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ABSTRACT 
 

Viral entry is an attractive antiviral target. Entry inhibitors prevent infection of 

healthy cells and inhibit viral replication before viruses establish persistent reservoirs. 

Two entry steps, the primary attachment to cellular glycans and the lipid rearrangements 

during fusion, are conserved among many unrelated viruses. Therefore, inhibitors of 

these entry steps, acting through appropriate mechanisms, are likely to have broad-

spectrum antiviral activity.  

Using small molecules as probes, I identified and characterized three mechanisms 

by which it is possible to inhibit the entry of unrelated viruses. The majority of human 

viruses, including enveloped and nonenveloped viruses, initially bind to cellular glycans. 

Epigallocatechin gallate (EGCG), a green tea polyphenol, competes for virion binding to 

heparan sulfate or sialic acid moieties in cellular glycans to inhibit the infectivity of most 

human viruses. All enveloped viruses rely on lipid rearrangements during entry steps. 

Rigid amphipathic fusion inhibitors (RAFIs) act through biophysical mechanisms to 

inhibit the formation of the negative membrane curvature required for the fusion of 

enveloped viruses. Enveloped viruses constitute a large group of human viruses, 

including most clinically important pathogens. Curcumin and 25-hydroxycholesterol 

(25HC) modulate the fluidity and composition of lipid membranes to interfere with the 

replication of hepatitis C virus (HCV) and other enveloped viruses.  

None of these small molecules are ideal candidates for antiviral drugs. More 

importantly, the identification of these mechanisms opens the possibility for the rational 

design of small molecule entry inhibitors with broad-spectrum antiviral activities and 
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appropriate pharmacological properties. Furthermore, the small molecules described in 

this thesis are useful as probes to characterize viral entry steps. 
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CHAPTER 1: INTRODUCTION 

1.1 VIRAL ENTRY 

The first steps in viral infection are generally conserved among most human 

viruses. Virions first attach to their target cells through non-specific, low-affinity 

interactions with ubiquitous moieties on cellular surfaces, such as glycans. Primary 

attachment brings the viral particles into close proximity with the cell surface, facilitating 

the higher-affinity binding to specific cellular receptors. The higher affinity secondary 

binding is often critical in determining tropism for particular cell types. High affinity 

binding may also induce conformational changes in virion proteins, or facilitate 

trafficking of the viral particle to specific cellular compartments, allowing for subsequent 

entry steps. After binding, most virions are internalized by different mechanisms into 

endosomal compartments. Other virions deliver their genomes directly into the cell across 

the plasma membrane. Following binding and internalization (or not), the entry process 

differs for enveloped or nonenveloped viruses. Viruses with a lipid envelope fuse their 

envelope with the host cell membrane, thereby delivering the capsid into the cytoplasm, 

whereas nonenveloped viruses disrupt the host cell membrane by nonfusogenic 

mechanisms to enter into the cytoplasm.  

After entry, the subsequent replication steps depend on the composition of the 

viral genome (deoxyribonucleic acid (DNA) or ribonucleic acid (RNA)) and the 

subcellular replication site (nuclear or cytoplasmic). Viral and cellular enzymes mediate 

these replication steps, which may share common features but differ mechanistically for 

each virus group. Antivirals that target replication are typically specific for one particular 

virus, or closely related group of viruses.  



	
   2	
  

In contrast to later steps in replication, some viral entry steps are broadly 

conserved for many human viruses. The primary attachment of the vast majority of 

enveloped and nonenveloped human viruses is to cellular glycans. Many enveloped and 

nonenveloped viruses enter cells by similar endocytotic pathways. Finally, all enveloped 

viruses must fuse their envelope with the host cell membranes. Therefore, viral entry is 

an appealing target for broad spectrum antiviral therapeutics. 

 

1.2 PRIMARY BINDING 

1.2.1. Cellular glycans 

Most human viruses attach to their target cells by first interacting with cell surface 

glycans, such as glycosaminoglycans  (GAGs) or sialoglycans (SGs). GAGs are long 

unbranched polysaccharides comprised of a repeating disaccharide unit of an amino sugar 

(N-acetylglucosamine or N-acetylgalactosamine) and a uronic sugar (glucuronic acid or 

iduronic acid) or galactose (Raman et al., 2005). Depending on the composition of the 

disaccharide unit, GAGs are classified into four groups: heparin/heparan sulfate (HS), 

chondroitin/dermatan sulfate, keratan sulfate or hyaluronic acid (Esko et al., 2009). 

GAGs are usually linked to proteins through O-linked or N-linked glycosylation. The 

repeating disaccharide unit of GAGs is modified by variable sulfation patterns (David, 

1993), resulting in the high diversity and complexity that allows for specific binding with 

many different GAG-binding proteins. The interactions between GAGs and GAG-

binding proteins regulate many biological processes, including cell growth and 

proliferation pathways, cell adhesion or migration, and tissue hydration (Esko et al., 

2009).   
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GAG-binding proteins have a binding site of positively charged basic amino acids 

that interact with the negatively charged sulfates and carboxylates in the GAGs. For 

example, a heparin-binding consensus sequence of XBBXBX or XBBBXXBX (where B 

is basic lysine or arginine residue and X is any amino acid) is typically found in proteins 

that bind to HS (Cardin and Weintraub, 1989). The binding affinity depends on the 

overall shape and conformation of GAGs and is affected by the number and orientation of 

the sulfate group charges (Raman et al., 2005). 

SGs, another group of cellular glycans, are comprised of sialic acid (SA) attached 

to the termini of N-linked and O-linked glycans. The carboxylate group at the 1-carbon 

position of SA is ionized at physiological pH, allowing for interactions with basic 

residues of saccharide-binding proteins such as lectins (Varki, 1994). However, binding 

of SGs and proteins is mostly mediated by extensive hydrogen bonding between the 

functional groups of SA (carboxylate, hydroxyls and an N-acetyl group) and polar amino 

acid residues. 

GAGs and SGs are ubiquitous, and many microbial pathogens have evolved to 

exploit them for initial attachment to their target cells (Chen et al., 2008). Among the 

GAGs, HS is the most commonly used as a viral attachment site. The density of cell-

surface HS is greater than 106 molecules per typical epithelial cell (Bernfield et al., 

1992), thus allowing microbes to bind and increase their concentration at the cell surface. 

Similarly, many viruses recognize and bind SA, which is abundantly expressed in SGs on 

the cell surface. These interactions with glycans capture virions from extracellular spaces 

and concentrate them in the vicinity of other receptors and signalling molecules that are 

used for higher affinity binding and entry into the cell. 
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1.2.2. Heparan sulfate-binding viruses 

Many important human viruses bind to HS proteoglycans by interacting with the 

negatively charged HS moieties in cellular GAGs (Figure 1.1). This group includes 

hepatitis C virus (HCV) (Barth et al., 2003; Morikawa et al., 2007), hepatitis B virus 

(HBV (Leistner et al., 2008), human immunodeficiency virus (HIV) (Patel et al., 1993), 

dengue virus (DENV) (Chen et al., 1997), Sindbis virus (SINV) (Byrnes and Griffin, 

1998), respiratory syncytial virus (RSV) (Krusat and Streckert, 1997; Martinez and 

Melero, 2000; Feldman et al., 2000), Rift Valley fever virus (RVFV) (de Boer et al., 

2012), severe acute respiratory syndrome-associated coronavirus (SARS-CoV)	
   (Vicenzi 

et al., 2004), herpes simplex virus 1 and 2 (HSV-1/-2) (WuDunn and Spear, 1989; Herold 

et al., 1991; Shieh et al., 1992; Cheshenko and Herold, 2002), human cytomegalovirus 

(CMV) (Compton et al., 1993), varicella zoster virus (VZV) (Zhu et al., 1995), vaccinia 

virus (VACV) (Ho et al., 2005), human parainfluenza virus (HPIV) (Bose and Banerjee, 

2002), adenovirus (AdV) types 2 and 5 (Dechecchi et al., 2000; Dechecchi et al., 2001), 

some strains of norovirus (Tamura et al., 2004) and human papillomavirus (HPV) 

(Giroglou et al., 2001). Other viruses, including the model rhabdovirus vesicular 

stomatitis virus (VSV), are thought to also require HS for binding (Conti et al., 1991), 

although the specific details of the interactions remain unclear.  

The mechanisms by which virions attach to HS moieties in cellular glycans are 

generally well conserved. Binding requires interactions between binding pockets of basic 

amino acids in the virion glycoproteins and negatively charged HS or SA. In HSV-1, 

glycoprotein B (gB) and glycoprotein C (gC) are responsible for this binding (Shukla and 

Spear, 2001). gC knockout viruses have a reduced ability to bind to cells (Herold et al., 
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1991), and absence of both gC and gB eliminates binding to cells altogether (Herold et 

al., 1994). Both gB- and gC-dependent binding were shown to require cell surface HS. 

As for other heparin-binding proteins, the interactions between gB/gC and HS rely on 

electrostatic interactions between basic residues and the negatively charged sulfate esters 

and carboxylate groups of HS. gB has a basic lysine-rich region (comprised of residues 

68 to 76) required for binding to heparin and HS	
  (Laquerre et al., 1998). The gC amino 

acid residues involved in HS binding are the basic Arg-143, Arg-145 and Arg-147, as 

well as Thr-150 and Gly 247 (Trybala et al., 1994). gC residues Arg-129, Arg-130, Ile-

142, Arg-151, Arg-155 and Arg-160 are also required for binding (Mardberg et al., 

2001). The requirement of the non-ionic hydrophobic residues (Thr-150 and Ile-142) 

indicates that non-ionic binding may also be involved, perhaps to contribute to the 

binding energy or position the basic residues correctly. 

The N-terminal 27-amino-acid hypervariable region (HVR1) of the HCV E2 

protein has basic residues conserved at specific positions, as shown by analysis of over 

1500 non-redundant HVR1 sequences (Penin et al., 2001). The conserved positively 

charged residues of the HVR1 were proposed to interact with negatively charged cell 

surface GAGs. Supporting this model, E2 with a deletion of the basic HVR-1 region 

showed a decreased ability to bind to heparin (Barth et al., 2003), demonstrating the 

importance of the basic residues for binding to cellular HS. 

Similar heparin-binding domains are found within other virion glycoproteins. HIV 

gp120 contains four heparin-binding domains of basic amino acids: 166RGKVQK171, 

304RRKIR308, 500KAKRR504 (Crublet et al., 2008), and a binding pocket of Lys-121, Arg-

419, Lys-421 and Lys-432 (Vives et al., 2005). VACV A27 protein binds to HS through 



	
   6	
  

a lysine-rich binding domain (21STKAAKKPEAKR32) (Shih et al., 2009). The RSV G 

protein has a lysine-rich heparin-binding domain (184AICKRIPNKKPGKKT198 or 

183KSICKTIPSNKPKKK197, depending on the subgroup) (Feldman et al., 1999). 

Nonenveloped viruses also bind to HS through similar interactions. A conserved region 

of basic amino acids in the HPV L1 protein (the consensus sequence from nine HPV 

types is XBBBBXB, where B is Lys, Arg or His) is involved in binding to heparin (Joyce 

et al., 1999). For AdV, the 91KKTK94 domain of the fiber shaft protein was implicated in 

heparin binding (Dechecchi et al., 2000). Therefore, binding between most virion 

glycoproteins and cellular GAGs is mediated by very similar ionic interactions between 

the same basic amino acids and negatively charged HS moieties. As a result of the 

conserved binding mechanisms, appropriately shaped and charged molecules that mimic 

HS disrupt the binding of a broad group of viruses (discussed in Section 1.7.1). 

1.2.3. Sialic acid-binding viruses 

SA was the first virus receptor identified, in the context of influenza (IAV) infection	
  

(Hirst, 1941). Since that discovery, SA was shown to be a receptor for a diverse group of 

viruses and other pathogens (Matrosovich et al., 2013). This group of viruses includes 

IAV (Haff and Stewart, 1965), influenza B virus (IBV) (Wang et al., 2007), influenza C 

virus (ICV) (Rogers et al., 1986), some human coronavirus (CoV) strains (Vlasak et al., 

1988), paramyxoviruses such as Sendai virus (Suzuki et al., 1985), some strains of 

norovirus (Rydell et al., 2009), reovirus (RV) (Gentsch and Pacitti, 1985), enterovirus 70 

(EV70) (Nokhbeh et al., 2005), JC polyomavirus (Liu et al., 1998), BK virus (Dugan et 

al., 2005) and others (reviewed in Lehmann et al., 2006). Additionally, certain strains and 

isolates of human rhinovirus (HRV), coxsackievirus (CV) and AdV bind to sialic acids 
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(Uncapher et al., 1991; Nilsson et al., 2008; Arnberg et al., 2000; Arnberg et al., 2002). 

Similar to HS-binding viruses, attachment of SA-binding viruses requires low-affinity 

interactions between binding pockets in virion glycoproteins and SA moieties in cellular 

SGs.  

Proteins that bind to SA, including IAV hemagglutinin (HA), do so mainly 

through a network of hydrogen bonds between polar amino acids and the four functional 

groups of SA (a carboxylate at C1, a hydroxyl at C2, an N-acetyl group at C5 and a 

glycerol group at C6) (Figure 1.1). The conserved residues in the SA-binding site of IAV 

HA are Tyr-98, Trp-153, Glu-190, Leu-194 and His-183 (Weis et al., 1988). The 

pyranose core of SA rests on top of the aromatic residues, Tyr-98 and Trp-153. The 

carboxylate group of SA forms hydrogen bonds with Ser-136, and to the amide of peptide 

bond 137. The hydroxyl groups in the glycerol chain of SA hydrogen bond to His-183, 

Glu-190, and Tyr-98 (Weis et al., 1988). The N-acetyl group of SA also forms hydrogen 

bonds (to the carbonyl of peptide bond 135). Moreover, van der Waals interactions (such 

as between the methyl of the N-acetyl group and Trp-153) are also involved in the 

binding.  

Similar hydrogen bonding interactions are described for other viral proteins that 

bind SA. For example, the hemagglutinin of Newcastle disease virus (NDV), a 

paramyxovirus, binds to SA by hydrogen bonding mediated by amino acids Glu-401, 

Arg-416 and Tyr-526 (Connaris et al., 2002). The binding pocket also contains Arg-498, 

Ser-418, Tyr-317, Glu-258 and Ser-237 (Connaris et al., 2002), all of which can form 

hydrogen bonds. Reovirus sigma 1 has a binding pocket consisting of Asn-198, Arg-202, 
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Leu-203, Pro-204 and Gly-205, which interact with sialic acid through a similar network 

of hydrogen bonds and van der Waals interactions (Reiter et al., 2011).  

 Molecules that mimic SA compete for receptor binding to inhibit attachment of 

SA-dependent viruses. However, at least for IAV, the individual interactions between a 

single binding pocket and sialic acid are weak. Receptor binding is cooperative and 

depends on multivalent interactions between multiple HA spikes and multiple SA 

moieties. Consequently, monovalent receptor mimetics are unable to effectively compete 

with the multivalent interactions of the virions with the cells (Matrosovich, 1989), 

whereas sialoglycopolymers and other polyvalent sialylmimetics are effective 

competitors (discussed in section 1.7.1). 

1.2.4. Other viruses 

Only a very small group of human viruses bind to neither HS nor SA moieties on cellular 

glycans. Poliovirus (PV) binds to the poliovirus receptor (PVR; cluster of differentiation 

155, CD155) without previous attachment to either HA or SA (Racaniello, 1996). Most 

strains of HRV (Uncapher et al., 1991) and some strains of measles virus (MeV) (Terao-

Muto et al., 2008) require neither HS nor SA for binding.  

Conversely, some viruses appear to require both HS and SA for entry. Merkel cell 

virus binds to both GAGs and SGs	
   (Schowalter et al., 2011), in a sequential manner. 

Enterovirus 71 (EV71) also requires both HS and SA for attachment (Tan et al., 2013; 

Yang et al., 2009; Su et al., 2012). However, the binding sites and specific interactions of 

these two viruses have not yet been fully elucidated. 

 

 



	
   9	
  

1.3 SECONDARY BINDING    

A few viruses, such as IAV, bind solely to glycan moieties. Most viruses, in contrast, 

bind to secondary receptors with higher affinity. The higher affinity binding may be 

responsible for the tropism of a virus for a particular cell type. For example, the 

hepatotropic HCV binds to receptors involved in lipid uptake that are expressed mostly 

on hepatocytes (Pecheur, 2012). The immunotropic HIV binds to the cluster of 

differentiation 4 (CD4) receptor expressed by immune cells, but tropism for either T-cells 

or macrophages is determined by binding to the coreceptor, C-X-C chemokine receptor 

type 4 (CXCR4, T-cells) or C-C chemokine receptor type 5 (CCR5, macrophages) 

(Coakley et al., 2005). Other cellular factors also affect tropism (such as signalling 

pathways involved in internalization or the availability of transcription factors for 

genome replication). In addition to being involved in cellular tropism, binding to 

secondary receptors can also induce conformational changes in viral glycoproteins that 

expose regions of the virion glycoprotein involved in fusion or binding to other receptors. 

Receptor binding can also induce intracellular signalling events to facilitate 

internalization of the virus particle. Some selected specific examples are discussed in 

section 1.6. 

 

1.4 INTERNALIZATION   

There are a limited number of endocytotic pathways available for viruses to use. As a 

result, many use common internalization pathways. Many viruses are internalized into 

endosomal compartments through common processes mediated by host cell signalling 

pathways.  
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1.4.1 Clathrin-mediated endocytosis  

Clathrin-mediated endocytosis (CME), a constitutive process shared among all eukaryotic 

cells, is the most commonly used endocytotic pathway during viral entry. Clathrin-coated 

pits are first formed around the selected cargo by cellular proteins such as adaptor protein 

2 (AP2). Clathrin-coated pits invaginate inwards from the membrane in a process 

mediated by Epsin, which recruits clathrin and AP2 complexes (Mousavi et al., 2004). 

Epsin also binds to phosphatidylinositol-4,5-bisphosphate within the lipid component of 

the clathrin-coated pit to induce positive membrane curvature (Ford et al., 2002). The 

invaginated clathrin-coated pits are pinched off from the plasma membrane in a dynamin-

dependent manner, forming the clathrin-coated vesicles, which ultimately shed their 

clathrin and fuse with endosomes (Mousavi et al., 2004). Lipid composition may 

contribute to the formation of clathrin-coated pits. For example, cholesterol depletion 

inhibits endocytosis by preventing the endocytotic adaptor proteins from inducing 

membrane curvature (Subtil et al., 1999). 

Many unrelated viruses are internalized by CME, including the nonenveloped 

AdV (Leopold and Crystal, 2007), HPV type 16 (Day et al., 2003) and RV (Danthi et al., 

2010), and the enveloped HCV (Blanchard et al., 2006), SINV (DeTulleo and 

Kirchhausen, 1998), VSV (Sun et al., 2005) and IAV (Rust et al., 2004). Some viruses 

even actively induce formation of the clathrin-coated pits (Rust et al., 2004). It is not 

surprising, therefore, that inhibitors of CME often have broad-spectrum antiviral activity. 

Many physiological processes also require endocytotic processes and inhibitors of CME 

are typically associated with toxicity. 
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1.4.2 Other internalization pathways 

Another route of viral internalization is by caveolin-mediated endocytosis. Caveolae are 

cholesterol-rich lipid microdomains that form invaginations in the plasma membrane 

through their association with caveolins. Unlike clathrin-mediated endocytosis, caveolae 

internalization requires triggering (Parton et al., 1994), often by signalling activated when 

viruses bind to cellular receptors (Pelkmans and Helenius, 2003). Members of the 

polyomaviridae and picornaviridae families, as well as HBV, are thought to be 

internalized by caveolin-mediated endocytosis (Marjomaki et al., 2002; Macovei et al., 

2010; Dugan et al., 2006). However, caveolin-mediated endocytosis is not commonly 

used for viral entry. 

Other viruses use clathrin- and caveolin-independent entry pathways. Although 

the specific mechanisms involved in these pathways are unclear, they require lipid rafts, 

highly ordered lipid microdomains that are rich in sterols and sphingolipids (Brown and 

London, 1998; Kirkham and Parton, 2005; Mayor and Pagano, 2007). Viruses in this 

group include SARS-CoV (Wang et al., 2008b), HPV 16 (Spoden et al., 2008) and IAV 

(Sieczkarski and Whittaker, 2002). 

Another endocytotic pathway exploited by viruses is macropinocytosis, an actin-

dependent process that forms membrane extensions to uptake fluid into large vacuoles 

(Mercer and Helenius, 2009). VACV (Mercer and Helenius, 2008), members of the 

herpesviridae family (Raghu et al., 2009), and filamentous IAV (Rossman et al., 2012), 

all of which may be too large for other endocytotic routes, can be internalized by 

macropinocytosis. However, VACV and herpesviridae are thought mainly to fuse at the 

plasma membrane.  
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It is becoming apparent that many viruses, such as IAV, use multiple 

internalization pathways, governed by complex and poorly understood regulatory 

mechanisms. There are some examples of molecules that inhibit viral internalization 

(described in section 1.7.3). However, there appears to be redundancy in the 

internalization pathways used by viruses. Moreover, internalization is mostly regulated 

by cellular enzymes and is required for physiological functions. It is difficult to 

selectively target viral internalization without affecting physiological internalization 

processes. 

 

1.5 VIRAL FUSION  

Entry of enveloped viruses invariably requires fusion of the viral envelope with the host 

cell membrane. Different classes of viral fusion proteins mediate fusion, but fusion 

ultimately depends on the lipid core of the viral envelope, a structure conserved among 

all enveloped viruses. Fusion is thought to occur through the widely accepted hemifusion 

stalk model (Chernomordik and Kozlov, 2005). According to this model, viral and 

cellular membranes first come into close apposition, leading to formation of a stalk 

intermediate (hemifusion) in which the outer leaflets of the membranes are fused, but the 

inner leaflets are not. Subsequent merging of the inner leaflets forms an early fusion pore, 

which expands to allow full fusion. The process of fusion is driven by proteins, but 

depends on the composition and architecture of lipids at the fusion site. 

1.5.1 Viral fusion proteins  

Viral fusion is facilitated by viral fusion proteins, which are categorized into three classes 

based on differences in structure and oligomeric state. Class I fusion proteins are mainly 
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alpha-helical, whereas class II fusion proteins consist primarily of beta-sheets and class 

III fusion proteins have mixed secondary structures (Harrison, 2008). Regardless of their 

structures, viral fusion proteins are thought to function by overall similar mechanisms. A 

specific trigger, such as a pH change or interaction with a cellular receptor activates the 

fusion protein. The fusion protein then undergoes a conformational change resulting in 

the exposure of a fusion peptide, which inserts into the target membrane. The fusion 

proteins then undergo further conformational change to bring transmembrane domains in 

the viral envelope into close proximity with the viral fusion peptide (Earp et al., 2005). 

Membrane fusion occurs as a result of close membrane apposition and local membrane 

disruption mediated by the fusion protein. The activation energy required for viral 

membrane fusion is derived from binding to the receptor(s) and conformational changes 

of the viral fusion protein (Blumenthal et al., 2003). 

Class I fusion proteins, which are predominantly alpha helical in structure, project 

outwards from the virion envelope as spikes (Figure 1.2A). They form trimers both 

before and after fusion. This group includes the fusion proteins of orthomyxoviruses 

(Skehel and Wiley, 2000), paramyxoviruses (Lamb and Jardetzky, 2007), retroviruses 

(Chan et al., 1997; Weissenhorn et al., 1997), filoviruses (Weissenhorn et al., 1998a; 

Weissenhorn et al., 1998b) and coronaviruses (Xu et al., 2004). Class I fusion proteins 

are comprised of an N-terminal fusion peptide (produced by proteolytic cleavage during 

virion maturation) and a core of three bundled alpha helices in the pre-fusion state. 

During fusion, class I fusion proteins refold into a six-helix bundle (Skehel and Wiley, 

2000). The proposed mechanism for IAV HA (the prototypical class I fusion protein) 

involves the folding of an uncleaved protein to a metastable state (Chen et al., 1998a), 
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which is then activated by proteolytic cleavage (Wiley and Skehel, 1987; Wilson et al., 

1981). Low pH triggers an irreversible and major conformational change in the HA, 

resulting in insertion of the fusion peptide into the target membrane. The fusion protein 

then folds back on itself into a rod-like trimer of hairpins, pulling its C-terminal 

transmembrane domain (anchored in the viral envelope) towards the N-terminal fusion 

peptide (inserted in the cell membrane) (Eckert and Kim, 2001). These structural 

rearrangements position the two membrane-inserted domains next to each other, bringing 

the two membranes into close apposition and thereby facilitating fusion of the viral 

envelope with the cell membrane (Eckert and Kim, 2001). The conformational changes 

required for fusion of class I proteins can be triggered by low pH, as for IAV HA 

(Bullough et al., 1994), or by receptor binding at neutral pH, as for HIV gp41 (Moore et 

al., 1990; Sattentau and Moore, 1991). 

Class II fusion proteins have been identified in flaviviruses (Rey et al., 1995; 

Modis et al., 2004), togaviruses (Lescar et al., 2001; DuBois et al., 2013) and 

bunyaviruses (Dessau and Modis, 2013) (Figure 1.2B). They differ from class I fusion 

proteins in several ways. Class II proteins lie flat on the virion surface, consist 

predominantly of beta sheets, and the fusion peptide is located in internal loops (Kielian 

and Rey, 2006). Proteolytic cleavage is not required for maturation of class II fusion 

proteins. Fusion mediated by class II proteins is always triggered by conformational 

changes induced by low pH, encountered in endosomal compartments. In the pre-fusion 

state, class II fusion proteins are dimers arranged parallel to the virion surface, but 

undergo conformational rearrangements to form post-fusion trimers projecting 
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perpendicularly from the virion envelope (Kielian and Rey, 2006). Unlike class I fusion 

proteins, however, they do not exhibit coiled coils. 

Class III fusion proteins are comprised of mixed alpha helix and beta sheet 

structure (Figure 1.2C). They have been identified in herpesviruses (Heldwein et al., 

2006) and rhabdoviruses (Roche et al., 2006; Roche et al., 2007). Class III fusion 

proteins have helical bundles (as in class I proteins), but the fusion loop is in internal 

beta-stranded domains (as in class II proteins) (Roche et al., 2006; Heldwein et al., 

2006). Uniquely, some class III proteins undergo a reversible conformational change 

(unlike class I and II fusion proteins) (Gaudin, 2000a). Extended exposure to low pH 

inactivates the virions, but the fusion activity is fully recovered when the pH is raised 

again (Roche and Gaudin, 2002).  

HCV E2 was predicted to be a class II fusion protein, like those found in other 

flaviviridae. This prediction was based on the disulfide bond pattern (Krey et al., 2010). 

However, HCV E2 was later found to possess a novel globular structure that lacked 

features common to fusion proteins, such as a hydrophobic fusion motif, a helical core, or 

a flexible multi-domain structure (Kong et al., 2013; Khan et al., 2014). Similarly, the 

related pestivirus bovine viral diarrheal virus (BVDV) E2 protein differs in its fold and 

topology from known viral fusion proteins (Li et al., 2013b; El Omari et al., 2013). As a 

result of these studies, E1 was proposed instead to be the fusogen for HCV and BVDV, 

with E2 functioning as a scaffold or chaperone (Li et al., 2013b; El Omari et al., 2013). 

E1 does not fold correctly without E2 (Patel et al., 2001; Ronecker et al., 2008), and viral 

particles with disrupted E1-E2 interactions are unable to fuse (Patel et al., 2001). The E1 

structure, however, does not resemble any known viral fusion protein, and has been 
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proposed to belong to a novel class of fusion protein (Li and Modis, 2014). Further 

studies are needed to elucidate the structure and function of E1-E2, to determine its roles 

in fusion. 

Despite their structural and biochemical differences, viral fusion proteins induce 

membrane fusion similarly (Figure 1.3). The fusion peptide inserts into the target 

membrane, locally destabilizing the membrane. Conformational changes in the fusion 

protein then lead to a hairpin structure, which pulls the two membranes into close 

proximity to allow for fusion of the apposing membranes. The energy for the 

unfavourable membrane rearrangements during fusion is generated by the conformational 

changes of viral fusion proteins (usually from a metastable to stable structure), and their 

binding to membranes or receptors (Chernomordik and Kozlov, 2005). 

1.5.2 Cellular fusion proteins.  

Many cellular processes also depend on membrane fusion events. These include 

exocytosis (e.g. during neurotransmitter release from synapses), endocytosis (e.g. 

transport of nutrients into the cell or transport of waste products to the lysosome), all 

vesicular transport, mitosis, meiosis and fusion of sperm and egg cells during 

fertilization. Cellular fusion events are actively driven by adenosine triphosphate (ATP)-

dependent processes. Intracellular vesicle fusions are induced by the activities of the 

soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) 

protein superfamily (Sollner et al., 1993; Chen and Scheller, 2001). Vesicle or v-

SNAREs are C-terminally anchored in vesicle membranes, whereas target or t-SNAREs 

are C-terminally anchored in the target membranes (Hay and Scheller, 1997). During 

fusion, v-SNAREs pair with t-SNAREs to form a complex that originates at the N-
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terminal ends of the SNAREs. The SNAREs then zipper together (in a concerted 

oligomerization and folding reaction) into a stable membrane-bridging complex, which 

brings the two membranes into close proximity and drives fusion (Fasshauer, 2003). 

After fusion, NSF disassembles the SNARE complexes in an ATP-dependent manner, 

restoring the SNAREs for subsequent fusion events (Sollner et al., 1993). 

Other proteins are involved in cellular fusions, prior to SNARE complex 

assembly. Tethering proteins with coiled-coil domains, such as early endosome antigen 1 

(EEA1) (Christoforidis et al., 1999) and golgins (Barr and Short, 2003), are involved in 

the initial contacts of two vesicles. Rab GTPases (in their active, membrane-bound 

guanosine triphosphate (GTP)-bound form) recruit such tethers to target membranes, 

promoting attachment between vesicle membranes to allow for SNARE complex 

formation. Collectively, Rab GTPases, tethers and SNAREs regulate the timing and 

specificity of eukaryotic membrane fusion events through energy-dependent reactions 

(i.e., Rab GTP hydrolysis, ATP-dependent assembly and disassembly of SNAREs). Other 

proteins, such as clathrin, serve as scaffolds to bend membranes to facilitate fusion. Such 

proteins alter membrane curvature by binding to lipids, helping to drive fusion 

(Zimmerberg and Kozlov, 2006). 

Calcium is also critical for cellular fusions. Ca2+ is thought to facilitate vesicle 

attachment. Ca2+ ions dehydrate vesicle surfaces, helping to expose the hydrophobic lipid 

tails to allow hydrophobic interactions between the lipids of two vesicles, and reduce the 

repulsion between lipids (Hu et al., 2002). Ca2+ may also destabilize the lipid architecture 

to enhance formation of the hemifusion stalk (Tsai et al., 2013).  
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1.5.3 Lipids and fusion  

Membrane fusion is mediated by fusion proteins, but fusion requires the merging of the 

lipid bilayers, which occurs as a result of close membrane apposition and local membrane 

disruption. Therefore, fusion ultimately depends on the lipids themselves. Appropriate 

lipid architecture is critical for fusion according to the hemifusion stalk model (Teissier 

and Pecheur, 2007). In this model, the two outer leaflets of the apposing membranes fuse 

first, resulting in the formation of the intermediate hemifusion stalk structure 

(Chernomordik and Kozlov, 2005). The inner leaflets subsequently fuse to form a small 

pore, which then enlarges and allows for content mixing. Formation of the stalk requires 

rearrangements of lipids from flat (with the hydrophobic head groups bent neither toward 

nor away from each other) or positive curvature (with the hydrophilic headgroups of the 

outer leaflet bent away from each other) to negative curvature (with the hydrophilic head 

groups bent toward each other) (Figure 1.3). 

Lipid composition affects the energetics of hemifusion (Chernomordik et al., 

1995). Formation of the hemifusion stalk is facilitated by the presence in the outer leaflet 

of lipids with smaller polar headgroups relative to the hydrophobic tail, such as oleic acid 

(Chernomordik, 1996). These lipids promote negative curvature. In contrast, stalk 

formation is hindered by the presence in the outer leaflet of lipids with larger polar 

headgroups, such as lysophosphatidylcholine (Chernomordik, 1996). Such lipids favour 

positive curvature, which increases the activation energy necessary for fusion. When in 

the outer leaflet, such lipids increase the activation energy necessary for fusion and 

inhibit the fusion of a number of enveloped viruses (Vogel et al., 1993; Gunther-Ausborn 

et al., 1995; Stiasny and Heinz, 2004; Gaudin, 2000b). 
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Energy for viral fusion is provided solely by the binding and rearrangements of 

the virion glycoproteins. Cellular fusion, in contrast, is driven by energy-consuming 

processes. Unlike viruses, cells actively remodel the lipid composition of membranes to 

facilitate fusion. ATP-driven lipid translocases, for example, translocate 

phosphatidylethanolamine and phosphatidylserine from the outer leaflet to the inner 

leaflet of membranes, which induces membrane bending and stimulates endocytosis 

(Farge et al., 1999). Lipid acylation of lysophosphatidic acid increases the size of the tail 

region to favour negative membrane curvature (Schmidt et al., 1999), which facilitates 

formation of the hemifusion stalk during fusion. Translocation and remodeling of lipids 

modulates membrane curvature and bending to provide energy for fusion. 

Appropriate membrane fluidity is also required for fusion (Howell et al., 1972; 

Breisblatt and Ohki, 1976). Cellular membrane fluidity depends on protein composition, 

lipid composition, and the degree of unsaturation in fatty acid chains, which is regulated 

by lipid desaturases (Aguilar and de Mendoza, 2006). Desaturases introduce double 

bonds in fatty acid chains, generating kinks that decrease the packing of lipids and 

thereby increase membrane fluidity (Aguilar and de Mendoza, 2006). Cholesterol content 

is critical for membrane fluidity and is regulated by sterol regulatory element-binding 

proteins (SREBPs) (Brown and Goldstein, 1999). Signalling through SREBPs activates 

transcription of genes encoding enzymes involved in cholesterol and fatty acid 

biosynthesis. Cholesterol is also internalized from exogenous sources (such as plasma 

low-density lipoprotein particles) by lipoprotein receptors (Brown and Goldstein, 1986). 

Therefore, cells actively modulate the composition of cellular membranes, which affects 

fluidity and curvature. 
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Factors affecting fusion, such as lipid composition, membrane bending and 

fluidity, have the potential to impact viral fusions without affecting cellular fusions. As 

described, cells actively remodel lipid membranes to facilitate fusion. In contrast, viral 

fusion is driven solely by energy released during binding and rearrangements of virion 

fusion proteins. Therefore, strategies to selectively inhibit viral fusion with minimal 

effects on cellular fusions could be designed. 

 

1.6 ENTRY MECHANISMS OF SELECTED VIRUSES 

Viral entry steps are generally conserved for many unrelated viruses and offer a broad-

spectrum target for antivirals. Representative unrelated viruses (HCV, IAV, VSV and 

HSV-1) were selected as models for my studies (Table 1). The viruses were chosen to 

differ in their secondary receptors, internalization pathways and sites of fusion, class of 

fusion protein, genome composition, and strategies and sites of replication. However, the 

primary binding of all of them is to saccharide moieties in cellular glycans, and the fusion 

of all of them requires conserved changes in the lipid core of the virion envelopes. The 

model viruses and their entry mechanisms are described below. 

1.6.1 Hepatitis C virus (HCV) 

HCV globally infects an estimated 170 million people, with three to four million people 

newly infected each year (Sy and Jamal, 2006; Mohd Hanafiah et al., 2013). HCV 

establishes chronic infections in the majority of infected individuals. Chronically infected 

patients are at higher risk for liver-related complications, such as cirrhosis and 

hepatocellular carcinoma (de Oliveria Andrade et al., 2009). HCV is an enveloped 

cytoplasmic-replicating RNA virus in the hepacivirus genus in the flaviviridae family. 
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HCV has a positive sense single-stranded RNA genome, consisting of a 9.6 kilo-base pair 

single open reading frame. A host-derived membrane containing the E1 and E2 

glycoproteins surrounds the nucleocapsid core. HCV particles are heterogeneous in size 

and density as a result of their association with serum lipoproteins, such as low-density 

lipoprotein (LDL) and very low-density lipoprotein (VLDL). Virions associated with 

VLDL, forming so-called lipoviral particles, are the most infectious. Associations with 

lipoproteins are thought to conceal viral epitopes from the immune system, facilitate 

maturation and release by hijacking host pathways, or allow interactions with lipoprotein 

receptors to facilitate attachment and entry (Felmlee et al., 2013).  

HCV entry into hepatocytes is a complex, multi-step process that requires many 

cellular receptors. The primary attachment of HCV virions is by low-affinity interactions 

with HS-containing GAGs on the cell surface (Barth et al., 2003; Morikawa et al., 2007; 

Jiang et al., 2012). The cellular low-density lipoprotein receptor (LDLR) is also required 

for binding (Monazahian et al., 1999; Agnello et al., 1999; Scarselli et al., 2002; Molina 

et al., 2007) and most likely interacts with the virion-associated apolipoproteins (Owen et 

al., 2009). However, the roles of LDLR in the entry process remain unclear, and HCV 

virions that bind to LDLR do not always initiate productive infection (Albecka et al., 

2012). Nonetheless, the interactions with cellular GAGs and LDLR serve to concentrate 

viral particles on the cell surface to facilitate further entry steps. 

Following primary attachment, HCV virions interact with secondary receptors and 

other cellular factors. The human scavenger receptor class B type I (SR-BI), which is 

highly expressed in the liver, binds to lipoproteins (mostly high-density lipoprotein, 

HDL) to facilitate the uptake of cholesterol (Acton et al., 1996). SR-BI binds to virion-
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associated lipoproteins (Dao Thi et al., 2011) and to HCV E2 protein (Scarselli et al., 

2002), contributing to virion attachment. Furthermore, the lipid transfer activities of SR-

BI were proposed to remove virion-associated lipoproteins, thereby priming the virus 

particle for interactions with other cellular factors (Dao Thi et al., 2011; Zeisel et al., 

2007). HCV E2 HVR1 binds directly to SR-BI (Scarselli et al., 2002; Bankwitz et al., 

2010), which is thought to expose the regions in E2 that bind to the Cluster of 

Differentiation 81 (CD81). 

CD81 is a member of the tetraspanin family, a group of cell-surface proteins that 

mediate signal transduction events (Levy et al., 1998). CD81 was the first cellular 

receptor identified to bind HCV, through interaction with the virion E2 protein (Pileri et 

al., 1998). Later studies with HCVpp and HCVcc confirmed the involvement of CD81 

during entry of infectious HCV particles (Bartosch et al., 2003; Zhang et al., 2004; 

Cormier et al., 2004). Although HCV E2 binds to CD81, time-course studies with CD81-

specific antibodies indicated that CD81 also mediates post-attachment events (Bertaux 

and Dragic, 2006; Farquhar et al., 2012). CD81 engagement by HCV particles was later 

shown to trigger signaling through the epidermal growth factor receptor (EGFR) 

(Lupberger et al., 2011) and Rho and Ras GTPases (Brazzoli et al., 2008; Zona et al., 

2013). These signaling pathways induce actin remodeling, facilitating the lateral 

movement of CD81-bound HCV particles along the cell surface to tight junctions. They 

also promote tetraspanin receptor complex assembly (Zona et al., 2013), allowing for the 

interaction of CD81 with tight junction proteins and HCV internalization via clathrin-

mediated endocytosis (Farquhar et al., 2012). 
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A critical role of CD81 during HCV entry is to deliver the viral particle to the 

tight junctions, which are thought to be the site of HCV internalization. Claudin 1 

(CLDN1), a tight junction protein highly expressed in the liver (Furuse et al., 1998), is 

required for HCV infection (Evans et al., 2007). Occludin (OCLN), another tight junction 

protein (Furuse et al., 1993), is also required for HCV entry (Benedicto et al., 2009). 

