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o L . ABSTRACT | R \

! -8
Let G be a dlscrete grou‘b A left invariant mean of tlie Banach space &9° (G)

N

;isa posxtwe linear functlonal of norm one on £°°(G) which i is mvanant under all
left translations by elements in G. When a left invariant mean exnsts, we say that G

is left amenable. Left amenability is generalized to discrete semigroups and locally

-

go;npé.;t groups, where we coﬁsider the space L°’5(JG). of all gssentially bour@déd

Borel r:feﬁ\surable fu'nc‘tiox\ls,-.v In this thesis we present som results coﬁcerni}\g
. topological and combinatorial aspects of left amenable grotips and semjgroups.

_The first half of the thesis deals with the structure of the set M TL(G) of

all left topologlcal mvanant means for 2 locally compact group G, and the set
. ' [

ML(S) of a’ll left ir:r{t‘a"t“means for a dlm semigroup S. We obtain the exact

‘cardinality of the sets MT L(G) and ML'(S) and some of their subsets, in terms of

s

the structural p;opertiés of G a}ld S.. We also prove that the set MTL(G) has no
£ : . -

exposed points or_Gg-point\%‘if G is not compact, and find necessary-and sufficient

conditions for the exigtence of expds‘ed ﬁoints and Gs-points of the set ML(S).
. In doing so, we im‘i;rove rgsults pr_.evidusly’ obtained by C. Chou, E. Graniref,

.b M. Klawe;'A.' Lau, and A. Paterson. . .
"The second half of the thesis concerns thg Fglner number &nd Fglner-type

- conditions for a discrete semigroup. The Fglner number. is a real number between

: -

’z}ro and one related to the combinatorial behavior. of a sémigroup S.. It is well
7 ' I A ’

known that if th‘g Fglner number is gero, then S is left amenable. We prove_.that
“there exist left a&nengbie semigroups with Fglner number equal to one. Thus we

Sk

I
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answer a problem of I Namioka on\the necessxty of some F¢1ner-type condxtxons-
4 o A

for a semigroup to be left amenable. We also determme the F¢lner number for

' all ﬁnite "and cancel}ati\'e semigfoups. Asa contmuation of the work of M. Klawe,

-

we mvestlgate in detanl the left amenablhty and the F¢lner riumber of a semi-

\?dlrect product of two sermgroups In partlcular, we nge‘ necessary and sufﬁment

P I )

;ondxtno,pis for a semldxrgct product to be left amenable and to have F¢lner number

“

vie
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. CHAPTER I

PRELIMINARIES
I1. Introduction. '
Let G be a (dis'crete\)’group and '{®(G) the Banach space of all boun;lei '.‘
- real-valued functions on G with the aupremuxﬁ norm. An ;lement u of | t>(G)’ ia‘
called a r;lé;m on £®(G) if u-is positive and ||u| = 1. For each s in G, we define a)
operator ¢, on £*°(G) by l,;’(t) ——;‘f(;st), for fet®(G)and teG. A mean 4 on
¢%(G) is called left invariant if forany s € G and a;); [ € t2(G), u(t.f) = u(f).
If G -a.drnits a left in‘variant“?nean on £2°(G), we sajlr that G is (left) amenable. ‘
This subject originates from tht_é study of Hausdorfl (18], Banach 2], and
Banach and Tarski_(3] on the existence of finitely addRive measurés on. R, IR?
and IR® which are invariant under al}/translations and rotations. (The anchr,
. incidentally‘,uis yés in the cases of and.le., and no in the case of .]R:’.) In
- 1929, vom- Neumann [38] made a sy'steimatic study of amenable grm‘xps../ He provédﬂ |
‘that any solvable group is amenable, and that the free group on two gen‘crato‘rs
is not émenable. .Siﬁce then, two major generalizations ha.ve‘ been made: to semi- -
gl:oups and to lbcally Xc;mpact groups. I;thensiqris to semigroﬁps were obtained )
by D-i]xmier [11] and Day [8]. General propertieé of left amenable semigr;ups are
surveyed in [8] and [10]. The early wo,rl_is on locally compact amenable groups are |

il

[33] and [21]. Greenlgaf [17] is a general reference, and the new comprehensive -

treatises of Pier [32] and Paterson [31] contain much more up-to-date material on

the subject.
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I;_Ehis thesis we inventigete two upects of a.menable groups and lemigroupu.
The first put dea!s with the atrucmre qf the set ML(S) of all left inva.nant:

meang for a left amenable semigroup S and. the set MTL(G) of all topological left
XL L
mvanant means for a locally compact amenable group G. Among other things, we

1

are able to obtam the exact cardinality. of these sets. The aecond part concerns

Fglner numbers and Fglner-type condxtions for left amena.bie mlgroupa We‘ ‘
answer a problem of Namioka on the neces'sxty of some Fglner-type .coxiditio}xs for

akemigroup to be left amenable.

¢
l“.'

Chapter 1 contains some/definitions and basic p;ope"rti.es;of &menable' groups

and semigroups that we need in this thesis. ‘ o .

-~

We begin Chapter II with a result on the exposed pomts of the set M L(S) -
whxch generalizes results in Chou {4] and Granirer [16] We prove that the set
ML(S) has exposed points if and only if the semlgroup S has ﬁmte ]eft 1deals
The remainder of the chapter is mainly devoted to the study of the cardxqahty of"
the set of invariant means. For a non-compact locally compact amenable group,
we show that there are 22c 49 topological invariant and mversan invariant ﬁleens

on L®(G), where d(G) denotes the.smallest cardinality of a cover of G by compact

e

sets. For a left amenable semigroup S, we define the left thickness . 7(S) of S to
be the greatest cardinality of a strongly left thick subset of 5, and we prove that
1 ) . . i
, \ x (
|ML(S)| = 27 | We also show that 7(5) is actually equal to the cardinals

introduced by Klawe,[24] and Paterson [30].

In Chapter III we first su.mmarize the known relations among the various
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‘%

F¢lner-typ’e conditions and introduce the Fofnar number J(S) fora mnlgroup s. B
 Then We mventiute general properties af tp(S) and de@xmine »(S) compl,etaly

3
for all finite and cancellative semigroups. We also relate w(S) to the cancellation -

. behavior of S by some combinatorial arguments. With the aid of these tools and

the amenabxhty result.s of semidirect products of two semigroupu obtained in Kla.we :

[23] we show that none of the Fglner-type conditions given by Namioka [29] k"

necessary for the left amenability of a semigroup. We also obtain necessuy and
sufficient conditons for a semidirect product to be left amenable or to have Fglner

number 0.

1.2. Left Amtsﬁ/;ble Semigrbups.

¢ . . S
For an arbitrary set X, let £2°(X) be the Banach space of all bounded real-

valued functions on X with the supremum norm. An element p € £ (X) is

cal_led a mean on £ (X) if u is positive and |ju|| = 1. A countable mean on Xisa

positive element u € & (X) with |l = 1. A cauntable mean y is a finite mean if

its support, the set {z € X | p(z) > 0}, is finite. Any countable mean, considered

as an element of £ (X)*, is a mean; and the set of all finite means is w*-dense in

the set of all means on £°(X) (see Day [8]).

Let S be a semigroup. A mean y on £°(S) is called left invariant if u(f) =
p(&,f) for all f € £(S) and s € S, where ,f € £2(S) ‘is defined by £,f(t) =
f (st) ‘t€S. When {2(S) hasa left invariant mean, we say S is left arnenable
and denote by ML(S) the set of all left invariant means on £*(S). M L(S) is
convex and w*-compact in £°(S)* (cf. [8]).. |

)

T
Y



= ,' S0 on X A 1s used to denote the charactenstlc functnon ‘of A, ﬁ
¥

o Forameanuon £°°(S) andsES. jvfe deﬁnes u€£°°(S) by (s u)f ‘

e ( f) fel°°( ). .8-pis alsoameanon £°°(S), and (st) w=s" (t p,) for

Yoo

.8, ‘1S Every left mvarxa{t mean ca.n be expressed as the llmlt of a net {p.;\} of |

. ﬁmte fheans and the net {m} satxsﬁes the condltxon that ry u,\, pr —0 for each ‘

-

-

]

B there exxsts a net of ﬁnlte means w -convergent to, left mvanance The followmg o

lemrna guarantees the %m/tence of a net convergent in norm to left 1nvar1ance :

~ a .

‘ LEMMA 1 2, 1 Let S be a Ieft amenable sengroup, {/.ta}ae[‘ a net of ﬁmte

:‘-‘ s i~

-
v, e»l

" eleménts g, B> «, s'uch that . -

. , '. o B k.
Hs,--'pg,—— p;||‘<"s, i=1,...,n. 7 TNy

A proof, oﬁLemrna 1. 2 1 can be found in Day [8 p 524] N

ForsubsetsA BofSandsES we detmeA B = {uv: ueAandvEB}

sA {su uEA} ands 1A {uES sueA} We denoteA AbyAz,and

d |A| stands for

8.in S m the w -tOpology of £°°( ) A net of ﬁmte means W1th thxs property is.
. called w -co‘nvergent to left mvarlance S&mrlarly, one can deﬁne the: convergence : :

in norm to left mvanance Day [8] proved that S is left amenable 1f and only 1f -

; means w -ronvergent to left. mvarxance Then, for any o e I‘ any €> 0 and any

81y  Sn € S there exzsts a ﬁmte meaq Bl wh)ch is a convex combmatwn of‘" I

th\caﬂlmallty of A A\B denotes the dlﬁ'erence set and A ‘ B the symmetrlc‘ o

dlfference of A and B

K3
4

When pis a mean on S we wrlte p,(A) for u(XA). If;l, é ML(S)‘ gind

A

-

: s ,E,-S-, .we have-u( lA)—--- u( ) smce K,XA = X 14, and p,(sA) > ;L(.A) since

N



sl (sA) D A Gramrer [14] notxced that since p(sS) ‘1v‘for'lx:€ ML(%), the
1ntersectron of ﬁ‘zntely many rlglxt 1dea.ls in S is always nonempty |

Co The class Z)f left amenable semlgroups mcludes all locally finite groups solv-

able groups, ar{1d' abelian semigroups (see Greenleaf [17] or Hew:tt and Ross [19 g
‘ Sectlon 17]) thle all ﬁmte groups are left amenable, it is eaSy to see that a finite
l

semlgroup is /left amena.ble 1f and only 1f it contains a unique rmmmal rnght 1deal
. f . . ) i )

(see [34])'

v Homomorphlc images of left amenable semlgroups are- still left amenable .
R :

,‘jfxlso any su‘bgroup of a left amenable group is left amenable However a subseml-

- group of a left amenable group need not be left amena,ble as shown in Hochster .

| ,

(20]. More generally, we have the followmg result due to Frey (see Pler (32,
| “Prop '23. 32])
»PROPOSITION 1.2.2. Le} G be'a Ieft amenable group and S a subsem:group- '

*

. of G. Then S is left. amenable if and only if S satisfies the ﬁmte mtersectlon v

/ . property' for right ideals.. .

Y /

An 1mportant analytlc apphcatlon “of left arnenable semlgroups is thelr ﬁ;(ed-

pomt property Tt appeared ﬁrst in Day [9] ¥

’ A ,/
.;THEOREM 1.2. 3 Suppose S is a left amenable sermgroup of affine mappmgs on
o a compact convex subset K ofa Iocally convex space Then S has a common ﬁxed

z
point J'n K.

5
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| ,1.3; Thick Sets and Alm.ost'.COnver.gen_t FunctiOns,
o Let A be a subset of a semxgroup S. We say that A- &s—leﬂ;-thxck in S if for '

 every ﬁmte su‘bset F of S there exists an s€ S,,such tha.t Fsc A. Clearly a left

ideal of S is left thlck Mltchell [28] obtained the followmg charactenzatlon of left

thlck subsets - S | ' R -
THEOREJ\"'I 3.1. -If S is a’left amenable sem:group, then a subset A of S is Ief}t

thick in § if and only if there exxsts pE ML( ) thh p(A) = 1

A subset AofSis strongly left thxck 1f for each B c S with |B| < |A| the

© set A\B is left thlck in S (see Klawe [22] iemlgroup S is sald to be rlght [left »,,7"'75

("
;

‘ gent tol. A pr_oof can be found; in Day‘_,[l \ D- 31].

PROPOSITION 1.3.2. IFS is a left amenable sermgroup a.nd f € £°° (S) theri f

L S — — p—- !

xs left almost convergent to 1if and onIy if for a.ny e> 0 there ex?sts a finite mean ' 1

u such that

‘\

mg{zps)e,f(t}>,1—e 1 \

| "where the sum. is taken for all s G s wzth u(s) #0. | N



" 1.4.\ 'Locally Cor’npac_ti Ainenable.Grc)ups. - -
Let G be a locally compact group, and L°°(G) the Banach space of all:
' essentlally bounded real-valued Borel measurable functlons thh respect to the left

Haar measure. Two important subspaces of L°°(G) are CB(G') the space of aIl‘

. boundedlc\ontinuous functions, and ‘U"C'B (G), the space: of all bounded uniformly .

continuous functions.
t .

~ For a‘mnctidn f defined cn G and s € G, we define Foy £it) = 7@¢7Y)y

v Y |
f* by f*( f(t-l) (t—l)a af by o f(t ) (s—lt) and f,.by fa(t) = fits'),
-
here A is the modular functlon of G' For functions f and g deﬁned on G, we

\

N —
define the convolution . -

—

(0N = /G g(t)f '(’t'_l f)dt'a Vse 6.

