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Abstract

In the bitumen extraction process, precise control of the froth-middling interface

in the Primary Separation Cell (PSC) is critical for maximizing bitumen recovery.

Traditional methods for monitoring this interface suffer from reliability issues due to

sensor clogging and challenging process conditions. This thesis presents innovative

computer vision techniques to enhance the accuracy and reliability of interface level

estimation within PSCs.

The research begins by detailing the problem followed by a review of computer

vision and image processing principles, laying the groundwork for the methodologies

employed in Chapter 2. The preceding chapter, Chapter 3, introduces a state-of-

the-art image restoration algorithm paired with an image segmentation technique

to refine interface level measurement. The approach employs a state-space model

augmented with skewed-t distribution to handle image degradation, with parameter

estimation facilitated by an expectation-maximization (EM) algorithm in conjunction

with a robust Kalman filter (KF). The method’s effectiveness is demonstrated through

laboratory-scale experiments, where it surpasses existing models in estimating the

interface level.

In Chapter 4, the research advances with a novel framework designed to address

the challenges posed by partially occluded PSC interface images. This includes the

utilization of background subtraction and advanced autoencoder-based inpainting for

image restoration. The developed framework integrates spatial and temporal analy-

sis through Markov Random Field (MRF) segmentation and image differencing algo-

rithms, respectively, augmented by an ARX model to capture process dynamics. The
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fusion of image-based observations with process models via dual Kalman filters results

in a method that stands up to the rigors of industrial environments, outperforming

traditional methods in accuracy and robustness.

Finally, Chapter 5 applies the image processing methods developed in the thesis

to tackle industrial challenges. These include addressing the fuzziness of the inter-

face, sight glass stains, steam obstructions, camera view obstructions, and lighting

variations. The techniques presented in this thesis signify a substantial improvement

over current practices, promising enhanced control and recovery rates in oil sands

bitumen extraction processes.
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Chapter 1

Introduction

1.1 Overview of the Oil Sands Industry

The oil sands in Alberta represent a significant portion of the world’s petroleum

resources, ranking as the third-largest oil reserves globally. Characterized by their

mixture of bitumen, sand, clay, and water, these deposits offer a substantial but

challenging opportunity for extraction and production. Unlike conventional oil re-

serves, the extraction of crude bitumen from oil sands involves complex processes due

to the viscous nature of bitumen mixed with sand and clay. The industry primar-

ily relies on two extraction methods: surface mining for deposits near the surface

and in-situ thermal extraction for deeper reserves. Despite advancements, these pro-

cesses, especially water-based thermal heating technologies like hot-water extraction

and steam-assisted gravity drainage (SAGD), face challenges due to their high opera-

tional costs and environmental footprints. Central to these extraction methods is the

Primary Separation Cell (PSC), which plays a pivotal role in the bitumen recovery

process, achieving separation through density differences [1, 2].

The extraction of bitumen from the oil sands involves intricate procedures within

the PSC, where the separation of bitumen from water, clay, and sand is mainly

achieved through froth flotation. This process is enhanced by the addition of hot

water and specific chemicals to the vessel to reduce the viscosity of bitumen and

facilitate its separation. The introduction of air into the mixture allows bitumen to
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attach to air bubbles and ascend to the surface, creating a froth layer rich in bitumen.

Continuous stirring within the vessel ensures efficient mixing and separation, resulting

in the formation of three distinct layers: a top froth layer containing the majority

of the bitumen, a bottom tailings layer composed primarily of sand, and a middling

layer that contains water and clay.

The PSC is designed with a conical bottom and steep side slopes to aid the gravity

separation process. Oil sands slurry, prepped with hot water, is introduced into the

vessel, initiating the separation. The heavier solids settle at the bottom, while the

lighter bitumen rises to create a clean froth product. This froth layer is critical for bi-

tumen recovery, with the middlings and underflow layers requiring further processing

or disposal.

The efficiency of a PSC is paramount, not only for maximizing bitumen recovery

but also for enhancing the economic and environmental sustainability of the extraction

process. The control of the separation interface between the froth and middlings layers

is crucial for optimal PSC operation. An improperly managed separation interface

can lead to the carryover of solids into the bitumen stream or the loss of bitumen to

the tailings, thus affecting both product quality and recovery efficiency.

1.2 Problem Statement & Motivation

The effective recovery of bitumen in the oil sands extraction process hinges signifi-

cantly on the precise control of the interface level between the froth and middlings

layers within the PSC. Achieving an optimal interface level is thus crucial for maxi-

mizing bitumen recovery while ensuring economic and environmental sustainability.

Various detection and measurement technologies are employed to monitor and main-

tain this critical interface level, including differential pressure cells (DP Cells), nucle-

onic density profilers, and visual-based camera systems. Each of these technologies

has its distinct advantages and limitations, necessitating a combination of approaches

for accurate interface-level detection.
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Differential pressure cells are praised for their simplicity, ease of installation, and

cost-effectiveness. However, their accuracy is often compromised due to the challenge

of estimating the density of the multiphase mixture accurately. Nucleonic density

profilers, although theoretically ideal due to their direct density measurement capa-

bility at different vessel levels, face practical challenges such as high installation and

maintenance costs and potential safety risks associated with their nuclear operation.

Camera systems, offering visual monitoring of the interface level changes, emerge as

a promising solution despite their limitations under certain operational conditions,

such as poor visibility due to viscous bitumen adherence or the interface level falling

outside the camera’s view [3].

The precision in controlling the froth-middlings interface level is further compli-

cated by the inherent limitations of traditional instruments. These limitations often

necessitate manual monitoring and adjustments by operators, highlighting the need

for more reliable and automated control solutions. Recent advancements in com-

puter vision technology offer a glimmer of hope, providing a non-contact method for

monitoring the interface level with potential for automation. Despite its appeal, the

application of computer vision in PSC operations is not without challenges. Issues

such as camera vibrations, obstructions, lighting variations, and the computational

intensity of certain image processing techniques can affect the accuracy and efficiency

of interface-level detection.

Exploring computer vision for enhanced interface detection, several methods have

been developed with distinct advantages and limitations. The technique in [4] employs

edge detection and particle filtering for interface-level inference, offering robustness

to lighting changes but struggles with obstructions on the sight glass. Meanwhile,

[5] utilizes frame differencing to capture dynamic interfaces, effectively separating

them from static backgrounds, albeit with challenges in detecting subtle movements.

Additionally, [6] introduces a Markov Random Field (MRF) and Gaussian Mixture

Model (GMM)-based segmentation for precise interface location between froth and
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middlings, improving accuracy by considering neighboring pixel information. Each

approach, while innovative, faces issues from computational demands to environmen-

tal noise sensitivity, emphasizing the ongoing need for integrating precise detection

with robust control for optimizing bitumen recovery and reducing environmental im-

pact.

1.3 Thesis Contributions

This thesis introduces advanced computer vision techniques to improve froth-middling

interface level estimation in PSCs, addressing critical challenges in bitumen extraction

processes. The contributions and organization of this thesis are detailed as follows:

1. Development of an innovative image restoration algorithm using a spatially ro-

bust Kalman Filter (KF), simultaneous model parameter and state estimation

using Expectation-Maximization (EM) and KF algorithms, and image segmen-

tation of the restored images using an MRF-based GMM for improved interface

detection.

2. Introduction of a novel image inpainting technique, guided by a robust change

detection method, to recover occluded regions in PSC interface images, enhanc-

ing image clarity and accuracy. Development of a spatial and temporal image

analysis approach for froth-middling interface detection, effectively addressing

noise and inaccuracies. Application of a robust filtering and fusion framework,

combining Kalman filter and EM algorithm, to estimate parameters and states

of the model, providing stability against various challenges and improving in-

terface detection accuracy.

1.4 Thesis Outline

The thesis adheres to the paper format requirements set by the Faculty of Graduate

Study and Research.
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Chapter 2 lays the groundwork by delving into image processing and computer

vision, crucial for understanding the developed methodologies. It covers image rep-

resentation, preprocessing, analysis, advanced topics in image restoration, image seg-

mentation, and the significant role of deep learning in evolving computer vision tech-

niques.

Chapter 3 expounds on the development and application of a state-of-the-art im-

age restoration algorithm, complemented by a sophisticated image segmentation tech-

nique to enhance interface level measurement in PSCs. Through the deployment of

a state-space model enriched with skew-t distribution for addressing image degrada-

tion, and the utilization of an EM algorithm for parameter estimation in concert with

a robust Kalman Filter for state estimation, this chapter presents a solution to the

challenges posed by outlier pixels. This chapter’s contributions have been submit-

ted to IEEE Transactions on Automation Science and Engineering and are currently

under review.

In chapter 4 a novel UNET-inspired image inpainting technique guided by a robust

change detection method is introduced, specifically designed to reconstruct steam-

covered parts of images, and to prepare the data for subsequent analysis. The chap-

ter progresses to a novel framework that encapsulates an approach to image analysis,

incorporating spatial and temporal dimensions, data fusion, and advanced filtering

techniques. The fusion framework combines two Kalman filters with the EM algo-

rithm for enhanced parameter and state estimation. This approach demonstrates

significant improvements in interface detection accuracy and robustness against pro-

cess occlusions and abnormalities. This chapter’s contributions have been submitted

to IEEE Transactions on Instrumentation and Measurement and are currently under

review.

Chapter 5 makes transitions from theoretical exploration to practical application,

detailing the deployment of the developed image processing methodologies to address

real-world industrial challenges encountered in PSCs. Through the analysis of data
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from the industry, this chapter demonstrates the effectiveness of the Restoration-

Segmentation algorithm and the Image Inpainting Analysis framework in practical

settings, highlighting their potential to transform interface detection within the oil

sands industry.

Finally, chapter 6 concludes the thesis and provides some future work directions.
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Chapter 2

Introduction to Computer Vision

This chapter serves as an introduction to the field of computer vision, outlining its

foundational principles and methodologies. It begins with an overview that differ-

entiates between image processing and computer vision, followed by a discussion on

the challenges of visual data interpretation. The narrative progresses through the

fundamentals of digital image processing, touching on image representation and pre-

processing techniques. It delves into image analysis and feature extraction, covering

edge detection, texture analysis, and color features. The chapter further explores

image restoration, inpainting, segmentation, detailing techniques, and advancements,

particularly in deep learning. It concludes with a summary of key insights and the

pivotal role of computer vision in image processing.

2.1 Overview of Computer Vision

2.1.1 Image Processing vs. Computer Vision

At its core, the distinction between image processing and computer vision lies in their

objectives and outcomes. Image processing involves manipulating images to improve

their quality or to extract information. Techniques such as filtering, noise reduction,

and contrast enhancement fall under this umbrella. The primary goal is to prepare

images for either human viewing or as a preprocessing step for further analysis.

Computer vision, on the other hand, aims to extract meaningful information from
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images and interpret this data in a way that mirrors human visual understanding.

The challenge is not just in processing the visual data but in enabling machines to

understand and make decisions based on this information. While image processing

might be considered a subset or a preliminary step of computer vision, the latter en-

compasses a broader scope that includes recognizing patterns, understanding scenes,

and learning from visual inputs to perform tasks such as object recognition, scene

reconstruction, and even interactive gaming.

2.1.2 Key Challenges in Computer Vision

The path to achieving a computer’s visual understanding is fraught with challenges,

many of which stem from the variability and complexity of the real world. Some of

the most significant hurdles include:

• Lighting Conditions: Variations in illumination can dramatically change the

appearance of objects, affecting their recognizability.

• Scale and Perspective: Objects can appear vastly different in size or shape

depending on their distance from the viewer or the angle of observation.

• Occlusion and Clutter: In many real-world scenes, objects are partially ob-

scured or set against a cluttered background, complicating identification and

localization.

• Motion and Temporal Changes: Dynamic scenes, where objects or the

observer are in motion, add a layer of complexity to visual understanding due

to the changing nature of the visual inputs.

• Variability in Appearance: Even objects of the same class can look incred-

ibly different due to variations in color, texture, or due to intrinsic differences

among individual items.
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Overcoming these challenges requires sophisticated algorithms and models that can

generalize across different conditions, learn from examples, and adapt to new, unseen

scenarios. This pursuit has led to significant advancements in machine learning and

artificial intelligence, particularly in the development of deep learning models that

excel in pattern recognition and predictive modeling. Through these technologies,

computer vision systems are increasingly able to mimic human-like perception, mak-

ing them invaluable in a wide range of applications from autonomous vehicles and

medical imaging to security surveillance and agricultural monitoring.

2.2 Fundamental Concepts of Digital Image Pro-

cessing

2.2.1 Digital Image Fundamentals

Digital images are the foundation of computer vision, representing visual information

in a format that can be stored, processed, and analyzed by computers. At the most

basic level, a digital image is a matrix of pixels, where each pixel contains numerical

values representing the brightness and color of that point in the image. Understanding

these fundamentals is crucial for both image processing and computer vision tasks,

as it affects how images are manipulated and interpreted.

Pixels and Resolution A pixel, or picture element, is the smallest addressable

element in an image. The resolution of an image, typically measured in pixels, deter-

mines its detail level, with higher resolutions offering finer granularity. This concept

is critical in tasks where precision is essential, such as medical imaging or satellite

imagery analysis.

Color Spaces Color space is a specific organization of colors, facilitating the repre-

sentation and interpretation of color in digital images. Common color spaces include

RGB (Red, Green, Blue), used in screen displays and digital cameras; CMYK (Cyan,
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Magenta, Yellow, Key/Black), used in color printing; and HSV (Hue, Saturation,

Value), which is often more intuitive for human interpretation of color differences.

Bit Depth Bit depth refers to the number of bits used to represent the color of a

single pixel. The greater the bit depth, the more colors can be represented, allowing

for richer and more detailed images. For instance, a bit depth of 8 bits per color

channel in an RGB image allows for 256 variations per channel, resulting in over 16

million possible colors.

The principles of digital image fundamentals significantly influence the handling

and interpretation of visual data in computer vision. The variations in resolution,

color spaces, and bit depth, as illustrated in Fig.2.1, exemplify how these foundational

concepts affect image quality and representation. This visualization underscores the

importance of mastering these basics for effective image analysis and processing.

2.2.2 Image Preprocessing Techniques

Image preprocessing is a crucial step in the computer vision pipeline, aimed at im-

proving the quality of images before they undergo further analysis or processing. This

section explores various techniques used to prepare images, enhancing their features

for more effective computer vision tasks.

Filtering

As a preprocessing step in image processing, filtering reduces noise while maintaining

essential image details. We focus on three primary types of filters—mean, median,

and Gaussian—each with distinct characteristics and applications.

Mean Filter The mean filter, or average filter, smooths images by averaging the

pixel values within a neighborhood defined by a kernel. The output pixel value is
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(a) Original Image (b) Reduced to 1/8th Size (c) Reduced to 1/16th Size

(d) Original Image (e) Grayscale (f) HSV

(g) Original Image (h) 2 Bit Depth (i) 1 Bit Depth

Figure 2.1: Illustration of image manipulation techniques. The first row illustrates the
impact of image resolution on detail. The second row represents images in different
color spaces, with the middle showing the image in grayscale and the right in HSV
color space. The third row demonstrates the impact of bit depth on color richness
and image quality, showcasing 1-bit and 2-bit depth images respectively[7].

computed as:

Iout(x, y) =
1

M ×N

a∑︂
i=−a

b∑︂
j=−b

Iin(x+ i, y + j), (2.1)

where Iout is the output image, Iin is the input image, and M × N represents the

kernel size, with (2a + 1) × (2b + 1) being its dimensions. The choice of kernel size

affects the degree of smoothing; a larger kernel size results in more blurring, as it

averages over a larger area, while a smaller kernel preserves more detail but might be

less effective at noise reduction.

Median Filter The median filter operates by replacing each pixel’s value with the

median of the intensity levels in the pixel’s neighborhood. This method is particularly
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adept at removing salt-and-pepper noise while preserving edges better than the mean

filter. Unlike the mean filter, the median filter’s effect does not directly correlate with

a simple algebraic operation but involves sorting and selecting the median value within

the kernel window. The size of the kernel influences the filter’s effectiveness: larger

kernels are more effective at removing noise but can lead to slight image details being

lost, whereas smaller kernels maintain detail but might not remove as much noise.

Gaussian Filter The Gaussian filter employs a kernel with values following a Gaus-

sian distribution to average pixel values, giving more weight to those closer to the

center of the kernel. Its equation is:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (2.2)

where σ is the standard deviation of the Gaussian distribution, controlling the ex-

tent of smoothing. Larger σ values (and correspondingly larger kernel sizes) lead to

more significant blurring, affecting the filter’s ability to preserve fine image details.

Conversely, smaller values of σ result in less smoothing, maintaining more detail but

potentially less effective noise reduction. Fig. 2.4 showcases the effect of applying the

Gaussian filter with different kernel sizes, illustrating the balance between smoothing

and detail preservation. Figures 2.2 and 2.3 illustrate the performance of each filter

when encountering Gaussian and salt-and-pepper noise, respectively.

Enhancement

Image enhancement aims to improve the interpretability or perception of information

in images for human viewers, or to provide better input for other automated image

processing techniques. Techniques include:

• Histogram Equalization: Improves the contrast of an image by stretching

out the intensity range of the histogram.
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(a) Image degraded by Gaussian noise (b) Mean Filter

(c) Median Filter (d) Gaussian Filter

Figure 2.2: Examples of filtering operations applied to an image corrupted by Gaus-
sian noise.

• Sharpening: Enhances edges within an image to make features more distinct,

typically by applying a high-pass filter.

Geometric Transformations

Geometric transformations adjust the spatial arrangement of pixels in images and

include operations such as:

• Scaling: Changing the size of an image, either enlarging or reducing it.
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(a) Corrupted by salt & pepper noise (b) Mean Filter

(c) Median Filter (d) Gaussian Filter

Figure 2.3: Examples of filtering operations applied to an image corrupted by salt &
pepper noise.

• Rotation: Rotating the image around a specified point to a certain angle.

• Translation: Shifting the image in space, moving it to a different location.

Normalization

Normalization is a technique used to adjust the pixel values in an image to a common

scale, improving the consistency and efficiency of further image processing tasks.

This process often involves scaling the pixel intensity values to a standard range,
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(a) Image degraded by Gaussian noise (b) Kernel Size 3× 3

(c) Kernel Size 9× 9

Figure 2.4: Effect of kernel size in image filtering: Small kernel sizes are less effective
at reducing noise but are better at preserving sharp edges and fine details in the
image.

such as 0 to 1 or -1 to 1, which can be particularly important for the performance

of many machine learning and deep learning models. By ensuring that the intensity

values across images have a uniform scale, normalization helps in reducing disparities

that might arise from varying lighting conditions or camera settings, thereby making

algorithms more robust to variations in input images.
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2.3 Image Analysis & Feature Extraction

This section focuses on the core processes of identifying and extracting significant fea-

tures from images, such as edges, textures, and colors. These fundamental techniques

enable the transformation of visual data into a format that is more suitable for com-

puter vision tasks, laying the groundwork for advanced analysis and interpretation in

applications ranging from object detection to scene understanding.

2.3.1 Edge Detection

Edge detection is a fundamental tool in image processing and computer vision, serv-

ing as a building block for a variety of tasks such as object recognition and image

segmentation. Edges represent significant local changes in intensity in an image, often

corresponding to object boundaries, texture changes, or other important features.

Gradient Operators

Gradient operators identify edges by detecting the maximum and minimum in the

first derivative of the image. An edge can be seen where there is a sharp change in

intensity, which corresponds to a high gradient in the image. Mathematically, the

gradient of a two-dimensional function f(x, y) is given by:

∇f(x, y) =

⎛⎝f(x+ 1, y)− f(x, y)

f(x, y + 1)− f(x, y)

⎞⎠ (2.3)

The gradient vector ∇f(x, y) points in the direction of the greatest rate of increase

of the function and its magnitude is the rate of the climb.

Prewitt Operator The Prewitt operator uses two 3x3 convolution masks, one for

detecting changes in intensity in the horizontal direction Prewittx, and one for the

vertical direction Prewitty:
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Prewittx =

⎡⎢⎢⎢⎣
−1 0 1

−1 0 1

−1 0 1

⎤⎥⎥⎥⎦ , P rewitty =

⎡⎢⎢⎢⎣
−1 −1 −1

0 0 0

1 1 1

⎤⎥⎥⎥⎦
Advantages: - Simple to compute and understand. - Good for detecting large,

smooth edges.

Disadvantages: - Sensitive to noise. - Does not take the magnitude of the rate of

change into account.

Sobel Operator The Sobel operator also uses two 3x3 convolution masks, similar

to Prewitt but places more emphasis on the central pixels of the image:

Sobelx =

⎡⎢⎢⎢⎣
−1 0 1

−2 0 2

−1 0 1

⎤⎥⎥⎥⎦ , Sobely =

⎡⎢⎢⎢⎣
−1 −2 −1

0 0 0

1 2 1

⎤⎥⎥⎥⎦
Advantages: - Emphasizes the central pixels and can give a better approximation

of the gradient. - More sensitive to edges than the Prewitt operator.

