∼ 5 days

compared to its parent and daughter. However, this can cause a systematic over-

prediction of 210Po activity for measurements within about 1 year of production,
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although the magnitude of this bias depends on the initial activities and is never

more than ∼ 5%. Examples of the evolution of 210Po activity over time following eq.

4.1 (and the approximate form used by [255]) are shown in Fig. 4.5.

As the primary focus of this study is measuring 210Pb in the bulk volume of the

copper sample, rather than on the surface, the bulk activity of 210Po must be measured

specifically. This activity is distinguished from the surface 210Po activity by selecting

α decays with partially degraded energies compared to the full 5.3MeV kinetic energy

of 210Po αs [255]. An energy window of 2.5 to 4.8MeV is used to identify decays at

a depth of approximately 2 to 8µm. A Geant4 simulation was performed by the

XMASS collaboration to convert the count rate observed in this energy band (for

a given sample surface area for counting, given in table 4.1) to the bulk activity of

210Po; 2.7×10−2(Bq/kg) / (α/cm2/hour) [255]. The XMASS collaboration performed

an experimental check of this conversion factor and found a systematic uncertainty

of −10% to +30% [255].

After the raw observed count rates were converted into bulk 210Po activity, the

activity over time was fit as a function of the initial activity of bulk 210Po and 210Pb

(A0
Po and A0

Pb). Eq. 4.1 is multiplied by the lifetime λ of 210Po to give its activity

over time:

APo(t) = λPo ×NPo(t) (4.2)

For each measurement i between time t1i and t21 , the number of counts observed is

Poissonian, with an expected rate given by:

µi =

∫︂ t2i

t1i

APo (t|APo, APb) dt+NB, (4.3)

where NB is a constant background contribution included in the fit model. This was

then used to form a joint, unbinned likelihood function for the four measurements

[73] each with ci counts:
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L ({c, t1, t2} |APb, APo, NB) =
∏︂
i=1

µci
i e

−µi

ci!
× LB, (4.4)

The term LB is a Gaussian constraint on the background activity of using the rate

of 5.6 ± 5.6α/cm2/hr given by ref. [255]:

LB =
1√︁
2πσ2

B

e
− (NB−µB)2

2σ2
B . (4.5)

In this analysis, the likelihood function was maximized using the ROOT Minuit2

optimization package [259] to find best-fit values for the three parameters of this

model. To estimate uncertainties (statistical), a profile-likelihood approach was used

[73] to profile over the background activity as a nuisance parameter, and then a

raster-scan was used to estimate the 1σ uncertainty contour for the initial Pb and Po

activities (taking the region within 0.5 of the maximum log-likelihood) [73]. The 2D

profiled likelihood functions are shown in Fig. 4.6 including the first two measurements

(left panel) and all four measurements (right panel). This reconfirms the necessity

of multiple measurements over time for this analysis: without data taken over a long

period of time, the contributions of 210Po and 210Po to the observed activity are

completely degenerate.

A marginal likelihood method was initially considered to give a more robust esti-

mation of these uncertainties since the likelihood function was strongly bounded by

physical constraints after the earlier measurements (i.e. not having an activity less

than 0), as can be seen in Fig. 4.6. However, after all four measurements this was no

longer an issue, and the profiled-likelihoods for the parameters of interest converged

to a 2D Gaussian, so the two approaches are equivalent.

The resulting modelled 210Pb and 210Po activity over time are shown in Fig. 4.7,

which shows that there is a significant contribution from 210Pb. The result of this anal-

ysis after all four measurements was an initial Pb-210 activity of 28.5+8.3+9
−7.9−3mBq/kg,

with statistical and systematic uncertainty (from the surface-to-bulk activity conver-
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Figure 4.6: The likelihood function for initial 210Po and 210Pb activities after the
second measurement of the C10100 copper sample (left) and after the fourth mea-
surement (right panel), showing best-fit points and 1σ error contour. The likelihood
values (colour scale) are normalized so that the maximum is L = 1.

sion factor), respectively [2]. This is consistent with measurements of similar types

of copper [255].

4.1.2 Copper electroplating

The level of 210Pb contamination found in the copper of S140 leads to a significant

background of low energy X-rays (from Bremmstrahlung interactions in the copper

following β− decays). The simulated energy spectrum of this background in S140

with a neon gas mixture – calculated using Geant4 [204] – is shown in Fig. 4.8 [1]. To

mitigate this issue, the inside of the S140 vessel was electroplated with pure copper.

In electroplating, an applied current supplies electrons to an anode causes oxidation

reactions, with the liberated ions then drifting through an electrolyte towards the

cathode, where they undergo a reduction reaction and become a part of the surface

of the cathode [2].

Performed in collaboration with PNNL, the two hemispheres were plated (prior

to being welded together) as described in ref. [2]. The setup – shown in Fig. 4.9 –

included a hemispherical anode suspended inside the SPC hemisphere being plated

(the cathode). The space in between was filled with a distilled water/sulphuric acid
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Figure 4.7: Measurements of bulk 210Po over time with statistical error bars (blue
data points), shown along with the modelled contributions of total 210Po activity
(purple), the 210Po activity from initial 210Po (pink dashed), and from initial 210Pb
(dot-dashed cyan). The modelled 210Pb activity is shown in green. In all cases, the
best-fit curves are shown as well as shaded 1σ error bands.

Figure 4.8: Simulated background rate in a neon gas mixture in S140 from 210Pb
copper contamination with and without the 500µm of internal electroplating of the
vessel. Plot taken from figure 7 of ref. [1].
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electrolyte [260]. The voltage was set to be higher than the reduction potential

of contaminants, such as lead (−0.13V [261]), uranium (−1.8V [262]), or thorium

(−1.9V [263]). In this way, only pure copper (with a reduction potential of +0.34V

[264]) was plated onto the sphere [2].

The mass of material plated m as a function of time and current I is [260]:

m =
M
∫︁
I(t)dt

zF
(4.6)

where M is the molar mass of the material, and F is the Faraday constant, which is

the charge of one mole of electrons. The number of electrons involved in the reduction

interaction is z, which in the case of copper is 2, as the reaction is Cu2+ + 2 e− ⇌ Cu

[2].

Electroplating of the S140 vessel took place at the LSM, lasting approximately

20 days per hemisphere. This deposited a layer of roughly 500µm of pure copper

[2]. Following this process, the S140 vessel was electron-beam welded together. The

SPC was then etched with a hydrogen peroxide/sulphuric acid mix and pacified with

citric acid twice, removing a few µm of copper each time. This was done to remove

surface contamination from air exposure, and to improve the smoothness of the inner

surface. The background reduction delivered by the copper plating is shown in Fig.

4.8, reducing the background rate by approximately 98% below 1 keV [1].

4.1.3 Operation at the LSM

During spring to fall of 2019, the S140 detector was installed at the LSM for an

initial commissioning phase and physics campaign. This was convenient following the

electron-beam welding of the sphere in France, and took advantage of a time span

where the space for the experiment at SNOLAB was not yet ready. For this temporary

setup, the HDPE shield shown in Fig. 4.1 was replaced with a cylindrical-shell water

tank with a thickness of approximately 20 cm, surrounding the SPC and lead shield

[248].
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Figure 4.9: The electroplating setup for the S140 vessel with the inner hemispherical
anode (a), and a schematic of the setup (b). Taken from figure 5 of ref. [260].

The 2-channel ACHINOS (as described above) was installed using the sealed sen-

sor deployment and glove box apparatus. The gas-handling setup – depicted in Fig.

4.10 – included a liquid nitrogen cooled, carboxen radon trap [221], as well as a SAES

MC700-902F “getter” [1]. The latter is intended to remove oxygen and water. The

SPC was filled by passing gas through the getter and radon trap (in that order). Fu-

ture procedures will likely involve re-circulation of the gas, with additional apparatus

to monitor the loss of methane in the gas mixture to the radon trap [187].

The SPC high-voltage was supplied by an Iseg EHS 44 100x-K02 module [265] (up

to 5 kV). A custom box with multiple CREMAT CR-110 [220] preamplifier chips were

used; these are often used by NEWS-G [63], with a response decay time of τ = 140µs

and a signal gain of 1.4V/pC. The calibox board was used for data acquisition (see

section 3.1) [1]. A UV laser calibration system was also installed (as described in

section 3.2.1), as well as a deployment port for 37Ar samples.

After a commissioning phase – including data taken with argon and neon gas

mixtures – a short physics campaign was undertaken. For this data, the unique

opportunity to use pure methane gas (at 135mbar) was exploited. Pure CH4 as a

target provides ample hydrogen target atoms (ideal for low-mass WIMP searches),

while being relatively more transparent to some backgrounds – such as Compton
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Figure 4.10: P&ID diagram of the S140 detector installation at the LSM, showing the
sphere and surrounding frame structure, glove box, vacuum pumps, and gas cylinders.
The plumbing included larger diameter vacuum tubing (green) and narrow, gas flow
tubing (red and blue). Vacuum valves are labelled as V1 - V3, and gas-flow valves
4-12. The gas system also includes a liquid nitrogen-cooled carboxen radon trap and
SAES getter filter, with bypasses for both.

scattering from γ-rays [70] – compared to more typical neon gas mixtures. The dark

matter search data acquired during this campaign is described in section 4.2 and its

analysis is described in sections 4.3 to 4.5.

4.1.4 Installation at SNOLAB

Following the 2019 physics campaign at the LSM, the S140 experiment was shipped

(always with nitrogen cover gas) to SNOLAB, in Sudbury Ontario [61]. Compared

to the LSM, SNOLAB has an additional ∼ 2 km water-equivalent shielding, reducing

muon fluxes even further [61, 266]. It is also a clean-lab facility, reducing the possi-

bility of environmental contaminants being introduced into the SPC. Currently, the

detector has been fully installed with the exception of some gas-handling components,
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Figure 4.11: The S140 detector during installation at SNOLAB; the SPC and lead
shield are in place, while the HDPE shield is being assembled.

and commissioning is underway [267]. A possible third etching of the inside of the

sphere may be carried out in the near future. The setup at SNOLAB is shown in

Fig. 4.11; the experiment is located in the “Cube hall”, next to the DEAP-3600 and

(future) PICO-500 experiments.

The first dark matter physics program at SNOLAB will be to take data with a

1 bar neon-methane gas mixture (6% methane). The total background rate expected

from Geant4 simulations 1.67 ± 0.5 events/keV/day/kg (uniform in energy) [1, 152].

The expected energy threshold of the experiment – based on UV laser calibrations

at Queen’s University – is 0.5 primary electron equivalent energy [192]. Using these

assumptions, as well as other nominal values describing the energy response of the

detector, the projected SI WIMP exclusion limit of S140 with 20 kd · days of data is

shown in Fig. 4.12 [268, 269]. This limit was calculated with the optimum interval

method [77] (see section 2.3.2). Due to the large amount of hydrogen target material

(and the typical low energy threshold of SPCs), it is possible that NEWS-G can

exclude dark matter masses as low as 500MeV/c2, which at the current time would

be a world-leading result [8, 9].

147



Figure 4.12: Projected sensitivity of the 140 cm SPC at SNOLAB [248]. Assumptions:
a 20 kg · day exposure with Ne + 6%CH4 gas, a 0.5 e− threshold [192], and a flat
background of 1.67 ± 0.5 events/keV/day/kg [152]. This limit is calculated using
the optimum interval method [77]. Results from other experiments are shown for
comparison [63, 104, 109, 270].
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4.2 LSM campaign: Data

As previously introduced in section 4.1.3, a physics campaign with 135 ± 10mbar

of pure methane gas was undertaken at the LSM in Fall 2019. The S140 detector

was used with a 2-channel ACHINOS sensor, which was divided into two channels

for readout and dubbed “north” and “south” (with 5 and 6 anodes respectively). A

voltage of 2030V was applied to both channels, as this ratio was found to result in the

lowest resolution for this sensor, thereby indicating their gains were closely matched.

Unless otherwise stated, only the south channel was used to trigger physics data, and

only south-channel data was analyzed. The signal acceptance for dark matter events

with this fiducialization cut applied is discussed in section 4.4.3.

After inserting the sensor and support rod using the glovebox assembly (see section

4.1), the sphere was filled by passing the gas once through a getter filter to remove

electronegative contaminants, and then through an activated charcoal radon trap to

remove radon introduced by the getter. Data was recorded in 8ms windows when the

DAQ was triggered, with the traces being digitized at 1.042MHz.

4.2.1 Collected data

Data was taken over the course of 10 days and alternated between 1-2 day long physics

runs and 1 hour dedicated laser calibration runs each day. Additional calibration

data was collected towards the end of the campaign with an Am-Be neutron source

deployed close to the detector, as well as 37Ar injected inside the SPC at the very end

of the campaign. The DAQ was triggered with a trapezoidal filter (essentially based

on the derivative of the raw signal trace). In initial physics runs, the trigger was

defined by requiring an 80ADU rise over 25ms and after each pulse, a 4ms deadtime

was imposed. Part way through the campaign, the trigger was changed to 50ADU

over 15ms (a slight improvement) with a longer deadtime of 10ms.

For dedicated laser calibration runs, the SPC is triggered using the photodiode
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signal (see section 3.2.1) in order to also record events where no laser photoelectrons

reach the sensor. This trigger was set to 30ADU over 50ms with a 100% efficiency.

For these laser calibration runs, the laser intensity was generally tuned such that

on average 0− 7 photoelectrons were produced by each pulse, by changing the laser

pump current. The pulse rate was 10Hz for these runs. However, the laser was also

operated during the physics run to monitor changes in detector response over time.

In these cases, the pulse rate was reduced to 5Hz, but the intensity increased (to a

pump current of 140A) to produce events with O(100) photoelectrons.

The campaign data (including run types, trigger conditions, etc.) is summarized

in table 4.2. Other datasets were taken that are not listed in this table (such as 37Ar

at different anode voltages), but all data used in this work are included. The run

naming scheme used by NEWS-G is as follows: 1) the first letter represents the year,

2) the second letter gives the month, 3) two numbers for the date, 4) a letter code

identifying the detector (“s” is for the S140 device), and 5) three numbers as a run

identifier for that day. For example, the third run in S140 on October 5th 2019 would

be listed as tj05s002.

Before proceeding with any analyses, the LSM campaign physics data was parti-

tioned into “test” and “blind” portions. The test data was used for all subsequent

analyses, whereas the blind data was kept sequestered until the analysis is finalized.

As of the date of writing (October 2023), the blind data remains untouched. The data

was partitioned by first removing all laser events (using their photodiode amplitudes,

with presumed 100% efficiency). Additionally, all α events and the subsequent 5s of

data were removed (more on this cut in section 4.4.4). These events were removed

from the physics runs and combined together in separate data files. The test data

was then defined to include all of run tj04s002 (which had been used for preliminary

analyses), and 20% (randomly selected events) of all other physics runs. In total, this

represented about 27% of the total exposure of the physics runs, with the remainder

being kept blind. Because the data was partitioned by randomly selecting events
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Run Duration [h] Type Trigger Laser [A / Hz]

ti30s002 1 Laser Photodiode 113 / 10

ti30s003 46.5 Physics Cond. 1 140 / 5

tj02s000 1 Laser Photodiode 115 / 10

tj02s001 21 Physics Cond. 1 140 / 5

tj03s000 0.5 Laser Photodiode 120 / 10

tj03s001 0.5 Laser Photodiode 130 / 10

tj03s002 46.5 Physics Cond. 1 140 / 5

tj04s000 1 Laser Photodiode 120 / 10

tj04s002 21 Physics Cond. 2 140 / 5

tj05s000 1 Laser Photodiode 120 / 10

tj05s001 20.5 Physics Cond. 2 140 / 5

tj06s000 1 Laser Photodiode 120 / 10

tj06s001 23 Physics Cond. 2 140 / 5

tj07s000 1 Laser Photodiode 120 / 10

tj07s001 22.5 Physics Cond. 2 140 / 5

tj08s000 1 Laser Photodiode 120 / 10

tj08s001 23 Physics Cond. 2 140 / 5

tj09s000 1 Laser Photodiode 120 / 10

tj09s001 26.5 Physics Cond. 2 140 / 5

tj10s000 1 Laser Photodiode 120 / 10

tj10s001 19 Physics Cond. 2 140 / 5

tj11s002 1 Laser & Am-Be Photodiode 120 / 10

tj11s004 1 Laser & Am-Be Photodiode 120 / 10

tj11s005 7 Am-Be Cond. 2 140 / 5

tj12s003 3.5 37Ar Cond. 2 140 / 5

tj13s000 4 37Ar Cond. 2 140 / 5

tj14s001 4 37Ar Cond. 2 140 / 5

Table 4.2: Data collected during the LSM physics campaign. Trigger conditions are
defined in the text. The laser was running at all times.
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throughout each run, the test and blind datasets should have the same properties

(i.e. the same proportion of different event populations). The procedure and checks

for unblinding the physics data are discussed in section 4.5.4.

4.2.2 Pulse processing

The LSM data was processed using the DD2 method described in section 3.1.5 [160].

For the physics runs, the integration window was fixed instead of being defined using

a trapezoidal filter. Within the 8ms event window, the double deconvolved pulse

was integrated from 3418 to 4656µs ( a duration of 1238µs), roughly centered within

the overall event window. This was necessary for the LSM analysis due to the sig-

nificantly delayed arrival time of many electrons, slowing drifting through the large

SPC and subject to greater-than-normal diffusion. If the integration window was

determined automatically as usual, the algorithm would likely miss many delayed

electrons, and result in integration window sizes varying significantly from event to

event. This would make the amount of baseline noise integrated in each event in-

consistent. Therefore this large window was chosen to (likely) contain all primary

electrons. An example of an 37Ar pulse (raw and treated) is shown in Fig. 4.13.

As mentioned in section 3.1.5, the LSM analysis was unique in that the diffusion

experienced by primary electrons was large enough that individual primary electrons

produced distinct, separable pulses. This was only the case when dealing with the

treated pulses (specifically the double-deconvolved traces), as the pre-amplifier re-

sponse still caused significant overlap in the raw pulses, as can be seen in Fig. 4.14.

The ROOT library TSpectrum (specifically TSpectrum::SearchHighRes) was used

to identify potential peaks in the double-deconvolved trace [271–274]. All candidate

pulses with heights exceeding an absolute threshold of 0.48 e−/ns were kept. The

double-deconvolved trace was then fit with a function including a flat baseline, and

a Gaussian distribution for all peaks identified. In this analysis, the central times

and heights of each Gaussian were fixed using the TSpectrum results. The baseline
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Figure 4.13: Example of an 37Ar event from the LSM campaign, showing a raw pulse
(top panel) and the subsequent double-deconvolved, integrated pulse (lower panel).
Note that the NBT correction detailed ahead in section 4.2.3 has already been applied.
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Figure 4.14: Example of a laser event from the LSM campaign (tj04s000 specifically),
showing a raw pulse (top panel) and the subsequent double-deconvolved (lower panel).
The PF algorithm result for this event is overlaid in red. Note that the NBT correction
detailed ahead in section 4.2.3 has already been applied.

154



and width of each peak were left as free parameters in the fit, which was performed

using ROOT TMinuit2 [259]. The peak widths were constrained to be no more than

6 samples (slightly less than 6µs) to prevent the algorithm from occasionally fitting

long, slow baseline fluctuations with very wide Gaussians. Typical, physical peaks

have widths of approximately 2-3 samples. An example of an LSM low-intensity

laser event (from tj04s000) is shown in Fig. 4.14, along with the resulting double

deconvolved pulse and peak-finding result.

The threshold for the PF algorithm (0.48 e−/ns) was chosen to balance between sen-

sitivity to small primary electron avalanches (where the distribution of peak heights

will be nearly exponential), vs over-sensitivity in misidentifying baseline noise as

physical peaks. The latter was estimated by applying the PF algorithm with vary-

ing thresholds to pre-trace laser data (the first 1238µs) of each event in tj04s000.

In this way, the only peaks that are found are likely to be false positive (FP) noise

peaks. This trend is shown in Fig. 4.15, which motivated the choice of 0.48 e−/ns.

The ability to directly count primary electron peaks offers better estimators of energy

and the radial position of pulses; the time separation between the first and last peak

(sometimes denoted as ∆tpeak) has similar properties to the pulse risetime, but with

better discrimination capability for few-electron events. These variables were used

extensively for the LSM methane analysis presented later throughout this chapter.

Another variable calculated using the processed LSM data was the drift time of

laser events. This was calculated as the time difference between the leading edge of

each raw photodiode pulse, and the first primary electron peak identified in the double

deconvolved SPC pulse. Note that other similar definitions are used in other works,

e.g. in ref. [275]. An example of a laser event with the definition of its drift time is

shown in Fig. 4.16. Typical drift times in the LSM data ranged from approximately

1200µs to 1550µs depending on prevailing space-charge conditions (see section 4.2.5),

and as low as 700µs following α-decay events (see section 4.4.4).

The DD2 processing code library (quadis [160]) saves the calculated variables in
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Figure 4.15: False positive peak identification probability (PFP) as a function of PF
algorithm threshold, as assessed with pre-trace data.
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Figure 4.16: A low-intensity laser event (from tj04s000) showing the double-
deconvolved south channel SPC pulse (red) and the raw photodiode (PD) pulse (blue).
The arrow indicates the drift time for this event, which is 1332.5µs in this case. Note
that there is a time offset between the two traces because this corrects for an offset
in the DAQ between the two channels.
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Figure 4.17: A raw 37Ar pulse that has not been corrected for NBTs, with an inset to
zoom in on two NBTs. The corrected raw pulse for this event is shown in Fig. 4.13.

ROOT TTree data files. All data files were also converted into Python dictionary files,

which served as the primary data structure for analyses. This includes the regular

DD2 method results, PF-calculated variables, and specially-calculated variables such

as drift time. While both data structures are well-suited to multivariate analysis,

the use of Python includes a host of useful code libraries for this analysis including

scipy, emcee, and so on.

4.2.3 Negative baseline transient correction

The LSM campaign data was afflicted by an unfortunate, unusual type of electronic

noise that was prominent only in the south channel. On top of typical baseline

fluctuations (across a wide range of frequencies), there were periodic, large exponential

downward fluctuations in the baseline. These occurred with a period of roughly

1.3ms, so multiple were present in each 8ms event window. This species of noise

was dubbed “negative baseline transients” or NBTs, and were likely caused by the

charging up and discharging of some detector component, although this is speculative.

Further investigation into their cause is not possible, as they were only observed
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Figure 4.18: Pre-trace amplitude vs. time for all events in tj04s000, aligned by NBT
phase (2D histogram with the colour scale giving counts per bin). The red markers
represent the mean amplitude in individual slices.

during the LSM campaign. An example of this type of noise in an event is shown in

Fig. 4.17. The amplitude of the NBTs was sufficiently large that they could distort

the amplitudes calculated for events.

To demonstrate/characterize this effect, the LSM data was specially processed us-

ing an integration window at the beginning of each pulse, rather than at the centre.

NBTs occurring in this region do not overlap with physical SPC signals, so the am-

plitude of the NBTs alone can be calculated. The time of the minimum value of the

raw trace in this window was used to estimate the location of the first NBT within

this pre-pulse window. The phase of the NBT can then be determined by subtracting

the start time of the pre-trace window (slightly after 0ms). Fig. 4.18 plots this quan-

tity modulo the average period of the NBTs (approximately 1.3ms) to approximately

align the time scales of all events in laser run tj04s000. In this way, the amplitude

distortion as a function of time due to NBTs can be seen. The maximum distortion
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Figure 4.19: The four (inverted) NBT templates (black curves) based on tj13s000
data (2D histograms), separated by the cycling NBT period. Credit to A. Padawer-
Blatt [276].

of approximately 30ADU is small on the scale of some events (e.g. 37Ar, with pulses

typically around 8000ADU), but it is significant compared to the amplitude of few-

electron events. Fig. 4.18 also demonstrates that the NBTs cyclic noise causes (small)

distortions at all times.

To mitigate the effect of NBTs, an algorithm was developed by A. Padawer-Blatt

to precisely locate them within each event window, and then correct the raw traces

for them [276]. First, the NBTs were identified by applying the scipy.find peaks

method to the inverted, smoothed raw pulses. The NBTs were found to cycle through

four different periods of repetition, such that the overall period of the whole pattern

was approximately 5.4ms. Evidence of this behaviour can be glimpsed in Fig. 4.18.

Four templates were then defined to match the four phases of the NBT cycle (including

the time periods in between the visible excursions), by averaging all applicable time
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Figure 4.20: NBT-corrected, pre-trace amplitude vs. time for all events in tj04s000,
aligned by NBT phase (2D histogram with the colour scale giving counts per bin).
Th red markers represent the mean amplitude in individual slices. This data is the
same as that shown in Fig. 4.18.

segments in the events of run tj13s000. These templates are shown in Fig. 4.19.

The raw traces for all events in the complete LSM campaign were then corrected for

NBTs by subtracting the appropriate templates (time-aligned) from each event. The

corrected data was treated as described in section 4.2.2. The effect of this correction

on the amplitude distortions shown in Fig. 4.18 is seen in Fig. 4.20.

Of course the NBT correction itself may not be perfect and is known in rare

cases to produce false, artifact peaks in the double-deconvolved data. The frequency

of such pathologies was estimated by comparing the number of peaks found in the

original and NBT-corrected data, using laser run tj04s000 as an example, as shown

in Fig. 4.21. In this case, approximately 3.9% of events gained one or more peaks

after the NBT correction, while 3.7% lost peaks (and never more than two in either

direction). Since these rates are roughly equal, the impact of NBT-induced peaks is
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not of concern. Fig. 4.21 also shows the total peak distribution of tj04s000 with and

without the NBT correction, which was largely unchanged. This demonstrates that

the templates defined using the run tj13s000 are applicable to the NBT noise in other

runs.

4.2.4 Signal “cross-talk”

A unique phenomenon observed in the LSM experiment was signal “cross talk” be-

tween the north and south channels of the ACHINOS sensor. While this term some-

times refers to the induction of a signal on a cable by another (or between any two

electronic channels), in this case, it refers to signals induced on the opposite channel

from where a Townsend avalanche occurs in the SPC. For example, if a primary elec-

tron produces an avalanche at one of the 5 north-channel anodes, a smaller, inverted

signal is induced on the south channel by the drift of the avalanche ions. This is clearly

observed in the double deconvolved traces of events, such as the example shown in

Fig. 4.22. The inverted cross-talk signal was typically ≈ 20% of the pulse height of

the original signal and was observed for both north and south channel events. The

strength of this cross-talk seemed to be invariant with the anode where the progenitor

avalanche was taking place.

Because this phenomenon takes place in the gas volume of the SPC, it can serve as

the basis for a useful PSD variable to reject non-physical events [275]. In particular,

electronic discharge (or “spike”) events are thought to originate from small electrical

shorts within the sensor/rod assembly. Since these events do not produce a Townsend

avalanche, they also do not produce a cross-talk signal. The application of this

phenomenon as a PSD variable is described in detail in section 4.4.5.

4.2.5 Space charge effects

The term “space-charge effect” is often used to describe any changes in SPC conditions

caused by large fluxes of avalanche ions in the sphere, and could include the screening
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Figure 4.21: Top: A comparison of the number of positive, south-channel peaks
found in laser run tj04s000 with and without the NBT correction. Bottom: the total
distribution of the number of peaks in tj04s000, with and without the NBT correction.
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Figure 4.22: An example of a double deconvolved low-intensity laser event, showing
the traces for both the north and south channels overlaid, demonstrating signal cross-
talk. The highlighted bands show the regions identified as having peaks by the PF
algorithm. The time-scale is in digitizer samples (1µs = 1.04167 samples). Taken
from figure 2 of ref. [248].
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Figure 4.23: Mean drift time of all LSM campaign data sets listed by their laser in-
tensity and other calibration sources, as a function of their average amplitude current
(ADU/s).

of incoming primary electrons or changes in drift time. In this analyses, it refers

specifically to the latter effect. The LSM campaign was particularly affected by these

phenomena, possibly due to the large nominal drift times in the methane gas in

the large-SPC environment of the experiment. The most dramatic impact of space

charges on drift time is the sharp drop in drift time induced by 210Po α decays [275],

as discussed in section 4.4.4. The large flux of secondary ions produced (O(107)) can

cause a roughly 30% drop in drift time. However, lower energy events also had a large

influence on the drift time in the SPC, especially when there was a constant source

of events, such as high-intensity laser pulses. The presence of 37Ar or Am–Be sources

also had an impact.

To elucidate the effect of coherent space charge influences from all sources on the

SPC, a quantity called “amplitude current” was defined as the average pulse ampli-

tude for all events in second-long time windows. Drift time as a function of this “cur-

rent” is shown in Fig. 4.23, which shows that drift time does decrease with increasing
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current as expected, until plateauing for all high-intensity laser runs (physics runs),

37Ar, and Am–Be data. A possible explanation for this plateau is that avalanche

ions produced by laser events will entirely affect the path of future incoming laser

electrons, and so will have an out-sized impact on drift time. Further work to under-

stand and model these processes is being undertaken by other graduate students of

the NEWS-g collaboration.
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Figure 4.24: Amplitude spectrum of run ti30s002 processed with a fixed integration
window of 1290 samples.

4.3 LSM campaign: SPC characterization

To determine the sensitivity of the S140 experiment at the LSM to a hypothetical

dark matter signal, it is necessary to know how that signal would be observed by the

SPC. This includes all physics pertaining to energy deposition and observation in the

detector, as well as electron transport of volume events. These facets of the detector

response are drawn from existing literature results in some cases, but for the most

part, are the result of calibrations in the S140 detector.

4.3.1 Low-intensity laser calibration

As in previous analyses (such as in section 3.3), the primary application of the UV

laser calibration data was to model the avalanche response of the detector, including

the mean gain ⟨G⟩ and θ parameter of the Polya distribution [192]. This was done

using the low-intensity calibration data listed in Table 4.2.

In typical laser analyses (such as that described in section 3.2.1), the pulses would

be processed with a fixed integration window chosen to be wide enough to contain all

photoelectrons, but not overly so, as this would integrate unnecessary baseline noise.
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Figure 4.25: Cartoon depicting the post-processing of laser events; 60 sample integra-
tion windows are kept if they have any number of peaks fully inside the integration
window, with no other peaks found inside the 25 sample veto windows before or after
(these have a 10 sample overlap with the integration window).

In the case of the LSM analysis, the substantial diffusion of electrons in the gas would

require an integration window more than 1ms long to contain all photoelectrons. In

doing so, a large amount of baseline noise affects the treated pulse, severely distorting

the amplitude values calculated for laser pulses. An example of this is shown in Fig.

4.24. Rather than a spectrum with a resolved 0 e− peak and exponential tail such as

in Fig. 3.31, the large amount of baseline noise washes out all features.

To circumvent this problem, the large 8ms acquisition windows of each event were

divided into many smaller sub-windows wide enough to only contain a few electrons,

while integrating much less baseline noise. To choose acceptable sub-windows, the

laser data was processed with the PF algorithm with a lower threshold than usual

(0.24 instead of 0.48 e−/ns) to detect any peaks on the border of the sub-window that

might lead to a mis-reconstruction. A higher rate of FP peak identification is not a

concern in this case. Specifically, the following procedure was used:

1. Each 8ms event was partitioned into 60 sample sub-windows to avoid integrat-

ing too much baseline noise,

2. Sub-windows were rejected if there were any peaks found in 25 sample veto

windows before and after the sub-window. These veto windows have 10 samples

of overlap with the sub-window (see Fig. 4.25),

3. The data was reprocessed using the usual double-deconvolution processing method

[160] repeatedly, with the integration window corresponding to all possible sub-

windows (using the NBT-corrected traces (see section 4.2.3).
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Figure 4.26: Amplitude (DD AmplADU) spectra for sub-events with different window
starting times (in samples), showing the changing fraction of null events to non-empty
events.

With the PF-based vetting of sub-windows, a new dataset of usable laser events

was extracted from each run. Despite using a lower PF threshold than usual, some

problematic cases may still be missed. For example, if a peak exists in the early veto

window of Fig. 4.25 that is too small to be detected by the PF algorithm, the baseline

of the double-deconvolved pulse will be calculated incorrectly, leading to a distorted

amplitude for the signal inside the sub-window. These pathologies – false negative

veto (FNV) events – could be further reduced by still lowering the PF threshold

used for this processing, but this would result in an unusably small fraction of laser

sub-windows surviving the selection (most being not true FNV events). The only

additional cleaning cut applied to further mitigate this problem is a cut on the slope

of the pre-integration window double deconvolved trace. Sub-events with peaks in the

pre-veto window (FNVs) will have unusually high or low slope values. Additionally,

post α-decay time periods were removed from the datasets (see section 4.4.4).

The amplitude spectra of data with different sub-window starting times are shown
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Figure 4.27: Example of the fit of a combined amplitude spectrum of low-intensity
laser calibration data (blue histogram), tj04s000 specifically. The total model (red)
as well as components for different numbers of electrons are shown (green and grey
curves).

in Fig. 4.26. The changing fractions of null events to events with electrons is due

to the mean drift time of laser electrons being centred near the middle of the 8 ms

total event window - hence sub-windows starting near 4000 samples are likely to have

more electrons. To make a combined amplitude spectrum, data with all sub-window

starting times was included, except for some early/late data sets with high fractions of

null events. This was done to achieve a fraction of non-empty events of approximately

0.1 to 0.5, which is typically best to give a strong constraint on the noise peak shape,

but not overwhelm the spectrum of non-empty events. This same reasoning applies

to the laser data from S30 and the classic analysis paradigm. The final result is an

amplitude spectrum that closely resembles the “classic” laser data, like the example

shown in Fig. 4.27.
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Combined laser spectrum analysis One consequence of the special processing

of laser data described above is that the statistics for the number of electrons in

each sub-window are non-Poissonian. Therefore, instead of one fit parameter µ for

the average number of electrons as in sec. 3.2.1, there are now 4 parameters for the

probability of having 0 to 3 electrons, P0 to P3. It is not necessary to consider more

than 3 electrons (4 would not fit in a sub-window of 60 samples), but there is a small

proportion of cases with 3 electrons. With the exception of this change, the same

paradigm described in section 3.2.1 was used to fit the data, with the following model:

P (E) =

(︄
P0 × δ (E − ωb) +

0∏︂
0

∞∑︂
N=1

PN × P
(N)
Polya (E|θ, ⟨G⟩)

)︄
⊗ PNorm (E|ωb, σb)

(4.7)

where the PN are all separate parameters, and P
(N)
Polya is given by eq. 3.16. In this

model, the PN are constrained to sum to 1, and to be strictly decreasing, i.e. PN ≥

PN+1.