When f € L°°(C’) and g€ LI(G)A,‘ g f and f*§ are evel%ned and bc_long to |
| L°°( 7). Also we have (g *,f) _ I *'.(l]"‘ (sveeb[IQ.J)‘: | “ |

: A mean on L°°,( ) is-a pos‘itive‘elernent of norm 1 in L®(G)". A left.’
'inva;r"iant. mean on L°°(G) is ej'nea ‘ uch that u( f) »(f) for all fe L°°(G)
and s € G\ A topologlcaI Tleft mvdrxdnt mean is f mean p such that p(g* f ) = u(f ) -

~forall fe L°°(G’) and g € L1 (G) with ¢ >0 and ||g||1 = 1. The topologlcal right

invariance of a mean ’ on L°° (G) can be deﬁne as u(f * g) = u(f) A mear! ,u- o

s inversion mvana.nt if u( ) u(f ) for all fe L°° (G) If G admits a topologlcal
left invariant mean,on L°°_(G), we say that G is emenable.
It isvknown that every topological left invariant mean on L% (G) is left

~ invariant, and,_fo;each left invarianﬂ miean 4 on,._L°°,(G), there exists a t_opdlogica'l E



left invariant mean on L“ (G) which eoinei‘des‘w_i_tli » on"U CB(G) [ If G is left

: ‘amenable as a discrete group, then it is amenable. I G is amenable, then there
[

exist topolognca] (two-mded) mva.rxant and inversion mva.rlant means on L°°(G')

¢ .

| The proofs of these facts can be found in [17] or [32]

The set of all topologncal left mvarnant means on . L°°(G) is denqted by

. -

M TL(G’). The set of all topological'invana.nt means and the set of all topo-

logical invariant inversion invariant 'means'\are‘ denoted by MT(G) and MT* (G).,
- respectively. Each of these three sets is w*-compact and convex in L*® (G)*.
Let Coo (G) be the subspace of L? (G) consisti'ng of all continuous functions

| with compact support. A net {ux} of means on L*(G) deﬁned by functions in
Coo( ) is sald to be convergent to topologlcal left [rxght] invariance if g*u,\ —-«u,\ =,
| v "%
0 [u,\ £ — pi — 0] for allg € L1 (G) with g > 0 and ||g||1 1. The follong is :/

an analogue of Lemma 1.2.1 (see [8, pp. 523-524] and [17 p. 34])

LEMMA 1.4.1. Let G be a locally compact amenable group, {Na}pzé[‘ a net of
means Heﬁned by functions in Coo (G) w*-t:Onv-érgent to topological left invariance.

Then for anya eT, anye > 0, and any gu,. ,g,’, € L} (G) with g; > 0; flgills = 1,

there exzsts a mean p,a which is a ﬁnzte convex combmatmn of means pg, ﬂ >a, 1§
such that
loi # s il <& §=1,.om.
> el |
l

The right hand side and two-sided version of Lemma 1.4.1 also remain valid.
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. CHAPTER 11
X »
THE SET OF INVARIANT MEANS

I1.1. Introd.uction:

| The study of .the cardina.lity and the structure of the set of invariant means
was initiated by Day‘[’B'] and éraniter [14]. Most of their work concerns the size
© | [ of this set. Following the work of Luther [27] and Gramrer [14)% Klawe [22] ﬁnally
settled the unique/ness problem for left invariant. means ona semigroup She proved
that a left amrenable semigroup S has a unique left mvanant mean if and only if
.S contains a umque finite left 1dea1 group In 1976 Chou [5] proved that for
a discrete inﬁnite amenable group G, the cardmality of the set M L_(G) is 22

i .

Later, Klawe [24] and Paterson (30] obtained various results regarding the size of

'tl_ie set' M L(S ) for a left amenable semigroup S. Subsequently, Lau [25] and Lau

and Paterson [26] solved the uniqueness problem and the cardinality problem for

. the set. M TL(G ) for a locally compact amenable group G

ot

For the study if/the Técal @:ture of the' w -compa.ct convex set M L(S)

or MTL(G), it is natura_l to look for" exposed points or Gs-points (with respect |
to the w -topology) of the set Iviore gen‘e.rally-, we m.ey"a.sk for the ~size of a
smallest neighborhood base for a left invariant mean. Chou [4] proved that if
Gisa countably ‘infinite amenable éroup, then M.L(G) has no exposed points..
" Granirer [16] rnade .an intensive study of the strticture of subsets of M L(S)n for

a countable left amenable semigroup S. In particuler, he showed that if S is a

v

countable left amenable semigroup, then M L(S) has exposed points (and/or Gs-

4

. 9

N
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“.pomts) if a.nd only 1().5’ has ﬁmte left 1deals ‘Chou [6] obtained similar results

, exposed plm_iws. . o '

© left’ amenable semlgroup S as thé{ arxthmet:c average on mlmmal ﬁmte left 1deals

N

.'lr-
.

condition.

N1

for o-compact amenable grqups. Cf. [V L. Klee, Jr., Extremal sf:ture of convex

vm'

sets, 1I, Math. Z. 69 (1958), 90-104] for the definition and basic propertxe@fof

1

In this chapter, by comparing the size of nets of means convergent to left
invariance and their cluster points, we investigate the cardinality and the geometric

structure of the sets ML(S) and MTL(G).

In Section I1.2 we charactenze the exposded points of M L(S) for an a.rbxtrary

Thus we arelable to prove Chou’s and Granu:er s results without the countability

-

In Section I1.3 we prove an embeddin'g, theorem for locally compact groups.-

If Gisa noncompact locally compact group, let d(G) be the smallest cardmahty

A o

of a coveF by compact' sets: Then a set of cardmahty 22 . can be embedded

into the set M T (G’) of all topologlcal invariant and inversion invariant means on
Y 3

L (G) Thls improves the result obtamed \)f Lau and Paterson j26]

» In Sectlon I1.4 we apply the same, techmque to left amenable semxgroups

For a left amenable, semlgfoup S, we deﬁne the cardinal

(S) = sup{lA[ ACS is strorgly left thlck}

Y

27(3)

and prove that |M L(S )|’_=‘ 2 We also show that r(S ) is in fact equal to

' KlaW‘e’s cardinal

Y

k(S) = min{|B|: BC S, u(B) =1, Vue ML(S)}

/’\-\ L i - -



‘and Pe:tersdri’é cardinal . _f , = . , .

lﬂ. . . . L, ‘
UsS, : {51,...,5,} id a partition of S, 81,---s3n€,S}-

i;l

n(S) = fnin {

Some incomplete descriptions of the structure of M L(S) are given in Sec-
tior} H.5. We prove a decomposition theorem for left invariant means on £%°(S).
We alsovo_‘btain an estimate for the smallest cardfnality of a w*-neighborhood base

' of a left invariant mean g in the set ML(S)..

I1.2. Exposed Pomts of Left Invarlant Means
In this sectlon we ﬁrst prove some lemmas whlch wxll be . used later, and

whxch are of independent interest as well, Followmg these lemmas, we estabhsh

“the main theorems concerning, the exposed points of M L(S).

LEMMA 2.2.1. Let X be an infinite set, {ur}rer 2 net of finite means w*-
convergent'to a mean u. Let k be an inﬁm’te cardinal. If for each SUbset Aof X,

" u(A) = 0 whenever |A| < &, then |A| > k.
© Proof. Suppose |A| = k. We seek to construct a function f € m(X ) such
Il N Y Q. ) -

that uy(f) diverges, | o

.. Well erder A as {/\;}aq ' We define f by transﬁr’iit-e indﬁction.
Let o < K be an ordmal Suppose we have deﬁned for each ﬂ <aa functxon

<

fp w1th range {0,1} on a subset Ap of X satlsfymg
(1) If B is finite, then Ap is ﬁmte If ﬂ is mﬁmte then |Ag| < |ﬂ|

(2) ﬂl < ,32 < o= Apl C Apz and fﬁz prl = fﬂl



5o,

ﬂ,‘ : R . J I \’ .,

R (3) If ﬂ < a, then there exlsts A /\" > Ap in A, such that the supports.of ux
“and pyn are contained in Ap, and T3y, (fp) < 1/43 pan (fp) > 3/4
It « is finite; then U, Ap is finite. If a is infinite, then |Up<a 48! < leef? = al.

" In both cases #(Up<a Ap) =0. puy Xu 1mp11es that there exists A'> Ag in' A,

)
such that uy (X\Up<a Ap) > 3/4. Also since |Usc, .Ap U supp. m:l < K, t here

exists A > Aq in A such that
#}\" (X\( U Ag U_supp p,v)) > 3(4.

B<a

___Let Ag = Up<a Ap U supp py Usupp par, and deﬁne

——

fa(s), ifs XS Ap for some f < o,
fa('s) ={0 . ifs G“Slupp I.“'\U[Ka Ap,

11,. ifse Aa\(u,,‘(’a Ap Usupp u»).

It is easy to see that Aa and f, satxsfy condmons (1)~ (3) ‘?

. ‘;%

e ' :
P Now let f fa on Aa, a < K, and f = 0 on X\U‘K,C . Then ux(f)

diverges. In fact " f_”’

e

Al»—l
oo

liminfua (f) < - < hmsupm(f).

<1°
0
. . ’

COROLLARY 2.2.2. Let S be an infinite left amenable right cancellative semi-
- group, {ur}rer a net of finite means w*-convergent to a left invariant mean o

Then |A| > |S].." | g

g

Prc;oj, Let A C S be such that |A| < |S|. Thé]&it is not difficult tq see that |

/

n(A) = 0. A proef can be found in [22, Prop. é~5]- , | o
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LEMMA 2.2.3. Let S be an infinite left amenable Wup‘, I extreme point
of ML(S). Define the cardinal function x(u mx\;{lAI ACSand #(A) = 1}.

If k(p) is infinite, then for each subset B of S, |B] < n(u) implies u.(B)

Proof. Suppose to the contrary that there is a set B C & such that [B| ¥ i)

‘and p(B) > 0.

8
u({ts}) 2 u({s}). So the left ideal I = Ss of S is ﬁmte, and: 0 < #(I)

k() is infinite." For any t 6 S, u(tl) > ul I)' and tI C I 1mply

and u(IAtI) = 0.
JA |
Suppose now B is infinite. Let z = sup{u(A) ACS, |A| < |B|} By takmg

" a countable union, we can get a subset T of S such that |I| = |B] and u(I) =
For any t € .S,' p(I) S ptl) < u(iI ul) 5 T - p(I) since |fUtI| ='|I| = |B|. Sl‘o
egualitie; hold everywher.e. Thus we also have 0 iu(I) <1, .l ul(I) p(tI) and
p(IAtI) =0. Denote.l;y t71 (tl) the set {s € S :'ts € tI}. Tt is ea.s; to see that
’u(IﬂAt"] (¢1)) =0, since t~ () oI and p(tt (¢1)) = u(td) = u(l). |

Let py € £€°(S)" be defined by
w(f - X)

mi) =" Tee )

~ Then p, is positive, of norm 1, and left invariant;

w((@f) x1) . p(&ef) X en)

K1 (etf)> =

() - u(I) ' '
_plelf - Xu)) _ B Xer) (S Xa) -%ux_(f)’

WD e . (1)

_ since p(IAt™} (tI)).= 0 and p(IAtI) = 0.



Let pa = (v - u(I) m)/(l - u(I)). Then for fetx(s), - \

_ul)-ulfx1) _ B st)
w)==020m - wED

So ;jzvis also in ML(S), and

= p(Dm + (1 — p(I))n2

-

is not an extreme point. : o . a

We are now ready to prove our main results, In all cases we shall consider
y \. B

only the w'-topology on M L(S). ,
THEOREM 2.2.4. Let S be a left amenable semigroup, and p an exposed point

of ML(S) (if any). Then u is a finite mean.

Proof. Let u be an extreme point of ML(FS) ashd define k(p) asin Lemma 2.2.3.
Suppose y is not a finite mean. Theh .K‘.([l.) is V\‘inﬁ_nite. ~Take A -} ?0 that
"|A] = k(u) and p(A) = - 1. Then foranyte S, p(tA nA) =4 since u{tA) = 1. In
particular tANA# @ i.e., there exist a,be A with ta =b. For fixed a,b € A4, let
Sep ={t €S tta = b}. Then U{S(ep) ta:b€ A} = | |
P';ck, f € £°(S) with || f| = 1, and choose a net {ka}aer of finite means wt-
eonvergent to u. “Then {ﬂa}aer is w‘-convergent to left invariance and pq(f) —

u(f)-

Let A be the set of all ﬁmte nonempty subsets of A x A, directed by mclusmn
Then A is a directed set w:th |A| = |A] = (u) Take F = {(a,, )ri=1,...,n}

€ A. There exists @ € T such that for any ﬁ > a, lug(f)y— p(f)[ < 1/2n By the' '

-t
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\ ) ‘ :
finite intersection property for right ideals, ﬂ?_, oS # @. Chboae',a € ﬂ?_, aS
(a is not necessarfxly‘in’A), say @ = a¢8;, § = '1,...,n. By Lemma 1.2.1, there

exists a finite mean p!, which is a convex combination of elements ug, ﬁ > a,

such that

o1
-y =l < 5

and
T T
|l(bisf)'#a—“a||<§;! t=1,...,n

For t € S &) » we have

=
RN b
-

' 1
it - (@ pi) —a-ugll = bisi) - po — o ball < =

(o B (N - ()l <
| /

Define pr = a-ul. Then thfa net {ur}Fea is w*-convergent to left invariance -
' ‘and limup(f) = u(f)- Since p s an extreme point of ML(S), by Lemma 2.2.3,
for any BC S, |B| < k() iﬁplies ;I(B)-= 0. By Lemma 2.2.1, {ﬂp}.FEA doeg
not con\;erge to u since |A|= |A| = k(u). So {up}peA has a Q"-cluster point u,

 different from p. Since p1 € ML(S) and 1 (f) = p(f), wisnot an exposed point

of ML(S). " O

For a finite nonempty set I C S, the arithmetic average on I is the finite

mean p such that for each a € I, pu({a}) =1/|I|.
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THEOREM 2.2. 5 Let S be s Ieft amenab!e aem:group ' Then u is an exposed
point of M L(S) 1! and only xf it is the uithmeﬁc average on a mm:mal finite left

ideal of S.

P;ool Let Ibea minirhal finite left ideal of §. By Theorem 1.3.1 there exists
u € ML(S) thh u(I) = 1. Since Ia = I for anyacl, I ié right cancélfative. .
Also p(al) = p(I) implies that aI = I for any a € S. Thus I is left cancellative |
and in fact a finite group. p, as the unique. invaxiant medn on I, is the arithmetic
average on 'I . Let f be the characteristic function of I. Then u(f) = 1. For any
p € ML(S), if 1 (f) = ;11(1) = 1, then by the above argument, u = #l.' Thus u
is ;m ex;;osed point of M L(S) (Remark: Part of the proof is adoptzzdﬁ?om [14,
Thm. 4.1].) |

Suppose u is an exposed point of Mi(S) Then p is a finite mean by
Theorem 2.2.4. Let I be the support of u. Fora € I and t € S, p({ta}) 2
p({a}) > 0, so ta € I. Thus I is a left ideal and it contains a minimal left
idgal L. I# I;v, then as in ti1el proof o% Lemma 2.2.3 we have 0 < p(l1) <1

and u(1 Atl}) =0forany t € S. These ensure that >u is not an extreme point of

ML(S). So I must be a minimal finite left ideal. By the proof of the first part of

'~ the theorem, p is the arithmetic average on I. : ]

COROLLARYJ 2.2:6. For &nyge{t amenable semigroup S, ML(S) has exposed

points if and only if S has finite left ideals. The number of exposed pc;ints of

ML(S) is exactly the number of minimal finjte left ideals of S.