Disadvantages: - Still relatively sensitive to noise. - The approximation of the

gradient can still be improved.

Laplacian of Gaussian

The Laplacian of Gaussian (LoG) method applies the Gaussian filter to smooth the

image first and then the Laplacian operator to detect areas of rapid intensity change.

The LoG operator is defined as the Laplacian ∇2 of a Gaussian function G(x, y, σ):

LoG(x, y, σ) = ∇2G(x, y, σ) =
∂2G

∂x2
+
∂2G

∂y2
(2.4)

Advantages: - Reduces noise with Gaussian smoothing before edge detection. -

Capable of detecting finer edges due to the second derivative.

Disadvantages: - Computationally more expensive due to the two-step process. -

Less localization accuracy for edge detection.
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Gradient of Gaussian (Canny)

The Canny edge detector, proposed by John Canny in 1986, is a multi-stage algorithm

renowned for its ability to detect a wide range of edges in images. The mathematical

foundation of the Canny edge detector begins with the application of the Gradient

of a Gaussian filter. This is intended to reduce the impact of noise on the gradient

calculations, which could otherwise lead to false edge detection. The Gaussian filter

is represented in Eq. 2.2. The gradient of the Gaussian is then computed to find

the intensity gradient of the smoothed image. The edge strength is given by the

magnitude of the gradient:

|∇G| =

√︄
(
∂G

∂x
)2 + (

∂G

∂y
)2 (2.5)

and the edge direction is given by:

θ = arctan

(︃
∂G/∂y

∂G/∂x

)︃
(2.6)

The next steps in the Canny algorithm include non-maximum suppression, which

thins the edges, followed by thresholding with hysteresis to differentiate between true

and false edges. Figure 2.5 illustrates the sequential steps involved in the Canny edge

detection process.

Advantages: - Good Detection - Good Localization - Minimal Response.

Disadvantages: - Choice of Parameters is not straightforward. - Computational

Complexity - Edge Linking, It may fail to detect significant edges if the edges are not

well connected or if the signal-to-noise ratio is too low.

Despite its drawbacks, the Canny edge detector remains one of the most robust

edge-detection algorithms, particularly when the appropriate parameters are chosen

for a given application and image conditions.
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(a) Original Image (b) Gaussian Smoothing (c) Gradient Magnitude

(d) Gradient Direction (e) Canny Edges

Figure 2.5: The sequential steps involved in the Canny edge detection process: (a)
original image, (b) after applying Gaussian smoothing, (c) gradient magnitude cal-
culation, (d) gradient direction calculation, and (e) the final Canny edges after non-
maximum suppression and hysteresis thresholding.

2.3.2 Texture Analysis

Texture analysis is integral to recognizing patterns and surface variations in images.

It quantifies the perceived textures of objects and regions, facilitating tasks such as

classification, segmentation, and object recognition.

Statistical Methods for Texture Analysis

Statistical methods are a fundamental approach in texture analysis, focusing on the

spatial distribution of pixel intensities. Among these, the Gray-Level Co-occurrence

Matrix (GLCM) is a widely used method, along with the Gray-Level Run Length

Matrix (GLRLM). We will focus on the GLCM for its comprehensive ability to capture

texture information.

Gray-Level Co-occurrence Matrix (GLCM) The GLCM is a histogram of

co-occurring gray-scale values at a given offset over an image. In essence, it is a
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matrix where the number at row i, column j represents the number of times the

pixel with value i is adjacent to a pixel with value j. This adjacency is defined by

the displacement vector d and can be in any spatial direction (horizontal, vertical,

diagonal).

To extract meaningful features from the GLCM, several statistical measures can

be computed:

Homogeneity Homogeneity measures the closeness of the distribution of elements

in the GLCM to the GLCM diagonal. It is defined as:

H =
∑︂
i

∑︂
j

1

1 + (i− j)2
P (i, j) (2.7)

where P (i, j) is the (i, j)th entry in a normalized GLCM.

Dissimilarity Dissimilarity quantifies the variation of gray level pairs in the GLCM:

D =
∑︂
i

∑︂
j

|i− j|P (i, j) (2.8)

Other features include:

• Contrast: Measures the intensity contrast between a pixel and its neighbor

over the whole image.

• Correlation: Assesses how correlated a pixel is to its neighbors over the whole

image.

• Energy or Angular Second Moment (ASM): Provides the sum of squared

elements in the GLCM.

• Entropy: Measures the randomness in the texture.

These features can be used to describe the texture of an image, aiding in classifi-

cation and analysis tasks.
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(a) Original Image with Patches (b) Homogeneity vs. Dissimilarity Plot

Figure 2.6: Analysis of texture features in an image. (a) shows the original image
with highlighted patches for analysis. (b) Show the homogeneity vs. dissimilarity
plots for the respective patches.

Figure 2.6 illustrates the application of GLCM features in analyzing texture prop-

erties. It shows four patches from two distinct texture areas within an image. By

plotting the homogeneity versus dissimilarity values, we can observe how these fea-

tures vary between different textures, providing insight into the texture structure and

contrast within the image.

Model-Based Methods

Model-based methods treat texture as a quantifiable pattern that can be modeled

mathematically.

Autoregressive Model In the autoregressive (AR) model, the value of a pixel is

assumed to be a linear combination of its neighbors plus some Gaussian noise:

I(p, q) =
∑︂

(s,t)∈N

as,t · I(p+ s, q + t) + ϵ(p, q) (2.9)

where N represents the neighborhood around pixel (p, q), as,t are the AR coefficients,

and ϵ is the noise term.
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Filter-Based Methods

Filter-based methods apply a set of kernels or filters to an image to extract texture

information, which can vary by scale, orientation, and frequency. These methods are

effective for characterizing the local structures and patterns in an image. Common

filters used for texture analysis include Gabor filters, wavelet transforms, and others.

Gabor Filters Gabor filters are particularly useful in texture analysis due to their

ability to capture both spatial and frequency information. A Gabor filter is essen-

tially a sinusoidal plane wave of a certain frequency and orientation, modulated by

a Gaussian envelope. This combination allows the filter to be sensitive to texture

patterns of specific frequency and direction in the localized regions of an image.

The response of a Gabor filter can be conceptualized as how much a segment of the

image matches a specific wave pattern. Mathematically, it is defined by the following

equation:

G(x, y;λ, θ, ψ, σ, γ) = exp

(︃
−x

′2 + γ2y′2

2σ2

)︃
cos

(︃
2π
x′

λ
+ ψ

)︃
(2.10)

where x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ are the coordinates in the

rotated frame, λ is the wavelength of the sinusoidal factor, θ specifies the orientation

of the normal to the parallel stripes of a Gabor function, ψ is the phase offset, σ is

the standard deviation of the Gaussian envelope, and γ is the spatial aspect ratio.

As shown in Figure 2.7, the Gabor filter selectively enhances the texture features in

the image, which can be particularly useful in pattern recognition and segmentation

tasks.

Other filter-based methods like wavelet transforms also play a significant role in

multi-scale and multi-resolution texture analysis but will not be covered in detail

here.
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(a) (b)

(c) (d)

Figure 2.7: Demonstration of Gabor filter applications on an image with multiple
textures. Sub figure (a) presents the original image. Subsequent images display the
results of applying Gabor filters with varying parameters. Each image accentuates
different texture features, showcasing the Gabor filter’s ability to extract texture-
specific information.

2.3.3 Color Feature Extraction

Color feature extraction is an essential aspect of image analysis, allowing for the

distinction of objects and scenes based on color information. Unlike shape or tex-

ture, color can often be considered independently of the image’s spatial information.

This section describes the foundational methods for extracting color features and the

utilization of color histograms to encapsulate this information quantitatively.

Color histograms are a popular method for representing the color distribution

within an image. For an image I with pixel intensity values ranging from 0 to L− 1

for each color channel, the histogram for a color channel c can be defined as:
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hc(k) = #{pixels in I with intensity k at channel c}, k = 0, 1, 2, ..., L− 1 (2.11)

where # denotes the count operation, and c can represent the red, green, or blue

channel in RGB color space or any other channel in different color spaces.

The color moments are another way to summarize the color information in an

image. The first order moment, or the mean, for a color channel c is given by:

µc =
1

N

N∑︂
i=1

Ic(i) (2.12)

where Ic(i) is the intensity of the i-th pixel in color channel c, and N is the total

number of pixels.

Higher-order moments like variance σ2
c and skewness γc can also be computed to

capture the spread and asymmetry of the color distribution:

σ2
c =

1

N

N∑︂
i=1

(Ic(i)− µc)
2, γc =

1

N

N∑︂
i=1

(︃
Ic(i)− µc

σc

)︃3

(2.13)

While color histograms and moments offer a compact and efficient representation of

color features, analyzing these representations is crucial for various computer vision

tasks. Figure 2.8 shows the histogram of two images from the primary separation

cell set up in the University of Alberta lab. With the interface at two different

levels, the histograms of these images change accordingly. Analyzing the histogram

of these images can provide valuable information about the location of the interface,

demonstrating the practical application of color feature extraction in analyzing and

interpreting complex visual data.
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(a) Interface level at 75% (b) Color Histogram

(c) Interface level at 20% (d) Color Histogram

Figure 2.8: Histograms of two images from the primary separation cell setup at the
University of Alberta lab, showcasing the interface at two different levels. Analysis
of these histograms provides insights into the interface’s location.
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2.4 Image Restoration

Image restoration is a critical area in image processing, aimed at improving the ap-

pearance of an image or restoring its original condition from a degraded version.

Unlike image enhancement, which is subjective and designed for better visual in-

terpretation, image restoration is objective and based on mathematical or physical

models of image degradation [8].

2.4.1 Types of Degradation

Image restoration techniques are developed to remove or reduce distortions and degra-

dations that have occurred while capturing or transmitting an image. These degra-

dations can include blur, noise, and loss of detail, which may result from motion,

out-of-focus capture, atmospheric conditions, or sensor imperfections. The primary

objective of image restoration is to reconstruct the original image from the degraded

one as accurately as possible, using prior knowledge of the degradation process.

Noise

Noise represents random variations in the image signal, manifesting as graininess or

speckles that obscure fine details. Common types include:

• Gaussian noise: Characterized by a normal distribution of intensity variations.

• Salt-and-pepper noise: Manifests as random black and white spikes in the image.

Blur

Blur reduces the sharpness and clarity of image details. Causes of blur include:

• Motion blur: Caused by the movement of the camera or subject during exposure.

• Out-of-focus blur: Occurs when the camera lens is not correctly focused.

• Atmospheric disturbances: Affect long-distance photography, blurring the im-

age due to air variations.
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Compression Artifacts

Compression reduces file size by simplifying the image data, leading to:

• Loss of detail and introduction of blocky patterns or ringing effects.

Physical Damage

Physical photographs can suffer from:

• Scratches, tears, or fading, each requiring specialized restoration approaches.

An illustration of some of these degradations can be found in Fig. 2.9.

(a) Degradation by fog (b) Degradation by rain (c) Degradation by blur

Figure 2.9: Examples of common image degradations due to environmental factors
and camera settings. From left to right: (a) Image degraded by fog, reducing visibility;
(b) Image degraded by raindrops, obscuring details; (c) Image blurred due to camera
misfocus, resulting in loss of sharpness.

2.4.2 Restoration Techniques

Restoring an image involves various techniques, each tailored to address specific types

of degradation.

Filtering

Filtering is a crucial technique in image restoration used to reduce noise and blur.

Filters can be classified into two main categories: linear and nonlinear. Linear filters

treat the signal with linear operations, often leading to simpler implementations, while

nonlinear filters adapt the filtering process based on the image content, allowing for

more complex noise and artifact reduction.
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Linear Filtering Linear filtering involves the convolution of the image with a pre-

defined kernel or mask, which is applied uniformly across the image. Common linear

filters include the Gaussian filter, used for smoothing and noise reduction, and the

mean filter, which replaces each pixel value with the average of its neighbors. Some

of these filters are discussed in section 2.2.2.

Wiener Filter The Wiener filter is a linear filter designed to minimize the mean

square error between the estimated and the true image. It is particularly effective in

the presence of additive noise and when the signal-to-noise ratio (SNR) is known. The

Wiener filter operates in the frequency domain, adjusting each frequency component

of the Fourier-transformed image based on the SNR.

Given an observed image G(u, v), which is the degraded version of the original

image F (u, v) by a linear motion blur H(u, v) and additive noise N(u, v), the Wiener

filter W (u, v) can be defined as:

W (u, v) =
H∗(u, v)Sf (u, v)

|H(u, v)|2Sf (u, v) + Sn(u, v)
(2.14)

where H∗(u, v) is the complex conjugate of the degradation function, Sf (u, v) is

the power spectrum of the original image, and Sn(u, v) is the power spectrum of the

noise. The restored image is obtained by multiplyingW (u, v) with G(u, v) and taking

the inverse Fourier transform.

Nonlinear Filtering Nonlinear filters, such as the median filter, adapt the filtering

process based on the characteristics of the image. Unlike linear filters, they can

preserve edges while removing noise, making them suitable for images with salt-and-

pepper noise or speckle noise.

Kalman Filter The Kalman filter, though traditionally associated with time series

analysis, can be applied to image restoration, especially in scenarios with temporal
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sequences, such as video. It is an adaptive filter that estimates the state of a linear

dynamic system from a series of noisy measurements.

For image sequences, the Kalman filter can be formulated as follows:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (2.15)

Pk|k−1 = APk−1|k−1A
T +Q (2.16)

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1 (2.17)

x̂k|k = x̂k|k−1 +Kk(zk −Hx̂k|k−1) (2.18)

Pk|k = (I −KkH)Pk|k−1 (2.19)

where x̂k|k−1 is the predicted state, A is the state transition model, B is the control-

input model, uk−1 is the control vector, Pk|k−1 is the covariance of the predicted state,

Q is the process noise covariance, Kk is the Kalman gain, zk is the measurement, H is

the measurement model, R is the measurement noise covariance, and I is the identity

matrix. The Kalman filter iteratively predicts and corrects the state estimate with

each new measurement.

Both the Wiener filter and the Kalman filter are powerful tools for image restora-

tion, each with its own domain of applicability. The Wiener filter excels in stationary

noise environments, while the Kalman filter is uniquely suited for dynamic scenes

where the noise characteristics and the system state evolve over time.

Deconvolution

Deconvolution involves using knowledge or assumptions about the blur (convolution)

process to try to reverse it. This typically requires knowledge of the convolution

kernel, which describes how the blur was applied to the image. The kernel could

represent, for example, the path of camera motion (in the case of motion blur) or the

shape of the out-of-focus blur. Techniques include:
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• Wiener Deconvolution: A statistical approach that aims to minimize the

overall mean square error between the estimated and true images, considering

both the signal and noise characteristics. It’s effective when the noise model is

known.

• Blind Deconvolution: An iterative technique that estimates both the blur

kernel and the sharp image without prior knowledge of the blur. Useful in

situations where the blur is unknown or cannot be directly measured.

• Richardson-Lucy Deconvolution: An iterative method based on maximum

likelihood estimation for images with Poisson noise. It’s particularly suited for

astronomical or microscopic images where the noise follows a Poisson distribu-

tion.

Inpainting

Inpainting, also known as image inpainting, is a process in digital image processing

aiming to reconstruct lost or damaged parts of images and videos. This technique

finds its roots in the art restoration field, where missing pieces of artwork are carefully

filled in to restore the original appearance. In the digital realm, inpainting serves to

fill gaps, remove undesired objects, or repair image sections that have been corrupted

due to various reasons such as data loss, scratches, or other forms of damage [9].

Techniques and Approaches Inpainting techniques are categorized into classical

methods and learning-based methods, each with unique approaches and applications.

Classical Methods Classical inpainting methods utilize the geometric and tex-

tural information within the image to reconstruct missing parts. These methods

include:

Diffusion-Based Inpainting: Diffusion-based inpainting employs a technique

grounded in the principles of Partial Differential Equations (PDEs) to effectively re-

construct missing or corrupted segments within an image. This strategy leverages
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the concept of pixel value propagation from adjacent, intact regions into the areas

that are missing or damaged. It is optimally suited for scenarios where these gaps

are minor and exhibit a gradual change in image intensity. The underlying process

draws inspiration from the natural diffusion phenomenon observed in physical sys-

tems, characterized by the movement of particles from regions of high concentration

to those of lower concentration, ultimately achieving an equilibrium state.

A pivotal component of this inpainting method is the application of the heat equa-

tion, a standard diffusion model. This equation is instrumental in guiding the uniform

spread of pixel values across the image, thereby facilitating the restoration of the af-

fected areas. The mathematical representation of the heat equation is as follows:

∂I

∂t
= ∇2I (2.20)

In this context, I symbolizes the intensity of the image at any given point, while ∇2

signifies the Laplacian operator. The operator plays a critical role in the diffusion

process, enabling the seamless integration of pixel information from the surrounding,

unaffected areas into the regions undergoing inpainting. This mechanism ensures that

the transition across the repaired segment is smooth and visually coherent with the

rest of the image.

Exemplar-Based Inpainting: Exemplar-based inpainting techniques restore dam-

aged or missing areas of an image by intelligently copying and pasting data from the

remaining, undamaged parts. This method excels in preserving textures and struc-

tural integrity by utilizing a patch-based approach. The core principle involves iden-

tifying the best matching patch in the intact regions and copying it into the target

area. The selection of patches is governed by a priority function and a similarity

measure, typically the sum of squared differences (SSD), to find the most congruent

patch:

SSD(p, q) =
∑︂
i,j∈Ω

(Ip(i, j)− Iq(i, j))
2 (2.21)
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Here, p and q represent patches within the search region Ω, while Ip(i, j) and Iq(i, j)

denote the intensity values at position (i, j) within patches p and q, respectively. The

priority function determining the filling order is a combination of a data term, indi-

cating edge strength, and a confidence term, reflecting the amount of already filled-in

adjacent area. This ensures that the algorithm first addresses regions with higher

structural significance and higher confidence levels, promoting seamless restoration.

The iterative process continues until the entire target region is reconstructed, yielding

a visually coherent image with well-preserved textures and structures.

Learning-Based Methods Deep learning advancements have notably improved

image inpainting techniques, employing sophisticated neural network architectures to

proficiently predict and reconstruct missing parts of images:

Autoencoders: Autoencoders are neural networks designed for unsupervised

learning tasks, effectively capturing the latent representations of images. They consist

of two main parts: an encoder that reduces an image to a lower-dimensional repre-

sentation, and a decoder that reconstructs the image from this representation. In

the context of inpainting, autoencoders are trained to encode the visible parts of an

image and then decode this representation to fill in the missing regions. The process

can be described by the following equations, where E represents the encoder, D the

decoder, x the input image with missing regions, and x̂ the reconstructed (inpainted)

image:

z = E(x)

x̂ = D(z)

The aim is to minimize the reconstruction error between x̂ and the original, complete

image xcomplete, often using a loss function such as mean squared error (MSE):

L = ||x̂− xcomplete||2

Generative Adversarial Networks (GANs): GANs utilize a generator (G)

and a discriminator (D), trained in parallel. The generator aims to synthesize the
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missing parts of an image, and the discriminator evaluates the authenticity of the

inpainted images. The objective for GAN-based inpainting can be formulated as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

(a) Original image with Missing Region (b) Content-Aware Fill

(c) Autoencoder (d) GAN

Figure 2.10: Comparison of inpainting methods on an image with a missing region:
(1) Original image, (2) Content-Aware Fill shows noticeable discrepancies, (3) Au-
toencoder results are blurry and struggle with unique patterns, (4) GAN achieves
coherent and realistic inpainting [10]. This demonstrates the effectiveness and visual
outcomes of each method.

The effectiveness of GANs in image inpainting lies in the generator’s increasing pro-

ficiency at creating authentic-looking images through the adversarial process, while

the discriminator becomes better at identifying discrepancies between real and in-

painted images. This dynamic competition drives the overall system towards pro-
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ducing high-quality inpaintings that are indistinguishable from original, undamaged

images.

Inpainting techniques, essential for image restoration and editing, vary in approach

and effectiveness. Diffusion methods excel in reconstructing small or smooth missing

regions by propagating surrounding pixel information into the void. Exemplar-based

methods, as demonstrated by Content-Aware Fill, leverage existing image textures to

fill larger gaps, making them suitable for complex patterns but sometimes falling short

of coherence. Learning-based methods, particularly those utilizing autoencoders and

Generative Adversarial Networks (GANs), represent advanced strategies for inpaint-

ing. Autoencoders are adept at capturing the overall structure and texture, while

GANs generate high-fidelity, realistic images through an adversarial process, enhanc-

ing the authenticity of the inpainted areas. Figure 2.10 compares various inpainting

methods, highlighting the nuanced differences in handling the same missing region.