The analysis included all low-intensity laser data sets with sufficient statistics, i.e.

with a sufficient mean number of sub-windows selection. This included most data sets

taken at a laser pump diode current of 120A, which had µ of approximately 5–7 (see

table 4.2). Laser runs with an even lower intensity typically had too low of a yield of

usable sub-events for fitting. The model was optimized (based on a binned likelihood

function) for the data using an MCMC [216], with 100 walkers and 104 steps. A burn-

in time of 500 samples was used, exceeding the 220 sample auto-correlation time. An

example of such a fit is shown in Fig. 4.27, and the key results from all analyzed

data sets are given in table 4.3. Uncertainties for the fit parameters were determined

assuming a multivariate Gaussian likelihood function [73].
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Table 4.3: Fit results of the combined spectrum low-intensity laser calibration data.
All datasets were taken with a laser pump current of 120A (except ti30s002, which
was at 113A), and at a rate of 10Hz.

Run χ2/ndf ⟨G⟩ [ADU] θ

∗ ti30s002 2.09 71.3+6.3
−5 0.001+0.026

−0

tj03s000 1.17 73.4+4.2
−3.4 0.001+0.006

−0

tj04s000 1.22 69.7+6.1
−3.6 0.0012+0.02

−0.0002

tj05s000 1.55 74+11
−11 0.008+0.02

−0.003

tj06s000 1.46 74.9+8
−7.5 0.001+0.05

−0

tj07s000 1.32 63.5+4
−2.7 0.001+0.02

−0

tj08s000 1.73 69.5+2.4
−2.4 0.001+0.01

−0.0001

tj09s000 1.24 62.8+2.7
−2.3 0.001+0.008

−0

tj10s000 1.08 78.4+2
−7.9 0.008+0.005

−0.08

tj11s002 1.64 70.8+2.6
−2.3 0.001+0.004

−0

Resolved laser spectra analysis The analysis approach described above suffers

from a lack of constraint on the proportion of different electrons. A different paradigm

that solves this problem, and also offers the opportunity to quantify the performance

of the PF algorithm, involves resolving the laser amplitude spectrum into components

according to the number of peaks found in each sub-event (in this case, 0, 1, or 2

peaks). This is done using the PF data obtained with a threshold of 0.48 e−/ns (see

section 4.2.2). The PF results are of course subject to various errors that cause the

number of peaks found to differ from the number of actual electrons in the event.

The pathologies considered were:

• False positives (FPs): when the peak-finding algorithm misidentifies noise as a

peak,
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• False negatives (FNs): individual electrons with lower avalanche yields will

create a double-deconvolved pulse that falls below the threshold, and

• Coincidences: when neighbouring electron peaks coincide closely enough in time

so as to be indistinguishable.

Any number of these pathologies may combine to transform the true underlying

number of electrons m into the observed number of peaks n. These pathologies lead

to several distorted spectral shapes compared to the basic one described in section

3.2.1 that contribute to the overall amplitude distribution of the data.

Accordingly, several different spectral shapes contribute to the laser spectrum, for

true positive electrons, false negatives, and coincidences. The spectral shape F (ℓ)(E)

of ℓ true positive electrons is the same as the “traditional” laser model, but the

amplitude probability distribution for each electron is multiplied by an efficiency

curve f(E) representing the PF algorithm threshold, with free parameters ωh and σh:

f (E|ωh, σh) =
1

2

(︄
1 + Erf

(︄
E − ωh√︁

2σ2
h

)︄)︄
(4.8)

and the spectral shape F itself is written as:

F (ℓ)(E) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ (E − ωb) ℓ = 0

PPolya (E|θ, ⟨G⟩)× f(E|ωh, σh) ℓ = 1

F (ℓ−1)(E)⊗F (1)(E) ℓ > 1

(4.9)

The amplitude probability distribution for false negatives G is derived similarly,

except it is multiplied by the reciprocal of the PF efficiency curve:

G(ℓ)(E) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ (E − ωb) ℓ = 0

PPolya (E|θ, ⟨G⟩)× (1− f(E|ωh, σh)) ℓ = 1

G(ℓ−1)(E)⊗ G(1)(E) ℓ > 1

(4.10)

For coincident events H, a single contribution (ℓ = 1) is a combination of two or

more electrons, only one of which need pass the peak-finding efficiency criteria:
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H(ℓ)(E) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ (E − ωb) ℓ = 0

[PPolya (E|θ, ⟨G⟩)× f(E|ωh, σh)]⊗ PPolya (E|θ, ⟨G⟩) ℓ = 1

H(1)(E)⊗ P
(ℓ−1)
Polya (E|θ, ⟨G⟩) ℓ > 1

(4.11)

Only certain combinations of different contributions are permissible to build the

amplitude spectrum for a given number of observed peaks n. In particular, n must

be equal to the true number of electrons in an event m, plus contributions from i

false positives, minus j false negatives and k coincidences. This requirement can be

encoded as:

cnmijk =

⎧⎨⎩1, n = m+ i− j − k

0, otherwise
(4.12)

The overall model for n peaks as a function of amplitude E is derived by summing

over all possible values of m, i, j, and k, namely keeping only those terms where

cnmijk = 1, but also with the constraints that there cannot be more false-negatives or

coincidences than true electrons to begin with. Additionally, false-positives cannot

be considered to be in coincidence with each other or with true positive peaks. The

statistics of false-positives is Poissonian with some average number of false-positives

per window pFP . False negatives and coincident contributions follow binomial statis-

tics, with pCE as the probability of a single coincidence, and pFN as the probability

of a single false negative:

pFN =

∫︂
G(1)(E)dE (4.13)

The probability of having m electrons is also a free parameter in the fit, as Pois-

sonian statistics are not assumed. The appropriate contributions of F , G, and H

are then convolved with each other, and finally, the whole model is convolved with

baseline noise PNorm.(E|ωb, σb):
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Figure 4.28: Histograms of peak-resolved low-intensity laser data (tj04s000) for dif-
ferent numbers of peaks (blue = 0, red = 1, green = 2) and best-fit model (matching
curves).

P ({E, n}) =
∑︂
m=0

∑︂
i=0

m∑︂
j=0

m−1∑︂
k=0

[︃
cnmijk × pmPPoisson(i|pFP )

(︃
m

j

)︃
pjFN (1− pFN)

m−j

(︃
m

k

)︃
pkCE (1− pCE)

m−k ×
(︁
F (m−j−k)(E)⊗ G(j)(E)⊗H(k)(E)

)︁]︃
⊗ PNorm.(E|ωb, σb)

(4.14)

Practically, computation of this model requires some truncation condition for the

nested sums, which is enforced as cnmijk = 0 if m > 4, i > 2, j > 4, or k > 3. The only

constraints on the model (other than basic physical limits of parameters) are that the

probabilities for different numbers of electrons are strictly decreasing (pm ≥ pm+1) and

sum to 1,
∑︁

pm = 1. Fitting this model to the data was computationally challenging,

as there are 13 free parameters in the model with m being allowed to go up to

4. Rather than a typical MCMC with MH stepping, the “fast burn-in” method

described in Appendix A was used. An example of a fit to the data is shown in Fig.
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Figure 4.29: Example of a corner plot for the fit of a peak-resolved amplitude spectrum
of low-intensity laser calibration data (tj04s000 specifically). The diagonal panels
show the profile log-likelihood functions for each parameter, the lower panels show
the 2D histograms of MCMC samples between each pair of parameters, and the
corresponding upper panels give the Pearson correlation coefficient for each pair of
parameters.

4.28. A corner-plot (for the same example fit) showing the profile log-likelihoods and

correlations between all parameters is given in Fig. 4.29, which demonstrates that the

likelihood is approximately Gaussian in this case. Table 4.4 gives the key fit results

using this method, with uncertainties calculated assuming a Gaussian likelihood [73].

In Fig. 4.28, one can see the trade-off between the single peak spectrum and the

non-Gaussian tail of the zero peak spectrum, indicating the peak-finding threshold.

Some contribution of null events identified as one or two peak events can also be

seen (FPs). Encouragingly, the estimates of ⟨G⟩ obtained through this independent

analysis largely agree with the complete laser spectrum results, as can be seen in table

4.5. The results for θ tend to be slightly higher through this approach. However, the
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Table 4.4: Key fit results of the resolved spectrum low-intensity laser calibration data.
All datasets were taken with a laser pump current of 120A, and at a rate of 10Hz.

Run ⟨G⟩ [ADU] θ ωh [ADU] σh [ADU]

tj03s000 77.1+1.3
−1.4 0.04+0.04

−0.04 37.5+0.3
−0.3 8.2+0.5

−0.5

tj04s000 76.3+0.9
−1.0 0.16+0.03

−0.03 38.1+0.2
−0.2 8.4+0.3

−0.4

tj05s000 77.7+0.9
−0.9 0.15+0.03

−0.03 37.5+0.2
−0.2 7.6+0.3

−0.3

tj06s000 76.5+0.9
−0.9 0.17+0.03

−0.03 37.5+0.2
−0.2 8.1+0.3

−0.3

tj07s000 73.7+1.0
−1.0 0.09+0.03

−0.04 37.7+0.2
−0.2 7.9+0.4

−0.4

tj08s000 72.0+0.9
−1.0 0.11+0.04

−0.04 38.2+0.2
−0.2 8.2+0.4

−0.3

tj09s000 69.9+0.9
−1.0 0.12+0.04

−0.04 38.5+0.2
−0.2 7.9+0.3

−0.4

tj10s000 69.6+1.0
−1.0 0.04+0.04

−0.04 37.9+0.2
−0.2 7.2+0.4

−0.4

tj11s002 71.9+1.1
−1.0 0.02+0.04

−0.02 38.2+0.2
−0.2 7.2+0.4

−0.4

resolved-spectrum analysis should be more sensitive to θ since correlations with the

pm parameters are reduced, and the split between the 0 and 1 peak spectra is where

θ will have the strongest impact on the data. The average measured value of theta

in this analysis is θ = 0.125+0.026
−0.023. It is these results (for θ and ⟨G⟩) that are used

throughout the rest of the LSM analysis.

Full details of the characterization of the PF algorithm are presented in section

4.4.2. The PF threshold (described by ωh and σh) obtained from this analysis is

directly used for the overall PF model. However, the parameterization of FPs and

coincident peaks from this analysis is not directly applicable to the rest of the LSM

analysis. For the former, the estimates of PFP in this study are specifically for sub-

windows only 60 samples long; the probability of noise triggers in the 1290 sample

window used to process the data (see section 4.2.2) is much greater. This quantity was

also measured directly using pre-trace data. As for coincident peaks, the laser analysis
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Table 4.5: Fit results for ⟨G⟩ and θ obtained through both laser analysis methods.

Combined Spectra Resolved Spectra

Run ⟨G⟩ [ADU] θ ⟨G⟩ [ADU] θ

tj03s000 73.4+4.2
−3.4 0.001+0.006

−0 77.1+1.3
−1.4 0.04+0.04

−0.04

tj04s000 69.7+6.1
−3.6 0.0012+0.02

−0.0002 76.3+0.9
−1.0 0.16+0.03

−0.03

tj05s000 74+11
−11 0.008+0.02

−0.003 77.7+0.9
−0.9 0.15+0.03

−0.03

tj06s000 74.9+8
−7.5 0.001+0.05

−0 76.5+0.9
−0.9 0.17+0.03

−0.03

tj07s000 63.5+4
−2.7 0.001+0.02

−0 73.7+1.0
−1.0 0.09+0.03

−0.04

tj08s000 69.5+2.4
−2.4 0.001+0.01

−0.0001 72.0+0.9
−1.0 0.11+0.04

−0.04

tj09s000 62.8+2.7
−2.3 0.001+0.008

−0 69.9+0.9
−1.0 0.12+0.04

−0.04

tj10s000 78.4+2
−7.9 0.008+0.005

−0.08 69.6+1.0
−1.0 0.04+0.04

−0.04

tj11s002 70.8+2.6
−2.3 0.001+0.004

−0 71.9+1.1
−1.0 0.02+0.04

−0.02

only includes (and models) coincident events with primary electrons beginning at

the surface of the SPC. Events originating closer to the sensor will experience less

diffusion, therefore increasing the probability of having coincident pulses. The laser

data cannot reveal the radial dependence of this quantity.

4.3.2 High intensity laser calibration

Another principal use of UV laser data is to monitor changes in the detector response

over time, as increasing gas contamination may slowly reduce the gain of the SPC.

Although the daily low-intensity calibration data described in the previous subsection

does give information about the changing gain over time, the relatively large statistical

uncertainty on these results obscures any obvious trends. Instead, the high-intensity

laser data collected during all physics runs (see section 4.2.1) can be used for this

purpose. The amplitude of these events (with approximately 50 to 130 photoelectrons)
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Figure 4.30: Photodiode amplitude data over time from high-intensity laser runs for
the whole LSM campaign shown as a 2D histogram (colour-scale is counts per bin).

in the SPC was high enough that the triggering was 100% efficient on the SPC channel,

and the tagging was 100% efficient using the photodiode amplitude.

A separate, confounding reason that the laser signal changes over time is due to

the optical fibre aging. The fibres used were not intended for use at UV wavelengths,

so over time laser light damages the fibre, gradually reducing their transmission. This

effect can be seen in Fig. 4.30. To decouple the effect of fibre aging from changes

in the SPC gain over time (both of which lead to decreasing laser signal amplitudes

in the SPC), the ratio of SPC amplitude to photodiode amplitude was used. This

is shown in Fig. 4.31. A three-segment piece-wise linear function with floating knots

(the (x,y) points where the line segments connect) was fit to the time series data,

excluding a short period where an Am-Be source increased the surface electric field

(part way through tj10s001 to part way through tj12s003). The major drop in laser

signal for the last three data periods was after the introduction of 37Ar, which likely

increased the contamination of oxygen and water in the sphere, hastening degradation

of the gas. Between the beginning and end of the campaign, the gain dropped by

11% during the physics runs, and by 27% in total by the end of the 37Ar data taking.
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Figure 4.31: High-intensity laser data (sphere amplitude divided by photodiode am-
plitude) over time for the whole LSM campaign shown as a 2D histogram, with the
mean value per slice (red) and piece-wise linear trend (blue). The period omitted
from fitting is when the Am-Be source was present.

To assign an absolute scale to this trend in ⟨G⟩ over time, the low-intensity laser

calibration results – specifically the resolved spectra results given in table 4.4 – were

used to determine a single scaling factor for the piece-wise linear trend. This scaled

result is shown in Fig. 4.32, which also depicts the averaged error bands for ⟨G⟩ from

all low-intensity calibration runs. This result could be used to calculate a complete

time-dependent energy response model for the SPC as a function of time, but for

practical reasons, the dark matter analysis presented in this chapter uses the gain

trend at the median time of the last physics run (tj10s001) unless stated otherwise.

4.3.3 37Ar analysis

As mentioned in section 4.2.1, 37Ar was a primary calibration source used for the LSM

campaign, which was injected at the end of the data-taking period. This volume-

distributed source allows for calibration of the detector energy response throughout

the whole detector volume, at low energies, with multiple prominent calibration peaks.

Together with the results of UV laser calibrations described in the previous section,

179



02/10/2019

04/10/2019

06/10/2019

08/10/2019

10/10/2019

12/10/2019

14/10/2019
55

60

65

70

75

80

85

Sp
he

re
 / 

Ph
ot

od
io

de

Figure 4.32: Detector mean gain over time for the entire LSM physics campaign,
with individual low-intensity measurement results shown in green, the average of the
measurements in blue (with 1 and s σ uncertainty bands), and scaled high-intensity
laser data (red). The period omitted from fitting is when the Am-Be source was
present.

Figure 4.33: 2D histogram of risetime vs. amplitude data for tj13s000, with cuts
described as in section 4.3.3. The 2.8 keV peak is seen centered around 8000 ADU.
The lower energy peak sits from approximately 500 – 1500 ADU, overlapping with a
population of non-physical events below 500 ADU.
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Figure 4.34: 2D histogram of DD RawRise vs. DD RawWidth for run tj13s000, showing
the PSD cut made on these variables to remove non-physical events (red shaded
region).

this 37Ar analysis gives a complete model of the detector’s energy response (to elec-

tronic recoils) by allowing for in-situ measurements of the W-value W (E) and Fano

factor F . The analysis was done to complement the independent measurements done

in methane gas with the S30 detector, described in section 3.3.

The data used in this analysis comes from the run tj13s000, the first 37Ar data

collected after diffusion of the sample throughout the SPC had ceased (this was still

visible in tj12s003). A later run was taken again at the very end of the campaign

(tj14s001), but by this point, the gas quality had degraded somewhat due to the

injection of the sample (see Fig. 4.31). The data was processed using the standard

double deconvolution parameters described in section 4.2.2, albeit with a slightly

smaller integration window size of 1090 samples. The risetime vs. amplitude plot of

the data is shown in Fig. 4.33, which clearly shows the high and low energy peaks from

37Ar, as well as a background of low energy events that slightly increases in risetime
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with amplitude. The only cuts applied to the data were to remove post-alpha time

periods (see section 4.4.4), laser pulses, and events with shared electrons between the

north and south hemispheres based on the peak-finding results applied to the north

channel. Finally, a loose PSD cut based on DD RawWidth and DD RawRise was made;

the selection was of events with > 128µs and > 4.7µs respectively (see section 3.1.5).

This cut/parameter space is shown in Fig. 4.34, and was intended to reject saturated

events with negative widths, and obvious spike events with instantaneous risetimes –

the efficiency of this loose cut is taken to be 100%.

Modelling of the 37Ar starts with the same electron-capture decay simulation de-

scribed in section 3.2.2, based on similar work in refs. [199, 200]. The Geant4 simu-

lations of decay products in the S30 detector were repeated for S140 with 135mbar

of methane gas (see Fig. 3.23), the main effect of which was greater containment

of the decay products, with more energy deposited in the gas on average. Using the

subsequent MC electron capture events, the spectrum of total energy deposited in the

gas as a function of the number of decay particles was obtained, which is shown in

Fig. 4.35. Next, the probability distribution of the mean number of primary electrons

produced in the gas was calculated according to eq. 3.26, for given values of W0 and

U . Practically, this was a discrete distribution of the mean P (µ) for linearly spaced

values of µ from 0 to 160, spaced by 0.05. As in section 3.3, this distribution of the

mean number of electrons is then “smeared” with the COM-Poisson distribution to

represent dispersion in primary ionization statistics (with a Fano factor F ). These

spectra were resolved into components by the number of Auger (initial) electrons k

in the simulated 37Ar events (0 – 5), and then stacked together (see Fig. 3.33).

Avalanche statistics were modelled using the Polya distribution, as described in

section 3.2.1, with the average result of θ = 0.125 being used for the main fit in this

analysis. A prior on the gain of one anode was derived using the average result of

all low-intensity laser calibration data, interpolated at the time of tj13s000 (see Fig.

4.32). Finally, the (Gaussian) baseline noise of the data was measured directly using
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Figure 4.35: A 2D histogram of the number of decay cascade particles (Auger electrons
and photons) vs. the total energy deposited in an SPC per event following the electron
capture decay of 37Ar. This result is simulated for S140 with 135mbar of pure CH4

gas.
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Figure 4.36: Risetime vs. amplitude plot depicting the attachment model employed
in this analysis (arbitrary example with somewhat realistic parameter values). Each
curve shows the effect of attachment for a given initial mean number of electrons as
a function of risetime.

pre-trace data, which indicated noise with σNoise = 87.0 ± 0.5ADU.

Another aspect of this 37Ar analysis that differs from the S30 measurements is

charge attachment, which can be seen clearly in Fig. 4.33 as an anti-correlation be-

tween the risetime and amplitude data of the high-energy peak. Modelling the impact

of charge attachment on the detector’s energy response can therefore be achieved if a

two-dimensional (2D) fit of the data is carried out (using both risetime and amplitude

variables), rather than just fitting the amplitude data at the lowest risetimes as is

usually done. Attachment was modelled by assuming that the distribution of primary

electrons that reach the sensor follows binomial statistics, with the success probability

being a linear function of risetime. Thus, the model parameter to account for attach-

ment is simply the scaling slope between risetime and attachment (charge-trapping)

survival probability Tp (attachment is assumed to be negligible at a risetime of 0).

A depiction of this parameterization is shown in Fig. 4.36 (arbitrary example with

somewhat realistic parameter values).

Combining all of the above aspects of the physics of the 37Ar data, the total detector
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response can be written as a function of amplitude E, at a fixed risetime RT . By

integrating over the distribution of the mean number of primary ionizations, summing

over k auger electrons and i− k produced primary electrons, and j surviving charge

trapping, the model is given as can be written as (ignoring background events for

now):

P (E,RT ) =

[︄∑︂
i

(︄
j=i∑︂
j=0

(︄
k=5∑︂
k=0

(︃∫︂
PCOM(i− k|µ, F )P (k)(µ)dµ+ k

)︃
0∑︂
0

× PBinom. (j|i, p = Tp ×RT )× P
(j)
Polya(E| ⟨G⟩ , θ)

)︄)︄]︄
⊗ PNoise (E)

(4.15)

Anomalous dispersion and modelling Unfortunately, the model described above

is not adequate to match the data of tj13s000, which exhibits far more dispersion

(broader energy resolution) than expected. To use eq. 4.15 as-is to fit the data would

require F ≫ 1, which conflicts with all previous measurements and physical expec-

tations of the quantity. There are various possible explanations for this behaviour,

such as the possibility that the electric field structure surrounding the southernmost

anode differs considerably from the other south-hemisphere anodes. To test this, an

electric field model of the SPC made using the COMSOL finite-element simulation

software [154] (produced by F. Vazquez and Y. Deng) was used to examine the field

strength near the anodes, and is shown in Fig. 4.37. This indicated that there is

no significant difference in the electric field strength in the immediate vicinity of the

anodes. Furthermore, the densities of field lines reaching the anodes as a function

of polar angle also match for different south channel anodes. Large baseline noise

cannot be responsible for this dispersion, as this was measured directly and already

included in the model of the data (see above).

Another hypothesis that cannot be ruled out is that the mean gain ⟨G⟩ of each

of the six southern anodes may vary, due to defects in each anode, or other struc-
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Figure 4.37: COMSOL model of the electric potential (in V) around the ACHINOS
sensor, zoomed in on the southernmost anode and one neighbouring anode. The
ACHINOS itself is an empty space devoid of points.

tural differences from the fabrication of the ACHINOS that are not included in the

COMSOL model. While ⟨G⟩ is constrained by the laser data, there is no way to

know which or how many south-channel anodes capture photoelectrons produced by

the laser, only that at least one does. Based on approximations of the beam spread

of the laser, indeed it seems probable that only one south-channel anode acquires

laser electrons (in addition to one or more north-channel anodes, see section 4.4.6).

Therefore, to account for this possibility and afford the model flexibility to match the

data, the mean gain of each of the six south anodes was treated independently as a

free parameter. Accordingly, the fit model given in eq. 4.15 was repeated six times for

each anode (and summed together). The six parameters ⟨G⟩l are merely constrained

to be monotonically increasing (⟨G⟩l ≤ ⟨G⟩l+1), and one of the gain parameters has

a constraint term (prior) from the results of the laser analysis (see section 4.3.1).

Other possible explanations do exist for the dispersion of the data, such as time-

variations in the gain or detector response; unfortunately, the data collected does not

have sufficient statistics to explore this idea. However, the choice to include six gain
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Figure 4.38: Risetime vs. amplitude data of run tj04s002 (white points) with the two-
dimensional kernel density estimation model produced using the data (colour scale).

parameters in the model can also functionally account for any explanation involving

variation of the gain, and was therefore a generic modelling choice to account for the

anomalous dispersion of the amplitude data in tj13s000.

Background model In addition to the high and low-energy contributions of 37Ar

apparent in Fig. 4.33, there is also a prominent background of low amplitude events

across all risetimes, with a slight correlation with risetime. This background likely

consisted of many single electron events (at the minimum risetime), possibly α-

induced despite the cut intended to remove them (see section 4.4.4). However, the

correlation with risetime also suggests that some of these events were non-physical

spike events. Rather than trying to remove most of these events and introducing

the complication of the efficiency of such a cut as a function of risetime and ampli-

tude, these non-37Ar events were left in the dataset, and modelled as a background

component to be included in the fit.

This was accomplished using a source of data with presumably matching contribu-
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tions of low energy physics and spike events, namely the physics data itself. One of

the non-blind physics runs (tj04s002) was used for this purpose, with identical cuts

applied. To obtain an analytical representation, a 2D KDE of the data was calcu-

lated, with a Gaussian kernel, using the python library scipy [238]. The resulting

KDE and data on which it is based are shown in Fig. 4.38, where one can see the

expected population of low amplitude events slightly correlated with risetime.

In addition to this modelled background, a flat background component was in-

cluded with separate rates B1 and B2 below and above the 2.8 keV respectively,

smoothly connected by the reciprocal CDF of the 37Ar model according to eq. 4.15.

If the 2.8 keV peak is described as P (E) (at a given risetime RT ), then the overall

background model B(E) around this peak is given below, and appended to the rest

of the model given in eq. 4.15:

B(E) = B1 ×
[︃
1−

∫︂ E

P (E ′)dE ′
]︃
+B2 (4.16)

Data fitting and results To simplify the fit of the 2D 37Ar data, events were

divided into 8 risetime bins between 10 and 250µs, which relies on the assumption

that there is no significant difference in attachment between the highest and lowest

risetimes in each bin. The KDE background model described previously was scaled

independently for each risetime bin i by a factor Ri. This reduced the model to

essentially 8 separate one-dimensional fits in amplitude. Overall, there are 10 param-

eters of interest in the model, and 10 nuisance parameters describing the background

model, which are summarized in table 4.6. Prior constraints applied to this fit include

one on ⟨G⟩l=1 from the laser calibration results of section 4.3.1 scaled to the time of

tj13s000, as well as 2D priors on W0 and U from the three independent W-value

measurements described in section 3.3.

Fitting this high-dimensional model was done using the “‘fast burn-in” MCMC

method described in Appendix A [3, 277]. A corner plot (for the main fit of the
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Figure 4.39: Corner plot of the 37Ar MCMC fit with θ = 0.125 and σNoise = 87.0ADU.
The background KDE scaling parameters (Ri) are omitted for clarity, and because
they do not have notable correlations with any other parameters. The diagonal pan-
els show the profile log-likelihood function for each parameter. The lower left panels
depict 2D histograms of the MCMC samples for every pairing of parameters, with
the coloured (resp. grey) portion showing approximate 1σ (resp. 2σ) uncertainty
regions assuming a Gaussian likelihood [73]. The upper-right panels give the Pear-
son correlation coefficients between the pairings of parameters with a corresponding
colour-scheme.
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Figure 4.40: 37Ar data from tj13s000 (histograms), shown for four out of eight risetime
bins, with the best-fit model to the data (red curves).

data with θ = 0.125 and σNoise = 87.0ADU) displaying the MCMC samples and

1D profile likelihood distributions for all of the parameters of interest (plus B1 and

B2) is shown in Fig. 4.39. Approximate representations of uncertainties are obtained

from the MCMC samples assuming a multivariate Gaussian likelihood [73]. For error

propagation and other analyses, the MCMC samples were used directly unless oth-

erwise stated. The resulting fit of the data is shown as a function of risetime and

amplitude in Fig. 4.40. One can see that the model matches both 37Ar peaks and the

low-amplitude background well, including with changing risetime, which is depicted

more clearly for the 2.8 keV peak in Fig. 4.41.

To propagate uncertainty on the parameter θ without incurring a severe cost in

computing time (it took roughly 30 minutes to compute all the necessary distribu-

tions of P
(N)
Polya for a single value of θ), the fit was redone using the upper and lower

1σ values of θ estimated in the laser analysis (θ = 0.125+0.26
−0.23). The value of the

baseline noise σNoise = 87.0 ± 0.5ADU was also propagated in this way, in perfect
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Parameter Description Fit result

⟨G⟩1 Gain of one anode 88.5± 0.11ADU

⟨G⟩2 88.55± 0.25ADU

⟨G⟩3 88.62± 0.26ADU

⟨G⟩4 107.04± 0.28ADU

⟨G⟩5 107.05± 0.21ADU

⟨G⟩6 107.05± 0.22ADU

TP Trapping coefficient 1.26± 0.01× 10−4

Wa W-value asymptotic value 30.00+0.14
−0.15 eV

U W-value low energy cut-off 15.70+0.52
−0.30 eV

F Fano factor 0.43± 0.05

B1 Flat bkgd. below 2.8 keV 2.3± 0.3× 10−5

B2 Flat bkgd. above 2.8 keV 4.6± 0.3× 10−6

R1 Scaling of bkgd. KDE in risetime bin 0.427± 0.001

R2 0.241± 0.002

R3 0.173± 0.001

R4 0.185± 0.001

R5 0.238± 0.001

R6 0.353± 0.002

R7 0.416± 0.001

R8 0.537± 0.001

Table 4.6: Description of model parameters of the LSM 37Ar calibration, with fit
results. The first portion of the table lists results for parameters of interest, while the
lower lists the nuisance parameters describing the background model.
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Figure 4.41: High-energy 37Ar data of tj13s000 (two-dimensional histogram) with
best-fit model (contours) as a function of risetime and amplitude.

positive correlation with θ, i.e. θ = 0.151 and σNoise = 86.5ADU vs. θ = 0.106 and

σNoise = 87.5ADU. As F is also somewhat degenerate with these two parameters, this

procedure yields the maximum uncertainty on F . The three MCMCs performed were

combined to produce the overall fit results (incorporating uncertainty on θ/σNoise as

well as statistical uncertainty from each MCMC).

The six gain values measured ranged from 69.9ADU (a close match to the laser

analysis constraint) to 106.9ADU, with most ∼ 88ADU. For later use in the fiducial

volume calculation (see section 4.4.3), a covariance matrix is estimated for the six

gain parameters using the python package numdifftools [278], and is given below:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0118 0.0220 0.0168 0.0092 0.0206 0.0212

0.0220 0.0639 0.0411 −0.0071 0.0475 0.0520

0.0168 0.0411 0.0663 −0.0378 0.0311 0.0367

0.0092 −0.0071 −0.0378 0.0799 0.0107 0.0050

0.0206 0.0475 0.0311 0.0107 0.0423 0.0044

0.0212 0.0520 0.0367 0.0050 0.0044 0.0494

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.17)
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The key parameter estimates obtained in this fit were W0 = 30.001 ± 0.005 eV,

U = 15.700+0.007
−0.009 eV, and F = 0.43 ± 0.05. The combined MCMC results included

nearly negligible statistical uncertainty for W0 and U . However, because the three

separate S30 measurements used as a prior in this analysis do not entirely agree within

their respective statistical uncertainties for W0 and U , an ad hoc systematic error for

this analysis paradigm was added. This was calculated by fitting a double-sided

Gaussian systematic error term for W0 and U to all three S30 measurements (see

section 3.3). After adding this in quadrature, the final results are W0 = 30.00+0.14
−0.15 eV,

U = 15.70+0.52
−0.34 eV.

This result for the W-value does differ from some (but not all [166, 206]) historical

measurements [208, 209], as shown in Fig. 4.42. This ∼ 10% discrepancy is consistent

with the results of the independent S30 measurements (see section 3.3). Therefore,

it is the interpretation of the NEWS-G collaboration that there are SPC-specific

effects or systematics that are as-of-yet unknown. Further investigation will be needed

to explain this difference between SPC-based and other results, and so this work

does not claim this result to be a measurement of the true or intrinsic W-value for

methane. Rather, this is taken to be an (accurate) measurement of the ionization

yield of methane gas specifically in SPCs, a conclusion bolstered by the independent

measurements described in section 3.3. Therefore, this result was used in the LSM

dark matter analysis presented in this chapter despite its apparent discrepancy with

the literature results.

The result for F from this 37Ar calibration yields an estimate across a range of

energies (200 eV to 2.8 keV) of F = 0.43 ± 0.05. This value is significantly higher

than typically expected for ionization in many different materials in which previous

measurements have been done, including argon (F ≈ 0.23), xenon (F ≈ 0.17), silicon

(F ≈ 0.16), and germanium (F ≈ 0.12) [169–172]. For methane gas in particular,

previous measurements of F have been performed at a few energies (∼ 300 eV and

∼ 1.5 keV) [279, 280]. These compare favourably to numerical predictions [281],
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Figure 4.42: W-value as a function of energy obtained from the LSM 37Ar calibration
(red curve with 1σ uncertainty band), compared to the combined historical measure-
ments of [208, 209].

which also predict a rise in F at low energies, avoiding the Bernoulli modes (the

lowest mathematically possible value of F as a function of energy) [140]. All of these

results are depicted in Fig. 4.43.

For the LSM dark matter analysis, while the measured calibration results accu-

rately describe the energy resolution of the SPC, the value of F = 0.43 is anomalously

high, and so it was taken to be an upper bound on F . To choose a lower bound on

F , one may consider the agnostic choice of using the Bernoulli modes (the lowest

possible F (E)), or a slightly more practical bounding curve of the Bernoulli modes

also shown in Fig. 4.43. However, the COM-Poisson lookup tables used to compute

the energy-response model of the detector is currently only defined down to F = 0.1

[140]. Given that practical constraint, and the agreement of existing measurements

[279, 280] with numerical computations [281], the latter was used for this analysis.
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Figure 4.43: Fano factor F as a function of energy (in terms of mean number of
primary electrons µ) for this work (purple), compared to existing results (blue points
and green curve) [279–281]. The Bernoulli modes (with bounding curve shown, in
orange) represent the minimum possible trend for F , a consequence of the discrete
statistics of primary ionization.
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4.3.4 Methane quenching factor

The final (and most critical) component of the SPCs energy response is the quenching

factor of methane gas. As discussed in section 3.1.2, the quenching factor expresses

the ratio of the primary ionization yield of nuclear recoil events (such as dark matter)

compared to electronic recoil events, as given in eq. 3.9. Since the LSM analysis is

performed only for hydrogen recoils in methane, it is the quenching factor for this

interaction that must be known.