COROLLARY 2.2.7. IfSisa right cancellative left amenable infinite semigroup, .
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then ML(S) has no exposed points. \\ - \
. | e | Y |

Proof. For any s € S, |Ss| = |S|. So S\i\oea not have finite left idepals. O

\

\

——

| N R ' .
‘COROLLARY 2.2.8. Ifdim(ML(S)) < oo, then S has finite left ideals.
\

Proof. If dim(ML(S)) <-00, then ML(S) is a}pmpact convex subset of a

Banach space. So it has exposed points. \‘\

O

1
5
A

COROLLARY 2.2.9. Different exposed points of ML(S) are linearly independent,

Corollary 2.2.6 extends (16, Cor. 4.1]. Corollary 2.2.8 is the main result Qf,

-«

Klawe [22].

©

Suppose S is an infinite left amenable semigroup and K is an invariant supset
»”

of BS. Let M(S,K) denote the set of all pu € ML(S) with its support contained
’in K (see [4] for the deﬁn?tidns). Chou [4] prpved that._jmf\G/;ns a countably infinite
',amenable gxzoup, then M (G, K) h,as no Exposéd points. He asked whethc;this
holds for any infinite agnenable gfoup. Our Coroilary 2.2.7 gives a partial;mswer

to this problem with K = 8G.

Motivated by Granirer [14, Thm. 3.1], we obtain the following generalization.

- -

THEOREM 2.2.10. If ML(S) has exposed points, then it is the w*-closed convex

" hull of all its exposed points,
L . ) 7\\,\ \) :
&~ ! s \\\ ]
Proof. Suppose ML(S) ha¢ exposed points. Then S has finite left ideals. .

Let {I,} be the class of all its minimal finite left ideals and A = JI- Then A °
is a right ideal Vof 'S since for any s € S, I4s is also a minimal left ideal. For any"

R
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-t

: y e ML(S), (A) 1. Thus u 1s the w -llmlt of a net {M,\}AGA‘ of ﬁmte means
" 'w1th supports in A For each A e A deﬁne |

e “
KR K

)= Zlo Ia)soa, S AR
‘ -.where Pa is' the arlthmetlc average on I Then ;z,\ is a. convex combmatlon of Lo

| some goa Take a mlnlmal finite left ldeal Io = {al, .,an }. For any Io, and a.ny

.:a € I.,, 1t is easy to see that E,_l a;- u,\(a) (I ) So uA = n -1 E‘_l a; u,\ | | )

’

-,Smce {u,\} converges to: left mvarlance, it follows that {“A} converges to p, in the‘

vw‘-topomgy.' S e S SRR =

COROLLARY 2.2.11. ( Gramrer—KIawe Theorem See [22].) For any Ieft amenable

\ ’_,/’

' ’semlgroup. S,.’dlm(ML(S))j = n if and onIy 1fS contams exactly n m1n1ma1 ﬁmte
Iel‘t ideals. R S SR

- Proof IfS has n mlmmal ﬁmte left ideals, then ML( ) hasn exposed points.
K By Corollary 2.2.9, dlm(ML(S)) > n. By Theorem 2.2.10, ML(S) 1s the convex\ "
: hull of those exposed pomts So dlm(ML(S)) : .
On the other hand xf dlm(ML( )) = n by Corollary 2 2. 8 S‘has finite -

. left ldeals Agam by Corollary 2 2. 9 S has only ﬁnxtely many mlmmal ﬁmte left ’

b 1deals That His number isn folloWs readlly from the proof of the ﬁrst part D. :
‘Some__ mgre resultson ‘the V‘-s,tr'lilcture.. of ML(S) wi_ll be presented in’ v"Sec-v_L )

o R T

 tionIL5. |
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- ILS. *Thé%et MTLG). - . PR
In thlS sectlon we conSxder the problern of embeddmg a large set (both in

.the topological as well as ‘the set theoretlcal senﬁ‘é‘f“ mto the set M TL(G) of all

_ topologlcal ‘left invariant means. Throughout this seci‘,‘lon G w1ll be a noncompact L

locally compact amenable group The set d we deﬁne here is: also;,u%ed in the next

sectlon. .

-

_ Suppose A is a directed set, and £°(A ) is the BanacH’ space of all bounded

A
~ the set of all bOunded nets in IR with directed set A. Define
d={pe?(A) :p(z) <limsupz(}), Vzet® (A)}.
- ‘ : A€ ,
An e,_quivaler‘lt 'condition’i,for % € ® is that ¢ is positive, ||o|| = 1; and <p(:z:) =

’

limaek z(A) if the limitv exists. 5

~ Chou [6] con51dered the relatlon between the set % when A=NN and the st

of all topologlcal 1nvarxant means on the von Neumann algebra VN (G’) of a first

ntable loca.lly compact group G. In our apphcatlons Ais always the. set of all -

nempty ﬁmte subsets of some mﬁnlte set X dlrected by mclusnon We denote -

“ t by A(X)

\~

| LEMMA 2.3.1. IfA= A(X) for an mﬁmte set X then |<I>l = 22“q

Proof The proof follows Rudin [36 Thm 1 3] The Stone—éech compact- |
B ""1ﬁca.tlon ﬂA of A can be consndered as a subse* of 7 (A) “For A € A deﬁne -

AS,\ = {)\' €A: A - /\’} Then’ {SA}AGA is a ﬁlter base on A For pE ,BA 19 € <I>_

real-valued functlons on A w1th the supremum norm. £°° (A) can be consxdered as .



-

It follows that

20

’ 1f © contams {S,\},\eA Since |A| IX | it suﬂ‘u:es to show that‘ there are 221"1

ultraﬁlters on, A contammg {S,\} A€ - |

Smce |S,\| = |X | for each AE A we can deﬁne 1nduct1vely for each A € Aa'
ﬁmte subset A,\ of S,\, such that IA,\| = 22| ! , and A # Al =>”’A,\ p A,\: = 0) ‘Label -
the elements of A,\ by ordered 2|'\l —-tuples (:cl,zz, ,zzm ), where :z:, =0 or 1

Let E, be the subset of Aj con51st1ng of the 2/ —-tuples which have :c, = 0. Thus

if we let E? = E,-,E,- = A,\\E,j, then ﬂﬂ_ll E“ # 0 for any, ch01ce € G {0,1}.
_ Denote the sets Ei, 1= _1,2; e .","2|'\| , by E(h), where hisa ma,p.from A mto {O, 1}. |
) \{., . Fer each map f:X —>‘{0, 1}, define B(f) = U{E(f t z\) : X € A} Suppose :

i, !,f,,, f,,+1 - ',-'fm are diﬁ“erent funCtiOhs from X into {0,1}, and X € A. |

Then there exists A’ O ) such that the restnctlons fi 1) are different. So |

ch

B 00BN B 1) L
A (AR \E(fi X)) 0. |
200 SECSLINC T

.0 (A\B(fm)) N Sx # 0.

' And hence for a.ny map F 2X — {0 1}, the collection

'l where B(f) = B(f) and B( ik = A\B(f) is ‘a filtér base Thus we have 22X1 -

- different ult_raﬁlters _contammg' {SA}AGA- o | 0

v’

"O\-‘

"~ "Now We deal with the embed'ding of theset'fl_)_‘ intqthe set M TL(G) “of

, ail topblogical left inv'ariant means. ‘Our main results concern the cardinality Qf :

MT‘(G) MT(G)\MT‘(G) and MTL( )\MT(G)




o TR
p ) . L \
- Let {u,\} AeA be anet of means on L°° (G) deﬁned by functxons in Coo (G) snd o
r

suppose {urlrer converges to topolog\cal left mvanance and the famxly {supp u,\} _
is dxscrete in G ie., for %ny s €QG, there is a nelghborhood U of &, meeting at . \

/
" most one set in the famxly “Let H be the w*eclosed conve«:( hull of the set o(Dle

w*-cluster p01 ‘f '{MA}A&A ui L°° (G)‘ , and o deﬁne(d for the dlrected set Xas

above Then H”' is a nonempty w -compact subset of MTL(G) The followihg .
| _lemma, which we shall‘need, is a generalization of Theorem 3.3 in Ohou [6]:
,'LEM_Mll 232 _ L‘et.<I>‘and‘H ‘be defined as above‘..."fl“hen there‘exists a lz"n‘ea.r ‘
isometry of £°(A)" into L (G)* vwhich l’naps o w‘rhonleomorphically onto H.
*  Proof. Let 7 : L°°(Gv) — £2(A) be defiped by
A0 =wl) 1@, e A
'Ob\?iously 7 is linear; poSitlve,,and‘Hn“ 1. Choose T € £°°( ) -Define fz
‘f | L® (G) as follows: first on each set supp u),deﬁne [z to be :z:(A). Sn_nce the family
o {supp ﬂA}AeA is dlsqrete f,; is well deﬁned and contmuous on [Jyep SUPP % and |

the set U reA supp u; 1s closed Thus [z can be extended contmuously to G w1thy

. L.,\Lts range contalned in l—HxH ||:c||] Since 7r(f,) =z and llf_,ll = Il:zll the dual map -

- Tt isa lmear isometry from £ (A)* into L°° (G) .

" Now let p € 3. Then for any f E L°° (G') @ |
| | (w)(f) elri) < llmsup?r(f)( )

= hm sup ) (f)
Thus we can find a w -cluster pomt u of {I-‘A}AGA . such that 7 (p)(f) < u'(f).» -

Smce u E H a.nd Hisw -closed convex, by the Hahn-—Banach theorem 7r (tp) € H
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- Notice 'tohat‘@»is Auf‘?ncompact and convex in £2(A)*, and that 7*.is w'-

contmuous Therefore, in order to finish the proof, we need only to show that

~ every w*-cluster point of {y,\-},\eA is in 7*(®). Let p be a w -cluster point of

a

{ﬂ,\}geA? Define p € £*° (A)‘ as follows: For z € £°° (A) let fz be as in the first

| part of the proof, and let p(z) = u( f,) It is easy to see that © i8 well defined,

[<4

lmear and positive. Also Il = 1 since u is a w -cluster pomt of {#A}AGA Let
z €€ (A) be such that‘llm,\eA a:(A) = 0. Then for any € > 0, there exists Xo € A, |

such that Ao < A unphes |z(A )| < €. Choose A > Ao so that Iy.(fz) 75 (f,,)| < €.

" Thus (f2) < %€ since ua(fz) = :c(/\).' This 1mplles that p(z) = u(f,) =0,

. and hence go € 9. Fmally, for any f € L°°(G) let z = 7r( ) Then for each

Ne & ualf) = malf). Thes (@) (f) = lr() = ols) = u(fz) - ulf). So )

7r‘(<p) = u, and this completes the proof of Lemma 2.3.2. L O

Let d(G) be the smallest cardinality of a cover of G by compact sets, as in
Lau and Paterson [26]. It is' shown therein that |M TL.(G)|' = 224(6)'. It is eaéy to

see that if G is nof. compact d(G) is Just the Lindelof number, i.e., the smallest :
. )

- cardinal L(G) such that any open cover of G has 2 subcover of cardinality < L(G)

LEMMA 2.3.3. Let A be a Borel subset of G If A can be written as the union

of < d(G) (:ornpa‘ct subsets of G, then ‘,u(A)V=v O-for any u € MTL(G).

Proof. We may as’snme d(G) is infinite. Forz € G, zANA#0 & T € AATL.

vAA -1 :,é G since it is the union of < d(G) compactsets. So there exists € G

such that zAN A = 0. Thls means that for any u € MTL(G) ( ) <1/2. By

induction we see that‘u_(A) =0. . . o o



.2. N .

o

Our next’ ﬁmeorem generahzes Chou 8 results for o-compact groups in 1G¥“ .

. -~ R

Results in this format appear first in Granirer [16]. Let X be a compact cover of

G with |X | = d(G ) and let A = A(X ), the directed set of all finite subsets of X.

Let'@ be defined for A as before. -

'THEOREM 2.3.4. Let G be a noncompact ameﬁable group, and po € MTL(G).
. . Il : . . K .

‘Let' F be a subset of L®(G) with |F| < d(G). Define

M = {u € MTL(G) : u(f) = uo(f‘)',‘Vf e F}.

v . : _
Then there exists a linear isometry n* of £°(A)" into L®(G)*, such that =*(®) C
M. '._Furthefmore, if po is also topological right invariant or inversion inveriaxlt,

then 7*"can be chosen to map ¢ into

«

M'={u_€MT(G)“=u(f)=#o(f), _erF}, |
or

M”"; {ne MT“’(G'.) :,A(f) = po(f), 4'.Vf €F}, |
respectively. 4

Proof We ‘assume that F = {f,}zex and |[fz|| =1 for all T € X Choose
a.net {¢4} of means _deﬁned.by‘functlons in Coo (G), such that {uq} converges

: “to o in the w*- t'épdlogy. If Ko is inversion invariant, we may suppose it is also "
the case for each u.,, sm;e then (g + 1) /2 is also w -convergent to uo. By
Lemma 1. 4 1, we may obtam a net of means in Coo (G), denoted stnll by {p',}

‘convergent strongly to topologxcal left (and right) invariance (lf Ko is also tlght

. invaria.nt), and satisfying the condition that u,,( ) — MG ( f), for each f € F.