OCLN is thought to be involved in a post-binding step (Benedicto et al., 2009; Ploss et 

al., 2009), although its specific functions in HCV entry are not known. CLDN1, on the 

other hand, interacts with CD81 (bound to HCV particles) (Harris et al., 2010), inducing 

clathrin-mediated endocytosis of the CLDN1-CD81-HCV complex (Farquhar et al., 

2012). Endocytosis of HCV virions is slow. In studies with pseudotyped HCV, only 50% 

of particles were internalized 53 minutes after the initiation of entry, which suggests the 

involvement of additional internalization or trafficking mechanisms (Meertens et al., 

2006).  

Clathrin-mediated endocytosis ultimately delivers the HCV-receptor complex to 

Rab5-containing (early) endosomal compartments, where the low pH induces the actual 

fusion between the viral envelope and endosomal membranes (Farquhar et al., 2012). It is 

thought that the interaction of E2 with CD81 primes the HCV glycoproteins for low pH-

triggered fusion (Sharma et al., 2011). Although it has been established that the HCV 

glycoproteins mediate low pH-dependent fusion (Lavillette et al., 2006), there is still 

debate regarding the relative contributions of E1 and E2. HCV E2 was initially predicted 

to be a class II fusion protein (Krey et al., 2010), like other flaviviridae E proteins. 

However, recent x-ray structures for E2 revealed a globular architecture that differs from 

the typical extended three-domain fold of class II fusion proteins (Kong et al., 2013; 
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Khan et al., 2014). Furthermore, E2 did not undergo conformational changes or 

oligomeric rearrangements when exposed to low pH (Khan et al., 2014). Such changes 

would be expected for a fusion protein that mediates low pH-dependent fusion. More 

likely, E1 or the E1E2 heterodimer are responsible for fusion. Supporting this model, the 

interaction between E1 and E2 is critical for HCV entry into cells (Douam et al., 2014). 

Entry of HCV requires other cellular factors, although their specific roles are not 

yet known. The Niemann-Pick C1-like 1 cholesterol adsorption receptor is thought to 

contribute to virion binding or internalization, perhaps through its interactions with 

virion-associated cholesterol (Sainz et al., 2012). Transferrin receptor 1 is required for a 

post-CD81 entry step (Martin and Uprichard, 2013). The cell death-inducing DNA 

fragmentation factor-like effector b was identified as another HCV entry factor. It was 

proposed to be involved in a late step of entry, such as membrane fusion (Wu et al., 

2014). However, the overall contributions of these receptors during entry are unclear.  

Following entry, HCV genomes replicate in the cytoplasm, using membranous 

webs derived from the endoplasmic reticulum (Egger et al., 2002). Viral assembly 

requires cellular lipid droplets as a platform (Boulant et al., 2007; Miyanari et al., 2007). 

Assembled particles bud into the endoplasmic reticulum and traffic through the secretory 

pathway. During this trafficking, E1 and E2 are post-translationally modified by N-linked 

glycosylation (Goffard et al., 2005). Infectious viral particles are then exported from the 

cell in conjunction with lipoprotein secretion (Gastaminza et al., 2008). 

HCV exemplifies an enveloped, HS-binding RNA virus with complex entry 

pathways involving many cellular factors. HCV fusion is induced by low pH in the 

endosome and mediated by a member of the proposed novel class IV fusion proteins.  
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1.6.2 Herpes simplex virus 1 (HSV-1) 

HSV-1 latently infects the majority of the world’s population (Smith and Robinson, 

2002). Rarely, HSV-1 can cause encephalitis (Whitley, 2006) and causes severe 

outcomes in immunocompromised individuals. HSV-1 is an enveloped nuclear-

replicating DNA virus in the herpesviridae family, with a linear double-stranded genome 

of approximately 150 kilo-base pairs (Kieff et al., 1971). The genome is enclosed by the 

nucleocapsid, which is surrounded by a proteinacious tegument layer (Grunewald et al., 

2003). The viral particle is enveloped, with several glycoproteins embedded within the 

envelope. 

Entry of HSV-1 into cells involves five surface glycoproteins: gB, gC, gD, gH 

and gL (Shukla and Spear, 2001). gC and gB are responsible for the primary attachment, 

through an interaction with HS moieties on cell-surface GAGs (WuDunn and Spear, 

1989; Herold et al., 1991; Herold et al., 1994). Secondary binding is mediated by gD, 

which binds to one of several entry receptors: 3O-sulfated HS, herpesvirus entry mediator 

(HVEM) or nectin (O'Donnell et al., 2010; Whitbeck et al., 1997; Di Giovine et al., 

2011). Binding of gD to any one of its receptors triggers a conformational change, 

exposing a C-terminal peptide chain that interacts with gB or the gH/gL complex to 

activate the fusion process (Cocchi et al., 2004).  

HSV-1 fusion itself is less clearly understood. Although gB has now been 

established to be the fusion protein (Heldwein et al., 2006), the roles of gH/gL are less 

clear. The structure of gH/gL has no homology to any known fusion protein (Chowdary 

et al., 2010). However, interactions between gB and gH/gL are required for fusion 

(Atanasiu et al., 2010), suggesting a model in which gH/gL is required to regulate the 
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activity of gB during fusion (Jackson and Longnecker, 2010). gL is required for 

posttranslational processing and surface expression of gH (Hutchinson et al., 1992). 

Otherwise, the functions of gL/gH remain elusive. The entry pathway of HSV is 

dependent on cell type. For example, fusion with neurons or Vero cells occurs at the 

plasma membrane at neutral pH (Wittels and Spear, 1991), whereas fusion with HeLa 

and Chinese hamster ovary cells involves pH-dependent endocytosis (Nicola et al., 

2003). Nonetheless, all known routes of HSV entry require gD, gB and gH/gL. 

HSV-1 is an example of an enveloped, nuclear-replicating, HS-binding DNA 

virus that fuses mostly by pH-independent mechanisms at the plasma membrane. Entry of 

HSV-1 requires four glycoproteins to mediate binding and fusion. Fusion itself is 

mediated by gB, a class III viral fusion protein.  

1.6.3 Vesicular stomatitis virus (VSV) 

VSV is an arbovirus that is transmitted by insects between mammalian hosts, typically 

infecting livestock but occasionally causing a flu-like illness in humans (Reis Jr et al., 

2009). VSV is an enveloped cytoplasmic-replicating RNA virus in the rhabdoviridae 

family, and as such is often used as a model for rabies virus. VSV has a non-segmented 

negative sense single-stranded RNA genome of approximately 11 kilo-base pairs. VSV 

virions have a bullet-shaped morphology and encode an envelope glycoprotein (G), the 

matrix protein (M), the nucleocapsid protein (N), the phosphoprotein (P) and the RNA-

dependent RNA polymerase (L). VSV has a broad tropism in cell culture and infects a 

wide range of cell types. 

The VSV G protein is the only glycoprotein embedded in the lipid envelope of 

VSV virions. VSV G is necessary for the binding, internalization and fusion of viral 
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particles (Harrison, 2008; Sun et al., 2005). Despite the wide tropism of VSV, its 

receptors have not been identified with certainty. The primary attachment of VSV is 

thought to involve low affinity interactions with glycans, such as HS (Conti et al., 1991) 

or SA (Superti et al., 1986). However, subsequent binding steps have not been clearly 

defined. VSV binding was unaffected by proteolytic digestion of cell surface proteins 

(Schloemer and Wagner, 1975). This observation led to a proposed model in which the 

receptor is not a membrane protein, but rather an integral component of the plasma 

membrane, such as phosphatidylserine (PS) (Schlegel et al., 1983; Yamada and Ohnishi, 

1986). However, the model was later refuted based on the argument that most PS 

localizes to the inner leaflet of the plasma membrane, where it would be inaccessible to 

the virions (Coil and Miller, 2004). More recently, LDLR was proposed as the receptor 

for VSV (Finkelshtein et al., 2013), based on several lines of evidence. Soluble LDLR 

inhibits VSV infectivity, and antibodies against LDLR inhibited VSV binding to some 

extent (Finkelshtein et al., 2013). VSV bound to cells inhibits the binding of LDL, the 

physiological LDLR ligand. The endoplasmic reticulum chaperone gp96 was also shown 

to be involved in VSV binding (Bloor et al., 2010), perhaps by assisting with the proper 

folding and glycosylation of LDLR (Finkelshtein et al., 2013). However, multiple 

genome-wide RNAi screens did not identify LDLR among the host genes essential for 

VSV replication (Panda et al., 2011; Lee et al., 2014), and further studies are much 

needed to clarify the roles of the proteins implicated in VSV entry. 

Following binding, VSV undergoes clathrin-mediated endocytosis (Sun et al., 

2005), but not by classical physiological mechanisms. As a result of their much larger 

size compared to cellular cargo, VSV virions are internalized in vesicles that are only 
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partially coated with clathrin in a process that requires actin (Cureton et al., 2009). Once 

internalized into acidic endosomes, VSV G induces fusion by low pH-dependent 

mechanisms (Blumenthal et al., 1987) that involve structural rearrangements of the G 

protein (Carneiro et al., 2001). Fusion and nucleocapsid release into the cytoplasm are 

sequential processes, suggesting a two-step process in which VSV first fuses to internal 

vesicles within early endosomes at pH 6 (Le Blanc et al., 2005; Blumenthal et al., 1987). 

Internal vesicles containing VSV nucleocapsids subsequently “back-fuse” to the 

outermost endosomal membrane, releasing the nucleocapsids into the cytoplasm (Le 

Blanc et al., 2005). 

VSV G is a class III fusion protein of mixed alpha helical and beta sheet structure 

(Roche et al., 2006). It triggers fusion following low pH-induced structural 

rearrangements that lead to the post-fusion hairpin conformation commonly found in 

viral fusion proteins (Roche et al., 2006; Roche et al., 2007). Interestingly, whereas other 

fusion proteins are inactivated following low pH-induced structural changes, the 

conformational changes of VSV G are reversed when exposed to neutral pH (Gaudin, 

2000a). The biological relevance of this reversibility is not clear. 

Following fusion, the nucleocapsid is released into the cytoplasm together with 

the polymerase. The viral RNA remains sequestered in the nucleocapsid for all steps of 

the replication cycle, including the RNA synthesis steps of transcription and replication 

(Luo, 2012). Following RNA synthesis and protein synthesis, the nucleocapsid is 

assembled simultaneously with replication of the viral RNA genome (Patton et al., 1984). 

The newly formed nucleocapsids then bud through the plasma membrane, acquiring M 

and G proteins at the membrane. 
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In summary, VSV is an enveloped HS- or SA-binding RNA virus that fuses by 

pH-dependent mechanisms in early endosomes. Furthermore, binding and fusion are 

mediated by only one class III fusion protein, VSV G. The cellular factors involved in 

VSV entry are not clearly defined.  

1.6.4 Influenza A virus (IAV) 

IAV causes seasonal epidemics and less frequent pandemics as a result of antigenic drift 

and shift (Taubenberger and Kash, 2010). IAV is an enveloped nuclear-replicating RNA 

virus classified in the orthomyxoviridae family. IAV has a segmented, negative sense 

single-stranded genome. Virions are comprised of eight gene segments bound to the RNA 

polymerase and nucleocapsid protein, surrounded by matrix protein (M) lining the inner 

leaflet of a host-derived lipid envelope. The HA, neuraminidase (NA) and M2 ion 

channel are embedded within the envelope. Influenza virions can have spherical or 

filamentous morphology, depending on genetic determinants (Smirnov et al., 1991) and 

host cell type (Roberts and Compans, 1998). The morphology of IAV virions influences 

the entry pathway. 

IAV entry is perhaps the most studied viral entry pathway. Human IAV strains 

bind to α(2,6)-linked SA, which is abundant on epithelial cells in human upper 

respiratory tracts. Attached virions are then internalized by endocytosis, although the 

route of endocytosis may vary. The predominant internalization route is clathrin-

dependent endocytosis involving classical cellular proteins (Zhang and Whittaker, 2014; 

Matlin et al., 1981; Chen and Zhuang, 2008; Roy et al., 2000). However, clathrin-

independent pathways have also been observed (Nunes-Correia et al., 2004; Rust et al., 

2004; Sieczkarski and Whittaker, 2002; de Vries et al., 2011; Rossman et al., 2012). 
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Regardless of the particular internalization pathway, the low pH (5.0) of late endosomes 

triggers fusion (Guinea and Carrasco, 1994a). The low pH induces conformational 

changes in HA, projecting the fusion peptide into the target endosomal membrane, which 

may induce membrane perturbation to facilitate lipid exchange during fusion. Prior to 

fusion, however, the fusion peptide diffuses through the lipid bilayer to become self-

associated, which is a critical event for fusion (Chernomordik et al., 1998). Ultimately, 

the fusion protein folds back on itself, pulling the target membrane and the viral envelope 

into close proximity (Eckert and Kim, 2001). Fusion is widely understood to occur 

according to the hemifusion stalk model. 

In the endosomal compartments, the virion interior is acidified through the 

action of the M2 ion channel (Pinto and Lamb, 2006). Virion acidification dissociates the 

envelope protein M1 from the nucleocapsid (Bui et al., 1996), which allows cellular 

transport machinery to translocate the nucleocapsid and viral RNA segments into the 

nucleus (O'Neill et al., 1995). Uniquely for an RNA virus, transcription and replication of 

the viral genome occurs within the host cell nucleus (Herz et al., 1981). Newly assembled 

virions bud from the plasma membrane, but remain attached to the cell surface until viral 

NA cleaves sialic acids, releasing the viral particles from the plasma membrane (Palese et 

al., 1974). 

In summary, IAV is an enveloped, nuclear-replicating, SA-binding RNA virus 

that fuses by pH-dependent mechanisms within acidified endosomal compartments. 

Binding and fusion of IAV is mediated by HA, a class I viral fusion protein.  

1.6.5 Other viruses used as models 

Other viruses share a number of features with those described for HCV, VSV, HSV-1 and 
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IAV, in terms of their entry pathways. 

Vaccinia virus (VACV), a large enveloped DNA virus classified in the poxviridae 

family, uniquely has two different enveloped forms (Smith et al., 2002). Both forms 

contain the same nucleocapsid core, but differ in the number of envelopes. The mature 

virion (MV) form is wrapped in a single lipid envelope (Smith et al., 2002) and is 

released from cells by lysis. The extracellular virion (EV) form is wrapped in an 

additional envelope containing four viral proteins that are not found in the MV (Smith et 

al., 2002). MV membrane proteins (D8, A27 and H3) bind to cell surface 

glycosaminoglycans (Hsiao et al., 1998; Hsiao et al., 1999; Chung et al., 1998; Lin et al., 

2000). EVs are thought to attach to cells by different mechanisms (Vanderplasschen et 

al., 1998), although the viral proteins and cellular receptors involved are unknown. It is 

thought that the additional envelope of EVs is shed, by nonfusogenic dissolution, prior to 

fusion (Law et al., 2006). Viral fusion occurs by pH independent mechanisms at the 

plasma membrane, or by pH dependent mechanisms after endocytosis (Townsley et al., 

2006). However, the specific fusion mechanisms and the proteins involved are unknown. 

Sindbis virus (SINV) is an enveloped RNA virus classified in the togaviridae 

family. The E2 protein mediates primary attachment of SINV to HS-containing 

glycosaminoglycans on the cell surface (Byrnes and Griffin, 1998), and the higher 

affinity secondary binding partners have been suggested to include the high-affinity 

laminin receptor (Wang et al., 1992). Attached virions are internalized into endosomal 

compartments (DeTulleo and Kirchhausen, 1998), where fusion is induced by exposure 

to low pH (Smit et al., 1999). Endosomal acidification dissociates the E1/E2 heterodimer, 

leading to the trimerization of E1 subunits and exposing the fusion peptide (Kielian et al., 
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2010). E1 is a class II fusion protein. 

Reovirus (RV) is a nonenveloped segmented double-stranded RNA virus 

classified in the orthoreoviridae family. The low-affinity primary attachment of RV is to 

α-linked sialic acid on the cell surface (Gentsch and Pacitti, 1985; Paul et al., 1989; 

Reiter et al., 2011), followed by higher-affinity interactions with the junctional adhesion 

molecule-A (JAM-A) (Barton et al., 2001). These interactions are mediated by RV sigma 

1 protein (Lee et al., 1981). Activation of β1 integrins is subsequently required for the 

internalization of RV virions (Maginnis et al., 2006), through clathrin-mediated 

endocytosis or other endocytotic routes (Schulz et al., 2012). Within endosomal vesicles, 

proteolysis removes the outermost capsid protein, exposing a membrane penetration 

protein µ1 (Sturzenbecker et al., 1987). µ1 undergoes structural rearrangements that 

result in the insertion of a hydrophobic peptide into the membrane, mediating membrane 

disruption (Chandran et al., 2002). Replication of viral RNA then occurs in the 

cytoplasm. 

Adenovirus (AdV) is a nonenveloped double-stranded DNA virus classified in the 

adenoviridae family. Fifty-one serotypes of AdV have been identified and are further 

classified into six groups (A to F) (Zhang and Bergelson, 2005). In addition to other 

properties, viruses within each group display a specific tissue tropism, which may reflect 

their receptor usage. Group B, C and E viruses tend to cause respiratory infections, 

whereas group F viruses cause gastroenteritis and group D viruses cause 

keratoconjunctivitis. All AdV types are comprised of a nucleocapsid from which the fiber 

proteins project. The distal end of the fiber proteins attaches to cellular receptors. AdV 

types 2 and 5 (group C) bind initially to HS-containing proteoglycans (Dechecchi et al., 
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2000; Dechecchi et al., 2001). Many AdV types bind with higher affinity to the 

coxsackievirus and adenovirus receptor (CAR) (Zhang and Bergelson, 2005). Group B 

AdV is thought to bind to Cluster of Differentiation 46 (CD46) (Gaggar et al., 2003), 

whereas other types appear to bind to CD80 and CD86 (Short et al., 2004). Group D 

viruses bind to α(2,3)-linked SA (Arnberg et al., 2000). Cellular integrins are also 

important receptors for many AdV types. Engagement of integrins induces signalling 

pathways (Li et al., 1998a; Li et al., 1998b) that are important for virion internalization 

(Wickham et al., 1993). AdV is internalized by clathrin-mediated endocytosis (Greber et 

al., 1993; Wang et al., 1998) but may also use other pathways, such as macropinocytosis 

(Meier et al., 2002). Endosomal acidification triggers changes in the AdV capsid that lead 

to lysis of the endosomal membrane and entry of the viral capsid into the cytosol 

(Leopold and Crystal, 2007). Cellular integrins are thought to promote AdV-mediated 

membrane permeabilization (Wickham et al., 1994). Replication and transcription of the 

AdV genomes occurs in the host cell nucleus (Pombo et al., 1994). 

1.6.6 Emerging viruses 

Emerging viruses are newly discovered or zoonotic viruses increasing in incidence in 

human populations. Usually, the increased incidence is accompanied by changes in 

pathogenicity (Howard and Fletcher, 2012). Two novel coronaviruses, SARS-CoV and 

Middle Eastern Respiratory Syndrome (MERS)-CoV, have emerged within the last 

decade (Graham et al., 2013;	
  Kupferschmidt, 2014). SARS-CoV and MERS-CoV likely 

emerged from bats and camels, respectively (Ge et al., 2013; Azhar et al., 2014; Alagaili 

et al., 2014). Filoviruses (Ebola virus and Marburg virus) and some orthomyxoviruses 

(avian H5N1 and H7N2 IAV strains) are also considered emerging viruses (Morens and 
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Fauci, 2013). Although many details about their proteins and replication steps are 

unknown, they are understood to enter cells following similar mechanisms as other 

viruses. Filoviruses bind to HS moieties in cellular GAGs (Salvador et al., 2013), and are 

internalized into endosomal compartments (Nanbo et al., 2010) where fusion occurs, 

mediated by a class I fusion protein (Lee et al., 2008). Some coronaviruses bind to HS or 

SA moieties (Vlasak et al., 1988; Vicenzi et al., 2004; Lang et al., 2011), and then are 

internalized (Wang et al., 2008b;	
  Qian et al., 2013). Fusion is mediated by the S protein, 

a class I fusion protein, and can occur within endosomes or at the plasma membrane, 

depending on cleavage of the S protein (Bosch et al., 2003; Lu et al., 2014). Avian IAV 

strains that adapt to spread well in humans bind to α(2,6)-linked SA (Shelton 2011) and 

fuse within endosomal compartments as a result of low pH activation of HA, a class I 

fusion protein. The similarities in entry steps for these emerging viruses highlight the 

potential uses of inhibitors targeting these steps in pandemic or epidemic situations. 

 

1.7 VIRAL ENTRY AS AN ANTIVIRAL TARGET 

Viral entry is an attractive target for therapeutic intervention. Entry inhibitors prevent 

infection, thereby inhibiting virus replication before persistent reservoirs can be 

established through genome integration (for retroviruses such as HIV) or covalently 

closed circular DNA (for HBV). Entry inhibitors block the activation of potentially 

harmful cell-mediated immune responses, such as the cytokine storm induced by IAV, 

which strongly affects the outcome and pathogenesis of IAV infections (Oldstone et al., 

2013). Furthermore, compounds targeting certain steps of viral entry may have broad-
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spectrum activity, as the basic principles of primary attachment and fusion are conserved 

for many unrelated human viruses. 

 

1.7.1 Inhibitors of primary attachment 

The conserved mechanisms involved in binding to HS allow for the binding of many 

viruses to be disrupted with appropriately shaped and charged molecules. Soluble 

heparin, HS mimetics, and other similarly charged (and shaped) polyanions inhibit the 

infectivity of this group of viruses. Sulfated polysaccharide derivatives, and sulfated 

polymers in general, mimic HS and compete for the binding of virion glycoproteins. 

Dextran sulfate, pentosan polysulfate and other sulfated polysaccharides all inhibit the 

infectivity of HSV-1/-2, CMV, VSV, SINV, HIV and some flaviviruses (Baba et al., 

1988; Lee et al., 2006a), which all bind to HS. Similarly, many polysulfonates and 

sulfonic acid polymers inhibit the infectivity of the HS-binding HIV (Cardin and 

Weintraub, 1989; Clanton et al., 1992; Mohan et al., 1992) and the polysulfonate suramin 

inhibits adsorption of the HS-binding HSV-1 (Aguilar et al., 1999). Sulfated homologues 

of heparin also inhibit HCV entry (Basu et al., 2007). Collectively, these compounds 

block the binding of positively charged amino acids residues in the viral gp120 to the cell 

surface heparan sulfate (Moulard et al., 2000). Polycarboxylates such as 

aurintricarboxylic acid (Schols et al., 1989), as well as polyhydroxycarboxylates derived 

from phenolic compounds (Schols et al., 1991; Meerbach et al., 2001), also have 

inhibitory activity against HS-binding viruses, including HIV, HSV-1, CMV and VACV 

(Neyts et al., 1992). It is likely that the polycarboxylates, which compete with heparin for 

binding (Neyts et al., 1992), also disrupt the interaction between basic regions of virion 
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glycoproteins and cellular heparan sulfate. The acidic carboxylic groups of the phenolic 

compounds are necessary for antiviral activity (Helbig et al., 1997). Other natural 

products act through similar mechanisms. Sulfated polysaccharides from various species 

of algae (Witvrouw and De Clercq, 1997; Harden et al., 2009), and natural products 

fucoidan and carrageenan (Baba et al., 1988) inhibit the infectivity of various HS-binding 

enveloped viruses. Recently, two tannins (chebulagic acid and punicalagin) isolated from 

the deciduous Terminalia chebula tree were shown to block attachment of a diverse 

group of viruses that utilize GAGs for binding (Lin et al., 2013). In the case of HSV-1, 

chebulagic acid and punicalagin prevented HSV-1 glycoproteins from interacting with 

cell-surface GAGs (Lin et al., 2011). Although all of these compounds are notable for 

their broad-spectrum activity, they do not inhibit the binding of another important group 

of human viruses, those that bind to SA. 

SA derivatives and sialyl mimetics are active against SA-binding viruses. They 

have been tested mainly against IAV. As for virion attachment to cells, binding of HA to 

soluble sialyl mimetics requires multiple HA-sialic acid contacts (Matrosovich and 

Klenk, 2003) and depends on the spatial orientation, size and flexibility of the inhibitor. 

Polyvalent inhibitors are far more potent than monovalent ones. For example, equine α-

macroglobulin (with multiple SA residues in appropriate orientations) has a million-fold 

higher potency against IAV than free N-linked oligosaccharides (Pritchett and Paulson, 

1989). Optimized synthetic sialylglycopolymers on a poly[N-(acryoyloxysuccinimide], 

polyacrylic acid or polyacrylamide backbone, with variable arrangement and number of 

sialyl residues, were even more potent against IAV binding, with EC50 in the nanomolar 

range (Mammen et al., 1995; Choi et al., 1997; Lees et al., 1994). Similarly, sialic acid-
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conjugated dendritic polymers and glycopolymers are more effective than monomeric SA 

at inhibiting IAV binding (Reuter et al., 1999; Hidari et al., 2008). Monovalent sialyl 

mimetics cannot effectively compete with multivalent interactions with cellular glycans 

(Matrosovich, 1989). Sialyl mimetics ideally should selectively interact with HA and not 

with the viral neuraminidase (NA) (Sparks et al., 1993;	
  Itoh et al., 1995). Otherwise, the 

effectiveness of the HA inhibitor will be reduced as a result of cleavage by NA. 

However, it may be possible to inhibit both HA and NA with a single molecule (Guo et 

al., 2002). 

Glycopeptides that interfere with IAV binding have also been described. A star-

like trivalent glycopeptide mimetic, comprised of three sialyl moieties linked by peptide 

regions, was designed to bind the receptor sites in each monomer of the HA homotrimer 

(Waldmann et al., 2014). The glycopeptide had high binding affinity for HA, although its 

anti-IAV activities were not tested. Pharmacological delivery of such a large molecule 

would be difficult. 

Another means of inhibiting primary attachment is to remove the glycan receptors 

from the cell surface. DAS181, a sialidase from Actinomyces viscosus is in phase II 

clinical development (Moss et al., 2012). The sialidase is fused to an epidermal growth 

factor-like domain that targets the sialidase to respiratory epithelial cells (Malakhov et 

al., 2006). DAS181 prevents attachment of respiratory viruses that utilize SA as a 

receptor (Nicholls et al., 2013). 

Overall, the search for primary attachment inhibitors has proved difficult, and 

despite more than 30 years of research, no small-molecule inhibitor with therapeutic 

application has yet been found. HS mimetics suffer from drawbacks that limit their use in 
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vivo. Polysulfates, for example, are poorly absorbed after oral administration (Lorentsen 

et al., 1989), and cause thrombocytopenia when administered intravenously (Flexner et 

al., 1991). Most sulfated polymers have strong anticoagulant activity (Rosenberg, 1978), 

arguing against their clinical use for antiviral therapy. It was possible, however, to 

dissociate the antiviral effects of sulfated polysaccharides from their antithrombin activity 

(Baba et al., 1990; Barzu et al., 1993). The number, distribution and spatial configuration 

of the sulphate groups were proposed to differentially influence the antiviral and 

antithrombin activities. Therefore, appropriate chemical modifications or novel 

compound scaffolds could help to overcome the limitations of HS mimetic antivirals. 

 Many natural products of different scaffolds are biologically active. Green tea 

polyphenols such as epigallocatechin gallate (EGCG) have a number of interesting 

biological activities, including antiviral effects against many unrelated enveloped and 

nonenveloped viruses (Steinmann et al., 2013). EGCG interferes with the primary 

attachment of unrelated viruses that bind to HS or to SA. The specific activities and 

mechanisms of EGCG are described in Chapter 3 of this thesis. 

1.7.2 Inhibitors of higher affinity binding 

Another group of entry inhibitors target the higher affinity secondary binding, providing 

more specific but also more limited spectrum activity. Such inhibitors have been best 

described for HIV therapy. One such inhibitor, maraviroc, was approved in 2007 for 

clinical use against HIV-1 (Lieberman-Blum et al., 2008). Maraviroc is an antagonist of 

the HIV-1 co-receptor CCR5 (Dragic et al., 1996), a G protein-coupled receptor. CCR5 

was established as an attractive target based on a population of individuals with a natural 

genetic absence of surface-expressed CCR5. These individuals are resistant to HIV-1 
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(Liu et al., 1996). Epidemiological studies highlighted the importance of CCR5 in HIV-1 

infection, and also suggested that antagonists of CCR5 would have minimal off-target 

effects. Maraviroc was then identified by a high-throughput screen. It demonstrated high 

selectivity as a CCR5 antagonist with minimal cytotoxicity (Dorr et al., 2005). Maraviroc 

acts through allosteric mechanisms, altering the conformation of CCR5 extracellular 

loops to prevent the binding of HIV-1 gp120 (Tsamis et al., 2003). Without binding of 

gp120 to CCR5, subsequent entry steps are blocked (Dorr et al., 2005). However, 

maraviroc is not active against T-cell-tropic HIV strains, which use CXC-receptor 4 as a 

co-receptor (Bleul et al., 1996). Other HIV entry inhibitors in clinical development have 

broader activity against HIV, by blocking interactions between HIV gp120 and its main 

receptor, CD4. BMS-378806, an azaindole derivative, interacts directly with gp120 to 

prevent its binding to CD4 (Lin et al., 2003;	
  Guo et al., 2003). BMS-626529 similarly 

blocks the interactions between gp120 and the CD4 receptor (Nowicka-Sans et al., 2012). 

Other pre-clinical strategies to inhibit viral binding have been identified. Proteins 

that bind to viral glycoproteins also interfere with virion binding. Lectins, saccharide-

binding proteins, bind to glycans on viral glycoproteins to disrupt entry functions, 

including binding to secondary receptors. The algal griffithsin binds to HIV-1 gp120 to 

inhibit its interactions with CD4 (Mori et al., 2005), to glycans on HCV envelope 

proteins to prevent binding to CD81 (Meuleman et al., 2011), and to the SARS-CoV 

glycoprotein (O'Keefe et al., 2010). Cyanovirin-N, a lectin isolated from cyanobacterial 

species, binds to contain N-linked high mannose oligosaccharides (Bolmstedt et al., 

2001) on HIV-1 gp120 (Boyd et al., 1997), HCV E2 (Helle et al., 2006), Ebola virus 

glycoprotein (Barrientos et al., 2003) and IAV HA (O'Keefe et al., 2003). Cyanovirin-N 
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blocks recognition of the cellular receptors, preventing binding and subsequent entry 

steps. 

1.7.3 Inhibitors of internalization 

Inhibitors of endocytosis often have broad-spectrum activity, as a diverse group of 

viruses enter cells by endocytosis. Acidification of endosomes, which is driven by the 

vacuolar H(+)-ATPase, is necessary for entry of many viruses. Inhibitors of the vacuolar 

H(+)-ATPase, such as bafilomycin A (Perez and Carrasco, 1994; Ochiai et al., 1995), 

concanamycin A (Guinea and Carrasco, 1994b) have broad antiviral activities. Dynasore, 

a dynamin GTPase inhibitor, prevents scission of endocytotic vesicles with concomitant 

antiviral activity (Abban et al., 2008; de la Vega et al., 2011; Edinger et al., 2014). 

Although these inhibitors are often used in research, they are cytotoxic and not suitable 

for clinical use. Milder perturbations of endocytotic pathways may be able to disrupt 

virion entry with minimal effects on cellular functions. 

Silymarin is an extract from milk thistle with antiviral properties, mostly 

described in the context of HCV. Silymarin is a mixture of seven flavanolignans (silibinin 

A, silibinin B, isosilybin A, isosilybin B, isosilychristin, silychristin and silydianin) and 

one flavonoid (taxifolin) (Kroll et al., 2007) (Figure 1.4A). The silymarin mixture has 

many effects on the HCV replication cycle (Wagoner et al., 2010), and silibinin itself was 

recently described as an inhibitor of HCV clathrin-mediated endocytosis (Blaising et al., 

2013a). Silibinin also showed some activity against IAV, VSV and RV, which depend at 

least partially on clathrin-mediated endocytosis for infection (Blaising et al., 2013a). The 

specific mechanisms were not identified, but silibinin appeared to induce the 

accumulation of clathrin-coated structures in the cytosol. It was proposed that silibinin 
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decreases the rate of clathrin-coated pit formation at the plasma membrane. HCV virions 

may perhaps be directed to a non-productive path of infection as a result. 

Arbidol (Figure 1.4B) is a synthetic indole-based antiviral that has been approved 

in Russia and China against IAV, although its mechanism of action remains unclear. 

Arbidol has broad activity against several unrelated viruses (Blaising et al., 2014), mostly 

through direct effects on viral entry. Arbidol interacts with both lipids (through 

intercalation in a layer above the glycerol backbone of phospholipids) and proteins 

(through aromatic stacking interactions) (Teissier et al., 2011b). Recently, arbidol was 

shown to interfere with several steps in clathrin-mediated endyctosis. Arbidol inhibited 

dynamin-induced membrane scission, therefore preventing the release of clathrin-coated 

vesicles from the inner surface of the plasma membrane (Blaising et al., 2013b). Virions 

trapped in these vesicles were not properly trafficked to the Rab5-containing endosomal 

compartments where fusion occurs (Blaising et al., 2013b). However, inhibition of 

endosomal trafficking does not account for all the activities of arbidol (Teissier et al., 

2011b; Boriskin et al., 2008), and additional mechanisms are likely involved. 

1.7.4 Inhibitors of fusion 

Peptides that mimic domains of fusion proteins inhibit fusion by preventing formation of 

helical bundles. They were first described in the context of paramyxoviridae fusion 

(Richardson et al., 1980). One such peptide, enfuvirtide (Fuzeon, T-20), was the first 

approved entry inhibitor for use against HIV. Enfuvirtide is a 36-residue biomimetic 

peptide based on the C-terminal domain (heptad repeat (HR)-2) of the HIV-1 fusion 

protein, gp41 (Wild et al., 1994). Enfuvirtide binds to the HR-1 region of gp41, 

preventing it from interacting with HR-2 and therefore inhibiting formation of the 
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fusogenic six-helix bundle (Greenberg and Cammack, 2004). Similar peptide-based 

fusion inhibitors against other viruses are in pre-clinical development. Inhibitory peptides 

derived from other class I fusion proteins were identified for paramyxoviruses (Rapaport 

et al., 1995; Lambert et al., 1996) and coronaviruses (Sainz et al., 2006; Lu et al., 2014). 

Peptides derived from flavivirus envelope (E) proteins inhibit infectivity of DENV, WNV 

and HCV (Hrobowski et al., 2005; Liu et al., 2010). The E-derived peptide blocked the 

conformational changes required for fusion of DENV (Schmidt et al., 2010). Peptides 

based on HSV-1 gB sequences were also inhibitory to HSV-1 (Akkarawongsa et al., 

2009). Therefore, peptide-based inhibitors of fusion are effective for all classes of viral 

fusion proteins. 

Small molecule inhibitors of fusion, with more conventional drug-like properties, 

have also been tested in pre-clinical studies. A high-throughput screen identified small 

molecules that bind to the HIV-1 gp41 inner core and inhibit fusion by preventing gp41 

structural rearrangements (Frey et al., 2006). Small molecule inhibitors of RSV, such as 

VP-14637, were also shown to inhibit fusion by disrupting the activity of the fusion 

protein (Douglas et al., 2003). Small molecules can also inhibit fusion triggered by low 

pH. Compound 1662G07 and analogs bind to the prefusion DENV E protein dimer. They 

then inhibit endosome-induced fusion by preventing fusogenic rearrangements of the E 

protein (Schmidt et al., 2012). Several small molecules inhibit IAV HA-mediated fusion 

(Luo et al., 1997; Plotch et al., 1999; Vanderlinden et al., 2010; Basu et al., 2014), but 

act only on particular subtypes of IAV. These inhibitors bind directly to HA and block 

conformational changes required for fusion, for example by stabilizing the neutral pH 

structure of HA (Russell et al., 2008). 
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 The fusion inhibitors described so far are designed to bind directly and 

specifically to viral fusion proteins, resulting in a narrow spectrum of activity. This 

approach requires detailed knowledge of each fusion protein and the molecular 

mechanisms underlying the fusion process. For newly emerging viruses, the molecular 

details are not available. Furthermore, inhibition of virally encoded proteins readily 

selects for resistance (discussed further in section 1.7.6). Novel strategies, such as 

targeting non-virally encoded factors, may help to overcome these limitations. 

One such strategy is to target lipids, which play a crucial role in the fusion 

process. Unlike viral proteins, lipids are not encoded by viral genomes and the structure 

of the lipid core of the virion envelope is conserved among enveloped viruses (although it 

differs in the specific lipid composition). Phospholipids with larger polar headgroups 

relative to their hydrophobic tails disfavour the curvature changes in membranes required 

for fusion (Chernomordik, 1996) and inhibit the fusion of several enveloped viruses 

(Vogel et al., 1993; Gunther-Ausborn et al., 1995; Stiasny and Heinz, 2004; Gaudin, 

2000b). Although phospholipids are not pharmacologically useful, other molecules of 

appropriate shape and polarity could be designed to inhibit fusion by similar mechanisms. 

The rigid amphipathic fusion inhibitors (RAFIs) and other compounds that may act 

through these mechanisms are described in Chapter 4 of this thesis. 

Other compounds apparently inhibit fusion through interactions with lipid 

membranes. Silymarin and arbidol, described in section 1.7.3 as inhibitors of clathrin-

mediated endocytosis, also inhibit fusion. Silymarin did not affect the binding of HCV 

cell culture-derived virions, but did inhibit the fusion of pseudotyped HCV (HCVpp), and 

other pseudotyped enveloped viruses, with liposomes (Wagoner et al., 2010; Blaising et 



	
   44	
  

al., 2013a). The hydrophobic flavanolignan components of silymarin may incorporate 

into the lipid membranes to affect fusion. A possible explanation for its effects on both 

fusion and endosomal trafficking is that silibinin inhibits fusion between vesicles 

(transporting HCV virions) and endosomes (Blaising et al., 2013a). Arbidol similarly 

inhibited the fusion of HCVpp of different genotypes (Pecheur et al., 2007; Teissier et 

al., 2011b). Arbidol was shown to interact with lipid membranes (binding to the polar 

head-groups of phospholipids) and also with tryptophan residues (Teissier et al., 2011b). 

Arbidol was proposed to increase the affinity of viral glycoproteins for the membrane, 

inhibiting the conformational rearrangements required for fusion. 

Fusion also depends on appropriate membrane fluidity (Harada et al., 2005). 

Compounds that modulate membrane fluidity therefore affect fusion. Glycyrrhizin 

(Figure 1.4C), a natural product from licorice roots, inhibited HIV-1 fusion by 

decreasing the membrane fluidity, similar to cholesterol (Harada, 2005). Glycyrrhizin has 

long been known as a broad antiviral, with activity against VACV, HSV-1, VSV (Pompei 

et al., 1979), VZV (Baba and Shigeta, 1987), MV (Hosoya et al., 1989) and SARS 

(Cinatl et al., 2003), in addition to HIV-1 (Harada, 2005). It may well be that glycyrrhizin 

inhibits the infectivity of these enveloped viruses by decreasing the fluidity of the virion 

envelopes. Interestingly, increasing membrane fluidity also inhibits infectivity. 