While the Lindhard theory [177] and simulation software SRIM [183] can be used

to calculate the quenching factor, they frequently disagree with empirical results

(see section 3.1.2). However, in the case of this study, there are limited empirical

results to look to. One example is the COMIMAC collaboration in France, which

has used their table-top ion accelerator to perform quenching factor measurements

[180, 181]. In this case, the accelerator was used to fire protons into a methane-filled

SPC through a microscopy hole (window) through a foil layer. These measurements

spanned incident energies from 2 to 13 keV [282]. The other existing result available

is W-value measurements of protons in methane, made in the context of dosimetry

studies [283]. These results were re-interpreted as QFs by taking the ratio of Wion

to W for electronic recoils (from refs. [209] and [208]) [284]. This study yielded an

estimate of the quenching factor for protons in methane from 0.51 to 375 keV [284].

Both of these existing results are less than ideal; the COMIMAC experiment faces

challenges related to the deflection of ions as they pass through the foil window, while

the Wion reinterpretation uses measurements made not in an SPC. Neither takes into

account the pressure of the gas used. Furthermore, neither result extends down

to the very low-energy regime where the majority of dark matter sensitivity origi-

nates. Regardless, these are the only experimental results currently available. Future

quenching factor measurements are planned by NEWS-G to improve this situation,

including both the TUNL beam accelerator facility [184], or possibly neutron capture

196



experiments (see section 3.4.3).

When comparing the methane quenching factor results, we favour the COMIMAC

measurement because it was made with an SPC, and because it is globally lower than

the Wion quenching factor, and is thus a conservative choice for this analysis. To

extend the energy range in which the quenching factor is known, the Wion trend is

scaled down (by a factor of 0.874) to match the COMIMAC quenching factor where

the two measurements overlap. Below the lowest-energy measured point, several

extrapolation options were considered. First – and most optimistically – a Lindhard-

like extrapolation was defined by fitting a bounded power-law approximation of the

Lindhard theory:

Q(E) =
mkEα

(1 + kEα)
(4.18)

Fitting the (scaled) datapoints between 0.51 and 2 keV yielded the parameter values

m = 0.83, k = 1.02, and α = 0.94. This extrapolation implies that the quenching

factor only reaches 0 at E = 0keV.

A more conservative (albeit not physically motivated) parameterization is a generic

logarithmic function of the form:

Q(E) = a+ b logE (4.19)

with a = 0.44 and b = 0.23 from the data below 2 keV. A final, extreme option is

to assume that Q(E) = 0 below the lowest energy data point. While indisputably

conservative, this approach is also almost certainly not physical. Ultimately, the

logarithmic extrapolation was used as the main quenching factor parameterization

below 0.51 keV for this analysis. This was continuously joined with a power law fit

of the scaled data between 0.51 and 2 keV (with m = 0.83, k = 1.02, and α = 0.94),

and with a similar power law model fit of the COMIMAC data above 2 keV:
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Figure 4.44: The quenching factor for protons in methane gas, including COMIMAC
measurements (blue markers) [282], as well as the nominal Wion literature results
(black markers) [284] and scaled data points (empty square markers). The Lindhard
theoretical model and quenching factor calculated with SRIM are shown as the pink
and orange-dashed curves respectively. The logarithmic fit is shown as the green
curve, and the power law fit in red. The extrapolations of both models are shown as
dashed curves. Credit to F. Vazquez.

Q(E) =
E0.70

1.37 + E0.70
(4.20)

The various quenching factor parameterizations and data are shown in Fig. 4.44. The

model used for the dark matter analysis was derived by F. Vazquez.

4.3.5 Diffusion model

In order to use PSD variables such as risetime or ∆tpeak, the electron transport be-

haviour of the SPC must be known. Specifically, a model for the diffusion of electrons

as a function of their initial radial position in the sphere is required. The first at-

tempts to do so for the S140 methane campaign involved simple first-principles elec-

tron transport simulations, as described in section 3.1.3. These were completed by Y.

Deng using the COMSOL simulation of the S140 detector introduced in section 4.3.3.
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Figure 4.45: The 10 − 75% risetime distribution of 2.8 keV 37Ar events (from run
tj13s000, blue histogram) compared to the first-principles electron transport simula-
tion performed for the LSM methane campaign of 37Ar events distributed uniformly
throughout the detector volume (red histogram). Credit to Y. Deng.

Magboltz was used to provide the diffusion coefficients and drift velocity as a function

of electric field strength [186], and a simulation following the steps listed in section

3.1.3 was carried out. Since dark matter candidate events would be homogeneously

distributed throughout the SPC volume, 37Ar (which is also a volume source) was

used as a test to validate the simulation. A comparison of the first-principles simula-

tion and 37Ar risetime data is shown in Fig. 4.45 – while similar, the two distributions

do not agree. This disagreement results in significantly erroneous diffusion/risetime

predictions for the LSM dark matter signal, and is not reconcilable by modifying the

electron transport parameters of the simulation, or electric field model.

The presumed cause of this discrepancy is the impact of space charge effects, which

are not accounted for in the first-principles simulation. As shown in section 4.2.5,

the coherent space-charge effects of high-intensity laser events, 37Ar, α-decays, etc.

can significantly alter electron drift times (and presumably diffusion as well). Further

evidence that space-charge effects are the key physical process omitted is the fact that

first-principles drift time simulation of low-intensity laser events (which are much less

199



Figure 4.46: Drift time data from low-intensity laser run tj04s000 after applying
post-alpha cuts (see ahead to section 4.4.4, blue histogram), compared to the first-
principles electron transport MC prediction of drift time in S140 (red histogram).

affected by space charges) more closely matches the data, as can be seen in Fig. 4.46.

Although the average space-charge conditions during low-intensity laser runs is

thought to be small (see Fig. 4.23), fluctuations in the SPCs electric field structure

on smaller time-scales were suspected of playing a role (event-to-event space charge

fluctuations). To demonstrate this, a risetime distribution for tj04s000 was built

by drawing drift times from the total data distribution (Fig. 4.46). The simulated

risetimes were then calculated by drawing random avalanche yields from the Polya

distribution (with measured θ = 0.125, see section 4.3.1) for each electron. Next,

approximate integrated pulses were constructed as a series of step functions (defined

by the randomly drawn drift times and avalanche amplitudes), from which the risetime

can be extracted. The result of this simulation also does not match the risetime data,

despite not relying on the electron transport MC in any way. This method assumes

that the approximate method of calculating risetimes for simulated events is valid, so

a more robust line of reasoning is presented below.
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Figure 4.47: Left: mean drift time per event of tj04s000 data (blue histogram)
compared to the MC reconstruction using the total drift time distribution (red his-
togram). Right: standard deviation of drift time per event of tj04s000 data (blue
histogram) compared to MC reconstruction using the total drift time distribution
(red histogram).

If it is assumed that the drift time distribution of the data shown in Fig. 4.46 is true

for the whole dataset (space-charge and electric field conditions are static, or at least

in equilibrium), then one should be able to reproduce the drift time characteristics of

the data on an event-by-event basis. Specifically, the mean and standard deviation

of the drift time in each event are calculated for tj04s000. To reproduce this with

an MC based on the total drift time distribution, the following procedure is used for

each simulated event:

1. Draw a random number of peaks from the distribution of peaks per event of the

data,

2. For each peak, draw a drift time using the total data distribution (Fig. 4.46),

3. Calculate the mean and standard deviation of the drift time in that event.

The results of this boot-strapped simulation do not match the per-event drift time

data, as can be seen in Fig. 4.47. In particular, the standard deviation of drift time per

event is much smaller for the data than it is for simulation, suggesting the dispersion

of the total distribution comes partially from a changing mean drift time. Although
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Figure 4.48: Comparison between the per-event (residuals of the mean and standard
deviation drift time per event) and total drift time data of tj04s000 (right and left
respectively) and semi-empirical drift time model, with parameters shown above (not
necessarily the best-fit).

the discrepancy of the mean drift time per event is more subtle, a Komologrov-

Smirnov test [218] performed indicates a p-value of only 0.1, so the MC model can

be rejected at the 90% confidence level (but not higher). Altogether, this boot-strap

MC refutes the idea that the electric field conditions in the sphere are static; non-

negligible fluctuations occur on time-scales much shorter than the duration of the

whole run, plausibly caused by changing space-charge densities.

Semi-empirical diffusion model At the time of writing, no a priori model of

space charge effects and subsequent electron transport behaviour is available. There-

fore, in order to accurately model electron transport in S140, the data itself (in which

the space charge fluctuations are encoded) must inform the model in some way. This

was done by applying a stochastic change of variables (to reflect the stochastic nature

of the fluctuations) to the original electron transport simulation results. Specifically,

the drift time distribution of the original MC PMC(DT ) was stretched and translated

by parameters f and ω respectively:

PMC(DT )→ P ′(DT ) = PMC(f · (DT − ω)) (4.21)
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Figure 4.49: Best-fit correction of the original electron transport MC; a bivariate
Gaussian of the stochastic stretch (f) and translation (ω) applied to the drift time
data.

where f and ω are random variables drawn from a bivariate Gaussian. Thus the free

parameters of the model are those which characterize the 2D Gaussian; µf , µω, σf ,

σω, and cov(f, ω).

The model was fit jointly to the event-level drift time data of tj04s000 (mean and

standard deviation drift time per event), and total drift time distribution, since it

must produce a result that matches both. A comparison of the model to both the

one-dimensional and 2D data is shown in Fig. 4.48 (generated during the optimization

process), showing how the drift time data is reproduced by reconstruction through this

model. The best-fit bivariate Gaussian to correct the original drift time simulation

is shown in Fig. 4.49; the average stretch and translation are around 1.025 and 57µs

respectively, with little covariance between the two parameters. This optimization

was performed by using the scipy.optimize.minimize function with a Nelder-Mead

algorithm [238, 239] to minimize the residuals shown in Fig. 4.48.

Using the corrected semi-empirical model, a new risetime simulation for S140 was

performed. This was done for tj04s000 with the following procedure:
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Figure 4.50: Risetime data from tj04s000 after applying post-alpha cuts (blue his-
togram), compared to the simulated risetime distribution of the original electron
transport Monte Carlo (MC; orange) and semi-empirical MC (red).

1. For each simulated event, draw a random number of peaks from the distribution

of peaks per event of the data,

2. For each simulated event, draw a random stretch and translation correction (f

and ω) from the distribution shown in Fig. 4.49, which are then applied to the

original electron transport MC drift time distribution PMC,

3. Draw an appropriate number of drift times for the event from the corrected

distribution,

4. Calculate risetime as usual; create a series of step functions for each electron in

the event (with randomly drawn amplitudes from the Polya distribution with

θ = 0.125) to emulate the integrated pulse, and calculate risetime.

A comparison of this result and the data is shown in Fig. 4.50, in which one can see

there is much better agreement than with the original electron transport simulation.

While this semi-empirical approach appears to successfully represent the fluctuating
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Figure 4.51: 2D histogram of peak height vs. drift time data for tj13s000, showing
the effect of Samba’s centering algorithm.

space-charge conditions of tj04s000 (low-intensity laser data), this same procedure

fails to reproduce the risetime data of higher-intensity data (such as tj13s000). A

possible culprit of this problem is the centering algorithm of Samba, which tends to

center either high amplitude electrons, or in the case of runs like tj13s000, pileup of

many primary electrons. This leads to the odd relationship between individual peak

heights and drift time shown in Fig. 4.51, which is not accounted for in the simulation

described here.

Generic functional diffusion model While the semi-empirical approach described

above was useful to help understand the nature of space-charge effects in the SPC

(and may provide the impetus for future simulations), a simpler approach was needed

for the present dark matter analysis. The direct, fully empirical approach taken was

to model diffusion as a function of radius with a completely generic parameteriza-

tion. This analysis was performed by F. Vazquez. In this case, 37Ar data (tj13s0000)
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Figure 4.52: 10-75% risetime data of 2.8 keV 37Ar events from run tj13s000 (blue
histogram with statistical error bars). The sum-of-Gaussians fit (red curve) is the
sum of 27 risetime distributions simulated for varying diffusion times. Credit to F.
Vazquez.

provides the source of volume events used as a reference.

First, the relationship between reconstructed risetime and diffusion time σDiff. – the

standard deviation of electron arrival times – was determined by simulating 2.8 keV

37Ar events with given diffusion times. The number of electrons simulated in each

MC event was determined using the ⟨G⟩ and W-value results of sections 4.3.3, and the

reconstructed risetimes were calculated using the step-function approach described in

section 3.1.3. The distribution of 10 − 75% risetime for a given diffusion time was

found to be approximately Gaussian, with a standard deviation equal to 0.145× the

mean risetime.

The 10− 75% risetime data of tj13s000 (2.8 keV events only) was fit with the sum

of such Gaussian distributions for risetime (with standard deviation equal to 0.145

times the mean risetime); 27 semi-evenly spaced Gaussians were used. This fit is
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shown in Fig. 4.52. The scaling of each of these Gaussian contributions gives the

relative probability of 37Ar experiencing the corresponding amount of diffusion, and

can then be mapped to the radial position of the events. This is done by matching the

probability and assuming that diffusion increases monotonically with radial position,

using the known radial probability distribution of these volume events:

ρ(r) = 3
r2

r3max

(4.22)

The resulting trend of diffusion time vs. radial position is shown in Fig. 4.53.

Finally, this trend was parameterized using a generic functional form used by NEWS-

G historically [63]:

σDiff. = σDiff.max

(︃
r

rmax

)︃α

(4.23)

where σDiff.max (maximum diffusion time) and α are free parameters in the model.

The resulting diffusion model is described by σDiff.max = 98.6µs and α = 3.05 with

the following covariance matrix (for the parameters in that order):

⎛⎝ 46.2 0.856

0.856 0.0225

⎞⎠ (4.24)

An appropriate diffusion model is used to subtract background surface events. For

this, the risetime spectra of both the high-intensity laser data taken during a physics

run, as well as the physics data itself, was examined (from tj04s002 specifically).

The risetime distributions of these two even populations are shown in Fig. 4.54.

Curiously, there were slightly higher risetimes for laser events compared to the physics

data (which is completely dominated by surface background events). The probable

cause of this is that the laser was found to be partially shining on the portion of

the inner SPC surface from which electrons drift to the north channel of the sensor,

instead of the south. Evidence for this is presented in section 4.4.6. Therefore, the

surface background data of tj04s002 was used to model diffusion for surface events,
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Figure 4.53: Diffusion time vs. radius trend for 2.8 keV 37Ar events in run tj13s000
(markers with error bars), fit with eq. 4.23 with σDiff.max = 98.6µs and α = 3.05.
Credit to F. Vazquez.

from which the average diffusion time was measured to be 123 ± 1.1µs. While the

10− 90% risetime is typically equal to 2.57× the diffusion time (assuming a perfectly

Gaussian step function integrated pulse), an extra smearing by a factor of 14.5% was

needed to match the risetime distribution of the data in this case. This is again likely

due to fluctuating space-charge effects.
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Figure 4.54: Risetime distribution of surface background events from run tj04s002
(blue histogram), compared to the spectrum for high-intensity laser events from the
same run, normalized by maximum distribution height (green histogram). Standard
PSD and α cuts are applied to select the surface background events, as well as the cut
3000 < DD AmplADU < 25000, corresponding to an energy range of approximately
1.5 to 12.5 keV. Credit to F. Vazquez.
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4.4 LSM campaign: Data cuts and signal accep-

tance

Once the physics of the hypothesized dark matter signal has been modelled (see the

previous section), the signal acceptance must also be calculated. This includes the

effect of cuts/data selection, the hardware trigger efficiency of the experiment, and

the loss of livetime due to the DAQ algorithm.

4.4.1 Hardware trigger efficiency

The hardware trigger efficiency of the detector is the probability that Samba (the DAQ

software, see section 3.1) was triggered by an event. Naively this is only a function

of the amplitude of the event, with some Gaussian error function of pulse ampli-

tude representing the trigger efficiency function. In prior NEWS-G experiments, this

was approximately true. However, in the few-electron regime, and in circumstances

with significant electron diffusion such as with the LSM data, it also depends on the

separation of electrons over time. Consider for example an event with two primary

electrons, each with an amplitude such that separately they have a 50% trigger prob-

ability. In an experiment with little diffusion in which the electrons arrive nearly

simultaneously, the amplitudes of the two electrons would add, presumably leading

to a ∼ 100% trigger probability. However, if spaced apart their amplitudes will not

add together, and the combined trigger probability for the event would only be 75%.

Therefore, calculating the trigger efficiency of the experiment will depend not on the

total energy of an event, but instead on the number of electrons, the diffusion model

of the experiment, and the radial position of the events in question (i.e. surface vs.

volume events).

The diffusion model is described in section 4.3.5, but the energy dependence of

the trigger efficiency must be measured experimentally. Since laser data provided a

source of tagged calibration events with few electrons, this data was used to calculate
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the energy dependence of the hardware trigger for single electrons only. The laser run

ti30s002 was used, as it was the lowest intensity laser run available. For this analysis,

the data was processed in nearly the same way as the physics data – integrating the

double deconvolved pulses over a 1090 sample-wide integration window, starting at

3660 samples. Note that this is not the same special processing done for the laser

data as described in section 4.3.1, but integrating the entire pulse.

The first step after processing was to determine the mean number of primary

electrons per event. To simplify fitting the very broad amplitude spectrum that

is created with this processing, several parameter values are assumed from other

analyses. The average value of θ = 0.125 from all low-intensity laser datasets is used,

and the mean gain ⟨G⟩ is obtained by extrapolating the gain trend shown in section

4.3.2 back to the time of ti30s002. The amplitude spectrum is then fit assuming a

Poissonian distribution of primary electrons (see section 3.2.1), the average number

of which was found to be µ = 1.215 ± 0.033. As desired, this data contained mostly

null and single-electron events.

The next step was to apply the SPC-channel trigger to this photodiode-triggered

data. The DAQ hardware trigger was emulated in software (in the quadis code

library [160]), and applied to the ti30s002 data. This was done assuming both the

early and late trigger settings (conditions 1 and 2 respectively, see section 4.2.1) of the

campaign. Events with emulated DAQ triggers within the integration window were

considered to have a successful SPC-trigger for this analysis. The effect of applying

either trigger conditions (or both) to the amplitude spectrum of ti30s002 is shown in

Fig. 4.55 and shows that the early trigger conditions were universally worse than the

later trigger conditions. To simplify the overall analysis, the conservative decision

was made to consider only the early trigger conditions going forward.

The amplitude-dependence of the trigger efficiency was modelled as a Gaussian

error function of the double deconvolved amplitude (DD AmplADU) for a single peak

in isolation, with free parameters for the location (ωtrigger) and spread (σsigma) of the
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Figure 4.55: Amplitude spectrum of laser run ti30s002 (using a wide integration
window) shown in blue. The effect of the emulated DAQ hardware trigger cuts applied
with the early and late trigger conditions of the campaign are shown in orange and
green respectively, as well as the effect of applying both conditions (red).

efficiency curve. Of course, there were many events with multiple electrons, which

may or may not overlap. The trigger for overlapping peaks behaves the same as for

one, larger peak. For peaks sufficiently far apart, the trigger efficiency curve applies

to both separately, each with a chance to successfully trigger the DAQ. Therefore the

model fit to the data was calculated using an MC with the following steps:

1. A random number of electrons was drawn for each event according to the fit

of the ti30s002 data discussed above (a Poisson random number with µ =

1.215 ± 0.033). Peak times were drawn using the surface diffusion model (see

section 4.3.5). Electrons close enough in time to overlap were considered to

be clustered together. The cutoff time was chosen to be 25µs – the derivative

calculation window used for the early trigger settings.

2. For each cluster, random amplitudes were drawn using the interpolated gain

for ti30s002, and the overall average value of θ = 0.125. Clusters with multiple
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Figure 4.56: Posterior likelihood function (MCMC samples) of the fit of the spherical
proportional counter-triggered ti30s002 amplitude spectrum as a function of ωtrigger

and σtrigger. A constraint based on the probability of 0-electron triggers is labelled as
well.

electrons were assigned the sum of the individual amplitudes drawn.

3. For every cluster in an event, the trigger probability was determined for given

values of ωtrigger/σtrigger, and a random success-draw was done. If one or more

cluster successfully triggered, the whole event was considered to trigger. The

amplitudes of the clusters were added to give the total amplitude, and convolved

with baseline noise.

This model – with free parameters ωtrigger and σtrigger – was then fit to the amplitude

spectrum of ti30s002 with the early-conditions hardware trigger cut applied (see Fig.

4.55). The fit was performed based on a binned likelihood function, and optimized

with an MCMC [216]. Specifically, 20 MH walkers were used, with a 500 step burn-in

and then 2500 sample run (compared to the auto-correlation time of 35 and 42 samples

for ωtrigger and σtrigger respectively). The likelihood function for this model/data was

extremely degenerate, and allowed very high values of both ωtrigger/σtrigger), which
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Figure 4.57: Corner plot of the MCMC-sampled hardware trigger efficiency likeli-
hood function with ωtrigger and σtrigger. The bottom left panel is a 2D histogram of
the MCMC samples with contours for the “1 and 2 σ” levels (if the posterior was
Gaussian), and a scatter plot of the samples beyond. The best-fit values are indicated
in blue.
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Figure 4.58: Amplitude spectrum of ti30s002 applying the early-condition hardware
trigger cut (blue histogram), and resulting fit of the data with a hardware efficiency
curve applied (red curve with 1σ uncertainty band).

would imply a large number of null-events triggering the data acquisition. Therefore a

constraint was applied to the likelihood based on the probability of null-event triggers

observed for a simulated data set with only null events, which was 10−6. The MCMC

sampling of the likelihood function with this constraint is shown in Fig. 4.56, and a

corner plot of the likelihood function is shown in Fig. 4.57. The result of the MCMC

is best-fit values of ωtrigger = 53.3ADU, and σtrigger = 17.2ADU, and the fit of the

data is shown in Fig. 4.58. The unusual shape of the likelihood function precludes

the calculation of a covariance matrix or uncertainties with any standard recipe, so

the MCMC samples from the fit were used directly in subsequent error calculations.

Note that this calculation incorporates uncertainties on ⟨G⟩ (one anode, for this laser

data), θ, the baseline noise of the full-window integration, peak-finding performance

parameters, and the surface diffusion model, as well as statistical uncertainties from

the fit.

Applying this result, the hardware trigger efficiency for a given number of electrons

was calculated with the same MC described above, depending on the initial radial
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Figure 4.59: Hardware trigger efficiency as a function of number of primary electrons,
in bins of diffusion time.

position of the electrons. To cast this result in a more useful fashion for the next

steps of the analysis, the hardware trigger efficiency was calculated in diffusion-time

bins (so that the result is applicable to surface or volume events), which is shown in

Fig. 4.59. This final result includes uncertainty on the gain of all 6 anodes (using the

results of section 4.3.3). As the gain decreased slowly over time, the trigger efficiency

also decreased, and so the conservative decision was made to perform this calculation

interpolated at the median time of tj10s001 – the last physics run. The efficiency

for single electrons is of course fixed at any radius/diffusion time at 64+4
−3%. For two

electrons, the hardware trigger efficiency was as high as 93+2
−1% (for events near the

sensor).

4.4.2 Peak selection efficiency

Using the PF results described in section 4.2.1, the LSM physics data was partitioned

in subsets with 2, 3, and 4 peaks for the final dark matter analysis presented in sec-
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tion 4.5. Events with more peaks (corresponding to proportionally more electrons)

are beyond the energy region of interest for the low-mass dark matter searches per-

formed by NEWS-G. On the other hand, the single peak (mostly single electron)

rate is anomalously higher than the expected rate from background events. This has

historically been the case for NEWS-G experiments (see section 2.4.1), and in this

case is thought to be at least partially caused by α events, which may produce some

single electron events that leak past the cuts described in section 4.4.4. Therefore,

these events are omitted from this analysis. The PF algorithm results are also used

to remove any events with a peak in the north channel (see section 4.4.6).

Of course, in selecting data based on the number of peaks, the defects/failures of

the PF algorithm itself must be taken into account to calculate the resulting signal

acceptance for dark matter events. This characterization was partially informed by

the peak-resolved low-energy laser analysis presented in section 4.3.1. Specifically,

the PF efficiency threshold results described by σh and ωh (see table 4.4) and eq. 4.8

were used to calculate the efficiency of the algorithm for identifying single electrons

P1 e− :

P1 e− =

∫︂
PPolya(E|θ, ⟨G⟩)× f(E|ωh, σh)dE (4.25)

using the values of ⟨G⟩ at the time of each run, and the global average value θ = 0.125.

This result was calculated for all runs, and is shown in Fig. 4.60, including the average

value across all runs with statistical uncertainty. The generally-decreasing trend over

time is expected, as the detector gain was decreasing relative to the fixed PF algorithm

threshold (see section 4.3.2).

Another limitation of the PF method is the probability of FPs (noise peaks). The

laser analysis provided an estimate of this quantity, but was only applicable to the

small window sizes of the specially-processed laser data. For normally-processed

events, PFP was calculated directly by applying the PF algorithm to pre-trace data

(see Fig. 4.15), which yielded a mean number of FPs per event of 3× 10−4.
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Figure 4.60: Single electron efficiency of the peak finding algorithm shown for all
low-intensity laser calibration fits (blue points), as well as the average of all points
(red with 1σ uncertainty band).

Finally, there is the issue of coincident peaks. Again, while the laser analysis does

model this pathology, the result is only applicable for small window surface events.

Volume events are far more likely to produce coincident peaks, but this is counter-

balanced by charge attachment; the former reduces the number of observed peaks

per event for small radii events, and the latter for higher radii events. Aside from

the characteristics of the events being studied, this pathology is also fundamentally

connected to the limits of the PF algorithm to separate peaks close in time.

To estimate the temporal resolution of the PF algorithm – i.e. the time separation

at which peaks are not identified as being distinct – 2 peak laser data was used. The

time separation for these events is modelled by assuming a Gaussian distribution for

the arrival time of the electrons with standard deviation σDiff. (see section 4.3.5). In

this case, the distribution of time separation is a half-Gaussian beginning at ∆tpeak =

0µs with a standard deviation of σDiff./
√
2. To model the PF algorithms’ loss of

resolution at small time separations, this distribution is then multiplied by an error
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Figure 4.61: The (zoomed-in) time separation distribution for 2 peak laser events
(histogram), fit with a half-Gaussian distribution at 0 (black dashed curve) multiplied
by an error function to represent the temporal efficiency curve of the PF method. The
black curve is an error function starting at ∆tpeak = 1µs, and the pink curve is the
model used in this analysis starting at ∆tpeak = 5.3µs. Credit to F. Vazquez.

function defined by µPF and σPF – the PF method’s temporal efficiency curve. To

avoid the possibility of very close 2-peak events consisting of one electron and a small

FP, this efficiency curve was restricted to be > 0 only at ∆tpeak = 5.3µs. This model

fits the time separation distribution well, as is shown in Fig. 4.61. The results for

the temporal efficiency curve were µPF = 8.66± 0.17µs and σPF = 2.41± 0.26µs, as

determined by F. Vazquez.

All of these pathologies must be considered together in order to determine the

PF selection efficiency for events with n peaks that actually have m electrons. This

can be done analytically using the same PF formalism developed in section 4.3.1,

specifically using eqs. 4.13 and 4.12 and parts of eq. 4.14:

PPF

(︁
n peaks|r,m e−

)︁
=
∑︂
i=0

m∑︂
j=0

m−1∑︂
k=0

cnmijk × PPoisson(i|PFP)

(︃
m

j

)︃
pjFN(1− pFN)

(m−j)

×
(︃
m

k

)︃
pCE(r)

k(1− pCE(r))
(m−k)

(4.26)
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Figure 4.62: The PF efficiency for n peaks given m electrons, for surface events, using
the average value of P1 e− = 1 − pFN from all laser runs, PFP = 3 × 10−4, and the
average coincidence probability of all low-intensity laser runs studied in section 4.3.1.

summing over i FPs, j FNs, and k coincidences, with the probability of the latter

(pCE) being a function of radial position r. For surface events, the PF efficiency for

different numbers of electrons is shown in Fig. 4.62. WIMP candidate events (of a

given mass) will, of course, produce a distribution of m primary electrons (denoted

PWIMP(m) here), and would be distributed throughout the detector volume. There-

fore, to calculate the PF selection efficiency for n peaks from such events, eq. 4.26

must be summed for different contributions of m and integrated over r:

P (n|m) =
∑︂
m

PWIMP(m)

∫︂ rmax

0

(︃
3r2

r3max

)︃
× PPF

(︁
n peaks|r,m e−

)︁
dr (4.27)

However, in this case, there was no (validated) analytical expression for the prob-

ability of having coincident peaks as a function of radial position, pCE(r). Work was

done towards this goal, but was not completed. Instead, a toy MC of the PF process

was designed by F. Vazquez, with inputs for the probabilities of different pathologies
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described above. This was also used to simultaneously calculate the time separation

distributions for surface and volume events with different numbers of peaks. As will

be presented in section 4.5, time separation was the main variable used in the fi-

nal dark matter analysis, the modelling of which is connected to the PF algorithms’

performance. The MC proceeded according to the following (simplified) steps:

1. m primary electrons are generated for an event, and their arrival times at the

sensor are randomly drawn according to the diffusion model described in section

4.3.5, accordingly for surface or volume events.

2. The number of electrons lost to attachment is drawn randomly according to the

parameterization described in section 4.3.3 (using the approximate risetime of

the un-affected MC event).

3. The probability of each peak alone being identified by the PF algorithm is

assigned (using the results of Fig. 4.60), and all the surviving peaks are deter-

mined.

4. Starting from the first peak identified in the MC event, the probability of this

peak being coincident with the next peak (chronologically) is randomly deter-

mined based on their time separation, and the temporal efficiency curve defined

above. If the peaks are coincident, they are re-assigned as a single feature, and

the above steps are repeated recursively until all features identified by the PF

algorithm are found.

5. The time separation between the first and last peak, ∆tpeak is calculated, and

the number of identified peaks/features n is tracked, as the final results will be

partitioned by n, not m.

In practice, all possible first/last peak combinations are considered for each MC event,

with their corresponding probability calculated. In this way, each event contributes
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multiple outcomes to the construction of the ∆tpeak probability distribution for events

with n peaks. The simulation was carried out for events with up to 15 electrons.

Comparison with data To validate the MC approach described above, the mod-

elled time separation distributions for surface and volume events were compared to

low-intensity laser and low energy 37Ar data, respectively. For the former, the run

tj04s000 was used. The MC time separation distributions for different numbers of

electrons – not peaks – were added together, weighted by the fractions of events with

m peaks. This quantity was determined for the laser run using eq. 4.26 and the PF

characterization results from section 4.3.1. The summed MC contributions for 2 – 5

peaks are then compared to the data in Fig. 4.63 with no additional scaling applied,

showing good agreement. Although this comparison relied on the laser PF charac-

terization to achieve this agreement with the laser data, it confirms that the toy MC

for PF efficiency and ∆tpeak agrees with the empirically-driven PF results.

A similar comparison was then performed between the MC time separation distri-

butions for volume events and low energy (≲ 300 eV) 37Ar data from tj13s000, which

is shown in Fig. 4.64. In this case, there was not good agreement between the scaling

of the different time separation distributions and the data, although the shapes of the

distribution still matched the data well.

One possible cause of this discrepancy that was investigated was the contribution

of background events in tj13s000, which certainly includes some physical events with

electrons. The background model developed for the 37Ar analysis was used for this

study, the amplitude spectrum of which is shown in Fig. 4.65. Compared to the

single electron amplitude spectrum also shown, one can see that this background

data must include other non-physical events with a narrower amplitude distribution.

To determine the maximal electron-only contribution of this data, the spectrum was

fit assuming free contributions of different numbers of electrons (p1, p2, etc.), using

energy response parameters determined in the laser and 37Ar analyses (see sections
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Figure 4.63: Comparison between the time separation spectra of laser run tj04s000
with different numbers of peaks (green histograms), and the toy MC simulated time
separation distributions (black curves), summed/weighted using the PF characteri-
zation of the laser run from section 4.3.1. Credit to F. Vazquez.
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Figure 4.64: Comparison between the time separation spectra of low energy 37Ar
data (from run tj13s000) with different numbers of peaks (orange histograms), and
the toy MC simulated time separation distributions scaled by 1.35, calculated with
temporal resolution model constrained at 2.41± 0.26µs and 3.78± 0.24µs (pink and
cyan curves respectively), and with/without a multi-coincident peak penalty factor
(solid and dashed curves respectively). Credit to F. Vazquez.
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Figure 4.65: Low amplitude data of tj04s002 (with 1+ peaks and all other cuts
applied, orange histogram), compared to the single electron amplitude spectrum using
best-fit energy response parameters from sections 4.3.1 and 4.3.3 (blue curve). The
scaling of the model is arbitrary.

4.3.1 and 4.3.3). The only free parameters are the contributions of different numbers

of electrons Pn. The amplitude spectrum model P(E) is then calculated as (similar

to eq. 4.15, summing over 8 risetime bins RT from 10 to 250µs):

P (E,RT ) =

[︄∑︂
n

(︄
k=n∑︂
k=0

PnPBinom. (k|n, p = Tm ·RT )

)︄
0∑︂
0

× P
(k)
Polya(E| ⟨G⟩ , θ)

]︄
⊗ PNoise (E) .

(4.28)

To account for the fact that only part of the amplitude spectrum shown in Fig. 4.65

can be modelled with physical event contributions, the data was fit using a modified

binned likelihood function:

L =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∞, oi < νi − 3

√
νi

LPoisson(νi + 3
√
νi, oi), oi > νi + 3

√
νi

LPoisson(νi, oi), otherwise

(4.29)

where oi is the observed counts and νi is the expected counts given the model in
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Figure 4.66: Low amplitude data of tj04s002 (with 1+ peaks and all other cuts
applied, blue histogram), and physics model fit (blue curve with 1 σ uncertainty
band) obtained using eq. 4.29.

bin i. In bins where the observed number of counts was 3 standard deviations lower

than the expected number, the likelihood function is assigned the value −∞ to reject

models that significantly overestimate the data in any bin. On the other hand, in

bins where the observed counts are at least 3 standard deviations above the model,

the likelihood was evaluated as though it were only 3 standard deviations low, to not

over-penalize the model in bins where it cannot match the observed counts. In this

way, the physics amplitude model is fit to match but not exceed the data in all bins

possible.