Super-resolution

Super-resolution techniques enhance the resolution of an image beyond the capability

of the imaging sensor. This is achieved through:

• Utilizing multiple low-resolution images of the same scene, which involves align-

ing and merging them to reconstruct high-resolution details not captured by

individual images.

• Advanced machine learning models, particularly deep learning approaches like

Convolutional Neural Networks (CNNs) and Generative Adversarial Networks

(GANs), which learn from vast datasets of low and high-resolution image pairs

to predict and generate high-resolution details.

Super-resolution finds applications in fields such as satellite imaging, surveillance,

medical imaging, and consumer electronics, significantly enhancing image clarity and

detail.
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2.5 Image Segmentation

Image segmentation is a fundamental process in image analysis and computer vision,

where an image is divided into segments, or sets of pixels, that collectively cover the

entire image. Each segment represents a specific part of the image and is intended

to be more meaningful and easier to analyze than the pixel-by-pixel representation.

The primary goal of image segmentation is to simplify the representation of an image

or to better understand its components, facilitating tasks such as object recognition,

feature extraction, and content-based image retrieval.

The importance of image segmentation lies in its ability to serve as a crucial prepro-

cessing step that significantly impacts the effectiveness of subsequent image analysis

tasks. By accurately identifying and segregating relevant parts of an image, seg-

mentation algorithms lay the groundwork for more sophisticated analyses, including

object detection and classification.

This section delves into the concept, goals, and primary challenges of image seg-

mentation, followed by a detailed exploration of the main techniques used in this

domain, categorized by their approach. The discussion extends to advanced segmen-

tation techniques that leverage deep learning for more accurate segmentation tasks.

2.5.1 Segmentation Techniques

Segmentation techniques can be broadly categorized based on their approach to par-

titioning the image. These methodologies range from basic thresholding methods to

advanced machine learning algorithms, each suited for different types of images and

applications. Understanding these techniques is crucial for selecting the appropriate

method for a given segmentation task.

Thresholding

Thresholding is one of the simplest yet effective methods for segmenting images. It

involves partitioning an image into foreground and background by comparing pixel
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intensity values with a predefined threshold. This method works well for images with

high contrast between the object and the background [11].

Global Thresholding Global thresholding applies a uniform threshold value, T ,

across the entire image. The basic principle can be defined as follows:

g(x, y) =

{︄
1 if f(x, y) > T

0 otherwise
(2.22)

where g(x, y) is the output image with pixels marked as 1 (foreground) or 0 (back-

ground), and f(x, y) represents the intensity of the original image at coordinates

(x, y). Despite its simplicity, global thresholding is not ideal for images with non-

uniform lighting conditions, as it fails to accommodate local intensity variations.

Adaptive Thresholding To address the limitations of global thresholding, adap-

tive thresholding computes local thresholds for different regions of the image, enhanc-

ing flexibility and performance in varying lighting conditions. The adaptive threshold

T (x, y) at each pixel location (x, y) is calculated based on the pixel intensities within

a neighborhood around (x, y), often using a statistical measure such as the mean

or median. This method is more sophisticated and can better handle images with

complex backgrounds and lighting variations.

Otsu’s Method Otsu’s method offers an automatic way to determine the optimal

threshold value by minimizing the intra-class variance or, equivalently, maximizing

the inter-class variance. Assuming the image contains two classes of pixels (foreground

and background), the optimal threshold Topt is found by:

Topt = argmax
T

[︁
σ2
B(T )

]︁
(2.23)

where σ2
B(T ) is the between-class variance for threshold T . Otsu’s method is particu-

larly effective for images with bimodal intensity histograms, as it assumes the image

to be composed of two dominant classes.

36



(a) Original image (b) Histogram with Otsu
threshold

(c) Segmented image

Figure 2.11: Image segmentation using Otsu’s thresholding method.

Fig. 2.11 showcases the practical application of Otsu’s method, from the original

image through the analysis of its bimodal histogram to the final segmented image.

The automated nature of Otsu’s thresholding, which effectively separates the fore-

ground from the background by analyzing the histogram, demonstrates its utility in

simplifying the segmentation process.

Region-Based Segmentation

Region-based segmentation is integral to image processing, aiming to organize pixels

into larger, coherent regions based on certain criteria. This approach emphasizes the

grouping of pixels that exhibit similarity in attributes such as intensity, color, or sta-

tistical properties. Critical to this method is the consideration of spatial relationships,

ensuring that segmented regions are not only similar but also contiguous.

Region Growing Region growing is a segmentation technique that aggregates pix-

els into larger regions based on predefined similarity criteria. The process begins

with the selection of seed pixels, distributed throughout the image, which serve as

the starting points for region formation. Pixels adjacent to these seeds are evaluated

and added to the region if they satisfy certain conditions related to their intensity,

color, or the statistical characteristics of their neighborhoods [12]. Common similarity

criteria include:
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1. The absolute difference in intensity between a candidate pixel and the seed pixel

must not exceed a specified threshold.

2. The absolute difference in intensity between a candidate pixel and the running

average intensity of the region must fall within a predetermined range.

3. The difference in the standard deviation of intensity within a specified local

neighborhood of the candidate pixel and that of the seed region must meet a

certain roughness or smoothness criterion.

These criteria allow for flexible adaptation to the specific requirements of the seg-

mentation task at hand. Fig. 2.12 shows an example of the segmentation through

the growth of the regions.

Figure 2.12: From left to right: the original image with four selected seeds, the extrac-
tion of four regions based on thresholds T = 0.05 to 0.2, and the final segmentation
result [11].

Region Splitting and Merging Conversely, region splitting begins with the entire

image considered as a single region, which is then subdivided into progressively smaller

regions. This division continues until further splitting causes adjacent regions to

be indistinguishably similar according to a chosen threshold. The split-and-merge

algorithm is a popular method that encapsulates this approach, operating in two

main phases:

1. Splitting: Starting with the entire image, regions are recursively divided into

four equal parts (quadtree decomposition) until each meets a predefined homo-

geneity criterion.
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2. Merging: Subsequent to splitting, adjacent regions with similar properties are

merged to reduce fragmentation and refine the segmentation.

Figure 2.13: Illustration of the split-and-merge process, showing initial splitting into
four regions, further subdivisions, and the merging of similar adjacent regions [12].

Fig. 2.13 visualize the split-and-merge algorithm’s basic steps via quadtree de-

composition and merging. Region-based segmentation techniques are widely used in

various applications, including medical imaging, object detection in satellite imagery,

and automated inspection systems. For instance, in medical imaging, region growing

can be used to segment tumors or other pathological structures by starting with a

seed point within the structure and expanding the region to include all connected

tissues that share similar intensity levels.

Clustering Methods for Image Segmentation

Clustering techniques group pixels into clusters based on their similarity in color,

intensity, or texture, thus segmenting the image into meaningful regions. Two popular

clustering methods are K-means clustering and Fuzzy C-means clustering.

K-Means Clustering K-Means is a partitioning method that divides the image

into k clusters by minimizing the variance within each cluster. The objective is to
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find:

min
S

k∑︂
i=1

∑︂
x∈Si

||x− µi||2

where S = {S1, S2, . . . , Sk} represents the set of clusters, x is a feature vector repre-

senting the pixel values, and µi is the centroid of cluster Si.

The algorithm iteratively updates the cluster centroids until convergence:

1. Initialize k centroids randomly.

2. Assign each pixel to the nearest centroid to form k clusters.

3. Recompute the centroid of each cluster.

4. Repeat steps 2 and 3 until the centroids do not change significantly.

(a) Original color and
monochrome image

(b) K = 3 (c) K = 5

Figure 2.14: Application of the K-means algorithm for segmentation on both a color
and a monochrome image, demonstrating the effect of defining K = 3 and K = 5
clusters a prior [11].

Fuzzy C-Means Clustering The Fuzzy C-Means (FCM) algorithm extends the

idea of K-means clustering by allowing data points to belong to multiple clusters with

varying degrees of membership, rather than being assigned to a single cluster. The

process involves:
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1. Choosing a number of clusters c.

2. Randomly assigning coefficients to each data point for being in the clusters,

forming a partition matrix W with elements wij indicating the degree to which

element xi belongs to cluster cj.

3. Iterating until the algorithm converges (i.e., the change in coefficients between

iterations is no more than ε, a sensitivity threshold):

(a) Computing the centroid for each cluster as:

ck =

∑︁
xwk(x)

mx∑︁
xwk(x)m

,

where m is a hyper-parameter controlling the cluster fuzziness.

(b) For each data point, updating its coefficients of being in the clusters.

The centroid calculation reflects each point’s degree of belonging to a cluster,

weighted by wk(x)
m, making the clusters fuzzy. The objective function to minimize

is:

J(W,C) =
n∑︂

i=1

c∑︂
j=1

wm
ij ∥xi − cj∥2 ,

with the update rule for wij being:

wij =
1∑︁c

k=1

(︂
∥xi−cj∥
∥xi−ck∥

)︂ 2
m−1

.

Unlike K-means, where membership values are binary (wij ∈ {0, 1}), FCM allows

for degrees of membership between 0 and 1, with the parameter m > 1 controlling

the level of fuzziness. A larger m results in fuzzier clusters. As m approaches 1, FCM

behaves similarly to K-means, making the memberships binary. Typically, without

specific domain knowledge, m is set to 2. Despite minimizing intra-cluster variance

like K-means, FCM’s results also depend on the initial assignment of coefficients, and

the solution found is a local minimum [13].
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Energy-based Methods

Energy-based methods in image segmentation, such as graph cuts and Markov Ran-

dom Fields (MRFs), model the segmentation problem as an energy minimization

task. These approaches aim to define an energy function that reflects the quality of

a segmentation based on pixel intensity, edge information, and prior knowledge. The

goal is to find the segmentation that minimizes this energy function, thus achieving

the most plausible segmentation of the image.

Objective Function The energy function for segmentation can generally be for-

mulated as:

E(S) = Edata(S) + λEsmooth(S) (2.24)

where S represents the segmentation of the image, Edata(S) is the data fidelity term

that measures how well the segmentation fits the image data, Esmooth(S) is the

smoothness term that penalizes rough or implausible segment boundaries, and λ is a

weighting factor that balances the two terms.

Graph-Cuts Graph-cut segmentation models the image as a graph, where pixels

are nodes, and edges represent the similarity or dissimilarity between neighboring

pixels. The method seeks the minimum cut that separates the graph into two disjoint

sets, foreground, and background, such that the cut’s cost is minimal. The energy

function in graph cuts is designed to favor segmentation that is consistent with the

image’s intensity gradients and the predefined source and sink nodes. The energy

function for graph cuts can be expressed as:

E(S) =
∑︂
p∈P

Edata(p, Sp) +
∑︂

(p,q)∈N

Esmooth(p, q, Sp, Sq) (2.25)

where P is the set of all pixels, N is the set of neighboring pixel pairs, Sp is the

label (foreground or background) of pixel p, and Edata and Esmooth are the data and

smoothness terms, respectively. Figure 2.15 illustrates an example of a directed graph.
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The thickness of the edges represents the cost associated with each edge, indicating

the degree of dissimilarity between connected nodes. Thicker edges signify higher

costs, thereby influencing the graph’s minimum cut decision by denoting stronger

boundaries between segments.

Figure 2.15: Example of a directed graph. Edge costs are reflected by their thickness
[14].

Markov Random Fields (MRFs) MRFs provide a probabilistic framework for

modeling the spatial dependencies among pixels or regions in an image. The seg-

mentation problem is formulated as finding the most probable labeling of pixels that

minimizes the overall energy, incorporating context into the segmentation. The en-

ergy function in MRFs is similar to that in graph cuts but emphasizes the probabilistic

relationships between neighboring pixels. It can be written as:

E(S) =
∑︂
p∈P

ψu(Sp) +
∑︂

(p,q)∈N

ψp(Sp, Sq) (2.26)

where ψu is the unary potential function that measures the cost of assigning a label

to a single pixel, and ψp is the pairwise potential function that measures the cost of

assigning labels to pairs of neighboring pixels.

2.5.2 Advanced Segmentation Techniques

Advanced segmentation techniques leverage the power of neural networks to achieve

more precise and context-aware segmentation. These methods have significantly im-
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proved the accuracy and efficiency of segmenting complex images in various applica-

tions.

Semantic Segmentation

Semantic segmentation refers to the process of assigning a label to every pixel in an

image such that pixels with the same label share certain characteristics. This tech-

nique moves beyond simple localization to understand the role of each pixel in the

context of the image. In this field, deep learning approaches, particularly Convo-

lutional Neural Networks (CNNs) and Fully Convolutional Networks (FCNs), have

made significant contributions. CNNs, known for their prowess in image classification

tasks, have been adapted for segmentation by replacing fully connected layers with

convolutional layers, allowing for spatial information to be retained. FCNs further

this concept by introducing an end-to-end learning approach for pixel-wise classifi-

cation. A notable architecture in this domain is the U-Net, designed specifically for

medical image segmentation, which features a symmetric expanding path to capture

context and a contracting path to capture precise localization [15].

Instance Segmentation

Instance segmentation extends semantic segmentation by not only labeling every pixel

in an image but also distinguishing between different instances of the same class. This

means that if there are multiple objects of the same class in an image, instance segmen-

tation will identify and segment each object separately. One of the most prominent

models in instance segmentation is Mask R-CNN, an extension of Faster R-CNN (a

model renowned for object detection). Mask R-CNN adds a branch for predicting

segmentation masks on each Region of Interest (RoI), effectively enabling the model

to perform object detection and pixel-wise segmentation simultaneously. The archi-

tecture of Mask R-CNN is designed to handle varying object sizes and shapes, making

it highly versatile for a range of segmentation tasks. The success of Mask R-CNN and
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similar models underscores the potential of deep learning in pushing the boundaries

of what’s possible in image segmentation, offering unprecedented accuracy and detail

in the segmentation of complex scenes [16].

(a) Original image (b) Semantic segmentation (c) Instance segmentation

Figure 2.16: Illustration of segmentation techniques applied to an image obtained
from V7 Labs [17].

Both semantic and instance segmentation techniques have revolutionized the field

of computer vision, enabling more precise and detailed analysis of images. Fig. 2.16

illustrates the difference between semantic and instance segmentation. Semantic seg-

mentation labels each pixel with a class, but individual objects are not distinguished;

however, instance segmentation has the ability to differentiate between individual

instances of the same class.

2.6 Conclusion

This section has provided an overview of image segmentation, ranging from basic

thresholding and edge detection to advanced deep learning approaches like semantic

and instance segmentation. Each method offers unique advantages, with simpler

techniques being fast and computationally efficient, and more sophisticated methods,

such as CNNs and Mask R-CNN, providing greater accuracy and detail. The choice

of segmentation technique depends on the specific requirements of the application,

whether it be in medical imaging, autonomous driving, or another field.
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Chapter 3

Restoration of Degraded Images
for Interface Detection in a
Primary Separation Cell

3.1 Introduction

Primary separation cells (PSCs) are an important part of the bitumen extraction

process that is employed in the production of oil from oil sands. A PSC is a large

cell designed to separate bitumen from sand and water based on density differences.

Fig. 3.1 shows a schematic of a PSC. The process results in the formation of three

layers: the upper layer known as froth consists mainly of bitumen, the lower layer

known as tailings consists mainly of sands, and the middle layer lies in between.

During bitumen recovery, the interface level between froth and middling layers is

of particular importance [18, 19]. In the event that the interface between the froth

and the middlings is raised, the middlings may flow into the overflow launder and

contaminate the bitumen froth with unwanted particles and water. On the other

hand, a low interface can allow bitumen to flow into the middlings zone and affect the

bitumen recovery process [20], which emphasizes the importance of interface control.

Several instruments are available for measuring the interface, including nucleonic

density profilers [3] and differential pressure sensors (DP cells). Although DP cells

are useful for a variety of applications, they are best suited to fluid columns of uniform

46



density. They often provide inaccurate estimates for multiphase fluid columns, such

as PSCs. Also, there is a high cost associated with installing and maintaining nuclear

profilers, and they are prone to malfunctioning due to the accumulation of substances

on their surface[21]. Alternatively, the interface is monitored using a camera and

sight glasses installed on the PSC (Fig.3.1). Cameras are not directly in contact with

slurries in the tank, so the disadvantages of DP cells and nucleic profilers do not beset

them. Further, a computer vision model can automate interface monitoring with high

accuracy and low maintenance costs.

Figure 3.1: A schematic of a PSC

Computer vision is widely used for various applications in water quality assessment

[22], medicine [23], Agriculture [24], remote sensing [25], and so on. The use of

vision systems has also been applied to oil sands applications including the interface

detection problem [5, 6, 18, 26]. In a recent paper, Dogru et al. [27] developed a real-

time object-tracking algorithm that combines reinforcement learning and computer

vision to extract control theory information from real-time data. The authors in

[28] have explored innovative paradigms to address the interconnected challenge of

image segmentation under rain conditions in a joint image deraining and segmentation

framework. In [18], an edge detection method followed by a particle filter was used

to infer the interface level, a technique that is robust to changes in the lighting
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conditions or variations in the intensity of the image, but may fail when the sight

glass is obstructed or heavily stained. [5] applied frame differentiation to images

obtained continuously from the camera in order to identify the dynamic interface,

thus separating it from the static environment. In [6], a segmentation technique

that incorporates the Markov random field (MRF) with the Gaussian mixture model

(GMM) was developed to locate the interface between the froth and middling layers.

That work utilized MRFs to correct mis-segmented pixels by taking neighboring pixels

into account. However, due to the MRF’s consideration of limited neighboring pixels,

it can only correct small mis-segmented areas. Later, [26] proposed a method based

on a convolutional neural network (CNN) followed by KF taking into account the

image occlusions. The CNN can provide accurate results if the images are clear, but

it requires a relatively large dataset for training. When there is an occlusion, the CNN

automatically recognizes it and instructs the KF to place a greater emphasis on the

prediction stage (state equation) to estimate the interface level. However, estimating

the interface level based on only the state equation may result in poor performance

due to the model uncertainties.

A number of factors may degrade images, including stains and marks on sight

glasses, lighting conditions, rain, steam, and camera acquisition noise. Accordingly,

the performance of the discussed works above may deteriorate in practice. Therefore,

prior to the design of an interface detection algorithm, it is essential to develop

an image restoration algorithm. Image restoration is the process of recovering an

estimation of the true image from a degraded image [29]. In order to achieve a

solution with desirable properties, regularization techniques are often employed, which

indicates an understanding of prior information about the true image[30]. Further,

numerous research studies have proven the efficiency of algorithms based on deep

learning for image restoration [31, 32],[33]. The primary limitation of deep learning-

based image restoration is that it requires a relatively large amount of images along

with their ground-truth ones. In contrast, a classical restoration model can be used
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to restore images without having ground-truth images. The authors in [34] used a

scheme that uses full-plane block Kalman filters. Initially, assuming that the image

random field is stationary, the model parameters were estimated based on correlation.

After obtaining the model parameters and assuming Gaussian distributions for the

state and observation noise, the states were estimated. Although the model proposed

in [34] provides a means to generate a full-plane model that maintains causality, its

efficiency is always affected by the accuracy of the parameter estimation based on

correlation analysis.

In this study, the image modeling framework proposed in [34] is enhanced by incor-

porating several key improvements. First, we employ the expectation-maximization

(EM) algorithm for parameter estimation, a choice that diverges from conventional

correlation analysis. This choice is motivated by the EM algorithm’s capability to

effectively adapt to non-stationary image data and capture complex statistical rela-

tionships, offering superior robustness and flexibility in modeling image characteris-

tics compared to correlation analysis. To further optimize image restoration using

Kalman filtering, we introduce an adaptive parameter updating strategy that accom-

modates spatial variations and specific image characteristics across different stripes.

This adaptive approach ensures that the restoration process is tailored to address local

image conditions and anomalies. Furthermore, in PSC sight glass images, with oil and

water separated by a horizontal interface, distinctive characteristics become apparent.

In a gray-scale image, the oil region, depicted in light gray, contains black outliers

(water stains or text), while the water region consists mostly of dark pixels with occa-

sional light gray stains and text. These region-specific distributions exhibit skewness.

Additionally, prevalent noise in these images results in histograms with heavier tails

compared to the Gaussian distribution. Consequently, we adopt the t-distribution to

enhance the robustness of our modeling approach. In Fig. 3.2, the histogram within

the red rectangle represents a region of interest, to which four distributions have been

fitted, Gaussian, skew-normal, t-distribution, and skewed t-distribution. The figure
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clearly demonstrates the superior fit of the skewed t-distribution.

After restoration, using an MRF-GMM algorithm, the images are segmented in

order to determine interfaces. In summary, this study makes the following contribu-

tions.