Phenothiazines that inhibit HCV entry were recently shown to increase the fluidity of the 

cholesterol-rich domains that HCV requires for entry (Chamoun-Emanuelli et al., 2013). 

Phenothiazines or similar compounds may be active against other viruses that require 

cholesterol-rich membrane domains for entry. Another modulator of membrane fluidity, 

curcumin, is described in Chapter 5 of this thesis. 
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LJ001 is a membrane-targeting compound active against all enveloped viruses 

tested, although its mechanisms remained elusive (Wolf et al., 2010). LJ001 was 

proposed to act as a photosensitizer and induce modifications to the virion envelopes 

resulting from light-dependent lipid oxidation (Vigant et al., 2013). Such oxidation, it 

was suggested, would affect the biophysical properties of viral envelopes (such as 

curvature and fluidity) to impair fusion. Cells, which use active mechanisms to repair 

membrane damage, are less susceptible (Vigant et al., 2013). LJ001 and its derivatives 

will be discussed further in Chapter 4 of this thesis. 

An inhibitor of fusion, docosanol (Abreva), was approved for the treatment of 

herpes simplex infections (Katz et al., 1991). Docosanol also inhibits the infectivity of 

other enveloped viruses (Katz et al., 1991). Docosanol inhibits fusion of the HSV-1 

envelope with the cellular membrane (Pope et al., 1998), although the mechanisms are 

not clear. Docosanol did not act directly on virions (Pope et al., 1998). Instead, the 

incorporation of docosanol into cellular membranes was proposed to alter the biophysical 

properties of the membrane to inhibit fusion. 

1.7.5 Virucidal agents 

Disrupting the viral envelope altogether is another method to block the entry of 

enveloped viruses. One inhibitor of HCV and HIV infectivity, PD404,182, lyses virion 

envelopes through unclear mechanisms that may involve the non-lipidic components of 

virion envelopes (Chamoun et al., 2012). C5A, an amphipathic peptide derived from 

HCV NS5A, destabilizes viral membranes to inhibit entry of several enveloped viruses, 

including HCV and HIV (Cheng et al., 2008; Bobardt et al., 2008). C5A appears to 

selectively target viral membranes, in contrast to earlier membrane-disrupting agents that 



	
   46	
  

were tested. Nonoxynol-9 was tested in the context of microbicide development to 

prevent HIV infection (Malkovsky et al., 1988). Although it showed promising in vitro 

activity, nonoxynol-9 treatment actually increased HIV seroincidence in clinical trials, 

perhaps through detrimental effects on cellular membranes such as the vaginal epithelium 

(Van Damme et al., 2002). 

1.7.6 Other approved antivirals 

Most current antivirals approved for clinical use target enzymes involved in viral 

replication, such as polymerases and proteases. These antivirals are limited to date to a 

handful of viruses: HIV, HCV, IAV, HBV and herpesviruses. All antivirals currently 

approved for clinical use, including the entry inhibitors previously discussed, are listed in 

Tables 2 and 3. 

1.7.6.1 Antivirals against HIV. Anti-HIV drugs constitute the largest group of approved 

antivirals (Table 2, Figure 1.5). Many of these target the viral reverse transcriptase (RT) 

(Figure 1.5A), although by different mechanisms. The nucleoside reverse transcriptase 

inhibitors (NRTIs) include zidovudine, didanosine, zalcitabine, stavudine, abacivir, 

lamivudine and emtricitabine (De Clercq, 2004). As analogs of natural deoxynucleotides, 

NRTIs compete for incorporation into viral DNA. NRTIs lack a 3′-hydroxyl group and 

therefore cannot form the necessary phosphodiester bond to add additional nucleotides to 

extend the DNA chain. Such molecules are chain terminators. Tenofovir disoproxil, a 

nucleotide reverse transcriptase inhibitor (NtRTI), acts by similar chain termination 

mechanisms (Suo and Johnson, 1998). Non-nucleoside reverse transcriptase inhibitors 

(NNRTIs), including nevirapine, delavirdine, efavirenz, entravirine and rilpivirine, act 

through allosteric mechanisms, binding to a site distinct from the RT active site (de 
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Bethune, 2010). The binding induces conformational changes that affect the catalytic 

activity of the RT (Sluis-Cremer and Tachedjian, 2008). 

Several HIV protease inhibitors have also been approved (Figure 1.5B). The HIV 

protease cleaves HIV polyproteins to generate mature HIV progeny virions (Kohl et al., 

1988). Protease inhibitors include saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, 

lopinavir, atazanavir, fosamprenavir, darunavir and tipranavir (De Clercq, 2010). With 

the exception of tipranavir, these are competitive peptidomimetics that mimic the 

transition state of the natural protease substrate and bind to the active site (De Clercq, 

2004). They have a hydroxyethylene core that cannot be cleaved by the protease 

(Wensing et al., 2010). Tipranavir is the only non-peptidomimetic inhibitor of the HIV 

protease (Turner et al., 1998). 

Other HIV inhibitors target different replication steps. The entry inhibitors 

maraviroc and enfuvirtide (Figure 1.5C) inhibit binding and fusion, respectively. Their 

activities are described in sections 1.7.2 and 1.7.4 of this thesis. HIV integrase, which 

catalyzes the integration of the viral DNA into the host genome is the target of another 

group of antivirals (Figure 1.5D). Raltegravir, elvitegravir and dolutegravir (De Clercq, 

2010; Wills and Vega, 2012; Temesgen et al., 2014) bind to the active site of the 

integrase to inhibit the strand transfer reaction required for integration of proviral DNA 

(McColl and Chen, 2010).  

Any of these antivirals used alone quickly selects for resistant variants, due to the 

high mutation rate during HIV replication and the existence of HIV quasispecies 

(discussed further in section 1.7.6). Therefore, combination therapy, consisting of three 

or four different antivirals, is essential for the management of HIV infections (Shafer and 
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Vuitton, 1999). When a mutation conferring resistance to one drug arises, the other drugs 

suppress replication of that mutant. Several such combinations are approved for use. 

1.7.6.2 Antivirals against HCV. For many years, ribavirin and pegylated interferon 

(Table 2, Figure 1.6A) were the only options for treatment of HCV. Treatment was 

lengthy, had many negative side effects, mostly associated with interferon, and was 

effective in only ~50% of patients infected with genotype 1 (the most common in North 

America) (Ghany et al., 2009). The first direct-acting antivirals (DAA) for HCV were 

approved, for treatment of genotype 1, in 2011 (Table 2, Figure 1.6B). The first drugs 

were two NS3-4A protease inhibitors, telaprevir and boceprevir. Both are peptidomimetic 

compounds that bind in the protease catalytic site. They must be used in combination 

with ribavirin and pegylated interferon to avoid selection of drug-resistant variants (Liang 

and Ghany, 2013). Simeprevir, another NS3-4A protease inhibitor, was approved in 2013 

and is active against genotypes 1, 2 and 4 (Rosenquist et al., 2014). However, it also 

presents a low barrier to selection of resistance. 

The first member of a new class of anti-HCV drugs was approved in 2014. 

Sofosbuvir is a nucleotide analog that inhibits HCV NS5B (RNA-dependent RNA 

polymerase) by chain termination (Sofia et al., 2010). Sofosbuvir is active against all 

HCV genotypes and has a high barrier to resistance (Pawlotsky, 2014). Resistant variants 

are not fit enough to replicate at high levels. Sofosbuvir is effective in combination with 

ribavirin without interferon (Gane et al., 2013), meeting the goal of interferon-free 

therapy. Many other DAA are in late stages of clinical development, including other 

NS5B polymerase inhibitors (Chow et al., 2010; Haudecoeur et al., 2013), second-

generation protease inhibitors (Summa et al., 2012), NS5A inhibitors (Pawlotsky, 2013) 
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and host-targeting antivirals, such as cyclophilin inhibitors (Coelmont et al., 2009) and a 

miRNA-122 antagonist (Janssen et al., 2013). 

As for HIV, HCV monotherapy readily selects for resistant variants. Combination 

therapy will be important for treating HCV infections (Pawlotsky, 2014). 

1.7.6.3 Antivirals against IAV. The antivirals targeting IAV can be divided into two 

groups, those that target the M2 ion channel and those that target the NA (Table 2, 

Figure 1.7). The first group is comprised of two adamantanes: amantadine and 

rimantadine (Davies et al., 1964). These small molecules block the M2 ion channel, 

preventing the passage of H+ ions and subsequent acidification of the virion core that is 

essential for the uncoating process (Pinto et al., 1992). M2 inhibitors target only IAV, not 

other influenza types. However, there is currently widespread resistance among IAV 

strains (Ison, 2011), and the M2 inhibitors are not recommended for clinical use. 

The neuraminidase (NA) inhibitors are N-acetylneuramic acid (SA) analogues 

that inhibit the viral NA, thereby preventing the release of progeny virions from the cell 

surface (Meindl et al., 1974; von Itzstein et al., 1993). Zanamivir and oseltamivir bind to 

the active site of the NA in an energetically favourable interaction, thereby inhibiting NA 

activity. Resistance to the current NA inhibitors is readily selected for (Ison, 2011). Other 

NA inhibitors, peramivir and laninamivir, are approved for use in Japan but are still 

undergoing Phase III trials in the USA (Shetty and Peek, 2012; Ikematsu and Kawai, 

2011). 

1.7.6.4 Antivirals against HBV. Some HIV drugs are also active against HBV, which 

also requires a reverse transcription step during replication (Summers and Mason, 1982) 

(Table 3, Figure 1.8). Lamivudine, a cytosine nucleoside analog that was the first 
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approved anti-HBV drug, inhibits HBV replication (Suzuki et al., 1988) by acting as a 

chain terminator for the HBV RT (Severini et al., 1995). Adefovir dipivoxil, an acyclic 

phosphonate analog of adenosine, also targets the HBV RT and acts as a chain terminator 

(Marcellin et al., 2003). Entecavir, a guanosine nucleoside analog, inhibits reverse 

transcription, DNA replication and transcription (Seifer et al., 1998). Finally, telbivudine, 

a thymidine nucleoside analog, inhibits the HBV DNA polymerase through chain 

termination mechanisms (Ruiz-Sancho et al., 2007). 

As for HCV, interferon and pegylated interferon (Figure 1.6A) are approved for 

the treatment of HBV. They act by inducing an antiviral state (Asselah et al., 2007), but 

are associated with adverse effects. 

1.7.6.5 Antivirals against herpesviruses. The antivirals targeting herpesviruses are the 

second largest group of antivirals (Table 3, Figure 1.9). Most are chain terminators that 

target the viral DNA polymerase after activation by intracellular phosphorylations, the 

first of which is catalyzed by virally encoded thymidine kinase (TK). The acyclic 

nucleoside analogs include acyclovir and its prodrug valaciclover, penciclovir and its 

prodrug famciclovir, and finally ganciclover and its prodrug vanganciclovir (De Clercq, 

2004). Cidofovir does not depend on viral TK for activation. Following phosphorylation 

by intracellular kinases, cidofovir is incorporated into viral DNA, where it acts as a chain 

terminator (De Clercq and Holy, 1991). 

Other anti-herpesvirus drugs target viral DNA synthesis by other mechanisms. 

Brivudin is phosphorylated by TK and cellular kinases and then acts as a competitive 

inhibitor of the viral DNA polymerase. It is also incorporated into viral DNA (Allaudeen 

et al., 1981). Idoxuridine, a thymidine analog, was the first commercial antiviral drug 
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(Prusoff, 1959). Idoxuridine is phosphorylated and then incorporated into replicating viral 

DNA, which leads to abnormal transcription and translation (Kaplan and Ben-Porat, 

1966), thereby inhibiting the production of infectious progeny virions. Trifluridine, 

another thymidine analog, is phosphorylated intracellularly and incorporated into viral 

DNA, like idoxuridine (Prusoff et al., 1984). Trifluridine also inhibits thymidylate 

synthetase (Prusoff et al., 1984). Foscarnet is a pyrophosphate analog that interferes with 

exchange of pyrophosphate from deoxynucleoside triphosphate during viral DNA 

synthesis (Oberg, 1982; Crumpacker, 1992). 

 Fomivirsen (Figure 1.9), an antisense oligodeoxynucleotide, is used in the 

treatment of CMV. It binds to complementary sequences on the viral immediate early 

(IE) 2 mRNA, preventing expression of IE2 (Azad et al., 1993). Fomivirsen, like other 

oligonucleotides at higher concentrations, has additional sequence-independent inhibitory 

effects on the attachment of virions to cells (Azad et al., 1993). Oligonucleotides are 

known to induce interferon expression, which may also contribute to the antiviral effects 

of fomivirsen.  

Docosanol (Abreva) (Figure 1.9), described in section 1.7.4, inhibits entry of 

HSV-1 by interfering with viral fusion (Pope et al., 1998). 

1.7.7 Limitations of current antiviral therapies 

Most current antivirals specifically target viral proteins or enzymes. This approach 

requires detailed molecular knowledge of the structure and function of the targeted viral 

protein, which takes time and much research. In the case of emerging viruses, it may not 

be possible to acquire such knowledge. Some viruses encode few “druggable” proteins, 

so there are a limited number of targets. Most RNA viruses have small genomes, as do 
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several DNA viruses, such as papillomaviruses. Most clinical antivirals act on 

polymerases or proteases (De Clercq, 2004; De Clercq, 2010). Although they are specific 

for virally infected cells, many are specific against only one virus, or even one strain or 

genotype. 

Host-targeting antivirals, which target a host cell protein instead of a viral 

enzymatic process, overcome some of these limitations. Viruses with few proteins require 

many cellular factors to replicate, and many unrelated viruses may interact with 

conserved cellular proteins. As cellular targets are not encoded by highly mutable viral 

genomes, there is a higher barrier to selection for resistance. However, targeting host 

factors still requires knowledge of virus-host interactions for each particular virus. 

A major limitation of antiviral therapy is the prompt selection for resistance. Viral 

polymerases (particularly RNA polymerases) lack proofreading activity and have high 

error rates, resulting in the distribution of quasispecies within a virus population. 

Antiviral therapy selects for drug resistant variants pre-existing within the quasispecies 

population (Lauring and Andino, 2010). Alternatively, mutations could arise during 

exposure to the drug during therapy (Kimberlin and Whitley, 1996). All approved 

antiviral agents have been demonstrated to select for resistance. Often a single non-lethal 

nucleotide mutation results in an amino acid substitution that confers resistance 

(Kimberlin and Whitley, 1996), as was observed for the first NNRTIs (Tambuyzer et al., 

2009). A mutation of Y181C in the HIV RT inhibitor binding site reduces the binding 

affinity of NNRTIs, which depends in part on hydrophobic stacking with the tyrosine 

(Tambuyzer et al., 2009). Likewise, the M184V/I mutation confers resistance to the 

NRTI lamivudine by altering the active site architecture of the HIV RT to prevent 
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lamivudine binding (Diallo et al., 2003). In the case of IAV antivirals, resistance to the 

adamantanes requires only a single amino acid substitution in the transmembrane domain 

of the M2 ion channel (Belshe et al., 1988). HSV-1 resistance to acyclovir is conferred by 

mutations in the viral TK or in the viral DNA polymerase (Coen and Schaffer, 1980). 

Antivirals such as these have a low barrier to resistance. 

 Mutations that confer resistance may concomitantly decrease the replicative 

fitness of the virus, requiring compensatory mutations to allow replication at rates 

comparable to those of wild type virus. In this case, multiple mutations are required to 

confer resistance, resulting in a higher barrier to resistance. Resistance to enfuvirtide, for 

example, arises from primary mutations at the site of inhibitor binding in the heptad 

repeat (HR)-1 of gp41 (Greenberg and Cammack, 2004). However, these mutations 

impair the kinetics of fusion, requiring compensatory mutations with the HR-2 domain to 

restore fusion rates (Ray et al., 2009). Similarly, resistance to protease inhibitors is first 

conferred by a substitution in the substrate-binding site of the protease. These mutations 

decrease the binding of both the inhibitor and the natural substrate, decreasing the 

replicative fitness (Croteau et al., 1997). Compensatory mutations in the substrate-

binding site (Nijhuis et al., 1999) or in the substrate itself (the viral polyprotein cleavage 

site) (Mammano et al., 1998) increase the replication kinetics to wild type levels. Genetic 

barriers to the development of resistance have been identified (Gotte, 2012). Mutational 

biases of viral polymerases affect the barrier to the development of resistance. For 

example, transitions are more common than transversions (Gotte, 2012). 

Host-targeting antivirals have a higher barrier to resistance, but still select for 

resistance. Some HIV variants resistant to maraviroc (the CCR5 receptor-targeting 
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antiviral) bind to the CCR5 receptor-inhibitor complex (Westby et al., 2007). 

Alternatively, maraviroc treatment selects for variants that bind to the CXCR4 receptor 

(Westby et al., 2006) or with altered binding to the CD4 receptor (Ratcliff et al., 2013). 

Even immunomodulatory approaches can select for resistance. Interferon (IFN), used in 

the treatment of HBV and HCV, stimulates the expression of IFN-stimulated genes, 

generating an antiviral state. However, HCV can become resistant to IFN by 

downregulating IFN signalling pathways (Datta et al., 2011). 

Antivirals with intracellular targets are subject to metabolic steps within the cell. 

Nucleoside analogs must be phosphorylated within the cell to produce the active 

inhibitor. Compounds are also metabolized to inactive forms by cellular enzymes. For 

example, many HCV antivirals are metabolized by cytochrome P450 enzymes (Kiser et 

al., 2013). Intracellular-targeted antivirals also require delivery across membranes, by 

passive mechanisms or active transport (i.e. nucleoside transporters). As many antivirals 

are hydrophilic, they are poorly able to cross lipid membranes to reach effective 

intracellular concentrations. 

1.7.8 Benefits of entry inhibitors 

Entry inhibitors circumvent several of the limitations discussed in the previous section. 

They avoid both the need for intracellular drug delivery and problems associated with 

intracellular drug metabolism, as their targets are extracellular. Entry inhibitors offer 

other therapeutic advantages, by preventing spread of infection to healthy cells and graft 

re-infection (as in the case of liver transplant following HCV infection). They also inhibit 

virus replication before viruses can establish persistent reservoirs, or could be used 

prophylactically to prevent infection altogether. The initial binding of virions to glycans 
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and the lipid membrane rearrangements required during fusion are conserved entry steps 

among unrelated viruses and are therefore potential targets for broad-spectrum antivirals. 

Entry is also an interesting target for emerging viruses, since entry steps are generally 

conserved and require no detailed molecular knowledge of the viral proteins involved.  

 

1.8 INNATE IMMUNE APPROACHES TO TARGET VIRAL ENTRY 

Highlighting the effectiveness of antiviral approaches targeting entry, evolution has 

selected for several such approaches. Many secondary metabolites produced by microbial 

or plant species have antibacterial, antifungal or antiviral activities. Eukaryotic immune 

mechanisms have also evolved to inhibit the entry of pathogens. 

1.8.1 Innate antiviral molecules 

Antimicrobial peptides are one of the first lines of defense against infection. Defensins 

are small (29-42 amino acids) cationic and amphipathic peptides with activity against a 

wide range of microorganisms, including viruses (Klotman and Chang, 2006). Based on 

their disulphide bond organization, defensins are classified into α−, β− and θ−defensins. 

Humans lack functional versions of the latter (Wilson et al., 2013). One α-defensin, 

human neutrophil peptide (HNP)-1, directly inhibits the infectivity of enveloped viruses 

(HSV-1/2, VSV and IAV) (Daher et al., 1986). HNP-1 and other defensins also directly 

inactivate HIV particles (Mackewicz et al., 2003). Although nonenveloped viruses were 

not initially found to be direct targets of defensins (Daher et al., 1986), later studies 

demonstrated that HNP-1 inhibits escape of nonenveloped HPV and AdV virions from 

endosomes (Buck et al., 2006; Smith and Nemerow, 2008). The mechanisms involved in 

the inactivation of enveloped virions are unclear, but may involve disruption of viral 



	
   56	
  

envelopes (Kota et al., 2008) or binding to glycans on virion glycoproteins involved in 

attachment and entry (Yasin et al., 2004). Some defensins bind to cellular HS to block 

virion attachment (Hazrati et al., 2006). 

Retrocyclins are cyclic θ-defensins produced by some nonhuman primates. In 

humans, retrocyclins are not expressed because they are encoded by a truncated 

pseudogene (Venkataraman et al., 2009). Retrocyclins have interesting inhibitory 

activities against viral entry. In the case of IAV, retrocyclin-2 inhibits HA-mediated 

fusion by binding to glycans and crosslinking virion glycoproteins (Leikina et al., 2005). 

Similar effects were reported for other enveloped viruses (Leikina et al., 2005). 

Retrocylin-1 inhibits HIV-1 fusion by mechanisms strikingly similar to those of the 

approved fusion inhibitor enfuvirtide. Retrocyclin-1 interacts with the gp41 C-terminal 

heptad repeat to prevent formation of the 6-helix bundle (Gallo et al., 2006). HNP-1, an 

α-defensin produced by humans, also inhibits HIV-1 fusion by apparently disrupting 

formation of the gp41 6-helix bundle (Demirkhanyan et al., 2012). Similarly, an 

oligopeptide isolated from blood plasma (virus-inhibitory peptide, VIRIP) targets gp41 to 

inhibit HIV-1 fusion (Munch et al., 2007). Clearly, understanding the mechanisms of 

innate immune effectors could facilitate the design of small-molecule inhibitors with 

broad-spectrum antiviral activity. 

Lactoferrin is another immune factor with antiviral, antibacterial and antifungal 

properties. Lactoferrin was first isolated from bovine milk but is highly homologous to 

lactoferrin from human milk (Berlutti et al., 2011). Found in mucosal secretions, 

lactoferrin is an 80-kDa glycosylated protein of net positive charge (van der Strate et al., 

2001). Through its high net positive charge, lactoferrin interacts with negatively charged 
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GAGs (Wu et al., 1995; El Yazidi-Belkoura et al., 2001). This binding is thought to be 

responsible for most of its antimicrobial activities. Lactoferrin inhibits the infectivity of 

HS-binding enveloped viruses (including HSV-1/-2, CMV, HBV and HCV) and 

nonenveloped viruses (including rotavirus and AdV) (Marchetti et al., 1996; Andersen et 

al., 2003; Harmsen et al., 1995; Hara et al., 2002; Ikeda et al., 2000; Arnold et al., 2002). 

Lactoferrin was also report to inhibit the infectivity of a non-HS-binding virus, PV, but 

only at concentrations 100-fold higher than those sufficient to inhibit the infectivity of 

HS-binding viruses (Marchetti et al., 1999). The antiviral activities of lactoferrin may 

also be the result of interactions with viral particles (Berlutti et al., 2011). 

1.8.2 Interferon-inducible transmembrane proteins (IFITMs) 

IFN signaling induces a broad antiviral response. Type I IFNs (including IFNα and 

IFNβ) are cytokines that signal through the IFNα/β receptor, ultimately inducing the 

expression of interferon-stimulated genes (ISGs). ISGs encode proteins that target 

multiple stages of virus replication: entry, replication, translation, assembly and spread 

(Diamond and Farzan, 2013). Included in this group are the IFN-induced transmembrane 

(IFITM) proteins, which block the entry of unrelated viruses, including orthomyxoviruses 

(IAV), filoviruses (Ebola virus and Marburg virus), coronaviruses (SARS), rhabdoviruses 

(VSV), flaviviruses (HCV, DV, WNV), retroviruses (HIV), a nonenveloped virus (RV) 

(Brass et al., 2009)	
  (Huang et al., 2011)	
  (Weidner et al., 2010)	
  (Wilkins et al., 2013)	
  (Lu 

et al., 2011)	
   (Anafu et al., 2013), and others (Smith et al., 2014). IFITM3 in particular 

was shown to be critical for the control of IAV infections in mice and humans (Everitt et 

al., 2012). IFITM1, 2 and 3 did not inhibit HPV, AdV or CMV infections	
  (Warren et al., 

2014). 
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With the exception of HIV, the viruses affected by IFITMs (whether enveloped or 

not) are internalized by endocytosis, suggesting that IFITMs target processes that occur 

within endosomes (Feeley et al., 2011). IFITM3 localizes primarily to endosomal 

organelles, whereas IFITM1 localizes to the plasma membrane and IFITM2 to yet-

unidentified intracellular compartments (Jia et al., 2014). IFITM1 may restrict viruses 

that fuse at the plasma membrane (such as HIV) while IFITM3 restricts viruses entering 

from endosomal pathways. Consistently, IFITM2 and IFITM3 but not IFITM1, inhibited 

the entry of Rift Valley Fever virus, which fuses within the endosome (Mudhasani et al., 

2013). 

 The specific antiviral mechanisms of IFITM proteins remain unclear. Initially, 

IFITMs were shown to inhibit fusion by affecting membrane curvature and fluidity (Li et 

al., 2013a). IFITM3 overexpression increases endosomal cholesterol levels by disrupting 

proteins that regulate cholesterol content (Amini-Bavil-Olyaee et al., 2013), thereby 

providing a mechanism for effects on fluidity. However, accumulation of cholesterol in 

endosomes induced by other mechanisms did not affect fusion (Desai et al., 2014). 

IFITM3 expression did not block lipid mixing during hemifusion, but did prevent the 

formation of fusion pores during IAV entry (Desai et al., 2014). The mechanisms 

involved remain unclear. 

1.8.3 Other interferon-inducible antiviral activities 

Most ISGs remain uncharacterized. Among them, the cholesterol-25-hydroxylase gene, 

encoding an ER-associated enzyme that oxidizes cholesterol to 25-hydroxycholesterol 

(25HC), is important to this thesis. 25HC decreases cellular cholesterol levels through 

downregulation of LDLR and inhibition of 3-hydroxyl-3-methyl-glutaryl (HMG)-CoA 
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reductase (Figure 1.10) (Pezacki et al., 2009). It also has important roles in immunity 

(Liu et al., 2013). 25HC broadly inhibits viral entry through unclear mechanisms (Liu et 

al., 2013). It will be discussed further in Chapter 5. 

 

1.9 RATIONALE 

Targeting viral entry is an antiviral approach with many advantages. Entry inhibitors 

prevent infection of uninfected cells, protecting healthy cells and inhibiting virus 

replication before viruses establish persistent reservoirs. The targets of most entry 

inhibitors are extracellular. Most entry inhibitors, therefore, avoid the need for 

intracellular drug delivery and limiting cell toxicity. Finally, primary attachment to 

cellular glycans and lipid rearrangements during fusion are conserved and required 

processes in the entry of many unrelated viruses. My overarching model is that inhibitors 

of these entry steps, acting through appropriate mechanisms, have broad-spectrum 

antiviral activity. The goal of this research is to identify antiviral mechanisms that allow 

broad inhibition of viral infectivity.  

Several small molecule compounds generated synthetically or identified from 

nature and the innate immune system are known to possess broad antiviral activity. In the 

first group are the rigid amphipathic fusion inhibitors, which inhibit the infectivity of 

unrelated enveloped viruses (St Vincent et al., 2010). Some natural products, such as 

EGCG and curcumin, have broad antiviral activity against unrelated viruses (Steinmann 

et al., 2013). The sterol regulator 25HC is a recent example of an innate immunity-

induced small molecule with broad effects on viral entry (Liu et al., 2013). These 

molecules are useful probes for viral entry steps. They can also be used to identify and 
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characterize the mechanisms responsible for broad-spectrum antiviral activities. The 

identification of these antiviral mechanisms opens the possibility for the rational design 

of small molecule entry inhibitors with broad-spectrum activities and appropriate 

pharmacological properties. 
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Table 1.1. Model viruses used in this research. *Proposed; **in particular cell types. 

 

 

 

 

 

 

 

 

 

 

Virus Enveloped/ 
Nonenveloped 

Binding 
(HS or SA) 

Entry site Fusion 
protein  

Genome 
composition 

Replication 
site 

HCV Enveloped HS Endosome Class IV* RNA Cytoplasm 

IAV Enveloped SA Endosome Class I RNA Nucleus 

VSV Enveloped HS/SA (?) Endosome Class III RNA Cytoplasm 

SINV Enveloped HS Endosome Class II RNA Cytoplasm 

HSV-1 Enveloped HS Plasma 
membrane 
Endosome** 

Class III DNA Nucleus 

VACV Enveloped HS/SA (?) Plasma 
membrane 
Endosome** 

? DNA Cytoplasm 
 

RV Nonenveloped SA Endosome N/A RNA Cytoplasm 

AdV Nonenveloped HS/SA Endosome N/A DNA Nucleus 

PV Nonenveloped Neither Endosome N/A RNA Cytoplasm 

Table 1.1. Model viruses used in this research. *Proposed; **in particular cell types. 
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Table 1.2. Clinically approved antiviral drugs for RNA viruses 

 

 

 

 

Anti-HIV compounds Target 

Nucleoside Reverse Transcriptase Inhibitors 
Zidovudine, Didanosine, Zalcitabine, Stavudine, 
Abacivir  
Lamivudine, Emtricitabine 
Nucleotide Reverse Transcriptase Inhibitors 

Tenofovir disoproxil 
Non-nucleoside Reverse Transcriptase Inhibitors 
Nevirapine, Delavirdine, Efavirenz, Entravirine 
Protease Inhibitors 
Saquinavir, Ritonavir, Indinavir, Nelfinavir, 
Amprenavir, Lopinavir, Atazanavir, Fosempranivir, 

Darunavir, Tipranivir 
Entry Inhibitors 
Enfuvirtide 
Maraviroc 
Integrase Inhibitors 

Raltegravir 

 
Viral reverse transcriptase (HIV) 
 
Viral reverse transcriptase (HIV, HBV) 
 

Viral reverse transcriptase (HIV, HBV) 
 
Viral reverse transcriptase (HIV-1) 
 
Viral protease (HIV) 
 

 
 
Viral fusion protein gp41 (HIV) 
Cellular CCR5 receptor for gp120 (HIV) 
 

Viral integrase (HIV) 

 

Anti-HCV Compounds 

Non-specific Inhibitors 
Ribavirin 
Pegylated interferon alpha-2a 
Protease Inhibitors 
Telaprevir, Boceprevir, Simeprevir 

Nucleotide Analog Inhibitors 
Sofosbuvir 

 
Viral RNA synthesis 
Immunomodulatory 
 
Viral NS3/4A protease (HCV) 

 
Viral NS5B RNA polymerase (HCV) 

 

Anti-IAV Compounds 

M2 Ion Channel Inhibitors 
Amantadine, Rimantadine 
Neuraminidase Inhibitors 
Zanimivir, Oseltamivir, Peramivir, Laninamivir 

 
Viral M2 ion channel (IAV) 
 
Viral NA (IAV) 
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Table 1.3. Clinically approved antiviral drugs for DNA viruses 

 

 

 

 

 

 

 

 

 

 

 

 

Anti-HBV Compounds Target 

Lamivudine, Adefovir dipivoxil, Emtricitabine, 
Tenofovir disoproxil, Entecavir 
Telbivudine 

Viral reverse transcriptase (HBV, HIV) 
 
Viral DNA polymerase (HBV) 

 

Anti-herpesvirus Compounds 

Polymerase Inhibitors 
Acyclovir, Valaciclovir, Penciclovir, Famciclovir 
Ioxuridine 
Trifluridine 
Brivudin 

Ganciclovir 
Valganciclovir 
Foscarnet 
Cidofovir 
 
Expression Inhibitors 

Fomiversen 

 
Viral DNA polymerase (HSV-1/2, VZV) 
Viral DNA polymerase (HSV) 
Viral DNA polymerase (HSV, VZV) 
Viral DNA polymerase (HSV-1, VZV) 

Viral DNA polymerase (HSV-1/2, CMV) 
Viral DNA polymerase (CMV) 
Viral DNA polymerase (HSV-1/2, VZV, CMV) 
Viral DNA polymerase (CMV) 
 
 

Viral IE2 mRNA (CMV) 
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Figure 1.1. Structures of glycan moieties involved in virion attachment. The heparan 
sulfate  and  sialic  acid  moieties  in  cellular  glycans  used  by  most human  viruses  for 
primary attachment. 
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Figure 1.2. Classes of viral fusion proteins in their post-fusion conformations. Class I 
(A):  IAV,  influenza  A  virus  hemagglutinin;  HIV  gp41,  human  immunodeficiency  virus 
glycoprotein 41. Class II (B): TBEV E2, tick-borne encephalitis envelope 2 protein; SFV 
E1,  Semliki-forest  virus  envelope  1  protein.  Class  III (C):  HSV-1  gB,  herpes  simplex 
virus 1 glycoprotein B; VSV G, vesicular stomatitis G protein. 

Figure  1.2. Classes  of  viral  fusion  proteins  in  their  post-fusion  conformations.  Class  I (A): 
IAV,  influenza  A  virus hemagglutinin;  HIV  gp41,  human  immunodeficiency  virus 
glycoprotein 41. Class II (B): TBEV E2, tick-borne encephalitis envelope 2 protein; SFV E1, 

Semliki-forest  virus  envelope  1  protein.  Class  III (C):  HSV-1 gB,  herpes  simplex  virus  1 
glycoprotein B; VSV G, vesicular stomatitis G protein. 
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Figure  1.3. Schematic  of  viral  membrane  fusion. Shown  is  a  class  I  fusion  protein 
mediating  fusion according  to  the  hemifusion  stalk  model.  All  classes  of  viral  fusion 
proteins induce fusion similarly. The fusion peptide inserts into the target membrane. The 
fusion protein undergoes conformational changes, resulting in the formation of a hairpin 
structure, which pulls the membranes into close proximity to allow for fusion. 

Figure  1.3. Schematic  of  viral  membrane  fusion  mediated  by  a  class  I  fusion  protein, 
according  to  the hemifusion  stalk  model. All  classes  of  viral  fusion  proteins  induce  fusion 
similarly. The fusion peptide inserts into the target membrane. The fusion protein undergoes 
conformational  changes,  resulting  in  the  formation  of  a  hairpin  structure,  which  pulls  the 
membranes into close proximity to allow for fusion. 
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Figure  1.4. Structures  of  silymarin  components (A), arbidol (B) and  glycyrrhizin 
(C). Silymarin is a mixture of seven flavanolignans (silibinin A, silibinin B, isosilybin A, 
isosilybin B, silychristin, isosilychristin and silydianin) and one flavonoid (taxifolin). 

Figure  1.4. Structures  of silymarin  components (A), arbidol (B) and  glycyrrhizin (C). 
Silymarin  is  a  mixture  of  seven flavanolignans (silibinin  A, silibinin  B, isosilybin  A, 
isosilybin B, silychristin, isosilychristin and silydianin) and one flavonoid (taxifolin). 
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Figure  1.5. Antivirals  approved to  treat HIV infections. There  are  reverse 
transcriptase  inhibitors (A),  protease  inhibitors (B),  entry  inhibitors (C) and  integrase 
inhibitors (D).  NRTIs,  nucleoside  reverse  transcriptase  inhibitors;  NtRTIs,  nucleotide 
reverse transcriptase inhibitors; NNRTIs, non-nucleotide reverse transcriptase inhibitors. 
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Figure  1.5. Clinically  approved  antivirals  used  in  the  treatment  of  HIV.  There  are  reverse 
transcriptase  inhibitors (A),  protease  inhibitors (B),  entry  inhibitors (C)  and integrase 
inhibitors (D). NRTIs, nucleoside reverse transcriptase inhibitors; NtRTIs, nucleotide reverse 

transcriptase inhibitors; NNRTIs, non-nucleotide reverse transcriptase inhibitors. 
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Figure 1.5. Antivirals  approved to  treat  HIV  infections. There  are  reverse 
transcriptase  inhibitors (A),  protease  inhibitors (B),  entry  inhibitors (C) and  integrase 
inhibitors (D).  NRTIs,  nucleoside  reverse  transcriptase  inhibitors;  NtRTIs,  nucleotide 
reverse transcriptase inhibitors; NNRTIs, non-nucleotide reverse transcriptase inhibitors. 
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Figure  1.5. Clinically  approved  antivirals  used  in  the  treatment  of  HIV.  There  are  reverse 
transcriptase  inhibitors (A),  protease  inhibitors (B),  entry  inhibitors (C)  and integrase 
inhibitors (D). NRTIs, nucleoside reverse transcriptase inhibitors; NtRTIs, nucleotide reverse 
transcriptase inhibitors; NNRTIs, non-nucleotide reverse transcriptase inhibitors. 
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Figure  1.6. Antivirals  approved  to  treat HCV infections. The  non-specific  antivirals 
(A) are  ribavirin  and  pegylated  interferon  alpha-2a.  The  direct-acting  antivirals (B) are 
NS3/4A  protease  inhibitors  telaprevir,  boceprevir  and  simeprevir,  and  the  NS5A 
polymerase inhibitor sofosbuvir. 
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treatment of HCV. The non-specific antivirals are ribavirin and pegylated interferon alpha-2a. 
The  DAA  are  NS3/4A  protease  inhibitors telaprevir, boceprevir  and simeprevir,  and  the 
NS5A polymerase inhibitor sofosbuvir. 
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Figure 1.7. Antivirals approved to treat IAV infections. They are comprised of M2 ion 
channel inhibitors and neuraminidase (NA) inhibitors. 

Figure  1.7. Clinical  antivirals  approved  for  used  in  the  treatment  of  IAV  infections, 
comprised of M2 ion channel inhibitors and neuraminidase (NA) inhibitors. 
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Figure  1.8. Antivirals  approved to  treat HBV infections.  They  are comprised  of 
reverse transcriptase inhibitors and DNA polymerase inhibitors. 
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Figure 1.9. Antivirals approved to treat herpesvirus infections. They are comprised of 
DNA polymerase inhibitors and a gene expression inhibitor. 

Figure  1.9. Clinical  antivirals  approved  for  used  in  the  treatment  of herpesvirus  infections, 
comprised of DNA polymerase inhibitors and a gene expression inhibitor. 
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Figure  1.10. Effects  of  25HC  on  cholesterol  homeostasis. 25HC  decreases  cellular 
cholesterol levels through several mecahnisms involving inhibition or downregulation of 
HMG-CoA  reductase (Brown  and  Goldstein,  1997),  SREBP2 (Brown  and  Goldstein, 
1999) and the LDL receptor (Pezacki et al., 2009), or activation of the liver X receptor 
(Ma et al., 2008). 

Figure  1.10. Effects  of  25HC  on  cholesterol  homeostasis. 25HC  decreases  cellular 
cholesterol levels through several mecahnisms involving inhibition or downregulation of 
HMG-CoA reductase (Brown  1997),  SREBP2 (Brown  1999) and  the  LDL  receptor 
(Pezacki 2009), or activation of the liver X receptor (Ma 2008). 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 ANTIVIRAL COMPOUNDS  

The rigid amphipathic fusion inhibitors (RAFIs; dUY11, dUY1, dUY5, aUY11 and 

aUY12) were synthesized by Drs. Alexey Ustinov and Vladimir Korshun (Russian 

Academy of Sciences, Moscow, Russia). Epigallocatechin gallate (EGCG), epicatechin 

(EC), curcumin, tetrahydrocurcumin (THC), and 25-hydroxycholesterol (25HC) were 

initially provided by Dr. Eike Steinmann (Twincore, Hannover, Germany) and later 

purchased from Sigma-Aldrich (Oakville, ON, Canada) as necessary. With the exception 

of 25HC, the compounds were dissolved in dimethyl sulfoxide (DMSO) as 20 mM 

(curcumin, THC), 30 mM (aUY11) or 100 mM (EGCG, dUY11) stocks, aliquoted and 

stored at -20°C. Compounds were diluted in DMSO vehicle as necessary and 

resuspended just before use to the indicated concentrations in warmed Dulbecco’s 

Modified Eagle Medium (DMEM), such that the concentration of vehicle never exceeded 

0.2%. 25HC was dissolved in ethanol as a 10 mM stock and stored under the same 

conditions. Equivalent concentrations of the appropriate vehicle were used in the 

controls. All antiviral compounds used in this study are listed in table 2.1. 