The optimization was done with an MCMC, in this case [216], and the resulting

fit is shown in Fig. 4.66. The relative proportions of different numbers of electrons

(truncated at 4 for practical purposes) were found to be P1 = 0.995, P2 = 0.002,

and P3 = P4 = 0.0015. The shape of the likelihood function is highly non-Gaussian,

so the MCMC samples themselves were used for error propagation whenever needed.

The scaled background result is shown alongside the distribution of primary elec-

trons for tj13s000 (calculated using the results of section 4.3.3) in Fig. 4.67. Since
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Figure 4.67: Primary electron spectrum of low-energy 37Ar data, using the fit results
for tj13s000 from section 4.3.3 (blue curve with 1σ uncertainty band) and scaled
background derived with tj04s002 data (red curve).

the background overwhelmingly consists of single electron events (which in turn will

produce overwhelmingly single peak events), its effect on the time separation data

was found to be negligible. Ultimately, to match the 37Ar time separation data and

toy MC shown in Fig. 4.64, an arbitrary scaling factor of 1.35 was applied to the

simulated spectra (based on the 2-peak data). Fig. 4.64 also depicts time separation

results calculated using different temporal resolution definitions. Additionally, a 50%

penalty factor was applied in the simulation on the probability of having events with

multi-coincident electron features (cases with more than 2 electrons in coincidence).

Despite this unresolved discrepancy in the scaling of the time separation MC for 37Ar,

the good agreement in the shape of the spectra validates the simulation insofar as it

pertains to properly calculating the time separation distributions of volume events.
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4.4.3 Fiducial volume

As stated in section 4.2.1, only south-channel events are kept in this analysis. This

is because the electric field is known to be more isotropic in this region of the SPC,

further from the grounded sensor support rod. Additionally, only the south channel

of the ACHINOS could be characterized with the UV laser calibrations. As such, it

is crucial to know what fraction of events occurring uniformly throughout the volume

of the SPC (as dark matter events would) reach the south channel of the ACHINOS

sensor vs. the north. Some fraction of events will also produce electrons that are

shared between the two hemispheres. North-only and shared-hemisphere events are

removed with a cut by removing events with any peak in the north channel (see section

4.4.6); this section is concerned with the signal acceptance of this data selection. In

other words, this is the calculation of the fiducial volume of the experiment.

A simulation-based approach was used for this calculation, beginning with a COM-

SOL finite element simulation of the electric field in S140 was used [154] (created by

F. Vazquez and Y. Deng). Using this, C. Garrah performed a “traditional” electron

transport simulation of the SPC similar to the general MC described in section 3.1.3

[187]. This simulation is not expected to reproduce the electron drift/diffusion char-

acteristics of the data (see section 4.3.5); it need only simulate which hemisphere of

the ACHINOS the primary electrons drift to. Drift and diffusion parameters as a

function of electric field strength were calculated for 125mbar of methane gas with

0 ppm of O2 contamination using the Magboltz software [186]. Note that these values

for the gas pressure and oxygen level were the extremes of the uncertainty ranges for

these parameters, conservatively chosen as they resulted in the lowest fiducial volume

in this study [187].

Due to the stochastic nature of the electron transport, the south-channel selec-

tion efficiency for uniformly distributed events (or south-channel fiducial volume)

varies significantly for events with different numbers of primary electrons. Therefore,
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Figure 4.68: The south-channel fiducialization efficiency of events with different num-
bers of primary electrons, as a function of initial radial position. Taken from figure
5.13 of ref. [187].

thousands of events were simulated uniformly throughout the detector volume, with

between 2 and 15 primary electrons. The fiducial volume was calculated as the ratio

of the number of events in which zero electrons reach the north hemisphere (denoted

N5(0)) to the number in which at least one electron reaches any anode (A11(0+)). This

result, calculated for different numbers of primary electrons and as a function of initial

radial position – is shown in Fig. 4.68 (for select numbers of electrons). This figure

shows that even though events occurring at only 6 out of 11 anodes are kept in the

LSM analysis, this channel subtends approximately 70% of the volume of the sphere

(for events with a few primary electrons). This is due to the asymmetric nature of the

electric field structure in S140, which is shown in Fig. 4.69, and depicts the electric

field lines ending on north or south hemisphere anodes. Using this simulation result,

the effective fiducial target mass of the experiment can be calculated by integrating

the trend shown in Fig. 4.68 over radius, for a given number of primary electrons.

To validate this simulation approach, the LSM 37Ar calibration data (tj13s000)
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Figure 4.69: Depiction of a number of electric field lines in the COMSOL simulation
of the S140 detector, coloured by which hemisphere of the sensor they terminate on
(red for south-channel, blue for north-channel). The right inset shows a zoomed-in
view around the sensor. Taken from figure 4.1c of ref. [187].

was used. For this comparison, the above simulation was repeated, but for uniformly

distributed 2.8 keV events. This was done assuming the results for ⟨G⟩ of the six

south anodes, θ, W (E) and F given in sections 4.3.1 and 4.3.3. This simulation

was repeated using drift/diffusion parameters for varying oxygen concentrations and

total gas pressures according to the uncertainty on both of these quantities for the

experiment [187].

To isolate events in the data with electrons reaching the different (or both) hemi-

spheres, the fact that only the south channel triggered the DAQ presented an obstacle.

Therefore the only north-channel 37Ar events recorded were coincidental. To identify

this population, G. Savvidis used a multi-pulse treatment algorithm, initially devel-

oped for NEWS-G Kaluza Klein axion searches [49], to find coincident north-channel

37Ar pulses in post-trigger regions of each 8ms event window [252]. The following

“asymmetry” parameter was defined based on the double-deconvolved, integrated

amplitudes of the separate south and north channel pulses identified:

Asymmetry =
Asouth − Anorth

Asouth + Anorth

(4.30)
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Figure 4.70: Left: the fiducialization asymmetry plot of 2.8 keV 37Ar events in
tj13s000, with the north channel pulses being identified in a post-trigger time window.
Different event populations (purely north, south, or shared) are highlighted. Right:
the corresponding plot for simulated 37Ar events with cross-talk and baseline noise
corrections applied. Cuts meant to mirror the data cuts are indicated by dashed
lines. The colour scale is a 2D KDE score indicating the general density of data
points. Taken from figure 6.8 of ref. [252] (left) and figure 5.7 of ref. [187] (right).

This variable – plotted in Fig. 4.70 (left) – was used to identify populations of events

with purely south-channel, north-channel, and shared 37Ar events [252]. Statistical

uncertainties on these event population fractions were calculated assuming binomial

statistics (for each population out of the total dataset). The final results were averaged

using north-channel pulses identified with two different post-trigger time windows

[252].

The 37Ar simulation of C. Garrah was then extended to produce the same asym-

metry plot, applying an artificial cross-talk correction (to include the small, inverted

signals produced on the opposite channel as the 37Ar signals), as well as convolution

with a baseline noise distribution. An additional ad hoc scaling factor was needed in

some cases to match the average amplitudes of different simulated event populations

to the data. The resulting simulated asymmetry plot is shown in Fig. 4.70 (right).

From this, analogous cuts were made to select populations of north, south, and shared

events in the same manner as the analysis of tj13s000. The final comparison of the

simulation and data results for the fractional populations of different event types is
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Figure 4.71: The north, south, and shared fraction of simulated 2.8 keV 37Ar events,
for different pressures and oxygen concentrations (markers with error bars), compared
with the analogous fractions estimated from the data by G. Savvidis (shaded regions).
Some simulation results had an additional ad hoc scaling applied to match average
amplitudes with the data (faded points) [187]. Taken from figure 5.11 of ref. [187].

shown graphically in Fig. 4.71. This favourable comparison validates the simulation

approach taken to calculate the south-channel fiducialization acceptance for the LSM

analysis.

4.4.4 α-induced events

As mentioned in section 4.2.5, high energy events in the SPC caused significant space-

charge disturbances in the sphere. The main source of such events in the LSM cam-

paign was 210Po α decays on the inner surface of the detector, with an activity of

28mBq. Having a kinetic energy of 5.3MeV [237], these particles produced O(107)

avalanche ions. In addition to their prominent space charge impact, it was observed

in this campaign – and in previous datasets [63] – that such high energy events can

also induce a chain of delayed single electrons [275]. These occur on short time-

scales after their progenitor event (as can be seen in Fig. 4.72), but also carry on for
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Figure 4.72: A raw pulse from run tj04s002 that occurred immediately after an α
decay. In this case, the event captured a chain of single electron events on top of the
falling exponential tail of the progenitor α event.

seconds afterwards. It is these long-delayed single electron events that are of great

concern for this dark matter analysis. This phenomenon may be the (or a partial)

explanation for the excess of low-energy events seen by NEWS-G experiments, as

discussed in section 2.4.1. Currently, it is hypothesized within the collaboration that

these induced-electrons are caused by the recombination of avalanche ions, and subse-

quent re-ionization of the gas. The purity of the gas (i.e. the levels of electronegative

contaminants) also seems to play a role; electronegative ions may be the sources of

recombination themselves, or possibly boost the ionization signal from other recom-

bination events.

To characterize and remove these single electron background events, it is first

necessary to identify the progenitor decays. Unfortunately, the 210Po α pulses were

saturated in the LSM campaign data. However, saturated pulses in this population

shared a characteristic FWHM that was roughly proportional to the energy of the

event, as the size of the pulse is correlated with the time taken for the pre-amplifier

response tail to return back to baseline. The rate of events in this population was

found to be consistent with the rate of alpha events measured at a lower anode

voltage, for which these events were not saturated. However, there was imperfect
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Figure 4.73: An example of the effect of an α particle on drift time: the drift time
of all events in low intensity laser run tj04s000 (blue marker), with the average over
time indicated in red.

separation from other saturated events not associated with induced electrons (such

as some electronic noise pulses). Another way in which α events may be identified is

through their space-charge impact, especially on the drift time of laser photoelectrons.

Fig. 4.73 shows an example of the drop in drift time recorded after an α event, during

a low-intensity laser run. Examples such as this also demonstrate the time-scale of

the influence of α events. The average time constant for drift time disturbances was

found to be 6.63± 0.10 s [275]. This was dictated by the time taken by the avalanche

ions to slowly drift back to the surface of the SPC.

The final marker of this problem was the rate of single electron events (and the

rate of all events) over time; this would temporarily (and dramatically) increase after

α events, as can be seen in Fig. 4.74. The average time constant for the production of

single electrons was measured to be 1.73 ± 0.02s [275]. Using a combination of these

different techniques to identify α events, cuts were calculated for every LSM campaign

run to remove a time period of 5s after each identified α event. Note that in the case
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Figure 4.74: Examples of the rate increases caused by α events in run tj04s002. The
rate-based identifications of α events are marked with cyan lines, and the independent
FWHM identifications with green lines. Taken from figure 5.13 of ref. [275].

of photodiode-triggered laser calibration runs, only the drift time information could

be used to identify α events, since the saturated α pulses and induced electrons were

not recorded. This analysis was performed by J.-M. Coquillat.

The signal acceptance (for dark matter events of these cuts) is simply the remaining

livetime after removing post-α periods, since these are uncorrelated with dark matter

candidate events. For example, after applying this cut, 11.8% (respectively 11.1%)

of the livetime of the physics run tj04s002 (respectively the 37Ar run tj13s000) was

removed. More details on these cuts and their signal acceptances can be found in ref.

[275]. However, in the case of tj04s002, this cut removed 95.17% of single electron

events passing other cuts, demonstrating that the vast majority of the single electron

signal in this experiment was due to α decays. It is partially for this reason that

– despite the efficacy of the cuts described here – single peak data is omitted from

the dark matter analysis, due to the probably still-persistent contamination from

α-induced single electrons (see section 4.5).
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4.4.5 PSD cuts

A major source of background events in the LSM campaign data was non-physical

“spike” events. As mentioned in section 4.2.4, these are thought to be caused by

internal discharges in the sensor. Fortunately, these events demonstrate several char-

acteristic traits that may be used to discriminate against them. One such property is

the signal cross-talk that is experienced by physical events, but not by spike events.

To exploit this phenomenon, the variable “N/S amplitude” (north/south amplitude)

was defined as the ratio of the integral of the double-deconvolved pulse of the north

channel vs. south channel. This variable was calculated on a peak-by-peak basis

(rather than for the whole event), wherever positive south peaks are identified by the

PF algorithm. Peaks closer than ∼ 13.4µs in time are grouped together. A visual

example of this variable can be seen in Fig. 4.22. The strength of the cross talk

signal (where present) was typically around 20% relative to the progenitor signal, so

N/S typically had values around −0.2 for physical, south channel events, and values

centred around 0 for non-physical events.

To study the efficacy of this PSD variable and to construct a cut to remove spike

events, it is necessary to have samples of both physical and spike events. The former

is provided by the low-intensity laser calibration data (specifically tj04s000); the

photodiode-triggered data will contain only physical events barring any coincidences

with spikes, the rate of which is assumed to be negligible. A sample of spike events is

provided using some of the test physics data (tj04s002), which is itself dominated by

non-physical events after removing laser pulses and post-α time periods (see section

4.4.4). Further cuts are made based on the classical PSD variables used by NEWS-G;

the FWHM and risetime of the raw pulse (DD RawWidth and DD RawRise respectively).

The spike population selection in this parameter space is shown in Fig. 4.75. Although

it is hard to quantify the efficiency of this PSD cut – and it must be acknowledged

that using one imperfect PSD cut to define another is somewhat circular logic – since
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Figure 4.75: 2D histogram of DD RawRise vs. DD RawWidth for physics run tj04s002
(the colour scale gives counts per bin), with cuts to select spike events shown in red
(selecting the lower left quadrant).

no background subtraction of spike events is performed, only the signal acceptance

of the cut (based on the laser data) will matter for the LSM analysis. Imperfect

selection of a spike population on which to base the subsequent PSD cuts will result

in a less-than-optimal cut, but one whose signal acceptance for dark matter is properly

calculated. The N/S distributions of the laser and spike event populations are shown

as functions of the height of the peaks involved in Fig. 4.76, which demonstrates the

separation between the two types of events. As expected, this discrimination breaks

down for small peaks, for whom the cross-talk signal (if present) is lost in the noise

of the double deconvolved pulses.

An additional PSD variable defined for this analysis was dubbed “spikiness”, in-

tended to be an improvement on the older raw risetime and FWHM PSD variables.

Specifically, this pertains to the characteristically sharp leading edges of non-physical

events; an example of a spike event in which this feature is evident is shown in Fig.

4.77. Spikiness is defined by taking the maximum 2-sample derivative of the raw
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Figure 4.76: 2D distributions of peak height vs. N/S for the laser and spike event
populations (red and blue respectively). The colour-scale and contours represent the
density of the distributions.

Figure 4.77: An example of a “spike” noise event in the physics run tj04s002 (raw
pulse), in which the trace rises entirely in one time bin.
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Figure 4.78: Histograms of spikiness for laser (red) and spike event populations (blue).

event trace within 10µs of each peak identified by the PF algorithm, divided by the

corresponding peak height. For spike events, this variable has a relatively high value,

as these events rise more abruptly than physical events. The distributions of spikiness

for laser and non-physical events are shown in Fig. 4.78.

While these two PSD variables would separately help remove spike events from the

LSM physics datasets, the correlated nature of these two quantities means that a 2D

cut in both would be even more effective. The 2D distributions of spikiness and N/S

are shown in Fig. 4.79, from which it is evident that a diagonal cut would serve well to

discriminate against spike events. The method used to determine the multivariate cut

was to calculate the linear Fisher discriminant between the two variables. The Fisher

discriminant determines a coordinate rotation for which the separation between the

two populations is greatest when projected onto this rotated axis [285, 286].

To do this, the discriminant τ is defined as a linear combination of the variables

in question x⃗ (this applies to more than two variables):
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τ = α⃗ · x⃗ (4.31)

Next, the data samples of the two populations A and B are used to determine the

mean parameter values µ⃗ and covariance matrices V of each sample. The coefficients

α⃗ that lead to the best separation between the two populations (based on their relative

means and covariances) are given by [275, 285]:

α⃗ ∝ (VA +VB)
−1 · (µ⃗A − µ⃗B) (4.32)

For the N/S and spikiness variables, the optimum coordinate rotation was defined

by:

τ = α⃗ · x⃗ = (−76.87, −0.6786) ·

⎛⎝ N/S

Spikiness

⎞⎠ (4.33)

The distributions of τ for the laser events and spike population events are shown in

Fig. 4.80, which demonstrates the superior separation between these two populations

compared to either variable alone.

Using this Fisher discriminant, J.-M. Coquillat determined that the optimum cut

to separate the two populations (based on the ratio of the two distributions, weighted

for the relative population sizes of the spike events and dark matter candidate events)

was at τ = −40 [275]. This cut is depicted in the Spikiness vs.N/S parameter space in

Fig. 4.79. In addition to this cut, another was made to select events with N/S < −0.1

to remove another class of non-physical events. This species of background – dubbed

“wide events” – had low Spikiness values, but N/S ∼ 0, and so were easily removed

with this additional cut [275]. A hint of these events can be seen in Fig. 4.79, but

they were a more prominent background for 2-peak data specifically. The origin of

these background events is not known.

Since the PSD variables described above were calculated on a peak-by-peak basis,

in the case of events with multiple peaks, the average value of each variable per event
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Figure 4.79: 2D distributions of spikiness vs. N/S for the laser and spike event
populations (red and blue respectively). The colour-scale and contours represent the
density of the distributions. The two PSD cuts defined in this analysis (τ > −40 and
N/S < −0.1) are denoted by magenta and blue dashed lines, respectively.

Figure 4.80: Distributions of the Fisher discriminant τ for laser (red) and spike event
(blue) populations.
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Table 4.7: Efficiencies of PSD cuts on N/S and τ for different numbers of peaks, with
statistical uncertainties [275].

# of peaks Efficiency

1 77.22± 0.11%

2 83.30± 0.60%

3 85.35± 0.56%

4 86.98± 0.59%

was used. Again, using the laser data from run tj04s000, J.-M. Coquillat estimated

the signal acceptance of the cuts on τ and N/S for different numbers of peaks. These

efficiencies are listed in Table 4.7. It is estimated that after applying these PSD cuts,

5% of the spike events in the populations studied would still remain in the dataset

[275].

The results described above are entirely derived from 2 datasets (tj04s000 and

tj04s002). Therefore, it is crucial to ensure that the behaviour of the PSD variables

is consistent throughout the course of the campaign, especially for laser events. The

N/S and Fisher discriminant populations were calculated for all low-intensity laser

datasets (as representations of physical events), and analogous spike event popula-

tions from the unblinded physics data. These populations are plotted for all runs

chronologically in Fig. 4.81. The trends are generally consistent, indicating that the

PSD properties inferred from the few runs analyzed hold throughout the campaign.

4.4.6 North-channel coincidence cut

An unexpected phenomenon in the LSM data was the observation that the number of

positive peaks found in the north channel traces of laser events is strongly correlated

with the number of positive south channel peaks. This runs counter to the assump-

tion that only particle interactions in the SPC volume may lead to events with shared
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Figure 4.81: Box and whisker plots showing the trends of N/S and the Fisher variable
τ (bottom) populations for all laser runs (left, red) and spike event populations from
the test physics data (right, blue). The boxes represent the 25 − 75% percentile
range, the central dash gives the median of each distribution, and the whiskers are
the 5− 95% percentile range.
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Figure 4.82: Proportion of laser events with more than zero positive north-channel
peaks as a function of the number of positive south-channel peaks. This data is taken
from the low-intensity laser run tj04s000, which cuts applied to remove post-α events
(see section 4.4.4) saturated events.
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Figure 4.83: Pulse shape discrimination populations of positive north-channel peaks
(shown in green in terms of S/N amplitude and spikiness, see section 4.4.5), compared
to that of laser-only south channel peaks (N/S instead, red distribution), for tj04s000.

electrons (such as 37Ar). This correlated behaviour is shown in Fig. 4.82. The source

of these correlated north-channel peaks was thought to be (at least partially) the laser

itself. It was initially assumed (naively) that the laser fibre was directed roughly due

south in the sphere. However, there is no direct proof of this, nor was it even possi-

ble to observe the exact orientation of the fibre. Observed north-channel peaks also

presumably include non-laser physical pulses (coincident with south-channel peaks),

coincident spike events, as well as possible noise-triggers from the peak-finding algo-

rithm applied to the north channel. Support for the north-channel events including

a mix of physical and non-physical events comes from the bimodal PSD distribution

of these north-channel peaks, shown in Fig. 4.83.

The impact of this phenomenon is due to the fact that a significant cut applied to

the LSM data is to remove events with positive north-channel peaks, meant to reject

events that may have electrons shared between the two channels. If a significant

244



fraction of north peaks removed are in fact coincident pulses and not truly shared

events, then there is an additional loss of dark matter signal acceptance due to this cut,

beyond the fiducial volume efficiency calculated in section 4.4.3. Furthermore, this cut

would represent an unnecessary loss of exposure (although perhaps an unavoidable

loss in the current analysis). Lastly, there was also the question of whether or not the

larger-than-expected correlation in the number of peaks across both channels is due

to benign causes such as coincidences and/or the laser shining partially on the north

hemisphere of the SPC, or another unknown issue.

To quantify the fraction of north-channel peaks in run tj04s000 that are produced

by the laser, the contribution coincident north-channel peaks – not including laser

electrons – is estimated using pre and post-trace north channel data. The north peaks

found in these data selections (with peak-finding windows starting at 1400, 1660, and

5660 samples) presumably consist of coincident physical peaks, spike events, noise

peaks, and possibly α-induced electrons (that leak past the 5 s cut). This non-laser

distribution is shown in Fig. 4.84, compared to the distribution of north-channel peaks

in the main event window. The excess of the latter compared to the former is due

to laser electrons. This contribution on top of the non-laser “background” is fit to

the data assuming a linear relationship between the photodiode amplitude of each

laser event and the average number of north peaks produced, the slope of which is

the free parameter of the fit. This fit was done with the scipy.optimize.curve fit

least-squares function [238].

The resulting model shown in Fig. 4.84 – including a laser contribution – fits the

data well, and indicates that 53.3% of all north-channel peaks in the selected tj04s000

data are indeed laser electrons. Conversely, 86.7% of events have no north-channel

laser electrons (since most events have zero north-channel peaks). Multiplying the

latter quantity by the proportion of events that have more than zero north-channel

peaks but that pass all other analysis cuts gives the fraction of events removed due

to north-channel peaks not produced by the laser: 20.7%. This represents the loss
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Figure 4.84: Distribution of the number of positive north-channel peaks in tj04s000
(blue histogram with the top empty bars giving the 1σ statistical uncertainty ranges).
The non-laser background of peaks estimated using pre and post-trace data is shown
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Figure 4.85: Peak height distribution of north-channel peaks in tj04s000 (green his-
togram), alongside a fit to the data including normally-distributed noise peaks and
non-noise peaks modelled generically as an exponential distribution (red).

of exposure incurred by removing events with positive north-channel peaks in the

physics data, conservatively assuming that any physical peaks in the north-channel

are coincidental rather than shared-hemisphere events.

A large fraction of the events cut may have been due to noise-peaks found by the

peak-finding algorithm, especially since it seems the north channel was subject to

higher power, high-frequency noise. This was investigated by looking at the distribu-

tion of north-channel peak heights found by the PF algorithm, which is a combina-

tion of a Gaussian distribution of noise peaks (cut off at the peak-finding threshold

of 0.48 e−/ns), and an exponential distribution from non-noise peaks (physical, laser-

induced, spikes etc.). This is shown in Fig. 4.85, the fit of which indicates that

approximately 26% of all north-channel peaks may be noise peaks. Therefore, the ex-

posure loss incurred by removing events with north-channel peaks could be improved

in future analyses by applying a separate, optimized peak-finding threshold for the

247



0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
S/N [a.u.]

40

60

80

100

120

140

160

180

200

Sp
ik

in
es

s [
a.

u.
]

0.00050

0.
00

09
0

0.0
01

62

0.00162

0.00292

0.00527

0.00949

0.01710

0.03081
0.03081

Figure 4.86: Two-dimensional kernel density estimation model of north-channel pulse
shape discrimination data from tj04s000, with a visible bimodal nature. A pulse shape
discrimination cut to select physical events with power α = 0.1 is shown in magenta.

north channel.

Effect of north-channel PSD cuts In the future, it is possible that the loss of

exposure due to north-channel peaks may be mitigated by applying a PSD cut to

the north-channel data. This would improve the efficacy of the north-channel peak

cut for removing only events with physical north-channel peaks, as noise triggers and

spikes on the north channel are not necessarily cause to reject those events entirely.

For the current analysis, this is not possible due to a lack of north-channel laser data

with which to calculate the exact efficiency of such a cut. However, a north-channel

PSD cut is considered here to inform future efforts.

To estimate the 2D PSD populations of physical and non-physical north channel

peaks, a 2D KDE was calculated for the north-channel PSD data (using a Gaussian

kernel [238]), which is shown in Fig. 4.86. The physical-peak population was then
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approximated by taking the south-channel PSD population (again modelled with a

2D KDE) and translating it slightly to match the peak value of S/N amplitude for

north-channel peaks (see Fig. 4.83), as evidently the north channel experiences slightly

stronger cross-talk. These two KDEs are then used to calculate a 2D likelihood ratio

for the hypotheses of physical events vs. physical plus non-physical. A cut in terms

of S/N amplitude and spikiness is then defined using a contour of the likelihood ratio

with a power of α = 0.1 (shown in Fig. 4.86) and then α = 0.01. The weaker cut is

defined as PSD cut 1, and the stronger PSD cut 2.

After employing these cuts to remove physical north-channel peaks (presumably

decreasing the fraction of north-channel peaks caused by laser events), the same

procedure described above was used to quantify the fraction of laser-induced events

remaining. With the weaker cut applied, the proportion of laser-induced north chan-

nel peaks is reduced to 32.5% (down from 53.3%), and reduced further to 27.4% by

the stronger PSD cut. This proves that in the future, a north-channel PSD cut may

effectively allow for the rejection of events with specifically physical north peaks.

Drift time evidence A separate line of reasoning that supports the conclusions

presented in this subsection involves looking at the “drift time” of both north and

south channel peaks, namely the time difference between the photodiode pulse and

peaks in question, which is shown in Fig. 4.87. For non-laser events, this quantity

should be uniformly distributed, since there is no temporal association with the laser

pulse. This is the case for pre and post-trace drift time data for north channel peaks.

Conversely, for laser events, a roughly Gaussian distribution is expected, which is

true for south channel peaks. However, the north-channel peaks in the main event

window demonstrated a mixture of both modalities, as shown in Fig. 4.87. This

confirms that these events are a mixture of laser and non-laser events. If the PSD

cuts described above are applied, the “drift time” distribution of north-channel peaks

approaches a uniform distribution as expected (especially for the stronger cut PSD
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Figure 4.87: Drift time distributions of north (green) and south channel (red) peaks
for tj04s000, including pre and post-trace north channel peaks. The cross-hatched
histograms show the result of applying pulse shape discrimination cuts to the north-
channel peaks.

cut 2), demonstrating the efficacy of these cuts.

4.4.7 Other data quality cuts

A significant cut made to the LSM data was to remove laser events from the physics

datasets (which was done before the blind/test data partitioning). This was done

using the photodiode amplitude, with a presumed 100% efficiency. Removing these

events (which occurred at a rate of 5Hz during physics runs) did lead to a reduced

livetime for the physics data. Including the event windows containing laser events, and

the subsequent DAQ deadtime, removing the laser events reduced the total exposure

of the campaign by 6% (respectively 9%) when trigger condition 1 (respectively trigger

condition 2) was employed, as defined in section 4.2.1.

Several additional data quality cuts were applied to remove some classes of patho-

logical events. Several examples of such events are shown in Fig. 4.88. The additional
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quality cuts were as follows:

• A cut to remove events with saturated pulses in the south channel. This was

done based on the raw DAQ-measured amplitude, which has the same maximal

value for all saturated events.

• A similar cut to events with saturated pulses in the north channel. Even though

only the south channel data was used for the dark matter analysis, cross-talk

from large north channel pulses sometimes caused abrupt baseline artifacts.

• Events occurring on the falling exponential tails of preceding high amplitude

pulses (such as an un-triggered α event occurring immediately prior) sometimes

resulted in artifacts in the baseline of the double deconvolved pulse. Therefore

events with anomalous baselines (rising, falling, or significantly offset) were

removed. Specifically, this applied to events where the baseline of the double-

deconvolved pulse (the average value of the trace in the 20 samples preceding

the integration window) differed by more than 0.20 e-/ns between the north and

south channels.

• Occasionally, primary electron peaks were observed outside the integration win-

dow defined in section 4.2.2. In these cases, the calculated value of ∆tpeak would

not represent the true diffusion of that event. To remove such events, the PF

processing was extended 300 samples beyond the original integration window

in both directions, and events with peaks in these windows were removed.

The cuts described above are all assumed to have no effect on the signal acceptance

for dark matter candidate events beyond the associated reduction in livetime, as none

of the pathologies listed are in any way correlated with specific properties of dark

matter candidate events. The total loss of exposure due to the cuts listed here was

4.78%. This deadtime calculation was performed by J.-M. Coquillat.
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Figure 4.88: Examples of pathological events removed with specific data quality cuts
listed in section 4.4.7. Credit to J.-M. Coquillat.
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4.5 LSM campaign: Physics results

The test data of the dark matter search with methane gas did not reveal any ex-

cess of events believed to be WIMP-like. As was the case in the previous NEWS-G

experiment at the LSM [63], the dark matter physics campaign experienced a sig-

nificant rate of background events. Therefore, the final result of this analysis will

be to produce an exclusion limit on the existence of WIMP dark matter, specifically

for an SD-p coupling – to which the experiment is most sensitive. While this will

ultimately be calculated with the blinded physics data, for the purposes of predicting

the final result, the test data is studied here. The following subsection summarizes

the work done by F. Vazquez to calculate an exclusion limit. Time separation is used

as the main variable of interest, rather than an energy estimator as is often the case

in dark matter studies. For events with few electrons, there is a great overlap in the

amplitude/energy spectrum due to the physics of SPCs. Therefore, energy-related

variables do not provide much discrimination power between WIMP-like and back-

ground events beyond what the PF results already provide. Time separation, on the

other hand, is useful to disentangle volume, surface, and coincident-peak events, the

latter two being the dominant remaining background event types of the experiment.

To exploit this background discrimination capability, a profile likelihood ratio (PLR)

analysis was performed for the limit calculation in order to subtract these background

contributions [81].

The test data consisted of approximately 27% of the full physics data (see section

4.2.1), with 46.39 hours of livetime after all cuts. The data selection cuts applied

were:

• A cut to remove post-α event time periods (see section 4.4.4),

• Cuts on the linear fisher discriminant and N/S PSD variables to remove spike

events and “wide pulses” (see section 4.4.5),
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Figure 4.89: The ∆tpeak distributions of the LSM test data separated into events with
2–4 peaks, from different PSD populations. The final physics data selection is shown
in red (“electron-like” events). Credit to F. Vazquez.

• A cut to remove laser events from the physics data, as well as other quality cuts

to remove pathological events listed in section 4.4.7,

• Events with positive peaks found in the north channel were cut, removing events

with electrons shared between the two hemispheres (see sections 4.4.3 , 4.4.6).

Finally, the PF results were used to partition the data into events with 2, 3, and

4 peaks for the physics analysis, for which the number of events passing all cuts

was 878, 146, and 122 respectively. The resulting time separation distributions are

shown in Fig. 4.89. To avoid the excess of “wide peak” background events present

at low ∆tpeak (especially in the 2 peak data) – as well as high the ∆tpeak regime

where background modelling is less robust (see section 4.5.2) – the analysis range was

restricted according to Table 4.8.
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Table 4.8: Analysis ranges of ∆tpeak for the WIMP analysis of the test data.

# of peaks Analysis range [µs]

2 19.2→ 595.2

3 38.4→ 748.8

4 76.8→ 864

4.5.1 WIMP time separation signal

To calculate the time separation signal from hypothetical WIMP events, the recoil

energy spectrum given in section 2.3.1 must first be converted to the differential

spectrum of the number of primary electrons produced in the SPC. This is done using

the energy-response parameterization results of section 4.3, specifically W (E), F (E),

and Q(E), and using the COM-Poisson distribution to represent primary ionization

statistics [140]. In this analysis, only WIMP scattering with the hydrogen in the

methane gas molecules is considered. For a given WIMP recoil energy spectrum –

defined by the particle mass, cross-section, and coupling – the total rate of events

producing m electrons is given as:

RWIMP(m) =

∫︂ ERmax

0

PCOM (m|µ(ER − EDiss.), F (ER − EDiss.))
dR

dER

dER (4.34)

where the WIMP recoil spectrum dR/dER is taken from eq. 2.5, and ERmax is the

maximum possible recoil energy imparted by a WIMP (corresponding to the escape

velocity of the galaxy) [58]. The mean number of primary electrons is calculated as

follows:

µ(E) =
E

W (E)
×Q(E) (4.35)

Note that the W-value, Fano factor, and quenching factor are all evaluated at the
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WIMP recoil energy less EDiss. = 4.55 eV, the energy required to disassociate a hy-

drogen atom from a methane molecule [287].

Next, the rate of events withm electrons can be used to calculate the expected time

separation signal for different numbers of peaks using the PF model given in section

4.4.2, while at the same time taking into account all the aspects of the experiment’s

signal acceptance described in section 4.4:

dR (n,∆tpeak)

d∆tpeak
=
∑︂
m

[︃
RWIMP(m)×

(︃∫︂ rmax

rsensor

PPF (n,∆tpeak|m, r)× pFid.(m, r)

0∑︂
0

× pTrig(m,σDiff.(r))dr

)︄]︄
× pPSD(n)× pNorth coin. × pLivetime

(4.36)

where rsensor is the outer radius of the ACHINOS sensor structure, the limit of particle

detection in S140. Listed by their order in eq. 4.36, the aspects of the detector’s signal

acceptance are:

• PPF (n,∆tpeak|m, r) is the joint probability distribution function for the number

of peaks observed and time separation, given the true number of electrons and

radial position of the event. This was developed in section 4.4.2.

• The efficiency of the fiducial volume cut (selecting only south-channel events) is

included as a function of the number of electrons and radial position of events

as pFid.(m, r) (see section 4.4.3).