(a) (b)

Figure 3.2: (a) PSC Image (b) Histogram of the selected part of (a)

• Development of an image restoration algorithm using a spatially robust KF.

• Simultaneous image model parameter and state estimation using EM and KF

algorithms.

• Image segmentation of the restored images using an MRF-based GMM for in-

terface detection.

Adaptive Block 

Kalman Filter Image 

Restoration

MRF-GMM Image 

Segmentation
Degraded Image

Interface level 

Detection
Interface

Restored

Image

Segmented

Image

Figure 3.3: A schematic of the proposed algorithm

Following is a brief summary of the remaining portions of the chapter. Fig. 3.3

provides a visual representation of the comprehensive algorithm to enhance clarity.

Detailed information about image restoration can be found in section 3.3. In section

3.4, the image segmentation algorithm is discussed, and section 4.5 validates the

efficacy of the proposed methodology.
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3.2 An Overview of EM Algorithm

EM algorithm uses iterative optimization techniques to solve maximum likelihood

(ML) estimation problems to estimate parameters of probabilistic models when data

is incomplete or contains hidden variables [35, 36]. The algorithm considers a com-

plete dataset as being formed of two parts, D = {Dobs, Dmis}, with only Dobs being

observed while Dmis being missing/hidden. Also, Θ denotes the unknown parameters.

Two steps are involved in the algorithm, the expectation step and the maximization

step, referred to as E-step and M-step, respectively. Once the model parameters are

initialized, the following procedure is carried out until convergence is achieved.

3.2.1 Expectation Step

During this step, the algorithm computes the expected log-likelihood of the entire

dataset with regard to the missing data according to the current estimate of the

parameters, which is known as Q function.

Q(Θ|Θh) = EDmis|Dobs,Θh [log(p(Dmis, Dobs|Θ))] (3.1)

where E denotes the expectation operator and Θh represents the estimated parameters

at hth iteration.

3.2.2 Maximization Step

It is at this point that the algorithm estimates Θ by maximizing the expected log-

likelihood of the complete data set in accordance with the parameters of the model,

which is

Θ(h+1) = argmax
Θ

Q(Θ|Θ(h)) (3.2)

3.3 Image Restoration

During this section, we develop a mathematical model of a two-dimensional image in

a state-space setting. In this state-space model, each pixel value is filtered by taking
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into account all eight neighbors. An iterative EM algorithm is then employed to

estimate the model parameters and, as a result, restore a representation of the true

image from the degraded one using a modified KF.

3.3.1 Image State-Space Model

Image degradation refers to the loss of quality or deterioration of an image which can

occur during image acquisition, transmission, and storage or due to environmental

conditions, processing, etc. There can be a reduction in image clarity, a decrease

in detail, a loss of color accuracy, and other visual imperfections as a result [30].

A restoration step is therefore essential to enhance the quality of an image before

proceeding with the image analysis. The two-dimensional nature of images makes

classical filtering approaches, such as KF, difficult to apply directly. However, as

mentioned earlier, [34] proposed a novel state vector to filter the images. Consider

an M by N gray-scale image that is scanned from left to right and from top to

bottom by a filter with the shape that is represented in Fig. 3.4. In this case, we are

interested in estimating the states in the middle row. Even though each of the nine

states is estimated through the use of the algorithm, both the upper and lower row

estimates are produced for the purpose of providing additional support for the middle

row states. As the filter progresses, each state in the middle row is replaced with its

estimated one; however, only x9 is saved as the final filtered estimate. This is due

to the fact that x9 has the maximum number of neighboring states. After the state

propagation has been completed for each strip, which consists of three rows, and is

carried out horizontally from left to right, the same process will be followed for the

next strip by sliding the filter one row down.

The local state-space model (for each row) is represented in (3.3). xk+1 and xk are

the next and current state vectors, respectively, consisting of nine states xi, where

i ∈ [1, 9]. A is the transition matrix and wk is the process noise, which is a zero-mean

white Gaussian noise with the size of 9× 1. The state space model parameters vary
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strip by strip for the entire image. However, it is assumed to be invariant for each

strip.

xk+1 = Axk + wk (3.3)

that is ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,k+1

x2,k+1

.

.

x9,k+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,k

x2,k

.

.

x9,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1,k

w2,k

.

.

w9,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.4)

As the filter advances to the right, the first five states can be estimated by substituting

the values of the pixels in the exact spatial location of the states in the previous

location index. For instance, x1,k+1 takes the value of x2,k as they occupy the same

pixel. In Fig. 3.5, the propagation of the state along the horizontal direction is

illustrated with each iteration. As pixels x1, x2, x3, x4, and x5 at k + 1 occupy the

same spatial position of x2, x6, x4, x8, and x7 at k, respectively, the first five elements

of wk are equal to zero. To model the other four pixels, x6, x7, x8, x9, neighboring

pixels are defined in Table 3.1. Having defined all the correlations between the pixels,

the transition matrix A matrix can be formulated as follows.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 A6,5 A6,6 A6,7 A6,8 0

0 0 0 0 0 0 A7,7 0 0

0 0 0 0 A8,5 A8,6 A8,7 A8,8 0

A9,1 A9,2 A9,3 A9,4 A9,5 A9,6 A9,7 A9,8 A9,9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.5)

It should be noted that the unusual arrangement of these states was done solely

to make calculations and programming more convenient [34]. The local estimation of

pixels along the upper and lower pixel rows (in every strip) also eliminates the need

for large error covariances associated with those states, thus reducing computation
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and storage requirements. It is important to note that within this framework, only

the state x9 is saved in each iteration and every strip, while the remaining states are

not retained. One limitation of the aforementioned method lies in its unidirectional

recursion, where the estimation of the state is solely influenced by the pixels on the

right side. To overcome this limitation, an additional filtering procedure is applied

in the opposite direction, i.e. from right to left. This bi-directional approach allows

for a more comprehensive estimation of the state by incorporating information from

both sides of the image. Furthermore, the results obtained from each direction are

combined by considering their respective error covariances, thereby enhancing the

overall accuracy and robustness of the estimation process.

Figure 3.4: Image scanning

Table 3.1: Neighboring pixels

Pixel Neighbor pixels

x6,k+1 xi,k, i = 5, 6, 7
x7,k+1 xi,k, i = 7
x8,k+1 xi,k, i = 5, 7, 8

x9,k+1 xi,k, i = 1, 2, 3, 4, 5, 6, 8, 9
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(a) (b)

Figure 3.5: State movement by one column. a) Xk, b) Xk+1

Having defined the image model, the observation equation will be formulated as

yk = Cxk + vk (3.6)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.7)

where yk shows the pixel observations of the degraded image with size 4 × 1, vk

represents the observation noise vector of the same size as yk, and xk is the state

vector. The selection of pixels for the observable space, as indicated by the C matrix,

corresponds to pixels in the image model that are associated with noise. This selective

approach reduces the computational burden compared to considering all nine states.

Furthermore, if only the y9 were considered in the observation, there is less chance of

it being observable. The model ensures observability by including the four outputs.

In order to estimate the state, it is crucial to have a detailed understanding of the

observation noise distribution in the PSC images. It is assumed here that a gray-

scale image takes digits ranging from 0 to 255, where 0 represents a dark pixel and

it becomes brighter until the point equal to 255 representing white color. Fig. 3.2

shows a sample PSC image with an oil phase on top and water on the bottom with

an uncertain interface in between, along with the histogram of the selected region in

grayscale. According to the histogram of the selected region of the image, it can be

seen that pixel observations follow a left-skewed distribution with heavy tails. The
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skewness is due to the appearance of water and stains, which have lower pixel values,

in the bright phase (oil). Right-skewed distributions with a heavy tail can also be seen

in the lower region of the PSC image. As a result, a skew t-distribution is assumed

for the observation noise (for all outputs), that is,

vk ∼
p∏︂

i=1

ST (vik;µi, Rii,△ii, νi) (3.8)

In the above equation, ST represents skew t-distribution, µi is the location parameter

that specifies the location of the center of the distribution, and Rii is the diagonal

entry of scale parameter that determines the spread of the distribution. The degree

of freedom parameter, νi, specifies the shape of the distribution, △ii, is the diagonal

entry of the skewness parameter indicating the degree of skewness in the distribution,

and p represents the number of outputs. Thus, the state-space model for a PSC image

is as given:

xk+1 = Axk + wk; wk ∼ N (wk; 0, Q) (3.9)

yk = Cxk + vk; vk ∼
p∏︂

i=1

ST (vik;µi, Rii,△ii, νi) (3.10)

3.3.2 State & Parameter Estimation Framework

According to the proposed formulation, a simultaneous state estimation and parame-

ter estimation problem is posed. In this work, hidden variables are taken into account

when applying the EM algorithm. In the case of a linear state-space model with

Gaussian distributions for the process and measurement noises, the EM algorithm is

relatively simpler with the KF-RTS smoother framework used in the E-step [37]. This

problem, however, assumes a skew t-distribution for the observation noise. Hence,

using the skew t-distribution as such renders the E-step intractable. A hierarchical

representation of such distributions is often employed in order to address this issue

using the Gaussian scale mixture (GSM) representation [38]. GSM represents a fam-

ily of distributions that are characterized by a scale mixture of infinite Gaussians.
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Specifically, a GSM distribution is obtained by convoluting a Gaussian density func-

tion with a distribution of a scaling variable supported by a closed positive orthant

and then marginalizing over the scaling variables [39]. As a result of using GSM

representation to obtain the closed-form solution, we have:

vk|uk,Λk ∼ N (vk;µ+△uk,Λ−1
k R) (3.11)

uk|Λk ∼ N+(uk; 0,Λ
−1
k ) (3.12)

Λk ∼ G(Λk;
ν

2
,
ν

2
) (3.13)

where

ST (vk; 0, R,△, ν) =
∫︂ ∞

0

∫︂ ∞

0

N (vk;µ+△uk,Λ−1
k R)

N+(uk; 0,Λ
−1
k )G(Λk;

ν

2
,
ν

2
)dukdΛk (3.14)

The term N+ refers to a multivariate truncated Gaussian distribution supported by a

closed positive orthant, and G represents a Gamma distribution. It can be observed

that the above hierarchical representation decomposes a skew-t distribution into Gaus-

sian, truncated-Gaussian, and Gamma distributions through the introduction of two

additional latent variables. These variables, denoted as u and Λ respectively, dynam-

ically adjust the observation noise distribution mean and covariance. As a result of

this adaptive nature, an effective characterization of skewness in the t-distribution

can be achieved, resulting in a more accurate representation of the observed data.

In this problem, the observed variables, latent variables, and parameters are indi-

cated by Y := y1:N , Z := {x1:N , u1:N ,Λ1:N}, and θ := {A,Q, µ,R,△, ν}, respectively.

Although the introduction of two extra latent variables increases the model’s com-

plexity, it enables the estimation and tracking of the underlying state with improved

accuracy and robustness. With this representation, the joint log-likelihood p(Y, Z|θ)
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of the model is expressed as follows:

log p(Y, Z|θ) = log p(x1) +
N∑︂
k=2

log(xk|xk−1; θ)+

N∑︂
k=1

log(yk|xk, uk,Λk; θ) + log p(uk|Λk; θ) + log p(Λk; θ) (3.15)

where

log p(x1) = −m
2
log 2π − 1

2
xT1 x1,

log(xk|xk−1; θ) = −m
2
log 2π − log(det(Q− 1

2 ))

− 1

2
(xt − Axt−1)

TQ−1(xt − Axt−1),

log(yk|xk, uk,Λk; θ) = −p
2
log 2π − 1

2

p∑︂
i=1

log

⃓⃓⃓⃓
Rii

Λii
k

⃓⃓⃓⃓

− 1

2

p∑︂
i=1

Λii
k

Rii

(︁
yik − Cixk − µi −△iiuk

)︁2
,

log p(uk|Λk) = −p
2
log 2π +

1

2

p∑︂
i=1

[︂
log Λii

k − uik
2
Λii

k

]︂
,

log p(Λk|ν) =
p∑︂

i=1

[︂νi
2
log

νi
2
− log Γ

(︂νi
2

)︂
+
(︂νi
2
− 1
)︂
log Λii

k − νi
2
Λii

k

]︂
,

In the above equations, det refers to the determinant of a matrix, m represents the

number of states, and Γ denotes the gamma function. The states Z and the param-

eters θ are estimated through the EM algorithm.

Expectation Step

As part of the E-step, the expected value of the joint data likelihood is estimated,

with respect to the posterior distributions of the latent variables.

Q(θ|θ(h)) = ⟨log p(Y, Z; θ)⟩Z∼p(Z|Y,θ(h)) (3.16)

where ⟨.⟩ indicates the expectation operator and h represents the iteration number.
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Maximization Step

After obtaining the Q-function, it is necessary to maximize it as given in (3.2) with

respect to all the parameters. This is achieved by taking the gradient of the Q-

function w.r.t each of the parameters and equating it to zero which results in the

expressions for updating each of the parameters. The update expressions for each

parameter can be found in (3.17) - (3.22). Detailed information about the parameter

derivation may be found in [40].

aij =

⟨︁
xik+1x

j
k

⟩︁
−
∑︁

l ̸=j alk
⟨︁
xlkx

j
k

⟩︁⟨︁
(xjk)

2
⟩︁ (3.17)

Q =
1

N − 1

N∑︂
k=2

[︁⟨︁
xkx

T
k

⟩︁
− A

⟨︁
xk−1x

T
k

⟩︁
−⟨︁

xkx
T
k−1

⟩︁
A+ A

⟨︁
xk−1x

T
k−1

⟩︁
AT
]︁

(3.18)

µi =

∑︁N
k=1 ⟨Λii

k (y
i
k − Cixk −△iuk)⟩∑︁N
k=1 ⟨Λii

k ⟩
(3.19)

Rii =
1

N

N∑︂
k=1

⟨︂
Λii

k

(︁
yik − Cixk − µi −△iuk

)︁2⟩︂
(3.20)

△ii =

∑︁N
k=1 ⟨Λii

k (y
i
k − Cixk − µi)u

i
k)⟩∑︁N

k=1

⟨︂
Λii

ku
i
k
2
⟩︂ (3.21)

log
νi
2
− ψ(

νi
2
) +

1

N

N∑︂
k=1

[︁⟨︁
log Λii

k

⟩︁
−
⟨︁
Λii

k

⟩︁]︁
+ 1 = 0 (3.22)

where ψ is a digamma function. As shown in (3.17) - (3.22), there are several terms

in those equations that require the expectations of coupled latent variables, xk, uk,

Λk with respect to the joint posterior p(xk, uk,Λk|y1:N ; θ) which is not analytically

tractable. To obtain those expressions, variational Bayesian (VB) inference is applied

to approximate the joint posterior distribution[38].

p(xk, uk,Λk|y1:N ; θ) ≈ q(xk|y1:N ; θ)q(uk|y1:N ; θ)q(Λk|y1:N ; θ) (3.23)
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The above expression is called the mean-field approximation which allows one to

derive the optimal variational distribution for each of the latent variables separately.

The readers are referred to [41] in order to obtain more information on the VB

framework. The expression of the variational posterior of a latent variable Z(i) is

expressed as follows:

q
(︁
Z(i)
)︁
∝ exp

(︃⟨︂
ln p(Y, Z(i), Z̃|θpr)

⟩︂
Z̃∼q(Z̃)

)︃
(3.24)

Here, Z̃ represents all the latent variables other than Z(i). Thus, one can substitute

the complete data likelihood given in (3.15) into the above expression to obtain the

variational posteriors of each of the latent variables. It can be observed from (3.15)

that all of the latent variables’ prior distributions are conjugate priors, their posteriors

are from the same family of distribution. Specifically, q(xk|y1:N ; θ) follows a Gaussian

distribution, q(uk|y1:N ; θ) follows a truncated Gaussian distribution, and q(Λii
k |y1:N ; θ)

follows a Gamma distribution. To calculate the expectation terms related to each

latent variable needed in (3.17) - (3.22), the parameters of each distribution need to

be determined. The procedure for obtaining these parameters is outlined in Appendix

A.1 by equations (A.1) - (A.3) which represent the posterior distributions q(xk|y1:N ; θ),

q(uk|y1:N ; θ), and q(Λk|y1:N ; θ). By estimating these parameters, we can accurately

characterize the posterior distributions of the latent variables.

Finally, one may obtain the expectations that are needed to calculate the parameter

update expressions as presented below.

⟨xk⟩ = xk|N (3.25)

⟨xkxTk−1⟩ = Pk|NJ
T
k−1 + xk|Nx

T
k−1|N (3.26)

⟨xkxTk ⟩ = Pk|k + xk|Nx
T
k|N (3.27)

⟨uk⟩ = γk (3.28)

⟨ukuTk ⟩ = Σk (3.29)
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⟨Λii
k ⟩ =

νi + 2

νi + ϕii
k

(3.30)

⟨log Λii
k ⟩ = ψ

(︂νi
2
+ 1
)︂
− log

(︃
νi + ϕii

k

2

)︃
(3.31)

An overview of the developed image restoration methodology, which is a simulta-

neous parameter and state estimation, is given in Algorithm 1.

Algorithm 1 Proposed image restoration algorithm

1: Set h = 0. Initial guess of parameters Θh.
2: Calculate the parameters of the latent variable distributions using (A.1) - (A.3)
3: Calculate the expectations of coupled latent variables required for the update step

using (3.25) - (3.31)
4: Update the parameters Θh using (3.17) - (3.22)
5: Calculate the joint log-likelihood using (3.15) and check for convergence
6: If the convergence did not occur, return to step 2 and repeat the procedure.

3.4 Image Segmentation

Following the restoration step, the image is segmented to determine the interface. In

order to achieve this, two components of a GMM are used, utilizing MRF to improve

segmentation based on neighboring pixels. The segmentation algorithm is described

in this section.

3.4.1 Markov Random Field

In its most basic sense, a Markov random field is comprised of a series of random vari-

ables that exhibit the Markov property. Markov random fields may also be referred

to as Markov networks or undirected graphical models. As static image processing

does not provide time series information, the Markov property, in this work, refers to

a spatial relationship between each pixel and its neighbors. The set of all image sites

is denoted by S, S = {s = (i, j) | 1 =< i =< M, 1 =< j =< N, H,W ∈ N} where H

andW are the height and width of the image. A neighborhood system exists between

the sites in S, which is defined as N = {Ns | ∀s ∈ S} where Ns refers to a group of
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sites that are adjacent to s. Similarly, a clique c for (S,N) is a set of sites within

S that includes both single and multiple sites. MRF model image segmentation is a

labeling problem, where each pixel in the image is assigned a label, and the goal is to

find the label assignments that maximize a certain objective function[42].

A random field, F , with respect to a neighborhood system N , is referred to as a

MRF if and only if:

P (f) > 0, ∀f ∈ F and P (Fs|fS−{s}) = P (fs|fNs) (3.32)

where F = {Fs | s ∈ S} and f refers to the label of each random variable, fS−{s} is

the set that exclude the site s label, and fNs is the set of neighbors labels, fNs =

{fs′|s′ ∈ Ns}. It is said that a set of random variables F represents a Gibbs random

field (GRF) on S w.r.t. N if and only if it follows a Gibbs distribution [43]. Gibbs

distributions are expressed as follows

P (F = f) =
1

Z
e−

1
T
U(f) (3.33)

where Z =
∑︁

f∈F e
− 1

T
U(f) represents the partition function, T represents a constant

called temperature, which is assumed to be one unless specified, and U(f) represents

the energy function, which sums over all possible clique potentials.

3.4.2 Gaussian Mixture Model

It is typical for pixels belonging to different regions in an image to differ significantly

from each other in image segmentation cases. Thus it makes it reasonable to assume

a Gaussian mixture model for modeling the observed pixel values. The GMM can be

formulated as the following form[37].

P (ds|θd) =
K∑︂
k=1

πkPk(ds|θk) (3.34)

where ds is the observed pixel, θd denotes the observation parameter set, k indicates

the Gaussian component index, πk is the weight of Gaussian component k, and K
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indicates the total number of Gaussian distributions within the mixture model. Each

Gaussian has a probability distribution of the following form

Pk(ds|θk) =
1

σk
√
2π
e
− (ds−µk)2

2σ2
k (3.35)

It is clear from (3.35) that parameter set θd contains parameters such as mean µk,

variance σk, and weight πk for each Gaussian component.