@
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s

Let U be a, symn"étpc compact nelghborhood of e m G. We proceed to

construct.a ne_t {u,,} of means with the directed set A = A(X), satlsfymg the

RN

following properties:
i) Each py is defined isy a function in Coo (G);
ii) f A # X, thenU - * 8Upp m AU - supp p,,v = 0;

iii) For each A € A and T € A, KA (fz) #o(fz)l < 1/|A|,
% -
iv) %)each AeA a.nd selJi (umon of ﬁmtely ma.ny elements in X)

||au,\ -l < l/I/\l

v) If uo is also. right,invarient, then for each A € A and s7! € UA, ‘

,
Mds —mll <G
vi) If po is‘invérsion invariant,‘a so is each ux. ‘ ' - ~
Firstly, well-order Ay {Aa}d<d(c .. Let a< d(G) be an erdiﬁal and euppose
” for each § < o we have deﬁned a mean u,\ﬁ satlsfyleg ?) - vi). Write Aq =
Uﬂ(a .supp 2 Then the set U3 Aq - U3 is the union ;f < d(G) compact -
sets. So y.o(Ua Aa U3) - 0 by Lemma 2.3. 3 Take a function v € Coo (G)
: such that its support is contained in U and ¢ = ¢°, <p > 0, and |plh = |
% ' :

Following Hulanicki’s proof for Reiter’s conditions ([17, pp. 44-45]), we choose a

small Symmetric neighborhood E of e in G such that

%

(23.1) lye*e —¢li <e and ]|,go —plli<e, Vs€E,

where € > Ois any given number and ¢E is the normahzed charactenstlc function

of E. Select {sl', ,sn} C U Aa ) tha.t 1 s‘E 2 U Aa. Since the net {llm,} is
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convergent stxonély to topological left invariance, there exists pq such that
~ . ' “.¢3.~E*ﬂ~,—p1"<€, ".;l"--”nyl
. . . ‘ R . \.,“ 1«*’ ‘n 5IJ”‘” .
o * by —pqll <€ '
(2.3.2) . .

|l‘7(fz) —po(fz)| <€ VITE A, and
.uq(UE-Aa-Ua)ke. S
The last 'in‘equality is a consequence of Lemma 2.3.3. Let #' be the restriction of

s

py to G\U2 - A, -U® = B ie,’ IR

‘u'(f)=glg%§l; fer=@. K

a8

It is easy to see that ”u ;z»,|| < ' < 2¢/(1—¢). Let A = p*"p'.—.' Then, as sﬂown \
in [17 p. 45] ||,,/,¢,\ul i, || < 11€' for all s € UAa. Also, lua,(fz) - uo(fg)l <v55'
‘for T € Ag Thus NAQ satisfies m) and w) if € is chosen properly. Smce pE, is
» continuous and supp pr, C U -supp u,,, ur. € Coo (G) It is easy to see. that
"’-supp HA AU?. Ay = 0 so ii) 1s satlsﬁed Now suppose #0 is also rxght invariant.

Then in the above argument, we add to (2.3.1) the conditions

e rvE -l <e/m and lips —pls <g/m, Vs€E,

where = max{A(s) : s € UXa} Since (\u,,} is also strongly convergent to |

topologiéal right invariance, we havé_‘ in (2.3.2) the requirements
|| ey * gb,‘.E —pl<e i=1,...,n, and
Ilw*uq*w qu|<€ |
In this case if we let Brg = P * u * @, it follows that u,, satlsﬁes 1) - v) Finally,

we suppose that Ho i 1s inversion mvarlant Then Ao, ista symmetnc set since each

4
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supp .u,\, ) B < a, is symmetric. Thus p, = p4 = u''= p" .=> uy, = ¢ *u"“ xpt =
w*u’*’l@=m¢_.. |

‘ The net '{ﬁ,\}xe,{ is éo#yerge,nf to top.olc;gical left invaridnce, as pro_vgd in
.ﬁulanigki (21, p. 96']. By ii) it is easy to see that the family {sup-p p} is discrete.
Thus by Lemma 2.3.2, there exists a linear isometrylvr‘ s £°(A)* = L®(G)*,
such that =*(®) € M. When Ko is also topologlcal right invariant, the net we
constructed is also convergent to topologlcal rlght invariance, so 7 (<I>) c M.

The last statement of the theorém is now obvxqus. ; - O
COROLLARY 2.3.5. There is a subset of MT*(G) linearly isometric to ®. In |
particular [MT*(G)| = 224 |

r Proof. The ﬁrst pa.rt is obv1ous by the existence of topologxcal invariant and

. [
inversion invariant means on L®(G). Thls together with Lemma 2.3.1 imply the

224(0)

inequality |MT*(G)| > 22%? | “The other mequallty IMTL(G)| < ‘was

"proved by Lau and Paterson l[2-6’ Thm. 1}. | | -

COROLLARY 2.3.6..If MTL(G) # MT(G), then MTL(G)\MT(G) contains 2

subset Imearly isometric to &. In particular |MTL( )\MT(G)| 9249

g ((,,.j , v v :
> Proof."Suppose po € MTL(G)\M T(G’); Then there exist f € L*(G) and

g € L'(G) with g > 0, |igll1 = 1, such that po(f) # ,u;)(f * §) Let F = {f, [ * g‘} _.
" in Theorem 2:3.4. Then the set M C MTL(G)\MT(G). 0

COROLLARY 2.3.7. If MT(G) # MT*(G), then MT(G)\MT*(G) contains a

subset linearly isometric to ®. In partxcular |M T( N\MT*(G)| = 224(0)
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Proof. Suppose po € MT(G)\MT*(G). Then ti’xere exists f € L®(G) such
that uo(f) #: uo(f). Let F = {f,f} m Theorem 2.3.4. ‘.The.n the set M' C
MTG\MT' (). ~ | ‘ 0

-

COROLLARY 2.8.8. If G is not compact, then MTL(G), MT(G) and MT*(G)
do not contain any point which is the intersection of d(G) many w*-open subsets.

In particular, they do not have any weak® Gs-points or w* ;exposed points.
i

Proof Suppose po € MTL(G) is the intersecti‘on" of d(G) many w’-open

subsats of MTL(G). Then there exists a set {ga}a<d(G) C L°° (G), such that

{uo} {u € MTL(G) : u(ga) = - 1olgs), Ve < d(G)}.
‘ -

By Theorem 2:3.4,' the set on the right hand side is not a singleton. In fact, it has

"~

'~ cardinality 924 y ‘ O

Our Cgrollary 2.3.5 improves the main theorem in 'Lau and Paterson (26].
Corollaries 2.3.6 and 2.3.7 are partial ge;leralizatiﬁns of Theérem 3 and Theorem 4
of Rosenblaitt and Talagrand [35]. CQroilary 2.3.8 extends Chou’s results in {6, §5]
to a;ly noncompact amenable group. |

Olllr'ne_xt résult oﬁ'érs ,' somé infOr.mvation about the- structure of the sets .
‘MTL(G), MT(G), and MT*(G). Let X be a 'séi suchuthat |X| = d(G), where
d(G) is defined as before. Let A= A(Xj. Suppose {#» }AGA is a net of means on

L*®(G) defined by functxons in Coo (G) such that the famlly {supp px}is dnscrete

-

Such a net is called left (two—snded) fundamental if the net {m} is convergent to-
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topologncal left (two-sided) invariance. It is called inversion fundamental if it is

two-sided fundamental and pa = py for all A € A.

PROPOSITION 2.3.9. Let G be an amenable locally compact honcompactl group.
~ Then the sets MTL(G), MT(G) and MT" (G) are the w*-closures of the sets
of w*-cluster points of all left, two-sided, and inversion fundamental nets on G,

respectively. = -

Proof. We give a proof for the set M TL(G). The proofs in the remaining
cases are similar. Let uo € MTL(G) and fl, ., fa € L®(G). Then by Theo-
rem 2.3.4, there is a left fundamental net on G such that any w*-cluster point p

. .

of the net satisfies u(f;) = po(fi), t = 1. . B -

Y "

»
11.4. Cardinality of ML(S). ST
Ip this section we intend to prove an analogue of Tﬁeorgm 2.3.4 for semi-
groups. We also show that Klawe's result on the cardinality of ML(S) in [24]
remains correct and further answer a question posed by Paters;on in [30] Through—
out this section, S will denote an infinite left amenable semigroup.
Let {p,\} xeA be a net of finite means on £ (S) wit}; mutuélly disjoint sup-

ports in S, and convergent to-left invariancAe.“Let H be the w*-closed tonvex‘hull

of the set of all w*-cluster points of {11 }xer , and let & be defined for A as before.- |

LEMMA 2.4.1. Thereexists a linear isometry of £°(A)* into £%(S)* which maps

K w‘_-homeomorpilically onto H.
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Proof. Indeed, the proof of Lemma 2.3.2 can be carried through since we

have not used; " ny property related to the group structuré of G therein, 0

If » is & left invariant mean on t®(S), we define the cardinality x(u) =
min{|4] : M S, p(A) = ’1}, as in Section I1.2. We say that u is a pure\ -mean
if Kk = x(p) is infinite and for A C §, |A] < & = u(A) = 0. In Lemma 2.2.3 we

¢

proved that if u is

'

an extreme point of ML(S) and «(u) is infinite, then u is a
pure «(u)-mean. | |
‘We are I"IOW' ready to prove the promised analogue of Theorem 2.3.4‘, which
generalizes‘dranirer’s results on countéﬁle left amenable semigroups in.[.l(i, §II].
Let A be an infinite sf.“rongly left thick subset of S. Suppose po is such that
forﬁe;ach B C A with |B; < |Al, uo(A\B) = 1. The existence of‘u; is prov‘e‘d in
Lemma 2.4.7. Let A = A(A x A) and define ® as before. Let {f,}sca be a subset

of £*°(S), and define
M = {y € ML(S) :u(A) =1, u(fs) = uo(fy), Vs € A}

THEOREM 2.4.2. There exists a linear isometry from £°(A)" into (*(S)", which

»

maps ® into M.

Proof. The proof is in some sense a refinement of Theorem 2.2.4. For each

- pair a,b € A, define S 3 = {te S: ta = b}. Then U{S(ap) :a,b€ S} =5, as

proved in Theorem 2.2.4. Suppose ||f,|| =1 for all s € A
Well order A by {Aa}aq|a) - Let a < |A| be an ordinal and suppose for each

B < a we have defined a finite mean u,,, satisfying

»



i) murg(4) =1fo
i) If 8'< 4 < a, then uy, and ), have disjoint suppoits; ~

iii) If 8 < a and Ag = {(ai, &)}%; , then
1 .
”t'"‘l\p"/‘/\p”<'_"’ VtES(a,',b()’ t=1,...,n;
iv) If f < aand Ag = {(as,b¢)}2; , then | -

ag () = olfuc)] < 3 §=Teeom

Now write Ao = {(ai, bi)}7y . Since S has the finite .in_tersection property
f.or right ideggs, Ni; @S # 0. Thus we can <:hoose a € S, such that a = a;s;
for some s; € S, 1 = 1,...,n. Let Aq = Upc, SUPP u,\‘,. and B = A\A,. Then
po(B) = 1 since |Aq| < |A|. By Lemma 1.2.1, we can find a finite mean g with

its ‘support contained in B, such that

1
8n’

-
I

o z

:

3

S

- . 1 .
ol < g o) b=l <

i

and L

4 1
Il‘(fa;')“#q(fa‘-)|<-2;, t=1,...,n:

Then we have (a- )(B) > (8n —1)/8n, and for each t € 5, ) :

= 1

It (o) — (e~ W)ll = bi o) = ol < 1o

Define u), to be the restriction of a- i to B:

(a'ﬂ)(f-XB) o0 : '
) * )

ta, () =
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Then it is easy to see that

™'

z ;‘1 2 .
|Im..-a-ul|<—l%—-+——<—-
1-g4&  8n
Thus for each t € Sg; ), 8 =1,...,1,

Nt tra = trall S - (Bag —a )l +lIt-(a-p) —a-ul

ensml< it 4l <l
Hda 4dn " Tn " n’

Also
|I‘Aa (fa.) #o(fa‘)l < g (foi) = (a- #)(fa‘)l

+ (@ 1)(far) = #Ufa)| + [1lfa) = o(fa)] -

Tn  8n  2n n’

and the support of u,_ is contained in B.
The net {u)}rea converges to left invariance, and the means u) have mutu-

~ ally disjoint supports in A. Thus by Lemma 2.4.1, there exists a linear isometry
. ) w
from £°(A)" into £°(S)*, which maps & onto H, the w*-closed convex hull of all

’

w*-cluster points of {u,\‘},\eA. Finally, it is easily seen that & C M. e O

y

COROLLARY 2.4.3. IfA C Sh is infinite and strongly left thick, then A supports

jA| . .
22" left invariant means.

Pfoof. This follows from Lemma 2.3.1. | , O

COROLLARY 2.4.4. (Klawe [24]). If § is infinite and strongly left thick in itself,

then [ML(S)| = 22 .

We shall see later that the converse of Corollary 2.4.4 is also true.

?
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COROLLARY 2. 4 5 If #0 E M L(S) is a p/ure\:c-mean, then #0 is not the mter—

| .‘ sectxon ofK. many w* -open subsets of ML 8). " . T
: ,-Pro‘o/. Thi_s proof is entirely analogous to that of Corollary 238 _ l:l “

we

: Frorn thls corollary we deduce that any pure rc-mean on £°° (S) with & mﬁmte ”

is not a Gg-pomt of ML(S ) A complete characterlzatlon of weak* Gg*—pomts of

ML(S?\S gwen in Sectlon II 5.

: o]

24] Marla Kla.we deﬁned ‘the cardmal ) 8
_-;c'(S) = min{|B| : B c‘s,‘ ?ﬁ'*"(B) =1 for‘all p € ML(S)}
S and ga.ve a proof that IJ\[L( )I _522”‘5’ . -However, there isa ‘gapv in her proof as

O

B

. pomted out in Pa.terson [30] Deﬁne the left thlckness of a semxgroup s to be ', S

e . . . . . »

Voo T(S) - sup{|A]: A C S‘,‘A is ’str’o,nvglyleft thick}. .

LEMMA 2 4. 6 Suppose that &(S) is inﬁnite ahd’l']et'A' < S bejsuch thatle’l.':

‘s

K(S) and u(A) =1 for aH u € ML(S) Then Ais strongly left thzcx

t

)Q.Proof Let B C S thh [B| < lc(S) It is enough to prove that there exists .

i » E ML( ) such that u(B)‘= 0. Let 'r(B) mf{u(B) u e ML(S)} Smce the,‘v, -

L)

b map p — u(B) is w -contmuous q§1 ML(S) we can ﬁnd u E ML(S) sych that :

I"'

- f;t(B) (B) Thus we may assume on the Wat r(B) > 0.