• pTrig(m,σDiff.(r)) is the hardware trigger efficiency of the S140 detector calcu-

lated in section 4.4.1, which is a function of both the number of electrons and

the diffusion time of events (and therefore of their radial position).

• pPSD(n) is the signal acceptance for the PSD cuts placed on the N/S and Fisher

discriminant variables, which is calculated for different numbers of peaks (see

section 4.4.5).
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• pNorth coin. – the loss of livetime associated with north coincident peaks – is

applied in addition to the loss of signal acceptance due to the south-channel

fiducialization. This is because the latter calculation only takes into account

events with north-channel peaks originating from the same event producing

south-channel peaks, not random coincidences with south-only events (see sec-

tion 4.4.6).

• pLivetime is the loss of livetime incurred by removing post-α time periods (section

4.4.4), laser events, and other quality cuts (section 4.4.7).

Note that there is an additional loss of exposure due to only utilizing the test data in

this case. In practice, eq. 4.36 is calculated for up to m = 15 electrons, and truncated

for m < n, neglecting the vanishingly small probability of FP noise peaks. Examples

of the WIMP ∆tpeak spectra for a dark matter particle mass of 0.76GeV/c2 and 2–4

peaks are shown in Fig. 4.90.

4.5.2 Background models

A large component of background events in the LSM data (especially at energies

greater than one primary electron) was surface events – the source(s) of which remain

unknown. This background may be due to 210Pb and 210Bi on the inner surface of

the detector despite the electroplating and cleaning procedures described in section

4.1. Another hypothesis is that a thin layer of hydrocarbon material was deposited

on the inner surface of the SPC, which would contain trace amounts of tritium.

Regardless, this background component can be subtracted from the possible WIMP

signal on the basis of its different time separation characteristics. This was done by

generically assuming a differential background energy spectrum with a component

that is constant in energy, as well as an exponentially rising component at low energy

(to mimic the general low energy trends seen in the past [63]):
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Figure 4.90: The ∆tpeak signal (in µs) with 2–4 peaks, for a 0.76GeV/c2 WIMP
scattering with atomic hydrogen. Credit to F. Vazquez.
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d

dE
RBkgd. = Runif. +Rexp.e

−E/λexp. (4.37)

Nominally, this distribution would be converted to a differential rate in terms of

the number of primary electrons using eq. 3.4 and the COM-Poisson distribution for

primary ionization. However, there is no closed form Jacobian for this change of

variables, so to simplify, the Poisson distribution and Binomial distribution are used

instead to represent the two extreme possible Fano factors for ionization. In both

cases, the differential spectrum in terms of primary electrons m is of the form:

d

dm
RBkgd. = A+B × C−(m+1) (4.38)

Therefore, the surface background parameters are denoted as A = Runif., B = Rexpo.,

and C = Eexpo., all in terms of the number of electrons in an event m. The re-

sulting time separation distributions for different numbers of peaks n is calculated

using PPF (n,∆tpeak|m, r), the joint probability distribution function for n and time

separation (see section 4.4.2), for r = rmax.

This parameterization – which connects the background levels for different num-

bers of electrons – was chosen specifically to enforce physically-possible relationships

between the background rates in different numbers of peaks. If the background level

were fit independently for different numbers of peaks, large fluctuations between them

would be allowed by the fit, despite not being physically possible. Using this same

generic form, a volume background contribution was considered for the final WIMP

analysis as well, but ultimately was not used for the exclusion limit calculation, as

the rates of volume and WIMP events are extremely degenerate.

Another significant source of background events is random coincidences – or “ac-

cidentals” (to distinguish these from PF algorithm coincidences) – containing two

or more peaks by pure chance. Accidentals most likely involved post-α event single

electrons (the largest source of single electrons by far) that evade cuts. These can pro-
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mote single-peak events (which are omitted from the analysis) to 2-peak events which

may be included in the physics data selection. Since the peaks in an accidental event

are (largely) not correlated with each other, the distribution of their arrival time is

necessarily uniform. While α-induced electrons do have an exponentially falling rate,

the time constant for this process is estimated to be seconds-long, so on the time-scale

of an 8ms event window their rate is effectively constant.

Nominally, the distribution of ∆tpeak for such events (at least for a 2 peak acciden-

tal) would also be uniform, truncating at the duration of the PF window. However,

due to the DAQ software Samba’s pulse centering algorithm, this is not the case. To

account for this effect, a simple MC emulating the DAQ centering algorithm’s effect

on pulse treatment was carried out. In each MC event, the first peak was assigned

an arrival time drawn from the distribution of peak times from single-electron data.

This accounts for the effect of the raw pulse centering algorithm (which does not nec-

essarily mean the double-deconvolved peak will be centered). Then, additional peaks

were added to the MC event with a uniform arrival time distribution. The empirical

impetus for this MC was α-correlated events, as their elevated rate of single electrons

lead to many accidental events. As a background component of the physics data, the

∆tpeak distributions for accidentals have an independent scaling factor for different

numbers of peaks: R2,acc., R3,acc., and R4,acc..

4.5.3 WIMP exclusion limit

A WIMP 90% CL exclusion limit (for a SD-p coupling with atomic hydrogen) was

calculated by F. Vazquez using the test data with the PLR method, as described

in section 2.3.2 [81]. This was done to allow for a subtraction of the background

components described in the previous subsection. This calculation was performed

separately for logarithmically spaced values of WIMP mass Mχ – the results of which

are then connected to form the exclusion limit.

First, a binned likelihood was constructed for the combined contributions of all
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background components and WIMP signals in time separation, jointly for the 2, 3,

and 4 peak spectra:

LWIMP = L2p(σSDp,Mχ, θ)× L3p(σSDp,Mχ, θ)× L4p(σSDp,Mχ, θ) (4.39)

where each component of the likelihood function is the typical Poisson likelihood for

the number of counts in each time separation bin. The parameter of interest in this

case is the WIMP-hydrogen cross-section σSDp, which effectively scales the WIMP

∆tpeak signal given by eq. 4.36. Next, θ represents the full set of nuisance parameters

describing the background model, namely θ = {Runif., Rexpo., Eexpo., R2,acc., R3,acc., R4,acc.}.

The expected number of counts in each time separation bin – for each number of peaks

n – is given by adding contributions of the WIMP signal eq. 4.36, scaled accidentals

background, and surface event background contributions. The PLR itself is calculated

according to eq. 2.15:

λ(σSDp) =
LWIMP(σSDp, θ

ˆ̂)

LWIMP(σ̂SDp, θ̂)
(4.40)

where θˆ̂ are the profiled nuisance parameters (i.e. optimized for a given fixed value

of σSDp), whereas the denominator of eq. 4.40 is the global maximum likelihood,

optimized for all parameters. The optimization of all likelihoods in this case was

done with ROOT’s TMinuit2 package [259]. Finally, the PLR test-statistic q is defined

according to eq. 2.16.

In order to use this to calculate a limit, the value of σSDp is tuned to reach a certain

threshold based on the distribution of the test statistic q [73]. Nominally, one could

assume Wilk’s theorem, which posits that this will be a χ2 distribution with one

degree of freedom [82]. In this case, the 90% CL exclusion limit would be set at the

value of σSDp for which q = 2.71, the 90th percentile of the χ2 distribution. However,

the general consensus in the field is that this should not be assumed [67]; instead one

should directly compute the distribution of the test statistic with MC datasets. This
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was done for a range of values of σSDp by:

1. Fitting the time separation spectra (of the test data) including the background

contributions, as well as the WIMP signal for a given value of σSDp.

2. 2× 105 MC datasets are generated using the best-fit.

3. The PLR test statistic (q) is calculated for each dataset, relative to the true

underlying hypothesis for σSDp.

This procedure was carried out to generate the distribution of q assuming a back-

ground of surface + accidentals only, as well as with an added volume background

following the same parameterization given in eq. 4.38, with independent parameters.

The latter test was done to estimate the impact of volume background events if they

are present, to ensure the PLR distribution is robust in the face of this possibility

(note that the PLR calculation still assumes no volume background in this case).

Additionally, the distribution of q was calculated with the input background scaled

up and down by 30%, to investigate the impact of background mis-modelling. While

the PLR distributions were found to deviate at times from Wilk’s theorem (in dif-

ferent ways depending on the presence of a volume background or not), crucially

these deviations were only present at values of σSDp far below the 90% CL exclusion

cross-sections calculated for the data. For the relevant regime of σSDp at all WIMP

masses, Wilk’s theorem was shown to be true (within statistical fluctuations) in all

cases, despite the various background mis-modelling scenarios. This can be explained

by considering that for high enough WIMP cross-sections, the volume background

contribution would be pushed to 0, negating its influence.

The WIMP exclusion limit on the test data was therefore calculated assuming

Wilk’s theorem, assuming only surface and accidentals background contributions.

Examples of fits of the time separation spectra (for different numbers of peaks) are

shown in Fig. 4.91 for a 0.66GeV/c2 WIMP. This shows that the surface backgrounds
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Table 4.9: Number of background events due to different contributions, for different
numbers of peaks, corresponding to the profiled background model.

# of peaks Surface Accidentals

2 240 609

3 141 2.8

4 119 2.6

dominate, except for the 2 peak data which has an even greater component of ac-

cidentals. The WIMP contribution is most prominent in the 3 peak data, which is

where most of the sensitivity of the experiment comes from. The profiled background

model contributions are given in table 4.9. In addition to the exclusion limit, 1 and

2σ sensitivity bands were calculated for the experiment by generating datasets from

the background-only, best-fit of the time separation spectra. The limits for these MC

datasets are then determined in the same way. These results are shown in Fig. 4.92.

This calculation includes uncertainties on all the physics characterization/signal

acceptance parameters described in the previous subsections. Uncertainties that af-

fect the exclusion limit notably include U (from W (E)), and the pressure of gas in

the SPC. The conservative 2σ error-limits of all such parameters were used to cal-

culate the exclusion curve. However, by far the largest systematic uncertainty in

this analysis is the quenching factor. As discussed in section 4.3.4, some extrapo-

lation of Q(E) beyond the lowest energy measurements must be assumed, with no

choice being beyond reproach. Therefore, the exclusion limit was calculated using

two choices for this extrapolation: the generic logarithmic extrapolation (meant to

be more conservative than a Lindhard-like trend), and the null extrapolation, (i.e.

assuming Q(E) = 0 below the lowest energy measurement). The limits calculated for

both extremes are shown in Fig. 4.92, which shows the dramatic effect of this choice.

However, even in the null-extrapolation case, the exclusion limit obtained is still a
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Figure 4.91: The ∆tpeak physics data with 2–4 peaks (black histograms). The stacked
contributions of accidentals (magenta), surface backgrounds (green), and the WIMP
signal corresponding to the 90% CL exclusion limit for a 0.66GeV/c2 dark matter
particle (with σSDp = 32.7 pb (red hashed histogram) are shown. For comparison, a
backgrounds-only fit of the data including a volume background component is shown
as the black curve. Credit to F. Vazquez.

notable improvement in the low-mass sector beyond existing results.

Based on the preliminary dark matter result presented in this section (using the

test data), the NEWS-G collaboration can expect to set world-leading constraints on

low-mass WIMPs with a SD-p coupling. Specifically, the exclusion limit calculated

with the test data is currently the world-best for particle dark matter in the mass

range 0.17 – 1.03GeV/c2 (or 0.26 – 0.68GeV/c2 if the zero-extrapolation quenching

factor is assumed). The best sensitivity is achieved at a mass of 0.66GeV/c2, with

σSDp = 32.7 pb. When re-calculated with the full blind physics dataset, this limit is

expected to improve by a factor of approximately 65%, based on the larger exposure

of the blind data.
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Figure 4.92: Preliminary WIMP 90% CL exclusion limit for SD-p coupling with
atomic hydrogen, calculated with the LSM test data (red dashed curve), as well as
the 1 and 2σ sensitivity bands (green and yellow shaded regions). Limits from other
existing results as shown as well, including from the PICO-60 experiment [93], PI-
CASSO [288], LUX [289], PandaX-II [290], CDMS-lite II [110], CRESST-III Li2MoO4

device [117], CRESST-III LiAlO2 detector [118, 291], XENON1T [292], J.I. Collar re-
sult [293], and Borexino experiment [294]. Credit to F. Vazquez.
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4.5.4 Data unblinding

At the time of this writing (October 2023), the LSM analysis is in the final stages

of collaboration review. Once the analysis performed on the non-blind test data is

validated, the remaining ∼ 70% of the physics data will be un-blinded. This data will

be analyzed in the same manner described in this document, including cuts applied,

background model fitting, and calculation of the WIMP exclusion limit. Since the

blind data was chosen randomly from amongst the full datasets, there is no reason to

suspect that it will have fundamental differences compared to the test data. However,

immediately upon unblinding, there are several checks planned intended to verify that

this is the case. They include:

• The evolution of PSD variable populations over time will be examined. Specifi-

cally, this will involve re-making Fig. 4.81, with theN/S and Fisher discriminant

PSD variables for the blind data. This is intended only as a qualitative check.

If in fact there are differences in the PSD populations of the blind data, the

PSD cuts designed based on the test data will not be fully optimized. However,

the signal acceptance for WIMP events – calculated only using the laser data –

would not be called into doubt.

• The stability of the rate of single-electron events over time will be verified, as a

proxy for the general rate stability of WIMP candidate events. While a change

in the rate of single-electron events in the blind data compared to the test

data would be deeply puzzling, as before, the WIMP exclusion limit calculation

would still be robust.

• Background-only fits of the time separation spectra (with and without a volume

contribution), and separate limits for 2–4 peak events will be generated with

the blind data. This test is motivated by the tension between the 3 peak time

separation data and the background-only model. This is especially evident
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without a volume contribution, and still at a 2σ discrepancy level with a volume

contribution (comparing the 3 peak exclusion limit and sensitivity bands). The

blind data may reinforce – or erase – this tension. Therefore this comparison will

be repeated, as well as χ2 values calculated for the 3 time separation spectra.

To account for the look elsewhere effect of these multiple tests, the adjusted

significance for each test will be 1.3% to achieve a total significance level of 5%

(p = 0.05).
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Chapter 5

Bubble chamber nucleation
efficiency studies

Bubble chambers have existed as a detector technology since the mid-twentieth cen-

tury [295], with applications including high energy particle physics [296] and radiation

dosimetry for neutrons [297]. The basic premise is the use of superheated fluids as

a target medium. In this meta-stable state, particle interactions that deposit suf-

ficient energy in a small enough volume can induce cavitation in the fluid, leading

to a visible bubble. The sensitivity of these detectors to O(keV) nuclear recoils –

while remaining relatively insensitive to electronic recoil events – makes them natural

choices as nuclear recoil, rare-event search experiments. This includes both direct

detection searches for WIMP-like dark matter, as well as coherent neutrino scatter-

ing experiments, with a strong interest in large-scale experiments planned/currently

under construction [298–301].

To conduct rare-event searches (resulting in either a claim of discovery or exclusion

of a hypothesized interaction), it is crucial to precisely know the response of bubble

chambers to nuclear recoils, i.e. the probability that recoils of a given energy will in-

duce an observable nucleation. To that end, dedicated nuclear recoil calibrations have

been carried out for bubble chambers from both the PICO and SBC collaborations

(for fluorocarbon and liquid noble target fluids, respectively). These calibrations and

subsequent analyses are presented here. The PICO analysis is already the subject
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of a publication [3] – therefore the description of this work presented here will draw

heavily from this paper. The SBC analysis will be featured in an upcoming publica-

tion, although some details have already been made public in a conference proceeding

[302]. The results obtained through these analyses are of significant impact on the

bubble chamber experiments they involve, and will be directly used for any future

dark matter or coherent neutrino scattering results from either collaboration. Future

nucleation efficiency calibrations will likely reuse these methodologies as well.
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5.1 Bubble chambers for dark matter detection

Early bubble chamber experiments were typically large detectors employed in high

energy physics experiments, such as the Big European Bubble Chamber or Gargamelle

[303, 304]. Target media included Freon (a pragmatic choice due to its near room-

temperature boiling point), liquid hydrogen, deuterium, and so on. Typically the

chamber would be placed at the collision point of a particle accelerator beam to

image the resulting cacophony of subatomic particles, with an applied magnetic field

to bend the tracks of charged particles to aid in identification. In a similar fashion

to a cloud chamber, this resulted in clear tracks from incident particles, revealing

their travel, collisions, and decays. An example of a bubble chamber image with

particle identification from the Big European Bubble Chamber is shown in Fig. 5.1.

This type of particle-ID analysis led to major breakthroughs in the field, such as

the discovery of neutral current interactions (implying the existence of the Z0 boson)

[305]. Such analyses did not (nor did they need to) consider the exact mechanics

of bubble nucleation or its subtleties (i.e. interactions of different particle species).

This is in stark contrast to the approach of rare-event searches, for which the exact

threshold nature of bubble chambers must be known.

The PICASSO [307] and COUPP [308] experimental groups adopted bubble cham-

ber technology to search for particle dark matter beginning in the late 1990s, using

fluorocarbon target liquids including C4F10, CF3I and C3F8. Fluorine-rich targets pro-

vide excellent sensitivity to spin-dependent coupling with protons, as they have an

odd proton number [66, 71]. While the PICASSO experiment used a series of droplet

suspension bubble chambers (similar to dosimeter bubble chambers), COUPP used a

fully liquid target medium, compressing the fluid to arrest each nucleation.
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Figure 5.1: An example of an image of tracks produced by a neutrino beam in the
Big European Bubble Chamber, with a labelled interpretation of the event. In this
case, a neutrino-proton collision produced a D meson, which subsequently decayed
into various charged leptons and hadrons. Image taken from ref. [306], copyright @
2023 CERN.

5.1.1 The PICO collaboration

The PICO collaboration (the merger of PICASSO and COUPP) uses bubble chambers

with fluorocarbon fluids. In most previous detector configurations, an artificial quartz

glass vessel filled with target liquid is suspended from a pressure bellows system. A

water buffer layer above the target fluid prevents it from coming into contact with

the bellow’s surface. The active volume is then chilled to its target temperature (e.g.

14 to 16◦ in the case of [93]), and the target pressure is controlled with the bellows

system. An example of this design – the PICO-2L detector – is shown in Fig. 5.2

[309].

Detectors are instrumented with piezo-electric transducers to record audio signals

from nucleation events, and a stereoscopic camera system. The recorded data al-

lows for 3D position reconstruction of bubble positions (to reject surface background

events). Further, discrimination against alpha-particle recoils is possible based on

their characteristically different acoustic power [64]. With this technology, the PICO
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Figure 5.2: Schematic of the PICO-2L chamber with the target volume (in a silica
jar) suspended below a water buffer layer, and then compression bellows. Taken from
figure 1 of ref. [309].

collaboration recently published results of the PICO-60 detector, with a 52 kg C3F8

target [93]. With a 1400 kg day exposure, the WIMP-proton spin-dependent inter-

action is excluded down to 2 × 10−41 cm2 at a WIMP-mass of 20GeV/c2, the best

constraint to date in this parameter space. To calculate the sensitivity of the experi-

ment, the nucleation efficiency of chamber/target fluid must be known – in this case,

a preliminary version of the analysis presented in this chapter was used [277].

Detectors with the typical PICO design suffer from several contamination issues.

In some iterations of the experiment, it was found that microscopic metal debris

produced by the movement of the steel bellows could drift down to the active target

volume and induce nucleation [310]. Additionally, mixing between the water buffer

and target fluid can create induce nucleation near the liquid interface [93]. Newer

chamber designs seek to solve these issues by having the compression bellows situated

below the active volume, and applying pressure via a second nested jar. A strict
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inverted temperature gradient is enforced, so that the fluid at the bottom of the

vessel that is in contact with the bellows (a feature likely to induce bubbles) is kept

in a cooler, non-superheated state. In this way, the active volume of liquid is only

in contact with the silica jars, with no risk of particulate contamination from the

bellows components or buffer liquid [311, 312].

5.1.2 The SBC collaboration

The Scintillating Bubble Chamber (SBC) collaboration employs liquid noble bubble

chambers to search for low-mass dark matter. Unlike fluorocarbon bubble chambers,

liquid nobles (i.e. xenon and argon) produce scintillation light – in addition to nucle-

ation – while in a superheated state [313]. This extra channel offers the possibility

of energy reconstruction for particle interactions. Specifically, 175 nm and 128 nm

scintillation light is produced by LXe and LAr respectively. Photons of such wave-

lengths as LAr usually need to be wavelength shifted towards the optical spectrum to

allow for detection with photomultiplier tubes (PMTs), but this can be accomplished

through a small addition of LXe as a dopant [94]. SBCs made by the collaboration

typically follow a similar “right side up” design to recent PICO experiments [311,

312], with either PMTs or silicon photomultipliers to record scintillation light. Since

LXe and LAr are cryogenic fluids, the temperatures at which they reach superheat

are significantly lower than fluorocarbon liquids (typically around −40◦C for LXe),

requiring cryogenic cooling systems to operate.

The first experiment conducted by the SBC collaboration was with a small 30 g LXe

bubble chamber, constructed in the “right side up” configuration. It was instrumented

with a single PMT to measure scintillation light produced (see section 5.5 for more

details about the experimental setup) [314]. This experiment gave the first confirmed

scintillation light in coincidence with bubble nucleation, an example of which is shown

in Fig. 5.3, a critical proof-of-concept result for the collaboration [314].

Historical LXe bubble chambers revealed an interplay between scintillation light
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yield and the probability of nucleation [315]. Specifically, the latter was found to

increase when a scintillation quencher was added to the target fluid. This energy

partitioning – possibly different for varying particle species – may explain the apparent

suppression of electronic recoil-induced bubbles observed in LXe [314]. With an even

greater electronic event suppression than fluorocarbon chambers, it may be possible

to operate scintillating bubble chambers with energy thresholds as low as ∼ 100 eV

(at which point fluorocarbon chambers would be overwhelmed by electronic recoils),

greatly expanding their sensitivity to low-mass dark matter.

After the success of the LXe demonstration experiment, the SBC collaboration is

currently fabricating two 10 kg LAr chambers for placement at SNOLAB and Fer-

milab, to search for dark matter and coherent elastic neutrino-nucleus scattering

(CEνNS) respectively [10, 94, 298]. The design of these chambers is depicted in

Fig. 5.4. With greater scintillation light collection efficiency (via the many silicon

photo-multipliers they are instrumented with), energy reconstruction may be possi-

ble. Taking advantage of the expected strong electronic recoil suppression of LAr,

these chambers may be operated successfully in a high-background environment next

to a nuclear reactor to search for CEνNS. The ability to operate the chamber with a

threshold of 1 keV or less will also allow for unprecedented sensitivity to WIMP-like

dark matter of particle masses on the order of 1GeV/c2 [298].
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Figure 5.3: An event from the LXe bubble chamber with an optical image of the
bubble shortly after formation (top) in coincidence with an acoustic signal recorded
by a piezo-electric transducer (middle), and PMT signal from scintillation light (bot-
tom). The gray PMT traces are other waveforms recorded throughout the acquisition
window for the event, with the red trace being the coincident scintillation light. The
slight delay between the onset of the acoustic pulse compared to the PMT and optical
signal is indicative of the speed of sound in LXe. Taken from figure 2 from ref. [298].
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Figure 5.4: Schematic (left) and CAD model (right) of the 10 kg LAr scintillating
bubble chamber design, instrumented with silicon photo-multipliers, cameras, and
LEDs for photo-multiplier calibration. Taken from figure 6 of ref. [298].

276



Figure 5.5: The Gibbs potential of a generic fluid as a function of density, for different
pressures, revealing the metastable super-heated state µl at a higher potential than
the vapour state µv. Taken from figure 2.1 of ref. [316].

5.2 Seitz model of nucleation

A bubble chamber may be operated with any target fluid in which it is practical

to achieve the necessary thermodynamic conditions. The fluid begins as a liquid;

pressure is slowly reduced while maintaining a constant temperature. As the target

fluid’s pressure is reduced below its vapour pressure, a metastable minimum develops

in its Gibbs potential at a higher density than its stable minimum state as a vapour.

This is generically depicted in Fig. 5.5 [316]. In this metastable super-heated state,

the fluid remains a liquid. However, a small addition of energy can cause an amount

of fluid to overcome this potential barrier and rapidly boil, causing a cavitation [317].

The nature of this process makes bubble chambers threshold detectors.

This potential barrier represents the energy required to overcome the surface ten-

sion of the liquid, for the vapour bubble to expand, etc. This energy can be provided

by a particle interaction in the liquid that deposits sufficient energy in a small volume,

by disrupting the potential of the fluid by reducing surface tension (i.e. from a piece
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of dust, vessel-wall imperfections, etc.), or by any local injection of heat. Once a

small cavitation bubble of vapour forms, boiling is triggered in the surrounding fluid,

leading to the growth of a macroscopic bubble within nanoseconds [318]. Typically

only nuclear recoil interactions can deposit sufficient energy densely enough in the

fluid to cause boiling, hence bubble chamber’s natural suppression of electronic recoil

signals, which do not heat the liquid enough locally.

A theoretical treatment of the threshold for nucleation in bubble chambers is given

by the Seitz “hot spike” model [317], with a modern treatment from [65]. In this

paradigm, nuclear recoils are assumed to locally heat the target liquid, creating a

small bubble of vapour known as a “proto-bubble”. Proto-bubbles larger than a

certain critical radius rc will continue to grow into macroscopic bubbles of vapour,

which is defined by the point at which the pressure of the vapour inside the bubble

Pb overcomes the pressure from the surrounding liquid Pl and surface tension of the

fluid σ [65]:

rc =
2σ

Pb − Pl

(5.1)

The heat energy required to reach this critical radius, therefore, defines the theoretical

nucleation threshold. This is given by [65]:

QSeitz ≈ 4πr2c

(︃
σ − T

∂σ

∂T

)︃
+

4π

3
r3cρb(hb − hl)−

4π

3
r3c (Pb − Pl) (5.2)

where T is the temperature of the fluid, ρb is the density of vapour in the proto-bubble,

and hb and hl are the specific enthalpies of the vapour and liquid respectively. These

three terms come from the work done to create the proto-bubble surface, to vapourize

its’ contents and the reversible work of the first two terms together. A unitless factor

λ ≈ 1 (the “Harper parameter”) is used as an ad hoc scaling factor for the critical

radius [65]. Thus in the Seitz model, any particle depositing energy Edep greater than

QSeitz within a bubble of distance less than λrc (typically O(1 nm)) will always cause
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nucleation [3]:

Edep =

∫︂ λrc

0

dE

dx
dx ≥ QSeitz (5.3)

In practice, this theoretical threshold can be entirely controlled by the temperature

and pressure maintained in the superheated fluid. The requirement of depositing

energy in such a small radius usually precludes lightly-ionizing particles from creating

a bubble, such as photons or electrons. This provides a strong natural background

suppression for bubble chamber experiments [65]; indeed only nuclear recoils or alpha

particle interactions typically induce nucleation.

5.2.1 Existing empirical results

While the Seitz model provides a useful – and indeed the only (currently) – first-

principles framework to estimate the threshold for nucleation, it is well-known em-

pirically that the Seitz model does not accurately describe the probability that a

nuclear recoil will induce nucleation [3, 302, 309, 319–325]. Straggling of nuclear re-

coils, variability in recoil track structure, and surface tension effects [326] shift the

true threshold to higher energies than the Seitz prediction, and broaden the efficiency

curve, such that it is no longer a step function threshold. An example of disagree-

ment between measurement and the Seitz model (independent from the results of the

studies presented here [3, 302]) is a previous calibration by the COUPP experiment

of a CF3I chamber with Am-Be and Y-Be neutron sources, which indicate that the

Sietz model underestimates the threshold for bubble nucleation, as shown in Fig. 5.6

[320].

Various parameterizations have been adopted to describe the nucleation threshold

in previous analyses, as a function of recoil energy and thermodynamic state (QSeitz).

For example, in ref. [322] the predicted Seitz step threshold is smeared by a Gaussian

function to generically represent the stochastic processes that may lead to deviation

from the predicted threshold. However, this approach is not physically motivated and
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Figure 5.6: Observed count rates of different bubble multiplicities at various thermo-
dynamic thresholds (values of QSeitz), from an Am-Be neutron calibration dataset.
The red and blue dashed curves represent various best-fit parameterizations of the
nucleation threshold derived from an MCNP simulation. The solid black curve shows
the Seitz model prediction, which overestimates the observed count rates. Taken from
figure 5 of ref. [320].

predicts nucleation from recoil energies below the Seitz threshold, for which there are

no hypothesized mechanisms.

Another approach taken in ref. [320] was to either to use a scaled-down step function

(one that steps at the Seitz threshold, but to some efficiency < 100%), or a function

of the form

P (Er, QSeitz) = 1− exp

(︃
−αEr −QSeitz

QSeitz

)︃
(5.4)

where α is a shape parameter estimated from calibration data (α = 0.15 for carbon

and fluorine) [320]. This model assumes that the probability of nucleation will never

reach 100% at any recoil energy, as well as that the efficiency rises above 0% directly

at the Seitz threshold, which is incompatible with subsequent measurements [3, 302,
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319]. Therefore, a more flexible nucleation efficiency model was adopted for the work

presented here (described in section 5.4.1), which can approximately accommodate

both of the previous functional forms as well as many others, albeit at the expense

of requiring many more model parameters.
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5.3 PICO nuclear recoil calibrations

To obtain an empirical measurement of the nucleation efficiency in C3F8 bubble cham-

bers, the PICO collaboration gathered nuclear recoil calibration data with various

neutron sources, including compound neutron sources and accelerator-produced neu-

trons. The detectors used included small 2 L and 0.1 L bubble chambers [65, 309] (the

former is depicted in Fig. 5.2). The PICO-0.1L vessel was designed to be a portable

test chamber for detector characterization and was therefore suitable for temporary

installation at an accelerator beam site. Both chambers were designed in the fashion

of early PICO experiments, with a quantity of superheated C3F8 target fluid in quartz

jars, with a water buffer above so that there was no contact between the steel bellows

of the chamber re-compression system and the target fluid.

5.3.1 Calibration sources

Am-Be and Sb-Be compound sources were employed, which produce fast neutrons

through (α, n) and (γ, n) reactions respectively [247]. Am-Be sources produce a broad

spectrum of O(MeV) neutrons, which can scatter multiple times even in a small

chamber (producing up to seven or more bubbles in the PICO-2L detector). The many

multi-scatter events provide a unique constraint on bubble nucleation, as the ratio of

different scatter multiplicities is entirely due to the geometry of the experiment.

Sb-Be sources primarily produce 24 keV neutrons via the reaction 9Be(γ, n)8Be, in-

duced by a 1690 keV gamma-ray emitted by 124Sb (branching ratio 48.4%). A small

number of 378 keV neutrons (5.7%) are also produced [247, 327]. The downside

of this calibration source is the large number of gamma rays emitted (at approxi-

mately 106 times the rate of neutrons produced). While bubble chambers are largely

inherently blind to such radiation, the high rate of gammas and relatively low ther-

modynamic threshold of the test chambers did result in some rate of gamma-induced

bubbles. Lead disks were placed in front of the source to partially address this issue
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Figure 5.7: Total neutron interaction cross-sections for fluorine (19F specifically) and
elemental carbon, showing several resonances for fluorine [331].

by attenuating the gamma flux.

Other calibration experiments measured monoenergetic neutrons produced using

the TANDEM accelerator at the Université de Montréal [328]. The proton beam was

directed at a vanadium target, which produced nearly-monoenergetic neutrons via

the reaction 51V(p, n)51Cr; in a thin vanadium target, the neutron kinetic energy is

equal to the proton energy (tunable from the accelerator) minus the Q-value of the

reaction, 1564 keV. Neutron production was enhanced by matching the proton energy

to several vanadium (p, n) cross-section resonances [329, 330]. Calibration data was

taken with neutron kinetic energies of 50, 61, and 97 keV.

The varying kinetic energy of the accelerator neutrons allowed for the exploitation

of resonances and anti-resonances in the neutron-fluorine cross-section, shown in Fig.

5.7 [331]. Compared to the roughly constant cross-section of carbon across the approx-

imately 50 keV to 100 keV energy range of the beam-induced neutrons, the varying

fluorine cross-section results in some calibration datasets were much more sensitive

to fluorine-induced nucleation than others, disentangling the nucleation contributions

of the two target atom species.
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Dataset Detector Thresholds (keV) Livetime (minutes) Multiplicity

97 keV Beam PICO-0.1 3.0, 3.2, 3.6 21, 9.9, 20 1,2,3+

61 keV Beam PICO-0.1 2.9, 3.1, 3.6 16, 160, 18 1,2,3+

50 keV Beam PICO-0.1 2.5, 3.0, 3.5 3.1, 7.7, 7.3 1,2,3+

Sb-Be PICO-0.1 2.1, 2.6, 3.2 320, 310, 300 2,3+

Am-Be PICO-2L 3.2 2200 1,2,3,4,5,6,7+

Table 5.1: PICO neutron calibration datasets used in this analysis, listing the detector
and Seitz thresholds used, as well as bubble multiplicities (number of bubbles per
event) included in the subsequent analysis.

5.3.2 Neutron scattering data

To thoroughly explore nucleation efficiency as a function of recoil energy and the

thermodynamic state of the bubble chambers, data was collected using the neutron

sources listed above, with varying temperature and pressure conditions. The thermo-

dynamic state of each experiment is associated with its corresponding Seitz threshold

QSeitz for the sake of simplicity, even though the inaccuracy of the Seitz model is

the foundational argument for this work. The datasets used in the final analysis –

the neutron sources, detectors used, thermodynamic states, and bubble multiplicities

observed – are presented in Table 5.1. Data was collected at higher thermodynamic

thresholds (see Fig. 5.9), but this was not used in the final analysis presented in this

work.

In all cases, the data from every event consists of camera images captured when a

pressure or acoustic spike caused by a bubble triggers the acquisition. The images are

hand-scanned to verify bubble counts and positions in each event, which is assumed

to be 100% efficient for bubble identification [3]. Time periods in which the pressure

or temperature of the chambers deviated from the nominal conditions were removed

from the datasets. Following every nucleation and recompression cycle, 10 (resp. 30)

seconds were discarded in data taken with the PICO-0.1L (resp. PICO-2L) chamber to

ensure the target fluid was fully restored to its intended superheated state. To remove
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events possibly caused by wall imperfections or water-target interface bubbles (see

section 5.1.1), single bubbles occurring near the vessel wall were discarded in PICO-2L

datasets (as described in [309]). For PICO-0.1L datasets, a stronger fiducial volume

cut was applied to remove single or multi-bubble events originating within a few cm

of the water-target interface, which was found to become especially mixed through

repeated recompression cycles [3]. After applying all the analysis cuts described

above, the total livetime of the detector in each dataset was calculated, which is

given in Table 5.1. The bubble event rates observed after analysis cuts are applied

are shown in Fig. 5.8, with rate uncertainties calculated using the Feldman-Cousins

method [240].