3.4.3 MAP-MRF Framework

Inferences can be obtained using the maximum likelihood (ML) criterion in the ab-

sence of prior information. However, in the case where some knowledge of the prior

distribution of x is known, the maximum of a posteriori (MAP) estimation will yield

the most optimal inference [44]. The MAP estimate of a parameter represents the

value that maximizes the posterior probability density function. From a mathemati-

cal perspective, if f is the parameter of interest, d is the observed data, and p(f) is

the prior distribution of f , then the MAP estimate of f is fMAP = argmax p(f |d)

[45]. According to Bayes rule, we have,

P (f |d) ∝ P (d|f)P (f) (3.36)

By applying the Hammersly-Clifford theorem which connects the GRF and MRF

under the same neighborhood system, it is possible to express the posterior probability

in the following way:

P (f |d) ∝ e−U(d|f)e−U(f) (3.37)

According to (3.37), U(f |d) = U(d|f) + U(f), thus we have

argmax
f∈F

P (f |d) = argmin
f∈F

U(f |d) (3.38)

The objective of maximization of posterior probability P (f |d) equates to minimizing

the posterior energy function U(f |d).
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3.4.4 Parameter Estimation Using EM Algorithm

The parameters of the GMM are the means, µk, variances, σk, and weight coefficients,

πk of each Gaussian distribution. Another set of parameters explaining the neighbor’s

relationship is also defined through the energy function

U(f) =
∑︂
s∈S

V1(fs) +
∑︂
s∈S

∑︂
s′∈Ns

V2(fs, fs′) (3.39)

Us(fs|fNs) = αsfs +
∑︂
s′∈Ns

βs,s′(fs − fs′)
2 (3.40)

When the distribution is homogeneous, we have αs = α and βs,s′ = β, regardless

of s and s′ [43]. Also, as αsfs does not provide any information about the spatial

relationships between the pixels we can set it to zero. Thus, β would be the only

parameter that requires estimation [35].

Us(fs|fNs , θf ) =
∑︂
s′∈Ns

β(fs − fs′)
2 (3.41)

Now that the energy function is determined, we need to estimate our model param-

eters to be able to solve the MAP framework and get the MRF inference. Adding

the penalty parameter, β to the parameter set, in total we have Θ = {µk, σk, wk, β},

where k ∈ {1, 2, ..., K}. EM was used to estimate the parameter set Θ [46, 47]. Ac-

cording to MRF models, the missing part corresponds to the unobservable labeling

f , f = dmis, and the observed part corresponds to the given data, d = dobs. As a

result, the log-likelihood of complete data is expressed as lnP (f, d|Θ). In Appendix

A.2, we delve into each step of the EM algorithm to compute unknown parameters.

The Q function, represented in A.4, consists of two parts. The first part, denoted as

Qd, A.5, is associated with the observations, while the second part denoted as Qf ,

A.6, pertains to the MRF inference. Maximizing the Q function with respect to each

parameter yields the following:

π
(h+1)
k =

1

S

S∑︂
s=1

P (k|ds,Θ(h)) (3.42)
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µ
(h+1)
k =

∑︁S
s=1 dsP (k|ds,Θ(h))∑︁S
s=1 P (k|ds,Θ(h))

(3.43)

(σ2)
(h+1)
k =

∑︁S
s=1 P (k|ds,Θ(h))

(︂
ds − µ

(h+1)
k

)︂(︂
ds − µ

(h+1)
k

)︂T
∑︁S

s=1 P (k|ds,Θ(h))
(3.44)

To find the parameter of spatial relations in the MRF model, β, Qf needs to be

maximized.

∂

∂β

[︄
S∑︂

s=1

K∑︂
k=1

logR(fs|f (h)
Ns
, θf )P (k|ds,Θ(h))

]︄
= 0 (3.45)

If we denote the term
∑︁

s′∈Ns
(1− fs′)

2 as Y and
∑︁

s′∈Ns
f 2
s′ as Z, substituting (A.11)

into (3.45) yields the following equation in which β can be updated.

P (k|ds,Θ(h))
S∑︂

s=1

K∑︂
k=1

[︄(︄
−
∑︂
s′∈Ns

(fs − fs′)
2

)︄
+

Y exp (−βY ) + Z exp (−βZ)
exp (−βY ) + exp (−βZ)

]︃
= 0 (3.46)

By using Python fsolve solver, we have obtained a numerical solution to (3.46).

3.5 Results & Discussion

An evaluation of the proposed method for detecting interfaces using a laboratory-

scale PSC is presented in this section. Fig. 3.6 shows the experimental setup. Using

oil and distilled water, an immiscible interface is formed in this setup. In the figure,

there is a main cell as well as two side tanks containing water and oil. Through the

pumps at the bottom of the setup, water, and oil can be pumped into and out of

the main cell, and the main cell mimics the PSC. Due to a relatively lower density

compared to water, oil rises to the top layer, resembling the froth layer in a typical

PSC. Distilled water, on the other hand, represents the middlings layer. The interface

level between the two phases can be regulated by the inlet and outlet flows for both

phases. A D-Link DCS-8525LH camera is installed in the vicinity of the PSC tank in

order to capture RGB images with a resolution of 720× 1280. It is necessary to limit

the region of interest (ROI) to the main cell to exclude the background. Further,
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the raw color images are resized to 300× 200 pixels for computational efficiency. For

controlling the process and collecting the data as a function of time, an OPTO22

subsystem and MATLAB program are used.
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Oil Recycle 
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Figure 3.6: PSC laboratory experimental setup

The primary objective is to detect the interface from the captured images. However,

various factors can degrade the images, affecting the performance of the vision model.

Fig. 3.7, illustrates the issue, where the nature of the two phases often results in a

fuzzy phase mixing around the interface. Additionally, stains and marks on the

PSC may lead to unreliable interface detection. Furthermore, camera noise, image

compression, and camera motion can impact the images. Hence, it is crucial to restore

an estimate of the true image. The following subsection presents the results of the

proposed image restoration algorithm.

3.5.1 Image Restoration Results

The restoration algorithm was implemented in a joint EM-KF framework in order

to estimate the parameters and states of the model. Once the images have been

obtained from the camera, the filtering process is initiated by applying Algorithm

1 strip by strip from the top to the bottom. Where the parameters and states for

the middle row of each strip of the image are obtained, the filter moves to the next

row, estimating the states and model parameters of the next strip while taking into

66



(a) (b) (c) (d)

Figure 3.7: Degraded images by: (a) Stains and marks on the sight glass. (b) Camera
misfocus. (c) Glare. (d) Steam.

account the estimated states of the upper row. The adaptive model with parameters

changing for each strip of the image significantly improved algorithm accuracy.

Fig. 3.8a depicts an image of the PSC, where three distinct regions are denoted

by rectangular shapes in red, blue, and purple. Within the red region, pixel colors

predominantly appear as white, with occasional dark pixels that can be classified as

outliers. Notably, these outlier values, being close to zero within the range of [0, 255],

adhere to a skewed t-distribution in this particular region. Conversely, the blue region

at the bottom of the image consists mostly of black pixels, with outliers manifesting

as white pixels. Additionally, a purple rectangle encompasses the interface area.

Fig. 3.8b illustrates the application of the restoration algorithm to individual strips

within these three regions. Dashed lines indicate original degraded pixel values, while

solid lines depict restored values. Along the top and bottom (represented by red and

blue lines, respectively), the algorithm successfully recovered pixel values, leveraging

the robust EMKF algorithm and incorporating neighboring pixel information into the

modeling process. An illustration of this restoration process is shown by solid red and

blue lines. In the purple area, the algorithm performs smoothing operations to rectify

sharp changes associated with outliers, resulting in a significantly smoother curve, as

indicated by the solid purple line. This comprehensive approach to image restoration

ensures the effective treatment of distinct regions within the PSC image.
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During the restoration process, an observation was made that using the delta value

obtained from (3.21) resulted in the dashed lines in Fig. 3.8b closely following the

solid lines, which represent the original pixel values of the degraded images. To obtain

smoother results, a fixed value of delta, specifically 0.3, was used, and the remaining

parameters were adjusted accordingly. This adjustment ensures a better smoothing

performance as well as maintaining the original image characteristics.

(a) (b)

Figure 3.8: (a) Raw image of the lab PSC setup. (b) Smoothing results of an arbitrary
row on the top part of the image

Fig. 3.9 and Fig. 3.10, illustrate the performance of various restoration methods

on images captured from the PSC, each presenting distinct noise characteristics. In

Fig. 3.9, the original degraded image, i.e. Fig. 3.9a, exhibits noise primarily in the

form of text overlays, challenging the restoration process. Also, Fig. 3.10 displays a

different noise scenario where the original image, i.e. Fig. 3.10a, is affected by more

excessive noise, taking the form of stains and scribbles.

Based on the performance of each restoration method, the median filter in Fig.

3.9b, and Fig. 3.10b consistently offers limited noise reduction in both images, failing

to effectively deal with either type of noise. Similarly, the Gaussian filter in Fig.

3.9c, and Fig. 3.10c exhibits consistent performance across both scenarios, providing

a limited noise reduction and potentially introducing blurriness to the images. The

method proposed in [34] represented in Fig. 3.9d, and Fig. 3.10d attempts noise

reduction in both cases, yielding comparable results. However, it may fail to preserve
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fine image details due to certain simplifications in the restoration process. In con-

trast, our proposed restoration algorithm results shown in Fig. 3.9e, and Fig. 3.10e

excel in addressing both types of noise scenarios, effectively removing excessive noise

and outliers while preserving essential image features. By leveraging the power of the

robust EMKF algorithm and adaptive parameter updating, our method efficiently

recovers pixel values, accommodating spatial variations and specific image character-

istics. Additionally, the proposed algorithm’s incorporation of the skew t-distribution

model aligns seamlessly with the unique noise distribution patterns typically observed

in PSC images.

To quantitatively evaluate the performance of the proposed algorithm, an experi-

ment involving a clean image of a PSC sight glass is conducted where that image was

artificially stained. By comparing the signal-to-oise ratio (SNR) values obtained from

various restoration methods, we found that the proposed algorithm has the highest

SNR compared to those presented in Fig. 3.11.

(a) (b) (c) (d) (e)

Figure 3.9: Comparison between different restoration methods of a PSC interface
image. (a) Original image. (b) Restored image using a median filter. (c) Restored
image using a Gaussian filter. (d) Restored image using a method in [34]. (e) Restored
image using our proposed method.

3.5.2 Image Segmentation Results

Fig. 3.12, and Fig. 3.13 depict the binary segmentation outcomes for the images

displayed in Fig. 3.9a and Fig. 3.10a using various segmentation techniques. The

indication of the interface’s uncertainty boundary, shown by dashed red lines within
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(a) (b) (c) (d) (e)

Figure 3.10: Comparison between different restoration methods of a PSC interface
image. (a) Original image. (b) Restored image using a median filter. (c) Restored
image using a Gaussian filter. (d) Restored image using a method in [34]. (e) Restored
image using our proposed method.

(a) (b) (c) (d) (e)

Figure 3.11: Comparison between different restoration methods of a PSC interface
image. (a) Original clean image. (b) Artificially stained Image. (c) Restored im-
age using a median filter (SNR=9.20). (d) Restored image using a Gaussian filter
(SNR=9.38). (e) Restored image using our proposed method (SNR=15.3).

each image, underscores the challenging nature of the task due to the presence of

excessive noise in the interface region. Thresholding and K-means clustering struggle

with outlier handling, resulting in unreliable interface detection. The Watershed

method, while more robust, tends to over-segment irregular regions. Notably, the

GMM-MRF image segmentation technique exhibits superior performance compared

to the aforementioned methods. By integrating pixel neighborhood information into

the segmentation process, it successfully manages to handle a substantial portion of

the outliers. However, it struggles with large distorted areas, occasionally leading to

imprecise interface identification. In contrast, GMM-MRF image segmentation with

restoration shown in Fig. 3.12e, and Fig. 3.13e introduces a crucial preprocessing
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step. This step involves the restoration of the image before segmentation, and this

integration notably enhances the accuracy of interface detection within the PSC.

The results obtained clearly highlight the pivotal role of image restoration as an

indispensable preprocessing procedure for achieving accurate interface detection in

PSCs and related applications. Additionally, this analysis reinforces the superiority of

the MRF-based image segmentation approach in accurately handling complex image

structures and noise, thereby making it a compelling choice for interface detection

tasks in challenging scenarios like PSCs.

(a) (b) (c) (d) (e)

Figure 3.12: Segmentation Results of a PSC interface image using different segmenta-
tion methods. (a) Thresholding. (b) Image segmentation using K-means clustering.
(c) Watershed image segmentation. (d) GMM-MRF image segmentation. (d) GMM-
MRF image segmentation with restoration.

(a) (b) (c) (d) (e)

Figure 3.13: Segmentation results of another PSC interface image using different
segmentation methods. (a) Thresholding. (b) Image segmentation using K-means
clustering. (c) Watershed image segmentation. (d) GMM-MRF image segmentation.
(d) GMM-MRF image segmentation with restoration.

To determine the interface level in the segmented images, we plotted the mean
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Figure 3.14: Sequence of images

value of each row from top to bottom. Ideally, the interface should occur when the

mean value of a row is 0.5, where the top part of the binary image is assigned a pixel

value of one and the bottom part is assigned a pixel value of zero. However, due to

the noise present in the segmented images, we considered rows with mean pixel values

ranging from 0.2 to 0.8 to detect the interface. The interface region, indicated by red

hashed lines, is observed to consist of multiple rows in the images without restoration,

resulting in higher uncertainty. Conversely, the interface is certain, illustrated by a

single red line, in images processed with the proposed algorithm.

Further evaluation of interface detection accuracy was conducted by capturing 100

sequential images at intervals of six seconds from the PSC. Human observers recorded

interface-level labels for all images. The results of interface detection, with and with-

out the restoration step, are illustrated in Fig. 3.14. The first method solely used the

MRF-GMM algorithm to segment degraded images and estimate the level of the inter-

face by analyzing the mean feature of the segmented images. However, the proposed

method in this work incorporated a restoration step before image segmentation. It

also utilized a distinct energy function for Markov-based segmentation, different from

the one described in [6]. According to the figure, the aqua blue region displays the in-

terface region obtained by solely segmenting the corrupted images. Clearly, ignoring

restoration leads to uncertain results. In contrast, the magenta-colored line shows the
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interface level based on the proposed method that contains no uncertainty. Fig. 3.14

also shows that the interface detected by the proposed method is relatively close to

the actual one for the entire sequence. Using Python and Visual Studio Code for each

image with 300 rows and 100 columns, the restoration process took approximately 30

seconds, while the segmentation algorithm required around 10 seconds.

3.6 Conclusions

This study proposes a restoration-segmentation method for interface estimation in

a PSC which is also applicable to flotation cells commonly used in oil sands and

mining industries. Due to the environmental conditions and technical issues that

often affect images, the degraded images are modeled using a state-space framework

in this study. The measurement noise is modeled using a skew t-distribution to take

into account outlier pixels and their asymmetry arising from the nature of the process

and environmental conditions. An EM algorithm is then used to estimate the model

parameters of the state-space model, in which posterior distributions of states are

estimated using a KF in the E-step, and parameters are updated in the M-step.

Following the image restoration process, images are segmented using an MRF-based

GMM to obtain a binary image. MRF improves segmentation accuracy by considering

neighboring pixels. The resulting segmented image is therefore analyzed to detect the

interface. Experimental results indicate that the restoration leads to higher-quality

images and a more accurate estimate of the interface level in PSC.
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Chapter 4

Primary Separation Cell Interface
Detection in Steam-Obstructed
Images Using Image Inpainting

4.1 Introduction

The extraction of bitumen from oil sands, a vital component of Alberta’s oil reserves,

is a complex and crucial industrial process that has both economic and environmental

impacts. Oil sands, comprising a mixture of crude bitumen, silica sand, clay minerals,

and water, are abundant in Northern Canada and account for a substantial portion

of the world’s oil reserves. Two primary extraction methods, surface mining and in

situ thermal extraction, are employed to recover this valuable resource. Among these

methods, the surface mining process utilizes large Primary Separation Cells (PSCs)

to separate bitumen from sand using a water-based gravity separation process. This

separation process yields three distinct phases: the clean froth product (Overflow)

with approximately 50-60% bitumen content, the fine slurry (Middlings) composed of

water and 2-4% bitumen, and the coarse tailings (Underflow) with at least 50% solids

and minimal residual bitumen. Maintaining precise control of the froth-middlings

interface level is imperative in optimizing bitumen recovery, minimizing process vari-

ations, and mitigating environmental consequences [1, 2, 48, 49].

Traditional froth-middling interface detection in PSCs relies on manual inspection,
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Figure 4.1: A schematic of a PSC

which is subjective, labor-intensive, and error-prone. Automated methods are in-

creasingly in demand to provide objective measurements. While methods like density

profilers or capacitance probes are costly and may be inaccurate [3], computer vision

technology offers a non-intrusive, non-contact solution with low maintenance require-

ments and high sampling frequencies, making it an efficient and cost-effective option

for accurate interface detection.

Despite the benefits of computer vision, using image processing for interface de-

tection encounters challenges. Images taken in the demanding conditions of the ex-

traction process face issues such as stains, noise, misfocus, blur, and degradation due

to motion and vibration. These factors can introduce inaccuracies during image pro-

cessing. Additionally, cameras used in the steam-intensive extraction process may

yield occluded images, where steam covers parts of the frames (cloudy sight glasses),

further complicating accurate interface detection. This underscores the necessity for

adept and resilient image-processing techniques specifically designed to tackle these

challenges. Previous attempts at interface detection in PSCs have employed various

image processing methods in real-case harsh environments, but these approaches often

struggle to handle occluded regions caused by steam and other obstructions. Further-

more, existing approaches haven’t fully leveraged advanced modeling techniques to
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capture the dynamic nature of the interface and its relationship with observed image

data.

In [4], an edge detection method followed by a particle filter was used to infer the

interface level, which is robust to lighting condition changes or intensity variations

on the image but may fail in the presence of occlusions or heavy staining on the sight

glass. Further, [5] applied frame differentiation on a continuous stream of images

from the camera to detect the moving interface, distinguishing it from the stationary

surroundings. In [6], a Markov random field (MRF)-Gaussian mixture model (GMM)

segmentation technique was developed to detect the interface between the froth and

middling layers. That work utilized MRFs to correct mis-segmented pixels by taking

neighboring pixels into account. However, due to the MRF’s consideration of limited

neighboring pixels, it can only correct small mis-segmented areas.

Image analysis with occluded images has been explored in various studies. In

[50], occluded facial image reconstruction is addressed using Asymmetrical Principal

Component Analysis (aPCA). PCA estimates occluded facial parts based on visible

content, with a subjective preference for clear regions. In [51], deep feature aug-

mentation is proposed for occluded image classification, improving accuracy without

impacting clean image performance. [52] introduces a contour-based object tracking

method with semiparametric models for visual features and shape priors, effectively

handling occlusions. [53] presents a multi-instance object segmentation algorithm

with top-down reasoning, achieving favorable results on the PASCAL VOC 2012 set.

These methods collectively advance occluded image analysis, addressing challenges

from facial recognition to object segmentation and tracking. Later, for the case of

interface detection, [26] proposed a method based on a convolutional neural network

(CNN) followed by KF taking into account the image occlusions. When there is an

occlusion, the CNN automatically recognizes it and forces the KF to rely more on the

prediction step (state equation) to estimate the interface level. However, estimating

the interface level based on only the state equation may result in poor performance
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due to the model uncertainties. Also when we have partial occasions the interface is

visible by human eyes, relying only on model dynamics to detect the interface level

means throwing away valuable information that we could have obtained from images.

This chapter introduces an innovative approach for recovering and reconstructing

occluded image areas from PSC sight glass images. The method utilizes image in-

painting to restore obscured regions within the PSC interface images. To selectively

guide the inpainting process, a change detection technique, employing background

subtraction with a Gaussian Mixture Model, identifies dynamic elements such as

steam. The inpainting is performed using the UNET shape architecture to restore

damaged image portions. The final results combine the original image with the steam-

covered sections detected by the change detection algorithm, improving image clarity.

Spatial and temporal image analysis methods are employed for interface detection. To

address noise and inaccuracies present in both spatial and temporal domain interface

data, a robust filtering and fusion framework is applied. This framework leverages

the Kalman filter, in conjunction with the Expectation-Maximization (EM) algo-

rithm, for parameter and state estimation. The fusion process, based on the inverse

of the error covariance matrix of each filter, proves resilient against various challenges

such as vibrations, lighting changes, and occlusions. By integrating image analysis

techniques with state-space modeling, our proposed approach aims to overcome the

difficulties associated with steam-covered images, ultimately enhancing the accuracy

of froth-middling interface detection in PSCs.

In summary, this study makes the following contributions.

• Introduction of a novel image inpainting technique, guided by a robust change

detection method, to recover occluded regions in PSC interface images, enhanc-

ing image clarity and accuracy.

• Development of a spatial and temporal image analysis approach for froth-

middling interface detection, effectively addressing noise and inaccuracies in
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both domains.