;oo | LR
E 'ns fi te left 1dea.ls And since fc(S) is’ 1nﬁn1te, '

\

there are mﬁmtely many mlmmal ﬁmte left ldeals in S as shown in Sectlon IM S

3

‘ IfB is ﬁnlte then

So there ex1sts a mrmmal ﬁnlte left ideal I of S dlSJOlnt from B The arlthmetlc



| there is p E ML(S) such. that u(C’) < 1. Thus r <L Let A= A(S) the‘ T

-t
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ﬁft mvarxant mean on Z°° (S) such that m(B) = 0, Wthh is

Lkl

unpossxble -

.If B is mﬁnﬁte, deﬁne r. sup{r‘(.C)‘ :BcCcCS, €] = |B|}, where

’1"; .

o r(C’) is deﬁned in the same way as r(B) By takmg a countable umon, we can

get a set G C S, with C > B, |C| |B| and r( C) = Smce IC| < n(S) ‘

dlrected set of all ﬁmte subsets of S. Take A = {tl, tn} € A Then r(th' U |

o tgC U U ,C U C’) = r(C), sln_,cevr(C) is the max1mum Take 2 G“ML(S)'

such that pa(trC U+ Uty ‘C U C) = (C) Then since HA(C) > r(C) we have

pa(tiCUC) = ;},A(C), 1=1,. ,n Let U be aw -cluster point of the net {u:2}- .

- Then p€ ML(S), and for every ¢ € S, u(C)-.— u(tC) = u(c u tC’) =1(C) <1.

‘Fellowing Lemma ‘2».2.3, we let u eM L(S ) be deﬁned by

1 }L(f'XS\C) | ‘ oo.‘- .
= € °°(5).
| 'Then.p’(C) = 0. This conipletes our btoof of Lemma 2.4.6. - t o O

LEMMA 2.4.7. Suppose AC S is infinite. Then A is strongly left. t}uck Jf and, i

-onIy, if there exists 1 = ML(S) such that pisa pure |A|~mean and u(A) =1, In |

| _barticulai r(S)‘ < K(S) 7

: Proof If there exnsts a pure |A|-mean u € ML(S) such that' u( ) =1, then :

it is easy to see that Ais strongly left thxck in S

Conversely, let T be the dxrected set con51stmg of all subsets B of f thh_

Ed

|B| < |A| dlrected by 1nclu51on For each B € I‘ there ex1sts pB ‘€ ML(S) such "~

(

LA



that up(A\B) = 1, since A is strongly left thick. Let u be a w*-cluster point of |

"the net {uB)}Ber - ‘Thenp'ati‘sfﬁes our requir_ements; R g

THEOREM 2.4.8. If )c(S)..is i‘nﬁnite,htheni 7(S) = max{|A| : A is '§trengly left
) ‘ SRR e : ‘ ]

thick in S} = &(S5).

THEOREM 2.4, 9. Suppose S is a left amenable semxgroup suc}z that ML(S)

-

mﬁmte dxmenszona] Then IML(S)I 22'(5) : 22"(5) .

Proof By uhe deﬁnltlon of fc(S) we know that |ML( )N < |£°° (A)"'I =22 |
J

where AC S is such that |A| = n(S) and u(A) =1 for all L E ML(S) Since Ay

2l4l

‘is strongly left thlck in S by Corollary 2.4.3, |ML (S)] 2 2 = 27" . O

Theorem 2.4.9. ensures that Klawes’s assertion in [24] is indeed correct.
o , : : .

Paterson defined in (30] the cardinal .

."ﬂf p(S) min {| U s,S, n>1, {Sl, .,Sn}isa
=1 o ‘
P partlti'on of S S1y+0+s8n E'S}’

and ‘proved for some special c‘ases that p(S) = fc(S ) Our next result shows that

this equahty holds for all S such that M L(S) is mﬁnxte dxmenswhal ,
R THEOREM 2410 IfF S is a left amenab]e semigroup such that ML(S) is infinite
 dimensional, then p‘(‘S) S n(s'); f(s). . |

Proo] Let A C S be such"%hat |A]= n(Std p,(A =1 for all e ML(S)

L]

Then A is strongly left thxck in q’ by Lemma 2. 4 6. Let {S; y S,.} be a partmon

i-n

e b

‘j_;of 'S and S1y+.1ySn € S. Then for any u E ML(S’) ;L(U,_1 s, ) > 0.' So

B A\ U‘__1 s,S, is not 1eft thlck and hence |U =) s,S‘} b IAI = n(S)



'. o
On ‘the .other hand_, since the cheracteristic function X Als lei"t almost con- ‘
“vergent to 1, by Proposition 1.3.2, for any &> 0, we can und"a finite mean ,;., suc}r'
that . | ~
tlél.sf {Z:u(s)ll,xé(t)}: tlél:g {z;u(s)x‘,—r,g(t) } >1 —s
This implies. that there are elements §1,...;Snd € S such that U;‘___l. s;; 1 A»:vS'.

Since Usi(sit 4) € A','Qre“see that |4| > p(S). o SR O

COROLLARY% 2.4.11. (Paterson). If ML(S) is infinite dimensional, then

IML(S 5)| = 92"

.

Let A be a strongly left thi.‘ck subset of S. We proved in’ Theorem 2.4.2
that there is a' net {4 }aea(4) of ﬁmte means Wlth rnutually d1s301nt supports
contaxned in A, convergent to left mvanance We call such a net a.fundamental

net on A. We are now ready to prove an analogue of Proposition 2.3.9. vLet M be’
~ the subset of ]\lL(S) consxstmg of all pe ML(S) s’uch that u i"re IAI—rnéan
‘ A & :

and p(A) =1. | RO
and 4( ) , ‘ @';

PROPOSITION 2.4.12. M is the w*-closure ofp_a_H' w*-cluster points of fu_ndamen-
tal nets on A.
Proof Let {u,\} be a fundamental net on A and BCS w1th |B| < |A|
Smce there are at most. | B| many px in the net thh thelr supports mtersectmg B,
: 'we can ﬁnd A€ A(A) such that A’ > A 1mphes supp p,\: n B 0 So u,\: (B)=0.

This implies that-any w -cluster pomt of {;u} is contamed in M

The other inclusion can Ye proved as in Proposition 273.9.» - S0
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I1.5. Structure of ML(S)
Let S be a left amenable semigroup. Granirer [14] prorved that S a.dmxts a -
left ihnvarlant coun_&able mean on £°°(S) if and only if s has finite left ideals. lNow
we consi&erbanoth»ef“extvreme case. An eiemen.i; p € ML(S) is ca.lled' purely ipﬁnite

-

if p(F) =0 for eoy finite subset F of S.

R SN

THEﬁM' 2.5.1. (a) Any left invariant mean on l‘?° (8)'is a convex combination ..
' ofa countable mean and a purer mﬁmte mean in ML(S ) (b) Any purely infinite

mean m ML(S) is a convex combmatzon of countably many mutual]y smgular' '

plements in ML(S), each of whzch is a pure k-mean for some infinite cardmal K.

Proof. Suppose u € J\{L(S)‘, and define r:= sup{u(F)F is ﬁnit‘e}, Ob-
viously, g € 21 (S) & r'=1, and p is pui'ely infinite & r = 0. Suppose
0L r <1 Choose finite subsets F of S such that u(Fp) — 1. For‘any '

't € S since u(F,1 U tFn) — r as n — 00, u(FmAtF,,) — 0. This 1rnp11es that .

£,

(F At‘1 F ) — 0. So 1f vxe let un be the finite mean deﬁned by the restrlctlon
: of ¢ to F,,, then ||u,1 —t unH =3 0, Vt € S Also 1t is easy to see that {pn} is

a.Cauchy sequence in £1 (S) (also in £2(S)*). Thus the limit ,u of {un} is 2 left

M

invariant couhtable'meah on £°°(S) Let p'=(1- "),-1 . (u —r-u'). Then p"

purely mﬁmte, andp=r-y + (1- ).
Now suppose uis a purely 1nﬁmte element i in M L(S) and is not; a pure K-
'mean for any cardmal k. Let-x = rnm{|A| AC S, u( ) > 0}. Then K is an

1nﬁn1te cardlnal since u is purely mﬁmte Let r = sup{u(A) AC S |A| = IC}

" As shown in Lemma. 2.2.3, there exists B C S, such tha.t |31 = k and u(B) =r.
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ance uis not a x;ure rc-mean, 0 < r<l. The restrlqtnon of u to B is also'a left

. invariant mean, and i ls a. pure x-mean. Now an inductlon on the set of a.ll countable y
ordmale wxll give us a ﬁmte or countably mﬁmte decomposition p = Z‘- al..u,,’ ‘

' Wflere o >\'0‘,. }: a; =1, and each u; € ML(S) isa pure'n.--mean‘for some infinite
v car.dinal K., ‘Also 1 # 7 => K # Kj. 'I“his implies that the means u; are mutually

singular. ‘ o o D

COROLLARY 2.5.2. ML(S) is the norm closed convex hull of all countable means |

and all pure n-mee,ns in ML(S).

COROLLARY 2.5.3. The set of all purely infinite elements in ML(S) is the w'-"
'cIosed convex hu]l of w*-cluster points of all fundamental nets on mﬁmte strongly

left thick sets.

" The next theorem dwells on the local structure of M L(S). It g_cner.alizes,

Corollary 2.4.5. ‘ - e ) J

THEOREM 254 Let p€ ML(S). If p = agpo + Yo, il is a decomposition as
in Theorem 25.1, whereﬁit,o is countable and each y; is a pure k;-mean. If a; > 0,

1 # 0, then u is not the intersection of K( many w*-open subsets of ML(S).

Proof. Write =._a,-p.,--+ o p!, where u' € ML(S) and o; + &' = 1. Suppose’

_ on the eontra'ry that there exists a family {fs}p<ns C £ (S); such that
{n} = {g € ML(S) : B(fp) = u(fp), VB < ki}.

This im;n)lies- that

s

s} = (7 € ML(S) :BlUs) = m(fp); Y8 < ).



This is impossible by Corollary 2.4.5. " | - - -0

C‘OROLLA‘RY 2.‘5.5. (a) u is a weak* Gs-pofnt of ML(S) if and only if |

ML(S) N tl(S) (b) ML(S) has weak® Gs-pomts if arid only if S has finite

: Ieft 1deals In t}us case the set of weak‘ Gg-pomts of M L(S) is the norm cIosed

convex hull of the set of all w -exposed pomts of M L(S). , L
R -'..2 )

'Proof. By the previous ’theo'rem a “Gg-poiht of M L(S) is a countable mean.

Also lt‘lS obvious that a couﬁtable mean in ML(S) is a Gg-poiht. The second

statement then follows from Granirer [14]. The last statement is a consequence of

Theorem 2.2,5. -, - | ‘ o 0O

It is interesting to compare this corollary with Theorem 2.2.f0 which asserts -

that M L(S) itself is the w*-closed convex hull of all its w -exposgd pomts We

Y- :

now give a generahzatlon of thlS fact.

[

THEOREMV 2.5.6. Let k = mm{|A| : A ¢S and is left thick}. Then ML(S) is

the w*-closed convex hull of all efements u € ML(S). with k(p) = K.

N -~

Proof When k is finite, this is Theorem 2.2.10. So suppose K is infinite. We

sha.)l prove that in fact M L(S ) is the w -c103ure of all pure fc-means

Take o € ML(S) and f € £*(S). By virtue of the Ha.hn-Banach theorem -
it is enough tofind p € ML(S) such that u is & pure fc-mean and e(f) = p,o(f).

Choose a left thlck subset A of S with |A| = «. As in the proof. of Theorem 2.2.4,

~ we can deﬁne a net {u,\} aer of finite means with the directed set A = A(A x A),

_com"ergent to left invariance, and such that 'u,\ (f) = wo(Sf ) Any w‘-cluster point



of the net satisfies our requirements.



CHAPTER III

3 -F"(ZiLNER NUMBERS AND F@LNER-TYPE CONDITIONS

III. 1 Introduction
Let S bea semngroup Con51der the following F¢lner—type conditions on S:

(A) There existsy a number k, 0 < k < 1, such thatvfox" any elements

B1yees8n of § (not neeeséarily distinct), "thege is a finite subset A of

S, satisfying

n

1 ’
= <
- S vl < Hal,

r-l

(B) Given any finite subset Fof S, and any number € > 0, there exists a

finite subset A of S, such that for each s € F,
| A\sA| < elAl.

We call 'covn'dition (A) the weak Fglner condition (W FC) and:cond-itionu (B),
as in [1] and [23] the strong Folner condition (SFC). When S is a group, Fglner
[12] proved tha.t both WF C and SFC are equwa]ent to the amenabxhty of §.
. Frey [13] introduced the condition FC which is equivalent to SFC when S is left
cancellatlve (see [1]) 0
(FC) Given any finite subset F of S, and any number €>0, there exxst»s’ a

fipite subset A of S, such that for eachs € F, |
7 JsA\A| < ela].

~

He proved that if S is left arn_enable, then FC holds, but the‘con'verse is not true
_ (see Namioka [29] foran eleéaﬁt proof of this fact). In éenerél, SFC ls/;ufﬁcient.fo{ |

| | : 40 .
4 S S =
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the left amenability (LA) of S (cf. [1] also [29]) however, it is not necessary (see
Klawe (23] for an example). Also W FCis not sufficient for LA (see Namioka {29)
and also see our Theorem 3.2.3. In 1964, Namioka gave two sufﬁclent condmons‘
stronger than W FC. We will refer to ther;x as the Qvea.kkand strong Namioka-Fglner
conditions.

(WN FC) There exists a number k, 0 <k < 1, such tha't for any elements

" S1ye.-y8n; 8),...,8, of S, thereisa finite subset A of S satisfying

—-le.Ans A| > k|A].

1=l

(SNFC) There éxlis‘ts a number k, 0 < k < 1/2, such that for any elements

S1,...,8n of S, there is a finite subset A of S satisfying

3

R
=)0 lA\siA| S k|4l
=1 '

Narﬁioka [ég]lproved that SNFC‘i‘mplies WNFC and WNFC' implies LA.. In
fact he- showed that if SNFC holds for k then WNFC holds for I - 2k ‘Also
it is easy'to see that if WNFC holds for k, t..hen SNFC(WFC’) hol@s for 1 — k.
' Namloka [29 p. 26 posed the problem whether those conditions are necessary;
ie., whether LA 1mp11es WNFC or SNFC
The followmg dxagra.m summarizes the knowm tmpllcatlons among t.he vari-
Ve
PF¢lner-type condltnons for a semxgroup ’
’ .