Background data was collected for all calibration setups (keeping the same geom-

etry and conditions), in the absence of the source/beam, taken close in time to the

dataset with the corresponding source. For all calibration sources except the Sb-Be

experiment, the background was dominated by cosmogenic neutrons. In the case of

Sb-Be, the high gamma flux induced a large rate of single bubble background events,

so this data was deemed unusable. However, gamma rays are only likely to produce a

single bubble, such that multi-bubble events from the Sb-Be source are dominated by

neutrons and are therefore included in the analysis. This behaviour – the high rate

(and lack) of gamma-induced single bubble (resp. multi-bubble) events was confirmed

by taking data with the Sb source present but without the beryllium disk.

For the beam experiments, the background was found to be approximately 0.2

single bubbles/minute (with a negligible rate of coincident, multi-bubble background

events) [3]. For the Sb-Be calibration, the background rate of 2-bubble events was

measured as 0.004 bubbles per minute, and the background rate of the Am-Be ex-

periment was consistent with 0. The background-subtracted data is shown in Fig.

5.9. This includes datasets taken at higher thermodynamic thresholds that were not

included in the final analysis (or Table 5.1). However, these data points illustrate the

expected trend of decreasing bubble rates as the thermodynamic threshold increases,
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Figure 5.8: Bubble count rates from all PICO nuclear recoil calibrations (sources
indicated at the top of each section), for all thermodynamic states and bubble mul-
tiplicities. The error bars shown are Feldman-Cousins 1σ confidence intervals [240].
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Figure 5.9: Background-subtracted bubble rates of single bubble (left) or multi-bubble
(right) events. Each bubble in a multi-bubble event counts separately towards the
rate. The error bars shown represent statistical uncertainty. Taken from figure 7 of
ref. [3].

resulting in sensitivity to less of the neutron recoils from each source.

5.3.3 Calibration simulations

For each experimental setup, a detailed Monte Carlo simulation was created to cal-

culate the incident neutron recoil spectrum in the corresponding bubble chamber.

This was carried out with Geant4 for the Sb-Be experiment [204], and with MCNP-

POLIMI for the beam experiments [332]. The Am-Be setup was simulated with both

softwares, which were found to agree (the MCNP simulation was ultimately used

in the final analysis [3]). As many materials can moderate or reflect neutrons, these

simulations were necessarily very detailed, including all components surrounding each

bubble chamber or associated with the neutron source. An example of a CAD model

used to produce an MCNP simulation is shown in Fig. 5.10.

The cross-section data used by the simulation software is taken from the ENDF/B-

VII library [331, 333], with corrections to the fluorine cross-sections from [334]. For

the beam setup simulations, the differential rate of neutrons coming from the vana-

dium target (dR/dEdΩ) was adopted from ref. [330] and fed into the MCNP simu-

lation. For the Sb-Be simulation, a GEANT4 simulation of the gamma interactions
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Figure 5.10: CAD diagram of the beam calibration setup at the Université de
Montréal. On the left is the vanadium beam target in a calipered holder, with a
helium-3 counter below it. On the right is the PICO test bubble chamber, with a
second helium-3 counter below. Taken from figure 5 of [3], copyright Miaotianzi Jin,
2019 [277].

produced by the Sb source was first calculated, giving initial starting positions and

energies for neutrons within the beryllium disk as an input for a separate GEANT4

simulation [3]. The neutron recoil spectra used in subsequent analyses are shown in

Fig. 5.11. The final calculation of these rates includes the fiducial volume cuts applied

to the data (see section 5.3.2).

5.3.4 Simulation flux normalization

Ancillary measurements of the neutron flux in each calibration setup were performed

to reduce uncertainty on the neutron flux that would be adopted for the simulations

described in section 5.3.3 alone. The exception is the Am-Be data, whose high-

multiplicity events self-constrain the flux of neutrons.

The neutron flux of the Sb-Be source was directly measured with a 3He counter

placed at the location of the PICO-2L detector, which yielded an estimate of 209 ± 22

neutrons per second at the target location at the time of the measurement. The decay
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Figure 5.11: Simulated neutron recoil spectrum for all calibration setups, normalized
per scatter. The spectra are labelled to indicate in what energy ranges scattering
with fluorine or carbon target atoms is dominant. Taken from figure 8b of ref. [3].

of 124Sb over time reduced the neutron yield, so the flux was corrected depending on

the time any particular dataset was taken.

For the neutron beam experiments, the neutron flux was continuously measured

using a 3He counter placed below the vanadium target, as shown in Fig. 5.12. Data

was recorded with a second 3He counter placed near the PICO-0.1L chamber (as

shown in Fig. 5.10), however comparison between the rate observed by the detector

and the simulated rate at that location is affected by uncertainties in the geometry

of the PICO-0.1L detector, its surrounding water bath, etc.

To better assess the neutron flux at the location of the target fluid of the PICO-0.1L

chamber, a measurement was carried out in which the bubble chamber was removed,

and a 3He counter was placed at that location instead. The ratio of the neutron

flux at the vanadium target compared to the target location was measured and is

given for each beam energy in Table 5.2. The simulation-predicted flux ratio is also
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Figure 5.12: Experimental setup at the Université de Montréal for measuring the
neutron flux. Two 3He counters were used: one directly below the 51V target and
one suspended directly downstream of the target. Taken from figure 9 of ref. [3],
copyright Miaotianzi Jin, 2019.

given, and reveals a tendency of the simulation to over-predict this flux ratio. Rather

than correcting for this potential bias, the discrepancies are used to define systematic

uncertainties on the neutron fluxes for those experiments. A second method of em-

pirically estimating the neutron flux of the beam experiments involved measuring the

decay of activated 51Cr produced by the proton beam in the vanadium target [330].

This approach yielded agreeable results for the neutron flux of the beam experiments

but was not used in the final analysis [3].
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Energy Measured ratio Simulated ratio Measurement / simulation

50 keV 2.28 ± 0.07 2.26 ± 0.08 1.01 ± 0.05

61 keV 2.02 ± 0.07 2.26 ± 0.08 0.89 ± 0.04

97 keV 2.07 ± 0.10 2.21 ± 0.07 0.93 ± 0.05

Table 5.2: Table II from ref. [3]. Flux ratio of the vanadium target site to PICO-0.1L
fluid location for different beam experiments (listed by neutron energy), obtained
by 3He counter measurements and from MCNP simulations. The final column gives
the ratio of the two results, indicating that the MCNP simulations more often over-
predict this ratio compared to the measurements.
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5.4 PICO nucleation efficiency analysis

To obtain a measurement of the nucleation efficiency of C3F8 from the neutron cali-

brations presented above, the expected recoil rate from the corresponding simulations

(RSim.) is multiplied by a given nucleation efficiency model to calculate the expected

count rate, which is then compared to the data to fit the model. The nucleation model

– denoted as ϵs (ER, Q) – may be a function of recoil energy ER as well as thermo-

dynamic state parameterized by QSeitz, and will depend on the atomic species s with

which the nuclear recoil occurred. In this notation, the expected rate of nucleations

for a given efficiency model is:

Robs. =
∑︂
s

∫︂ ∞

0

dRsim.

dER

× ϵs(ER, Q)dER (5.5)

In this analysis, a joint fit of all calibration datasets was carried out (data summa-

rized in Table 5.1), resulting in an estimation of the nucleation efficiency model for

both carbon and fluorine [3].

5.4.1 Nucleation efficiency model

Due to the lack of a physically-motivated model for nucleation efficiency as a function

of recoil energy (see section 5.2.1), the model chosen for this analysis was a generic

piecewise function. It is defined by fixed efficiency knots at 0%, 20%, 50%, 80%, and

100% with floating recoil energies at which each efficiency knot is reached (the free

parameters of the model). These floating recoil energies are denoted as {x}s,Q (for

atomic species s and thermodynamic state Q). This set of parameters, along with the

efficiency knots, define the piecewise linear efficiency threshold function ϵs (ER, Q) for

a given Q, as a function of ER. This scheme is depicted in Fig. 5.13.

To address the dependence of the model on thermodynamic state Q, as before there

is no a priori functional form to be used. In the case of this analysis, most calibration

datasets were clustered around QSeitz = 2.45 keV and 3.29 keV (see Table 5.1), which
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Figure 5.13: Depiction of the piecewise linear model used as a nucleation efficiency
model in the present analysis, with fixed efficiency knots and floating recoil energies
at which those efficiencies are reached.

were the main operating conditions of the PICO-60 physics campaign [93]. Therefore,

the data would poorly constrain ϵs(ER, Q) at values of Q not close to either cluster.

In light of this, the simple solution adopted was to define ϵs(ER, Q) at Q = 2.45 keV

and Q = 3.29 keV, and proportionally scale the efficiency curve for each calibration

measurement at Q to the nearest of these two setpoint curves – a sort of “nearest

neighbour scaling” to Q̂, the closer of the two threshold setpoints:

{x}s,Qi
=

Qi

Q̂
{x}s,Q̂ (5.6)

Overall, this model is described by 20 parameters of interest:

{x}C,Q=2.45 keV, {x}F,Q=2.45 keV, {x}C,Q=3.29 keV, {x}F,Q=3.29 keV (5.7)

where each set {x} includes the recoil energies at which the five efficiency knots are

reached. Several physical constraints apply, the first of which is that the efficiency

curves must monotonically increase as a function of recoil energy:
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∂ϵs
∂ER

≥ 0 (5.8)

Additionally, the efficiency curves are taken to monotonically increase as a function

of Q:

∂ϵs(ER, Q)

∂Q
≥ 0 =⇒ {x}s,Q=3.29 ≥ {x}s,Q=2.45 (5.9)

Because there is the expectation that the true nucleation threshold is at higher

recoil energies than the predicted Seitz threshold, the model efficiency curves are

constrained to always be greater than or equal to the corresponding value of Q:

{x}s,Q ≥ Q. (5.10)

One final constraint comes from the consideration that the dE/dx of fluorine in

C3F8 is higher than that of carbon [183], meaning that it is always more likely that a

recoil on fluorine will produce nucleation than one on carbon. Therefore, the efficiency

curves for carbon are constrained to be greater than or equal to the ones for fluorine

at the same value of Q, and at the same efficiency knot:

ϵC(ER, Q) ≥ ϵF (ER, Q) =⇒ {x}C,Q ≥ {x}F,Q (5.11)

In the code implementation of this model, several coordinate transformations are

performed to the parameters of the model [3]. Specifically for each {x}s,Q, the coded

parameters {y}s,Q are the cumulative difference of the logarithm of the un-transformed

parameter values. The efficiency curves in the nominal coordinate system can there-

fore be reconstructed from the code parameters as follows:

{xk}s,Q =
i=k∑︂
i=1

e{yi}s,Q (5.12)

The advantage of this coded representation is that it naturally enforces a physical

constraint of the model, namely eq. 5.8. At the same time it also removes abrupt
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parameter boundaries (by using the logarithm of the parameters), ideally resulting in

a more Gaussian likelihood for those parameters.

5.4.2 Likelihood function

The likelihood function for the data given a nucleation efficiency model ϵs(ER, Q) is

formed by taking the Poisson probability for the observed number of counts k, given

an expected number of counts ν. The log-likelihood for this term is then calculated,

using the Stirling approximation for the denominator [335]:

PPoisson(k|ν) =
νke−ν

k!
(5.13)

=⇒ logPPoisson(k|ν) = k log ν − ν − k log k + k (5.14)

= k − ν + k log
(︂ν
k

)︂
(5.15)

This term is summed over all experiment/thermodynamic state combinations i and

bubble multiplicities j (see Table 5.1) to form the global log-likelihood function:

logL =
∑︂
i

∑︂
j

[︃
−νi,j + ki,j + ki,j log

(︃
νi,j
ki,j

)︃]︃
(5.16)

The expected counts νi,j are calculated by multiplying the expected count rate (see

eq. 5.5) by the corresponding livetime for each dataset (see Table 5.1), adding the

measured background rate (see section 5.3.2) to correspond to the observed counts

(which include the same backgrounds):

νi,j =
(︂
Ri, j +RBkgdi,j

)︂
× Livetimei,j (5.17)

5.4.3 Systematic uncertainties

There are several systematic uncertainties associated with the nuclear recoil cali-

brations, some of which apply to all experiments equally, others to specific source

setups. These systematic uncertainties relate to either the thermodynamic state of
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each dataset (represented by QSeitz), or to the total exposure of the experiment to

neutrons. The former derives from the stability of pressure and temperature control

of the bubble chambers (approximately 1 psi and 0.1 ◦C) as well as long-term fluctu-

ations in temperature. The latter includes uncertainties on the calibration geometry

(such as the depth of the water bath of the PICO-0.1L detector), or the source flux

of neutrons, incorporating neutron flux measurements described in section 5.3.4.

Systematic uncertainty on neutron exposure has a direct effect on the expected

number of counts in a dataset (due to eq. 5.5). The impact of uncertainty on the

thermodynamic state of each experiment comes in the form of a) uncertainty on the

lower bound of the efficiency curve for that dataset (see eq. 5.10) and b) a systematic

on the thermodynamic state-scaling of the efficiency curve for the dataset, based

on eq. 5.6. These experimental systematic uncertainties are given in Table 5.3. A

final, global systematic on the thermodynamic state of 3% is included to capture

uncertainty on the Seitz calculation itself, which contains ad hoc parameters such as

the Tolman length [3, 326].

All systematic uncertainties are incorporated into the nucleation efficiency model

as nuisance parameters. These are treated as multiplicative factors applied to their

corresponding quantity in the simulation or model, and are taken to be log-normally

distributed. Thus, the likelihood for the logarithm of each term is a Gaussian like-

lihood expressed in terms of ηl, the multiple of standard deviations each nuisance

parameter l deviates from its expected value. Thus, the total log-likelihood for all

nuisance parameter values ηl is a log-Gaussian centered at 0 with standard deviation

1,

logLNuisance = −
∑︂
l

η2l
2
, (5.18)

which is then appended to the global log-likelihood given in eq. 5.16. To slightly

reduce the number of nuisance parameters in the model, all thermodynamic state
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Table 5.3: Systematic uncertainties of the PICO nuclear recoil calibration data [3].
Uncertainty onQSeitz derives from uncertainty on the pressure/temperature regulation
of the bubble chambers used, and both geometry and source systematics result in
uncertainty on the total neutron exposure of the experiment. In instances where
there are multiple values given per table cell, the uncertainty varies for the different
thermodynamic states that the experiment was operated with.

Experiment QSeitz [%] Geometry-exposure [%] Source-exposure [%]

Beam, 2013, 97 keV 8.0
7.5

8.3

61 keV 8.0 4.7

Beam, 2014, 97 keV 7.0 / 9.9

3.1

5.9

61 keV 1.7 / 2.5 5.0

50 keV 7.0 / 14 5.4

Sb-Be 6.5 / 7.0 / 7.5 10.3

Am-Be 8.0 26

systematics for each experimental setup (the 2013 and 2014 beam, Sb-Be source, and

Am-Be source setups) are taken to be perfectly correlated. Thus, they can be grouped

into four nuisance parameters in addition to the global QSeitz systematic due to the

Tolman length. Together with the nine nuisance parameters describing the geometry

and source strength systematics (see Table 5.3), there are a total of fourteen nuisance

parameters in the model.

5.4.4 MCMC fitting approach

As discussed in appendix A, fitting high-dimensional models such as the one described

above can present a severe computational challenge, as sampling of the likelihood

function near the optimum can be very inefficient. Additionally, the likelihood pre-

sented in section 5.4.2 includes a relatively small number of data points, fit jointly

from multiple separate measurements, with highly constrained model parameters. All
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Figure 5.14: A depiction of how the “1σ volume” is calculated for a single parameter,
in this case the 0% efficiency point for carbon with QSeitz = 2.45 keV.

of these factors may lead to a severely non-Gaussian likelihood function, making the

use of a typical gradient-descent optimization algorithm a dubious choice. Therefore,

the fast burn-in MCMC approach [277] described in appendix A was utilized for this

analysis, as a robust and efficient optimization tool.

A critical consideration in using this MCMC approach (or indeed any MCMC

algorithm) to fit a model to data is ensuring/assessing convergence. One common

heuristic used in MCMC analyses is the random walker auto-correlation time [216,

336], the number of steps needed until the MCMC walker’s positions are independent

of their starting guess. This ensures that the fit is not affected by a poor initial guess,

but is not sufficient to guarantee that the MCMC has thoroughly explored the region

of parameter space around the maximum likelihood point, meaning the results of the

fit may still be subject to significant statistical fluctuations. Further, this common

metric is not applicable to the fast burn-in method, since the walkers are frequently

interrupted.
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Figure 5.15: The maximum log-likelihood and “1σ volume” as a function of epoch
number for the fit of the PICO calibration data, as convergence metrics. Taken from
figure 18 of ref. [3].

A logical alternative is to look at the progression of the maximum log-likelihood

value found by the MCMC as a function of step number (or equivalently, the epoch

number). Requiring that this value be stable over a large number of steps would serve

as a good metric of the convergence of the best fit. However, it is also important

that the boundary of the likelihood function as mapped by the MCMC becomes

stable, as this is how parameter uncertainties are calculated. To assess this, a “1σ

volume” quantity is defined as the sum of the 1σ uncertainty spans of all model

parameters. For this purpose, the (intentionally simplistic) 1σ uncertainty ranges are

defined assuming an N -D Gaussian likelihood function, so that the 1σ interval can be

constructed by taking the span of parameter space at a value of logL ≥ max (logL)− 1
2

[73]. A depiction of this calculation for a single parameter is shown in Fig. 5.14.

For its application to fitting the PICO nuclear recoil calibration data, the fast

burn-in method was applied in two successive stages, first with relatively large MCMC

proposal step sizes, then with finer steps. This was done to (in the first stage) ensure

broad exploration of the parameter space and ensure that the MCMC was not stuck
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Figure 5.16: Nucleation efficiency results obtained for the PICO analysis, showing the
best-fit model and 1σ uncertainty bands for carbon (magenta) and fluorine (blue) tar-
get atoms as a function of recoil energy, for the two thermodynamic states considered
(QSeitz = 2.45 and 3.29 keV) in the upper and lower panels (also indicated by green
vertical bands). Taken from figure 12 of ref. [3].

in a local optimum, and then finely sample the true global optimum. The step-

size scaling parameter a – which in the Metropolis-Hastings algorithm implemented

in emcee controls the relative scale of steps [216] – was tuned for these purposes,

specifically a = 2 for the first stage and a = 1 for the second stage). The fast burn-in

binning was also adapted; in the first stage, B = 100 bins after 10 steps per epoch

were used to encourage rapid “travel” of the MCMC walkers, while in the second

stage B = 500 bins after 5 steps per epoch resulted in thorough sampling.

Towards the end of the second stage, convergence was assessed using the metrics

described above, requiring 25 successive epochs to have less than a 0.1% change in

maximum log-likelihood or 1 σ volume. After this convergence criteria was satisfied,

the MCMC was run for an additional 50 epochs. No larger changes in either conver-

gence metric were observed in this last series of epochs, suggesting the convergence

criteria were indeed sufficient [3]. The full progression of maximum log-likelihood and

1σ volume for the fit of the data is shown in Fig. 5.15.
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Figure 5.17: Fit results for the 14 nuisance parameters in the PICO analysis, expressed
in terms of standard deviation multiples that each systematic differs from its nominal
value (see section 5.4.3). The error bars shown are 1 σ error bars derived assuming
a Gaussian likelihood [73], indicating that all nuisance parameters deviated by one
standard deviation or less (within 1σ statistical uncertainty). Taken from figure 14
of ref. [3].

5.4.5 Nucleation efficiency results

The resulting fit of the PICO neutron calibration data is shown in Fig. 5.16, which

gives the best-fit nucleation efficiency curves for fluorine and carbon, for the two rep-

resentative thermodynamic states considered. Also shown are 1σ uncertainty bands,

derived approximating the likelihood as a multi-variate Gaussian, and determining

the range in which logL ≥ max(logL)−0.5 to give 68% confidence intervals for each

parameter of interest independently [73]. While this approach is a convenient recipe,

the likelihood function in this analysis is often not Gaussian (see Figs. A.1 and 5.14

for example). Therefore, the uncertainties calculated in this way are intended only

to provide an approximate visual representation of the statistical uncertainty of the

fit, which is considerable. The fit results of the nuisance parameters in the model

are shown in Fig. 5.17, which all ended up being within one standard deviation of
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their nominal values. Another useful way of comparing the fit results to the data is

to directly plot the data count rates vs. the rates predicted by the model, which is

shown in Fig. 5.18. This shows good agreement between the model and data in all

cases.

As expected from historical measurements of nucleation efficiency in bubble cham-

bers (see section 5.2.1), the Seitz model underestimates the measured efficiency curves.

While the fluorine threshold begins within 1 keV of QSeitz in both cases, the dis-

crepancy for carbon is significant. None of the measured efficiency curves are step-

thresholds in form, nor indeed do they resemble other generic functional forms such as

a sigmoid curve (granted these forms could possibly be compatible with the large sta-

tistical uncertainties of this result). This result justifies the use of the flexible model

designed for this analysis. The carbon efficiency curves naturally tend to higher ener-

gies than those of fluorine, meaning the hard constraint enforced by eq. 5.11 did not

cause tension in the fit. The smaller statistical uncertainty of the fluorine efficiency

curves can be understood by considering that the majority of nuclear recoils in all

datasets were produced with fluorine target atoms, as can be seen in Fig. 5.11.

While the work included in this document represents the final, published analysis

from ref. [3], an earlier preliminary version of this work was carried out in the interest

of rapidly publishing the dark matter results of the PICO-60 detector with C3F8 [93].

Therefore, a chief question to be answered in this work is that of compatibility with

the preliminary result used in ref. [93]. A comparison between the two nucleation

efficiency models is shown in Fig. 5.19, which shows that the two results do indeed

agree. The nucleation efficiency model is a direct and critical input used in calculating

the WIMP sensitivity of the experiment, and therefore of the exclusion limits set

on the existence of WIMP-like dark matter. The PICO-60 experiment established

the most stringent (to-date) constraints on the WIMP-proton spin-dependent cross-

section, as shown in Fig. 5.20.
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Figure 5.18: Bubble count rates (red points) listed by neutron source, QSeitz, and
bubble multiplicity, with 1σ Feldman-Cousins error bars [240]. The blue bar charts
are the bubble rates predicted by the efficiency model fit to the data, with the empty
top portions of each bar representing the 1σ statistical uncertainty from the fit. Taken
from figure 13 of ref. [3].
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Figure 5.19: Comparison between the nucleation efficiency model obtained in this
analysis (labelled “C” and “F”, the same result as Fig. 5.16), and that used in the
PICO-60 dark matter analysis [93] (labelled “paper”). Best-fit curves and 1σ uncer-
tainty bands are shown for both results, for carbon and fluorine, at both values of
QSeitz considered.

5.4.6 Application to WIMP sensitivity calculations

Past PICO dark matter analyses using C3F8 took conservative 1σ nucleation ef-

ficiency curves to produce WIMP exclusion limits [309, 343]. However, using the

MCMC samples characterizing the likelihood function of the new calibration data,

the full nucleation efficiency estimate can be directly incorporated into the calcula-

tion of WIMP sensitivity. This removes a redundant analysis step, and avoids relying

on uncertainty limits calculated using generous assumptions (see section 5.4.5). This

more robust approach was also used to calculate the dark matter result of ref. [93],

which is partially reproduced here as another cross-check that the final PICO nucle-

ation efficiency analysis agrees with that of ref. [93].

To calculate the sensitivity of the PICO-60 experiment to WIMPs (and therefore

to calculate the exclusion limit claimed), the log-likelihood function for the nuclear

recoil calibration data described in eq. 5.16 is recast as a likelihood function for the
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Figure 5.20: 90% CL exclusion limits on WIMP dark matter, with a spin-dependent
coupling, with final the PICO-60 result with C3F8 indicated. Limits from PICO-60
with CF3I (thick red), PICO-2L (thick purple), PICASSO (green), SIMPLE (orange),
PandaX-II (cyan), as well as indirect detection limits from IceCube (dashed and
dotted pink) and SuperK (dashed and dotted black) [288, 319, 337–342]. Taken from
figure 7 of ref. [93].

Figure 5.21: Left: 2D histogram of MCMC samples of WIMP interaction rates for a
19GeV/c2 WIMP with SDp coupling, with the interaction rate for QSeitz = 3.29 keV
vs. QSeitz = 2.45 keV. Right: the MCMC samples are used to construct closed con-
tours at specified levels of ∆ logL to represent the likelihood function.
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expected rate of WIMP interactions Φ for a given dark matter particle mass Mχ and

coupling O, spin-independent (SI) or spin-dependent on proton (SDp). For the recent

PICO-60 results [93], physics data taken at thermodynamic thresholds of 3.29 keV and

2.45 keV is combined to form a WIMP exclusion limit, so correlated uncertainties in

the bubble nucleation efficiencies at these two thresholds must also be characterized.

To achieve this, the fast burn-in MCMC procedure of section 5.4.4/appendix A is

used to explore the likelihood function projected in terms of the WIMP event rate

ΦMχ,Q,O =
∑︂
s=C,F

∫︂ ∞

0

Rs,Mχ,O(ER) · ϵs(ER, Q) dEr, (5.19)

where Rs,Mχ,O is the differential recoil spectrum (normalized by total WIMP-nucleon

cross-section) for WIMPs with mass Mχ and coupling O on recoil species s. For the

PICO-60 analysis, the WIMP masses that were considered were Mχ ∈ {3 GeV/c2,

10 GeV/c2, 19 GeV/c2, 50 GeV/c2}, and O ∈ {SI, SDp}, calculating recoil spectra

for a standard halo model as described in [58] with ρ = 0.3GeV/cm3, vesc = 544 km/s,

vEarth = 232 km/s, and v0 = 220 km/s. Calculations are performed following [58, 66]

— the python package dmdd was used specifically for fluorine/SDp coupling [344].

In addition to the set of 16 {ΦMχ,Q,O} parameters specified above, an additional

16 parameters were added to the MCMC sampling scheme, constructed from linear

combinations of Φ’s at different values of Q:

ΦMχ,±,O = ±ΦMχ,2.45keV,O ± ΦMχ,3.29keV,O, (5.20)

This was done to more efficiently explore correlated uncertainties at different thermo-

dynamic states. The reseeding of new epochs is also changed slightly in this analysis

compared to the algorithm described in appendix A, by binning the likelihood (40

bins from the best-fit to ∆ logL = −1) rather than in the projected dimensions, and

taking the high and low extreme values of the projected parameter in each likelihood

bin to seed the next epoch. After running the fast burn-in MCMC on this parameter

construction, the results can then be used to plot the 2D posterior likelihood of WIMP
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Figure 5.22: MCMC samples of WIMP interaction rates for a 19GeV/c2 WIMP with
SDp coupling (grey 2D histogram) as well as the 1 σ contour and best-fit (red curve
and star) obtained in this analysis, compared to that of ref. [277] (blue curve and
star).

interaction rates for a given WIMP mass and coupling. An example of the MCMC

samples for Mχ = 19GeV/c2 and O = SDp is shown in fig. 5.21 (left). Bounding

curves at different levels of ∆ logL can be created to form a more regular posterior

likelihood (Fig. 5.21 right). The result obtained through this approach is compatible

with the results of refs. [93, 277], as shown in Fig. 5.22.

5.4.7 Parametric Monte Carlo study

A further step taken to validate the results presented in section 5.4.5 was a study

of simulated datasets. Using the best-fit model shown in Fig. 5.16, 25 Monte Carlo

datasets were generated – hence this can be considered a “parametric MC study”.

Examples of this simulated data are shown in Fig. 5.23. Specifically, the expected

number of counts for each experiment/bubble multiplicity was calculated using the

best-fit model, from which a random Poisson number of counts was drawn. These
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Figure 5.23: Best-fit nucleation efficiency model (blue bars), with 5 examples of
simulated datasets (coloured points).

Figure 5.24: The maximum log-likelihood (left) and 1σ volume (right) of the fits of
all 25 simulated PICO nuclear recoil calibration datasets, as a function of MCMC
epoch.

MC datasets were fit using the same MCMC procedure described in section 5.4.4.

One result of this study is confirmation that the convergence criteria used in this

analysis were sufficient, as all fits of MC data converged to the true model with

similar uncertainties in approximately the same number of epochs as the fit of the

real data. The convergence metrics of all MC datasets as a function of MCMC epoch

are shown in Fig. 5.24.

Another output of this study is an estimation of the goodness-of-fit of the result ob-

tained in section 5.4.5. As a test statistic, the maximum log-likelihood value obtained

in any given fit can be used to estimate a “χ2” value, as χ2 = −2 logL. Normally, one
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Figure 5.25: Distribution of χ2 obtained from fits of MC datasets (blue histogram), as
well as a χ2 distribution fit to this data (orange curve) having 46 degrees of freedom.
The value of χ2 for the fit of the real data is indicated by a red line, corresponding
to a p-value of 0.19. Taken from figure 16 of [3].

could calculate a p-value using this statistic given the number of degrees of freedom

of the fit (the number of data points less the number of free parameters). However,

in this case, there are many complicated correlations between the model parameters,

resulting in a lower effective number of degrees of freedom. One can instead rely

on the distribution of χ2 obtained for the fits of the MC data – which necessarily

represent a fit that agrees with the data (assuming the MCMC fits converged) – as

their input model is known. Using this distribution of the test-statistic χ2 shown in

Fig. 5.25, the effective number of degrees of freedom is found to be 46. With this

result, a p-value of 0.19 is obtained for the fit of the real data. This confirms that

the model used in this analysis adequately represents the data and that they are in

reasonable agreement. Further applications of this MC study are discussed ahead in

section 5.7.
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5.5 Xe-SBC nuclear recoil study

As a rare-search experiment hoping to detect nuclear recoils from WIMP-like dark

matter and from coherent neutrino scattering, the SBC (Scintillating Bubble Cham-

ber) collaboration requires nucleation efficiency calibrations for their bubble cham-

bers. To date, the only liquid noble bubble chamber operated by the collaboration

was a small liquid xenon (LXe) vessel (introduced in section 5.1.2), with initial results

published in ref. [314]. This included the first demonstration of coincident scintilla-

tion and nucleation in a bubble chamber (measured with a 252Cf neutron source),

as well as a first estimate of the electronic recoil nucleation rate in LXe. With this

same chamber, extensive neutron calibration data was collected from various sources,

and in many thermodynamic operating conditions, allowing for an analysis of the

chamber’s nuclear recoil nucleation threshold. This analysis was carried out similarly

to the PICO analysis presented in sections 5.3 and 5.4.

5.5.1 Neutron calibration data

The LXe bubble chamber (or Xe-SBC) – shown in Fig. 5.26 – held 30 g of pure

liquid xenon. The “right side up” design was used (see section 5.1.1) albeit with a

blank metal flange rather than an interior jar. A temperature gradient was created to

maintain the upper volume in a superheated state (−55◦C to −38◦C), while keeping

the lower extremities in a stable liquid state (at −100◦C). This was achieved by

placing the entire vessel in a vacuum cryostat, and cooling the entire system with a

cold finger from a liquid nitrogen dewar. Separate heating coils maintained the two

different regions at their intended temperatures to within 0.1◦C [314]. Compression

after nucleation was achieved via a hydraulically-driven bellows system.

The detector was instrumented with a single R6834 Hamamatsu photomultiplier

tube (PMT) positioned above the LXe volume, two piezoelectric transducers to record

acoustic signals, and a camera to image bubbles (through a sapphire window in the
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Figure 5.26: Schematic of the LXe scintillating bubble chamber, with a 30 g su-
perheated target volume, housed in a vacuum cryostat. Instrumentation included a
single PMT, piezoelectric transducer, and IR-illuminated camera. Taken from figure
1 of ref. [314].

cryostat). Infrared LEDs were flashed to provide illumination for the camera images,

which were recorded every 10ms. A series of mirrors produced a stereoscopic effect

in the camera images for 3D bubble position reconstruction. Additionally, a plastic

scintillator paddle was positioned above the entire experiment as a muon veto. The

PMT was calibrated using a blue LED situated inside the cryostat, as well as exposure

to a 57Co source producing 122 keV gamma-rays [345]. The latter peaked at a PMT

signal of approximately 4 photoelectrons, indicating a light collection efficiency of ∼

0.05%. Assuming the Lindhard model [178] for the scintillation yield of nuclear recoils

in LXe, this means a recoil energy of 94 keVnr corresponds to a single photoelectron

[345].
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Figure 5.27: Total neutron-xenon cross-section, assuming natural isotopic abundance
of xenon [331, 346].

Source 252Cf Bi-Be Y-Be

QSeitz 0.9, 1.19, 1.89, 2.06 1.14 0.9, 0.97, 1.04, 1.12, 1.14, 1.33, 1.44, 1.56

Livetime 106, 1060, 71.2, 841 193 22.8, 32.0, 31.6, 34.2, 52.6, 67.9, 68.3, 76.5

Table 5.4: Xe-SBC neutron calibration datasets used in this analysis, listing the
Seitz thresholds (in keV) and corresponding livetimes (in minutes) at which data was
collected, for all calibration sources.

The neutron calibrations were performed using a 252Cf source, as well as Y-Be and

Bi-Be photoneutron sources [327]. The former is a spontaneous-fission source produc-

ing a broad, fast neutron spectrum, peaking around 2MeV [347]. The Y-Be sources

produces nearly monoenergetic 152 keV neutrons (corresponding to a maximum recoil

energy of 4.9 keV), at a rate of approximately 800 neutrons per second [345]. The

Bi-Be source, on the other hand, was estimated to only produce < 3 neutrons per

second, and with a lower kinetic energy of 91 keV [345]. The total cross-section of

neutrons with xenon (assuming natural isotopic abundance [346]) is shown in Fig.

5.27, which shows a dense clustering of resonances for O(keV) neutrons.