• Application of a robust filtering and fusion framework, combining the Kalman

filter and EM algorithm, to estimate parameters and states of the model, pro-

viding stability against various challenges and improving interface detection

accuracy in PSCs.
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Spatial Analysis

Temporal Analysis

Figure 4.2: Schematic of the Comprehensive Computer Vision Framework for Inter-
face Detection in PSCs

The chapter is structured as follows: Section 4.2 details the dynamic inpainting

algorithm proposed in this study. In Section 4.3, we delve into the image segmentation

algorithm for spatial analysis and the image differencing framework for temporal

image analysis. In Section 4.4, we introduce the Mixed EMKF framework designed to

filter and fuse the data. Lastly, Section 4.5 showcases experimental results, illustrating

the efficiency and potential industrial applicability of our method. A schematic of

the entire computer vision framework is visualized in Fig. 4.2.

4.2 Image Inpainting

Image inpainting techniques play a pivotal role in reducing noise and filling large

missing regions in images. Leveraging deep learning models, particularly autoen-

coders, proves effective in learning underlying patterns, textures, and structures from

sufficient training images. The autoencoder, a type of neural network architecture

designed for efficient representation learning, excels in reconstructing complete and

visually coherent images from partially observed or degraded inputs [54].
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In this research, the suggested image inpainting technique comprises a two-phase

approach. Initially, a change detection algorithm is applied to identify steam-covered

regions, followed by the utilization of an autoencoder for inpainting based on the

detected areas. Achieving precise change detection between consecutive frames is a

key element in our dynamic image inpainting methodology. This is accomplished

through the implementation of an advanced background subtraction model, aiming

to pinpoint areas in the image frames where alterations have occurred. This enables

a targeted focus on inpainting obscured or covered areas, often due to the presence

of dynamic elements like steam within the scene.

4.2.1 Background Subtraction Method

Background subtraction is a useful and effective method for detecting moving objects

in video images. Since this method assumes that image variations are caused only

by moving objects (i.e., the background scene is assumed to be stationary) [55].

In this section, we will present an adaptive method that uses a mixture of normal

distributions to model a multimodal background image sequence.

In the processing of PSC sight glass images, where oil and water are demarcated

by a horizontal interface, a mixture of multi-Gaussian distributions (MoG) is em-

ployed to model the complex, evolving background. This includes elements like static

features and lighting conditions. Both the oil and water regions, with their distinct

gray scale characteristics, are effectively captured by separate Gaussian distributions

within this model. The adaptive nature of MoG allows for effective differentiation be-

tween stable background elements and foreground changes, addressing the challenges

posed by dynamic lighting and multiple surfaces. This method updates Gaussian

parameters and employs heuristics to discern background components. Foreground

pixels, identified as deviations from the background model, are tracked across frames

using a multiple hypothesis tracker which will be explained in this section.
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Adaptive Mixture Modeling

In this approach [56], pixel values were analyzed over time as a ”pixel process”,

conceptualized as a time series for each pixel {x0, y0}, represented by the equation:

{X1, . . . , Xt} = {I(x0, y0, i) : 1 ≤ i ≤ t} (4.1)

where I is the image sequence. Since even in a static scene lighting variations are

present, fitting a Gaussian distribution centered around the mean pixel value could not

model the image. Furthermore, new static objects in the scene could be misclassified

as foreground for extended periods if not quickly integrated into the background

model, leading to tracking inaccuracies. Thus, in our model, the recent history of

each pixel, denoted as {X1, . . . , Xt}, is represented by a mixture of K Gaussian

distributions. The likelihood of observing a current pixel value is given by:

P (Xt) =
K∑︂
i=1

wi,tN (Xt, µi,t,Σi,t) (4.2)

Here, K represents the number of distributions, typically ranging from 3 to 5 based

on computational resources. The weight wi,t, mean µi,t, and covariance matrix Σi,t for

each Gaussian at time t are parameters of the model. These parameters facilitate the

adaptation of the model to variations in pixel values, capturing the dynamic nature

of the scene.

To address the non-stationarity of pixel processes in varying environmental con-

ditions, our model employs an online K-means approximation for updating, which is

more computationally efficient than the traditional EM algorithm. This method eval-

uates new pixel values Xt against K Gaussians, defining a match when a pixel falls

within 2.5 standard deviations of a distribution. This flexible threshold, adjustable

for various lighting conditions, ensures consistent object visibility in different illu-

minated areas. If a pixel does not match any distribution, the least probable one

is replaced with a new distribution, characterized by the current pixel value as its

mean, high initial variance, and low initial weight, effectively adapting to changes in
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the scene over time. The adjustment of the prior weights wk,t of the K distributions

at time t is given by:

wk,t = (1− α)wk,t−1 + α(Mk,t) (4.3)

here, α represents the learning rate, and Mk,t is 1 for the matching model and 0

otherwise. The weights are normalized post-approximation, and 1/α signifies the

rate of change for the distribution parameters. wk,t is a low-pass filtered average of

the posterior probability for pixel values matching model k over time.

For unmatched distributions, the µ and σ parameters remain unchanged. When a

distribution matches the new observation, its parameters are updated as follows:

µt = (1− ρ)µt−1 + ρXt (4.4)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)
T (Xt − µt) (4.5)

the learning rate ρ is defined as:

ρ = αN (Xt|µk, σk) (4.6)

This approach mirrors the causal low-pass filter, incorporating only the data that

aligns with the model for estimation.

One key advantage of this method is its capacity to integrate new elements into

the background without disrupting the existing model. When a new color emerges,

the original background color is retained in the mixture until it becomes the least

probable (Kth). If a previously stationary object moves, the distribution representing

the earlier background remains, maintaining the same µ and σ2, but with a reduced

weight w. This allows for rapid re-assimilation into the background.
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Dynamic Background Integration

As pixel parameters in the mixture model evolve, identifying Gaussian distributions

indicative of background processes becomes crucial. This is based on the accumu-

lation of substantial evidence and minimal variance. Static objects contribute to

low variance in ’background’ distributions, whereas new objects disrupt this pattern,

potentially leading to new distributions or increased variance in existing ones. The

variance of moving objects remains higher until they cease movement. Consequently,

determining the mixture model segment representing background processes is essen-

tial.

Gaussians are initially sorted by the ratio w/σ, where this ratio escalates with

increasing evidence and decreasing variance. Post-reestimation, sorting from the

matched distribution to the most probable background one is adequate, as only the

matched distribution’s relative value alters. This creates an ordered list prioritizing

likely background distributions and relegating transient ones.

The background model comprises the first B distributions, where

B = argmin
b

(︄
b∑︂

k=1

wk > T

)︄
(4.7)

here, T represents the minimal data proportion to be covered by the background.

A lower T value generally yields an unimodal background model, streamlining pro-

cessing. Conversely, a higher T can accommodate multi-modal distributions from

repetitive background motions, like tree leaves or flags, allowing the background to

incorporate multiple colors, and creating a transparency effect.

Our background subtraction model generates a binary mask that highlights frame

alterations, marking pixels that are either part of the foreground or have experienced

significant changes. This mask is integral to the subsequent dynamic image inpainting

phase. The identified changes, often caused by dynamic elements, pinpoint regions

for inpainting, aiming to restore obscured areas for a clearer, more accurate scene

depiction. Fig. 4.3 demonstrates an example of this process, where the method
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(a) (b) (c)

Figure 4.3: The background subtraction scheme (a) Current Image (b) Background
Model (c) Foreground Mask

effectively detects and masks the foreground.
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Inpainting Result

Figure 4.4: A schematic of the inpainting network

4.2.2 Image Inpainting Architecture

Image inpainting, a critical task in image processing, involves the reconstruction of

missing or corrupted regions in images to restore their original appearance. This tech-

nique finds extensive applications in digital image restoration, editing, and content

creation [9]. Our methodology employs a modified autoencoder architecture, closely

modeled after the U-Net design, with targeted modifications aimed at improving fea-

ture extraction and inpainting precision. This architecture comprises two principal

components, aligning with the standard structure of an autoencoder.
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Encoder: This section downsamples the input image to encode it into a compact,

feature-rich representation. The use of convolutional layers, followed by Batch Nor-

malization and ReLU activation functions, ensures efficient feature extraction.

Decoder: The decoder employs upsampling and convolutional layers to reconstruct

the image from the encoded features. Crucially, skip connections from the encoder

layers to the decoder layers facilitate the preservation and integration of detailed

context information in the reconstruction process.

Training the autoencoder involves minimizing the reconstruction loss, typically

measured using the mean squared error (MSE) between ground-truth images X and

reconstructed images X̂:

LMSE =
1

n

n∑︂
i=1

(Xi − X̂ i)
2 (4.8)

where n is the number of data samples. The network parameters are updated using

gradient descent to minimize the reconstruction loss. The gradient of the reconstruc-

tion loss with respect to the parameters can be computed using back-propagation.

Inspired by recent advancements, our approach includes an encoder-decoder network

that is inspired by the U-Net structure for inpainting. The network architecture em-

ploys upsampling operators instead of pooling operators, and features channels in the

decoder to transfer context information to upsample layers.

Our proposed method illustrated in Fig. 4.4, integrates the autoencoder within a

change detection framework to address the challenge of steam-covered regions. Since

the quality of the generated images by the autoencoder does not match the quality of

the real images and both clear and steam-covered pixels are changed, no matter how

small and insignificant, these changes will affect the final images. In order to resolve

this problem and reduce the final error, we only replace the steam-covered pixels with

the reconstructed pixels in the output image of the network.

The workflow for image inpainting is as follows:

Change Detection Algorithm (Background Subtraction): Utilize a change detection

84



algorithm, specifically background subtraction, to identify regions covered with steam.

This algorithm helps distinguish between static background elements and dynamic

foreground elements, highlighting areas that require inpainting.

Autoencoders for Inpainting : Train the UNET-like autoencoder on a dataset com-

prising masked images (with steam-covered regions) and corresponding ground truth

images. Inpaint the steam-covered regions using the trained network, filling in missing

or degraded parts of the images.

Integration of Inpainted Regions : Combine the inpainted regions with the original

parts of the images to obtain clear images.

This dynamic inpainting approach effectively addresses the steam coverage issue

in the sequence of images, contributing to the accurate detection of the interface in

the primary separation vessel.

4.3 Image Analysis for Interface Detection

Having addressed the challenges of steam coverage through dynamic inpainting, the

next step involves comprehensive image analysis to extract valuable insights. Image

analysis, a key facet of computer vision, is the systematic examination and interpreta-

tion of visual data captured in images. Unlike simple image processing, which focuses

on manipulation, image analysis aims to extract meaningful insights and information,

providing a deeper understanding of underlying structures and patterns.

In the spatial domain, Markov Random Field (MRF) image segmentation is em-

ployed for precise binary image segmentation and interface-level extraction. MRF’s

consideration of pixel neighbors enhances robustness to noise and outliers, surpassing

simpler models that treat pixels independently. The temporal domain involves the

utilization of image differencing algorithms to uncover changes between consecutive

frames, offering valuable insights into the dynamic evolution of the interface over

time. This dual approach in spatial and temporal domains enhances our capability

for robust and detailed interface detection in the oil sand extraction process.
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4.3.1 Spatial Domain

Image segmentation, a vital component of computer vision with diverse applications,

involves dividing an image into segments. This strategic approach is employed to

focus processing efforts on the essential segments that contain relevant information.

In essence, image segmentation enables targeted analysis and enhances the efficiency

of image processing [57].

The image segmentation method employed in this study builds upon the principles

of Markov Random Field (MRF), a model characterized by its spatial relationships be-

tween pixels. The MRF model, extensively detailed in our previous work [58], serves

as the foundation for understanding the segmentation process. In summary, MRF

addresses the labeling problem in image segmentation, assigning labels to individual

pixels to maximize a specified objective function that considers the labels of neigh-

boring pixels as well as the observed pixel value [42]. The model leverages a Gibbs

distribution to express the probability of label assignments, where the energy function

incorporates both observed data and spatial relations between neighboring pixels [44].

The parameters of the Gaussian Mixture Model (GMM), representing pixel values,

are estimated using the EM algorithm. The MRF model’s spatial relations param-

eter, denoted as β, is updated through a numerical solution. For a comprehensive

exploration of the methodology and equations, readers are encouraged to refer to the

original paper [58].

Following the successful binary segmentation of the PSC interface using the MRF

model, the subsequent spatial image analysis aims to precisely detect the interface

within the binary image. This begins with the generation of a histogram that runs

vertically across the image, charting the distribution of pixel values (black and white)

for each horizontal row. This histogram plays a crucial role in identifying the interface

between the lighter and heavier liquids, which is marked by valleys in the histogram.

These valleys indicate rows where there is a significant transition between black and
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white pixels. To accurately identify these interface points, we apply a threshold to

distinguish meaningful valleys, which represent the true interface, from minor varia-

tions that might be noise. The determination of this threshold is customized based

on specific image characteristics. The final step in our process involves pinpointing

the optimal interface level, which is identified as the row corresponding to the most

significant valley in the histogram. This valley represents the row where the transi-

tion between the two liquids is most apparent, providing a precise and quantifiable

measure for interface detection.

4.3.2 Temporal Domain

In addition to spatial analysis, interface-level detection can be achieved through tem-

poral image analysis. This approach involves the systematic examination and extrac-

tion of information from a sequence of images captured over time. Unlike the static

analysis of individual frames, temporal analysis delves into the temporal dimension,

enabling a comprehensive study to track evolving patterns, especially the dynamic

behavior of the interface level in a series of images. To capture the movement of this

interface level across consecutive frames, we employ the frame differencing technique

[59]. This method, essential in motion detection, analyzes the variances between

successive frames and a reference frame. By focusing on pixel-based differences, it

effectively identifies changes in the position and behavior of the moving interface,

thereby significantly augmenting the accuracy and depth of our interface detection

methodology

Consider two consecutive frames, denoted as Ik and Ik+1, representing the kth and

(k+1)th frames in the image sequence, respectively. The absolute differential image,

Id(k,k+1), is calculated as the absolute difference between Ik+1 and Ik in Eq. (4.9).

This differential image captures regions of significant change, signifying potential

movement.
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Id(k,k+1) = |Ik+1 − Ik| (4.9)

To enhance subsequent operations the absolute differential image is first converted

into a grayscale image using the standard RGB to Gray transformation. The resulting

image, Id1, undergoes binarization through a binary threshold, yielding the binary

image Id2.

Id2(x,y) =

{︄
1 if Id1(x,y) > Threshold

0 otherwise
(4.10)

The difference image Id2 highlights changing regions, particularly in a narrow stripe

indicating interface movement. Computing the mean values for each row and ana-

lyzing the derivative, pinpoint significant moments of change. This enables precise

determination of the start and end points of the interface movement, providing a clear

understanding of its evolution.

4.4 Data Fusion

To mitigate estimation noise originating from spatial and temporal analyses, a robust

framework for data filtering and fusion is essential. The purpose of data fusion is

to produce an improved model or estimate of a system from a set of independent

data sources [60]. We introduce a standard ARX modeling framework to model in-

terface dynamics, utilizing inlet and outlet flow rates to the PSC. Having a model for

the interface dynamics and two observation models from spatial and temporal image

analysis, a data filtering and fusion framework now can be built. There are various

multisensor data fusion approaches, of which Kalman filtering is one of the most sig-

nificant. In this section, we build the KF framework and estimate the parameters

of our model using the EM algorithm. Lastly, the fusion framework derivations are

presented in order to combine observations obtained from spatial and temporal do-

mains. This approach refines interface estimation, enhancing accuracy and reliability
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in industrial scenarios.

4.4.1 Parameter Estimation

The ARX model is governed by the following difference equations:

xk =a1xk−1 + ...+ anxk−na

+ b1,1u1,k−1 + ...+ b1,nbu1,k−nb

+ bM,1uM,k−1 + ...+ bM,nbuM,k−nb + wk (4.11)

The observation equation is defined as:

yk = xk + vk, i = 1, 2 (4.12)

here, xk, yk, and uk represent the state (hidden interface level), output (observed

interface level), and input (inlet/outlet flow rates to PSC) of the system at time

interval k. The orders of the ARX model are denoted by na and nb, and a1, ..., ana

and b1,0, ..., bM,nb are the parameters. The noises wk and vk are independent and

identically distributed Gaussian noises with variances σ2
w and σ2

v . For simplicity, we

rewrite the ARX equation as:

xk = ϕkθk + wk (4.13)

where

{︄
ϕT
k = [xk−1, ..., xk−na, u1,k−1:k−nb, ..., uM,k−1:k−nb]

θk = [a1, ..., ana, b1,1:nb, ..., bM,1:nb]
T

(4.14)

The complete data representation is as follows.⎧⎪⎨⎪⎩
Dobs = {Y, U} = {y1:N , u1,1:N , ..., uM,1:N}
Dhid = {X} = {x1:N}
Θ = {a1:na, b1:M,0:nb, σ

2
w, σ

2
v}

(4.15)
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where Dobs is the observed data, Dhid is the hidden data, and Θ denotes the unknown

parameters. The EM algorithm is employed to estimate the expected value of the

joint data likelihood, considering the latent variables’ posterior distributions. This

procedure involves two primary steps: the Expectation E step and the Maximization

M step. In the E step, we calculate the expected value of the log-likelihood of

the complete data under a Gaussian noise model, using expressions derived from the

state-space form of the ARX model. These calculations are facilitated by employing a

standard Kalman Filter and RTS smoother for posterior state distribution estimation.

TheM step then maximizes the calculated Q-function with respect to all parameters,

updating the model parameters accordingly. For a detailed exposition of this process,

including the mathematical derivations and update expressions for model parameters,

readers are referred to [61].

The update expressions for the model parameters are given by (4.16) - (4.19).

σ2
v =

1

N

N∑︂
i=1

(︁
y2k − 2yk⟨xk⟩+ ⟨x2k⟩

)︁
(4.16)

σ2
w =

1

N

N∑︂
i=1

(︁
⟨x2k⟩ − 2⟨xkϕT

k ⟩θ + θT ⟨ϕkϕ
T
k ⟩θ
)︁

(4.17)

θ =

(︄
N∑︂
1

⟨ϕkϕ
T
k ⟩

)︄−1(︄ N∑︂
1

⟨ϕkxk⟩

)︄
(4.18)

Additionally, the parameters of the distribution of the initial states x̃ are estimated

by differentiating Q with respect to µ0 and Σ0:

µ0 = ⟨x̃⟩

Σ0 = ⟨x̃x̃T ⟩ − 2µ⟨x̃T ⟩+ ⟨xk⟩ (4.19)
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4.4.2 Fusion Framework

There are various approaches to Kalman filter-based data fusion, notably categorized

into measurement fusion and state fusion. Measurement fusion involves integrating

observations or measurements from multiple sensors or data sources. An approach to

measurement fusion involves combining the information gathered from all available

sensors, in our case the two soft sensors derived from spatial and temporal image

analysis. However, fusing numerous sensor measurements may incur high compu-

tational costs and challenges in meeting computation time constraints. Given the

independence of measurement noise for sensors 1 and 2, an alternative is to combine

measurement vectors yk1 and yk2 based on their respective noise covariance matrices,

Rk1 and Rk2 . Nevertheless, these covariance matrices are unknown to us.

To address the challenges of measurement fusion, our proposed fusion approach, as

illustrated in Fig. 4.5, employs two distinct filters to estimate the same state variables.

The first filter relies solely on measurements from the first sensor, while the second

filter relies exclusively on measurements from the second sensor. Subsequently, the

state estimates obtained from these two filters are judiciously combined to leverage

the strengths and mitigate the shortcomings of each sensor. This methodology aims

to achieve comparable computational costs to using a single filter while potentially

enhancing overall performance. In this track fusion method, the state estimates x̂1k|k

and x̂2k|k from sensors 1 and 2 are fused into a new estimate of the state vector,

denoted as x̂k|k. This fused estimate is based on the minimum variance fusion.

x̂k|k = x̂1k|k + P 1
k|k(P

1
k|k + P 2

k|k)
−1(x̂2k|k − x̂1k|k) (4.20)

where P i
k|k is the covariance matrix for the tracked estimate x̂ik|k based on the mea-

surement of sensor i (m = 1; 2). This method of combining tracks is in general

sub-optimal due to the fusion Eq. (4.20) being the optimal solution of the linear es-

timator [62]. The advantage of this track-to-track state fusion algorithm is a reduced
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computational load on the central processor.
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Figure 4.5: The track-to-track fusion

4.5 Validation & Results

This section outlines the evaluation of our robust interface detection method through

experiments conducted on a laboratory-scale PSC. Fig. 4.6 illustrates the experimen-

tal setup, featuring oil and distilled water to establish an immiscible interface. The

setup comprises a main cell and two side tanks for water and oil, connected via pumps

to control fluid flow, simulating a PSC. In this mimicry of industrial conditions, oil

rises as the top layer due to its lower density, resembling a PSC’s froth layer, while

distilled water represents the middlings layer. Regulation of the interface is achieved

by adjusting inlet and outlet flows for both phases. A D-Link DCS-8525LH camera

captures RGB images alongside the PSC tank at ten-second intervals over five con-

secutive hours, resulting in 2400 images. The region of interest (ROI) is confined to

the main cell to exclude the background, and raw images are resized to 256 × 128

pixels for computational efficiency. Process control and data recording are managed

through an OPTO22 subsystem and MATLAB program. These recorded images,

exhibiting minimal stains and noise, serve as the ground truth for validation.