 

2.2 CHEMICALS AND REAGENTS 

2.2.1 Chemicals. Octadecyl rhodamine B chloride (R18) was obtained from Molecular 

Probes (Invitrogen, Grand Island, NY, USA). DMSO, 1,6-diphenyl-1,3,5-hexatriene 

(DPH), heparin and N-acetylneuraminic acid (sialic acid) were obtained from Sigma-

Aldrich. L-35S-methinione was purchased from PerkinElmer (Boston, MA, USA). 

Cholesterol, β-oleoyl-γ-palmitoyl-L-α-phosphatidylcholine (POPC), and 1,2-dioleoyl-L-
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α-phosphatidylcholine (DOPC) were purchased from Sigma-Aldrich and used for 

liposome preparation. Catalog numbers for all chemicals are listed in table 2.2. 

2.2.2 Cell Culture Reagents. Cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) (Invitrogen, Life Technologies Inc., Burlington, ON, Canada) supplemented 

with fetal bovine serum (FBS; PAA Laboratories, now GE Healthcare, Westborough, 

MA, USA) and penicillin/streptomycin (10,000 U/mL stock; Invitrogen), used at the 

indicated concentrations. Some experiments required phenol red-free DMEM or 

methionine-free DMEM (Invitrogen). Trypsin-EDTA (0.5% stock; Invitrogen) was 

diluted tenfold in phosphate-buffered saline (PBS) prior to use. L-1-tosylamide-2-

phenylethyl chloromethyl ketone (TPCK)-treated trypsin was purchased from Sigma-

Aldrich. To overlay and visualise viral plaques, agarose or low melting point agarose 

(Invitrogen), methylcellulose (Sigma-Aldrich) and crystal violet (Sigma-Aldrich) were 

used. PBS was comprised of 1 mM KH2PO4, 150 mM NaCl, 3 mM Na2HPO4 adjusted to 

pH 7.4. Catalog numbers for all reagents are listed in table 2.3.  

2.2.3 Antibodies and Immunostaining Reagents. The following antibodies were used: 

mouse IgG anti-HCV core (Thermo Scientific, Rockland, IL, USA or Enzo Life Sciences, 

Farmingdale, NY, USA), mouse IgG anti-CD81 (JS81 clone, BD Biosciences, 

Mississauga, ON, Canada), biotinylated horse anti-mouse IgG (Vector Laboratories, 

Burlingame, CA, USA), and goat anti-mouse IgG Alexa Fluor 488 antibody (Molecular 

Probes). For blocking steps, normal goat serum (Sigma-Aldrich), normal horse serum 

(Vector Laboratories), or bovine serum albumin (BSA; Albumin Fraction V, USA 

Biochemical Corp., Cleveland, OH, USA) were used at the indicated concentrations. 

Immunocytochemistry was performed using reagents provided in the VectaStain ABC kit 
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and the ImmPACT SG peroxidase substrate (Vector Laboratories). Catalog numbers for 

all reagents can be found in table 2.4. 

2.2.4 Molecular Biology Reagents. RNA was isolated using the High Pure Viral RNA 

Kit (Roche, Laval, QC, Canada) or TRIzol (Ambion, Life Technologies Inc., Burlington, 

ON, Canada). Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV RT) or 

Superscript III RT (Invitrogen) were used to synthesize cDNA. For quantitative real-time 

polymerase chain reactions (qRT-PCR), the TaqMan universal PCR master mix (Applied 

Biosystems, Life Technologies Inc., Burlington, ON, Canada) was used along with 

appropriate primers and probes. For PCR for sequencing, Pfx50 high fidelity DNA 

polymerase (Invitrogen) was used. Deoxynucleotide triphosphates (dNTPs; mixture set, 

100 mM), first-strand buffer (FSB; 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM 

MgCl2), dithiothreitol (DTT; 100 mM) and RNaseOUT (5000 U) were purchased from 

Invitrogen and used at the indicated concentrations. DNA was extracted from agarose 

gels using the MinElute Gel Extraction Kit (Qiagen, Mississauga, ON, Canada). Catalog 

numbers for kits and reagents are listed in table 2.5.  

 

2.3 CELLS 

 African green monkey Vero fibroblasts (Vero; catalog number CCL-81) and Madin-

Darby canine kidney (MDCK; catalog number CCL-34) cells were obtained from the 

American Type Culture Collection (Manasses, VA, USA). Human hepatoma Huh7.5 

cells were obtained from Dr. Charles Rice (Rockefeller University, NY) through Dr. 

Lorne Tyrrell (University of Alberta, Edmonton, Canada). NIH/3T3 fibroblasts, human 

embryonic kidney (HEK) 293T and L929 murine fibroblasts were obtained from Drs. 
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Denise Hemmings, Rob Ingham and Maya Shmulevitz (University of Alberta, Edmonton, 

Canada), respectively.  

 Vero, MDCK and 3T3 cells were cultured in DMEM supplemented with 5% FBS, 

50 U/mL penicillin and 50 µg/mL streptomycin (complete DMEM) at 37°C in 5% CO2. 

Huh7.5, 393T and L929 cells were cultured in DMEM-10% FBS, 50 U/mL penicillin and 

50 µg/mL streptomycin at 37°C in 5% CO2. For passaging and plating, cells were washed 

once with PBS and detached by incubation in trypsin-EDTA (0.05%) at 37°C for 

approximately 5 minutes. Detached cells were resuspended in complete DMEM and 

seeded into flasks or plates at the indicated densities for each experiment. 

 

2.4 VIRUSES 

Herpes simplex virus 1 strain KOS (HSV-1 KOS) and herpes simplex virus 2 strain 186 

(HSV-2 186) were obtained from the late Dr. Priscilla Schaffer (Harvard Medical School, 

Boston, MA). Murine cytomegalovirus (mCMV) strain RM427+ (containing a lacZ 

insertion in the nonessential immediate-early 2 gene) was originally acquired from 

Edward Mocarski (Emory University, Atlanta, GA) through Denise Hemmings 

(University of Alberta, Edmonton, Canada). Vaccinia virus (VACV) strains Western 

Reserve (WR) and International Health Department-white (IHD-W) were provided by 

Dr. David Evans (University of Alberta, Edmonton, Canada). Adenovirus type 5 (AdV) 

expressing green fluorescent protein (GFP) was obtained from Dr. Dennis Vance 

(University of Alberta, Edmonton, Canada).  

HCV strain JFH-1 was originally obtained from Dr. Takaji Wakita (Tokyo 

Metropolitan Institute for Neuroscience, Tokyo, Japan) through Dr. Lorne Tyrrell 
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(University of Alberta, Edmonton, Canada). Influenza A virus (IAV) H1N1 strains 

A/Puerto Rico/8/1934 (PR8) and A/USSR/90/77 (USSR), and H3N2 strains A/Aichi/2/68 

(Aichi) and A/Port Chalmers/1/73 (PC) were obtained from Veronika von Messling 

(INRS-Institut Armand-Frappier Research Centre, Quebec, Canada). Sindbis virus 

(SINV), vesicular stomatitis virus (VSV), poliovirus (PV) and mammalian orthoreovirus 

type 3 (RV) were provided by Drs. Tom Hobman, Paul Melancon, Michael James and 

Maya Shmulevitz, respectively (University of Alberta, Edmonton, Canada). 

 

2.5 PREPARATION OF VIRAL STOCKS 

Vero cell monolayers at approximately 70% confluency were infected with HSV-1, HSV-

2 or VACV at a multiplicity of infection (MOI) of 0.05 plaque forming unit (pfu)/cell for 

1 hour at 37°C in 5% CO2, rocking and rotating the flasks every 10 minutes to prevent 

cell drying. The inoculum was removed, and cells were washed twice with DMEM and 

then overlaid with DMEM-5% FBS. Infected cells were incubated at 33°C in 5% CO2 

until cytopathic effects (CPE) were observed (cell rounding with minimal detachment) at 

approximately 48 hours post infection (hpi). The cells were harvested by scraping with 

sterile disposable lifters. The resulting cell suspensions were collected in 50-mL conical 

tubes and centrifuged at 3,200 × g for 30 minutes at 4°C in an Eppendorf 5810R 

centrifuge equipped with the swinging bucket rotor A-4-62 (Eppendorf Canada, 

Mississauga, ON, Canada). The resulting supernatants were collected and virions were 

pelleted by centrifuging at 10,000 × g for 2 hours at 4°C in a Beckman Coulter J-series 

centrifuge equipped with a JA-14 rotor (Beckman Coulter Inc., Mississauga, ON, 

Canada). Meanwhile, the cell pellets were resuspended in DMEM and lysed by 3 freeze-
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thaw cycles in an ethanol-dry ice bath and 37°C water bath. The cell lysates were then 

placed in an ice-water bath and sonicated using an Ultrasonic Processor XL 2020 

(Mandel Scientific Company, Guelph, ON, Canada) at a power setting of 3 for 30 second 

intervals, repeated thrice with 15-second rest periods in between. Cellular debris was then 

pelleted by centrifugation at 3,200 × g for 30 minutes at 4°C (Eppendorf 5810R 

centrifuge, A-4-62 rotor), and the resulting supernatant was used to resuspend the viral 

pellet obtained from the initial supernatant. The viral stocks were then aliquoted into 

glass vials and stored at -80°C. 

Near-confluent Vero cell monolayers were infected with VSV, PV or SINV at an 

MOI of 0.02 pfu/cell for 1 hour at 37°C in 5% CO2. Flasks were rocked and rotated every 

~10 minutes to prevent cell drying. The inoculum was removed, and the infected cells 

were overlaid with DMEM-5% FBS. Culture supernatants were collected when full CPE 

was observed at ~48 hpi and centrifuged at 3,200 × g for 30 minutes at 4°C (Eppendorf 

5810R centrifuge, A-4-62 rotor) to pellet cell debris. The supernatant was centrifuged at 

10,000 × g for 2 hours at 4°C (Beckman Coulter J-series centrifuge, JA-14 rotor), and the 

resulting virion pellet was resuspended in serum-free DMEM, aliquoted into glass vials, 

and stored at -80°C. 

NIH 3T3 cells were infected with mCMV at 0.01 pfu/cell for 1 hour at 37°C in 

5% CO2. Infected cells were overlaid with DMEM-10% FBS and were incubated at 33°C 

in 5% CO2 for approximately 4 days, until CPE were observed. Two days after 90% of 

the cells displayed CPE, virions were harvested as described for HSV-1 and HSV-2. 

Huh7.5 cells were infected with 0.003 focus-forming units (ffu)/cell of HCV JFH-

1 for 4 hours at 37°C. Inocula were removed, and cells were overlaid with DMEM-10% 
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FBS and passaged as necessary. After 6-7 days, culture medium was collected and 

centrifuged at 800 × g for 10 minutes at 4°C (Eppendorf 5810R centrifuge, A-4-62 rotor) 

to pellet cellular debris. The supernatant was filtered through a 0.22-µm filter and 

concentrated using Amicon 100 kDa cutoff centrifugal filter units (Millipore, Billerica, 

MA, USA). For some experiments, the cell monolayers were immediately overlaid with 

DMEM supplemented with 0.2% bovine serum albumin (BSA). At 8 days post-infection, 

“serum-free” virions were harvested as described. When needed, the concentrated 

supernatant was purified by ultracentrifugation at 108,000 × g through a 20% sucrose 

cushion, using a Beckman-Coulter OptimaMax ultracentrifuge equipped with a 

TLA120.2 rotor. In all cases, resulting virus stocks were titrated by focus-forming assay 

(section 2.6) and stored at -80°C. 

Near-confluent MDCK cell monolayers were infected with 0.01 PFU/cell of IAV 

for 1 hour at 37°C. The infected cells were then incubated in DMEM supplemented with 

0.2% BSA and 2 µg/ml TPCK trypsin in 5% CO2 at 33°C for approximately 2 days, until 

at least 90% of the cells displayed CPE. Virions were harvested as described for VSV.  

Adenovirus type 5 (AdV) expressing green fluorescent protein (GFP) was 

obtained from Dr. Dennis Vance (University of Alberta, Edmonton, Alberta, Canada) and 

was titrated in HEK293T cells maintained with DMEM-10% FBS. Mammalian 

orthoreovirus type 3 was kindly provided by Dr. Maya Shmulevitz (University of 

Alberta, Edmonton, Alberta, Canada) and was titrated in L929 cells maintained in 

DMEM-10% FBS. 
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2.6 VIRUS TITRATIONS 

HSV-1/2, VSV, VACV, SIN and PV were titrated in Vero cells. Aliquots of viral stocks 

were thawed rapidly at 37°C and immediately placed on ice. Ten-fold serial dilutions 

were prepared in serum-free DMEM and each dilution was mixed by gentle vortexing. 

Near-confluent Vero cell monolayers (5 × 105 or 2.5 × 105 cells/well in 6-well or 12-well 

plates, respectively) were then infected with 200 µL (6-well plates) or 100 µL (12-well 

plates) of serially diluted virions. After 1 hour, inocula were removed and the cells were 

washed twice with 1 mL/well of cold serum-free DMEM. Infected cells were then 

overlaid with 2% methylcellulose (Sigma-Aldrich) containing 5% FBS and incubated at 

37°C in 5% CO2 until well-defined plaques developed (typically, 2-3 days post-

infection). The infected cells were then fixed and stained with crystal violet (Sigma-

Aldrich) in methanol (0.5% or 1% [w/v] crystal violet, 17% [v/v] methanol in H2O). 

 HCV was titrated by focus-forming assay in Huh7.5 cells. As for the other 

viruses, ten-fold serial dilutions were prepared in DMEM. Huh7.5 cells (9 × 104 

cells/well in 24-well plates) were then infected with 150 µL of the appropriate dilution. 

The inocula were removed 4 hours later, and the monolayers were washed and overlaid 

with DMEM-10% FBS. At 72 or 96 hours post-infection, the infected cells were fixed 

with methanol-acetone (1:1) for 20 minutes at -20°C. Fixed cells were blocked with 

normal horse serum for 20 minutes at room temperature and then incubated with primary 

mouse IgG anti-HCV core antibody diluted 1:1000 in PBS-0.1% BSA for 2 hours at 

room temperature. Cells were then washed three times with PBS. Secondary biotinylated 

horse anti-mouse IgG antibody was then added for 30 minutes at room temperature. After 

three washes with PBS, the avidin-biotin-peroxidase complex (Vectastain ABC kit) was 
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added for 30 minutes at room temperature. Finally, the ImmPact SG peroxidase substrate 

was added for 12 minutes at room temperature. Cells were then washed with PBS and 

foci of infected cells were counted under a microscope. Alternatively, fixed cells were 

blocked with 2% normal goat serum (Sigma-Aldrich) in PBS, incubated with the same 

primary antibody, and then incubated with secondary goat anti-mouse IgG Alexa Fluor 

488 antibody for immunofluorescence analysis using a fluorescence microscope with a 

UV light source (Leica DM IRB, Itzlar, Germany). 

 For IAV and RV, near-confluent MDCK or L929 cells (~5 × 105 or 2.5 × 105 

cells/well in 6-well or 12-well plates, respectively) were infected with 200 µL (6-well 

plate) or 100 µL (12-well plate) of serially diluted IAV or RV virions. The inocula were 

removed after 1 hour, and the monolayers were washed twice with DMEM and overlaid 

with 0.8% agarose (containing 0.1 µg/mL TPCK-trypsin, for IAV only) in DMEM (IAV) 

or DMEM-10% FBS (RV). When the plaques were visible and clearly defined (~48-72 

hpi), they were visualized by crystal violet staining (1% [w/v] crystal violet, 17% [v/v] 

methanol in H2O). 

 For mCMV, NIH 3T3 cells (3 × 105 cells/well in 12-well plates) were infected 

with 150 µL of serially diluted mCMV virions. The inocula were removed after 1 hour, 

and the monolayers were washed and overlaid with DMEM-10% FBS. Foci of infected 

cells were detected after 24 hours using a LacZ cell detection kit (InvivoGen, San Diego, 

CA), according to the manufacturer’s instructions. Briefly, infected cells were rinsed 

once with 0.5 mL of PBS, and then fixed with 0.5 mL of the provided fixative solution 

for 10 minutes at room temperature. The fixed cells were rinsed twice with PBS and 

stained with 0.5 mL per well of the provided staining solution (4 mM potassium 
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ferricyanide, 4 mM potassium ferrocyanide, 2 mM MgCl2, 2 mg/mL X-gal solution in 

PBS). After 1-2 hours at 37°C, the cells were examined under a basic microscope for the 

development of blue colour (indicating infected cells). 

For AdV, serially diluted virions were used to infect HEK293 cell monolayers 

(2.5 x 105 cells/well in 12-well plates). The inocula were removed after 30 minutes to 1 

hour, and the monolayers were washed and overlaid with fresh DMEM-10% FBS. 

Infected cells expressing GFP were visualized and counted after 24 hours using a 

fluorescence microscope with a UV light source. 

 

2.7 INFECTIVITY ASSAYS 

Semi-logarithmic dilutions of the compounds were prepared in serum-free DMEM from 

the 10, 20, 30 or 100 mM stocks and incubated at 37°C. Approximately 200 pfu of HSV-

1/-2, VSV, SINV, PV, VACV, RV or IAV in a volume of 100 µL were then mixed with 

100 µL of the diluted compound or equivalent volume of vehicle and incubated for 10 

minutes at 37°C, in serum-free DMEM at pH 7.2. For IAV infections, MDCK cells were 

washed twice with DMEM prior to infection. Vero (HSV-1/2, VSV, SINV, PV and 

VACV), L929 (RV) or MDCK (IAV) cell monolayers (5 × 105 cells/well in 6-well plates 

or 2.5 × 105 cells/well in 12-well plates) were then infected with the 200 µL or 100 µL 

inoculum. The plates were rocked and rotated every ~10 minutes to prevent cell drying. 

After 1 hour, the inocula were removed and cells were washed twice with cold DMEM. 

Infected cells were then overlaid with appropriate semi-solid medium and incubated until 

plaques developed, as described for standard viral titrations in section 2.6. 
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 For HCV, 75 µL containing 100 ffu were mixed with 75 µL of the diluted 

compound or equivalent volume of vehicle (in DMEM) and incubated for 10 minutes at 

37°C. Huh7.5 cell monolayers (9 × 104 cells/well in 24-well plates) were then infected 

with 150 µL of the inoculum. The plates were rocked and rotated every 1 hour, and after 

4 hours, the inocula were removed and cells were washed twice with DMEM. Infected 

cells were overlaid with DMEM-10% FBS. At 72 or 96 hours post-infection, cells were 

evaluated for HCV infection by immunocytochemistry, as described in section 2.6. 

For mCMV, NIH 3T3 cells (3 × 105 cells/well in 12-well plates) were infected 

with a 150 µL inoculum containing approximately 200 ffu of mCMV RM427+ pre-

exposed for 10 minutes at 37°C to compound or vehicle. The cells were infected for 1 

hour at 37°C, with rocking and rotating every 10 minutes. Inocula were removed and 

cells were washed twice with DMEM, and then overlaid with DMEM-5% FBS. Foci of 

infected cells were detected after 24 hours using a LacZ cell detection kit (section 2.6).  

For AdV, virions were exposed to compound or vehicle for 10 minutes at 37°C 

prior to infecting HEK293 cell monolayers (2.5 × 105 cells/well in 12-well plates). The 

cells were infected for 30-60 minutes (depending on potential cell detachment), with 

rocking and rotating of the plates every 10 minutes. After the infection, the inocula were 

removed and cells were overlaid with DMEM-10% FBS. Infected cells expressing GFP 

were visualized 24 hours later as described in section 2.6. 

To determine EC50, plaques or foci were counted and expressed as a percentage 

relative to the plaques produced by the vehicle-treated controls. EC50 were then 

calculated by nonlinear regression analysis (unrestrained fit) using GraphPad Prism 

(Version 5.0, GraphPad Software, Inc., USA). 
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2.8 TIME-OF-ADDITION ASSAYS 

For cell pre-treatment experiments, MDCK, Huh7.5, or Vero cells were treated with 

compound or vehicle for 1 hour at 37°C. The cells were then washed three times with 

DMEM warmed to 37°C and infected with IAV PR8, HCV JFH-1, or HSV-1 KOS, 

respectively, in the absence of any drug. Infectivity was assessed by plaque or focus 

formation as described in section 2.6.  

To test whether the compounds were effective when added to already-infected 

cells, MDCK, Huh7.5, or Vero cells were infected with 5, 3 or 0.5 pfu/cell (depending on 

the experiment) of IAV PR8, HCV JFH-1, or HSV-1 KOS. The inocula were removed 

after 1 h of adsorption. The infected cells were washed and then overlaid with DMEM-

10% FBS (HCV) or DMEM-5% FBS (IAV and HSV-1) supplemented with the 

compound or vehicle for 24-48 hours (IAV and HSV-1) or 48-72 hours (HCV). The 

supernatants and cell lysates were then harvested as described in section 2.5. IAV and 

HSV-1 virions were pelleted by centrifugation at 10,000 × g for 2 hours at 4°C (Beckman 

Coulter J-series centrifuge, JA-14 rotor) and resuspended in drug-free DMEM. HCV 

virions were concentrated using Amicon centrifugal filters with a 100-kDa molecular-

mass cutoff, or pelleted by ultracentrifugation through a 20% sucrose cushion at 108,000 

× g for 4 hours at 4°C (Beckman-Coulter OptimaMax ultracentrifuge, TLA120.2 rotor). 

Standard titrations were performed using logarithmic dilutions of the viruses in DMEM, 

and MDCK, Vero, or Huh7.5 cells as described in section 2.6.  
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2.9 SELECTION FOR RESISTANCE 

IAV PR8, IAV Aichi and HSV-1 KOS were serially passaged in the presence of 

increasing concentration of compound or vehicle. MDCK or Vero cells were seeded into 

60 cm2 round dishes (2.5 × 106 cells/dish) and incubated for approximately 16 hours. For 

aUY11 selection, cells were first infected with 0.01 pfu/cell (or, if the viral titer was too 

low, 0.001 pfu/cell) for 1 hour at 37°C. Inocula were removed, and the infected cells 

were overlaid with DMEM-5% FBS containing aUY11. Virions were harvested (as 

described in section 2.5) when cells exhibited 80-90% CPE, typically at ~24 hpi for IAV 

and ~48 hpi for HSV-1 (although more time was usually required for EGCG-treated 

virions to produce 80-90% CPE). For EGCG selection, virions were pre-treated with 

EGCG for 10 minutes at 37°C. Treated virions were then used to infect cell monolayers 

for 1 hour. The inocula were removed, and infected cells were washed twice with DMEM 

and overlaid with DMEM-5% FBS containing no drug. Virions were harvested (as 

described in section 2.5) when cells exhibited 80-90% CPE, typically at ~24 hpi for IAV 

and ~48 hpi for HSV-1. Titers were determined by standard plaquing assays.  

Resistant variants were plaque-purified. EGCG-resistant virions and control 

virions (from passage 6 for IAV PR8 and Aichi) were used to infect MDCK cells. Five 

plaques from each group were then selected for plaque purification. Isolated plaques were 

scraped with a P200 pipette tip, resuspended in 200 µL of DMEM, and used to infect 

near-confluent MDCK cell monolayers (5 × 105 cells in 6-well plates). Virions were 

harvested (as described in section 2.5) when cells exhibited 90% CPE, at ~24 hpi. The 

virion pellets were resuspended in 50 µL of DMEM. To confirm resistance, the isolates 

were treated with EGCG for 10 minutes at 37°C and used to infect MDCK cell 
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monolayers (as described for infectivity assays in section 2.7). To identify mutations 

conferring resistance, viral RNA was isolated and reverse-transcribed to cDNA 

(described in section 2.23). The hemagglutinin gene was then PCR-amplified and 

sequenced (described in section 2.23). 

 

2.10 35S-METHIONINE LABELLING OF HSV-1, VSV, HCV, ADV, RV AND PV   

Vero, HEK293T, L929 or Huh7.5 cells were seeded in 60 cm2 round dishes (2.5 × 106 

cells/dish) and incubated at 37°C in 5% CO2 for approximately 16 hours. Vero cells were 

infected with HSV-1 (2.5 pfu/cell), VSV (5 pfu/cell) or PV (5 pfu/cell). HEK293T or 

L929 cells were infected with AdV (5 pfu/cell) or RV (5 pfu/cell). Huh7.5 cells were 

infected with HCV JFH-1 (MOI 0.1 ffu/cell). A mock-infected sample was also included 

for each cell type. For HSV-1, VSV, PV and RV, the plates were rocked and rotated 

every 10 minutes and inocula were removed after 1 hour at 37°C. For AdV, the plates 

were rocked and rotated every 10 minutes and the inoculum was removed after 30 

minutes at 37°C. For HCV, the plates were rocked and rotated every hour and the 

inoculum was removed after 4 hours. The infected cells were then washed twice with 

cold (4°C) DMEM and overlaid with DMEM-5% FBS (HSV-1, VSV, PV) or DMEM-

10% FBS (HCV, AdV, RV). Infected cells were methionine-starved at 3 hpi (HSV-1, 

VSV, PV, AdV and RV) or 7 hpi (HCV) by replacing the media with methionine-free 

DMEM-5% FBS. After 2 hours, the cells were washed twice with warmed DMEM and 

overlaid with 4 mL (HSV-1, VSV, HCV) or 5 mL (AdV, PV, RV) of methionine-free 

DMEM-5% FBS supplemented with 42 µCi/mL L-35S-methinione (PerkinElmer, Boston, 

MA, USA). Supernatants were recovered when full cytopathic effects were observed, 
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ranging from 6 to 48 hpi. The supernatants were centrifuged at 3,200 × g at 4°C for 30 

minutes (Eppendorf 5810R centrifuge, A-4-62 rotor) to remove cell debris. The resulting 

supernatants were collected and centrifuged at 10,000 × g for 2 h at 4°C (Beckman 

Coulter J-series centrifuge, JA-14 rotor). The viral pellets were resuspended in 100 µL of 

serum-free methionine-free DMEM. For HCV, supernatants were centrifuged at 800 × g 

for 10 minutes (Eppendorf 5810R centrifuge, A-4-62 rotor) to remove cellular debris. 

The supernatant was filtered through a 0.22 µm filter and concentrated using Amicon 

100K centrifugal filters. 

 Titers of 35S-labelled viruses were determined by standard plaquing or focus-

forming assays (section 2.6). To test incorporation of 35S, 1 µL of the labelled virions or 

mock preparation were fixed in 100 µL of 100% ethanol and added to scintillation vials 

containing 4 mL of aqueous scintillant. 35S radioactivity was then determined using a 

Beckman Coulter LS 6500 scintillation counter. Virions were labeled to approximately 

0.02 cpm/pfu (HSV-1 and VSV), 1 cpm/pfu (PV), 14 cpm/pfu (RV), 7 cpm/pfu (AdV) or 

199 cpm/ffu (HCV). 

 

2.11. R18 LABELLING OF VSV, HCV, IAV, HSV-1 AND VACV  

Virions were labelled with 0.59 µM (VSV and HCV), 1.8 µM (IAV, HSV-1) or 2.7 µM 

(VACV) R18. VSV, IAV, HSV-1 (108 pfu), HCV JFH-1 (106 ffu) or VACV (106 pfu) 

virions were mixed with 1.97 µL (VSV, HCV), 5.91 µL (IAV, HSV-1) or 9.1 µL 

(VACV) of 300 µM R18 (dissolved in ethanol) in 1 mL of freshly prepared 180 mM 

Na2HPO4, 10 mM citric acid (pH 7.4) (fusion buffer) for 1 hour at room temperature on a 

rotary shaker in the dark. The labelled virions were purified through a column containing 
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4 mL of Sephadex G-100 resin (GE Healthcare). The column was pre-equilibrated with 

two washes each of approximately 12 mL of fusion buffer. Labelled virions (1 mL) were 

then added to the column and eluted with fusion buffer. Fractions of approximately 500 

µL were collected every minute for 15 minutes. The viral protein concentration in each 

fraction was determined using a Bradford assay (Bio-Rad, Hercules, CA, United States).  

Fractions containing the most viral protein were pooled and concentrated using 

Amicon 100K centrifugal filters. Labelled virions were then titrated on Vero, Huh7.5, or 

MDCK cells (section 2.5). Finally, the pooled fractions were tested for R18 incorporation 

by R18 dequenching after addition of Triton X-100 to a final concentration of 0.1% 

(VSV, IAV, HSV-1, VACV) or 0.01% (HCV), using a QuantaMaster 40 scanning 

spectrofluorometer (Photon Technology International, Birmingham, NJ, United States) 

with a 75-W xenon lamp. R18 fluorescence was excited at 560 nm and detected at 590 

nm using a model 814 switchable photon-counting/analog photomultiplier detection unit 

with an R1527 photomultiplier tube. Data were collected using FeliX32 software (Photon 

Technology International). 

 

2.12. LIPOSOME PREPARATION 

Cholesterol, β-oleoyl-γ-palmitoyl-L-α-phosphatidylcholine (POPC) and 1,2-dioleoyl-L-α-

phosphatidylcholine (DOPC) were obtained from Sigma-Aldrich. POPC liposomes were 

prepared by hydrating 2 µmol dry lipid with 1 mL of 180 mM Na2HPO4, 10 mM citric 

acid (pH 7.4), followed by vortexing. DOPC-cholesterol (1.7:1 molar ratio) liposomes 

were prepared by the hydration method. DOPC and cholesterol were dissolved and mixed 

in 500 µL chloroform, which was then evaporated; 1 mL of 180 mM Na2HPO4, 10 mM 
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citric acid (pH 7.4) was added to the resulting lipid film, and the mixture was vortexed to 

form large multilamellar liposomes. R18 was added (to a final concentration of 5 mol%) 

as required by first mixing R18 and lipids as ethanol and chloroform solutions, 

respectively. 

Large multilamellar liposomes were extruded to a diameter of 200 nm as required, 

using an Avanti liposome mini-extruder (Avanti Polar Lipids Inc., Alabaster, AL, USA) 

and according to the manufacturer instructions. Briefly, the liposome preparation was 

loaded into a glass gas-tight syringe and placed in one side of the mini-extruder. An 

empty gas-tight glass syringe was placed in the other side of the mini-extruder. The 

liposome mixture was transferred from one syringe to the other, through a polycarbonate 

membrane with pore diameter of 0.2 µm. The process was repeated such that the 

liposome mixture was passed through the membrane ten times. 

 

2.13. BINDING ASSAYS 

2.13.1 Radioactive binding assays. 35S-Methionine labeled HSV-1, VSV, HCV, PV or 

RV virions (~1 × 104 infectious particles) were exposed to EGCG, DMSO vehicle or 100 

µg/mL heparin for 10 minutes at 37°C. Next, the pre-exposed virions were adsorbed onto 

Vero (HSV-1, VSV, PV), Huh7.5 (HCV) or L929 (RV) cells for 1 hour at 4°C before 

washing three times with ice-cold PBS. Radioactivity still attached to cells was measured 

using a Beckman Coulter LS 6500 scintillation counter. Binding was calculated as cpm 

bound to cells divided by total cpm, expressed as percentage and adjusted by background. 

Percent binding was expressed relative to binding of virions exposed to vehicle control. 
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For AdV, 35S-methionine labeled virions were exposed to compound or vehicle 

for 10 minutes at 37°C, then chilled on ice and mixed with 293T cells (1 × 106 cells) in 

suspension. The suspensions were incubated in Eppendorf tubes on ice for 1 hour, and 

were mixed by gentle pipetting every 10 minutes. AdV virion-cell complexes were 

washed three times by centrifugation at 300 × g for 5 minutes at 4°C. Radioactivity still 

attached to cells was measured using a Beckman Coulter LS 6500 scintillation counter. 

Binding was calculated as cpm bound to cells divided by total cpm (in the input, washes 

and cells), expressed as percentage and adjusted by the background radioactivity of the 

mock sample. Percent binding was then expressed relative to binding of virions exposed 

to vehicle control. 

2.13.2. Fluorescence binding assays. R18-labeled HSV-1, VACV, VSV, HCV or IAV 

virions (1 × 104 infectious particles) were exposed for 10 minutes at 37°C to EGCG, 

DMSO vehicle or 100 µg/mL heparin. The exposed virions were then chilled at 4°C for 

15 minutes prior to being adsorbed onto pre-chilled Vero (HSV-1, VACV, VSV), Huh7.5 

(HCV) or MDCK (IAV) cells for 1 hour at 4°C. After three washes with cold phenol red-

free DMEM, the cells and attached virions were lysed with 0.1% Triton-X 100 to 

dequench R18. Fluorescence was excited at 560 nm using a QuantaMaster 40 

spectrofluorometer, and detected at 590 nm. Fluorescence still attached to cells after the 

washes was normalized to the fluorescence of the input virions. Binding was calculated 

as fluorescence bound to cells divided by total fluorescence. Percent binding was then 

expressed relative to binding of virions treated with vehicle control. 
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2.14. FUSION ASSAYS  

2.14.1 Virus-cell fusion. Vero, MDCK, or Huh7.5 cells were cultured in DMEM-5% 

FBS (Vero and MDCK) or DMEM-10% FBS (Huh7.5) as described previously. The cells 

were washed with phosphate-buffered saline (PBS) and incubated for less than 5 minutes 

at 37°C in 3 ml of 1X trypsin in PBS to generate cell suspensions. The cell suspensions 

were then washed twice by centrifugation in fusion buffer at 800 x g for 5 minutes at 4°C 

(Eppendorf 5810R centrifuge, A-4-62 rotor). 

R18-labelled VSV (0.60 µg viral protein containing 1 × 104 pfu) was exposed to 

compound or vehicle for 10 minutes at 39°C, and then incubated on ice for 3 minutes. 

R18-VSV was then mixed with 1 × 106 Vero cells in fusion buffer and incubated on ice 

for 30 min to allow VSV binding but not fusion. Virion-cell complexes were then washed 

with fusion buffer by centrifugation at 300 × g for 5 minutes at 4°C (Eppendorf 5810R 

centrifuge, FA45-30-11 rotor). Virion-cell pellets were resuspended in 2.5 mL of the 

same buffer. The R18-VSV-Vero cell suspension was warmed at 37°C for 5 minutes, and 

then added to a polymethacrylate cuvette (Sigma-Aldrich) pre-warmed to 37°C. 

Fluorescence was excited at 560 nm and detected at 590 nm, using a QuantaMaster 40 

scanning spectrofluorometer equipped with a 75-W xenon lamp. Emitted light was 

detected using a model 814 switchable photon-counting/analog photomultiplier detection 

unit with an R1527 photomultiplier tube, and data was collected using FeliX32 software. 

After 10 minutes, the pH of a duplicate sample was adjusted to 5.5 by adding 0.31 mL of 

500 mM citric acid, while the other duplicate was kept at pH 7.4 by adding 0.31 mL of 

180 mM Na2HPO4, 10 mM citric acid (pH 7.4) buffer. 

Percent fusion was calculated from changes in fluorescence according to: 
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% fusion = (((F5.5 - F0)/(Fmax - F0)) - ((F7.4 - F0)/(Fmax - F0))) × 100 

where F5.5 is the fluorescence at pH 5.5 at each time point, F7.4 is the fluorescence at pH 

7.4 at each time point, F0 is the fluorescence of the complex after incubation for 10 

minutes at pH 7.4, and Fmax is the total fluorescence measured by disrupting the cells with 

Triton X-100 (to a final concentration of 0.1%). 

R18-labelled IAV, HCV or occasionally VSV (1 x 104 infectious particles) were 

exposed to compound or vehicle in a volume of 100 µL for 10 minutes at 37°C and then 

incubated on ice for 3 minutes. The virions were then diluted 3.5-fold by mixing with 1 x 

106 pre-chilled MDCK (IAV), Huh7.5 (HCV) or Vero (VSV) cells in 250 µL of phenol 

red-free DMEM and incubated on ice for 30 minutes (IAV) or 60 minutes (HCV, VSV) 

to allow binding but not fusion. Alternatively, virions were first adsorbed onto cells for 1 

hour at 4°C, and then exposed to the compound or DMSO vehicle for 10 minutes at 

37°C. The virus-cell complexes were then washed twice with phenol red-free DMEM by 

centrifugation at 300 × g for 5 minutes at 4°C (Eppendorf 5810R centrifuge, FA45-30-11 

rotor). The virus-cell pellets were resuspended in 2.38 mL of fusion buffer pre-chilled to 

4°C. Fusion was triggered by increasing the temperature to 37°C and lowering the pH to 

5 (IAV) or 5.5 (HCV, VSV) by adding 500 mM citric acid. For HCV fusion, pH 4, 4.5, 5, 

and 6 were also tested. An identical sample was kept at pH 7.4 by adding fusion buffer, 

and an additional non-fusion control was maintained at 4°C (pH 7.4). Equivalent aliquots 

were removed at discrete time points, fixed with 10% formalin, and transferred to 

polymethacrylate cuvettes. Fluorescence was excited at 560 nm and detected at 590 nm, 

using a QuantaMaster 40 scanning spectrofluorometer and FeliX32 software. Percent 

fusion was calculated from changes in fluorescence according to the following equation: 
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percent fusion = ((F5.5/Fmax)/(Finitial/Fmax)) × 100, where F5.5 is the fluorescence at pH 5.5 

at each time point, Finitial is the initial fluorescence of the complex, and Fmax is the total 

fluorescence after Triton X-100 lysis to a final concentration of 0.01% (HCV) or 0.1% 

(VSV, IAV). F7.4, the fluorescence at pH 7.4 for each time point, is also shown on the 

graphs. 

2.14.2 Virus-liposome fusion. VSV virions (107 pfu) were labeled with 20 µM of the 

membrane fluidity probe DPH by incubating the virion-DPH mixture for 10 minutes at 

37°C. DPH-labeled virions were then treated with compound or vehicle for 10 minutes at 

37°C in a total volume of 100 µL. DOPC/cholesterol liposomes (200 nm diameter; 0.3 

µmol) were then added to a final volume of 200 µL. Fusion was triggered by increasing 

the temperature to 37°C and lowering the pH to 5. The polarization of DPH fluorescence 

was then tested, as a measure of fusion. DPH polarization is increased in membranes with 

higher rigidity/lower fluidity (such as the virion envelope) and decreased in membranes 

with lower rigidity/higher fluidity (such as the liposome membrane). 

2.14.3. Liposome-cell fusion. R18-labeled DOPC-cholesterol liposomes (2 nmol) were 

exposed to 0.1% DMSO or 2 µM aUY11 in a minimal volume for 10 minutes at 37°C 

and then incubated on ice for 3 minutes. The exposed liposomes were then mixed with 1 

× 106 pre-chilled Vero cells in fusion buffer and incubated on ice for 10 min. The 

liposome-cell mixtures were then diluted to 2.38 mL in fusion buffer and warmed to 

37°C prior to transfer to polymethacrylate cuvettes. Fusion was triggered by increasing 

the temperature to 37°C and lowering the pH to 5.5 by addition of 500 mM citric acid. 