With the calibration sources described above, data was collected in the Xe-SBC
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Figure 5.28: Single bubble event count rates (with Poisson error bars) as a function
of QSeitz, for all Xe-SBC calibration sources.

chamber at a wide range of thermodynamic stats, ranging from QSeitz = 0.9 keV

to 2.06 keV. This data is summarized in Table 5.4. Bubble chamber events were

triggered by the camera system, based on a change in entropy from frame to frame

(recorded at 100 fps). Coincident acoustic data and PMT waveforms corresponding

to the bubble were also collected - note that the scintillation signal is recorded before

the bubble is visible to the camera, but a coincident window was defined based on

the speed of sound in LXe [314, 348]. The muon detector above the detector vetoed

any triggers in coincidence with events in that channel. A camera trigger also starts

the recompression cycle, returning the detector to operating condition; only when the

vessel is restored to within 0.5 psi of its’ target pressure is it considered live again. As

with the PICO analysis, the bubble image processing was done by hand-scanning the

events. The work of preparing and formatting the raw data was done by M. Bressler;

more details can be found in ref. [345].

The collected data is grouped into events with a single bubble, or two or more
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bubbles. The rate of single bubble events (number of counts divided by total livetime)

is presented in Fig. 5.28 as a function of QSeitz. This reveals the expected trend of

decreasing bubble rates as the thermodynamic threshold increases, for all calibration

sources. Additionally, background data was taken in every experimental setup (source

and thermodynamic configuration) near in time to signal dataset. In the case of the

Y-Be source, an aluminum disk was inserted in the place of the Be target disk, so

that the gamma background produced by the 88Y source itself could still be measured

(the aluminum similarly attenuates the gamma-rays).

5.5.2 Coincident scintillation spectrum

One unique ability of liquid noble bubble chambers compared to their fluorocarbon

counterparts is the possibility of event-by-event energy reconstruction, using the scin-

tillation signal produced. In practice, however, the scintillation signal from nuclear

recoils is very small compared to that from electronic recoil backgrounds [314, 345].

Additionally, the single PMT configuration of the Xe-SBC chamber does not yield

high light-collection efficiency. These issues rule out energy reconstruction for the

data taken with this detector. Fortunately, the larger scintillation signal produced

by electronic recoil background events is easily recorded by the PMT, meaning this

channel can be used effectively for background suppression.

In the case of 252Cf in particular – for which the majority of recoils induced fall

below the 94 keVnr light collection threshold – most events will produce none or single

photoelectrons. However, the measured background data contains mainly events with

greater than 1000 photoelectrons, as can be seen in Fig. 5.29. Therefore, a cut on the

PMT signal was made (at 512.5 photoelectrons, corresponding to a bin boundary in

Fig. 5.29) to suppress electronic recoil background events. The single-bubble back-

ground rate measured for all sources – including the PMT cut for 252Cf – is shown in

Fig. 5.30 as a function of QSeitz.
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Figure 5.29: Fraction of bubble events distributed by their PMT signal (in photo-
electrons, with irregular binning) collected with 252Cf at QSeitz = 0.90 keV, as well as
background data taken in the same conditions afterwards. Taken from figure 5.25b
of ref. [345].

5.5.3 Calibration simulations

As with the PICO nucleation efficiency analysis, full simulations of the neutron cal-

ibration experiments are needed to anticipate the expected recoil energy spectrum,

and therefore to calculate the expected event rate for a given nucleation efficiency

model. For the Xe-SBC analysis, this was done exclusively using GEANT4 [204].

The work of performing the simulation presented in this subsection was mostly done

by A. Zuñiga of the SBC collaboration. The final simulation spectra produced are

shown in Fig. 5.31.
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Figure 5.30: Rate of single bubble events (with Poisson error bars) from background
data taken after neutron source data was collected, as a function of QSeitz.

Figure 5.31: Simulated nuclear recoil spectra from different calibration sources with
the Xe-SBC detector, produced using GEANT4 [204].
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5.6 Xe-SBC nucleation efficiency analysis

Similarly to the PICO analysis, the nucleation efficiency of nuclear recoils in liquid

xenon can be obtained from the neutron calibration described in the previous section

by applying a given nucleation model to the simulated recoil spectrum and comparing

the predicted bubble rate to the observed data (eq. 5.5). In this case, however, the

efficiency model ϵ(ER, QSeitz) is slightly simpler due to the monatomic target material.

In this analysis, a joint fit is performed using all calibration data listed in Table 5.4.

5.6.1 Nucleation efficiency model

The nucleation efficiency model used in this analysis was largely similar to that used in

the PICO analysis (see section 5.4.1), save the differences described below. Efficiency

curves for a given threshold QSeitz are defined as piecewise linear functions ϵ(ER, Q),

with the segments defined by fixed efficiency knots at {0, 0.2, 0.5, 0.8, 1} and the float-

ing nuclear recoil energies ER at which those efficiency knots are reached, {x}Q.

The data gathered in the Xe-SBC calibration campaign include a more continuous

set of QSeitz values compared to the PICO campaign, as can be seen in Table 5.4.

Therefore, a different Q interpolation scheme was developed for this analysis. The

model includes efficiency curves at linearly-spaced values of Q, beginning (and ending)

at the lowest (and highest) values of Q for all datasets, which were 0.9 keV and

2.06 keV. The number of curves in total varied from 2 (just the highest and lowest

values of Q) to 5, which would include Q = 0.9 keV, 1.19 keV, 1.48 keV, 1.77 keV, and

2.06 keV.

To interpolate in between these efficiency curves, a mesh of some kind is needed

to define a bilinear interpolation. One option considered was a triangular mesh as a

function of ER and Q to define a planar interpolation on the mesh panels for efficiency.

The {x}Q points would not form a regular grid, so an algorithm such as a Delaunay

triangulation would be required, which seeks to maximize the smallest interior angle
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Figure 5.32: An example of various triangular meshes defined on irregularly-spaced
points. A Delaunay triangulation (left) seeks to maximize the smallest internal angle
of all triangles in a mesh, which is indicated by an arrow in each mesh example.
Image taken from ref. [349].

of all triangles formed in the mesh, creating what is as close as possible to a regular

mesh on irregular points [350]. A generic example of this is shown in Fig. 5.32.

However, if the mesh is instead defined on the parameters Q and efficiency ϵ, a

regular grid of points can be recovered. The nuclear recoil energies for values of Q in

between the explicitly defined ones are then calculated using the interpolation defined

on this mesh. In this case, the mesh was defined to be all right-angle triangles (which

corresponds to a Delaunay mesh for this regular grid), with each quadrant of points

split into two triangles with their shared hypotenuse going from the lower Q/efficiency

point to the high Q/efficiency point. This scheme is depicted in Fig. 5.33.

The nucleation efficiency model is also subject to the same constraints imposed

on the PICO analysis, namely that the efficiency curves increase monotonically as a

function of recoil energy (eq. 5.8), and are bounded by their corresponding value of

QSeitz (eq. 5.10). The specific construction of the triangular mesh described above

guarantees that this is the case. A proof of this is given in Appendix B. Note that this

would not necessarily be the case for a mesh defined differently, i.e. if the hypotenuse

of each cell was flipped by 90◦ in Q/ϵ.
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Figure 5.33: Cartoon depiction of the triangular mesh approach used in the Xe-SBC
analysis, defined on the regular grid of efficiency and QSeitz points, with the nuclear
recoil energy scale being the third dimension pointing out of the page.

5.6.2 Background treatment and systematic uncertainties

As discussed in section 5.5.1, background data was collected corresponding to every

source by taking data in the same configuration as the calibration, near in time, sim-

ply without the source present (or by replacing the Be-O disk with an aluminum one

in the case of the Y-Be calibration). Unlike with the PICO analysis – in which the

best-fit background rate was subtracted from the background plus signal rate – the

background rate is treated as an independent nuisance parameter for every experiment

(source/QSeitz) and bubble multiplicity, resulting in 26 such nuisance parameters. This

large addition of dimensions to the nucleation model would be a computational chal-

lenge to fit, so the background rate nuisance parameters are profiled-over analytically
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to avoid needing to sample these parameters in the MCMC fit.

Note that the following derivation of this analytical approach to the background

nuisance parameters was prompted by the work of C.E. Dahl on this topic (SBC

Collaboration) [351]. In this scenario, there is one measurement of the background

rate alone (which observes nb counts), and another with the source measuring the

signal and background rate together (observing ns counts). The expected number

of counts in the signal plus background data, µs, is a combination of the expected

number of background events µb and the expected number of signal-only events ν, the

parameter of interest in this case. Because the two datasets may not have the same

exposure necessarily, the background rate is adjusted by the ratio of the exposures of

the two datasets r:

µs = ν + rµb (5.21)

A joint Poisson likelihood can be formed for both measurements:

LBkgd =
e−µsµns

s

ns!
· e

−µbµnb
b

nb!
(5.22)

The log-likelihood is then simplified as (using Stirling’s approximation log n! ≈ n log n−

n [73]):

LBkgd = −µs + ns

(︃
1 + log

µs

ns

)︃
− µb + nb

(︃
1 + log

µb

nb

)︃
(5.23)

Note that in the case where ns = 0 or nb = 0, the terms in the above equation starting

with the corresponding ns or nb evaluate to 0, to avoid the undefined evaluation of the

logarithms. Next, we can substitute in eq. 5.21 so we are dealing with the parameter

of interest:

LBkgd = −ν − rµb + ns

(︃
1 + log

ν + rµb

ns

)︃
− µb + nb

(︃
1 + log

µb

nb

)︃
(5.24)
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and then differentiate the likelihood with respect to µb and set it equal to 0, to find

the optimum value of µb for a given value of ν:

∂LBkgd

∂µb

= −r + rns

ν + rµb

− 1 +
nb

µb

= 0

=⇒ µb(ν + rµb) = −rµb(ν + rµb) + rnsµb + nb(ν + rµb)

=⇒ 0 = (r + 1)µ2
b +

(︃
ν(r + 1)

r
− ns − nb

)︃
µb −

nbν

r

(5.25)

Thus we have a quadratic equation for the optimum in terms of µb, for which we can

obtain solutions for the profiled value of µb = µ̂b using the quadratic equation (one

of which will be positive):

µ̂b = ns + nb −
ν(r + 1)

r
±

√︃(︂
ν(r+1)

r
− ns − nb

)︂2
+ 4 (r+1)

r
nbν

2(r + 1)
(5.26)

Using this result, the profiled (optimized) value of µb can be obtained for a given

predicted ν for every data point, greatly saving on computational resources when

performing the fit of the data.

Other systematic uncertainties are also included in this analysis, however in this

case the greater control over the pressure/temperature of the bubble chamber com-

pared to the PICO campaign allowed uncertainty in QSeitz to be ignored. Further,

because only one chamber was used, with only one calibration data-taking setup for

each source, all systematic uncertainty on the source strengths and experiment ge-

ometries was combined into one systematic per calibration source, and one common

systematic for all three calibrations. The latter is to account for uncertainty in the

total mass of LXe in the bubble chamber. These uncertainties are listed in Table 5.5

[345]. As with the PICO nucleation efficiency study, these systematics are incorpo-

rated as log-normally distributed scaling factors in terms of multiples of the listed 1σ

uncertainties.
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Source Uncertainty

252Cf 1.2%

Bi-Be 50%

Y-Be 7%

All 10%

Table 5.5: Systematic uncertainties on the total neutron-LXe exposure for the Xe-
SBC calibration experiments [345].

5.6.3 Model fitting

The likelihood function constructed for this model follows the same structure as that

of the PICO analysis (see section 5.4.2), namely a Poisson log-likelihood summed over

all experiments i and bubble multiplicities j, with expected counts νi,j and observed

counts ki,j.

logL =
∑︂
i

∑︂
j

[︃
−νi,j + ki,j + ki,j log

(︃
νi,j
ki,j

)︃]︃
(5.27)

The expected counts for a given model are calculated by adding the profiled back-

ground rate (for that experiment/multiplicity as derived in section 5.6.2) to eq. 5.5,

and multiplying by the corresponding livetime (see Table 5.4):

νi,j =
(︁
Ri,j + µ̂bi,j

)︁
× Livetimei,j (5.28)

The nuisance parameters representing systematic uncertainties are included in the

likelihood exactly as described in section 5.4.3, resulting in an extra term being added

to the likelihood function given by eq. 5.18.

Fitting the model to the data was done with the same custom MCMC algorithm

and procedure described in appendix A; the “fast burn-in” MCMC method. This

again was done in two stages (see section 5.4.4), first with coarse binning (250 bins

for each parameter) and large MCMC walker step sizes (with a = 2), and then with

finer binning (500 bins) and smaller steps (a = 1) to map the likelihood function in
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Figure 5.34: Best-fit LXe nucleation efficiency model with 4 threshold setpoints.

greater detail. The same convergence criteria based on the progression of logLmax

and the “1σ volume” of the likelihood function were used as well.

5.6.4 Model selection

As mentioned in section 5.6.1, the number of threshold setpoints in the nucleation

efficiency model is potentially tunable (2-5 were considered for this analysis), with

more threshold setpoints yielding a more flexible model. The trade-off with increas-

ing the number of threshold setpoints (other than leading a to higher-dimensional,

computationally-expensive model) is the potential for over-fitting. To determine the

ideal number of threshold setpoints, models with 2, 3, 4, and 5 setpoints were fit to

the data (as described in section 5.6.3).

A model-comparison analysis can then be used to determine the optimal trade-off

between too many and too few threshold setpoints. Normally one could simply com-

pute the likelihood ratio for two models (using the maximum log-likelihood found for

each). However, in this case, the models with different numbers of threshold setpoints

are not nested models, i.e. interpolations defined on meshes with 2-4 setpoints is not
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# of setpoints # of parameters AIC

2 39 143.4

2 44 140.6

2 49 147.3

2 54 156.3

Table 5.6: Table of AIC values for LXe nucleation efficiency models with different
numbers of threshold setpoints.

necessarily representable by a mesh with 5 threshold setpoints. A model selection

criteria that does not require nested models for comparison is the Akaike Information

Criterion (AIC) [352, 353]:

AIC = 2k − 2 logLmax (5.29)

where k is the number of free parameters in the model. In this case, k is the number

of points in all of the piecewise linear functions {x}Q (5×# of threshold setpoints),

plus the 3 exposure systematic nuisance parameters, as well as the 26 background

rate nuisance parameters. Minimizing this quantity optimizes the balance between

a model that fits the data well, while also adding a penalty for having additional

parameters.

Models with 2–5 threshold setpoints were fit to the data as described in section

5.6.3; an example with 4 threshold setpoints is shown in Fig. 5.34. The AIC values

for the best-fit models are presented in Table 5.6, which indicates that 3 threshold

setpoints are the ideal model definition. Therefore, this is used in the rest of the

analysis going forward.

5.6.5 Nucleation efficiency results

The fit obtained using the optimally-selected model with 3 threshold setpoints, and

the MCMC procedure described in section 5.6.3, is the main result of this analysis.

The progress of maximum likelihood and 1σ volume used to confirm the convergence

324



20 40 60 80 100 120 140
Epochs

29.0

28.5

28.0

27.5

27.0

26.5

m
ax

lo
g

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

1
Vo

lu
m

e
[A

.U
.]

Figure 5.35: Maximum log-likelihood and 1σ volume vs. MCMC epoch for the fit of
the Xe-SBC calibration data, using a model with 3 threshold setpoints.

of the MCMC is shown for this fit in Fig. 5.35. The resulting best-fit and 1σ uncer-

tainty bands for the nucleation efficiency of LXe are shown in Fig. 5.36. As described

in section 5.4.5 for the PICO analysis, the uncertainty bands presented in this plot

are derived assuming a Gaussian likelihood function (which is not necessarily true)

and are meant to provide an approximate visual representation of the statistical un-

certainty of the fit only. Any subsequent analyses using this result make use of the

actual MCMC samples instead. The fit results for all three nuisance parameters –

representing systematic uncertainty on the neutron exposure for the different cali-

bration experiments (see section 5.6.2) – all were found to be within one standard

deviation of their nominal values.

As was found in the PICO analysis presented in section 5.4 and ref. [3], the mea-

sured nucleation threshold deviates from the predicted Seitz model thresholds for

these experiments. For both lower threshold setpoints (QSeitz = 0.9 and 1.48 keV),

the measured threshold is potentially compatible with a step-function threshold (the

theoretical prediction), but displaced from QSeitz by approximately 1 keV. The trend
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Figure 5.36: Best-fit and 1σ uncertainty bands (navy curve and shaded regions) of
the nuclear recoil nucleation efficiency model obtained from the Xe-SBC calibrations.
In this case, the model included piecewise linear efficiency curves at three different
thermodynamic threshold setpoints (QSeitz values indicated in red).
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of the QSeitz = 2.06 keV curve to high recoil energies at higher efficiencies is likely

due to the poor constraining power of the data in this range. It is important to note

the wide uncertainty band in this case, which permits compatibility with a thresh-

old curve closer to a step function displaced by a few keV, matching the behaviour

of the rest of the model. A major milestone demonstrated with these results is the

first measured sub-keV nucleation from nuclear recoils, in a rare-event search bubble

chamber (operated in conditions such that it is not overwhelmed by electronic recoil

backgrounds). This gives credence to the feasibility of the SBC collaboration’s goal

of operating a liquid noble bubble chamber with O(100 eV) nucleation thresholds [94,

298].

To directly compare the nucleation model with the data, Fig. 5.37 shows the bubble

rate predicted for each experiment by the best-fit model, compared to the data itself.

This reveals that the Bi-Be data did not provide any useful constraint, as it was

essentially compatible with the background rate. It is also apparent from this figure

that there is good agreement between the model and almost all data points, with

slightly more tension for the 2+ bubble events from the Y-Be source, for QSeitz =

1.14 and 1.33 keV in particular. This small discrepancy was investigated further by

examining the likelihood function decomposed for each experiment individually, to

see if there was tension between the Y-Be calibration and others. This is shown for

the QSeitz = 0.9 keV efficiency curve in Fig. 5.38. This plot shows that the global

best fit, as well as the preferred parameter values of the 252Cf and Y-Be likelihoods

are almost identical, meaning there is no tension between these different calibration

experiments. Unsurprisingly the Bi-Be data provides a roughly constant likelihood

function in this plot since it is largely uninformative. Further investigation of this

issue is ongoing, specifically by re-fitting the data using an independent simulation of

the Y-Be experiment as a cross-check.
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Figure 5.37: Background subtracted Xe-SBC calibration data (red points) listed by
experiment, QSeitz, and bubble multiplicity. The red (respectively orange dashed)
data error bars are the 1σ (respectively 2σ) uncertainties on the measured bubble
rats, including uncertainty on the background rate. The blue histogram represents the
best-fit model to the data, with the empty portion at the top of each bar indicating
the 1 σ uncertainty band on the predicted signal rate.
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Figure 5.38: Profile log-likelihood functions for the QSeitz = 0.9 keV efficiency curve,
decomposed into the likelihood functions for each of the three Xe-SBC calibration
experiments. The best-fit parameter values obtained from the global fit are indicated
by orange vertical lines. The likelihood curves are translated so that their maximum
occurs at 0, for easier comparison.
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Figure 5.39: The maximum log-likelihood (left) and 1σ volume (right) of the fits of
all 250 simulated Xe-SBC nuclear recoil calibration datasets, as a function of MCMC
epoch.

5.6.6 Parametric Monte Carlo study

Following the steps laid out in the PICO nucleation analysis [3], a parametric Monte

Carlo (see section 5.4.7) study was carried out for this LXe nucleation efficiency

study. Specifically, 250 MC datasets were generated using the best-fit model, shown

in Fig. 5.36. This includes randomly drawn background and source plus background

counts for each experiment and bubble multiplicity. Note that in this case, the faster

computation times compared to the PICO study allowed for 10× the number of

simulated datasets to be generated and studied. This MC data was fit using the

same procedure as the real data (see section 5.6.3). The convergence metrics of these

fits as a function of MCMC progress are shown in Fig. 5.39.

Exactly as was done for the PICO study, the main result of this additional step

was to allow for interpretation of the χ2 = −2 logLmax value for the actual best-fit

model as a proper goodness-of-fit statistic. This was done by calculating χ2 using the

best-fit points of the MC datasets and examining their distribution, which is shown

in Fig. 5.40. This can then directly be used to calculate a p-value for the fit of the

real data, p = 0.22. This confirms that the model does adequately represent the data,

and that the MCMC fit of the real data converged. Fitting a χ2 distribution to this
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Figure 5.40: Distribution of χ2 for 250 MC datasets (blue histogram), which is then
fit with a χ2 distribution with 42 degrees of freedom (red curve). The χ2 value for
the fit of the real data is indicated by a vertical orange line. The binning of this
histogram was chosen using the Freedman-Diaconis rule [354].

data (with an unbinned likelihood fit) reveals that the effective number of degrees of

freedom is 42 (also shown in Fig. 5.40).
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5.7 Model bias studies

The nuclear recoil nucleation efficiency results obtained for both C3F8 and LXe seem-

ingly fit their respective datasets well (based on their p-values), and are in line with

expectations based on previous literature (see section 5.2.1). However, the use of

an ad hoc model not rooted in first-principles physics and fit to data with a custom

MCMC algorithm, fairly raises the question of how confident one can be in these

results. To partially address these concerns, MC data studies were carried out to

verify that the MCMC fits actually converged, and that the data is well represented

by these models (see sections 5.4.7 and 5.6.6). Another concern that can be explored

is whether or not this analysis paradigm yields biased results. That is, even if the

data can be accurately approximated with the model used, does the optimization of

the likelihood function return an unbiased estimate of the data. The following in-

vestigations are based on the appendix B of ref. [3] for the PICO study, as well as a

similar study for the Xe-SBC nucleation efficiency study.

5.7.1 Naive PICO bias study

To provide some initial insight as to whether or not the PICO nucleation efficiency

analysis is biased, one can examine the MC data already described in section 5.4.7.

These 25 MC datasets are generated from the best-fit model of the real data, and

thus can provide an immediate check on the bias of the analysis. The fit results of the

MC data are compared to their true, input values in Fig. 5.41. One can see that while

for most parameters there is no clear bias, in some cases there are persistent offsets,

such as the efficiency curves for carbon at low efficiencies, as well as for fluorine at

100% efficiency. While these offsets are small (and hard to ascribe any significance

to with a sample size of only 25), they may be emblematic of a systemic bias for the

overall analysis.

The average residual of each parameter θ – denoted as ∆θ – could be used to
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Figure 5.41: The fit results of 25 MC datasets (red markers) compared to the best-fit
nucleation efficiency model used to generate the MC data (blue curve and band, the
same as shown in Fig. 5.16). Taken from figure 15 of ref. [3].

calculate a “bias function” B for that parameter, which relates the true, bias-free

value θTrue and the observed fit value θ̂ [355]:

θ̂ = θTrue +Bθ (5.30)

At this point in similar analyses, a critical assumption is often made, which is that the

bias function is simply an offset, or a constant function of the parameter θ, allowing

for simple calculation of the bias-free result:

B(θTrue) = B
(︂
θ̂
)︂

=⇒ θTrue = θ̂ −B
(︂
θ̂
)︂

(5.31)

A generic depiction of the bias correction implied in this scenario is shown in Fig.

5.42.

5.7.2 Robust bias correction for the PICO nucleation study

The key assumption made in the previous section is not known to be true in this case,

prompting a more thorough investigation of the PICO nucleation efficiency results for

bias. Specifically, it may be the case that the bias (if there is indeed any) of each

parameter θj is a non-constant function of that parameter, but also potentially a
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Figure 5.42: Generic example of an estimate of a parameter value (“data fit”) com-
pared to the average MC result of data generated using the best-fit value (“MC
result”). Assuming the bias is a constant offset, the bias-corrected result is shown in
green.

Figure 5.43: Nucleation efficiency models used to generate 25 MC datasets for the
PICO nucleation analysis. Taken from figure 19 of ref. [3].
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function of the true value of every other parameter θi. Thus, we can consider that

there are 400 unique bias functions Bi,j(θi) for every combination of the 20 parameters

of interest in the PICO analysis. The relation between the bias-free parameter values

and the observed fit values θ̂j follows the same form as eq. 5.30 (here θj represents

the true, bias-free value of that parameter):

θ̂j = θj +Bi,j(θi) (5.32)

To fully determine all bias functions Bi,j, ideally MC datasets would be generated

by varying θi and fixing all other parameters, with multiple trials for every combi-

nation of i and j ≤ 20, and then fitting all of the resulting datasets as described

in section 5.4.4. However, this is not computationally practical. To more succinctly

obtain an estimate of the bias functions with minimal computation, 25 MC datasets

were generated using varying input models, drawn randomly from within the 1σ un-

certainty band of the original PICO nucleation efficiency result of section 5.4.5. In

this way, the bias functions can be tested for a range of parameter values locally

around the original best-fit model. The input models used are shown in Fig. 5.43.

The resulting MC datasets are fit as usual.

As a first step, these results can be compared to the average biases obtained in

the naive study of section 5.7.1, which is shown in Fig. 5.44. One can see that the

average biases are similar to those of the MC data fits generated using the original

best-fit model, but not in all cases; this limited comparison does not fully answer the

question of whether or not the bias functions are constant. To get a better idea, the

bias of every parameter j can be plotted against the input value of every parameter

i to see if there is a non-constant relationship (a constant bias function would result

in no apparent correlation between the two). This information is summarized by the

correlation coefficient of each pair of ∆θj and θi. For this, the Spearman correlation

coefficient ρ is used instead of the usual Pearson coefficient, since the former does not

assume normality of the distributions [356]. This quantity is calculated for 2 random
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Figure 5.44: Average biases of 25 MC datasets generated using the best-fit PICO
nucleation efficiency model (red) compared to MC data generated with varying input
models (blue). The average values and error bars were calculated by stacking the
profile likelihoods for all fits, for a given parameter, assuming that the resultant
combined likelihoods are Gaussian (only for visualization purposes).

variables using their rank (their position out of N data points in ascending numerical

order):

ρi,j = 1− 6

N3 −N

[︄
k=N∑︂
k=1

(rank(∆θj)− rank(θi))
2

]︄
(5.33)

Like the common Pearson correlation coefficient, −1 ≤ ρ ≤ 1, with larger absolute

values indicating strong correlations/anti-correlations. All values of ρi,j (for the 20

parameters of interest in the PICO analysis) are shown in Fig. 5.45.

While nearly all combinations exhibit some correlation, it is important to keep

in mind the low statistics of this study (only 25 trials). For this sample size, a

statistically significant correlation (i.e. the null hypothesis of no correlation can be

rejected at the 90% confidence level) requires that |ρ| > 0.324 [356]. There are indeed

many combinations with a statistically significant correlation, which proves that many

of the bias functions in this analysis are not constant, and do depend on the input

values of many different parameters in some cases. Thus, the simple bias-correction

procedure presented in section 5.7.1 is not valid for this study.

To proceed, functional representations of all Bi.j are needed. In this analysis, all
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Figure 5.45: The Spearman correlation coefficients ρi,j for every combination of bias
function Bi,j and input parameter value θi, as calculated in eq. 5.33. Abbreviated pa-
rameter notation is used indicating the atomic species (C/F), thermodynamic thresh-
old fencepost (2.45 keV = L, 3.29 keV = H), and efficiency (0, 0.2, 0.5, 0.8, 1). The
colour-scale also represents the indicated value in each grid space for easier visual-
ization. Grid spaces with boxed values indicate cases of a statistically significant
correlation (at the 90% confidence level). Taken from figure 21 of ref. [3].
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Figure 5.46: Example of a bias function fit with a first-order polynomial. In this
specific case, the bias of the 50% efficient point of the fluorine nucleation threshold
at QSeitz = 3.29 keV is plotted as a function of the fluorine 100% efficiency point with
QSeitz = 2.45 keV. No outliers are rejected in this case. Taken from figure 20 of ref.
[3].

graphs of ∆θj vs. θi are approximately constant or linear, which means the Spearman

correlation coefficients presented in Fig. 5.45 can be conveniently used to delineate

the two cases. Thus, all bias/input combinations are fit with a first-order polynomial

when |ρi,j| > 0.324, or a zeroth-order polynomial otherwise (a constant function).

The fitting in this case is done simply using least-squares [73]. An outlier rejection

procedure is also applied to the bias data; all data points except one are fit with the

appropriate function, and if the exempted point is a > 2σ outlier, it is rejected. One

example of bias data and the resulting first-order polynomial fit is shown in Fig. 5.46.

The resulting bias functions collectively represent 400 constraints (the polynomial

fits of the bias data with statistical uncertainty) on the true values of the 20 pa-

rameters of interest in this analysis. Thus this problem can be thought of as an

over-determined system of equations, except there’s also the statistical uncertainty in

the bias function fits to be included. To incorporate all of these constraints, the fol-
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lowing likelihood function can be constructed for the set of bias-corrected parameter

values {θ} given an observed set of parameters
{︂
θ̂
}︂
:

logLbias

(︂{︂
θ̂
}︂
|{θ}

)︂
=
∑︂
i

∑︂
j

logP
(︂
θ̂j = θj +Bi,j(θi)

)︂
(5.34)

where the probability associated with each term P comes from the fit of each bias

function (with uncertainties determined by the covariance matrix of the fit). Maxi-

mizing this likelihood function using the fast burn-in MCMC method proved to be

even more computationally intensive than the original fit of the data, requiring almost

10000 CPU hours. Therefore, the bias correction was only calculated for the original

best-fit nucleation efficiency model (see Fig. 5.16). For the sake of demonstration, the

obtained bias correction was applied to the ± 1σ uncertainty limits of the original

result, to produce a bias-corrected PICO nucleation efficiency model. This result is

shown in Fig. 5.47.

Fortunately, the bias-corrected result is nearly identical to the original fit result.

Qualitatively, this suggests that although there are many individual cases of small

systemic bias in the fit (as evidenced by Fig. 5.45), in aggregate they tend to cancel

each other out and are merely representative of tensions in the fit. This close agree-

ment lends validity to the original result presented in section 5.4.5 (which potentially

will be used in future analyses), as well as the preliminary version of this analysis

used for the already published PICO-60 dark matter result [93].

5.7.3 Bias study for the Xe-SBC experiment

A bias study was also carried out for the Xe-SBC nucleation efficiency analysis. Note

that, unfortunately, this study used slightly outdated nuisance parameters compared

to those given in table 5.5. These differences are not expected to change the con-

clusions of this study. At the same time, it was deemed not practical to repeat this

study with this correction made. Regardless, as with the PICO bias study, this result

should bolster confidence in the model/analysis paradigm for the main result.

339



3 4 5 6 7 8 9
Recoil Energy [keV]

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Fluorine, 2.45 keV

5.0 7.5 10.0 12.5 15.0 17.5
Recoil Energy [keV]

Carbon, 2.45 keV

Original
Corrected

4 6 8 10 12 14 16
Recoil Energy [keV]

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Fluorine, 3.29 keV

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Recoil Energy [keV]

Carbon, 3.29 keV

Original
Corrected

Figure 5.47: Original (blue) and bias-corrected (green) nucleation efficiency results
for the PICO analysis, with best-fits and 1 σ uncertainty bands. Taken from figure
22 of ref. [3].

250 MC datasets were generated using randomly-drawn input models from the

1σ uncertainty band of the original fit result (see Fig. 5.36). Note that this differs

from the MC data described in section 5.6.6, which were generated from the best-fit

nucleation efficiency model. In this way, possible fit biases can be explored in the

local region of parameter space around the best fit of the real data, allowing for a

bias correction that does not assume a constant offset bias (see section 5.7.1).

These 250 MC datasets were fit following the same procedure described in section

5.6.3. The fit results can then be used to determine the bias function Bi,j of every

parameter j as a function of every parameter i, as in section 5.7.2. To see if there are

non-constant biases present, the Spearman correlation coefficient of every combination

of bias ∆θj = θ̂j−θj vs. input parameter values θi is calculated, and shown in Fig. 5.48.

As with the PICO analysis, there are indeed cases where biases are present that are not

constant, as implied where there are statistically-significant correlations. Note that in

this study, model parameters are abbreviated indicating their efficiency setpoint and

QSeitz set point (1→ QSeitz = 0.9 keV, 2→ QSeitz = 1.48 keV, 3→ QSeitz = 2.06 keV).

Unlike the PICO bias study, the bias relationships defined by these fit results

do not all exhibit a first-order polynomial (or constant) behaviour. While some
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Figure 5.48: Spearman correlation coefficients between all parameter biases and true
parameter values for the Xe-SBC nucleation efficiency study. The colour-scale also
represents the listed values to aid in visualization. Boxed values are statistically
significant correlations (at the 90% confidence level).
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Figure 5.49: Examples of bias data for the Xe-SBC nucleation efficiency analysis (blue
points), with rejected outliers labelled (green “x”). The three different parametriza-
tion options are shown; linear (left), piece-wise linear with a single knot (center), and
an “equal probability” band (right) in red with 1σ uncertainty bands for the former
two cases.
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parameter/bias combinations do, others show a clear two-part linear relationship,

which is parameterized with a piecewise linear function with a variable knot position.

Yet other bias relationships are very poorly constrained, i.e. the bias values obtained

have very large uncertainty ranges regardless of the input parameter value. This

behaviour is characterized by a function with constant probability for the value of

the bias, between two extreme values a and b which are variable:

P (∆θj) =

⎧⎨⎩ 1
b−a

, when a ≤ ∆θj ≤ b

0, otherwise
(5.35)

To obtain functional forms for all 225 bias relationships in the Xe-SBC analysis

(from having 15 parameters of interest), it is necessary to algorithmically select be-

tween these three modalities. This was done by fitting every set of bias data with all

three function types and using the Bayesian odds ratio to select the best parametriza-

tion in each case. Before this, the same outlier rejection method described in section

5.7.2 was applied. Examples of all three bias function modalities and the resulting

parameterizations are shown in Fig. 5.49.

These 225 bias functions are then combined to create the bias-correction likelihood

function for this analysis, using eq. 5.34. Optimizing this likelihood function gives

an estimate for a bias-corrected set of parameters {θ} for a given observed set of

parameters
{︂
θ̂
}︂
. While it is not computationally practical to determine the correction

for all of the millions of MCMC samples constituting the fit of the real data, this

procedure was carried out for the original best fit as well as 10000 other random

MCMC samples. The resulting bias-corrected best fit and uncertainty band are shown

in Fig. 5.50. This figure demonstrates that – as with the PICO bias analysis – the

overall bias correction is very small. Perhaps the only significant change is the high

efficiency, QSeitz = 2.06 keV parameters. In the original result, these parameters had

very large uncertainty and were poorly constrained, which is somewhat curtailed in

the bias-corrected result. The narrowness of the uncertainty bands of the other bias-
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corrected parameters is likely due to the poor statistics of the bias-corrected sampling

(10000 samples vs. O(106) samples in the original fit). Overall, this analysis adds

validity to the Xe-SBC nucleation efficiency study and the original fit result of Fig.