To simulate industrial conditions, artificial steam is introduced, creating occluded

scenarios that mimic steam obscuring portions of PSC sight glass interface images.

The steam mask, replicating the effects of real steam, comprises both brighter and

darker sections. Some areas behind the mask reveal the interface, while in others, it
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remains hidden due to the denser nature of steam in those regions. The steam mask

was applied in different sizes and orientations within each image in different locations.

In the first phase of the experiment, we inpaint the captured occluded interface images

to obtain clear PSC images. Subsequently, our image analysis method is applied and

evaluated, presenting the results of spatial and temporal image analysis for interface

detection. Finally, we showcase the results of the filtering and fusion framework. Our

ultimate objective during the experiment is to predict the interface level from the

steam-covered images.
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Figure 4.6: A schematic of a PSC

4.5.1 Results: Image Inpainting

In this subsection, the results of the proposed image inpainting algorithm are pre-

sented. A total of 1800 pairs of ground-truth and degraded images were used for

training the autoencoder, and 500 pairs independent of the training images were used

for validation. To test the algorithm, we randomly applied the steam mask to 30%

of the remaining 100 images, unused in the training and validation data sets. We

used Adam Optimizer, a batch size of 64, and 100 epochs of training. By training the

conditional UNET on the partially occluded images along with their corresponding

ground-truth images, we enable the model to learn meaningful representations and

reconstruct images that closely resemble the original one.

The training process was implemented by Keras in Python. The entire network
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inference on a 256×128×3 image is executed using 4 Nvidia RTX A5000 GPUs on a

system equipped with an AMD Ryzen Threadripper PRO 3995WX 64-Core processor.

The steam mask size, a crucial parameter, significantly influences the final results.

To demonstrate this, we conducted two experiments using varying steam mask sizes.

After the training process, images in the test data set underwent a change detec-

tion process, resulting in a foreground mask that highlights changing pixels. A set

threshold determined whether an image required inpainting based on the percent-

age of changing pixels. If the threshold was surpassed, indicating the change was

not due to natural interface movements, the image proceeded through the inpainting

conditional UNET model. The inpainting algorithm’s final output combined original

image pixels in uncovered areas with inpainted pixels in steam-covered regions. We

compared the result of our work with an interpolation method introduced in [63].

Evaluation of these methods has been performed by metrics such as MSE, PSNR,

and SSIM.

In our initial experiment, small steam masks were applied to sight glass images.

Here, the performance of our algorithm was comparable to the interpolation method

that reconstructs using neighboring pixels of affected regions. The outcomes are

detailed in Table 4.1.

In the subsequent experiment, we applied larger steam masks to the images, sig-

nificantly challenging the inpainting process. Under these conditions, our algorithm

demonstrated superior performance compared to the interpolation method. This im-

provement was evident in key metrics such as MSE, PSNR, and SSIM. These results,

which underscore the robustness of our approach in handling more extensive masked

areas, are presented in Table 4.2.

The performance metrics of MSE, PSNR, and SSIM, averaged over 100 test images

for both scenarios, are detailed in Table 4.3. The results highlight our algorithm’s

efficacy in successfully restoring degraded regions and recuperating sizeable missing

areas. A key aspect of its performance was the seamless integration of inpainted zones
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Table 4.1: Comparison of our proposed image inpainting method with small steam
mask

Steam-
covered
Image

Detected
Mask

Interpolation
method in

[63]
Our method

Ground
truth

MSE - 0.002554 0.002509 -

PSNR - 25.93 dB 26.01 dB -

SSIM - 0.7066 0.7251 -

MSE - 0.000809 0.000484 -

PSNR - 30.92 dB 33.15 dB -

SSIM - 0.8776 0.9428 -

with adjacent areas, demonstrating the UNET-based process proficiency. It is note-

worthy that the algorithm showed robustness in cases with partial occlusions, but, as

anticipated, struggled with fully obstructed images. This limitation notwithstanding,

the inpainting algorithm plays a crucial role in enhancing the reliability of subsequent

interface detection analyses. Absent from this preprocessing phase, the accuracy and

dependability of the image analysis would be significantly compromised.

4.5.2 Results: Image Analysis

This section details the outcomes of our image analysis, covering both spatial and

temporal domain results. In the spatial domain, the precision of interface detection

using the MRF model is evaluated, while in the temporal domain, the algorithm’s
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Table 4.2: Comparison of our proposed image inpainting method with large steam
mask

Steam-
covered
Image

Detected
Mask

Interpolation
method in

[63]
Our method

Ground
truth

MSE - 0.001148 0.000996 -

PSNR - 29.40 dB 30.02 dB -

SSIM - 0.7783 0.8274 -

MSE - 0.001255 0.000162 -

PSNR - 29.01 dB 37.91 dB -

SSIM - 0.8588 0.9429 -

Table 4.3: The mean value of MSE, PSNR, and SSIM in cases one where we have
smaller steam masks vs. case two where the steam mask is large

Case I Case II

MSE 0.000914 0.000446

PSNR 29.89 dB 35.03 dB

SSIM 0.8336 0.8847

proficiency in tracking interface dynamics across time is assessed. Both methodolo-

gies were rigorously tested on a sequence of 150 consecutive images from the PSC

sight glass. During this experimental phase, flow rate data to the tank were also

recorded, serving as critical information for the data fusion section. Additionally,

the ground truth for the interface level was marked and measured through operator
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mouse clicks. Collectively, these results underscore the efficacy of our approach in

enhancing interface-level detection for oil sand extraction.

Results: Image Analysis, Spatial Domain

In the spatial domain results, we draw a comparison between our methodology, a

couple of classical image segmentation methods, and the UNet approach in terms of

binary segmentation efficiency. Figs. 4.7 and 4.8 illustrate the segmentation results

for two PSC images of our test sample. Our analysis reveals that while traditional

methods like thresholding and K-means clustering falter in outlier management, lead-

ing to unreliable interface detection, the UNet approach, though more adept than

these basic methods, still faces limitations. It tends to generate smoother interfaces

but occasionally misses finer details due to its convolutional nature, which can blur

the distinction in areas with subtle interface changes.

In contrast, our GMM-MRF image segmentation technique significantly outper-

forms both the basic methods and the UNet approach. This technique, by incor-

porating pixel neighborhood information into the segmentation process, efficiently

handles a majority of outliers and demonstrates enhanced accuracy, even in partially

degraded areas. The strength of the MRF component is particularly notable; it ef-

fectively utilizes the labels of neighboring pixels to minimize missegmentation, which

is crucial in smaller, compromised regions.

(a) (b) (c) (d) (e)

Figure 4.7: Segmentation Results of a PSC interface image using different segmen-
tation methods. (a) Original Image. (b) Thresholding. (c) K-means clustering. (d)
UNET (e) GMM-MRF image segmentation.
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(a) (b) (c) (d) (e)

Figure 4.8: Segmentation Results of a PSC interface image using different segmen-
tation methods. (a) Original Image. (b) Thresholding. (c) K-means clustering. (d)
UNET (e) GMM-MRF image segmentation.

Results: Image Analysis, Temporal Domain

In our temporal domain analysis, we emphasize the effectiveness of the image differ-

encing technique in detecting interface movement. To illustrate this, consider Fig.

4.9, which displays two consecutive images, Ik and Ik+1, from our test set. The figure

also includes their corresponding differential image Id(k;k+1). In the differential image,

the start and end points of significant interface movement are clearly demarcated

with dashed lines, effectively highlighting the dynamic changes.

Figure 4.9: Two consecutive images Ik and Ik+1 with their differential image Id(k,k+1).
The dashed lines in the differential image indicate the start and end points of the
interface movement.

4.5.3 Results: Filtering & Data Fusion

In our evaluation of the spatial and temporal analysis methods for interface detection,

we present the results of applying these techniques to a sequence of 150 consecutive

PSC sight glass images in Fig. 4.10. Following segmentation, our histogram-based in-

terface detection method was systematically applied, consistently producing interface-
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Figure 4.10: Combined Interface Detection Results across 150 Consecutive PSC Sight
Glass Images: Red represents spatial analysis, orange shows temporal analysis, and
black signifies the fused method, which enhances accuracy and reliability in industrial
interface level estimation.

level results indicated by the red line in the figure. The orange line represents the

temporal domain analysis based on image differencing. Observations reveal that the

spatial domain analysis exhibits fluctuations and imprecisions in interface-level de-

tection, while the temporal analysis results display fewer fluctuations but some bias.

However, by calculating the fused interface level estimation (Eq. 4.20), which com-

bines measurements from both the spatial and temporal domains, we achieve mini-

mized bias and noise, highlighting the enhanced accuracy and reliability of industrial

PSC interface level estimation. To assess the effectiveness of our fusion approach, we

conducted an analysis using the coefficient of determination R2 for interface level de-

tection in both the spatial and temporal domains, as well as for the fused estimates,

as shown in Fig. 4.10. This combined analysis underscores the robustness of our

methodology and its practical applicability

4.6 Conclusion

In this work, we have presented a novel approach for enhancing interface-level detec-

tion in oil sand extraction through a combination of spatial and temporal image anal-

ysis, data fusion, filtering techniques, and image inpainting. Our results demonstrate

that the fusion of spatial and temporal observations, coupled with data filtering using
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the Kalman filter, significantly improves the accuracy and reliability of interface-level

estimation. Furthermore, the application of image inpainting with an architecture in-

spired by the UNET model to reconstruct the steam-covered parts of the PSC images

played a crucial role in preparing the data for analysis. By systematically addressing

the challenges posed by noisy and dynamic industrial environments, our approach

minimizes prediction inaccuracies and bias, providing a robust solution that can be

used for real-world applications in oil sand processing.
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Chapter 5

Application of the Developed
Methods on the Industrial PSC
Images

There exist challenges in accurately detecting the interface level in primary sepa-

ration cells (PSCs) using camera-based monitoring systems. These challenges are

multifaceted, stemming from a range of environmental and operational conditions.

Common issues include the fuzziness of the interface, stains, and steam on sight

glasses, obstructions in camera view, and variations in lighting conditions such as

shadows and glare. These factors significantly degrade the quality of captured im-

ages, making reliable interface detection a complex task. Additionally, the dynamic

nature of the industrial setting, with factors like equipment vibrations, fluctuating

flow rates, and the presence of various contaminants, adds layers of complexity to the

image processing requirements. The need for robust, accurate, and adaptable image

processing methods is thus critically evident.

This chapter presents the application of two image processing methods, developed

in the preceding chapters of this thesis, to address these industrial challenges. The

first method, a Restoration-Segmentation algorithm, is designed to enhance image

quality and segment the interface, even in images that are stained or degraded. The

second method involves an Image Inpainting Analysis framework, which addresses

issues of image occlusion, such as those caused by steam, and aids in accurate inter-
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face detection through dynamic image analysis. By applying these methods to real

industrial data, this chapter aims to demonstrate their effectiveness in a practical

setting. This not only serves to validate the methods under real-world conditions but

also offers insights into their practical implementation, showcasing their potential to

significantly improve interface detection in PSCs within the oil sands industry.

The rest of the chapter is organized as follows: Section 5.1, ”Data Description,” de-

tails the characteristics of the industrial data, including video length, timing, and site

specifics. Section 5.2, ”Data Preprocessing,” covers the necessary steps like Region of

Interest (ROI) selection and frame acquisition. Sections 5.3 and 5.4, ”Application of

Restoration-Segmentation Framework” and ”Application of Image Inpainting Anal-

ysis Framework,” respectively, not only present the application of each method to

the industrial data but also include discussions on the specific challenges encountered

and the strategies used to address them. Finally, Section 5.5, ”Comparative Analysis

and Discussion,” compares both methods and offers a comprehensive discussion of

the findings, their implications, and potential areas for future research.

5.1 Data Description

This section of the thesis provides a detailed description of the industrial data used for

the application of the developed image processing methods. The data consists of two

videos, each representing a two-hour operational period and collectively encompassing

a month of data, sampled every 10 seconds, resulting in 267,840 samples.

At the industry, the froth/middlings interface level is measured using four instru-

ments: Tracerco Nuclear Density Profiler, Differential Pressure (DP) cells, Cameras,

and Level Sensor Interface Transmitter (LSIT). The increasing popularity of camera-

based monitoring, due to reduced costs and improved digital imaging software, high-

lights the relevance of this data.

The first video from site 1, characterized by a fuzzy and degraded interface and

sight glass switching, is ideal for testing the Restoration-Segmentation algorithm.
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The second video from site 2, with challenges like operator obstruction and glare,

is apt for evaluating the Image Inpainting Analysis framework. These conditions

present unique testing environments for each method, aligning their strengths with

the specific challenges encountered in the industrial setting.

5.2 Data Preprocessing

This section outlines the essential preprocessing steps applied to the data before

implementing the developed image processing methods.

5.2.1 Frame Acquisition

To analyze image dynamics over time, the videos are converted into a series of frames.

For the first method (Restoration-Segmentation), a sampling interval of 10 seconds is

selected, yielding 720 frames from the first site’s video. For the second method (Image

Inpainting Analysis), a finer sampling interval of 3 seconds is chosen, resulting in 2400

frames from the second site’s video. This distinction in sampling rates aligns with the

specific requirements of each method, with the second method necessitating a denser

data set for deep learning validation.

5.2.2 Sight Glasses or ROI Selection

The target of the algorithms is to detect the interface level through the visuals of the

sight glasses. The user manually defines these regions for each sight glass, creating a

rectangular ROI mask that confines the algorithm’s calculations to the selected areas.

This focused analysis is critical to ensure accuracy and relevance.

In the grayscale frames, a binary matrix, BMSG ∈ RM×N , is used to isolate the

ROI. This matrix has the same dimensions as the image frame, with pixel values set

to 0 outside the ROI and 1 inside. A point-wise multiplication of the image frames

with BMSG effectively removes pixels outside the ROI, as described in Equation 5.1:
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XROI(ti) = X(ti)×BMSG (5.1)

This operation ensures that subsequent image processing calculations are limited to

pixels within the ROI, denoted as XROI(ti). The initial configuration of these regions

is performed on the initial frames from the video camera. An example configuration

is illustrated in Fig 5.1, where yellow rectangles represent the algorithm’s ROI for

level detection calculations.

Figure 5.1: Sequence of images
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5.3 Restoration-Segmentation Framework for In-

dustrial PSC Sight Glass Level Detection

In this chapter, we explore the application of the Restoration-Segmentation frame-

work, initially conceptualized and outlined in the previous chapters, to the task of

detecting the interface level in industrial PSC sight glass images. This application

serves as a crucial benchmark for assessing the framework’s practicality and efficiency

in real-world industrial scenarios, specifically within the challenging context of the oil

sands industry.

5.3.1 Introduction to the Application

The Restoration-Segmentation framework, as developed, excels in addressing image

degradations such as stains, bubbles, text overlays, and general fuzziness by leveraging

traditional image restoration methods. These methods primarily utilize neighboring

pixel values to estimate and rectify degraded pixels, enhancing the overall image

quality and clarity for more accurate interface detection. However, it is imperative

to acknowledge a key limitation: the method’s efficacy diminishes when confronted

with images where large areas are obscured, such as those covered by steam or oper-

ator interference. In such instances, the absence of sufficient neighboring pixel data

hampers the algorithm’s ability to reconstruct the image accurately.

Thus, the focus of this chapter is to validate and demonstrate the framework’s ca-

pabilities in scenarios where the image degradation falls within the method’s effective

range. By applying the framework to industrially sourced PSC images, this chapter

aims to illustrate its practical utility in enhancing interface detection under specific

types of image degradation, while also acknowledging its limitations in scenarios with

extensive occlusions.

This endeavor not only tests the framework’s applicability to real-world condi-

tions but also contributes to a deeper understanding of its operational boundaries.
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Such insights are invaluable for advancing interface detection techniques in the oil

sands industry, where even marginal improvements can have significant impacts on

operational efficiency and resource management.

5.3.2 Methodology

This section describes the methodology of the Restoration-Segmentation framework

applied to industrial PSC sight glass images for accurate interface level detection.

The process consists of two main phases: the Image Restoration Phase using a Block

Kalman Filter, and the Image Segmentation Phase employing a Markov Random

Field (MRF) approach.

Image Restoration Phase

The restoration phase employs a Block Kalman Filter, which is adept at handling

various forms of image degradation such as stains, bubbles, and minor occlusions.

The Block Kalman Filter utilizes a state-space model with skew-t distribution for

measurement noise, effectively improving the image quality for subsequent segmenta-

tion.

The state-space model for a PSC image is as given:

xk+1 = Axk + wk

yk = Cxk + vk (5.2)

where X is the true image state, Y represents the observed degraded image, A and

C are the state transition matrix and the output matrix respectively, and w and v

are the process and measurement noise.

The implementation of this filter involves processing the image in blocks, allow-

ing for a more adaptive and robust approach to image restoration, especially in the

presence of localized image degradations.
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Image Segmentation Phase

Following the restoration, the segmentation phase uses a Gaussian Mixture Model

(GMM) combined with a MRF. The MRF is advantageous in its ability to consider the

spatial dependencies between pixels, thereby enhancing the accuracy and robustness

of the segmentation process.

The integration of MRF in the segmentation process allows for a more contextually

aware segmentation, effectively addressing challenges such as noise and irregularities

in the interface region.

Adaptive Block 

Kalman Filter Image 

Restoration

MRF-GMM Image 

Segmentation

Degraded Image

Interface level 

Detection 

Interface

Restored

Image

Segmented

Image

Figure 5.2: Schematic of the Restoration-Segmentation Algorithm.

The combined use of the Block Kalman Filter for restoration and the MRF-GMM

approach for segmentation ensures that the unique challenges in industrial image

processing are effectively addressed, significantly improving the accuracy of interface

detection in PSCs.

5.3.3 Data Preprocessing & Preparation

The preprocessing of the raw video from the industrial PSC sight glasses encompasses

four key steps, crucial for preparing the frames for the Restoration-Segmentation

framework:

Frame Acquisition and ROI Selection

The video is processed to extract frames at 10-second intervals. For each frame, the

user selects up to three ROIs corresponding to different sight glasses.
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Manual Interface Level Detection

The interface level within each ROI is manually identified by the user through a

mouse click. This manual detection serves dual purposes: it provides the location for

adding artificial bubbles/foam and acts as a benchmark for evaluating the algorithm’s

performance in interface detection.

Artificial Degradation & Foam Effect Application

To enhance the complexity of the images, an artificial foam effect is applied at the

manually detected interface level. This step simulates challenging conditions for the

subsequent restoration process.

Image Masking, Cropping, & Data Compilation

Non-ROI regions are masked to focus analysis on relevant areas. The frames are

then cropped accordingly. Interface-level data, crucial for algorithm evaluation, is

compiled and stored.

This process ensures optimal frame preparation, balancing enhanced image com-

plexity with accurate benchmarking for algorithm assessment. A sample preprocessed

image of the industrial sight glass is shown in Fig. 5.3.

5.3.4 Results & Evaluation

This section presents the results obtained from the application of the Restoration-

Segmentation framework on industrial PSC sight glass images.

Restoration Results

The restoration phase of the Restoration-Segmentation framework significantly en-

hanced the quality of the industrial PSC sight glass images. The effectiveness of this

phase is visually represented in Fig. 5.4, which displays a series of before-and-after

comparisons. These comparisons vividly illustrate the framework’s capability to mit-
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Figure 5.3: A preprocessed image of the industrial PSC

igate common degradation issues such as stains, fuzziness, and other artifacts that

obscure the true interface.

The restored images show a noticeable improvement in clarity, with the interface

becoming more distinct and easier to identify. This demonstrates the framework’s

robustness in handling varied degrees of image degradation and sets a solid foundation

for the subsequent segmentation phase.
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(a) Original Image (b) Restored Image

(c) Original Image (d) Restored Image

(e) Original Image (f) Restored Image

Figure 5.4: Before and after restoration: showcasing clarity improvement and artifact
mitigation.
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Segmentation Results

Following the restoration phase, the segmentation process was applied to the en-

hanced images to detect the interface level. The segmentation phase’s effectiveness

is showcased in Fig. 5.5, where images are segmented both with and without the

preceding restoration step. This comparison highlights the added clarity and preci-

sion in interface detection when restoration is applied. The segmentation algorithm’s

capability to handle stains and other degradation is notably enhanced by the MRF

property. MRF considers the labels of neighboring pixels, allowing for a more accu-

rate assignment of labels and thus, a more refined segmentation, especially in areas

affected by stains.