An identical sample was kept at pH 7.4 by adding fusion buffer. Fluorescence was 

excited at 560 nm and detected at 590 nm, using a QuantaMaster 40 scanning 
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spectrofluorometer and FeliX32 software. Percent fusion of liposomes was calculated 

from changes in fluorescence according to the following equation: percent fusion = ((F5.5 

- Finitial)/(Fmax - Finitial) / (F7.4 - Finitial)/(Fmax - Finitial)) × 100, where F5.5 is the fluorescence 

at pH 5.5 at each time point, F7.4 is the fluorescence at pH 7.4 at each time point, Finitial is 

the fluorescence of the complex after incubation for 10 min at pH 7.4 at 37°C, and Fmax is 

the total fluorescence after lysis with Triton X-100 (at a final concentration of 0.1%). 

 

2.15. FLUIDITY ASSAYS  

DPH was dissolved in tetrahydrofuran and then added to DOPC-cholesterol liposomes 

(20 nmol) or HCV virions (105 ffu) to a final concentration of 2 µM. To allow insertion 

of DPH into the hydrophobic core of the lipid membrane, the liposome-DPH mixture was 

incubated for 10 minutes at 37°C. The DPH-labeled liposomes were then incubated with 

compound, vehicle or cholesterol (as a control) for 10 minutes at 37°C and transferred to 

cuvettes pre-warmed to 37°C. DPH fluorescence was excited at 350 nm, and emission 

was measured at 450 nm using a QuantaMaster 40 scanning spectrofluorometer and 

FeliX32 soft-ware. Fluorescence polarization (P) was calculated according to the 

following equation: P = (IVV – GIVH)/(IVV + 2GIVH), where IVV and IVH are the intensities 

obtained with polarizers aligned parallel and perpendicular to the polarized excitation 

beam, respectively. G is the instrument grating correction factor, which is the intensity 

ratio of the vertical to horizontal emitted fluorescence (G = IHV/IHH) obtained when the 

sample is excited with horizontally polarized light. 
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2.16. DIFFERENTIAL SCANNING CALORIMETRY  

DSC experiments were performed by Drs. Richard and Raquel Epand (McMaster 

University, Hamilton, Canada). Mixtures of dielaidoylphosphatidylethanolamine (DEPE) 

(Avanti Polar Lipids, Alabaster, AL) and aUY11 were made by dissolving the 

components in chloroform-methanol (2:1). The solvent was then evaporated under 

nitrogen gas and placed in a vacuum desiccator for 3 hours. The dried films were 

hydrated with 0.8 mL of 20 mM PIPES, 0.14 M NaCl, 1 mM EDTA, pH 7.4, by 

vortexing; degassed; and placed in the sample cell of a Nano II calorimeter (Calorimeter 

Sciences Corp., Linden, UT, USA), and buffer was placed in the reference cell. The 

lamellar-to-inverted-hexagonal phase transition temperature was evaluated at a heating 

scan rate of 1°C/minute. The cell volume was 0.34 mL, and the total lipid concentration 

was 2.5 mg/mL. The results were plotted in ORIGIN 7.0 and analyzed with DA-2 

(Microcal, Inc., Northampton, MA, USA). 

 

2.17. FLUORESCENCE SPECTRA  

Emission spectra of aUY11 or dUY11 were collected using the QuantaMaster 40 

spectrofluorometer. aUY11 or dUY11 was added to 2.5 mL of fusion buffer, or to 2.5 mL 

of 1-octanol (Sigma-Aldrich), to a final concentration of 48 nM or 0.48 nM, respectively, 

in a polymethacrylate cuvette pre-warmed to 37°C. Alternately, aUY11 or dUY11 was 

added to 107 PFU of VSV, HSV-1 or -2, or IAV; 106 FFU of HCV; or 2 nmol POPC 

liposomes in 2.5 mL of fusion buffer at 37°C to a final concentration of 48 nM. For other 

experiments, approximately 104 IAV, HCV, or HSV-1 virions produced by cells treated 

with vehicle, or equivalent volumes from cells treated with aUY11, were diluted to 2.5 
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mL in fusion buffer. Emission spectra were obtained at the maximum excitation 

wavelength, 455 nm, and examined from 475 to 575 nm. Spectra were normalized to the 

highest fluorescence signal intensity obtained for all conditions. 

 

2.18. TRYPTOPHAN FLUORESCENCE QUENCHING  

HSV-1, VSV, RV or AdV virions (106 pfu) were exposed to 250 µM EGCG or DMSO 

vehicle in a volume of 100 µL for 10 minutes at 37°C, in serum-free DMEM at pH 7.2. 

Treated virions were then diluted 25-fold to 2.5 mL and added to polymethacrylate 

cuvettes. Tryptophan fluorescence was excited at 280 nm using the QuantaMaster 40 

spectrofluorometer. Emission spectra were obtained from 300 nm to 450 nm. Spectra 

were normalized to the highest fluorescence signal intensity within each each sample. 

 

2.19. CONFOCAL MICROSCOPY 

Near-confluent Vero cells were seeded onto 22 × 22 mm coverslips (Fisher) placed in 6-

well plates and incubated for ~16 h at 37°C. The cells were first incubated with 250 nM 

PKH26-GL fluorescent dye (Sigma-Aldrich) for 10 minutes at 37°C and were then 

washed twice with 2 mL/well of room temperature DMEM. The washed cells were 

exposed to 2 µM aUY11 or dUY11 for 1, 5, 15, 40, or 120 min at 37°C. The RAFIs were 

removed, and the cells were washed twice with 2 mL/well of DMEM at room 

temperature. The cells were then fixed with 10% formalin for 30 minutes at room 

temperature, washed once with 1X PBS at room temperature, and mounted onto glass 

slides using Mowiol mounting medium (10% Mowiol (Sigma-Aldrich) in 25% glycerol 

in 0.2 M phosphate buffer, pH 7.4). 
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Confocal microscopy was performed using a Leica SP5 laser scanning confocal 

microscope with a 100X oil immersion (numerical aperture, 1.44) lens. Images were 

obtained using a 5-mW argon laser (458 nm) to excite the RAFIs fluorescence and a 1-

mW HeNe laser (543 nm) to excite PKH26 fluorescence. Emitted fluorescence was 

detected with band-pass filters of 470 to 535 nm (RAFIs) and 560 to 650 nm (PKH26). 

The pinhole aperture was set to 1.0 Airy unit for each channel. The images were collected 

as 8-bit images using Leica Application Suite (LAS) microscope software and adjusted 

for contrast and brightness in Microsoft PowerPoint. Scale bars were added using LAS or 

Fiji ImageJ (NIH, Bethesda, MD, USA) software.  

 

2.20. HEPARIN COLUMN CHROMATOGRAPHY  

R18-labelled HSV-1 virions (105 pfu) were loaded onto a 1 mL HiTrap heparin sepharose 

column (GE Healthcare Life Sciences, Westborough, MA, USA) in 10 mM sodium 

phosphate (pH 7.4) containing 0.3 M NaCl (loading buffer). The column was then 

washed with 10 mL of loading buffer to remove unbound virions. The heparin-bound 

virions were then eluted with soluble heparin or equivalent concentrations of EGCG, EC 

or sialic acid in loading buffer. Virions that were still bound after the elution were eluted 

with 2 M NaCl in 10 mM sodium phosphate (pH 7.4). The flow rate was 1 mL/minute for 

washes and elution. Eluted virions were detected by R18 fluorescence after lysis by 0.1% 

Triton X-100. 

 HCV virions (105 ffu) were loaded onto the heparin column in 10 mM sodium 

phosphate (pH 7.4). The column was washed with 10 mL of the same buffer, and eluted 

with heparin, EGCG, EC or sialic acid in the same buffer. Virions still bound to the 
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column were then eluted with 2 M NaCl in 10 mM sodium phosphate (pH 7.4). Fractions 

were concentrated using Amicon 100K ultrafiltration tubes, and analyzed for HCV RNA 

(section 2.23). Results are expressed as the percentage of the bound virions that were 

eluted by the compounds. 

 

2.21. HEMAGGLUTINATION ASSAY 

IAV virions (PR8, USSR, Aichi and PC strains) were exposed to 100 µM EGCG or EC, 

50 µg/mL heparin, 50 µg/mL sialic acid or equivalent volume of DMSO in DMEM for 

15 minutes at 37°C. The virions were then serially diluted 2-fold in DMEM in 96-well 

round-bottom plates. 50 µL of a 0.5% suspension of chicken erythrocytes was added to 

each well and mixed by pipetting up and down. The plates were incubated for 1-2 hours 

at room temperature before scanning. 

 

2.22. HEMOLYSIS ASSAY  

Rabbit erythrocytes were originally obtained from Hemostat Laboratories (Dickson, CA, 

USA) and provided by Christopher Lohans (Dr. John Vederas, University of Alberta, 

Edmonton, AB, Canada). Defibrinated rabbit erythrocytes (1 mL) were diluted to 20 mL 

in PBS and washed three times by centrifugation at 1,000 × g for 5 minutes (Eppendorf 

5810R centrifuge, A-4-62 rotor). 100 µL of the 5% suspension of erythrocytes was added 

to each of twelve wells in a 96-well plate and mixed with EGCG or vehicle control (50 

µL). The plate was incubated at 37°C for 90 minutes. At 0 min, 30 min, 60 min and 90 

min, 20 µL aliquots were removed. To each aliquot, 200 µL of fresh PBS was added and 

the erythrocytes were pelleted by centrifugation at 1,000 × g for 5 minutes (Eppendorf 
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5810R centrifuge, A-4-62 rotor). The supernatant was transferred to a new well in a 96-

well plate and the absorbance of the haemoglobin was measured at 415 nm. As a control 

for lysis, 50 µL of Triton X-100 (0.1%) was added to one of the wells. 

 

2.23. RNA ISOLATION, cDNA SYNTHESIS AND PCR AMPLIFICATION 

2.23.1 RNA isolation. IAV RNA segments from EGCG-resistant or vehicle-treated 

plaques were isolated using the High Pure Viral RNA Kit (Roche), according to the 

manufacturer instructions. Briefly, 40 µL of IAV was diluted to 200 µL in DMEM and 

mixed with 400 µL of binding buffer (2.5 M guanidine-HCl, 5 mM Tris-HCl, 30% (w/v) 

Triton X-100, pH 6.6) supplemented with 50 µg of PolyA carrier RNA. The mixture was 

incubated at room temperature for 10 minutes, then transferred to a filter tube assembly 

and centrifuged at 8,000 × g for 30 seconds (Eppendorf 5810R centrifuge, FA45-30-11 

rotor). The filter-bound RNA was then washed with inhibitor removal buffer (5 M 

guanidine-HCl, 20 mM Tris-HCl, 38% (v/v) ethanol, pH 6.6) by centrifugation at 8,000 × 

g for 1 minute (Beckman Coulter Microfuge 18, F241.5P rotor). The RNA was then 

washed twice with wash buffer (20 mM NaCl, 2 mM Tris-HCl, 80% (v/v) ethanol, pH 

7.5) by centrifugation at 8000 × g for 1 minute. Residual ethanol was removed by 

centrifugation at 13,000 × g for 15 seconds. RNA was then eluted in nuclease-free water 

by centrifugation at 8,000 × g for 1 minute. 

HCV RNA from virus preparations or heparin column elutions was isolated using 

the Roche High Pure Viral RNA Kit, as described above. Cell-associated HCV RNA was 

harvested using TRIzol, following the manufacturer’s instructions. The cell media was 

removed, and 1 mL/10 cm2 of TRIzol reagent was added. Cells were lysed by pipetting 
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up and down several times, and samples were incubated for 5 minutes at room 

temperature. Next, 0.2 mL of chloroform (per 1 mL TRIzol) was added and the tubes 

were shaken vigorously for 15 minutes. The samples were then centrifuged at 12,000 × g 

for 15 minutes at 4°C (Eppendorf 5810R centrifuge, FA45-30-11 rotor). The upper 

aqueous layer (containing RNA) was removed by careful pipetting. RNase-free glycogen 

(5 µg) was added as a carrier, and then 0.5 mL of 100% isopropanol (per 1 mL TRIzol) 

was added. The samples were incubated for 10 minutes at room temperature, and then 

centrifuged at 12,000 × g for 10 minutes at 4°C (Eppendorf 5810R centrifuge, FA45-30-

11 rotor). The resulting RNA pellet was washed with 1 mL of 75% ethanol (per 1 mL 

TRIzol) and centrifuged at 7,500 × g for 5 minutes at 4°C (Eppendorf 5810R centrifuge, 

FA45-30-11 rotor). The RNA pellets were air-dried for 5-10 minutes, resuspended in 50 

µL of RNase-free water, and incubated at 55-60°C for 15 minutes before storage at -

80°C. 

2.23.2 cDNA synthesis. The IAV RNA segments were transcribed to cDNA using M-

MLV RT and an IAV universal primer (UniFlu, 5′-AGCRAAAGCAGG-3′), which is 

complementary to the 3′ end of all IAV H1N1 and H3N2 RNA segments (Chan et al., 

2006).  The RNA, dNTPs (10 mM) and UniFlu primer (2 µM) were mixed together and 

incubated at 65°C for 5 minutes, then chilled on ice. Next, first-strand buffer (50 mM 

Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2), DTT (0.1 M), RNaseOUT (40 U) and M-

MLV RT (200 U) were added. Using a T100 thermocycler (Bio-Rad), the reaction was 

incubated for 50 minutes at 37°C, and terminated by heating at 75°C for 15 minutes. 

 HCV RNA was transcribed to cDNA using Superscript III reverse transcriptase 

and an HCV-specific primer (5′-GTG TTT CTT TTG GTT TTT CTT TGA GGT TTA 
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GG-3′) (Santer et al., 2013). cDNA was synthesized as described for IAV RNA, except 

Superscript III RT (200 U) was used instead of M-MLV RT and the reaction was 

incubated for 50 minutes at 55°C instead of 37°C. 

2.23.3 PCR of IAV hemagglutinin. To PCR-amplify the IAV hemagglutinin (HA) gene, 

primers corresponding to the 5′ and 3′ ends of IAV PR8 HA (PR8HAfwd, 5′-GCA GGG 

GAA AAT AAA AAC AAC-3′ and PR8HArev, 5′-GGG TGT TTT TCC TCA TAT 

TTC-3′) and Aichi HA (AichiHAfwd, 5′-CAA AAG CAG GGG ATA ATT CTA-3′ and 

AichiHArev, 5′-ACA AGG GTG TTT TTA ATT ACT-3′) sequences were used. 10X 

Pfx50 PCR mix (supplied with the polymerase), dNTPs (10 mM each), each primer (10 

µM each), template DNA (2 µL of the cDNA) and Pfx50 DNA polymerase (5 U/µL) 

were mixed together for a final concentration of 1X PCR mix, dNTPs (0.3 mM each), 

primers (0.3 µM each) and Pfx50 DNA polymerase (5 U). The following amplification 

conditions were used in a T100 thermocycler (Bio-Rad):  2 minutes at 94°C, 20 cycles of 

(20 seconds at 94°C, 30 seconds at 47°C, 5 minutes at 68°C) and a final extension of 

68°C for 5 minutes. Primers and PCR conditions are listed in table 2.6 and table 2.7, 

respectively.  

2.23.4 Agarose gel electrophoresis. When necessary, PCR products were resolved by 

agarose gel electrophoresis, using a 1.2% agarose gel. Briefly, 1.2 g of agarose was 

dissolved in 100 mL of Tris-Acetate-EDTA (40 mM Tris-acetate, 1 mM EDTA) by 

heating in a microwave. The agarose was allowed to cool to approximately 50°C prior to 

addition of ethidium bromide (0.5 µg/mL), and then the solution was poured into a 

casting tray. DNA samples were resuspended in 6X orange DNA loading dye (Thermo 

Scientific) and loaded into the wells along with GeneRuler 1 kb DNA ladder (Fermentas). 
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The gel was electrophoresed at 85 V for 60 minutes, using a Bio-Rad Wide Mini-Sub 

Cell GT Cell horizontal gel apparatus. Ethidium bromide staining was visualized using a 

Gel-Doc XR+ Imager (Bio-Rad). 

2.23.5 Purification of PCR products for sequencing. PCR product for sequencing was 

separated by agarose gel electrophoresis as described in section 2.23.4, except with low 

melting point agarose. Bands of the desired size (1770 base pairs for IAV HA) were then 

excised from the gel, and DNA was eluted from each gel piece using the Qiagen 

MinElute Gel Extraction Kit (Qiagen, Mississauga, ON, Canada). Briefly, 3 volumes of 

the provided buffer QC (containing guanidine hydrochloride) were added to 1 volume of 

gel (assuming that 100 mg gel is equivalent to 100 mL). The gel slice was dissolved at 

50°C for 10 minutes. Once dissolved, 1 volume of isopropanol was added. The samples 

were applied to a MinElute column and centrifuged at 18,000 × g (Eppendorf 5810R 

centrifuge, FA45-30-11 rotor) at room temperature for 1 minute. DNA bound to the 

column was washed once with 500 µL of buffer QC and centrifuged at 18,000 × g for 1 

minute. Next, 750 µL of Buffer PE was added to the column and incubated at room 

temperature for 5 minutes prior to centrifugation at 18,000 × g for 1 minute. The 

flowthrough was discarded, and the tubes centrifuged again at 18,000 × g for 1 minute to 

remove residual ethanol. DNA was then eluted in 10 µL of elution buffer (10 mM Tris-

Cl, pH 8.5) by centrifugation at 18,000 × g for 1 minute. DNA concentrations were 

determined using a BioDrop DUO UV/vis spectrophotometer (Isogen Life Science). 

2.23.6 Quantitative real-time PCR (qRT-PCR). qRT-PCR was performed with a 

7900HT Fast Real-Time PCR system (Applied Biosystems) or a CFX96 Real-Time 

system (Bio-Rad) and the TaqMan universal PCR master mix, using primers amplifying 



	
   106	
  

the conserved 5′-untranslated region of the HCV genome (HCVfwd, 5′-TCT GCG GAA 

CCG GTG AGT A-3′ and HCVrev, 5′-GTG TTT CTT TTG GTT TTT CTT TGA GGT 

TTA GG-3′). The HCV-specific detection probe was 5′-6-FAM-CAC GGT CTA CGA 

GAC CTC CCG GGG CAC-TAMRA-3′ (HCVprobe). Ten-fold dilutions from 101 to 106 

copies of a linearized plasmid containing the sequence of HCV JFH-1 kindly provided by 

Justin Shields (University of Alberta, Edmonton, AB, Canada) were used to generate a 

standard curve for quantitation. 

 

2.24. CHOLESTEROL ASSAY 

Cholesterol amounts were determined using the Amplex Red Cholesterol Assay (catalog 

number A12216, Molecular Probes). Amplex Red reagent (20 mM), Reaction Buffer 

(1X; 0.1 M potassium phosphate, 0.1 M NaCl, 5 mM cholic acid, 0.1% Triton X-100, pH 

7.4), horseradish peroxidase (200 U/mL), cholesterol oxidase (200 U/mL) and cholesterol 

esterase (200 U/mL) were prepared in sterile, deionized H2O according to the 

manufacturer instructions. Cholesterol standards (ranging from 0.2 µM to 20 µM) and 

samples were diluted in 50 µL in 1X Reaction Buffer and each dilution was mixed with 

50 µL of 300 µM Amplex Red reagent containing 2 U/mL horseradish peroxidase, 2 

U/mL cholesterol oxidase and 0.2 U/mL cholesterol esterase. The reactions were 

incubated for 30 minutes at 37°C. Cholesterol is oxidized by cholesterol oxidase to yield 

H2O2, which reacts with Amplex Red reagent to form the fluorescent resorufin. Resorufin 

fluorescence was detected using a fluorescence microplate reader (550 nm excitation and 

590 nm emission). 
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Table 2.1. Antiviral compounds  

 

 

 

 

 

Reagent name Source Catalog number 

4-(adamantan-1-
yl)phenylethynyl-2'-
deoxyuridine (dUY5) 

Drs. Alexey Ustinov and 
Vladimir Korshun (Russian 
Academy of Sciences, 

Moscow, Russia) 

N/A 

5-(Estra-1,3,5(10)-triene-17-
one-3-yl)ethynyl-2′-
deoxyuridine (dUY1) 

Drs. Alexey Ustinov and 
Vladimir Korshun 

N/A 

5-(Perylen-3-yl)ethynyl-
arabino-uridine (aUY11) 

Drs. Alexey Ustinov and 
Vladimir Korshun 

N/A 

5-(Perylen-3-
ylmethyloxymethyl)ethynyl-
arabino-uridine (aUY12) 

Drs. Alexey Ustinov and 
Vladimir Korshun 

N/A 

5-(Perylen-3-yl)ethynyl-2'-
deoxyuridine (dUY11) 

Drs. Alexey Ustinov and 
Vladimir Korshun 

N/A 

Epicatechin (EC) Dr. Eike Steinmann 
(Twincore, Hannover, 
Germany) 

N/A 

Epigallocatechin gallate 
(EGCG) 

Sigma-Aldrich (Oakville, ON, 
Canada) 

E4143 

Curcumin Dr. Eike Steinmann  N/A 

25-hydroxycholesterol 
(25HC) 

Sigma-Aldrich H1015 

Tetrahydrocurcumin (THC) Dr. Eike Steinmann N/A 
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Table 2.2. Chemicals  

 

 

 

 

 

 

 

 

 

Reagent name Supplier Catalog number 

Cholesterol Sigma-Aldrich (Oakville, 
ON, Canada) 

C3045 

1,2-dioleoyl-L-α-
phosphatidylcholine (DOPC) 

Sigma-Aldrich P6354 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich  D4540 

1,6-diphenyl-1,3,5-hexatriene 
(DPH) 

Sigma-Aldrich  D208000 

Heparin Sigma-Aldrich  H3393 

L-35S-Methionine Perkin Elmer (Boston, MA, 
USA) 

NEG009T005MC 

N-acetylneuraminic acid 
(sialic acid) 

Sigma-Aldrich  A0812 

Octadecyl rhodamine B 
chloride (R18) 

Molecular Probes (Life 
Technologies Inc., 
Burlington, ON, Canada) 

O-246 

β-oleoyl-γ-palmitoyl-L-α-
phosphatidylcholine (POPC) 

Sigma-Aldrich P3017 
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Table 2.3. Cell culture reagents  

 

 

 

 

 

 

 

 

Reagent name Supplier Catalog number 

Crystal Violet Sigma-Aldrich C3886 

Dulbecco’s Minimal Eagle 
Medium (DMEM) 

Invitrogen (Life 
Technologies Inc., 
Burlington, ON, Canada) 

11885 

DMEM (phenol red-free) Invitrogen 11054-001 

DMEM (Methionine-free) Invitrogen 21013-024 

Fetal Bovine Serum (FBS) PAA Laboratories (GE 
Healthcare, Westborough, 
MA, USA)  

A15-70 

Methylcellulose Sigma-Aldrich M0387 

Penicillin/Streptomycin 
(10000 U/mL) 

Invitrogen 15140-122 

Trypsin/EDTA (0.5%) Invitrogen 15400-054 

TPCK-treated trypsin  Sigma-Aldrich T1426 

UltraPure Agarose Invitrogen 16500-500 

UltraPure Low Melting Point 
Agarose 

Invitrogen 16520-050 

Table 2.2. Cell culture reagents  
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Table 2.4. Antibodies and immunostaining reagents  

 

 

 

 

 

 

 

 

Reagent name Supplier Catalog number 

Mouse IgG anti-HCV core Thermo Scientific (Rockland, 
IL, USA) 

MA1-080 

Mouse IgG anti-HCV core Enzo Life Sciences 
(Farmingdale, NY, USA) 

ALX-804-277-
C100 

Mouse IgG anti-CD81 BD Biosciences 
(Mississauga, ON, Canada) 

555675 

Biotinylated horse anti-
mouse IgG 

Vector Laboratories 
(Burlingame, CA, USA) 

BA-2000 (included 
with PK-4002) 

Goat anti-mouse IgG Alexa 
Fluor 488 

Molecular Probes A-11001 

Normal goat serum Sigma-Aldrich G9023 

Normal horse serum Vector Laboratories S-2000 (included 
with PK-4002) 

Bovine serum albumin (BSA) USA Biochemical Corp. 
(Cleveland, OH, USA) 

70195 

Ve c t a S t a i n ABC kit Vector Laboratories PK-4002 

ImmPACT SG peroxidase 
substrate 

Vector Laboratories SK-4705 

Table 2.3. Antibodies and immunostaining reagents  
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Table 2.5. Molecular biology reagents  

 

 

 

 

 

 

 

 

Reagent name Supplier Catalog number 

First-strand buffer Invitrogen Included with 
28025-013  

High pure viral RNA kit Roche (Laval, QC, Canada) 11858874001 

TRIzol Ambion (Life Technologies 
Inc., Burlington, ON, 
Canada) 

15596-026 

DTT (100 mM) Invitrogen Included with 
28025-013  

dNTP mixture set (100 mM) Invitrogen 10297-018 

RNase out (5000 U) Invitrogen 10777-019 

MinElute gel extraction kit Qiagen (Qiagen, 
Mississauga, ON, Canada) 

28604 

M-MLV RT (40000 U) Invitrogen 28025-013 

Superscript III RT (10000 U) Invitrogen 18080-044 

TaqMan universal PCR 
master mix 

Applied Biosystems (Life 
Technologies Inc., 
Burlington, ON, Canada) 

4304437 

Pfx50 DNA polymerase Invitrogen 12355-012 

Table 2.4. Molecular biology reagents  
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Table 2.6. Primers used for PCR 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer name Sequence 

UniFlu 5′-AGC RAA AGC AGG-3′  

PR8HAfwd 5′-GCA GGG GAA AAT AAA AAC AAC-3′  

PR8HArev 5′-GGG TGT TTT TCC TCA TAT TTC-3′  

AichiHAfwd 5′-CAA AAG CAG GGG ATA ATT CTA-3′  

AichiHArev 5′-ACA AGG GTG TTT TTA ATT ACT-3′ 

HCVfwd 5′-TCT GCG GAA CCG GTG AGT A-3′  

HCVrev 5′-GTG TTT CTT TTG GTT TTT CTT TGA GGT TTA GG-3′  

HCVprobe 5′-6-FAM-CAC GGT CTA CGA GAC CTC CCG GGG CAC-
TAMRA-3′  

Table 2.5. Primers used for PCR 
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Table 2.7. PCR amplification conditions 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.6. PCR amplification conditions 

PCR Cycle number Thermal conditions 

Flu PR8 HA  1 
20 
1 
1 

94°C (2 min) 
94°C (20 sec), 47°C (30 sec), 68°C (5 min) 
68°C (5 min) 
4°C (∞) 

Flu Aichi HA 1 
20 
1 
1 

94°C (2 min) 
94°C (20 sec), 45°C (30 sec), 68°C (5 min) 
68°C (5 min) 
4°C (∞) 

HCV  
qRT-PCR 

1 
1 
45 

50°C (2 min) 
95°C (10 min) 
95°C (15 sec), 60°C (1 min) 
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CHAPTER 3: CHARACTERIZATION OF A SMALL MOLECULE INHIBITOR 

OF VIRION ATTACHMENT TO HEPARAN SULFATE- OR SIALIC ACID-

CONTAINING GLYCANS 

Data in this chapter were published in the Journal of Virology and in Hepatology: 
	
  
Colpitts, C.C. and Schang, L.M. (2014) A small molecule inhibits virion attachment to 
heparan sulfate- or sialic acid-containing glycans. J. Virol. doi: 10.1128/JVI.00896-14 
 
Ciesek, S., von Hahn, T., Colpitts, C.C., Schang, L.M., Friesland, M., Steinmann, J., 
Manns, M.P., Ott, M., Wedermeyer, H., Meuleman, P., Pietschmann, T. and Steinmann, 
E. (2011) The green tea polyphenol epigallocatechin-3-gallate (EGCG) inhibits hepatitis 
C virus (HCV) entry. Hepatology 54(6): 1947-55 
 
I performed all of the experiments described in this chapter. I wrote the J. Virol. 
manuscript, with editorial contributions from Dr. Schang, and wrote the sections of the 
Hepatology paper corresponding to my experiments. 

 

3.1 INTRODUCTION 
	
  
The primary attachment of most human viruses depends on conserved low-affinity 

interactions between basic binding pockets in the virion glycoproteins and negatively 

charged heparan sulfate (HS) moieties in cellular glycosaminoglycans (GAGs) (Compton 

et al., 1993; Conti et al., 1991; Dechecchi et al., 2001; Germi et al., 2002; Leistner et al., 

2008; WuDunn and Spear, 1989; Morikawa et al., 2007; Patel et al., 1993; Zhu et al., 

1995; Bengali et al., 2009; Byrnes and Griffin, 1998). Attachment of another group of 

viruses requires similar low-affinity interactions with sialic acid (SA)-containing 

sialoglycans (SGs) (Gentsch and Pacitti, 1985; Neu et al., 2011; Weis et al., 1988; 

Nilsson et al., 2008; Reiter et al., 2011). Only a very small group of human viruses binds 

to neither HS nor SA moieties. The primary low-affinity attachment step most often 

serves to concentrate virions on the cell surface to facilitate the higher affinity 

interactions with secondary receptors. For a small group of human viruses, the glycan 
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moieties are the only known receptors.  

Attachment to glycan moieties is therefore conserved among many unrelated 

viruses. Molecules that interfere with these low-affinity interactions often have antiviral 

activities. Many such compounds act as receptor mimetics, competing for virion binding 

to cellular HS or SA moieties (Baba et al., 1988; Aguilar et al., 1999; Lin et al., 2013; 

Fazli et al., 2001; Matsubara et al., 2010). However, such competitors are restricted to 

viruses that bind to either HS or SA. No compound has yet been identified that inhibits 

the attachment of both groups of viruses, precluding the development of truly broad-

spectrum small molecule inhibitors of attachment. 

Polyphenolic compounds from green tea possess many beneficial properties, 

including anti-cancer, anti-obesity, anti-atherosclerotic, anti-inflammatory, anti-diabetic, 

antibacterial and broad antiviral effects (Cabrera et al., 2006). The most abundant of 

these polyphenols are the green tea catechins, which are predominantly comprised of 

epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and 

epigallocatechin gallate (EGCG). EGCG is responsible for many of the activities of green 

tea. For example, EGCG inhibits the attachment of cancer cells to components of the 

endothelial basement membrane, thereby preventing cancer cell metastasis (Sazuka et al., 

1995). EGCG also induces the apoptosis of cancer cells (Chen et al., 1998b) and arrests 

cell growth by targeting cell regulatory proteins, caspases, transcription factors such as 

NFκB and many signal transduction pathways (Gupta et al., 2004; Berger et al., 2001). 

Modulation of these signalling pathways, and inhibition of the activity or expression of 

lipogenic enzymes, contributes to the anti-adipogenic effects of EGCG (Moon et al., 
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2007). The effects of EGCG on glucose and lipid metabolism also have anti-diabetic 

benefits (Wolfram et al., 2006). 

Green tea catechins, in particular the gallate derivatives ECG and EGCG, also 

have antiviral activities. EGCG is the most active of them, with activities against a wide 

spectrum of viruses, including human immunodeficiency virus (HIV), influenza A (IAV), 

enterovirus 71 (EV71), adenovirus (AdV), hepatitis B virus (HBV) and clinical isolates 

of herpes simplex virus type 1 and 2 (HSV-1/-2), among others (Steinmann et al., 2013; 

Nance et al., 2009; Yamaguchi et al., 2002; Weber et al., 2003; Song et al., 2005; Xu et 

al., 2008; He et al., 2011; Isaacs et al., 2008; Isaacs et al., 2011; Kim et al., 2013). It may 

be active against HPV as well, since external genital warts, which are caused by human 

papillomavirus (HPV), are treatable with a mixture of green tea catechins (Polyphenon E) 

(Tatti et al., 2010). EGCG has been shown to inhibit the infectivity of a broad range of 

unrelated enveloped and nonenveloped viruses, including those that bind to HS and to 

SA. However, the specific antiviral mechanisms of EGCG remain unclear, as do the 

bases for its broad antiviral spectrum.  

EGCG binds to a range of proteins, including virion glycoproteins (Kawai et al., 

2003; Isaacs et al., 2008). This binding likely contributes to its ability to inhibit viral 

entry. EGCG was proposed to interact with the hemagglutinin (HA) envelope 

glycoprotein of IAV (Nakayama et al., 1993; Song et al., 2005). HA binds to SA 

terminally linked to a galactose in cell-surface glycans. Modelling studies support the 

binding of EGCG (and related galloyl analogs) to the SA-binding domain of HA, through 

hydrogen bonding and σ-π stacking interactions (Ge et al., 2014). EGCG treatment 

induces aggregation of HSV-1 gB (Isaacs et al., 2008), suggesting an interaction between 
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EGCG and gB, which binds to HS residues on cellular glycans (Laquerre et al., 1998). 

Similarly, EGCG treatment aggregates HSV-1 gD, which binds to 3O-sulfated HS (and to 

herpesvirus entry mediator (HVEM) and nectin) (Isaacs et al., 2008; O'Donnell et al., 

2010; Whitbeck et al., 1997; Di Giovine et al., 2011). EGCG inhibits binding of the HIV 

envelope glycoprotein gp120 to CD4 on cells (Kawai et al., 2003). My hypothesis is that 

the interactions of EGCG with viral glycoproteins interfere with virion attachment to both 

HS and SA. 

My objectives were to characterize the antiviral mechanisms of EGCG, in order to 

identify the basis for its broad-spectrum activity. I selected hepatitis C virus (HCV), 

vesicular stomatitis virus (VSV), Sindbis virus (SINV), vaccinia virus (VACV), HSV-1, 

adenovirus (AdV), IAV, reovirus (RV) and poliovirus (PV) as model unrelated RNA or 

DNA viruses. HCV, SIN, VACV, HSV-1 and AdV bind to HS moieties in cellular GAGs 

(Barth et al., 2003; WuDunn and Spear, 1989), but otherwise differ in their entry 

pathways, genome composition and genome replication. HCV and SINV are enveloped 

RNA viruses that fuse within endosomal compartments, whereas VACV and HSV-1 are 

enveloped DNA viruses that fuse mainly at the plasma membrane. AdV is a 

nonenveloped DNA virus that is internalized by endocytosis. IAV and RV, on the other 

hand, bind to a terminal SA linked to galactose on cellular glycans. Both are RNA viruses 

internalized by endocytotic pathways, but IAV is enveloped and RV is not. Primary 

attachment of VSV requires electrostatic interactions that likely involve HS or SA, 

although the specific details are not well characterized (Conti et al., 1991). PV requires 

neither HS nor SA for entry (Racaniello, 1996). With the exception of PV, all these 

viruses initially attach to glycan moieties, but otherwise differ in the presence or absence 
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of an envelope, their secondary receptors, the membranes they fuse to and the fusion 

mechanisms, their genome compositions (RNA or DNA), replication sites (cytoplasmic 

or nuclear), replication strategies, and other characteristics. Their collective inhibition by 

EGCG suggests an antiviral mechanism targeting their common feature of glycan binding 

during primary attachment. 
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3.2 RESULTS 

3.2.1 EGCG inhibits the infectivity of unrelated viruses that bind HS or SA. I first 

tested the effects of EGCG (Figure 3.1) on the infectivity of enveloped or non-enveloped 

RNA or DNA viruses (Figure 3.2). HCV, SIN, VSV, IAV, RV, PV, HSV-1/-2, VACV, 

mCMV or AdV virions (~200 pfu) were exposed to EGCG or DMSO vehicle in DMEM 

(pH 7.2) for 10 minutes at 37°C prior to infecting monolayers of susceptible cells. 

Inocula were removed 1 hour later and the monolayers were overlaid with appropriate 

semi-solid or liquid medium. Infected cells were incubated at 37°C in 5% CO2 until well-

defined plaques developed (VSV, SIN, RV, PV, IAV, HSV-1/-2 and VACV). 

Alternatively, foci of infected cells were identified by immunocytochemistry after 72 

hours (HCV), or LacZ or GFP expression after 24 hours (for mCMV or AdV, 

respectively).  

EGCG inhibited the infectivity of HCV, SIN, VSV, four IAV strains (H1N1 or 

H3N2), RV, HSV-1, HSV-2, mCMV, two VACV strains (WR and IHD-W) and AdV at 

low micromolar concentrations (EC50, 1.7, 8.1, 1.8, 3.9-20.3, 3.8, 0.3, 1.0, 1.7, 2.7-4.1 

and 9.3 µM, respectively) (Figure 3.2A and 3.2B). In contrast, EGCG did not inhibit the 

infectivity of PV, which does not bind to HS or SA, even at 200 µM (Figure 3.2C). 

EGCG inhibited the infectivity of all the HS- or SA-binding viruses that were tested, at 

similar low micromolar concentrations. 

We next tested epicatechin (EC) (Figure 3.1), a catechin chemically related to 

EGCG but lacking the gallate moiety, against selected unrelated enveloped RNA and 

DNA viruses. In contrast to EGCG, EC did not inhibit the infectivity of HCV, VSV, 

HSV-1, mCMV or IAV (PR8) at concentrations up to 200 µM (Figure 3.2D). These 
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findings highlight the importance of the gallate moiety or its hydroxyl groups for the 

antiviral effects of EGCG. 

3.2.2 EGCG acts directly on virions. Based on previous literature, the inhibitory effect 

of EGCG could result from effects on the target cells, rather than direct effects on the 

virions. To test this model, time-of-addition assays were performed using VSV and HSV-

1. Cells were treated with EGCG or DMSO vehicle prior to infecting them with VSV or 

HSV-1 virions. Alternatively, cells were first infected with VSV or HSV-1 virions, and 

then exposed to EGCG or DMSO vehicle for either 4 hours or 48 hours. EGCG did not 

inhibit VSV or HSV-1 plaquing under any of these conditions (Figure 3.3A and 3.3B). 

To test for the possibility that EGCG may act on cellular factors exposed only when 

virions are added, a dilution assay was used. VSV or HSV-1 virions were treated with 

EGCG and then diluted 10-fold prior to infecting cells, such that the cells were exposed 

to 10-fold lower concentrations of EGCG than the virions. This dilution did not affect the 

inhibitory activity of EGCG, further supporting the conclusion that EGCG acts directly 

on the virions (Figure 3.3C). 

3.2.3 EGCG does not disrupt membranes. EGCG inhibited the infectivity of all 

enveloped viruses we tested (as well as the non-enveloped adenovirus and reovirus). 

EGCG can undergo chemical changes such as oxidation and dimerization in solution 

(Sang 2005). One possibility, therefore, is that EGCG or its reaction products could 

disrupt the integrity of virion envelopes. To test for envelope lysis, VSV, HCV or IAV 

virions labeled at self-quenching concentrations with R18 were exposed for 10 minutes at 

37°C to EGCG or DMSO vehicle in DMEM (pH 7.2). EGCG did not induce the increase 

in R18 fluorescence that would result from dequenching if the envelopes were disrupted. 
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In contrast, and as expected, 0.1% Triton X-100 (which lyses the envelopes) did increase 

the R18 fluorescence (Figure 3.4A).  

 EGCG did not disrupt cellular membranes at relevant antiviral concentrations, 

either. Defibrinated rabbit erythrocytes were exposed to EGCG or vehicle and incubated 

for 90 minutes. At 0, 30, 60 and 90 minutes, aliquots were removed and the absorbance 

of haemoglobin in the supernatant was measured. Only the highest concentration of 

EGCG (500 µM) for longer than 30 minutes induced the increase in haemoglobin 

absorbance that results from leakage through disrupted erythrocyte membranes (Figure 

3.4B).  