5.36.
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Chapter 6

Conclusions

This body of work documents efforts to better understand the physics of proportional

counter and bubble chamber-based dark matter search experiments for the NEWS-G

and SBC collaborations. While the search for WIMP-like dark matter continues –

and expands to lower mass candidate particles – this work is crucial to both continue

to constrain the parameter space of particle dark matter, and to hopefully claim a

discovery of dark matter one day. Particle dark matter remains a well-supported class

of dark matter hypothesis – one of the most significant questions ever asked by the

scientific community.

6.1 Dark matter searches with NEWS-G

In chapter 3, UV laser and 37Ar calibration techniques for the NEWS-G experiment

were presented. These methods – new to the collaboration since the time of its first

dark matter publication [63] – allow for a full characterization of the detector’s energy

response, including primary ionization and the Townsend avalanche process. The

physics of the former are now better characterized with the COM-Poisson distribution

for primary ionization [140]. However, measurements of the W-value (W (E)) for

different gases remains an ongoing pursuit of NEWS-G. The methane gas W-value

study described in section 3.3 represents the most robust to-date measurement of

this quantity by NEWS-G, with many systematic effects considered. This study
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will provide the recipe for future measurements of W (E) that are ongoing and/or

planned at the U of A and at other SPC setups. These future measurements are all

the more important given the small – but persistent – discrepancy between the W-

value results of section 3.3 and some existing results in the literature [166, 208, 209].

This discrepancy is either due to as-of-yet undiscovered systematics in the NEWS-

G approach, the lack of uncertainties reported for the historical results, or due to

genuinely different SPC-specific physics. No matter the answer to this question, SPC

measurements of the W-value will continue to be mandatory for all future NEWS-G

experiments.

In section 3.4, the prototype SPC installed at the U of A was described, as well as

ongoing efforts to develop and characterize a novel gas handling apparatus with it.

In addition to an LAS system to measure methane gas concentrations in real-time,

silver zeolite was explored as a new radon trap substrate. Based on the preliminary

results given in this work and in ref. [221], this material shows great promise as a

successor to the traditional activated charcoal substrates used by other experiments.

Its competitive performance even while operated at room temperature makes silver

zeolite an appealing choice, which will likely result in continued interest from NEWS-

G and other rare-event search experiments. In the future, the U of A SPC will be used

for W-value measurements in new gas conditions, among other physics objectives.

In chapter 4, the S140 detector was described, the culmination of years of effort

from NEWS-G collaborators to improve upon the previous generation of SPCs, in-

cluding improved material selection, internal shielding, and contaminant assaying [1,

2]. The dark matter physics campaign undertaken with this detector at the LSM was

the first-ever to use a methane target – a hydrogen-rich material with desirable prop-

erties as a medium in which to search for low-mass dark matter. Furthermore, this

was the first time that the novel ACHINOS sensor was used for a dark matter exper-

iment – a necessary technological development for the operation of large SPCs. The

work presented in Chapter 4 constitutes a complete overhaul of the analysis tech-
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niques of the NEWS-G experiment. New pulse-treatment techniques were needed

(section 4.2.3), a completely new approach to UV laser calibrations were developed

(section 4.3.1), and existing analysis methods for 37Ar were expanded to account

for large backgrounds, and charge attachment (section 4.3.3). Due to its large size

and significant electron diffusion, it was possible to count individual primary electron

peaks – a reality that was as beneficial to the final result of the experiment as it

was demanding of more sophisticated analysis techniques to characterize this infor-

mation (sections 4.3.1, 4.4.2). The unique diffusion properties of this experiment also

had consequences for the modelling of electron transport in the detector, calculation

of the hardware trigger efficiency, and the observation of space-charge effects on a

much more dramatic scale than seen before (sections 4.2.5, 4.3.5, 4.4.1). The two-

channel ACHINOS readout resulted in the discovery of powerful PSD variables such

as the N/S amplitude, but again necessitated extra efforts in characterization and

calculation of the detector’s fiducial volume (sections 4.4.3, 4.4.5).

The over-arching theme of the LSM dark matter analysis was of greatly improved

knowledge of SPC physics and improved sensitivity to low-mass dark matter, coupled

with the need to develop new analysis and characterization techniques to match. All

of this culminated in the first PLR analysis of the NEWS-G collaboration, reflecting

our improved knowledge of experimental backgrounds. The preliminary exclusion

limit based on non-blind data for low-mass WIMPs (with a spin-dependent proton

coupling) creates the expectation of a world-leading result when the full data is ana-

lyzed in the coming months. As the collaboration currently prepares for its next dark

matter search with S140 at SNOLAB (with neon gas), it is hoped that the methods

developed and outlined in this work will provide the foundation for future analyses.

The improved gas-handling methods developed with the U of A SPC will also play a

key role in this next phase of the experiment.

Still, there are outstanding questions for the NEWS-G collaboration to answer in

the future. The large background of single electron events experienced at the LSM
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(similar to the experiences of other low-mass dark matter experiments [74]) poses a

major challenge. These may be caused by high-energy α-decay events, despite cuts

applied to remove most of the single electrons induced by these (section 4.4.4). The

physics of this phenomenon are not fully understood. Other than future W-value

measurements, NEWS-G will continue to struggle with the deficiency of quenching

factor measurements. While some data exists, more studies in the relevant target

gases are needed, especially at low energies (O(100) eV), since that is where the

majority of our sensitivity to dark matter derives from. The relatively conservative

logarithmic quenching factor extrapolation used in the LSM analysis (see section

4.3.4) implies that the quenching factor drops to 0 around 100 eV, a behaviour that

is not expected to reflect reality [177]. Therefore, any measurements of the quenching

factor in this energy range – no matter how large the uncertainty or how low the

measured value is – would dramatically improve our sensitivity to low-mass dark

matter. Some future measurements are planned using accelerator neutrons at TUNL

[184], as well as possible neutron capture experiments (section 3.4.3).

6.2 Bubble chamber nucleation efficiency studies

In chapter 5, measurements of the nucleation efficiency of bubble chambers – for both

fluorocarbon and liquid xenon fluids – were presented. This quantity is analogous to

the quenching factor in gaseous detectors, and is the principal physical quantity that

determines these experiments’ sensitivity to dark matter. The C3F8 study presented

in sections 5.3 and 5.4 (resulting in a publication [3]) is the culmination of years of

effort by the PICO collaboration – with data dating beginning in 2013/2014. The

final nucleation efficiency result of this study validated the preliminary one used in

recent PICO publications [93, 343]. Applying similar techniques, the study for the

LXe scintillating bubble chamber (sections 5.5 and 5.6) is the first such measurement

performed for any liquid noble bubble chamber. These novel detector fluids (LAr and

LXe) show great promise for dark matter and neutrino detectors [94], due in part
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to their large-A target atoms, and energy reconstruction/veto capabilities due to the

scintillation light produced during events. Additionally – and perhaps more impor-

tantly for the first - dark matter SBC at SNOLAB – these target media appear to

have even greater suppression of electronic recoils, and lower nuclear recoil thresholds

than traditional fluorocarbon liquids. The latter was demonstrated in this LXe study,

which yielded measured nucleation thresholds as low as 0.9 keVnr. This result, as well

as the electronic recoil measurements carried out for the LXe bubble chamber [345],

will be featured in an upcoming publication.

The bias analysis for both studies (section 5.7) reinforces the validity of the model

and analysis techniques presented in this work. With that reassurance – and the now

double-application of these methods – this approach will likely be used for future

liquid noble and fluorocarbon nucleation efficiency measurements with both the PICO

and SBC collaborations. In the future, more expansive neutron calibration data will

allow for more detailed study of the threshold dependence on thermodynamic state

and recoil energy. Simpler functional forms than the piece-wise linear model used in

this work may be appropriate to use in the nucleation efficiency model, and will make

data fitting more computationally practical.

However, underlying these studies is the fundamental question of why the measured

nucleation thresholds differs from the first-principles thermodynamical theory – the

Seitz model [3, 317]. Additional energy-loss channels must play a role – i.e. ways by

which a nuclear recoil might deposit energy that do not contribute to bubble-forming

heat – but the specific mechanisms are not known. There are ongoing efforts (in-

cluding by U of A M.Sc. student Xiang Li) to elucidate these effects using molecular

dynamics simulations, which model these microscopic processes. When such efforts

bear predictive results, it will be of great interest to compare these to the empirical

results presented here. The LXe calibrations in particular offer a reasonable expec-

tation of agreement with simulation, due to the added simplicity of dealing with a

monatomic target liquid. This provides a path to better understanding the physics
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of bubble chambers, as the search for dark matter continues.
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1928.

[149] F. Sauli, “Principles of Operation of Multiwire Proportional and Drift Cham-
bers,” 1977. [Online]. Available: https://cds.cern.ch/record/117989.

[150] I. Giomataris et al., “NOSTOS experiment and new trends in rare event de-
tection,” Nucl. Phys. B Proc. Suppl., vol. 150, C. Bosio, P. S. Marrocchesi,
F. L. Navarria, M. Paganoni, and P. G. Pelfer, Eds., pp. 208–213, 2006. doi:
10.1016/j.nuclphysbps.2005.01.245. arXiv: hep-ex/0502033.

[151] I. Giomataris et al., “A novel large-volume spherical detector with proportional
amplification read-out,” J. Inst., vol. 3, no. 09, P09007–P09007, 2008. doi:
10.1088/1748-0221/3/09/p09007.

[152] A. Brossard, “Optimization of spherical proportional counter backgrounds and
response for low mass dark matter search,” Ph.D. dissertation, Queen’s Uni-
versity, 2020.

[153] J. Derre, “Pulse shape in the SPC prototype,” Tech. Rep., 2007. [Online].
Available: https://newsgorg.files.wordpress.com/2018/07/pulse-shape-in-the-
spc-prototype-by-j-derrc3a9.pdf.

[154] “COMSOL Multiphysics v. 6.0., COMSOL AB, Stockholm, Sweden.” (), [On-
line]. Available: https://www.comsol.com/.

[155] A. Brossard, “Spherical proportional counters; development, improvement and
understanding,” Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 936, pp. 412–
415, 2019, Frontier Detectors for Frontier Physics: 14th Pisa Meeting on Ad-
vanced Detectors. doi: https://doi.org/10.1016/j.nima.2018.11.037.

362

https://doi.org/10.1002/asmb.918
https://indico.cern.ch/event/769726/contributions/3479756/attachments/1889004/3114803/DDurnford_PHYSTAT.pdf
https://indico.cern.ch/event/769726/contributions/3479756/attachments/1889004/3114803/DDurnford_PHYSTAT.pdf
https://doi.org/10.1017/CBO9781107337701
https://doi.org/https://doi.org/10.1038/nature24647
https://doi.org/https://doi.org/10.1038/nature24647
https://upload.wikimedia.org/wikipedia/commons/archive/f/f7/20120606214516%21Detector_regions.gif
https://upload.wikimedia.org/wikipedia/commons/archive/f/f7/20120606214516%21Detector_regions.gif
https://cds.cern.ch/record/117989
https://doi.org/10.1016/j.nuclphysbps.2005.01.245
https://arxiv.org/abs/hep-ex/0502033
https://doi.org/10.1088/1748-0221/3/09/p09007
https://newsgorg.files.wordpress.com/2018/07/pulse-shape-in-the-spc-prototype-by-j-derrc3a9.pdf
https://newsgorg.files.wordpress.com/2018/07/pulse-shape-in-the-spc-prototype-by-j-derrc3a9.pdf
https://www.comsol.com/
https://doi.org/https://doi.org/10.1016/j.nima.2018.11.037


[156] I. Katsioulas et al., “A sparkless resistive glass correction electrode for the
spherical proportional counter,” J. Inst., vol. 13, no. 11, P11006–P11006, 2018.
doi: 10.1088/1748-0221/13/11/p11006.

[157] C. Jollet, “A new neutrinoless double beta decay experiment: R2D2,” J. Phys.:
Conf. Ser., vol. 1468, no. 1, p. 012 108, 2020. doi: 10.1088/1742-6596/1468/
1/012108.

[158] M. Druyvesteyn and F. Penning, “The Mechanism of Electrical Discharges in
Gases of Low Pressure,” Rev. Mod. Phys., vol. 12, pp. 87–174, 2 1940. doi:
10.1103/RevModPhys.12.87.
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[313] E. Morikawa, R. Reininger, P. Gürtler, V. Saile, and P. Laporte, “Argon, kryp-
ton, and xenon excimer luminescence: From the dilute gas to the condensed
phase,” J. Chem. Phys., vol. 91, no. 3, pp. 1469–1477, 1989. doi: 10.1063/1.
457108.

373

{https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF8_IF0_Eric_Dahl-135.pdf}
{https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF8_IF0_Eric_Dahl-135.pdf}
https://arxiv.org/abs/2209.07426
https://doi.org/10.1088/1748-0221/17/01/c01030
https://doi.org/10.1088/1748-0221/17/01/c01030
{http://inis.iaea.org/search/search.aspx?orig_q=RN:06206980}
{http://inis.iaea.org/search/search.aspx?orig_q=RN:06206980}
https://doi.org/10.1142/9789814644150_0007
https://cds.cern.ch/record/39469
https://doi.org/10.1088/1742-6596/2156/1/012059
https://doi.org/10.1088/1742-6596/2156/1/012059
https://doi.org/10.2172/898400
https://doi.org/https://doi.org/10.7939/R30G3HD1W
https://doi.org/https://doi.org/10.7939/R30G3HD1W
https://doi.org/10.1088/1748-0221/14/08/p08019
https://doi.org/10.1088/1748-0221/14/08/p08019
https://indico.cern.ch/event/593812/contributions/2499749/attachments/1468988/2272242/Guillaume_Giroux_-_CAP_Congress_2017.pdf
https://indico.cern.ch/event/593812/contributions/2499749/attachments/1468988/2272242/Guillaume_Giroux_-_CAP_Congress_2017.pdf
https://doi.org/10.1063/1.457108
https://doi.org/10.1063/1.457108


[314] D. Baxter et al., “First demonstration of a scintillating xenon bubble chamber
for detecting dark matter and coherent elastic neutrino-nucleus scattering,”
Phys. Rev. Lett., vol. 118, p. 231 301, 23 2017. doi: 10.1103/PhysRevLett.118.
231301.

[315] J. L. Brown, D. A. Glaser, and M. L. Perl, “Liquid xenon bubble chamber,”
Physical Review: Letters To The Editor, vol. 102, 1956.

[316] D. Baxter, Eliminating Backgrounds in the Search for Dark Matter with the
PICO-60 Bubble Chamber, 2018. doi: https://doi.org/10.21985/N2TV1Z.

[317] F. Seitz, “On the theory of the bubble chamber,” The Physics of Fluids, vol. 1,
no. 1, pp. 2–13, 1958. doi: 10.1063/1.1724333.

[318] R. Shutt, Bubble and Spark Chambers: Principles and Use, Part 1. Academic
Press, 1967.

[319] C. Amole et al., “Dark matter search results from the PICO-60 CF3I bubble
chamber,” Phys. Rev. D, vol. 93, p. 052 014, 5 2016. doi: 10.1103/PhysRevD.
93.052014.

[320] E. Behnke et al., “First dark matter search results from a 4-kg CF3I bubble
chamber operated in a deep underground site,” Phys. Rev. D, vol. 86, no. 5,
2012. doi: 10.1103/physrevd.86.052001.

[321] E. B. et. al. (COUPP Collaboration), “Direct measurement of the bubble-
nucleation energy threshold in a CF3I bubble chamber,” Physical Review D,
vol. 88, 021101(R), 2013, arXiv:1304.6001v2.

[322] F. Tardif, Direct detection of dark matter with PICO experiment and the
PICO-0.1 calibration chamber, 2019. [Online]. Available: papyrus.bib.umontreal.
ca/xmlui/handle/1866/22214.

[323] S. Archambault et al., “New Insights into Particle Detection with Superheated
Liquids,” New J. Phys., vol. 13, p. 043 006, 2011. doi: 10.1088/1367-2630/13/
4/043006. arXiv: 1011.4553 [physics.ins-det].

[324] F. d’Errico, “Fundamental Properties of Superheated Drop (Bubble) Detec-
tors,” Radiat. Prot. Dosim., vol. 84, no. 1-4, pp. 55–62, 1999. doi: 10.1093/
oxfordjournals.rpd.a032796.

[325] F. d’Errico, “Radiation dosimetry and spectrometry with superheated emul-
sions,” Nucl. Instrum. Methods Phys. Res., Sect. B, vol. 184, no. 1, pp. 229–
254, 2001. doi: https://doi.org/10.1016/S0168-583X(01)00730-3.

[326] R. Tolman, “The effect of droplet size on surface tension,” J. Chem. Phys.,
vol. 17, no. 3, pp. 333–337, 1949. doi: 10.1063/1.1747247.

[327] A. E. Robinson, “Reanalysis of radioisotope measurements of the 9Be(γ, n)8Be
cross-section,” Phys. Rev. C, vol. 94, no. 2, p. 024 613, 2016. doi: 10.1103/
PhysRevC.94.024613. arXiv: 1602.05911 [nucl-ex].

[328] R. Van de Graaff, “Tandem Electrostatic Accelerators,” Nucl. Instrum. and
Methods, vol. 8, p. 195, 1960.

374

https://doi.org/10.1103/PhysRevLett.118.231301
https://doi.org/10.1103/PhysRevLett.118.231301
https://doi.org/https://doi.org/10.21985/N2TV1Z
https://doi.org/10.1063/1.1724333
https://doi.org/10.1103/PhysRevD.93.052014
https://doi.org/10.1103/PhysRevD.93.052014
https://doi.org/10.1103/physrevd.86.052001
papyrus.bib.umontreal.ca/xmlui/handle/1866/22214
papyrus.bib.umontreal.ca/xmlui/handle/1866/22214
https://doi.org/10.1088/1367-2630/13/4/043006
https://doi.org/10.1088/1367-2630/13/4/043006
https://arxiv.org/abs/1011.4553
https://doi.org/10.1093/oxfordjournals.rpd.a032796
https://doi.org/10.1093/oxfordjournals.rpd.a032796
https://doi.org/https://doi.org/10.1016/S0168-583X(01)00730-3
https://doi.org/10.1063/1.1747247
https://doi.org/10.1103/PhysRevC.94.024613
https://doi.org/10.1103/PhysRevC.94.024613
https://arxiv.org/abs/1602.05911


[329] M. Lafreniere, “Mesures d’étalonnage aux neutrons et caractérisation par étude
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Appendix A: Fast burn-in MCMC
algorithm

Fitting a high-dimensional models such those described in chapters 3 – 5 often presents

a critical computational challenge, due to the “curse of dimensionality”, wherein sam-

pling or optimization algorithms must probe exponentially rising parameter space for

every additional parameter that is added to a model [357, 358]. Simply put, sampling

near the optimum of a many-parameter likelihood function becomes increasingly in-

efficient, to the point where finding the true global optimum may be intractable for

some algorithms.

A Markov Chain Monte Carlo (MCMC) is a natural tool for such a problem, of

which there are many powerful implementations in common scripting languages, such

as the emcee library for python [216]. This software package employs a variant of

the typical Metropolis-Hastings (MH) walker step proposal algorithm [359] called the

“stretch move” [216, 336], which was shown to out-perform the MH algorithm. How-

ever, this approach was deemed too inefficient for some of the analyses included in

this work. For the PICO nucleation efficiency analysis, a custom MCMC approach

was developed [277] called the ”fast burn-in method”. Rather than letting the MCMC

walkers sample uninterrupted (with a given proposal function), this algorithm pro-

ceeds as follows:

1. Start M walkers with randomized initial guesses, using the standard emcee

stretch move MH proposal.

2. After a small number of steps (usually 5 to 10), interrupt the walkers.

378



54.5

55.5

56.5

329646 samples 339629 samples 676662 samples

54.5

55.5

56.5

2396091 samples 3934698 samples 6622566 samples

4 7 10

54.5

55.5

56.5

11099596 samples

4 7 10
18051223 samples

4 7 10
27155599 samples

0.0 0.2 0.4 0.6 0.8 1.0
ER Carbon 20% efficiency [keV]

0.0

0.2

0.4

0.6

0.8

1.0

Po
st

er
io

r
2

Figure A.1: An example of the progression of a fast burn-in MCMC fit of the PICO
calibration data, for the parameter giving the recoil energy at which there is 20%
nucleation efficiency on carbon. In each frame, the cumulative MCMC samples are
shown as a blue 2D histogram, while the starting points for the current epoch are
shown in red. This emphasizes the algorithm’s preferential sampling of the boundary
of the likelihood function. Taken from figure 17 of [3].

3. Bin the samples explored by the walkers to that point in B bins of each param-

eter in the model. Determine the maximum likelihood set of parameters in each

bin and append to a list. Remove non-unique sets of parameters from this list.

4. Start a new set of walkers from the list of best-fit points determined above.

5. Repeats steps 2-4 until convergence is reached. Each iteration of this process is

dubbed an “epoch”.

A depiction of this approach for one of the variables in the PICO nucleation ef-

ficiency model is shown in Fig. A.1. This approach forces the MCMC walkers to
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Figure A.2: Depiction of the 2-D Rosenbrock likelihood function [360].

preferentially sample the boundary of the likelihood function, which can be used (in

some approaches) to estimate parameter confidence intervals as well as the best-fit

model to the data. This does however come at the expense of no longer sampling the

posterior proportionally, a desirable trait of typical MCMC algorithms.

To demonstrate the performance/efficacy of the fast burn-in method compared to

a traditional MCMC, we can pit both against a standard test of optimization and

sampling algorithms - the Rosenbrock function [360–363]. This challenging likelihood

function, generalizable to N dimensions, is defined as [362]:

− logL =
N−2∑︂
i=0

[︂
(1− θi)

2 + 100
(︁
θi+1 − θ2i

)︁2]︂
(A.1)

The log-likelihood contains a parabolic valley with a narrow global optimum, as can be

seen in Fig. A.2 for the 2-D function. The non-trivial correlations between parameters

(and possibly large number of dimensions) poses a difficult task for all algorithms.

For this comparison, an MCMC was run on the 10-D version of this likelihood

(N = 10 above), using the normal MH “stretch step” of the emcee package [216]
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Figure A.3: Corner plot of the 10-D Rosenbrock function sampled with a MH “stretch
move” MCMC (using emcee [216]). The lower-left panels show 2-D histograms of the
MCMC samples of every possible parameter combination with a logarithmic colour-
scale. The diagonal panels show the marginal posterior probability distributions of
each individual parameter (a histogram of the MCMC samples). The upper-right
panels display the Spearman correlation coefficient [356] of each pair of parameters,
with a colour-scale to aid visualization.

with 100 walkers, a step size scaling of a = 1, running for 5 × 107 steps (a total of

5 × 109 samples), with a burn in period of 106 steps. This long MCMC run was

needed to fully sample this complicated function, with a burn-in time at least as long

as the auto-correlation time (approximately 106 samples [362]), and a main MCMC

run many times longer than that. The overall shape of this 10-D likelihood function

can be gleamed – including highly non-Gaussian, correlated features – from a corner

plot of these samples, shown in Fig. A.3. The fast burn-in method was then used

to sample the 10-D Rosenbrock function with 200 bins per parameter, 10 steps per

epoch, a step size scaling of a = 1, for 3000 epochs (a total of ∼ 5× 107 samples).
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It’s worth noting the Rosenbrock likelihood is a case where the marginalized like-

lihood for any given parameter does not necessarily agree with the profile likelihood.

Specifically, the marginalized likelihood integrates over all other parameters Θ except

the one in question, θ [73]:

LMarg.(θ) =

∫︂
Θ

L(Θ|θ)dΘ (A.2)

While the profile likelihood is maximized over the nuisance parameters (indicated

with a hat) for a given value of the parameter of interest [73]:

LProf.(θ) = L(Θ̂|θ) (A.3)

The marginalized posterior probability distribution – the normalized marginal like-

lihood – is the natural output of an MCMC optimization, since for the standard MH

algorithm, the posterior is estimated as simply the histogram of MCMC samples. To

obtain the profile likelihood from MCMC samples, one must determine the maximum

value of L possible for a given value (or given bin range) of the parameter of interest θ.

This is easily done in python with functions such as scipy.stats.binned statistic

[238].

In this example study, there is substantial disagreement between the marginal

and profile likelihood functions for some parameters, with the former often yielding

biased best-fit values that differ significantly from the true optimal parameter values,

which one can see is 1 for all θi from eq. A.1. A prominent example of this is

shown in Fig. A.4, comparing the profile and marginal likelihoods of θ7 estimated

using the MH MCMC. In this case, similar case studies in the literature confirm that

the marginalized distribution is calculated correctly (namely figure 8 of ref. [362]),

but the best-fit value one would read off of this distribution is close to 0, whereas

the profile likelihood is peaked around the true value of 1. To understand this, it

bears remembering that the marginalized posterior probability at a given value is
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Figure A.4: The marginalized posterior probability distribution of Rosenbrock func-
tion parameter θ7 (black curve) compared to the posterior calculated from the profile
likelihood (red dashed curve), both estimated using the MH “stretch move” MCMC
[359, 360].

determined by the likelihood times the volume of parameter space; in this case, the

volume around the true optimum of 1 is very small, so the posterior probability is

relatively lower [364].

The fast burn-in method can only produce the profile likelihood for specified pa-

rameters, not the marginalized posterior, since the sampling is not proportional to the

posterior probability as is the case with most MCMC algorithms (admittedly a deficit

of this method). Therefore, the output of both MCMC algorithms must be compared

on the basis of profile likelihood functions, which are displayed for several parameters

of the Rosenbrock function in Fig. A.5. From this, it is clear that both approaches

produce nearly identical likelihood function results, although the MH estimate does

seem to under-sample the likelihood slightly compared to the fast burn-in method.

As it is established that both the MH and fast burn-in MCMC approaches produce

roughly equivalent results in the case of the 10-D Rosenbrock likelihood, the remaining
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Figure A.5: The profile likelihood functions of several 10-D Rosenbrock function
parameters, comparing the results obtained with the MH MCMC (red dashed curve)
and fast burn-in MCMC methods (navy curve).

question is of the relative performance/efficiency of each method. This can be assessed

by considering how many samples were required to reach the true global optimum

(which occurs at logL = 0), and how far off the best-fit estimate was in each case

from the true optimum parameter values (which occur at θi = 1 for all i). The latter

quantity is defined as:

||best− fit|| =

⌜⃓⃓⎷ 9∑︂
i=0

(︂
θ̂i − 1

)︂2
(A.4)

The evolution of both of these quantities (max logL and ||best− fit||) as a function

of MCMC samples is shown in Fig. A.6. This clearly demonstrates that compared

to MH, the fast burn-in algorithm obtains a higher maximum likelihood and closer

best-fit, with orders-of-magnitude fewer samples. This improved performance for
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Figure A.6: The evolution of the maximum log-likelihood (left) and distance between
the best-fit and true optimum parameters (right) of the 10-D Rosenbrock likelihood
as a function of MCMC samples, for both the MH MCMC (red dashed curve) and fast
burn-in MCMC (navy curve). Note that the highest possible maximum log-likelihood
is 0, and the minimum possible best-fit distance ||best− fit|| is 0.

high-dimensional models is the motivation for using this MCMC approach in several

instances throughout this work.
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Appendix B: LXe nucleation
efficiency bilinear interpolation

The LXe nucleation efficiency model described in section 5.6.1 includes a triangular

mesh defined on a grid of points of QSeitz and efficiency ϵ, to setup a planar interpo-

lation on the mesh cells for ϵ as a function of QSeitz and recoil energy ER. Efficiency

curves extracted from this interpolation object for some QSeitz in between the fen-

cepost values of Q must still obey the physical constraint of monotonicity in Q. A

proof that this holds is given below.

Consider a single quadrilateral cell of the mesh (i.e. two triangles), defined by the

points (Q1, ϵ1, x11), (Q1, ϵ2, x12), (Q2, ϵ2, x22), and (Q2, ϵ1, x21), as shown in Fig. B.1.

Necessarily, these points must follow the constraints

xi2 ≥ xi1, x2j ≥ x1j, xij ≥ Qi (B.1)

to respect the usual physical constraints on the model. The shared hypotenuse of the

two triangles we denote as
←→
H , the two opposite triangle edges as

←→
O1 and

←→
O2 when

ϵ = ϵ1 and ϵ2 respectively. These lines can be defined parametrically as follows:

←→
H = t

⎛⎜⎜⎜⎝
Q2 −Q1

ϵ2 − ϵ1

x22 − x11

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
Q1

ϵ1

x11

⎞⎟⎟⎟⎠ , t ∈ [0, 1] (B.2)

←→
O1 : u

⎛⎜⎜⎜⎝
Q2 −Q1

0

x21 − x11

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
Q1

ϵ1

x11

⎞⎟⎟⎟⎠ , u ∈ [0, 1] (B.3)
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Figure B.1: Arbitrary single quadrilateral of the mesh scheme used for the Xe-SBC
nucleation efficiency model, with labels, showing an efficiency curve interpolation for
some Qi.

←→
O2 : v

⎛⎜⎜⎜⎝
Q2 −Q1

0

x22 − x12

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
Q1

ϵ2

x12

⎞⎟⎟⎟⎠ , v ∈ [0, 1] (B.4)

An efficiency curve extracted from this model for a given Qi is then defined by two

line segments
←→
X1 and

←→
X2, intersecting along the hypotenuse of the triangle at a point

X∗. That point of intersection can be found by finding t/u/v such that Q = Qi:

ti(Q2 −Q1) +Q1 = Qi =⇒ ti =
Qi −Q1

Q2 −Q1

(B.5)

and indeed it’s trivial then that ui = vi = ti, defining the points of intersection

along
←→
O1 and

←→
O2 . Next, the slope and intercept of

←→
X1 and

←→
X2 (m1/b1 and m2/b2

respectively) can be found as follows:

m1 =
ti(x22 − x11) + x11 − ti(x21 − x11)− x11

ti(ϵ2 − ϵ1) + ϵ1 − ϵ1

=
x22 − x21

ϵ2 − ϵ1

(B.6)

b1 = ti(x21 − x11) + x11 −m1ϵ1

= ti(x21 − x11) + x11 −
x22 − x21

ϵ2 − ϵ1
ϵ1

(B.7)
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m2 =
ti(x22 − x12) + x12 − ti(x22 − x11)− x11

ϵ2 − ti(ϵ2 − ϵ1)− ϵ1

=
ti(x11 − x12) + x12 − x11

(1− ti)(ϵ2 − ϵ1)

=
x12 − x11

ϵ2 − ϵ1

(B.8)

b2 = ti(x22 − x12) + x12 −m2ϵ2

= ti(x22 − x12) + x12 −
x12 − x11

ϵ2 − ϵ1
ϵ2

(B.9)

To prove that any efficiency curve model obtained from the mesh obeys all the

physical constraints of the model, it must be the case that for some Qk > Qi,
←→
Xk1

and
←→
Xk2 are strictly greater than

←→
Xi1 and

←→
Xi2. This can be examined in three separate

cases; where
←→
Xk1 and

←→
Xi1 overlap as a function of ϵ (case 1), where

←→
Xk1 and

←→
Xi2 overlap

(case 2), and where
←→
Xi2 and

←→
Xk2 overlap (case 3). Case 1, where ϵ < ti(ϵ2 − ϵ1) + ϵ1,

is proven as follows:

tk > ti

=⇒ tk(x21 − x11) + x11 −m1ϵ1 > ti(x21 − x11) + x11 −m1ϵ1

=⇒ m1ϵ+ b1k > m1ϵ+ b1i

=⇒
←→
Xk1 >

←→
Xi1, when ϵ < ϵi∗

(B.10)

Similarly , for case 3 we have ϵ > tk(ϵ2 − ϵ1) + ϵ1:

tk > ti

=⇒ tk(x22 − x12) + x12 −m2ϵ2 > ti(x22 − x12) + x12 −m2ϵ2

=⇒ m2ϵ+ b2k > m2ϵ+ b2i

=⇒
←→
Xk2 >

←→
Xi2, when ϵ > ϵk∗

(B.11)

Case 2 is somewhat more complicated, as m2 is not necessarily always greater than

m1, but we can prove that the postulate holds by demonstrating that
←→
Xk1 at point

ϵi∗ is greater than xi∗ (case 2a):
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ti < tk

=⇒ ti(x21 − x11) < tk(x21 − x11)

=⇒ ti(x22 − x11 − x22 + x21) < tk(x21 − x11)

=⇒ ti(x22 − x11) < tk(x21 − x11)

=⇒ ti(x22 − x11) < m1ti(ϵ2 − ϵ1) + tk(x21 − x11)

=⇒ ti(x22 − x11) < m1 (ti(ϵ2 − ϵ1) + ϵ1) + tk(x21 − x11) + x11 −m1ϵ1

=⇒ xi∗ < m1ϵi∗ + bk1
(B.12)

and that xk∗ is greater than
←→
Xk1 at point ϵk∗:

tk > ti

=⇒ tk(x22 − x12) > ti(x22 − x12)

=⇒ tk(x22 − x11 − x12 + x11) > ti(x22 − x12)

=⇒ tk(x22 − x11) + x11 > tk(x12 − x11)− (x12 − x11) + ti(x22 − x12) + x12

=⇒ tk(x22 − x11) + x11 > m2 (tk(ϵ2 − ϵ1) + ϵ1) + ti(x22 − x12) + x12 −m2ϵ2

=⇒ xk∗ > m2ϵk∗ + bi2
(B.13)

and therefore
←→
Xk1 >

←→
Xi2 when ϵi∗ ≤ ϵ ≤ ϵk∗. Therefore the postulate holds in all

cases, and any efficiency curve function interpolated using this specific triangular mesh

formulation obeys the physical constraints of the nucleation model. Note that this

would not necessarily be the case for a mesh defined differently, e.g. if the hypotenuse

of each cell was flipped by 90◦ in Q/ϵ.
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