SFC =>\SNFC = WNFC = WFC

- LA= FC
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number ©(S) for an arbitrary semi-

In Section II1.2, we define the Fgfigm
group S and investigate”son;e gen‘era dpert‘iés of p(5). In.‘particu.lar, we de-
termine ©(S) completely for all finite semigroups and cé,ncbella.tiv‘e semigroups. In *
Section II1.3 we obtain, by some combig;torial computatioye;"‘ty\ro inequalities forl

/ . oy

p(8) related to the cancellation behavior of S, one of which is the main tool user} ;:
_ ‘ f
, ;

in §111.4 to solve Namioka’s problem. R
In Section III.4; based on Klawe’s work on semidirect products in [23], we
..afe able to show that there ex.ists a left amenable semigroup not satisfying even w
W FC, thus answering Namioka’s problem. We also give some necessary and
: suffic'ient conditions for a semi,dii'éct product to be left a.menable.}
The last scgtibn of this chapter is devoted to thé F¢ln;r number of a semi-
direct'.product‘ of two semigroups satisfying SFC.” We prove that the Fglner

number for these semigroups is either O or Z, and obtain necessary and sufficient

conditions for the number to be 0.

III.>2. F¢lner Numbers.

In this section we gi\;e a formula for Fglner numbers of finite semigroups
related to theh n\;mbe'r of minimal right id;:als. Then we show that the F¢lnfz'r
number of a capcellative semigroup S is O or 1 accarding as S is l‘eft amenable or
not.

We follow Wong [40] in defining the F¢lner number of a semigroup. Let.
S be a semigroupﬂ and 0 < k < 1. ‘We say th'at.S has pfopert.y (Fi) if for any

S15...,8n € § (not necessarily distinct), there is a finite (nonempty) subset A of

/
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B #9
S such that . ' ' ({‘)

- E |A\s; A| < k|A|.

™ |==l

~

\“u

Tl}e Fglner n‘uxhber of S'is deﬁned by
v . ; v /
p(5) =inf{k©0<k<1 and S has property (Fi)}.
w(S) is well-'deﬁ.ned since every semigroup has property (F).
By the deﬁmtlon we can see that WFC & p(5) < 1and SNFC’ & tp(S)
1/2. Also it is easy to see that SFC 1mphes <p(S) = 0. Our first result dea}s with

[ Y
the converse.

. , .
PROPOSITION 3.2.1. Let S be a ser%ign}up. Ifep(S‘) = Oithen S satisfies SFC.

Proof. Let F = {sl,...,én} be any ﬁnife subset of S, and € > 0. Since

©(S) = 0, there exists a finite subset A of\S, such that T \
. N
/ 1 n \r/ . .
IA\S;AI < |4l
r—l .
Therefore |A\s; 4] < e|A| foralli, 1<i<n : .o

PROPOSITION 3.2.2. Let S be a‘sen:jigroup. If there are n disjoint right ideals

p(8) 2~ - - Z

Proof. Pick s; € I; for ¢ = 1,...,n. For any finite subset A of S, the sets

J

Iiy...,In in S, then

siA are mutually disjoint. So

n

S 4an s,A| < |4 ;}

=1
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This implies that -

—ZlA\

t=]

THEOREM 3.2.3. If S is a finite semigroup, then p(S) = 1 — 1/n, where n is

the number of minimal rigl(gideals of S.

Proof. By Proposition 3.2.2, > 1-1/n. On the other hand, let
( +In be the n minimal right (::Zof S, and A = U}, L. Since any two
minimal right ideals in a finite semigroup have the same carvalif.y, we have
|A| = nlfll. F:c>r any 8 € S, sA is a right ideal, so it contains a fninimal right

ideal ;. Thus |[ANsA4| 2 || = n~1|A|, and |A\s4A|‘_<_ (1 —=1/n)}A] O

C_OROLLARY 3.2.4. For a finite semigroup S, the following are equivalent:
(1) S is left amenable;
(2) ©(S) =0 (S satisfies SFC);

(3) ©(S) < 1/2,.. (S satisﬁes SNFC).

Proof. A finite semig is left amenable if and only if it contains a unique

minimal right. ideal (see [34]). , * ‘ O

CORQOLLARY 3.2.5 (|29]). There are semigroups which satisfy W.FC but are

-not left amenab]e

- COROLLARY 3.2.6. Let S be a sengroup, ha homomoq%xs%fs onto a finite.

semigroup. Then p(S) > ¢ (h(S)).
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Proof. If h(S) has n minimal right ideals, then S admits at least n disjoint ‘

‘ )
right.ideals. By Proposition 3.2.2, p(S) 2 1 — 1/n = p(h(5)). ) 0

* 4

" It is well known that a homomorphnc image of a left unenable umlgrou;:
~ is also left amenable. It would be desirable to have Corollary 3.2. 6 hold for arbi- .
trary h. anortunately, this is not true in general. Ar; example w}xere p(S) =0
but w(hl(S )) =1 is given in Section II.4. ‘
If VG is a group, thén ©(G) = 0 or 1 according as G is amenabie or not [40,

Thm. 2.2(3)]. This is also true for cancellative semigroups. In other words, the

Fglner number of a cancellatnve semigroup never takes values other th\ Oand 1.

THEOREM 3.2.7. IfS is a cancellative semigroup, then o(S) =0orl accordihg

‘#

as S is left amenable or not.

-

Proof. If S is left amehable, th- = 0 since SFC, in this case, is

equivalent to FC (sec [1}).

_ Suppose S is not left amenable.

CASE (1). S has two disjoint right ideals I and I.

Choose sy € I) and s; € I3. 8111 and s1 I are disjoint right isea.lscontained

P

in I. Also spI; and s I; are disjoint right ideals contained in I3, Thus we obtain
four disjoint nght ldeals -Proceedmg mductxvely, we can find, for any posmve

mtger n, 2" disjoint rlght ideals in S. By Proposition 3.2.2, tp(S )= 1 s
CASE (II) Any two right ideals of S have nonempty intersection.

By Dubreil’s theorein [7, p. 36]), S can be embedded into a group G, such



* that
. . H "

“46

&

‘ -
G=‘{zy 2 ,yES}

V

By Proposntlon 1.2. 2, G’ is not. amenable Hence gp(G) = 1 Suppose <p(S) <k < 1,

- and c'o'n51der 1Yy

,-'Bzyz

,:cnyn € G where a:,,y, G S We prove first that .

there exxsts an element s € 5 such that ziy;~ s, ,xnyn s are all in S. By

mductlon, suppose that there exxsts s € S, such that Tiyrtsy .. Tnla y;_-l_l s’\

R=3 S By, the structure of G y,, 1g can be Wntten as ab" where @y b € S Let' o

s = sb Then z,y‘ lg = (:z:,y

erte Si = Ty ,s.

Notlce that 8;iS

)beSforz<n—1 andxnyn s—f’zes

'=:z:,yt1 for1<z<n Bythe,

‘

'a‘ssumption p(S) <k< 1, there is*a»ﬁn‘ite subset A of 'S, suc _hat \

v
il

1t follbws that

1‘ nj‘ ‘ R - A:
- Yo l(AUsA\sis™
S 4= o

oy .

This means that ¢(G) <

-

- (vw.(G’)j?'—ll-

=~

-

o

| <|AUsA| (1—, k)4l

}(1<+.k)/2; < 1‘: <whxch ‘contra,'dict__s the fact that

= Z |A\s,A| < k|A|

t=1 -}

G.\

(A U sA)l = |A U sA] 1 Z] (AU sA) N s;s (AUsA)[¥

t=l o
. ; e ,_f-'\
§|AUsA|1——E|AnstA| C
K o ‘ L “ 1=1 o .
1 n
|AusA1 |A|+ ZIA\S,AI
;"- 1—1

<lau sAI - —e|A U"3A|y

1+k

- = IAU A|

SR

.'t . . ,’J



' CQROLLARY 3.2.8. Fora }:fahCeIIative'semigroep‘S, the following ~ere"e§0i{'elrent: e
(i) S is left é.men‘abfe;;

o (i) p(8) =0 (S satisfies SFC);

(i) o(S) <1 (S satisﬁes WFC).

B,
Let S be a sermgroup ha.vmg the ﬁmte intersection property for right 1dea]s, ’
i e., any two rnght 1deals of S have nonempty intersection (e g. any left amenable :

semigroup has this property) We can deﬁne an equlvalence relatlon R on S. by

sRt & 3z e S, sr= tz.

Thelset S/( ) of the R equwalence classes forms a rlght cancellatlve semlgroup

[

- tfie rlgh’c cancellative quotxent of S’ jWe refer to [1'5] for more de.talls about the -

{

B semlgroup S/(R) Whenever S/(R) exélsts 5 i is. left amenable if and only if S/( )

is. ] ‘ftramenable [391, and go(S) = 0 1f and only 1f @(S/(R)) ([lland (23]).

.

f/ B ' We ate unable to preye eqﬁality in-Theérem 3.2.0. This of course reises”the,

_ q'ju'es‘tiori'as to whether _str"ict inequality can hold.

Cop

# . . ; : . ] . . .
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II 3. F¢lner Number and Left Cancellation

LN

For a nght cancellatxve semlgroup S, go(.S') 0 if and only if S is left

"+ amenable and left eancellatiye ([1] and [23]) In ‘this sectlon we shall see that

A - = /
©(S) ‘i'eal]y depends on the lefttca;ncellativity; of S.. The ﬁr,st' result-provides a link
between cp(S ) é.nd‘ the ‘size of left cjancella.tive cl§§see. |

9 [
v

"y J

‘.T HEOREM 3 3.1. Let§S be a ngbt cancellatzve ssmxgroup If there ex1st dzst‘h‘ct

elements sy , 32, . -»82n of S,andr & S, such that -
o w
rsS] = r8y = ‘- = TI82n,,

then <p(S) > 1/3 —'1,/6n.

‘e

Proof Suppose S has property (Fk) for some k € (0,1] (see beginning of .

bSectlon I11.2). We will prove that k > 1/3 = 1/6n By (Fk) we know that there

: eiiste a ﬁnite subset A'@f S such that ‘ , R
IR \ ' 2n *
@3 ——(nlA\rAl + ZIA\s.Al) < k),
| i=1 :
b1

' Deﬁne f S — Z+ by f Z‘_l X —1A, where 87 lAac S is the set of all‘w

z €S such t\\’at SiT EA Let W;- {a. € A f(a) = ]} for 0 < ] ‘< 2n. Let

L4
$ . |
.

.“";.

3 ‘,sfor sOgle o€ Uvﬁ/m and tE {1 on}),

. om=j
a6 N

for\]zl, 26 Fmally, let Sj = TJ\T,H y _7 =0, 1 H2n—1 and Sz',, = TQ,,

Since SJ C (U?:l | s.W,)m At is not dxfﬁcult to see that I“}V 1 >“:1"1 [SJ|

. "‘4' kS
e @ B
L "\i"‘
i P
e, o
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{

e W
o

for '_7‘” >'1, by the deﬁnition of f Thus we have

| Z |A\s.A| > E |A\s"’ A|

¢ g==1 o=l
2n :
| =2n|A| - }:Mns:‘fu
il o
(3.3.2) . = 2nj4] - ¥ f(a)
o - €A
| —ZnZIWJI—Zalwl
Y 4 ~2n
—2n-J
> > B
.= .

Also since Ty = AN, siA, So C A\siA forall i =1,...,2n. Thﬁs we have the

inequality. k
m.:"’ . o . n -
P YA 2],
L =1 :

-5

fand hence by (3.3.2),

(633 EnA\s A1z ol + 5 22’3 lsn

1=1 =1 v %

Now consider IA\rA“‘l*.“.JWe clai'm that for j >1,

‘_, 4(3.3'.4.)" ) o IrS\ | U }s |< —|S |

m=j+1
Suppose T € rS_, \ Um—]+l rSm Then there is's G S; thh z=rs, where 8 = 8iya
for SOme 10 a.nd acA with f(a) =3. Here the e‘quahty holds,smce s¢ Tj+1 . Th\rs R

.there are 7 dxstlnct S such that s;a E A Also, since S is rlght cancel]a.tlve, these R

'-s,a are distinct. Moreover, since rs,a. = rs,oa =z ¢ Um_‘,,_‘_l rSm = 1Tj41, all :

the s;a are m S, ‘We have thus proved that for any z € rSj \Um_JJr1 rS,, , there

B
&
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are at least J elements 8 € S,, such that rs = z. 'j;h%gWes (3. 3. 4). Sumrmng up" —

’ for 5 =0,1,‘...

,2n, we obtain .
2n :
|rA| < |rSo| + E ;|S,
. 3-1

< |Sof + Z ‘|SJ

‘V\ . J:‘»l
and
(3.3.5) |A\rA| > |A[ rA| > Z (1 — ;) 1551,
=1 "
- ; .J : 7 r
Finally, from (3.3.1), (3.3.3) and (3.3.5),
, > e 4
Kb o (n]A\rAI + ;yA\;,A|) :},_
Gy oy e 2n —
J=1 iy j=1 )
1 = |
= g—;(nxsol + E n— = |s,|)
. J=1 3{ fan L1
2’1 . s ' ) ;&.‘3"
1 1 11 %
> — n— VS = (= = —)|Al:
--"3nj§0 (n 2)|SJI . (3 . 6n)‘A"
ie, k>1/3—1/6n. | C . O

‘Tt can be seen from the abbve proof that for an arbitrary semigrbup' S, the

' same resx:{lt also holds under the additional qbnditiori that s1,...,520 belohg to .

. differeﬁt Tight cancellative classeg;, In other words, for any a € S, i # j implies

sia # sja.

.C'O_‘ROLLARY 3.3.2. For any »semigro}ipfS,._if ©(S) # 0, then p(S) > 1/6.
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{

‘\ ' Proof. We may assume thit § is left gin'éx’iable‘. By Lemma 2.1 in (23], there

exist r,s,t € § with rs = rt but sz # tz for any z € S. Now our theorem applies

e , : .
withn=1. ° . : ' , ‘ ' .' a
s - o
) y L ) . ‘ ' }
‘ If there is a subset in 5 having a sort of “uniform cancellation property”, we

can get a mu;ch sharper inequality for ©(S) which \Qill be used‘ to solvé‘ Namipka’s .