3.2.4 EGCG does not affect membrane fluidity. Another possibility was that EGCG 

might modulate the fluidity of virion envelopes, which is critical for virion infectivity 

(Harada, 2005). The DPH fluorescence polarization assay was used to test envelope 

fluidity (Anggakusuma et al., 2013; Shinitzky and Inbar, 1976). In this assay, decreases 

in membrane fluidity increase the polarization of DPH fluorescence. DPH-labelled 

liposomes or HCV virions were treated with EGCG or cholesterol for 10 minutes at 

37°C. In contrast to cholesterol, which decreases membrane fluidity and was therefore 

used as a control, EGCG did not induce any increase in DPH polarization. Therefore, 

EGCG has no major effects on membrane fluidity (Figure 3.5). 

3.2.5 EGCG interacts with VSV, HSV-1, RV and AdV surface proteins. I next tested 

whether EGCG interacted with the surface proteins of VSV, HSV-1, RV or AdV. I 

obtained the fluorescence spectra of virions in the absence and presence of EGCG, using 

a wavelength of 280 nm to excite the tryptophan residues (including those in the virion 

surface proteins). The fluorescence intensity of the virions was quenched upon addition 
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of EGCG (Figure 3.6), indicating an interaction between EGCG and tryptophan residues 

in virion surface proteins.  

3.2.6 EGCG inhibits attachment of HCV, HSV-1, VACV, VSV and IAV to cells. One 

of the critical functions of virion surface proteins is attachment to cellular receptors. We 

therefore tested whether the interaction of EGCG with the virion surface proteins 

interfered with the primary attachment of virions to cells. To test this model, R18-labeled 

VSV, IAV, HCV, HSV-1 or VACV virions pre-exposed to EGCG or DMSO vehicle in 

DMEM at pH 7.2 were adsorbed onto Vero (VSV, HSV-1, VACV), MDCK (IAV) or 

Huh7.5 (HCV) cell monolayers at 4°C, to allow binding but not fusion. EGCG inhibited 

the attachment of HS-binding viruses HCV, VSV, HSV-1 and VACV to their target cells 

(EC50, 44.1 µM, 17.6 µM, 5.7 µM and 28.8 µM, respectively) (Figure 3.7A). EGCG also 

inhibited the attachment of SA-binding IAV (EC50, 78.4 µM) (Figure 3.7B). 

R18 attachment assays had not been used before. We therefore validated these 

assays by testing the effects of EGCG on binding using conventional attachment assays 

with 35S-methionine labeled virions. 35S-methionine-labeled VSV and HSV-1 virions pre-

exposed to EGCG or DMSO were adsorbed onto Vero cells at 4°C. EGCG inhibited 

binding of 35S-labelled HCV, VSV and HSV-1 to cells to a similar extent as the heparin 

control (EC50, 29.7 µM, 29.6 µM and 10.2 µM, respectively) (Figure 3.7C). We also 

used the 35S-methionine binding assay to test nonenveloped viruses. EGCG inhibited the 

attachment of HS-binding AdV and SA-binding RV (EC50, 10.1 µM and 331.4 µM, 

respectively) (Figure 3.7A and 3.7B). In contrast, EGCG actually enhanced PV binding 

(~110% compared to the vehicle control) at concentrations up to 200 µM (Figure 3.7D). 
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Only at the highest concentration was PV binding inhibited, and then by only 25% 

(Figure 3.7D).  

Most unexpectedly, therefore, EGCG inhibited the attachment of virions that bind 

to either HS (HSV-1, HCV, VSV, VACV, AdV) or SA (IAV, RV). EGCG is thus the 

first example of a small molecule that inhibits attachment of HS- and SA-binding viruses. 

3.2.7 EGCG does not directly inhibit HCV, IAV or VSV fusion. If EGCG inhibits 

attachment, then it should also inhibit fusion, which occurs after attachment. I first tested 

fusion of IAV and VSV, which are triggered by low pH to fuse to endosomal membranes 

after clathrin-mediated endocytosis. These three viruses represent different classes of 

fusion proteins. Virions labelled with self-quenching concentrations of R18 were exposed 

to EGCG or DMSO vehicle in phenol red-free DMEM at pH 7.2 prior to mixing with 

MDCK (IAV) or Vero (VSV) cells. Fluorescence was dequenched by approximately 10% 

for virions treated with DMSO vehicle, but dequenching was inhibited to background 

levels when virions were treated with EGCG prior to adding them to cells (Figure 3.8). 

These results could indicate that EGCG inhibits fusion as well as attachment. Therefore, 

we next tested whether EGCG directly inhibited fusion itself, independently of its effects 

on virion attachment. Virions were first allowed to attach to cells at 4°C prior to 

treatment with EGCG. Under these conditions, EGCG did not inhibit fusion (Figure 3.8), 

in contrast to compounds that inhibit fusion directly (Chapter 4, Colpitts et al., 2013). 

The effects of EGCG on entry, therefore, are at a step prior to fusion, such as binding. 

I developed a fluorescence dequenching assays to test fusion between HCV JFH-1 

virions and Huh7.5 cells. I first tested whether the requirements for HCV fusion matched 

the requirements for HCV infectivity. HCV JFH-1 virions labeled at self-quenching 
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concentrations of R18 were mixed with Huh7.5 cells. Fusion was triggered by low pH, 

with optimal fusion expectedly occurring at pH 5 (Figure 3.9A). Furthermore, HCV 

fused to Huh7.5 cells but not to Vero cells (Figure 3.9B). Finally, I tested whether fusion 

required CD81, one of the known receptors for HCV. Huh7.5 cells were either pre-treated 

with an anti-CD81 monoclonal antibody, or treated with the antibody after HCV virion 

attachment. Fusion was inhibited only when cells were treated with the CD81 antibody 

after attachment (Figure 3.9C), which is consistent with the involvement of CD81 in 

post-binding entry steps (Bertaux and Dragic, 2006; Farquhar et al., 2012). Therefore, the 

requirements for fusion in our assay match the known requirements for HCV infectivity, 

which validates its use to test HCV fusion. I used the assay to test whether EGCG 

inhibited the fusion of HCV. R18-labelled HCV JFH-1 virions were exposed to EGCG or 

DMSO vehicle prior to mixing with Huh7.5 cells. Fluorescence was dequenched by 

approximately 18% for HCV virions treated with DMSO vehicle, but by less than 5% for 

HCV virions treated with EGCG (Figure 3.9D). 

3.2.8 EGCG competes with heparin for virion binding. The primary, low-affinity 

attachment of many viruses, including all those we found to be inhibited by EGCG, is to 

HS or SA moieties in cellular glycans. We proposed as a model that EGCG might, most 

unexpectedly, compete with both HS and SA moieties for virion binding. To test this 

model, we first used heparin affinity chromatography. R18-labelled HSV-1 (105 pfu) or 

unlabeled HCV (105 ffu) was loaded onto a heparin column. The column was then 

washed to remove unbound virions. Bound virions were eluted with equivalent 

concentrations of soluble heparin, SA, EGCG or EC. The eluted virions were detected by 

R18 fluorescence (HSV-1) or RNA (HCV). EGCG eluted the HSV-1 virions from the 
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heparin column very much like the heparin control. Approximately 75% of bound virions 

were eluted by 0.5 mg/mL EGCG or heparin, and 50% by 0.05 mg/mL (Figure 3.10A). 

In contrast, neither sialic acid nor the inactive catechin EC (at 0.5 mg/mL) eluted the 

HSV-1 virions (Figure 3.10A). EGCG (0.5 mg/mL) also eluted HCV virions bound to 

the heparin column, as did heparin (Figure 3.10B), whereas neither sialic acid nor EC did 

(Figure 3.10B). 

3.2.9 EGCG competes with sialic acid to inhibit hemagglutination. The binding of 

IAV hemagglutinin to sialic acid agglutinates red blood cells. If EGCG inhibits IAV 

binding to sialic acid moieties in cellular glycans, then it should inhibit hemagglutination. 

We exposed IAV virions (H1N1 and H3N2 strains) to 100 µM (50 µg/mL) EGCG or EC, 

50 µg/mL heparin or equivalent volume of DMSO in DMEM for 15 minutes at 37°C. 

The treated virions were then tested for their ability to hemagglutinate chicken 

erythrocytes. Treatment with EGCG inhibited hemagglutination by all four IAV strains 

by four-fold (Table 3.1, Figure 3.11). As expected, treatment with heparin or EC had no 

effects on hemagglutation (Table 3.1, Figure 3.11). Treatment with monomeric sialic 

acid only partially inhibited hemagglutination, as expected (Fazli et al., 2001; 

Matrosovich and Klenk, 2003; Sun, 2007; Matsubara et al., 2010; Reuter et al., 1999), 

and not to the same extent as EGCG (Figure 3.11). 

3.2.10 EGCG treatment selects for resistant IAV variants with mutations in HA. 

IAV PR8 (H1N1) and Aichi (H3N2) were serially passaged in the presence of increasing 

concentrations of EGCG. For both strains, viral titers recovered fully (to vehicle-treated 

control levels) after 5 passages (Tables 3.2 and 3.3, Figure 3.12). Resistant variants 

from passage 6 were plaque-purified. To identify mutations conferring resistance, the HA 



	
   126	
  

gene was PCR-amplified and sequenced. For IAV PR8, the T434I substitution was 

conserved in all EGCG-resistant sequences (Figure 3.13A). For IAV Aichi, the R453G 

substitution was conserved in all EGCG-resistant sequences (Figure 3.13B). 

Interestingly, these are both non-conservative mutations from polar or charged amino 

acids to hydrophobic amino acids. Examination of HA crystal structures (PR8, protein 

data bank 1RU7; Aichi, protein data bank 3VUN) in the pre-fusion neutral pH 

conformation (Gamblin et al., 2004), showed that both of these mutations map to the 

HA2 stalk domain of HA (Figure 3.14A and 3.14B).  

3.2.11 Other galloylated esters inhibit viral infectivity by similar mechanisms. Based 

on our observations that the gallate moiety is necessary for antiviral activity, I next tested 

four alkyl gallates and a pentahydroxy gallate compound. Alkyl gallate derivatives ethyl 

gallate (EG), propyl gallate (PG), octyl gallate (OG) and lauryl gallate (LG) (Figure 3.1) 

inhibited the infectivity of HCV, VSV, HSV-1 and IAV, when virions were pre-exposed 

for 10 minutes at 37°C. Potency depended on alkyl chain length. For HCV, the EC50 were 

2.6, 50.5, 12.3, 0.8 and 0.8 µM for EGCG, EG, PG, OG and LG, respectively. For VSV, 

the EC50 were 3.3, 132.6, 121.8, 6.8 and 2.8 µM for EGCG, EG, PG, OG and LG, 

respectively. For HSV-1, EC50 were 0.1, 119.4, 146.8, 1.0 and 0.9 µM for EGCG, EG, 

PG, OG and LG, respectively. For IAV, the EC50 were 9.0, 20.5, 41.5, 0.8 and 4.1 µM for 

EGCG, EG, PG, OG and LG, respectively (Table 3.4, Figure 3.15A). Pentagalloyl 

glucose (PGG), the pentahydroxy gallic acid ester of glucose (Figure 3.1), inhibited the 

infectivity of HCV (EC50, 0.05 µM) at ~30-fold lower concentrations than EGCG (EC50, 

1.7 µM), greater than any of the alkyl gallate derivatives (Table 3.4, Figure 3.15B).  
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The alkyl gallates inhibited HCV binding, with IC50 of 570 (EG), 550 (PG), 1.2 

(OG) and 1.2 (LG) µM, compared to 41.7 µM for EGCG (Figure 3.16A). The 

pentagalloylated PGG inhibited binding most potently, with an EC50 of 0.1 µM (Figure 

3.16B). PGG inhibits HCV fusion when virions are pre-treated (Figure 3.16C), which is 

consistent with our findings for EGCG (Figure 3.8A).  
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3.3 DISCUSSION 

EGCG was already known to inhibit the infectivity of many unrelated viruses, including 

important human pathogens (Yamaguchi et al., 2002; Weber et al., 2003; Nance et al., 

2009; Song et al., 2005; Xu et al., 2008; Isaacs et al., 2008; Calland et al., 2012; Chang 

et al., 2003; He et al., 2011; Ho et al., 2009; Kim et al., 2013) (Table 3.4). I tested 

additional viruses, including HCV and VACV. I also showed that EGCG acts directly on 

the virions to inhibit their entry into cells (Ciesek et al., 2011; Colpitts and Schang, 

2014). EGCG has no obvious effects on membrane integrity or fluidity. It does, however, 

interact with virion surface proteins to inhibit virion attachment, but not post-binding 

steps such as fusion. EGCG inhibited the attachment of several unrelated enveloped or 

nonenveloped DNA or RNA viruses that bind to either HS or SA (HCV, VSV, HSV-1, 

VACV, AdV, IAV and RV). Although these viruses differ in their secondary receptors, 

internalization pathways, sites and mechanisms of fusion, genome composition, 

replication strategies and replication sites, they do have in common their primary 

attachment to modified saccharide moieties in cellular glycans. 

The primary attachment of many unrelated viruses (including HCV, HSV-1 and 

others we tested) is to HS moieties in cellular glycans. Another group of viruses, 

including IAV, RV, rotavirus, enteroviruses and Sendai virus, depend on binding to SA-

containing glycans (Weis et al., 1988; Nilsson et al., 2008; Nokhbeh et al., 2005; Isa et 

al., 2006; Gentsch and Pacitti, 1985; Reiter et al., 2011; Villar and Barroso, 2006; Scott 

et al., 2005). Treatment with heparin or related molecules inhibits the attachment of 

viruses that bind to HS moieties, such as HCV and HSV-1 (Lin et al., 2013; Barth et al., 

2003; WuDunn and Spear, 1989). Treatment with sialylmimetics inhibits the attachment 
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of viruses that bind to SA moieties, such as IAV (Matrosovich and Klenk, 2003). Many 

such receptor mimetics with antiviral properties have been described. For example, 

heparin and other sulfated polysaccharides and polysulfonated compounds inhibit the 

adsorption of viruses that bind to HS moieties (Baba et al., 1988; Aguilar et al., 1999; Lin 

et al., 2013). Sialylmimetics inhibit the adsorption of IAV and other viruses that bind SA 

(Fazli et al., 2001; Matrosovich and Klenk, 2003; Sun, 2007; Matsubara et al., 2010; 

Reuter et al., 1999). Such compounds act as receptor mimics, competing with cellular HS 

or SA moieties for virion binding. However, the different binding specificities of the two 

groups of viruses has so far precluded the development of broad-spectrum primary 

attachment inhibitors active against viruses that bind to HS and those that bind to SA. 

EGCG, however, uniquely inhibits the primary attachment of both types of 

viruses. EGCG (but not SA) competed with heparin for HSV-1 and HCV virion binding, 

as shown by heparin column chromatography. EGCG (but not heparin) inhibited IAV 

hemagglutination, which requires interaction of IAV HA with SA residues on 

erythrocytes (Haff and Stewart, 1965). In contrast, EGCG did not inhibit the infectivity of 

PV, which does not require binding to HS or SA moieties (Racaniello, 1996). These 

findings support our model that EGCG unexpectedly competes with both HS and SA 

moieties for virion binding. EGCG is the first example of a small molecule that similarly 

inhibits the attachment of viruses that bind to HS and to SA. 

EGCG has been reported to inhibit the infectivity of many unrelated viruses, 

including the HS-binding HIV, AdV, HBV, HSV-1/-2 and HCV, and the SA-binding 

IAV and enterovirus 71. The specific antiviral mechanisms of EGCG have been unclear, 

and different mechanisms have even been proposed for different viruses (reviewed by 
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Steinmann, 2013).	
  Most of the previously reported activities of EGCG, however, are 

consistent with the mechanism proposed here. EGCG was shown to be a strong inhibitor 

of HIV replication (Fassina et al., 2002; Vives et al., 2005), although the mechanisms 

were not identified. EGCG was later shown to inhibit recombinant gp120 binding to 

CD4+ T cells (Kawai et al., 2003). Yamaguchi et al (2002) also observed that EGCG 

inhibited HIV-1 binding to cells, although at 100 µM or higher concentrations 

(Yamaguchi et al., 2002). Specific effects of EGCG on HIV-1 gp120 binding to cellular 

HS were not tested. EGCG was shown to interact with the HSV-1 glycoproteins gB and 

gD to inhibit viral infectivity (Isaacs et al., 2008). Interestingly, gB interacts with HS and 

gD with 3O-sulfated HS (Herold et al., 1991; O'Donnell et al., 2010). The effects of 

EGCG on gC, which also binds to HS (Herold et al., 1991), were not investigated.  

The activity of EGCG against IAV, a SA-binding virus, has been described in 

several publications. EGCG inhibited the infectivity of influenza A and B viruses to 

MDCK cells (Nakayama et al., 1993). EGCG prevented influenza virions from adsorbing 

to MDCK cells and inhibited haemagglutination (Nakayama et al., 1993; Song et al., 

2005), as we confirmed. EGCG was shown to directly inhibit neuraminidase and viral 

RNA synthesis (Song et al., 2005), as well as to agglutinate virions (Nakayama et al., 

1993), but only at millimolar concentrations, far higher than the concentrations required 

to inhibit virion binding. Recently, EGCG was proposed to interfere with IAV fusion, but 

not adsorption or hemagglutination, by affecting the integrity of the viral envelope (Kim 

et al., 2013). In these experiments, IAV virions were not pre-treated with EGCG, which 

is necessary for inhibition of binding and hemagglutination (our data, Song et al., 2005). 

Moreover, in contrast to Kim et al, we did not observe any major effects of EGCG on 
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IAV fusion (when virions were treated after attachment) or IAV envelope integrity at the 

concentrations required to inhibit infectivity and binding (Figure 3.4). 

EGCG was also active against nonenveloped viruses, through apparently similar 

mechanisms. EGCG inhibited AdV infection by targeting multiple steps of the viral 

replication cycle. A direct inhibition of the virion particles, by unknown mechanisms, 

was observed (Weber et al., 2003). It may well be that EGCG interacts with AdV fiber 

protein to inhibit its binding to cellular GAGs (Dechecchi et al., 2000). EGCG also 

inhibited the infectivity of rotavirus and enteroviruses, which was attributed to 

interference with virion adsorption to cells (Mukoyama et al., 1991). Rotavirus and 

enteroviruses bind to SA-containing glycans, although the specific mechanisms were not 

tested. These activities are consistent with our proposed mechanism for EGCG, although 

of course other mechanisms are also possible for other viruses. 

Isaacs et al. (2011) tested EGCG (mostly as a control for several oxidative 

dimerization products of EGCG) against a panel of enveloped and nonenveloped viruses 

(Isaacs et al., 2011). EGCG was active against the HS-binding respiratory syncytial virus 

and Semliki Forest virus, but not against PV (which does not bind heparan sulfate or 

sialic acid), consistent with our results. In those experiments, EGCG failed to inhibit 

infectivity of measles virus, coxsackie A9 virus, coxsackie B4 virus and echovirus 6 

(Isaacs et al., 2011). Although many of these viruses are thought to bind to HS, this 

binding is actually strain dependent. Some strains of these viruses require HS for binding 

and some do not (Goodfellow et al., 2001; McLeish et al., 2012; Feldman et al., 2000; 

Terao-Muto et al., 2008). Isaacs et al. did not specify which strains were tested. 

Surprisingly, Isaacs et al reported that EGCG was not active against VSV at pH 7.4 
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(Isaacs et al., 2011). In contrast, we found that EGCG inhibits VSV infectivity (Figure 

3.2; EC50, 3.3 µM) and attachment (Figure 3.6A and 3.6B; EC50, 3.0 µM and 19.6 µM, 

respectively), and prevents fusion (Figure 3.7C). Differences in experimental conditions 

(buffer, time of incubation) may explain these apparent discrepancies. The experiments 

described by Isaacs et al. were performed in phosphate-buffered saline at pH 8.0 (Isaacs 

et al., 2011), whereas we used DMEM at pH ~7.2. The pH may well affect the ionization 

of the hydroxyl groups in EGCG and affect its activity, and the different cations can help 

form or disrupt polar interactions. 

There are several possible mechanisms whereby EGCG may inhibit the 

attachment of viruses that bind to either HS or SA. A moiety of EGCG may resemble HS, 

whereas another may resemble SA-linked galactose. However, this simple mechanism 

appears unlikely. The catechins EC and epigallocatechin (EGC), which together contain 

two of the three moieties of EGCG, did not inhibit the infectivity of either HS- or SA-

binding virions (our data; Song et al., 2005; Ciesek et al., 2011; Isaacs et al., 2008). On 

the other hand, epicatechin gallate (ECG) has a similar overall shape and polarity 

distribution as EGCG, and has similar activity to EGCG against many viruses (Isaacs et 

al., 2008; Song et al., 2005). Another possibility is that EGCG may be able to interact 

with basic or polar residues in the binding pockets of both HS- and SA-binding virion 

glycoproteins. Consistently, modelling studies demonstrated that EGCG fits into the SA-

binding pocket of IAV HA, through similar interactions as SA itself (Ge et al., 2014). 

IAV PR8 (H1N1) and Aichi (H3N2) variants that were resistant to EGCG had 

mutations in the stalk domain of HA2. The mutations were non-conservative; T434I in 

the case of PR8, and R453G in the case of Aichi. The amino acids differ in their polarity, 
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charge and size. These mutations could destabilize or disrupt intra- and inter-subunit 

contacts by preventing hydrogen bonding or salt bridge interactions, thereby altering the 

overall HA structure. The mutation of Thr-434 to Ile-434 in the stalk could disrupt the 

alignment of the helix, causing subtle rearrangements in the receptor binding domains of 

HA. Arg-453 is close enough to form salt bridges with either Glu or Asp from the 

neighbouring monomer, thereby helping to hold the monomers together. Mutation of 

Arg-453 to Gly-453 would prevent formation of the salt bridges and could weaken the 

overall interaction between monomers, which may disrupt the HA trimer formation and 

alter the alignment of receptor binding domains. Alternatively, Thr-434 and Arg-453 (but 

not Ile or Gly) would be able to directly interact with EGCG by hydrogen bonding, 

suggesting that EGCG could bind to the HA2 region, possibly to induce structural 

rearrangements that disrupt binding. This possibility, however, is unlikely given that 

neither amino acid is surface-exposed. 

Notably, EGCG and epicatechin gallate (ECG) have a similar spectrum of 

antiviral activity, whereas epicatechin (EC) and epigallocatechin (EGC) are inactive. 

Furthermore, alkyl gallate derivatives have been shown to inhibit the absorption of 

unrelated viruses (Yamasaki et al., 2007; Uozaki et al., 2007; Kratz et al., 2008a; Kratz et 

al., 2008b; Hurtado et al., 2008). Even methyl gallate (MG) showed some activity against 

HSV-1. Structure-activity studies showed that the three hydroxyl groups on the galloyl 

moiety were required for the antiviral activity, and the size of the alkyl ester was also 

important for activity (Kane et al., 1988). It was proposed that MG interacted with virion 

proteins to interfere with viral adsorption (Kane et al., 1988). Gallic acid and pentyl 

gallate inhibited the infectivity of HSV-1/-2 and, to some extent, HIV (Kratz et al., 
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2008a; Kratz et al., 2008b). Octyl gallate and lauryl gallate were active against DNA and 

RNA viruses, although the mechanisms were not characterized (Yamasaki et al., 2007; 

Uozaki et al., 2007). 

I therefore tested four alkyl gallate derivatives against HCV, IAV, VSV and HSV-

1: ethyl gallate, propyl gallate, octyl gallate and lauryl gallate. EGCG and the longer 

chain derivatives were the most potent. These results suggest a model in which the gallate 

moiety is necessary for activity but the adjoining moiety is also important for potency. 

Consistent with this model, a pentahydroxy gallic acid ester (pentagalloylglucose, PGG) 

was the most potent of the gallate derivatives that I have tested to date. Similarly to 

EGCG, the alkyl gallate derivatives and PGG inhibited the binding of HCV to cells. 

The activities of PGG against IAV and HBV were previously reported (Liu et al., 

2011; Lee et al., 2006b). In the case of HBV, the mechanisms of PGG were not 

identified. However, PGG inhibited IAV infection by interacting with HA, likely to 

prevent virion binding (Liu et al., 2011). PGG, EGCG and other analogs that differ in 

their galloyl substituents also inhibited IAV-mediated hemagglutination, IAV infectivity, 

and IAV entry into cells (Ge et al., 2014), consistent with our findings. Interestingly, 

analogs with four or more galloyl substituents were most potent. Modelling studies 

suggested that PGG and its analogs (including EGCG) bind to the receptor-binding 

globular domain of IAV HA (Ge et al., 2014). The ability to bind and link multiple HA 

monomers was important for the activity of the galloyl analogs (Ge et al., 2014). 

EGCG has been chemically modified to enhance its pharmacological and antiviral 

properties. EGCG modified with fatty acids, for example, could be formulated in 

lipophilic preparations. Such modifications may also improve its antiviral potency. 
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Palmitoyl-EGCG inhibited HSV-1 infectivity more potently than unmodified EGCG, and 

also blocked virion attachment to cells (de Oliveira et al., 2013). Fatty acid monoester 

derivatives of EGCG inhibited IAV infectivity with 24-fold increased potency (for 

EGCG-monopalmitate) (Mori et al., 2008). However, the specific antiviral mechanisms 

of lipid-modified EGCG derivatives were not tested. 

Digallate and monogallate EGCG dimers also showed increased antiviral activity, 

with the digallate derivatives being most potent (Isaacs et al., 2011). The EGCG dimers 

inhibited the infectivity of a broad panel of enveloped and nonenveloped viruses that bind 

to HS or SA, although their specific effects on binding were not evaluated. Interestingly, 

theaflavin (a monogallate EGCG dimer) and its derivatives inhibited HIV entry by 

targeting gp41 (Liu et al., 2005). Theaflavin may interfere with the binding of gp41 to HS 

moieties (Cladera et al., 2001), consistent with our proposed model for the mechanism of 

EGCG. 

EGCG, like other green tea polyphenols, is unstable in aqueous solutions, poorly 

absorbed, and undergoes metabolic alterations such as oxidation (Smith, 2011). The 

serum concentration obtained after oral ingestion of pure EGCG (2 mg/kg in 100 mL of 

water, which is approximately the equivalent of two cups of green tea) was 0.17 µM (Lee 

et al., 2002), below the antiviral EC50 for most viruses. Although EGCG itself is therefore 

not likely to become a clinical antiviral drug, our findings show that it is indeed possible 

for a single small molecule to have broad-spectrum activity against virion attachment. 

Furthermore, other gallate derivatives had similar activities as EGCG. Other molecules 

with appropriate shape and polarity distribution (but improved pharmacological 
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properties) may be designed to inhibit the attachment of unrelated viruses that bind to 

either HS or SA moieties. 

In conclusion, EGCG and other gallate derivatives inhibit the infectivity of many 

unrelated viruses, including important human pathogens. EGCG block the primary low-

affinity attachment of unrelated virions to cells, including those that bind to HS and those 

that bind to terminal SA in glycans. Our results show that EGCG competes with HS or 

SA moieties in cellular glycans for virion binding. In summary, we provide the first 

proof-of-principle that a single small molecule can inhibit binding of both types of 

viruses. This most unexpected finding opens the possibility for the development of small 

molecule compounds with broad-spectrum activity against viral attachment. 
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Table 3.1. EGCG inhibits hemagglutination by IAV. Hemagglutination titers for IAV 
virions (PR8, USSR, Aichi and PC) exposed to 50 µg/mL (~100 µM) EGCG or EC, 50 
µg/mL heparin or equivalent volume of DMSO for 15 minutes at 37°C. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A/PR8  A/USSR A/Aichi A/PC  

Titer Ratio* Titer Ratio* Titer Ratio* Titer Ratio* 

DMSO 6400  1 3200 1 16000  1 16  1 

EGCG 1600 1/4 800 1/4 4000 1/4 4  1/4 

EC 6400  1 3200  1 16000  1 16  1 

Heparin 6400  1 3200  1 16000  1 16  1 

Sialic acid 3200 1/2 3200 1 16000 1 8 1/2 

*Titer(compound)/titer(DMSO) 

Table 3.1. EGCG inhibits hemagglutination by influenza. Hemagglutination titers for 
IAV virions (PR8, USSR, Aichi and PC) exposed to 50 µg/mL (~100 µM) EGCG or EC, 
50 µg/mL heparin or equivalent volume of DMSO for 15 minutes at 37°C. 
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Table  3.2. IAV PR8  [H1N1]  titers  recovered  under  EGCG  selection. Influenza  PR8 
was passaged in the presence of DMSO vehicle (A) or EGCG (B) and harvested at full 
cytopathic effect. Viral titers were evaluated by plaque assay. 
 

 

 

 

 

 

 

 

 

 

Passage 
number 

MOI  
(pfu/cell) 

[Cpd] 
(µM) 

[DMSO] 
(%, vol/vol) 

Viral titer 
(PFU/106 cells) 

Ratio of titer 
(DMSO/DMSO) 

1 0.01 - 0.12 2.09 x 107 1 

2 0.01 - 0.12 2.39 x 107 1 

3 0.01 - 0.12 5.21 x 106 1 

4 0.01 - 0.12 1.38 x 106 1 

5 0.01 - 0.12 7.42 x 106 1 

6 0.01 - 0.12 2.50 x 107 1 

Table  3.2.  Influenza  PR8  [H1N1]  titers  recovered  under  EGCG  selection. 
Influenza PR8 was passaged in the presence of DMSO vehicle (A) or EGCG (B) and 
harvested at full cytopathic effect. Viral titers were evaluated by plaque assay. 

 

Passage 
number 

MOI  
(pfu/cell) 

[EGCG] 
(µM) 

[DMSO]  
(%, vol/vol) 

Viral titer 
(PFU/106 cells) 

Ratio of titer 
(EGCG/DMSO) 

1 0.1 3 0.12 2.84 x 106 1.4 x 10-1 

2 0.1 13.5 0.12 7.83 x 105 3.3 x 10-2 

3 0.1 40 0.12 8.50 x 103 1.6 x 10-3 

4 0.001 40 0.12 1.31 x 106 9.5 x 10-1 

5 0.1 120 0.12 2.13 x 107 2.9 x 100 

6 0.1 120 0.12 1.25 x 107 1.6 x 100 

(A) 

(B) 
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Table 3.3. IAV Aichi [H3N2] titers recovered under EGCG selection. Influenza Aichi 
was passaged in the presence of DMSO vehicle (A) or EGCG (B) and harvested at full 
cytopathic effect. Viral titers were evaluated by plaque assay. 
 

 

 

 

 

 

 

 

 

 

Passage 
number 

MOI  
(pfu/cell) 

[Cpd] 
(µM) 

[DMSO]  
(%, vol/vol) 

Viral titer 
(PFU/106 cells) 

Ratio of titer 
(DMSO/DMSO) 

1 0.01 - 0.12 1.15 x 106 1 

2 0.01 - 0.12 1.30 x 107 1 

3 0.001 - 0.12 4.00 x 107 1 

4 0.001 - 0.12 8.89 x 107 1 

5 0.01 - 0.12 6.83 x 107 1 

6 0.1 - 0.12 2.08 x 108 1 

(A) 

(B) 
Passage 
number 

MOI  
(pfu/cell) 

[EGCG] 
(µM) 

[DMSO]  
(%, vol/vol) 

Viral titer 
(PFU/106 cells) 

Ratio of titer 
(EGCG/DMSO) 

1 0.01 40 0.12 1.38 x 106 1.2 x 100 

2 0.01 80 0.12 6.09 x 107 4.7 x 100 

3 0.001 600 0.12 5.67 x 102 1.4 x 10-5 

4 0.001 80 0.12 4.44 x 105 5.0 x 10-3 

5 0.01 80 0.12 8.17 x 107 1.2 x 100 

6 0.1 120 0.12 1.63 x 108 7.8 x 10-1 

Table  3.3.  Influenza  Aichi  [H3N2]  titers  recovered  under  EGCG  selection. 
Influenza Aichi was passaged in the presence of DMSO vehicle (A) or EGCG (B) and 
harvested at full cytopathic effect. Viral titers were evaluated by plaque assay. 

 



	
   140	
  

 
 
 
 
Table  3.4.  EC50 of  EGCG  and  other  galloylated  esters  against  unrelated  viruses. 
Numbers  that  are  italicized  and  bolded  were  published  elsewhere.  EGCG:  HBV (Xu et 
al.,  2008;  He et al.,  2011),  HIV-1 (Yamaguchi et al.,  2002;  Nance et al.,  2009),  EV71 
(Ho et al., 2009); PGG: HBV (Lee et al., 2006b), IAV (Liu et al., 2011). 
 

 

 

 

EC50, µM 

Virus EGCG PGG EG PG OG LG 

HCV 1.7 0.05 50.5 12.3 0.8 0.8 

SIN 8.1 

VSV 1.8 133 122 6.8 2.8 

HSV-1 0.3 119 147 1.0 0.9 

HSV-2 1.0 

mCMV 1.7 

VACV (WR) 4.1 

VACV (IHDw) 2.7 

AdV 9.3 

HBV 25-50 1.1 

HIV-1 10-100 

IAV (PR8) 9.6 0.4 20.5 41.5 0.8 4.1 

IAV (USSR) 3.9 

IAV (Aichi) 5.3 

IAV (PC) 20.3 

RV 3.8 

EV71 10 

PV > 200 



	
   141	
  

 

 

 

 
 
Figure  3.1.  Structures  of  gallate  derivates. The  green  tea  catechins  include 
epigallocatechin  gallate (EGCG),  epicatechin (EC),  epicatechin  gallate (ECG) and 
epigallocatechin (EGC).  Pentagalloylglucose (PGG) is  another  natural  product.  Alkyl 
gallate derivatives include ethyl gallate (EG), propyl gallate (PG), octyl gallate (OG) and 
lauryl gallate (LG). 
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Figure  3.1.  Structures  of gallate derivates. The  green  tea catechins include 
epigallocatechin gallate (EGCG), epicatechin (EC), epicatechin gallate (ECG) and 
epigallocatechin (EGC). Pentagalloylglucose (PGG) is  another  natural  product.  Alkyl 

gallate derivatives include ethyl gallate (EG), propyl gallate (PG), octyl gallate (OG) and 
lauryl gallate (LG). 
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Figure  3.2.  EGCG,  but  not  its  analog  EC,  inhibits  the  infectivity  of  unrelated 
viruses. Cell monolayers were infected with HS-binding (A), SA-binding (B), or neither 
HS- nor  SA-binding (C) virions  pre-exposed  to  EGCG (A,  B,  C) or  EC (D) for  10 
minutes at 37°C. Infectivity was assessed by plaquing or focus forming efficiency and is 
expressed  as  percentage  relative  to  DMSO-treated  control.  (Dose  response  curves, 
average ± S.D.; n = 3). 
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Figure 3.2. EGCG, but not its analog EC, inhibits the infectivity of several unrelated 
viruses,  including  important  human  pathogens. Cell  monolayers  were  infected  with 
HS-binding (A), SA-binding (B), or neither HS- nor SA-binding (C) virions pre-exposed 
to  EGCG (A,  B,  C) or  EC  (D) for  10  minutes  at  37°C.  Infectivity  was  assessed  by 
plaquing  or  focus  forming  efficiency  and  is  expressed  as  percentage  relative  to  DMSO-
treated control. (Dose response curves, average ± S.D.; n = 3). 

-4-3-2-1 0 1 2 3
0

25

50

75

100

125
HSV-1

HSV-2

VACV 

AdV

HCV

SINV

VSV

Log (EGCG, µM)

I
nf
e
ct
i
vi
t
y,
 
%

-4-3-2-1 0 1 2 3
0

25

50

75

100

125

IAV (PR8)

IAV (USSR)

IAV (PC)

IAV (Aichi)

RV

Log (EGCG, µM)

I
nf
e
ct
i
vi
t
y,
 
%

-4-3-2-1 0 1 2 3
0

25

50

75

100

125

PV

Log (EGCG, µM)

I
nf
e
ct
i
vi
t
y,
 
%

-4-3-2-1 0 1 2 3
0

25

50

75

100

125

IAV (PR8)

IAV (USSR)

IAV (PC)

IAV (Aichi)

RV

Log (EGCG, µM)

I
nf
e
ct
i
vi
t
y,
 
%

(B) 

-4-3-2-1 0 1 2 3
0

25

50

75

100

125

PV

Log (EGCG, µM)

I
nf
e
ct
i
vi
t
y,
 
%

(C) 

-4-3-2-1 0 1 2 3
0

25

50

75

100

125

HSV-1

HCV

VSV

IAV

Log (EC, µM)

I
nf
e
ct
i
vi
t
y,
 
%

(D) 

-4-3-2-1 0 1 2 3
0

25

50

75

100

125 HSV-1

mCMV

VACV 

AdV

HCV

SINV

VSV

HSV-2

Log (EGCG, µM)

I
nf
e
ct
i
vi
t
y,
 
%

(A) 



	
   143	
  

 

 

 

 

 
 
 
 
Figure 3.3. EGCG does not inhibit infectivity by acting on cellular factors. Vero cell 
monolayers  were  infected  with  ~200  pfu  of  HSV-1  or  VSV,  pre-exposed  to  EGCG  or 
DMSO vehicle for 10 min at 37°C (A). Alternatively, cells were treated with EGCG or 
DMSO for 1 hour at 37°C prior to infection or for 4 or 48 hours after infection (B), or 
virions  were  treated  with  EGCG  and  then  diluted  10-fold  prior  to  infecting  cells (C). 
Dose response curves (average ± range; n = 2).  

Figure 3.3. EGCG does not inhibit infectivity by acting on cellular factors. Vero cell 
monolayers  were  infected  with  ~200 pfu  of  HSV-1  or  VSV,  pre-exposed  to  EGCG  or 
DMSO  vehicle  for  10  min  at  37°C (A). Alternatively,  cells  were  treated  with  EGCG  or 

DMSO  for  1  hour  at  37°C  prior  to  infection  or  for  4  or  48  hours  after  infection (B),  or 
virions were treated with EGCG and then diluted 10-fold prior to infecting cells (C). Dose 

response curves (average ± range; n = 2).  
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Figure  3.4.  EGCG  does  not  disrupt  the  integrity  of  virion  envelopes  or  cellular 
membranes at relevant concentrations. (A) Self-quenched R18-labeled VSV, HCV or 
IAV  virions  were  exposed  for  10  min  at  37°C  to  EGCG  or  DMSO  vehicle.  R18 
fluorescence was then measured. As a lysis control, 0.1% Triton X-100 was then added. 
EGCG did not induce the increase in R18 fluorescence that would result from the release 
of  self-quenched  R18  if  the  envelopes  were  disrupted. (B) Haemaglobin  release  from 
rabbit erythrocytes exposed to EGCG. Data are expressed as a percentage relative to the 
lysis induced by addition of 0.1% Triton X-100. 

Figure  3.4.  EGCG  does  not  disrupt  the  integrity  of virion  envelopes  or  cellular 
membranes  at  relevant  concentrations.  (A) Self-quenched  R18-labeled  VSV,  HCV  or 
IAV virions  were  exposed  for  10  min  at  37°C  to  EGCG  or  DMSO  vehicle.  R18 
fluorescence was then measured. As a lysis control, 0.1% Triton X-100 was then added. 
EGCG did not induce the increase in R18 fluorescence that would result from the release 
of  self-quenched  R18  if  the  envelopes  were  disrupted. (B) Haemaglobin  release  from 
rabbit erythrocytes exposed to EGCG. Data are expressed as a percentage relative to the 
lysis induced by addition of 0.1% Triton X-100. 
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Figure  3.5.  EGCG  does  not  disrupt  the  fluidity  of  liposomes  or  virion  envelopes. 
DPH-labelled liposomes (A) or HCV virions (B) were treated with EGCG for 10 min at 
37°C. DPH fluorescence polarization was measured. An increase in polarization indicates 
a decrease in membrane fluidity. Graphs represent the average ± range, n = 2 (some error 
bars are too small to be seen at this scale).  