Interface Detection Results

The interface detection accuracy of our Restoration-Segmentation framework, as il-

lustrated in Fig. 5.6 in terms of percentage, demonstrates high precision with an R2

value of 0.96217, indicating a strong correlation between detected and true interface

levels. Notably, around the 30 percent mark, the plot reveals a decrease in accuracy

and an increase in noise in the estimated interface. This corresponds to the area with

the heaviest stains at the highest point of the bottom sight glass. Here, the algorithm

faces challenges, occasionally misidentifying the interface at the lower parts of the

second bottom sight glass due to stain density. This specific instance highlights the

impact of localized image degradation on the algorithm’s performance, underscoring

the ongoing need for enhancing the framework’s robustness against such challenges.
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(a) Segmented without Restoration (b) Segmented with Restoration

(c) Segmented without Restoration (d) Segmented with Restoration

(e) Segmented without Restoration (f) Segmented with Restoration

Figure 5.5: Segmentation of PSC Sight Glass Images, showcasing the impact of pre-
restoration. It contrasts restored vs. non-restored image segmentation, demonstrating
the restoration step’s role in enhancing stain handling.
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Figure 5.6: True vs. Detected Interface Levels, highlighting detection accuracy.
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5.4 Image Inpainting-Analysis for PSC Sight Glass

Level Detection

In this chapter, we delve into applying the Image Inpainting Analysis Framework to

address limitations observed with the Restoration-Segmentation method, particularly

in scenarios with heavy stains. The previous method, while effective in various con-

texts, showed reduced accuracy in heavily stained areas. Image inpainting, with its

capacity to reconstruct occluded or missing parts of an image, emerges as a solution

to overcome these challenges, enhancing interface detection accuracy by ’filling in’

areas obscured by stains, steam, or glare. This section will demonstrate the frame-

work’s application on industrial PSC sight glass images, highlighting its potential to

improve interface level detection in challenging conditions.

5.4.1 Introduction to the Application

The deployment of the Image Inpainting Analysis Framework in the oil sands industry

signifies a pivotal advancement in overcoming visual obstructions in PSC sight glass

images, such as steam coverage, heavy stains, or inadvertent operator interference.

These conditions critically undermine the effectiveness of conventional interface-level

detection methodologies, leading to potential inaccuracies in the monitoring and man-

agement of the separation process. The innovative application of image inpainting not

only promises to reconstruct these obscured sections of the image with high fidelity

but also aims to bolster operational efficiency and resource optimization within the

industry.

Moreover, the integration of temporal and spatial analysis through image inpaint-

ing enhances the robustness and accuracy of interface detection. By fusing data from

both dimensions, the framework adeptly navigates the complexities of dynamic indus-

trial environments, where the interface level can be transient and affected by various

factors. This approach addresses the pressing need for reliable interface detection so-
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lutions, paving the way for more informed decision-making and process improvements

in the oil sand industry.

5.4.2 Methodology

This section elucidates the methodology underpinning the Image Inpainting Analy-

sis Framework, tailored for enhancing interface detection in PSC sight glass images

obscured by steam, stains, or operator interference. Grounded in the principles of

dynamic image inpainting and sophisticated image analysis, our approach offers a

novel solution to the prevalent challenge of occlusion in industrial settings.

Dynamic Image Inpainting

Leveraging a two-phase approach, our methodology initiates with the application

of a change detection algorithm, specifically background subtraction using a GMM,

to identify steam-covered regions. Subsequently, these identified areas are restored

through an inpainting process employing a UNET-based autoencoder architecture,

designed to reconstruct the obscured segments with high fidelity.

Spatial & Temporal Interface Detection

Post-inpainting, the framework employs advanced spatial and temporal analysis tech-

niques to detect the froth-middling interface accurately. In the spatial domain, an

MRF image segmentation algorithm is utilized, benefiting from the MRF’s inherent

property of considering neighboring pixel labels, thereby enhancing segmentation ro-

bustness amidst noise and inaccuracies. Concurrently, in the temporal domain, frame

differencing provides insights into the interface’s dynamic evolution, facilitating a

comprehensive understanding of its behavior over time.

Robust Filtering & Data Fusion

To refine the interface detection further and mitigate potential noise and inaccura-

cies inherent in spatial and temporal data, our methodology incorporates a robust
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filtering and fusion framework. This framework combines the Kalman filter with the

Expectation-Maximization (EM) algorithm for precise parameter and state estima-

tion. The fusion of data, grounded in the inverse error covariance matrix of each

filter, introduces a layer of resilience against various operational challenges, including

vibrations and lighting changes, significantly augmenting the accuracy of interface

detection.

5.4.3 Data Preprocessing & Preparation

Following frame acquisition and ROI selection, the data preprocessing for the Image

Inpainting Analysis Framework involves several critical steps to prepare the images

for inpainting and interface detection:

Masking Non-ROI Regions

All areas outside the selected ROIs are masked to focus analysis solely on the regions

of interest. This step ensures that subsequent processes, including artificial steam

addition and interface detection, are applied exclusively within the relevant areas.

Artificial Steam Addition

To simulate more challenging conditions and evaluate the framework’s robustness,

artificial steam is added to cover approximately 30% of the sight glass area in the

images. This addition aims to mimic real-world scenarios where steam occlusion can

significantly obscure the interface.

True Interface Level Determination

Before applying artificial steam, the true interface level in the images is obtained

through our Restoration-Segmentation algorithm applied to the site 2 video. In frames

with total occlusion caused by the operator or other obstructions, the interface level is

manually selected via mouse click, providing a benchmark for assessing the interface

detection accuracy.
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These preprocessing steps are essential in creating a controlled, yet challenging en-

vironment to rigorously test the Image Inpainting Analysis Framework’s effectiveness

in interface detection under occluded conditions.

5.4.4 Results & Evaluation

This section presents the results obtained from the application of the inpainting-fusion

framework on industrial PSC sight glass images.

Image Inpainting Results

Our image inpainting analysis utilized a dataset of 2400 images, with 1900 pairs of

ground truth and steam-covered images allocated for training. The validation set com-

prised 400 images, while the test set included 100 images, specifically designed with

30% steam coverage to assess the algorithm’s efficacy in realistic occlusion scenarios.

For effective training, ROI regions were meticulously extracted from both input and

target images, concatenated, and used to fine-tune the inpainting algorithm.

The background subtraction model played a pivotal role in identifying occluded

regions, enabling the targeted application of the inpainting algorithm on areas ne-

cessitating restoration. Post-inpainting, images were resized and converted back to

their original format, incorporating the non-ROI parts to maintain the integrity of

the image data.

Adapting the algorithm to the distinct nature of industry-provided images neces-

sitated the retraining of specific layers within the autoencoder model to better align

with the new data characteristics. The later layers of the encoder and the early lay-

ers of the decoder were retrained. This adjustment was crucial for fine-tuning the

model’s ability to accurately reconstruct images and preserve interface levels, ensur-

ing its effectiveness and robustness in processing industrial images with unique color

and texture profiles.

Performance evaluation on the validation set utilized metrics such as MSE (Mean
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Table 5.1: The mean value of MSE, PSNR, and SSIM over the validation set.

Image Inpainting Performance

MSE 0.000301

PSNR 40.33 dB

SSIM 0.9151

Squared Error), PSNR (Peak Signal-to-Noise Ratio), and SSIM (Structural Similar-

ity Index Measure), demonstrating the algorithm’s exceptional performance in recon-

structing steam-covered parts and preserving the interface level. These results are

tabulated in Table 5.1.

The effectiveness of the image inpainting algorithm is further illustrated through

visual comparisons. Figure 5.7 showcases a selection of original steam-covered im-

ages, their inpainted versions produced by the algorithm, and the corresponding

ground truth images. These visual examples highlight the algorithm’s precision in

reconstructing obscured regions, ensuring the interface level is preserved and visually

coherent with the ground truth.
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(a) Steam-covered image (b) Inpainted image (c) Ground truth

(d) Steam-covered image (e) Inpainted image (f) Ground truth

Figure 5.7: Examples of image inpainting results. For each row, from left to right:
Original steam-covered images, inpainted images, and ground truth.
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Image Analysis and Interface Detection Results

In this section, as the first step, we evaluate the effectiveness of the Image Inpainting

Analysis Framework in enhancing the precision of interface detection within PSC sight

glass images. Our validation dataset consisted of 400 images, with steam artificially

applied to 30% of these images to simulate occlusion conditions. By temporarily

excluding the inpainting process, we applied segmentation directly to the steam-

covered images and performed interface detection using histogram analysis of the

segmented results. The comparison of interface level detection percentages with and

without inpainting, presented in Fig. 5.8, vividly illustrates the significant impact

of the inpainting process. The visible discrepancies and fluctuations when inpainting

is not utilized highlight its essential role as a preprocessing step, emphasizing its

importance for increasing the accuracy and reliability of interface detection.

Figure 5.8: Interface tracking without and with image inpainting using spatial image
analysis.

The subsequent analysis, depicted in Fig. 5.9, evaluated the performance of in-

terface detection, quantified as percentages, using spatial and temporal methods and

their combined fusion approach. This comparison highlights the fusion framework’s
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enhanced tracking accuracy, showing its capability to integrate data from both anal-

yses to achieve superior interface detection.

Figure 5.9: Interface detection results comparing spatial, temporal, and fusion method
accuracies.

Adapting to the absence of flow rate data, our fusion framework innovatively em-

ploys the mean values of each channel (H, S, V) from the ROI parts of the images as

alternative inputs to the ARX model. This methodological pivot not only compen-

sates for the unavailability of flow rates in and out of the PSC but also demonstrates

the framework’s adaptability in utilizing different types of input data to maintain

high accuracy in interface detection. With an R2 value of 99 percent, this approach

validates the framework’s effectiveness in accurately tracking the interface under oc-

cluded conditions, showcasing its potential for broad applicability in industrial PSC

image analysis.

5.5 Comparative Analysis & Discussion

In comparing the Restoration-Segmentation method with the Image Inpainting-Image

Analysis-Fusion Framework, each presents distinct advantages for interface detection
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in industrial PSC sight glass images. The Restoration-Segmentation approach is adept

at correcting moderate occlusions but faces challenges with extensive steam coverage.

Conversely, the Inpainting-Analysis-Fusion strategy excels under heavy occlusions,

demonstrating high accuracy. These insights underscore the potential for method

integration, aiming to enhance detection robustness and address current limitations,

thereby improving practical applicability in industrial environments.
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Chapter 6

Conclusions

In this chapter, summaries of the thesis are provided in section 6.1, and suggestions

for further research are discussed in section 6.2.

6.1 Conclusions

In this study, novel image processing and analysis techniques are used to enhance

froth-middlings interface level detection and estimation in PSCs. The efficacy of the

proposed methods was rigorously tested on a PSC experimental setup in the IRC lab

at the University of Alberta, meticulously designed to mimic the actual industrial

PSC operations. The key findings of this research are summarized as follows:

Chapter 2 laid the foundation by introducing the domain of image processing and

analysis, with a special emphasis on computer vision science. This field aims to endow

machines with a visual capability akin to human sight, encompassing the acquisition,

processing, analysis, and understanding of digital images. The chapter differentiated

between image processing and computer vision, tackled the challenges of visual data

interpretation, and covered the essentials of digital image processing. This included

discussions on image representation, preprocessing, analysis, feature extraction tech-

niques such as edge detection, texture analysis, and color features, as well as advanced

topics in image restoration, inpainting, and segmentation. The exploration into deep

learning advancements highlighted the evolving landscape of computer vision, under-
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scoring its critical role in enhancing image processing methodologies.

In Chapter 3, we introduced a restoration-segmentation method that significantly

enhances the quality of images affected by environmental conditions and technical

issues. By adopting a state-space framework and modeling measurement noise with a

skew t-distribution, this method effectively addresses the challenges of outlier pixels

and their asymmetry. The use of an EM algorithm for parameter estimation, coupled

with a KF for state estimation, followed by MRF-based GMM for image segmentation,

has proven to yield high-quality images and accurate interface level estimates in PSC.

Chapter 4 extended our investigation to a more general framework that integrates

spatial and temporal image analysis, data fusion, filtering techniques, and UNET-

inspired image inpainting. This approach has demonstrated substantial improve-

ments in the accuracy and reliability of interface-level detection in the challenging

and dynamic conditions of oil sand extraction processes. The application of image

inpainting for reconstructing steam-covered parts of images has been particularly

effective in preparing data for subsequent analysis.

Chapter 5 applies the developed image processing methods to real industrial data,

showcasing their effectiveness in practical settings. The Restoration-Segmentation

algorithm excels in enhancing image quality and segmenting the interface, even under

adverse conditions such as staining or degradation. Meanwhile, the Image Inpainting

Analysis framework adeptly handles occlusions caused by steam, facilitating more

accurate interface detection. This application to industrial data not only validates

the methods in real-world scenarios but also highlights their potential to revolutionize

interface detection in PSCs within the oil sands industry.

6.2 Future Work

The findings from this thesis not only pave the way for innovative advancements in

interface detection within PSCs but also suggest exciting avenues for future research:

Integration of Vision Transformers for Temporal and Spatial Analysis: A
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promising direction for future research involves leveraging Vision Transformers (ViTs)

to enhance the detection of interfaces between bitumen froth and middling layers in

PSCs. This approach aims to exploit ViTs’ ability to analyze spatial relationships

within image frames and temporal changes across sequences. By incorporating posi-

tional encodings, the framework is expected to discern the evolution of the interface

with improved accuracy. The adaptability and attention mechanisms of ViTs hold

the potential to significantly refine interface detection methodologies, setting a novel

precedent for optimizing separation processes in bitumen extraction.

Automated Adjustment for Camera Vibrations: The current framework’s

susceptibility to vibrations and changes in camera angle poses challenges to consis-

tent interface level estimation, necessitating manual redefinition of Regions of Interest

(ROIs). To address this, future work could explore the incorporation of a preprocess-

ing object detection algorithm specifically designed to autonomously detect sight glass

windows. By dynamically adjusting ROIs in response to camera movement or angle

changes, this system would greatly reduce the need for manual intervention, ensuring

the framework’s resilience against such disturbances and enhancing its applicability

in industrial environments where vibrations are commonplace.

Exploration of Adaptive Learning Techniques for Dynamic Environ-

ments: An additional innovative approach could involve the exploration of adap-

tive learning techniques to further enhance the framework’s robustness in dynamic

industrial environments. By implementing algorithms that can dynamically adjust to

changes in environmental conditions—such as lighting variations, new types of occlu-

sions, or alterations in the physical properties of the materials being processed—the

system could maintain high accuracy without the need for frequent manual recalibra-

tions. This could involve the use of online learning models that continuously update

their parameters based on new data or the development of meta-learning systems

capable of adjusting their learning strategies based on the observed changes in the

environment.
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These forward-looking research directions aim to further refine and expand the

capabilities of computer vision techniques in industrial settings, ultimately leading to

more efficient, accurate, and autonomous systems for monitoring and control in the

oil sands industry and beyond.
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Appendix A: Chapter 3 Appendix

A.1 Derivation of Variational Posterior of Latent

Variables

Inference of q(xk|y1:N ; θ) Since the GSM representation results in a Gaussian noise

for the observations, one can use the KF-RTS smoother equation to estimate the

distribution of xk. Thus,

q(xk|y1:N ; θ) = N (xk;xk|N , Pk|N) (A.1)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk|k−1 = APk−1|k−1A
T + Im − AAT

Ky = Pk|k−1C
T (CPk|k−1C

T + ⟨Λk⟩−1R)−1

xk|k = Axk−1|k−1 +Ky(yk − CAxk−1|k−1 − µ−△⟨uk⟩)
Pk|k = (Im −KyC)Pk|k−1

Jk = Pk|kA
TP−1

k+1|k

xk|N = xk|k + Jk(xk+1|N − Axk|k)

Pk|N = Pk|k + Jk(Pk+1|N − Pk+1|k)J
T
k

Inference of q(uk|y1:N ; θ) With the likelihood and prior for uk being Gaussian

and truncated-Gaussian distributions, the posterior q(uk|y1:N ; θ) is also a truncated-

Gaussian distribution, truncated below 0. Thus,

q(uk|y1:N ; θ) = N+(uk;uk|N , Uk|N) (A.2)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϵk = yk − Cxk|N − µ

Ku = △(△T△+R)−1

uk|N = Kuϵk

Uk|N = (Ip −Ku△)⟨Λk⟩−1
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In order to determine the mean and covariance of uk in the range 1 ≤ i ≤ p, the

following equations can be used.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Inference of q(Λk|y1:N ; θ) it can be noted that the likelihood distribution for Λii
k

is an exponential one. With the prior being a Gamma distribution, the posterior is

also a gamma distribution. Thus,

q(Λii
k |y1:N ; θ) = G(Λii

k ;
νi
2
+ 1,

νi + ϕii
k

2
) (A.3)

where

ϕk = R−1(ϵkϵ
T
k + CPk|NC

T ) + (△R−1△+ I)
⟨︁
uku

T
k

⟩︁
−R−1△⟨uk⟩ϵTk −△R−1ϵk⟨uk⟩T

A.2 Derivation of MAP-MRF Framework

Based on the EM algorithm framework, the following calculation is performed to

estimate the unknown parameters Θ = {µk, σk, wk, β}.

Expectation Step

The Q-function, which represents the expectation of the complete-data log-likelihood,

is calculated in the expectation step. As a result, it can be expressed as follows:
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Q(Θ|Θ(h)) = E[logP (f, d|Θ)|d,Θ(h)]

=
∑︂
f∈F

logP (f, d|Θ)P (f |d,Θ(h))

=
∑︂
f∈F

logP (d|f,Θ)P (f |d,Θ(h))

+ logP (f |Θ)P (f |d,Θ(h)) (A.4)

The first part of Q which is related to the observations, hereafter referred to as Qd,

can be calculated as follows:

Qd(Θ|Θ(h)) =
∑︂
f∈F

logP (d|f,Θ)P (f |d,Θ(h))

=
S∑︂

s=1

K∑︂
k=1

[logωk + logPk(ds|θk)]P (k|ds,Θ(h)) (A.5)

The detailed steps of deriving (A.5) can be found in [64]. The second part of Q which

is related to the MRF inference, hereafter referred to as Qf , can be simplified as

follows.

Qf (Θ|Θ(h)) =
∑︂
f∈F

logP (f |Θ)P (f |d,Θ(h)) (A.6)

In order to integrate parameter estimation for GMMs and MRFs into one EM frame-

work, the prior must be approximated by a factorizable distribution. The Mean Field

Approximation is employed in this work to approximate the Gibbs distribution of

the prior [65, 66]. Therefore, the objective is to approximate P (f) by a distribution

R(f), which can be factorized to facilitate computation. Due to the Markov property

of random variables, the approximate distribution R(f) can be expressed as:

R(f) =
∏︂
s

R(fs)

=
∏︂
s

R(fs|fNs , θf )

=
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s

1

Z ′
s

exp (−Us(fs|fNs , θf )) (A.7)
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where

Z ′
s =

∑︂
fs

exp (−Us(fs|fNs , θf )) (A.8)

Since the energy function in (3.41) is auto logistic, R(fs|fNs , θf ) can be represented

as:

R(fs|fNs , θf ) =

exp
(︁
−
∑︁

s′∈Ns
β(fs − fs′)

2
)︁

exp
(︁
−
∑︁

s′∈Ns
β(1− fs′)2

)︁
+ exp

(︁
−
∑︁

s′∈Ns
βf 2

s′

)︁ (A.9)

Therefore the prior distribution of the latent variable, f , can be expressed as:

P (f |Θ) ≈
S∏︂

s=1

R(fs|fNs , θf ) (A.10)

Taking the logarithm of P (f |Θ) as required by (A.6), we obtain:

logP (f |Θ) =
S∑︂

s=1

{︄(︄
−
∑︂
s′∈Ns

β(fs − fs′)
2

)︄

log

[︄
−
∑︂
s′∈Ns

βf 2
s′ −

∑︂
s′∈Ns

β(1− fs′)
2

]︄}︄
(A.11)

Accordingly, (A.6) can be simplified as follows.

Qf (Θ|Θ(h)) =
S∑︂

s=1

K∑︂
k=1

logR(fs|f (h)
Ns
, θf )P (k|ds,Θ(h)) (A.12)

Maximization step

Combining Qd and Qf will give the following expression for the Q-function:

Q(Θ|Θ(h)) =
S∑︂

s=1

K∑︂
k=1

[︁
log πk + log(Pk(ds|θk))

+ logR(fs|f (h)
Ns
, θf )

]︁
P (k|ds,Θ(h)) (A.13)

The update expressions of the parameters related to the GMM and the observations

are shown in (3.42) - (3.44). The detailed derivations can be found in [64].
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