- problem. '

THEOREM 3.3.3. Suppose S is a right cancellative semigroup. If there exists a

‘finite subéet F in S with the following properties: ,

() |F|=n>2,

E(ii) Vr,s,t €F, rs=rt,

(”1) Vrl,"Z € F; VS,t € S, 1’13 =ril & res = rol,

then p(S) >1—1/n.

We divide the proof into a series of lemmas.

LEMMA 3."3.4." For any positive' integer m > 2, the set F™ also has pgfope}ties .
e
o .. Proof. (i) Taker € F. Then F'ﬁ = Fr™! by (ii). But |[Fr™=1| = n since S
s right cancellative. T - : /

- (i1) Thié‘ follows from The fe}cf that ri....7mry .. .1, = ri™ for
rl,.._.v,rm,.r'l'/,‘...;r'm'e F. ~

(iii) For 7y ...rm and 7 ...r,, € F™, and 5,2 € S, if
. ) & “
.. TmS=T711...Tnt,



52 ,
thenm ,, x R s
! ) ! ..m-1

— dam=lgy '
L Tl T8 =TT " 8=1Nn t,—'l,---”mt

by (iii), since ryrP Lo =11 .c.rms=r1...rmt =r1r] g, O
y ] 1 o

" Now let A be a finite subset of S. Given a positive integer m, we define an

equivalence relation ~p,on A by

s~p t&Ire F™, such that rs=rt.

m this defines an equivale‘ncé relation. An equival“encé'cla,ss for the relation

total number of classes of-

~m Will be called a class of 1e\:"ql m. Denote by N, t

level m in A. Since s ~p 1= S ~mi1 t, each class of le\?q

=

+1 is the disjoinf
union of some classes of level m, and

|A] > Ny > Ny >

Denote by‘) ' _ :
o ' 1 |4\r4]
T -
7 P A
LEMM'A 3.3.5. For any (nonempty) ﬁmte subset A ofS if km < 1—1/n, then

Nm—sz >_:11-(1_;_.k ) |AI | . (

Proof Deﬁne a functaon f S — Z"' by f =Y ,epm Xra. We have 0 <
f“( s) <'n, and the a.verage of f on A is glven by ¥

|A|Z’ |A| S acal

s€A reFm

‘AI Z |A! - A\rAl)

ref™

=n- kmn": (1 — ).
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. Let 6 be any real numbér greater than 1, and let Ay = {s € A : f(s) >

(1= km)n/6} and A, = A\Al. Then"

« ~ km nIAI Zf(s 3 fe)+ D fls)

s€A s€A) s€A3
<y LR gy
So
(3.36) 4] > (1— —) (1 = km)lAl.

A

Let C be la class of level m. Tiren f01.' anyr € F™, |r.C| = 1. Furthermor;, if
S ~m tv and 7;1,r2 € F™, then rs .;m rzi, by (u) Thus ‘(F"‘ -C)N Awis cc;ntained
1n a si‘ngle class of ievel (whichmay be empty). | |

Suppose that there exists s € C with f( ) > 0. Thenvs € r; A for distinct
T, T2, ,rf(,) € F™, In other words there exist’ f(s) classes C, Cé, .,Cf(,) Yof
level m with r, = {s} It is easy to geg iha,t these C are disjoint. By (i1), these

cla.sses a/lge contamed in the same class C of level 2m For a class C' of level m

: su¢h” that (F™-C'YnA # 9, C' ¢ T if and only 1f (F™ . C') nAcc. For, let

ty €C'and r€ F™ be such that rt1 € A, and ty € _Cl cC. Then

(FP-C'YNACC & rt1 €C &1ty ~m 1
o ity =ity &t ~m ty

" & C'cT.

.
=

' .. - _ . o e’ N .
This means that the map C — C is independent of the choice o(@andit is 1-1.

/:/
V/ -
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For every CIa.ss‘C of level m for hxch Cis deﬁned let V(C) be the number
" of classes of level m contained inWC’ Then for. any r € F™, IrC | = (E‘) So

Yeec f8)<n: V( C) by the definition of f, and

(337) |c NAil<n V(’(E)/(1 ':"‘)" - 51'_‘_’51).

If Cn A #6, then there exists an' s € C with f(s) > (1 ——'km)n/6. So V(C) 2

f(s) > (1 — km)n/6. Thus i)y (3.3.7),
V(C)-1_V(C)-1 _.__-l-rkm 1
“TChAl Lv©) 6 (1_V(5))

, - 1-5km - 1 .—6km)n:]'.
And then from (3.3.6) and (3.3.8)
S R .
> é{y('cv ~1]Cn 4 £0) rk
> Ylenaf =k i (1‘_1 -] |

(3.3.8)

. C

1—km

-7 [1 1—k m)]l il
2 ki = Sl

[

Let 6 ="2<1 - 1-k,,.1 1 ) Then we obtain
N stk -1
N zy2¢>4(1 b = ) |A].
O
Proof of Theorem $.8. 3 Suppose so(S) <1- l/n Then WFC holds for .

some k < 1-1/n. B’y WFC, for any posmve integer £, there exists a ﬁmte subset
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A of S' such that ' 1 | ) | ’\ . .
. . " oo t . N ) .
| 1
s & O M\rAl< KAl
77 i=0 pef?

Adopting the above notations, we have

1 B . 1 1
——— % kg <k - ——kg) 21— ——k.
8+1§ x <k, or £’+1§(1‘ - kgi) 21 - k

Then

"y

. | -
|A] > Z(Nzi - N2i+l");;}2 Z {Nzi — Nai+1 .0 <i S_ L, kg <1 __71_;} .
=0 e ' ' ' . } ,

> E{%(fz_ % fk2.-)";|,4ﬂ 0SSl hy <1~ %}
| > J_Jil _-:-L[Z{l— ;ll-—-kz. :O‘S‘ige, kzli, <1- %}]2 -

4 Z‘j 1 Re
M S0
> ‘{}l(e +=1)-(f'— -,1; - k)%,
or for any £ > 0, - | |
i(m 1-)(1-—,-71;l—k)2‘< 1. N
This is- a contradiction since 1 — l/n — k > 0, and the proof is complete. -l

COROLLARY 3.3.6. Let.S be a right. cancellative semigroup. If there exists a
finite subset F of S satisfying conditions (i)-—(iii)‘ of Theorem 3.3.3, then S docs
not satisfy SNFC. . ' | ‘ R
. 3 ’ . .
COROLLARY 5._3.7. Let S bata right cancellative semigroup. If there exists a’
sequence {F,} of finite subsets of S véatisfying conditions (ii) and (iii) of Theo-

| 'rém 3.3.3 and |F,| — oo, then S does not satisfy WFC.

*
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-REMARK 5.3.8. The conclusion «(S) 2 1 —1/n is the best posgible. For,

consider the semigroup {aj,...,an} With the Qf;eration aia; = a;. It is easy tol

check that this semigroup, with F equal to itself, sﬁtisﬁes all the conditions of
Theorem 3.3.3, and p(S) =1-=1/n by Théorem 3.2.3.

. For later applications we need aslightly different version of Theorem 3.3.3.

THEOREM 3.3.9. ‘Let S be a semigroup with th‘g\ finite intersection property for
right 'J:Ideals. If S has a finite subset F with the following propefties: |
(i) |Fl=n22,
'(ii) vr,s,t EF, rs=rt,
(iii) Vri,rs € F, Vs,t € S, risRnt & rzerét, '
(iv) Different .elements of F belong to differént right cancellative classes;

: - :
ie,Vri,rg € F, riRry = rp=rg,

L3

then p(S) Z 1 —1/n. (See the last part of section III.2 for the relation R.)

To prove Theorem 3.3.9, we need to change the equivalence relation ~n into
~!. defined by
s~ te3dre F™, rsRrt

in the proof of Theorem 3.3.3. The rest of the proof works with little modiﬁcation'. :

II1.4. Semidirect Products and Left Amenability.

For a semigroup U, we denote by End(U) the‘ semigroup of all endomor-

phisms of U. Similarly, Inj(U) and Sur(U) v;ill be' th<e serﬁigroupé of all injective

or surjective ;ndomofphisms of U, respectively. And Aut(U) = Inj(U) N Sur(U).
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Let U and T be-two semigroups, p a homomorphnsm of T into End(»U ) “The
semidirect product of U by T (with :espect t.o p) is the set U X T usociated
with the multiplication (u,a)(v,b) = (upa(v),ab), denoted by U X, T. It is also a

"

semigroup. _ : gt

Maria Klawe (23] initiated the study of semidirect products for amenable

semigroups. For convenience, we collect some of her results here (Propositions

3.4.1-3.4.5).

PROPOSITION 3.4.1. IfU and T are right cancellative, so is S = U xp T. IfU

and T are left cancéllaiive, then S is left cancelative iff p(T) C Inj(U).

PROPOSITION 3.4.2. If U and T are left amenable and p(T) C Sur(U), thcn)
S =U x, T is also left amenable.

PROPOSITION 3.4.37 IfS = U x, T is left amenable, then U and T &re left

. N i e
amenable. .

PROPOSITION 3.4?4&\11“ U and T satisfy SFC and p(T) C Aut(T), then § =

Ux, T also satisfles SFC.

PROPOSITION 3.4.5. If S=U >2,, T Satisfies SFC, then U and T also satisfy

SFC.

From those results one can see that if U and T are two left amenable can--
cellative semigroups, p : T — Sur(y/) a homomorphism such that p(T) ¢ Inj(U),
then S=Ux, Tis left amenable, right cancellative, but not left cancellative. So

it does not satisfy SFC (see [23] or our Theorem 3.3.1). The following example is
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¢

due to Klawe.
~

EXAMPLE 3.4.6 ([23)). Let U be ‘the free abelian aemxgroup generated

by the elements {u.v: { ='0,1 2, ..}, and T an ,i,r}ﬁnite cyclic semigroup- with

L3

| generator a. Define p : T — Sur(U) by pa (u.) = uiq if 4 > 1 and pa(uo) = Zo
Since pa ¢ Inj(U ), the semidirect product S Ux, Tis left amenable %i:t does
not satisfy SFC.
In the remaiqing gp‘art of this section, we will @Se Klawe's eyample 3.4.6 to.
eolve both Namioka’s problem and Klewe’s pfoblem on the homomo,rphic image of

a semigroup with SFC. Then we will give some necessary and sufficient conditions

for a semidirect product to be left amenable.

PROPOSITION 3. 4 7. There exist Ieft. amenable semxgro s with Fglner number
¥ —~

equal to 1. So none of SNFC WNFC or WFC is netessa for a semigroup to

" be left amenable.

Proof Klawe’s example S is left. a.menable and right cancellatme Let. Fn T‘

){< u ", a) 1y = 1,..-.,n}, where uu® is unde_mtood,to be"‘u Then F‘;% |

thsﬁes conditions (i)-(iii) of Theorein 3.3.3 with |F,| = n. So o(S =,
4 can also be obtained directly from Theorem 3.5.1.)

at

X such that go(X) =0 and go(h(X)) =1
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“ Proof Let Y be the free abelian semigroup generated by {u. t€2}, U, T :

and p\u in Example 3. 4 6. Doﬁne r: T — Aut(Y) by ra{u;) = ujy, for ¢ E l’;'m i
Let X =Y x, T. Then p(X) =0 by Propoumon 3.4.4. Definea homomorphism

:Y — U by
! h'(u.') = { Uy, ’2 1;

Note that A’ °Ta = ba oh!. Now define h:-X = S§'=U x, T by h((z,a")) =

4

(h'(z),a"). Then

((xa (y,a ) x(ﬂ"a" a™™))
= ('l'(—t)h'(fan (0}, e™*™) = (B (2)per (K'(¥)), a™™)

= (R'(z),a")(R'(4),a™) = h((z, a"))h((s, a™)).

So h is a homomorphism of X onto S. By Proposition 3.4.7, ¢(S) = 1. 0

Among other properties of S, we point out that any left amenable sub-
. R ! . ' ‘

serigroup of S has Fglner number either0 or 1, and any finitely generaied left
. ‘ - ¢

-

amenable subsemigroup of § is abelian. T}}’eﬂp;oofs are omitted.

Now we give two necessary and sufficient ccfnditions for a semidirect product

I

> to be left amenable In the. next section we will give necessary and sufficient

s
£ e

- " . conditions for a semidirect product to satisfy S FC.

« " THEOREM 3.4.9. LetU and T be'tvyo left amenable semigroups, p : T — End(U)
an homorhorphism. Then the foﬂdm’ng are equivalent:
(i) § = U x, T is left amenable; o s

(i) S =U x, T has the finite intersection property for right ideals;

7
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’ e e
o ...'(iii).,W'..é_;Uﬁf Va iElfT,»,,.'i.p.a(U) npa(U)#0. o

Proof. (i ( ) = {ii). ThlS is a well-known fact 1 t

“~

’ >(n) = (m«) Take u. e U a E;T By (u) (u,a)S N (pa(u),a)S 9é 0 ThlS;‘
" S

o 1mnhes that upa(U) n pa( )pa(U) = upa(U) n pa(uU) 95 @
(31) => For each ac T deﬁne a linear operator Pa on £% (U) by Pag( ) |
- | (pa (u)) fg&g € -£‘°° (U) a.nd u € U. Each },’;fglduces a dual operator P' on £% (U)
given by P‘ (g) ( ag) for ¢v E £°° (U) and g € £°° (U O\Vlously, 1f $‘ isa 1
' .,mean on Z°° (U) P* 1/) is- also a mean on I (U ) Suppose Pis a'hft 1nv,ar1a;qt mean

-

o é.,on'£°°(U) ve U By (m), kthege are .,y E U such that vpg (:c) = Pa {y)- We have -

b

S Py (ug) %’J(Pa(ﬂug)) w(ﬂzPa(égg)) ,
T Sl ) = R 9)
L, SRR =R = RIE: N

Ay

Thus P‘zp is also a b{t invariant mean As in: the proof of [23 Lemma 3 3 and
Pr\p 3. 4’] the map a - P is ‘2 representatlon of Tun the set of lmear mappmgs on -

B

the set M L ) of 'all Ieft mvarlant means on £°°(U) Smce M L( ) is "w -compact_’

s -

and convex by Theorem 1.2. 3 there exxsts 'l[l & M L(U ) w1th P; t,b 1,0 for each' o

a E T~‘For each f € £°°(.{Kki;ﬁne F e £°° (T) by fla ) (f.,) ‘where o € £°°(U)
\ ;
', is deﬁneias f.,(u) = f(u,a]. Choose v € ML(T) and deﬁne u 6 €°°(S) by' o

u(f) = u( f) It follows by routme computatlon that u is a left 1nvanant mean on

S*(see [23, Prop;,_3,4]_). So’ S’lS left amenable. * CE R D ‘

COROLLARY 3 4 10 Let

ﬂq

”

and T i;e two Ie_ft._‘a.m;enable semigroups, p : T =

. ‘.
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“tla;en 5= PJ x,, T is Ieft amenable.