(A) 

Figure  3.5.  EGCG  does  not  disrupt  the  fluidity  of  liposomes  or virion  envelopes. 
DPH-labelled liposomes (A) or HCV virions (B) were treated with EGCG for 10 min at 
37°C. DPH fluorescence polarization was measured. An increase in polarization indicates 

a decrease in membrane fluidity. Graphs represent the average ± range, n = 2 (some error 
bars are too small to be seen at this scale).  
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Figure  3.6.  EGCG  interacts  with  HSV-1,  VSV,  RV  and  AdV  surface  proteins. 
Fluorescence  emission  spectra  of  HSV-1,  VSV,  RV  or  AdV  virions  in  the  absence  or 
presence  of  EGCG.  Excitation  wavelength,  280  nm  (to  excite  the  tryptophan  residues). 
EGCG quenched the emitted fluorescence of the tryptophan residues. 
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Figure  3.6.  EGCG  interacts  with  HSV-1,  VSV,  RV  and AdV  surface  proteins. 
Fluorescence  emission  spectra  of  HSV-1,  VSV,  RV  or AdV virions  in  the  absence  or 
presence  of  EGCG.  Excitation  wavelength,  280  nm  (to  excite  the  tryptophan  residues). 
EGCG quenched the emitted fluorescence of the tryptophan residues. 
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Figure 3.7. EGCG inhibits the attachment of enveloped and nonenveloped viruses. 
EGCG  inhibits  the  binding  of  HS-binding  HCV,  VSV,  HSV-1  and  VACV (A). EGCG 
also inhibits attachment of SA-binding IAV and RV (B). HCV, HSV, HSV-1, VACV and 
IAV were labeled with fluorescent R18 (A, B), while AdV, RV (A, B), HSV-1 and VSV 
(C) were  labeled  with 35S-methionine.  EGCG  did  not  affect  the  binding  of 35S-
methionine-labelled PV at the active concentrations for the other viruses (D). Virions pre-
exposed to EGCG were adsorbed onto target cells for 1 hour at 4°C. The radioactivity or 
fluorescence  attached  to  the  cells  was  then  measured,  normalized  to  total  input,  and  is 
presented as a percentage relative to attachment of DMSO vehicle-treated control virions 
(average ± range; n = 2). Several error bars are too small to be seen at this scale.  

Figure 3.7. EGCG inhibits the attachment of enveloped and nonenveloped virions to 
cells. EGCG  inhibits  the  binding  of  HS-binding  HCV,  VSV,  HSV-1  and  VACV (A). 
EGCG  also  inhibits  attachment  of  SA-binding  IAV  and  RV (B).  HCV,  HSV,  HSV-1, 

VACV and IAV were labeled with fluorescent R18 (A, B), while AdV, RV (A, B), HSV-1 
and VSV (C) were labeled with 35S-methionine. EGCG did not affect the binding of 35S-

methionine-labelled PV at the active concentrations for the other viruses (D). Virions pre-
exposed to EGCG were adsorbed onto target cells for 1 hour at 4°C. The radioactivity or 
fluorescence  attached  to  the  cells  was  then  measured,  normalized  to  total  input,  and  is 

presented as a percentage relative to attachment of DMSO vehicle-treated control virions 
(average ± range; n = 2). Several error bars are too small to be seen at this scale.  
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Figure 3.8. EGCG inhibits IAV and VSV fusion only if virions are treated prior to 
attachment. R18-labelled  IAV (A) or  VSV (B) virions  pre-exposed  to  EGCG  were 
adsorbed  onto  target  cells  for  1  hour  at  4°C.  Alternatively,  virions  were  first  adsorbed 
onto  target  cells  for  1  hour  at  4°C,  and  then  virion-cell  complexes  were  treated  with 
EGCG. Fusion was triggered by increasing the temperature to 37°C and lowering the pH 
to 5. Fusion was evaluated by fluorescence dequenching of R18. 

Figure  3.8. EGCG  inhibits  IAV  and VSV  fusion  only  if virions  are  treated  prior  to 
attachment. R18-labelled  IAV (A)  or  VSV (B) virions  pre-exposed  to  EGCG  were 
adsorbed onto target cells for 1 hour at 4°C. Alternatively, virions were first adsored onto 
target  cells  for  1  hour  at  4°C,  and  then virion-cell  complexes  were  treated  with  EGCG. 
Fusion  was  triggered  by  increasing  the  temperature  to  37°C  and  lowering  the  pH  to  5. 
Fusion was evaluated by fluorescence dequenching of R18. 

0 20 40 60 80
0

5

10

Background

DMSO

Virion pre-treatment

Virions treated after binding

Time (min)

F
u
si
o
n,
 
%

(A)$

0 20 40 60 80
0

5

10

Background

DMSO

Virion pre-treatment

Virions treated after binding

Time (min)

F
u
si
o
n,
 
%

(B)$



	
   149	
  

 

 
Figure 3.9. EGCG inhibits HCV fusion if virions are treated prior to attachment, in 
a novel HCV fusion assay. HCV fuses selectively to Huh7.5 cells by low pH dependent 
mechanisms  in  a  novel  HCV  fluorescence  dequenching  fusion  assay  that  requires  post-
binding activity of the CD81 receptor. (A) Fusion of HCV to Huh7.5 cells was tested at 
several pHs. The pH requirements in our fusion assay match those for HCV infectivity. 
(B) HCV  fused  to  Huh7.5  cells  but,  as  expected,  not  to  Vero  cells,  which  is  consistent 
with  the  ability  of  HCV  to  infect  the  former  but  not  the  latter. (C) Fusion  of  HCV 
required CD81 at a post-binding step. (D) EGCG inhibited fusion of HCV to Huh7.5 cells 
when virions were pre-treated, but not if added after virion attachment. 

Figure 3.9. HCV fuses selectively to Huh7.5 cells by low pH dependent mechanisms 
in  a  novel  HCV  fluorescence dequenching  fusion  assay  that  requires  post-binding 
activity of the CD81 receptor. (A) Fusion of HCV to Huh7.5 cells was tested at several 

pHs. The pH requirements in our fusion assay match those for HCV infectivity. (B) HCV 
fused  to  Huh7.5  cells  but,  as  expected,  not  to  Vero  cells,  which  is  consistent  with  the 

ability of HCV to infect the former but not the latter. (C) Fusion of HCV required CD81 at 
a  post-binding  step. (D) EGCG  inhibited  fusion  of  HCV  to  Huh7.5  cells  when virions 
were pre-treated, but not if added after virion attachment. 
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Figure 3.10. EGCG elutes HSV-1 and HCV virions bound to a heparin column with 
approximately equal efficiency as heparin. (A) R18-HSV-1 (105 pfu) or (B) HCV (105 
ffu) virions were loaded onto a heparin column. Bound virions were eluted with soluble 
heparin (as a positive control) or equivalent concentrations of EGCG, EC and sialic acid. 
Eluted virions were detected by R18 fluorescence (average ± range; n = 2) (A) or viral 
RNA (average ± S.D.; n = 3) (B).  
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Figure 3.10. EGCG elutes HSV-1 and HCV virions bound to a heparin column with 
approximately equal efficiency as heparin. (A) R18-HSV-1 (105 pfu) or (B) HCV (105 
ffu) virions were loaded onto a heparin column. Bound virions were eluted with soluble 
heparin (as a positive control) or equivalent concentrations of EGCG, EC and sialic acid. 
Eluted virions  were  detected  by  R18  fluorescence (average  ±  range;  n  =  2) (A) or  viral 
RNA (average ± S.D.; n = 3) (B).  
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Figure  3.11. EGCG  inhibits  hemagglutination  of  erythrocytes  by IAV. IAV  virions 
(PR8, USSR, Aichi and PC) were exposed to 50 µg/mL (~100 µM) EGCG, EC, heparin, 
sialic acid, or equivalent volume of DMSO for 15 minutes at 37°C. The treated virions 
were then added to chicken erythrocytes.  
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Figure  3.11. EGCG  inhibits hemagglutination  of  erythrocytes  by  influenza.  IAV 
virions (PR8, USSR, Aichi and PC) were exposed to 50 µg/mL (~100 µM) EGCG, EC, 
heparin, sialic acid, or equivalent volume of DMSO for 15 minutes at 37°C. The treated 

virions were then added to chicken erythrocytes.  
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Figure 3.12. Viral titers under EGCG selection pressure. IAV PR8 (A) and IAV Aichi 
(B)  were  passaged  in  the  presence  of  DMSO  vehicle  or  EGCG  and  harvested  at  full 
cytopathic effect. Viral titers were evaluated by plaque assay.  
*concentration marginally toxic to MDCK cells 
Figure 3.12. Viral titers under EGCG selection pressure. IAV PR8 (A) and IAV Aichi 
(B)  were  passaged  in  the  presence  of  DMSO  vehicle  or  EGCG  and  harvested  at  full 
cytopathic effect. Viral titers were evaluated by plaque assay.  
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Figure  3.13. EGCG-resistant  IAV  PR8  and  Aichi  variants  have  mutations  in  the 
HA2 region of HA. Partial sequence alignment of PR8 (A) and Aichi (B) HA sequences. 

Aichi   RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGN 464 
  
DMSO_1  RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTESEMNKLFEKTRRQLRENAEDMGN 464  
DMSO_2  RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGN 464  
DMSO_3  RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGN 464  
DMSO_4  RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTESEMNKLFEKTRRQLRENAEDMGN 464  
DMSO_5  RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTRRQLRENAEDMGN 464 
  
EGCG_1  RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTRGQLRENAEDMGN 464  
EGCG_2  RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTRGQLRENAEDMGN 464  
EGCG_3  RIQDLEKYVEDTKIDLWSYNAELLVGVENQHTIDLTDSEMNKLFEKTRGQLRENAEDMGN 464  
EGCG_4  RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTRGQLRENAEDMGN 464  
EGCG_5  RIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTRGQLRENAEDMGN 464  
        *************************.:*********:*********** ***********  

PR8     MENLNKKVDDGFLDIWTYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNG 463 
  
DMSO_1  MENLNKKVDDGFLDIWTYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNR 463  
DMSO_2  MENLNKKVDDGFLDIWTYNAELLVLLENERTLGFHDSNVKNLYEKVKSQLKNNAKEIGNG 463  
DMSO_3  MENLNKKVDDGFLDIWTYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNR 463  
DMSO_4  MENLNKKVDDGFLDIWTYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNR 463  
DMSO_5  MENLNKKVDDGFLDIWTYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNR 463 
  
EGCG_1  MENLNKKVDDGFLDIWTYNAELLVLLENERILDFHDSNVKNLYEKVKSQLKNNAKEIGNG 463  
EGCG_2  MENLNKKVDDGFLDIWTYNAELLVLLENERILDFHDSNVKNLYEKVKSQLKNNAKEIGNG 463  
EGCG_3  MENLNKKVDDGFLDIWTYNAELLVLLENERILDFHDSNVKNLYEKVKSQLKNNAKEIGNG 463 
EGCG_4  MENLNKKVDDGFLDIWTYNAELLVLLENERILDFHDSNVKNLYEKVKSQLKNNAKEIGNG 463  
EGCG_5  MENLNKKVDDGFLDIWTYNAELLVLLENERILDFHDSNVKNLYEKVKSQLKNNAKEIGNG 463  
        ****************************** *.**************************  

(A) IAV/PR/8/34 [H1N1] 

(B) IAV/Aichi/2/68 [H3N2] 
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Figure  3.14. EGCG-resistant  IAV  PR8  and  Aichi  variants  have  single  amino  acid 
substitutions  in  the  stalk  region  of  the  HA2  domain  of  HA. The  wild-type  crystal 
structure  of  IAV  PR8  (H1N1)  HA (A) as  a  monomer  and  trimer  (Protein  Data  Bank 
1RU7).  Thr-451  is  indicated  in  red  and  is  replaced  by  Ile  in  the  EGCG-resistant  HA 
sequence.  IAV  Aichi  (H3N2)  HA (B) is  also  shown  as  a  monomer  and  trimer  (Protein 
Data  Bank  3VUN).  Arg-468  is  indicated  in red  and  is  replaced  by  Gly  in  the  EGCG-
resistant HA sequence. 
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Figure  3.15.  Galloylated  esters  inhibit  the  infectivity  of  several  unrelated  viruses. 
Cell  monolayers  were  infected  with  HCV,  VSV,  HSV-1  or  IAV virions  pre-exposed  to 
EGCG (black filled diamonds), (A) alkyl gallate derivatives ethyl gallate (EG, red open 
circles), propyl gallate (PG, red filled circles), octyl gallate (OG, blue open squares) and 
lauryl  gallate  (LG,  blue  filled  squares)  or (B) a  pentahydroxy  gallic  acid  ester, 
pentagalloylglucose (PGG, black open squares). Infectivity was assessed by plaquing or 
focus  forming  efficiency  and  is  expressed  as  percentage  relative  to  DMSO-treated 
control. Dose response curves; n = 2, average ± range. 
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Figure  3.16.  Galloylated  esters  inhibit  the  binding and  fusion of pre-treated HCV 
virions to cells. Fluorescently labeled HCV virions pre-exposed to EGCG, alkyl gallates 
(A) or  PGG (B) were  adsorbed  onto  target  cells  for  1  hour  at  4°C.  The  fluorescence 
attached to the cells was then measured, normalized to total input, and is presented as a 
percentage  relative  to  attachment  of  DMSO  vehicle-treated  control  virions  (average  ± 
range; n = 2). Alkyl gallates and PGG inhibited the attachment of HCV virions. (C) PGG 
inhibits HCV fusion when virions are treated prior to attachment. Dose response curves; 
n = 2, average ± range. 
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CHAPTER 4: CHARACTERIZATION OF SMALL MOLECULE COMPOUNDS 

THAT MODULATE MEMBRANE CURVATURE TO INHIBIT FUSION OF 

ENVELOPED VIRUSES 

Data in this chapter were published in the Journal of Virology and in PNAS: 
	
  
Colpitts, C.C., Ustinov, A.V., Epand, R.F., Epand, R.M., Korshun, V.A. and Schang, 
L.M. (2013) 5-(Perylen-3-yl)ethynyl-arabino-uridine (aUY11), an arabino-based rigid 
amphipathic fusion inhibitor, targets virion envelope lipids to inhibit fusion of influenza, 
hepatitis C and other enveloped viruses. J. Virol. 87(7): 3640-54 
 
St.Vincent, M.R., Colpitts, C.C., Ustinov, A.V., Muqadas, M., Joyce, M.A., Barsby, 
N.L., Epand, R.F., Epand, R.M., Khramyshev, S.A., Valueva, O.A., Korshun, V.A., 
Tyrrell, D.L.J., Schang, L.M. (2010) Rigid amphipathic fusion inhibitors, small molecule 
antiviral compounds against enveloped viruses. PNAS 107(40): 17339-44 
 
I performed all of the experiments described in this chapter, except for the differential 
scanning calorimetry experiments, which were done by Drs. Richard and Raquel Epand 
(McMaster University, Hamilton, Canada). I wrote the J. Virol manuscript (with editorial 
contributions from Dr. Schang) and the sections of the PNAS manuscript corresponding 
to my experiments. 

 

4.1 INTRODUCTION 

All enveloped viruses require the fusion of the viral and cellular membranes to enter the 

cell. The energy required for this process is provided by the attachment, binding and 

conformational changes of viral fusion proteins, which undergo major structural 

rearrangements from the pre- to the post-fusion states during fusion. The viral fusion 

proteins are classified according to structural differences (Earp et al., 2005; Li and 

Modis, 2014), but they all nonetheless mediate fusion in an overall similar manner. 

Generally, the insertion of the viral fusion peptides disrupts the target membranes and 

results in the formation of the hemifusion stalk. This stalk is an intermediate structure in 

which only the outer leaflets of the two membranes are fused (Chernomordik and Kozlov, 

2005). The inner leaflets subsequently fuse, forming a small pore that then enlarges to 
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allow for full fusion. 

 Formation of the hemifusion stalk requires curvature changes in the lipid bilayer, an 

energetically demanding rearrangement of lipids from flat (with the hydrophobic head 

groups bent neither toward nor away from each other) or positive curvature (with the 

hydrophilic headgroups of the outer leaflet bent away from each other) to negative 

curvature (with the hydrophilic head groups are bent toward each other) (Figure 4.1). 

The molecular shape of lipids affects this process. Fusion is promoted by enrichment in 

the outer leaflet of lipids that induce negative curvature, such as oleic acid 

(Chernomordik and Kozlov 2003). Conversely, enrichment in the outer leaflet of lipids 

that favour positive curvature, specifically those with larger hydrophilic headgroups than 

their hydrophobic tails (such as lysophosphatidylcholine, LPC), impairs fusion 

(Chernomordik et al., 1995). These phospholipids prevent the fusion of enveloped 

viruses, including influenza A virus (IAV) (Chernomordik et al., 1997; Gunther-Ausborn 

et al., 1995), rabies virus (Gaudin, 2000b) and Sendai virus (Yeagle et al., 1994). 

However, such phospholipids also tend to be disruptive to all membranes (including 

cellular ones), have signalling activities, be toxic, and be too rapidly metabolized to be 

useful as drugs. 

 My hypothesis is that synthetic compounds with the same overall shape and 

amphipathicity as these lipids could act by the same biophysical mechanisms to inhibit 

viral fusion. Previous studies in our laboratory had identified a family of small molecules 

called rigid amphipathic fusion inhibitors (RAFIs), which inhibited the infectivity of 

enveloped but otherwise unrelated viruses. Much of this work focused on one particular 

RAFI, 5-(perylen-3-yl)ethynyl-2′-deoxyuridine (dUY11), a nucleoside derivative that 
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does not act by classical nucleosidic mechanisms (St Vincent et al., 2010). dUY11 

inhibited the infectivity of several enveloped viruses at nanomolar concentrations, but did 

not inhibit the infectivity of non-enveloped viruses. dUY11 inhibited HSV-1 entry 

without affecting binding. Furthermore, dUY11 inhibited the formation of negative 

curvature (required to form the hemifusion stalk during fusion of enveloped viruses) in 

model lipid bilayers. However, the specific effects of dUY11 (and other RAFIs) on 

fusion had not been tested, and the mechanisms of dUY11 (and other RAFIs) against 

other clinically relevant viruses had not been characterized. The RAFI dUY11 is not 

cytotoxic, but is slightly cytostatic (St Vincent et al., 2010). 

According to my hypothesis, chemically distinct molecules of the same overall 

shape and amphipathicity should also target virion envelope lipids to prevent fusion of 

viral and cellular membranes. If the model is correct, all of these compounds should act 

by the same mechanisms against all enveloped viruses, including important human 

pathogens. Earlier work had shown that a panel of similarly configured RAFIs, including 

an arabino-derived nucleoside, 5-(perylen-3-yl)ethynyl-arabino-uridine (aUY11), also 

inhibited the infectivity of HSV-1 (St Vincent et al., 2010). aUY11 differs from the 

deoxy-derived dUY11 in that it has a 2′ hydroxyl group in the nucleoside moiety. 

Furthermore, aUY11 is neither cytotoxic nor cytostatic (St Vincent et al., 2010). If the 

compounds acted by traditional biochemical or nucleosidic mechanisms, then this 

modification should result in different biological activities. If these compounds act by 

biophysical mechanisms, however, then the arabino-configured aUY11 and the 

deoxyuridine-configured dUY11 should act by the same mechanisms. Moreover, the 

antiviral mechanisms should be the same against several enveloped viruses, regardless of 
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their particular fusion proteins.  

My objectives were to evaluate the antiviral activities of two chemically distinct 

RAFIs (aUY11 and dUY11) against a broad panel of viruses, to test their specific effects 

on viral fusion, and to characterize their mechanisms against two other clinically 

important human viruses, IAV and HCV.  
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4.2 RESULTS 

4.2.1 The RAFIs aUY11 and dUY11 inhibit the infectivity of otherwise unrelated 

enveloped viruses. I first tested the effects of the arabino-derived aUY11 and 

deoxyuridine-derived dUY11 (Figure 4.2) on the infectivity of unrelated DNA or RNA 

enveloped viruses, including important human pathogens (IAV, HCV, HSV-1, HSV-2 

and SINV) and model viruses (mCMV and VSV). These viruses are internalized by 

different mechanisms, fuse to different cell membranes and have fusion proteins 

representing all classes. However, they all require the formation of negative membrane 

curvature for the fusion of their envelopes with the cellular membranes.  

IAV, HSV-1, HSV-2, VSV or SINV virions (~200 pfu) were exposed to aUY11, 

dUY11 or DMSO vehicle control at 37°C in DMEM for 10 minutes prior to infecting 

Vero (HSV-1, HSV-2, VSV, SINV) or MDCK (IAV) cell monolayers. For HCV and 

mCMV infections, JFH-1 or RM427+ virions (~200 ffu) were similarly exposed to RAFIs 

or DMSO vehicle prior to infecting Huh7.5 cell (HCV) or NIH 3T3 cell (mCMV) 

monolayers. Foci of infected cells were detected by immunocytochemistry (HCV) or by 

LacZ expression (mCMV) and counted under the microscope. Infectivity was evaluated 

by plaquing or focus forming efficiency and is expressed as a percentage of the 

infectivity of virions treated with vehicle control.  

aUY11 inhibited the infectivity of enveloped DNA and RNA viruses, including 

HSV-1 (EC50, 0.259 µM), HSV-2 (EC50, 0.203 µM) and mCMV (EC50, 0.106 µM) 

(Figure 4.3A), and IAV (H1N1 and H3N2 strains; EC50, 0.035 to 0.221 µM), HCV JFH-

1 (EC50, 0.236 µM), SINV (EC50, 0.009 µM) and VSV (EC50, 0.015 µM) (Figure 4.3B). 

Similarly, dUY11 inhibited the infectivity of HSV-1 (EC50, 0.100 µM), HSV-2 (EC50, 
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0.071 µM) and mCMV (EC50, 0.013 µM) (Figure 4.3C), and IAV (H1N1 and H3N2 

strains; EC50, 0.076 to 0.146 µM), HCV JFH-1 (EC50, 0.107 µM) and VSV (EC50, 0.013 

µM) (Figure 4.3D). The EC50 against each virus were similar for aUY11 and dUY11 

(Table 1). aUY11 less potently inhibited the infectivity of VACV, another enveloped 

DNA virus (EC50, 24.6 µM) (Figure 4.3A).  

aUY11 and dUY11 inhibited the infectivity of unrelated enveloped viruses, 

including important human pathogens, at the nanomolar range (Table 4.1). In contrast, 

and consistently with the proposed mechanism of action, aUY11 did not inhibit the 

infectivity of three non-enveloped DNA or RNA viruses, AdV, PV or RV (Figure 4.3A 

and 4.3B). Taken together, our results suggest that aUY11 targets a feature conserved 

among enveloped viruses, such as the virion envelope. 

4.2.2 The RAFIs aUY11 and dUY11 localize to virion envelope lipids. To test the 

localization of aUY11 and dUY11 in virions, I took advantage of their intrinsic 

fluorescence and analyzed their fluorescence spectra in different environments. 

Fluorescence spectra are dependent on the polarity of the fluorochrome environment. 

aUY11 or dUY11 was added to 2.5 mL of aqueous fusion buffer or to 2.5 mL of 1-

octanol, to a final concentration of 48 nM or 0.48 nM, respectively, in a polymethacrylate 

cuvette pre-warmed to 37°C. Alternatively, aUY11 or dUY11 was added to 107 pfu of 

VSV, 107 pfu of HSV-1, 106 pfu of IAV, 106 ffu of HCV, or 2 nmol protein-free POPC 

liposomes in the same aqueous buffer, to a final concentration of 48 nM. The emission 

spectra were obtained at the maximum excitation wavelength, 455 nm, and were 

normalized to the highest fluorescence signal intensity obtained for all conditions (set as 

1).  
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The fluorescence spectra of aUY11 and dUY11 in virions were consistent with 

their localization to a hydrophobic environment. The spectra of aUY11 and dUY11 were 

very similar in the presence of HSV-1, HSV-2, IAV, HCV or VSV virions, or protein-

free liposomes (Figure 4.4A and 4.4B). These viruses have different glycoproteins and 

different glycoprotein content in their envelopes, but share a common hydrophobic 

environment in the lipid core of the envelope. These spectra were most similar to the 

spectra of aUY11 or dUY11 in octanol (which closely mimics the hydrophobic lipid core 

of the membrane) and clearly distinct from their spectra in aqueous buffer without virions 

or liposomes. Therefore, aUY11 and dUY11 were in similar hydrophobic environments 

in virions or protein-free liposomes, consistent with their proposed localization to the 

hydrophobic lipid core of the virion envelope. Furthermore, aUY11 and dUY11 localized 

to similar hydrophobic environments in clinically important viruses, such as IAV, HCV 

and herpesviruses. 

4.2.3 The RAFIs aUY11 and dUY11 localize to cellular membranes. I further took 

advantage of the intrinsic fluorescence of aUY11 and dUY11 to evaluate their potential 

localization to cellular lipid membranes. Near-confluent Vero, Huh7.5 or MDCK cell 

monolayers seeded onto cover slips were treated with 0.25 µM PKH26-GL fluorescent 

cell dye (a general membrane dye) for 10 minutes at 37°C, and then exposed to 2 µM 

aUY11 or dUY11 for 1 through 120 minutes, also at 37°C. Cells were washed, fixed with 

10% formalin, and mounted onto glass slides. aUY11 and dUY11 localized similarly to 

plasma and intracellular membranes of Vero (Figure 4.5A), Huh7.5 (Figure 4.5B) and 

MDCK (Figure 4.5C) cells. As early as 1 minute after exposure, RAFIs accumulated in 

intracellular membranes, such as the endoplasmic reticulum (Figure 4.5A). In summary, 
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the RAFIs aUY11 and dUY11 localize to cellular lipid membranes, where they may 

interfere with viral fusion, or become incorporated into the envelopes of progeny virions. 

4.2.4 The RAFIs aUY11 and dUY11 protect cells from infection with IAV, HCV and 

HSV-1. Since aUY11 and dUY11 localize to cellular membranes, I tested their effects 

when cells were treated prior to infection. Cells were exposed to aUY11 or dUY11 for 1 

hour at 37°C. Following three washes, the cells were infected with IAV, HCV or HSV-1 

and evaluated for plaque or foci formation. Infectivity was expressed as a percentage of 

the infectivity in cells pre-treated with vehicle control. Under these conditions, aUY11 

and dUY11 protected MDCK cells from infection by IAV (EC50, 0.446 µM and 0.124 

µM, respectively) (Figure 4.6A). The EC50 for aUY11 and dUY11 were 0.266 µM and 

0.097 µM, respectively, when virions were pre-treated (Figure 4.6A). The EC50 were 

only ~1.5-fold higher when cells were pre-treated than when virions were pre-exposed. 

aUY11 and dUY11 also protected Huh7.5 cells from infection with HCV (EC50, 0.496 

µM and 2.93 µM, respectively), but inhibited infectivity most potently when virions were 

pre-exposed (EC50, 0.249 µM and 0.121 µM, respectively) (Figure 4.6B). Finally, 

aUY11 and dUY11 protected Vero cells from HSV-1 infection (EC50, 4.44 µM and 3.23 

µM, respectively) but were most potent when virions were pre-treated (EC50, 0.127 µM 

and 0.100 µM, respectively) (Figure 4.6C). Therefore, aUY11 and dUY11 do protect 

cells from infection by IAV, HCV and HSV-1, and were most potent against viruses that 

are internalized prior to fusion (consistent with the accumulation of RAFIs in intracellular 

compartments observed in Figure 4). 

aUY11 and dUY11 most potently protected MDCK cells from infection, at 

similar concentrations as they inhibit the infectivity of IAV virions. Given the efficacy 
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against IAV, I next tested how long aUY11 would protect cells from infection. MDCK 

cells were treated with aUY11 for one hour, and were then washed three times and 

overlaid with DMEM-5% FBS. Treated cells were then infected with IAV immediately 

(1 hour), or after 24, 48 or 72 hours. Infectivity was assessed by plaquing efficiency. 

aUY11 protected cells from infection even after 1, 24, 48 or 72 hours (EC50, 0.166 µM, 

0.943 µM, 1.49 µM or 16.5 µM, respectively) (Figure 4.7A). The EC50 increased 

proportionally as cell division occurred, which increases the amount of membrane and 

concomitantly dilute the concentration of aUY11. When corrected for cell division and 

corresponding dilution, aUY11 protected cells from infection similarly after 1, 24 and 48 

hours (EC50, 0.166 µM, 0.198 µM and 0.148 µM, respectively), with decreased activity 

after 72 hours (EC50, 1.03 µM) (Figure 4.7B). 

4.2.5 The RAFIs aUY11 and dUY11 inhibit the infectivity of IAV, HCV and HSV-1 

virions produced by treated cells. Viruses acquire their envelopes from the membranes 

of infected cells, and aUY11 and dUY11 localize to cellular membranes (Figure 4.5). 

Therefore, we tested the effects of aUY11 on the infectivity of virions produced by 

already infected cells. MDCK, Huh7.5 or Vero cells were first infected with 5 or 0.5 

pfu/cell of IAV, HCV or HSV-1. After 1 hour, inocula were removed and cells were 

washed and overlaid with media containing aUY11 for 24 or 48 hours (for IAV and 

HSV-1 or HCV, respectively). Supernatants and cell lysates were harvested and titrated. 

Almost no infectious virus could be recovered from already infected cells treated with 6 

µM aUY11 (Figure 4.8). The concentrations at which aUY11 inhibited the production of 

infectious virus from cells treated after infection were very similar to the concentrations 

at which it inhibited the infectivity of exposed virions. In cells infected at an MOI of 5, 
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the IC50 for IAV, HCV or HSV-1 was 0.2, 0.4 or 0.35 µM, respectively. In cells infected 

at an MOI of 0.5, the IC50 for IAV, HCV or HSV-1 was 0.06, 0.14 or 0.28 µM, 

respectively. Previous work in our laboratory by Dr. Mireille St.Vincent showed that 

dUY11 does not affect viral replication in previously infected cells, and has no apparent 

effects on virion assembly or integrity, only minimal ones on virion budding, and no 

cytotoxic effects (St Vincent et al., 2010). My results show that aUY11 and dUY11 

localize to the membranes of treated cells (Figure 4.5). Therefore, the effects on the 

virions produced by cells treated after infection are most likely a result of inhibition of 

the infectivity of the progeny virions, which acquire their envelopes by budding from the 

cell membranes to which aUY11 localizes.  

In this model, aUY11 would become incorporated into the virion envelopes 

(derived from cellular membranes) during budding. To test the model, I examined the 

fluorescence spectra of aUY11 in 104 IAV, HCV or HSV-1 virions produced by cells 

treated with DMSO vehicle, or equivalent volumes from cells treated with aUY11. The 

characteristic emission spectrum of aUY11 was detected, in decreasing intensity, for 

samples treated with 6, 2 or 0.6 µM aUY11, for IAV (Figure 4.8A), HCV (Figure 4.8B) 

and HSV-1 (Figure 4.8C). As expected, aUY11 fluorescence was not detected in 

samples from the untreated cells. Therefore, aUY11 added to already-infected cells 

becomes incorporated into the membranes of virions produced by the treated cells, 

resulting in the production of non-infectious virions. 

4.2.6 The RAFI aUY11 does not affect HCV attachment. Compounds that inhibit 

infectivity may interfere with the first step of entry, attachment. Previous studies in our 

laboratory showed that dUY11 did not affect the binding of an enveloped DNA virus, 
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HSV-1 (St Vincent et al., 2010). I now tested the effects of aUY11 on the binding of an 

unrelated enveloped virus, HCV. Fluorescently labeled HCV virions were exposed to 

aUY11 for 10 minutes at 37°C, and then added to pre-chilled Huh7.5 cell monolayers. 

After 1 hour, the inoculum was removed and cells were washed four times with cold 

DMEM. Fluorescence attached to cells was then measured, and binding is expressed as 

percentage fluorescence relative to the vehicle-treated control. aUY11 only minimally 

inhibited HCV binding by ~10% at the highest concentration tested, 20 µM (~100-fold 

above the EC50) (Figure 4.9A). 

4.2.7 The RAFI aUY11 does not perturb membrane fluidity. Viral entry steps 

(including binding and fusion) require appropriate membrane fluidity. Compounds that 

target membranes can modulate their fluidity, which in turn affects the infectivity of 

enveloped virions (Harada, 2005). For example, cholesterol increases the ordering of 

phospholipid acyl chain packing (Lande et al., 1995). Decreases in membrane fluidity 

reduce the infectivity of enveloped virions such as HIV (Harada et al., 2005). We 

therefore tested the effects of aUY11 on membrane fluidity, using the DPH fluorescence 

polarization method (Shinitzky and Inbar, 1976). As membrane fluidity decreases (such 

as by addition of cholesterol), the polarization of DPH increases. The addition of aUY11 

up to 20 µM (approximately 100-fold above the antiviral EC50) to DOPC liposomes only 

minimally increased the DPH polarization (Figure 4.9B), indicating that aUY11 does not 

affect membrane fluidity. 

4.2.8 The RAFIs inhibit the formation of negative curvature in model lipid 

membranes without affecting membrane integrity. In collaboration with Drs. Richard 

Epand and Raquel Epand (McMaster University, Hamilton, Canada), we used differential 



	
   168	
  

scanning calorimetry (DSC) to test whether aUY11 and other RAFIs inhibited the 

formation of lipid structures with negative curvature. 

Dielaidoylphosphatidylethanolamine (DEPE) lamellar phases were reconstituted with 

increasing concentrations of the RAFIs aUY11, ddUY11 or dUY1. The transition from 

the flat morphology of the lamellar phase to the negative curvature of the inverted 

hexagonal phase (Figure 4.10A) was evaluated by DSC. Less than 3% aUY11 in DEPE 

increased the transition temperature between the lamellar and inverted hexagonal phases 

by ~1°C (Figure 4.10B). Less than 3% ddUY11 or dUY1 in DEPE increased the TH 

transition temperature by ~2°C (Figures 4.10C and 4.10D). Earlier work had shown that 

2% dUY11 in DEPE increased TH by ~3°C (Figure 4.10E) (St Vincent et al., 2010). 

These effects on the transition temperature required for the formation of negative 

monolayer curvature indicate that RAFIs disfavour the formation of negative membrane 

monolayer curvature.  

The cooling scans, which evaluate the reciprocal inverted hexagonal to lamellar 

phase transition, exhibit a characteristic hysteresis caused by kinetic factors. They also 

show that aUY11, ddUY11 and dUY1 raise the hexagonal to bilayer transition 

temperature, as observed in the heating scans (Figure 4.10B-D). The fact that a 

characteristic transition due to hysteresis is recovered on each cooling scan, and that the 

cooling regression is similar to that obtained in the heating scans, demonstrates that the 

RAFIs did not affect the integrity of the multilamellar membranes. The membranes were 

not disrupted or lysed by aUY11, either, based on the constancy of the main transition, 

which appears at 37°C on reheating. The hysteresis of DSC transitions of 

phosphatidylethanolamines has been previously noted (Epand and Epand, 1988).  
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Taken together, aUY11 and other RAFIs raise the transition temperature 

necessary to form inverted hexagonal phases, without disrupting the membranes or 

affecting their fluidity (Figure 4.9). This activity is consistent with inhibitors of fusion 

that prevent formation of negative monolayer curvature (Epand, 1986). 

4.2.9 The RAFIs aUY11 and dUY11 inhibit the fusion of viral and cellular 

membranes. Since aUY11 and dUY11 inhibit the formation of negative curvature in 

model membranes (Figure 4.10), I next tested whether aUY11 inhibited virion-envelope-

to-cell-membrane fusion, which similarly requires the formation of negative curvature. 

Using fluorescence dequenching fusion assays, which analyze lipid mixing between the 

outer leaflets of virions and target cells, I tested the fusion of VSV, IAV and HCV 

(representing the different classes of fusion proteins). 

VSV virions labeled with self-quenching concentrations of R18 were exposed to 

aUY11 or dUY11 prior to mixing with Vero cells. Fusion was triggered by lowering the 

pH, and analyzed by the dequenching of R18 fluorescence. Fluorescence was dequenched 

by ~15% when VSV virions exposed to DMSO vehicle were induced to fuse to target 

cells, but by only 5% when VSV virions exposed to aUY11 were induced to fuse under 

the same conditions (Figure 4.11A). Similarly, fluorescence was dequenched by only 3% 

when VSV virions were pre-exposed to dUY11 (Figure 4.11A). 

I next tested the effects of aUY11 and dUY11 on fusion of IAV (PR8, an H1N1 

strain) and HCV JFH-1. IAV virions labeled at self-quenching concentrations of R18 

were exposed to aUY11 or dUY11 prior to mixing with MDCK (IAV) or Huh7.5 (HCV) 

cells. Fusion was triggered by increasing the temperature and decreasing the pH to 5. 

Under these conditions, fluorescence was dequenched by approximately 8% for IAV 
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virions treated with DMSO vehicle, but by less than 1% (background levels) for IAV 

virions treated with 600 nM dUY11 or aUY11, even after 2.5 hours (IAV fuses in less 

than 10 minutes). The background dequenching at neutral pH was ~2% after 2.5 hours 

(Figure 4.11B). For HCV, fluorescence was dequenched by approximately 12% for HCV 

virions treated with DMSO vehicle, but by less than 5% for HCV virions treated with 600 

nM dUY11 or aUY11 (EC99 in infectivity assays), in the range of the background 

dequenching at neutral pH in these assays (~3%) (Figure 4.11C). 

4.2.10 The RAFI aUY11 inhibits fusion by acting on lipids, not proteins. To 

determine if the effects of RAFIs on fusion involved cellular factors, I tested their effects 

on cell-free virus-liposome fusion, using VSV and DOPC/cholesterol liposomes. VSV 

virions were labeled with diphenylhexatriene (DPH; a membrane fluidity probe), and 

then exposed to aUY11 or DMSO vehicle. Treated virions were mixed with liposomes, 

and triggered to fuse. DPH fluorescence polarization was tested as a measure of fusion. 

DPH polarization is increased in membranes with lower fluidity (such as the virion 

envelope) and decreased in membranes with higher fluidity (such as the liposome 

membrane). DPH polarization was decreased by ~10% when VSV virions exposed to 

DMSO vehicle were induced to fuse to liposomes, but by only 4% when VSV virions 

exposed to aUY11 were induced to fuse under the same conditions (Figure 4.12A). 

IAV has a class I fusion protein, whereas VSV has a class III fusion protein and 

HCV has a putative class IV fusion protein. Although these proteins differ structurally 

and mechanistically, they mediate fusions that require conserved curvature changes in the 

lipid envelopes. Therefore, RAFIs likely inhibit fusion by acting on the lipid membranes 

(to prevent formation of negative curvature), and not by interacting with any viral 
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protein. To test this model, I analyzed the effects of aUY11 on fusion of protein-free 

liposomes to cells, which is induced by acidic conditions (Connor et al., 1984). I first 

exposed R18-labeled protein-free DOPC liposomes to aUY11, and then added the 

exposed liposomes to cells. Fusion was triggered by decreasing the pH to 5.5 and 

monitored by fluorescence dequenching of R18 from liposomal membranes into cellular 

membranes. Under these conditions, fluorescence was dequenched by approximately 

45% for liposomes treated with DMSO vehicle, but by only approximately 20% for 

liposomes first exposed to 2 µM aUY11 (Figure 4.12B). Therefore, aUY11 partially 

inhibits fusion that is not mediated by any viral protein. 