~.lary 3.4:10. k

: to ask. whether these condltxons are equ va

B ‘equ,walant (to vLA + WF C)

r . L e

,.F,‘

* End(U )ga homomorphism. If for any a € T pa(U ) contains a nght ideal of U

\%

Proof Take v € UandaeT. Since pa(U) contams aL 'gleal, up,(U) also

contams a rxght 1deal U as a left amenable semlgrqr\ - finite intersection

property for right 1deals Therefore ups (U) NP

at

[

o

EXAMPLE 3.4.11. We give some appllcations of Theorem 3.4.9 and Corol- .

Ty

() Let U = {q €EQ:q> 1} wnth the usual addmon T = {r E Q r > 1}

w1t§h the usual multlphcatxon The actlon of T on U is given by the relation

-p;_(q)—rq, rET qu SmcefqanyrET p,(U)-{qEU q>r}1san

ldeal in U, by Corolla.ry 3.4.10 S = U X,-T is left amenable.

(n) Let @' be the set of nonnegatlve ra.tlonals and Z7 the set of nonnegatne

‘integers, with the usual addltlon Let U Q" EBZ+ T the infinite cychc semlgrouo/

R gener,nted by a. Deﬁne pa((r n)) = (r + n, n) Then pa(U) does not contam any

1deal of U But by Theorem 3.4. 9, S U x,, T is still left amenable.

: II 5. Sem1d1reét Products and F¢ln Type Condltxons

.

1

S-FC SNFC and WNFC are all é‘qulva'lent, (8

i
w U

O

left cancellatwe semlgroups ﬁmte semlgroups, and Xbelxan semlgroups,
left amenability). It is natural |

in ‘g’ener'a*l In this section we wi.ll .

prove. tha.t for a semxdxrect product (QNO semxgroups satlsfymg S EC they are f

Ln
SR
L Teg
P P

-

v
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Ka sexmgroup S has the ﬁmte mtersectlon property for nght ldeals and its -

‘ ' ‘ Lo e :

rxght cancellatlve quotlent semxgroup S/ (R) is left candellatwe, we say s satlsﬁes
ql

< T

»

' SOrepson’s‘ condition. See [37] or [23] for ‘Sorenson’s conjectiyre. It is known that

<('4

¢

S Satisﬁes s FC if 'a'nd\onl'y'”lf S is left amenable and satisfies Sorenson’s condition

(cf [1] and [23]) | " o | . l, 1

Let U be a semlgroup w1th the ﬁmte mtersectlon property for- rlght 1de-l

al's, and h-€ End( ). Since th implies h(s)Rh(t),, h can be seduced tohe "

o End(U/(R)) deﬁned by h(§) R(s). And for h1hy € End(U) hl ohz h1 o hz

.
¥y

er cp(S) =1, In both cases S does not sat:sfy WNFC

. rem349 wUﬂpa(U) #0 Choosew EUW1th pa( )EwU Then pa(uw )‘="" :

If p : T —.End(U) is a homomorphlsrn from another semlgrOup T lnto End(U) 5. -

 then we can define 5 T End(U /(R)) b y Pa = B is alsé’a homomorphlsm.

_THEOREM 3.5.1. Let U and T be two s;migroups where U satisﬁes Soren-

- son’s condition. Suppose p: T End(U) isa homomorphxsm such that p(T) ¢

In_)(U/(R)) Then tHe semxdu‘ect product S = U x, T is ezther not left amenabIe

. "

Proo[ For convenience we write ~ for the mght cancellatwe rela“txon R on U ,

-

,‘Sorenson s condltlon xmphes t'hat' for all U, v, W € U w%wu > U~y s

b o
Assume that S is left’ a.menable and p(T) Z InJ(U / (R)) Then there exists

s' u

]aETandu vGUsuch’thatu%«vbut pa(u) ~p¢(v) - ,i'

, < ‘ . ,
o We cla.lm that for a.ny posxtwe mteger n, there are two elements u,,,v,, € U .

. - such tha,t pan—l (u,.) 74 p“{‘"’ (v,.) but pan (u,.)-—- pan (v,.)

Select w evU w1th Pa (u)w = pa (v)w Smce S is left amenable, by . Theo-'

1

. I
2. :
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‘pa(vw ), and uw # vw',since u 74 v. Let ul"- uw and v = vw',
Suppose nd 2 Agam smce S is left amenable, (ul, n-1 )S n (vl a1\ #

0. Therefore, w1 Pan-1 (U) ﬂ'vl Pan-1 (U) 76 9. Choqsé w',w" €U s0 t}\at .

(3.5.1) L upe (w') = vipgn (w").

_Siﬁée uy % vy, pan (w ) £ pgn-1 ( ”) App\ymg pa to both sides o;' (3 5. 1)
we‘gtit pa(yl)pan(” ) = pa(vl)pan (w") = pa(ul)pan (w ). .Sorenson 8 condmon

on U ensu‘res that pin (‘w ) ~ Pan (w"). By the_ same. argument as in the pievigué
.‘pa._fégrap:h, we can find w € U, wiﬁh Pan (w’w) = pgn (w".w)_,‘a,‘nd"élscw)éan—,i (w'w)‘;}c. o |
_pan‘_l (w"ib).: 1Let’ U = w'w and v, = w"w. | o |
Define LT
Fn- .4‘_'{<w1w2 .o Wp,a") €5 w; = U 61' vi}..

Then F,l satlsﬁes condltlons ( Y, (ii), (1ii)’ and (iv) in Theorem 3.3.9 yvith, |Frl = 2"y

' >
fas‘we will show. Qo

1

(i) and (iv). We prove by mduct‘ion tha.t any two' dlfferent words wlwg i, wn '

T are not in the same right cancellatxve cla.ss of U. ThlS 1mp11es () and (w). a

°

- Sﬁppose this- is true for n = k - 1 > 1 Denote by ; i

’ ' ‘ ‘ s F -

F}: ={w1w2 L Wiep Uk W= U Or ,'.’i'}’ . B g i.'.e».;';@.j&[;

. .\A _: i . » K ‘.‘ . ) ) W } ; . V - . ‘ o
“and- - . - RIS SR S Te e T

‘ F)'cl-: {'wl"éwz-‘-.-WIc'—-l vk‘ ‘:@i-‘;@ﬁi or ”i}- TR |

, .::". » : o
By the 1nductxve assumptlon z_;.,nd the factghac ~ be => a. ~ b, each set F} or F)’;’ R

'satisﬁes our requlrement. Le(; wr wk-l ug € Fk andpwl wk 1 Vk € F k If thcy i

< o N L (; i
7 . . . . - Dig.a
. . . N ER




vy T Ta L . ..
. ldﬁ‘ R % ) N . o . ‘ . .
. ‘ o
\

are in the same rxght cancellathe class, then

‘ L <I)
. : ‘)" “ : ‘ N , . ”
Y T gk-1 (ql)puk-x_ (ug) v\ pgr-t (uk_'x )Pak-1 (uk)
Y, ’ .. . o L g ' A
' L = pgk=1 (w;wz ce Wp—pUE)® ‘ ' N
{l‘\ * . N »,I ‘I ! | |
b . ~ pak-i (Wwh ... Wi_1 k)
.',' M - - 5
'(f"‘ . ’ .
" = pgk=1 (U1)pgr-1 (1{2) cor gt (Ug—1)pgr-r (Vi) L
Smce U satisfies Sorenson s condltlon, 'We have
, i
ER o paket (k) ~par-i (v):

S
WL
[

- ::,. Y ‘ ) . : S D ‘ °
‘This contradicts our’céﬁe of ug and vy.
. . N .

(i) Th‘i?_‘fdllOW& fm the fact that
. = :y . pa" (Wi,U)Z v wn) = bh" (ul')pan (‘U.z)‘ ., Pan (un),
; ' 1’ v : :

(m) For $ € S write s = (Pl( )s P (s)). SuV;")pose rl;rz € .F,’l and s,t € S |

are such tha@. 3::: € S r1 sT = rltz Equwalently we have

3

. (352) % - -ﬂPx(t;_){Pzzn (P (S,z)) P1(71)Pan (P1 (tz)),
: end e u L

o
Fd

(3.5.3) - - <,a'§p2(sz)=anpé(¢z),

‘a. : s

by the deﬁnmon of semldxrect p’f' ducts By Sorenson s condltlon, there exxsts o

w E v sue}l that Pan (P; (sz))w pan (P1 (ta:))w Theorem 3.4.9 1mplles that -

‘;'wU 0 Pan 5(,@ ) ;6 0_. Thus there exists w' € U such that
C@54) pan(Pusa)einn (W) = Ao (P (2o mrtey (),

>




| 65
since a® P, (s:c) = a"Pz"(tz) Let y =-.':|:(w" a). Then it is .easy tg Check'that )
Par (P1 (sy)) = pon (P (ty)) and a"Pg(sy) = a"Py (ty),. by (3. 5.4) and (3.5. 3).& It .

follows that r,sy = roty.

As a left amenable semigroup, S has the finite intersection propertj' for r'ight,
| o |
b -

" COROLLARY 3.5.2. Let U and T be two semigroups where U satiéﬁes SFC

ideals. So by?’i?»hebrém 3.3.9, p(S) =1. .

and T is left amenabl_e. Suppose p:T - End(U) is a homomorphis;fl satisfyipg .
condmon (iii) in Theorem 34 9 and ‘such. that p( ) ¢ Im(U/(R)) Then thé | |
semzdn‘ect product S = U x,, T is left amenablé and zp(S) = 1; ie, S dées not".

+ — 'satisfy WFC.

A
voea¥

Proof. By Theorem 3.4.9, § is left arhenéble. S o -

This corollary gives a large class of counterexamples for N'amioka’s problem.

»

Now we turn to conditions under which S satisfies SFC.
Let U and T be two semigroups satisfying SFC, and p : T — End(U) a

hoinomorpliism 'Supposé S=U X, T is left ‘a;ﬁenable, and 5(T) c Inj(U/ (R))

.

Note that these condxtlons are necessary for S to satlsfy SFC by Proposxtlon 3.4, 5

and Theoré?n 3. 5 1.

‘Let (u, a), (v b) € S, and suppose that there exists (w c) € S, such that "
(w ‘e){u, a) ,(w c)(v b); i.e.,wp. (u) = wpc(v and ca = cb ance U and Tsatlsfy

Sorenson s condltmn, there isanz € U and ad € T, such that -

. . ¢
. . : .
. -

(8.5.5) - pc(@)z,= p"c(v):c imd ad\=.’bd.
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- pe(u) ~ Pe (v) and p(U) c InJ(U/(R)) 1mply U~ So there exists 7y € U with
/

Cumy = vz, Smce S'is left;amena,ble, U ﬂpad( ) # 0 by Theorem 3.4.9. Hence o

we can find z3 € U such that t"t‘pdd (z2) = vpad(z2) = vpbd'(xz), or

(3.5.6) | v;'@m;;('m(‘iz))-—'.vpb(kd(.:cz)).'

4

.,/ . Y

'+ 7 X follows from (3.5.5) and (3.5.6) that'

(u a)(ﬂd(ﬁz) (v b)(ﬁdv(xz),d)- |

Thus we have proved "that.S satisfies Sorenson’s condition. But S is left amenable,

so we obtain the following result. '

L

LEMMA 3.5. 3 Let U and T be. two semigroups’ sat:sfymg SFC and p: T —

End(U) a homomorph:sm. If 5(T) IDJ(U/(R)) and condition ,(m) of Thea-

4

" rem 3.4.9 holds for p,'tﬁen S=Ux, T saplsﬁes SFC.'

Summing up the above resu{ts, we obtain the main theorem of this section.

.

THEOREM 3.5.4. Let U and T be two sevmxgroups satlsfymg SFC, p T -~ -

End(U) a homomorph:sm Let S U x, T be the qemldnect‘product Then the

o .

~folfowing are équivalent: I ” _ g

) |
(1) S satxsﬁes SFC; : o R

&

'1(2) S sat1sf1'es SNFC
| (3)5sausﬁe3WNFc SR S

| (4) S s left amenab!e and,sat;%WFC gr » ‘ o o
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Proof. That (1) => (2) => (3) = (4) follows from the diagram of implica-

. tions in section Iﬁﬂ Also (4) = (5) is a.pplié;tion of Theorem 3.4.9 and

Theorem 3.5.1; (5) =>(1) is the previous lemma. : A

If U and T are cancellative, then p = p and U/ (R) = U, and moreover, the
lefﬁ‘amenability of U ;md Tis equivaie(xt to SFC. By liroposition'3.4.3, this is a

cohsequegce@%ﬁach of (1), (2),"(3) or(ﬁ\
197 7

"COROLLARY 3. 5'.5..._LetrU'"l.ih'd Tkip,';lvo cancellative semigroups, and p: T —

End(U) a homomorphism. Let § = U X,, T be the semidirect product. Then the |
following are equivalent: |

(1) S satisfies SFC; - ’: B

(2) S‘safisﬁes S}VFC; -
(3) S satisfies W'NFC.;

(4) S is left a;ﬁenéb]e and satisfies WFC;

(5) U and T are left a_‘r‘.nen‘ab]e, p(T) C Inj(U.),: and for all u ei U and

2 €T, upa(U) N pa(U) #0.

PROBLEM 3.5.6. Is thgre any left amenable semigroup S such that 0 <
o(S) < 17 1f not, then all the conditions SFC, SNFC, WNFC and LA +

W FC are equivalent. We know that such an example cannot be finite, or abelian,

~or left caﬁéellative, or a semidirect product of those “better” semigroups. Our

i

Section IIL3 is aimed ;‘ht exploring this direction. But we can only get a lower
, % . . ;

~ bound of 1./6,(Corollair<y 332)

L :%;
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