4.2.11 The RAFIs inhibit infectivity and fusion at similar concentrations. If RAFIs 

inhibited infectivity mainly by inhibiting fusion, then the concentrations required to 

inhibit infectivity or fusion should be similar. To test such potential correlation, I tested 

different concentrations of aUY11 and dUY11 in plaquing efficiency and fusion assays. 

The respective dose-responses were then analyzed. Both aUY11 and dUY11 inhibited 

fusion and plaquing at similar concentrations (Figure 4.13A and 4.13B). Their EC50 in 

fusion consequently closely corresponded with their EC50 in plaquing efficiency. 

Structure-activity relationship studies had previously shown that amphipathicity, a 

larger hydrophilic head group than the hydrophobic group, and rigidity and planarity of 

the hydrophobic moiety were all necessary for inhibition of HSV-1 plaquing (St Vincent 

et al., 2010). Modifications that disrupt the amphipathicity and rigidity of RAFIs 

therefore disrupt their ability to inhibit infectivity. I tested the effects of these 

modifications on fusion. dUY1 has a polar group in the hydrophobic moiety (and is less 

amphipathic than aUY11 or dUY11), whereas dUY5 has a non-planar hydrophobic group 
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(of similar size to the hydrophilic moiety in aUY11 and dUY11) and aUY12 has a 

flexible and polar linker between the hydrophobic and hydrophilic groups (Figure 4.2). 

Several concentrations of dUY1, dUY5 and aUY12 were tested in VSV fusion and 

plaquing efficiency assays. Although these RAFIs vary in their potency by over 100-fold, 

each inhibited fusion and plaquing at similar concentrations (Figures 4.13C, 4.13D and 

4.13E). Consequently, their EC50 in fusion closely corresponded with their EC50 in 

plaquing efficiency. 

4.2.12 The RAFI aUY11 does not readily select for resistant variants. Influenza 

A/PR8 [H1N1] was serially passaged in the presence of increasing concentrations of 

aUY11. However, after 10 passages in the presence of aUY11, the viral titers did not 

recover (Figure 4.14A, Table 4.2). I also passaged HSV-1 KOS in the presence of 

aUY11. As of passage 4, there has been no selection for resistance (Figure 4.14B, Table 

4.3). 
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4.3 DISCUSSION 

The results presented in this chapter show that the two lead RAFIs, aUY11 and dUY11, 

inhibit the infectivity of enveloped but otherwise unrelated viruses. These include 

clinically important viruses with DNA or RNA genomes, which replicate in the nucleus 

or in the cytoplasm, and which use different cellular receptors and enter cells by different 

mechanisms. aUY11 was active only at micromolar concentrations against VACV, which 

is enveloped but differs from other enveloped viruses in that some VACV have a second 

envelope (Law et al., 2006). The second envelope is shed by nonfusogenic mechanisms 

prior to fusion. aUY11 and dUY11 failed to inhibit the infectivity of nonenveloped 

viruses, suggesting that their targets are conserved among enveloped viruses but absent in 

nonenveloped viruses. All enveloped viruses share phospholipid-based bilayer envelopes, 

which must fuse with cellular membranes during entry into the cell. Therefore, we 

proposed that aUY11 most likely targets the conserved lipid core of the virion envelopes.  

Consistently with this model, both aUY11 and dUY11 localize to the hydrophobic 

core of the lipid membrane of protein-free liposomes or virion envelopes. Furthermore, 

aUY11 and dUY11 inhibit lipid mixing in fluorescence dequenching fusion assays for 

IAV, HCV and VSV (which represent three different classes of viral fusion proteins), and 

inhibit the acid-induced fusion of liposomes to cells, in the absence of any viral protein. 

aUY11 did not affect membrane fluidity, but aUY11 and other RAFIs did inhibit the 

transition of model lipid bilayers from lamellar to hexagonal phases, a transition which 

requires the formation of negative curvature. Such activities are consistent with the 

inhibition of the negative curvature necessary for virion envelopes to fuse to cell 

membranes as the main antiviral mechanism of 5-perylene-ethynyl deoxyuridine- or 
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arabino-derived RAFIs. aUY11 and dUY11 likely act by the same biophysical 

mechanisms targeting the virion envelope lipids to prevent the formation of the negative 

curvature necessary for fusion, therefore inhibiting the infectivity of enveloped viruses.  

 RAFIs inhibit the fusion of the three different viruses that I tested (IAV, HCV and 

VSV) which represent different classes of viral fusion proteins. IAV hemagglutinin (HA), 

like other class I fusion proteins, is predominantly composed of alpha helices containing 

an N-terminal hydrophobic fusion peptide (Wilson et al., 1981). Class I fusion proteins 

are trimers both before and after fusion. The proposed mechanism for HA suggests the 

folding of an uncleaved protein to a metastable state (Chen et al., 1998a), which is then 

activated by cleavage (Wiley and Skehel, 1987)	
  (Wilson et al., 1981). Fusion is triggered 

by low pH, resulting in irreversible conformational changes leading to a more stable post-

fusion conformation (Bullough et al., 1994). HCV E2 protein was initially proposed to be 

a class II fusion protein, like those in other flaviviridae (Krey et al., 2010), but this was 

recently disputed when the crystal structures of E2 revealed a globular architecture 

distinct from any class II fusion protein (Kong et al., 2013; Khan et al., 2014). The 

properties of E2 (such as low pH-induced conformational changes) are also inconsistent 

with its proposed role as a class II fusion protein (Khan et al., 2014). It is currently 

thought that E1 or the E1E2 heterodimer may belong to a novel class of fusion protein (Li 

and Modis, 2014). Finally, VSV G protein is a class III fusion protein, consisting of 

mixed alpha helix and beta sheet structure (Roche et al., 2007). Class III fusion proteins 

can uniquely undergo a reversible conformational change (unlike class I and II fusion 

proteins). Extended exposure to low pH inactivates the virions, but the fusion activity is 

fully recovered when the pH is raised again (Gaudin, 2000a).  
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The fusion proteins of IAV, HCV and VSV represent different classes, with 

different structures and fusion mechanisms. However, aUY11 and dUY11 inhibited 

fusion of all three viruses at similar concentrations. The targets of aUY11 and dUY11 are 

therefore not likely the fusion proteins themselves. The actual target must be even more 

conserved among enveloped viruses. aUY11 also inhibited acid-induced fusion of 

protein-free liposomes to cells (in the absence of any viral protein), supporting a model in 

which RAFIs inhibit infectivity by acting on lipids. The lipids in the envelope of all 

enveloped viruses (or vesicles) must form a hemifusion stalk structure when fusing to 

target cell membranes (Harrison, 2008). This process requires the formation of negative 

curvature by the outer leaflet of the envelope. DSC experiments showed that aUY11 and 

other RAFIs inhibit the transition from the lamellar phase (exhibiting flat curvature) to 

the hexagonal phase (exhibiting negative curvature), indicating that they inhibit the 

formation of negative curvature required for fusion. These results support our model that 

RAFIs target virion envelope lipids to prevent fusion of viral and cellular membranes by 

biophysical mechanisms (i.e., inhibiting the formation of negative curvature in virion 

envelopes). 

Virion fusion is affected by the lipid composition of the virion envelope	
  (Teissier 

et al., 2011a). The molecular shape of lipids affects the formation of the negative 

curvature of the hemifusion stalk fusion intermediate. Lipids with polar headgroups of 

larger diameter than their hydrophobic tails in the outer leaflet favour positive curvature 

and therefore increase the activation energy required for formation of the hemifusion 

stalk (Chernomordik et al., 1995). Not unexpectedly, addition of exogenous lipids of the 

appropriate shape and polarity (such as LPC) prevents the fusion of a number of 
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enveloped viruses (Chernomordik et al., 1997; Gunther-Ausborn et al., 1995). 

Phospholipids, however, are rapidly metabolized and disruptive to membranes, and as 

such are not pharmacologically useful.  

Unlike LPC and related phosopholipids, RAFIs are small synthetic compounds of 

appropriate shape and polarity to inhibit formation of the negative curvature necessary for 

the formation of the hemifusion stalk, but they do not disrupt membranes or inhibit 

physiological fusions. aUY11 and dUY11 had no apparent effects on cellular fusion 

events, such as those required for endocytosis. For example, aUY11 did not inhibit the 

infectivity of the nonenveloped polio- and reovirus, which are internalized by endocytosis 

and require fusion of endocytotic vesicles for entry. Furthermore, aUY11 had no apparent 

effects on exocytosis (Dr. Gary Eitzen, University of Alberta, Edmonton, Canada; 

unpublished data) or mitosis (St Vincent et al., 2010). We speculate that the lack of 

effects on cellular fusions is due to the activity of cellular proteins, which actively 

modulate the lipid composition and curvature of cellular membranes. Such activities are 

not possible for metabolically inert virions. Consistently, neither aUY11 nor dUY11 was 

cytotoxic to cells (selectivity index > 3000) (St Vincent et al., 2010).  

Other membranotropic inhibitors of viral entry have been described in the past 

few years. C5A inhibited the entry of several enveloped viruses, including HCV and HIV 

(Cheng et al., 2008; Bobardt et al., 2008), by virucidal mechanisms. Another inhibitor of 

HCV and HIV infectivity, PD 404182 (PD), was recently identified (Chamoun et al., 

2012; Chamoun-Emanuelli et al., 2014). PD was proposed to disrupt virion envelopes, 

perhaps by interfering with membrane fluidity or curvature (Chamoun et al., 2012). One 

possibility is that PD acts as a weak RAFI to prevent the curvature changes in the virion 
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envelopes necessary for fusion, although this remains to be tested. Other compounds that 

target virion envelopes act by non-virucidal mechanisms (Teissier et al., 2011b). Arbidol 

interacts with lipid membranes (Pecheur et al., 2007; Villalain, 2010), and inhibited the 

fusion of enveloped viruses such as IAV and HCV (Boriskin et al., 2008; Teissier et al., 

2011b). It was proposed that arbidol might also interact with tryptophan residues of viral 

proteins to prevent fusion (Teissier et al., 2011b). 

LJ-001 is another small molecule that targets virion envelopes to inhibit the 

infectivity of enveloped viruses. LJ-001 and other thiazolidine and oxazolidine 

derivatives are type II photosensitizers that are thought to inactivate virions by damaging 

the membranes through generation of reactive oxygen species after exposure to ambient 

light (Wolf et al., 2010; Vigant et al., 2013). Enveloped virions exposed to LJ-001 had 

increased amounts of some oxidized forms of unsaturated phospholipids (Vigant et al., 

2013). The authors proposed that LJ-001-generated singlet oxygen species oxidize 

unsaturated fatty acid chains within the viral membrane. Such oxidation would introduce 

a polar group in the hydrophobic core of the lipid bilayer and cause a cis-to-trans 

isomerization of a double bond in the unsaturated fatty acid chain (Vigant et al., 2013). 

Both of these modifications would likely result in clustering of the oxidized lipids, 

thereby affecting biophysical properties of the envelope, such as membrane fluidity. It 

was postulated that such oxidative damage could be repaired by metabolically active 

cells, but not by inert virions, thus explaining the selectivity of these compounds. 

The hydrophobic moiety of aUY11 and dUY11 is perylene, a known 

photosensitizer. Indeed, dUY11 did generate singlet oxygen species (Vigant et al., 2014), 

which Vigant et al. proposed to be necessary for its antiviral activity. Vigant et al. found 
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that the antiviral activity of dUY11 was abrogated in the absence of light, or in the 

presence of singlet oxygen quenchers, suggesting that its photosensitizing properties are 

involved in its antiviral activity. Vigant et al. proposed that the antiviral activity of 

dUY11 is a result of reduction in virion envelope fluidity induced by clustering of 

oxidized phospholipids. However, changes in membrane fluidity were only observed at 

millimolar concentrations of dUY11 (Vigant et al., 2014), far higher than the relevant 

antiviral concentrations, and I found that aUY11 only very minimally affected liposome 

membrane fluidity at concentrations up to 20 µM, ~100-fold higher than the antiviral 

EC50 (Figure 4.9). Our preliminary findings show that aUY11 is still active against HSV-

1 in the absence of light, albeit at low micromolar concentrations instead of nanomolar 

concentrations in the presence of light. Furthermore, other RAFIs with similar shapes and 

amphipathicities, but lacking photosensitizing moieties such as perylene, inhibited the 

infectivity of HSV-1 at low micromolar concentrations (St Vincent et al., 2010). 

Although the photosensitizing properties of perylene-containing RAFIs may contribute to 

their antiviral activities and potencies, RAFIs as a group most likely inhibit viral fusion 

by biophysical mechanisms as a result of their shapes and amphipathicities. 

Virion envelopes can be targeted by many different approaches, either through 

disruption of virion envelopes (e.g., PD 404182) (Chamoun et al., 2012), inhibition of 

fusion by as yet understood mechanisms (e.g., arbidol) (Boriskin et al., 2008), oxidative 

damage to the virion lipid envelopes (e.g., LJ-001) (Wolf et al., 2010) or by modulating 

membrane curvature (e.g., RAFIs) (St Vincent et al., 2010; Colpitts et al., 2013). 

Regardless of the particular mechanisms, inhibitors that target highly conserved structural 

elements of virions, such as the lipid core of the virion envelope, have broad-spectrum 
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activity against otherwise unrelated enveloped viruses. The entry inhibitors in clinical use 

target viral glycoproteins, cellular receptors, or the interactions between them. Such 

molecules have very specific activities, often against only one virus. Interactions between 

viral proteins and their receptors can be disrupted, for example by small molecules such 

as the anti-HIV drug maraviroc (Dorr et al., 2005). Biomimetic peptides such as 

enfuvirtide, another anti-HIV drug, interfere with the structural rearrangements of viral 

fusion proteins that are necessary for fusion (Kilby et al., 1998; Dwyer et al., 2007; 

Schmidt et al., 2010; Liu et al., 2010). Antibodies have also been explored as inhibitors 

of infectivity, mostly in the context of RSV infection (Huang et al., 2010). Unfortunately, 

peptides and antibodies have poor oral bioavailability or stability (Vlieghe et al., 2010). 

Furthermore, these approaches suffer from the limitations of targeting any viral protein, 

such as narrow specificity and selection for resistance (Wei et al., 2002; Baba et al., 

2007). Selection for resistance is particularly problematic for antivirals that target viral 

surface proteins, since they commonly undergo rapid mutation to avoid immune 

responses (Iannello et al., 2006). In contrast, RAFIs target viral envelope lipids, which 

are not encoded by the viral genome and are a necessary structural component of all 

enveloped viruses. Therefore, the RAFIs are expected to have a higher barrier to selection 

for resistance. Consistently with this expectation, we have not yet been able to select for 

dUY11-resistant HSV-1 mutants (after 10 serial passages conducted by Dr. Mireille 

St.Vincent) or aUY11-resistant HSV-1 or IAV mutants (Tables 4.2 and 4.3).  

In addition to inhibiting viral infectivity, RAFIs also protected cells from 

infection. aUY11 and dUY11 were particularly effective at preventing infection of cells 

by IAV and HCV, which are internalized by endocytosis before fusion is triggered by the 
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low pH in the endosome (Chen and Zhuang, 2008; Farquhar et al., 2012). In contrast, 

pre-treatment of cells was less effective at inhibiting the infectivity of HSV-1, which 

fuses to most cell types at the plasma membrane (Wittels and Spear, 1991). These 

differences likely reflect the different entry mechanisms of the viruses. aUY11 may be 

internalized by cells and accumulate in cellular endosomes, resulting in a reservoir to 

which virions internalized by endocytosis are exposed.  

aUY11 is also effective when used to treat cells already infected with IAV, HCV 

or HSV-1. Although it does not protect the cells from the virus-induced cytopathic 

effects, as expected from its mechanisms of action, the virions produced from the 

infected cells are not infectious. This effect is likely due to the incorporation of aUY11 in 

progeny virion envelopes (Figure 4.8), which are acquired during budding from the 

cellular membranes to which aUY11 localizes (Figure 4.5). Therefore, treatment with 

aUY11 not only protects uninfected cells from infection, but also renders virions 

produced by infected cells noninfectious. 

These studies demonstrate that chemically distinct compounds with the same 

overall three-dimensional shape and amphipathicity inhibit viral infectivity by inhibiting 

fusion of viral and cellular membranes. The two RAFIs, aUY11 and dUY11, inhibit viral 

fusion due to their shapes and amphipathicities, acting through biophysical and not 

biochemical mechanisms. Specifically, they inhibit the formation of the negative 

curvature necessary to generate the hemifusion stalk intermediate, a critical step in the 

fusion of enveloped viruses. aUY11 and dUY11 act by the same mechanisms against 

several enveloped but otherwise unrelated viruses, including important human pathogens 

such as IAV, HCV and HSV-1/-2. Therefore, RAFIs are a novel family of antiviral 
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compounds, which act by biophysical mechanisms to prevent fusion of viral and cellular 

membranes. 
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Table  4.1.  EC50 of  aUY11  and  dUY11  against  unrelated  viruses.  Numbers  that  are 
italicized  and  bolded  are  from  experiments  conducted  by  Dr.  Mireille  St.Vincent (St 
Vincent et al., 2010). N.D., no data. 
 

           

 

 

 

 

 

 
 

EC50, µM 

Virus family Virus aUY11 dUY11 

Herpesviridae HSV-1 0.26 0.10 

HSV-2 0.20 0.071 

mCMV 0.11 0.013 

Poxviridae VACV 25 N/D 

Orthomyxoviridae IAV (PR8) [H1N1] 0.22 0.10 

IAV (USSR) [H1N1] 0.035 0.076 

IAV (Aichi) [H3N2] 0.067 0.15 

IAV (PC) [H3N2] 0.053 0.083 

Flaviviridae HCV 0.24 0.11 

Rhabdoviridae VSV 0.015 0.013 

Togaviridae SINV 0.010 0.011* 

Adenoviridae AdV > 20 > 20* 

Picornaviridae RV > 200 > 200* 

Reoviridae PV > 200 N/D 
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Table  4.2.  IAV PR8  [H1N1]  titers  under  aUY11  selection  pressure. Influenza  PR8 
was passaged in the presence of DMSO vehicle (A) or aUY11 (B) and harvested at full 
cytopathic effect. Viral titers were evaluated by plaque assay. 
 

 

 

 

 
 

Table 4.2. Influenza PR8 [H1N1] titers under aUY11 selection pressure. Influenza PR8 was 
passaged in the presence of DMSO vehicle (A) or aUY11 (B) and harvested at full cytopathic 
effect. Viral titers were evaluated by plaque assay. 

(A) 

(B) 
Passage 
number 

MOI  
(pfu/cell) 

[aUY11] 
(µM) 

[DMSO] 
(%, vol/vol) 

Viral titer 
(PFU/106 cells) 

Ratio of titer 
(aUY11/DMSO) 

1 0.01 0.05 0.12 1.47 x 107 7.0 x 10-1 

2 0.01 0.2 0.12 1.00 x 107 4.2 x 10-1 

3 0.01 2 0.12 9.60 x 104 1.8 x 10-2 

4 0.01 2 0.12 5.68 x 103 4.3 x 10-3 

5 0.01 2 0.12 2.19 x 105 3.0 x 10-2 

6 0.01 4 0.12 2.50 x 105 1.0 x 10-2 

7 0.01 4 0.12 2.26 x 104 1.1 x 10-3 

8 0.001 4 0.12 5.00 x 103 8.8 x 10-5 

9 0.001 0.2 0.12 4.17 x 105 6.8 x 10-3 

10 0.01 0.2 0.12 6.83 x 105 1.4 x 10-2 

Passage 
number 

MOI  
(pfu/cell) 

[Cpd] 
(µM) 

[DMSO] 
(%, vol/vol) 

Viral titer 
(PFU/106 cells) 

Ratio of titer 
(DMSO/DMSO) 

1 0.01 - 0.12 2.09 x 107 1 

2 0.01 - 0.12 2.39 x 107 1 

3 0.01 - 0.12 5.21 x 106 1 

4 0.01 - 0.12 1.38 x 106 1 

5 0.01 - 0.12 7.42 x 106 1 

6 0.01 - 0.12 2.50 x 107 1 

7 0.01 - 0.12 2.00 x 107 1 

8 0.001 - 0.12 5.67 x 107 1 

9 0.001 - 0.12 6.11 x 107 1 

10 0.01 - 0.12 5.00 x 107 1 
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Table  4.3.  HSV-1  KOS  titers  under  aUY11  selection  pressure. HSV-1  KOS  was 
passaged  in  the  presence  of  DMSO  vehicle (A) or  aUY11 (B) and  harvested  at  full 
cytopathic effect. Viral titers were evaluated by plaque assay. 
 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3. HSV-1 KOS titers under aUY11 selection pressure. HSV-1 KOS was passaged in 
the presence of DMSO vehicle (A) or aUY11 (B) and harvested at full cytopathic effect. Viral 
titers were evaluated by plaque assay. 

Passage 
number 

MOI  
(pfu/cell) 

[Cpd] 
(µM) 

[DMSO]  
(%, vol/vol) 

Viral titer 
(PFU/106 cells) 

Ratio of titer 
(DMSO/DMSO) 

1 0.01 - 0.12 5.52 x 107 1 

2 0.01 - 0.12 4.21 x 107 1 

3 0.01 - 0.12 2.32 x 107 1 

4 0.01 - 0.12 1.78 x 108 1 

(A) 

(B) 
Passage 
number 

MOI  
(pfu/cell) 

[aUY11] 
(µM) 

[DMSO]  
(%, vol/vol) 

Viral titer 
(PFU/106 cells) 

Ratio of titer 
(aUY11/DMSO) 

1 0.01 0.15 0.12 2.59 x 107 4.7 x 10-1 

2 0.01 2 0.12 2.81 x 106 6.7 x 10-2 

3 0.01 4 0.12 3.08 x 106 1.3 x 10-1 

4 0.01 4 0.12 7.40 x 103 4.2 x 10-4 
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Figure  4.1.  The  hemifusion  stalk  intermediate  requires  the  formation  of  local 
membrane  negative  curvature. The  outer  leaflet  of  the  virion  lipid  envelope  (blue) 
demonstrates positive curvature, whereas the cell lipid membrane (red) has comparatively 
flat  curvature.  The  merging  of  the  outer  leaftets  of  the  virion  envelope  and  the  cell 
membrane  forms  the  hemifusion  stalk  intermediate  (purple),  which  has  negative 
curvature.  
 

Figure  4.1.  The hemifusion  stalk  intermediate  requires  the  formation  of  local 
membrane  negative  curvature. The  outer  leaflet  of  the virion  lipid  envelope  (blue) 
demonstrates positive curvature, whereas the cell lipid membrane (red) has comparatively 

flat  curvature.  The  merging  of  the  outer leaftets  of  the virion  envelope  and  the  cell 
membrane  forms  the hemifusion  stalk  intermediate  (purple),  which  has  negative 

curvature.  
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Figure 4.2. Chemical and three-dimensional structures of the RAFIs aUY11, dUY11, 
aUY12, dUY5 and dUY1. 3D structures are displayed in three orthogonal perspectives 
(gray, carbon; blue, hydrogen; red, oxygen; dark blue, nitrogen). 
 
 

Figure 4.2. Chemical and three-dimensional structures of the RAFIs aUY11, dUY11, 
aUY12, dUY5 and dUY1. 3D structures are displayed in three orthogonal perspectives 
(gray, carbon; blue, hydrogen; red, oxygen; dark blue, nitrogen).  
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Figure  4.3.  The  RAFIs  aUY11  and  dUY11  inhibit  the  infectivity  of  enveloped  but 
otherwise  unrelated  viruses. Infectivity  of  unrelated  DNA (A,  C) or  RNA (B,  D) 
viruses pre-exposed to aUY11 (A, B) or dUY11 (C, D). Infectivity of treated virions was 
evaluated by plaquing efficiency or focus-forming efficiency (average ± SD; n = 3).  
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Figure  4.3.  The  RAFIs  aUY11  and  dUY11  inhibit  the  infectivity  of  enveloped  but 
otherwise unrelated viruses. Infectivity of unrelated DNA (A, C) or RNA (B, D) viruses 
pre-exposed  to  aUY11 (A,  B)  or  dUY11 (C,  D).  Infectivity  of  treated virions was 
evaluated by plaquing efficiency or focus-forming efficiency (average ± SD; n = 3).  
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Figure 4.4. The RAFIs aUY11 and dUY11 localize to the hydrophobic core of virion 
envelopes. The  emission  spectra  of  aUY11 (A) and  dUY11 (B) are  most  similar  in 
virions  or  protein-free  liposomes,  and  closely  resemble  their  spectra  in  hydrophobic 
environments.  aUY11  or  dUY11  was  added  to  aqueous  buffer  (grey)  or  to  1-octanol 
(black), to a final concentration of 48 nM or 0.48 nM, respectively. aUY11 or dUY11 (48 
nM  final  concentration)  was  also  added  to  106 pfu  of  IAV  (blue),  106 ffu  of  HCV 
(orange), 107 pfu of HSV-1 (green), 107 pfu of HSV-2 (teal) or 107 pfu of VSV (pink) or 
2 nmol liposomes (red) in 2.5 mL of aqueous buffer. Fluorescence was excited at 455 nm.  
 

Figure 4.4. aUY11 and dUY11 localize to the hydrophobic core of virion envelopes. 
The emission spectra of aUY11 (A) and dUY11 (B) are most similar in virions or protein-
free liposomes, and closely resemble their spectra in hydrophobic environments. aUY11 
or  dUY11  was  added  to  aqueous  buffer  (grey)  or  to  1-octanol  (black),  to  a  final 
concentration  of  48 nM  or  0.48 nM,  respectively.  aUY11  or  dUY11  (48 nM  final 
concentration) was also added to 106 pfu of IAV (blue), 106 ffu of HCV (orange), 107 pfu 
of HSV-1 (green), 107 pfu of HSV-2 (teal) or 107 pfu of VSV (pink) or 2 nmol liposomes 
(red) in 2.5 mL of aqueous buffer. Fluorescence was excited at 455 nm.  
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Figure 4.5. The RAFI aUY11 localizes to cellular lipid membranes. Vero (A), Huh7.5 
(B) or MDCK (C) cell monolayers were exposed to PKH26 general membrane dye for 10 
minutes at 37°C. Cells were then washed and exposed to aUY11 (left panel) or dUY11 
(right  panel)  for  1,  5,  15,  40,  or  120  minutes  at  37°C.  Shown  are  confocal  microscopy 
images; scale bars, 25 µm.  
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Figure 4.5. The RAFI aUY11 localizes to cellular lipid membranes. Vero (A), Huh7.5 
(B) or MDCK (C) cell monolayers were exposed to PKH26 general membrane dye for 10 
minutes  at  37°C.  Cells  were  then  washed  and  exposed  to  aUY11  (left  panel)  or  dUY11 
(right  panel)  for  1,  5,  15,  40,  or  120  minutes  at  37°C.  Shown  are  confocal  microscopy 
images; scale bars, 25 µm.  
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Figure  4.6. The RAFIs  aUY11  and  dUY11  protect  cells from  infection  with  IAV, 
HCV  and HSV-1. MDCK,  Huh7.5  or  Vero  cells  were  treated  with  aUY11  (left)  or 
dUY11  (right)  for  1  hour  prior  to  infection  with  IAV (A),  HCV (B) or  HSV-1 (C), 
respectively (cell  pre-treatment,  filled  circles).  Alternately,  virions  were  pre-exposed  to 
aUY11  or  dUY11  prior  to  infection  of  cells  (virion  pre-treatment,  open  squares)  or 
exposed  to  aUY11  or  dUY11  at  the  time  of  infection  (co-treatment,  filled  squares). 
Infectivity was evaluated by plaquing or focus forming efficiency (for aUY11, average ± 
SD, n = 3; for dUY11, average ± range, n = 2).  
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Figure 4.6. RAFIs aUY11 and dUY11 protect cells from infection with IAV, HCV or 
HSV-1. MDCK, Huh7.5 or Vero cells were treated with aUY11 (left) or dUY11 (right) for 
1  hour  prior  to  infection  with  IAV (A),  HCV (B)  or  HSV-1 (C),  respectively  (cell  pre-
treatment, filled circles). Alternately, virions were pre-exposed to aUY11 or dUY11 prior 
to infection of cells (virion pre-treatment, open squares) or exposed to aUY11 or dUY11 
at  the  time  of  infection  (co-treatment,  filled  squares).  Infectivity  was  evaluated  by 
plaquing  or  focus  forming  efficiency (for  aUY11,  average  ±  SD,  n  =  3;  for  dUY11, 
average ± range, n = 2).  
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Figure 4.7. The RAFI aUY11 protects cells from infection with IAV for as long as 72 
hours. MDCK  cells  were  treated  with  aUY11  for  1  hour,  and  then  washed  three  times 
and  overlaid  with  aUY11-free  DMEM-5%  FBS.  Cells  were  then  infected  with  IAV 
immediately (1 hour), or after 24, 48 or 72 hours. Infectivity was evaluated by plaquing 
efficiency (A). In (B),  the  concentrations  of  aUY11  were  corrected  for  cell  division. 
Graphs show the average ± range, n = 2. 
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MDCK  cells  were  treated  with  aUY11  for  1  hour,  and  then  washed  three  times  and 
overlaid  with  aUY11-free  DMEM-5%  FBS.  Cells  were  then  infected  with  IAV 
immediately (1 hour), or after 24, 48 or 72 hours. Infectivity was evaluated by plaquing 
efficiency (A).  In (B),  the  concentrations  of  aUY11  were  corrected  for  cell  division. 
Graphs show the average ± range, n = 2. 

-3 -2 -1 0 1 2
0

25

50

75

100

1 hour

24 hours

48 hours

72 hours

Log (aUY11, µM)

I
nf
e
ct
i
vi
t
y,
 
%

(A) 

-3 -2 -1 0 1 2
0

25

50

75

100

1 hour

24 hours

48 hours

72 hours

Log (aUY11, µM)

I
nf
e
ct
i
vi
t
y,
 
%

(B) 



	
   192	
  

 

Figure  4.8. The  RAFI aUY11  inhibits  the  infectivity  of  IAV,  HCV and  HSV-1 
virions produced by infected cells.  Cells infected with 5 or 0.5 PFU or FFU per cell of 
IAV (A),  HCV (B),  or  HSV-1 (C) were  incubated  in  the  presence  of  aUY11  for  23  h 
(IAV  and  HSV-1)  or  44  h  (HCV).  Supernatants  and  cell  lysates  were  harvested  and 
titrated  for  the  presence  of  infectious  virus. Harvested  virions  (from  graphs  on  the  left 
panel) for  each  concentration  of  aUY11 were  tested  for  the  presence  of  aUY11  by 
examining its fluorescence spectra (right panel). aUY11 fluorescence was excited at 455 
nm.  
 

 

Figure 4.8. aUY11 inhibits the infectivity of IAV, HCV, and HSV-1 virions produced 
by infected cells.  Cells infected with 5 or 0.5 PFU or FFU per cell of IAV (A), HCV (B), 
or HSV-1 (C) were incubated in the presence of aUY11 for 23 h (IAV and HSV-1) or 44 h 
(HCV).  Supernatants  and  cell  lysates  were  harvested  and  titrated  for  the  presence  of 
infectious  virus. Harvested virions  (from  graphs  on  the  left  panel)  were  tested  for  the 
presence  of  aUY11  by  examining  its  fluorescence  spectra  (right  panel).  aUY11 
fluorescence was excited at 455 nm.  
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Figure  4.9. The  RAFI aUY11 has  only  minimal  effects  on  virion  binding  and 
membrane fluidity. (A) HCV virions pre-exposed to aUY11 were adsorbed onto Huh7.5 
cells  for  1  hour  at  4°C.  The  fluorescence  attached  to  the  cells  was  then  measured, 
normalized  to  total  input,  and  is  presented as  a  percentage  relative  to  attachment  of 
DMSO  vehicle-treated  control  virions  (average  ±  range;  n  =  2). (B) DPH-labelled 
liposomes  were  treated  with  aUY11  for  10  minutes  at  37°C.  DPH  fluorescence 
polarization was measured. An increase in polarization indicates a decrease in membrane 
fluidity. The graph shows the result of two independent experiments (average ± range; n 
= 2). Several error bars are too small to be seen at this scale. 
 

Figure 4.9. aUY11 has only minimal effects on virion binding and membrane fluidity. 
(A) HCV virions  pre-exposed  to  aUY11  were  adsorbed  onto  Huh7.5  cells  for  1  hour  at 
4°C. The fluorescence attached to the cells was then measured, normalized to total input, 
and is presented as a percentage relative to attachment of DMSO vehicle-treated control 
virions  (average  ±  range;  n  =  2). (B) DPH-labelled  liposomes  were  treated  with  aUY11 
for  10  minutes  at  37°C.  DPH  fluorescence  polarization  was  measured.  An  increase  in 
polarization indicates a decrease in membrane fluidity. The graph shows the result of two 
independent experiments (average ± range; n = 2). Several error bars are too small to be 
seen at this scale. 
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Figure 4.10. The RAFIs aUY11, dUY11, ddUY11 and dUY1 prevent the formation 
of negative curvature in lipid structures. (A) Schematic representation of the lipid 
phase transitions measured by DSC. The transition from lamellar gel to lamellar liquid 
crystalline occurs at melting temperature (Tm); the transition from lamellar liquid 
crystalline to hexagonal phase occurs at temperature TH. Shown are DSC of the RAFIs 
aUY11 (B), ddUY11 (C) and dUY1 (D) in DEPE. The heating scans are shown with 
positive values and the corresponding cooling scans with negative values. (E) Increasing 
concentrations of RAFIs in DEPE increased the transition temperature from the lamellar 
to the hexagonal phase. DSC experiments were conducted by Drs. Richard and Raquel 
Epand (McMaster University, Hamilton, Canada). 
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Figure 4.11. The RAFIs aUY11 and dUY11 inhibit IAV, HCV and VSV fusion. R18-
labelled VSV (A), IAV (B) or HCV (C) virions pre-exposed to aUY11 or dUY11 were 
adsorbed onto Vero, MDCK or Huh7.5 cells for 1 hour at 4°C. Fusion was triggered by 
increasing  the  temperature  to  37°C  and  lowering  the  pH  to  5.  Fusion  was  evaluated  by 
fluorescence dequenching of R18. For (A), the background has been subtracted from each 
curve. 
 

Figure  4.11. RAFIs  aUY11  and  dUY11  inhibit  IAV,  HCV  and  VSV  fusion  when 
virions  are  treated  prior  to  attachment. R18-labelled VSV (A),  IAV (B)  or  HCV (C) 
virions  pre-exposed  to  aUY11  or  dUY11  were  adsorbed  onto  Vero,  MDCK  or  Huh7.5 
cells for 1 hour at 4°C. Fusion was triggered by increasing the temperature to 37°C and 
lowering the pH to 5. Fusion was evaluated by fluorescence dequenching of R18. 
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Figure 4.12. The RAFI aUY11 inhibits virus-liposome and liposome-cell fusions. (A) 
DPH-labeled VSV virions were treated with aUY11 or DMSO vehicle for 10 minutes at 
37°C.  DOPC/cholesterol  liposomes  were  then  added,  and  fusion  was  triggered  by 
increasing  the  temperature  to  37°C  and  lowering  the  pH  to  5.  The  polarization  of  DPH 
fluorescence was  then  tested,  as  a  measure  of fusion.  DPH  is  more  polarized  in 
membranes with higher rigidity/lower fluidity (such as the pre-fusion environment of the 
virion envelope) and less so in membranes with lower rigidity/higher fluidity (such as the 
post-fusion  environment  of  the  liposome  membrane). (B) aUY11  inhibits  acid-induced 
liposome  fusion  to  cells.  Shown  is  fluorescence  dequenching  of  R18-labeled  DOPC-
cholesterol liposomes preexposed to 2 µM aUY11 or DMSO vehicle during acid-induced 
fusion to Vero cells. 
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post-fusion  environment  of  the  liposome  membrane). (B) aUY11  inhibits  acid-induced 
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cholesterol liposomes preexposed to 2 µM aUY11 or DMSO vehicle during acid-induced 
fusion to Vero cells. 
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Figure 4.13. The RAFIs inhibit VSV plaquing efficiency and fusion to Vero cells at 
similar concentrations. Shown are comparisons of inhibition of fusion (open squares) or 
infectivity (filled circles) by RAFIs. For plaquing assays, approximately 200 VSV virions 
were exposed to increasing concentrations of aUY11 (A), dUY11 (B), aUY12 (C), dUY5 
(D), or dUY1 (E) for 10 minutes at 37°C. The exposed virions were then used to infect 5 
x  106 Vero  cells  seeded  in  6-well  plates.  Plaquing  efficiency  was  calculated  as  a 
percentage of plaques formed by virions exposed to DMSO vehicle.  
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Figure 4.13. RAFIs inhibit VSV plaquing efficiency and fusion to Vero cells at similar 
concentrations. Shown  are  comparisons  of  inhibition  of  fusion  (open  squares)  or 
infectivity (filled circles) by RAFIs. For plaquing assays, approximately 200 VSV virions 
were exposed to increasing concentrations of aUY11 (A), dUY11 (B), aUY12 (C), dUY5 
(D), or dUY1 (E) for 10 minutes at 37°C. The exposed virions were then used to infect 5 
x  106  Vero  cells  seeded  in  6-well  plates. Plaquing  efficiency  was  calculated  as  a 
percentage of plaques formed by virions exposed to DMSO vehicle.  
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Figure  4.14.  Viral  titers  under  aUY11  selection  pressure. IAV  PR8  (A)  and  HSV-1 
KOS (B) were passaged in the presence of DMSO vehicle or aUY11 and harvested at full 
cytopathic effect. Viral titers were evaluated by plaque assay.  

Figure  4.14. Viral  titers  under  aUY11  selection  pressure. IAV  PR8  (A)  and  HSV-1 
KOS (B) were passaged in the presence of DMSO vehicle or aUY11 and harvested at full 
cytopathic effect. Viral titers were evaluated by plaque assay.  
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CHAPTER 5: CHARACTERIZATION OF SMALL MOLECULE COMPOUNDS 

THAT MODULATE VIRAL OR CELLULAR MEMBRANE FLUIDITY TO 

INHIBIT THE INFECTIVITY OF ENVELOPED VIRUSES 

Data in this chapter were published in Gut: 
	
  
Anggakusuma, Colpitts, C.C., Schang, L.M., Rachmawati, H., Frentzen, A., Pfaender, 
S., Behrendt, P., Brown, R.J., Bankwitz, D., Steinmann, J., Ott, M., Meuleman, P., Rice, 
C.M., Ploss, A., Pietschmann, T. and Steinmann, E. (2014) Turmeric curcumin inhibits 
entry of all hepatitis C virus genotypes into human liver cells. Gut 63(7):1137-49 
 
I performed all of the experiments described in this chapter. I wrote the sections of the 
Gut manuscript corresponding to my experiments. 

 

5.1 INTRODUCTION 

Appropriate fluidity of virion lipid envelopes is critical for the infectivity of enveloped 

viruses. It is essential for both binding and fusion. Compounds that modulate virion 

envelope fluidity affect their infectivity (Harada et al., 2005). For example, glycyrrhizin, 

a natural product from licorice roots, inhibits human immunodeficiency virus (HIV)-1 

fusion by decreasing HIV-1 envelope fluidity. Similarly, excess cholesterol in virion 

envelopes also inhibits infectivity (Harada, 2005). Increased fluidity is also deleterious 

for infectivity. Virions depleted of cholesterol (and thus with increased envelope fluidity) 

are also impaired in their fusogenic abilities (Moore et al., 1978; Campbell et al., 2002; 

Graham et al., 2003; Sun and Whittaker, 2003; Huang et al., 2006; Carro and Damonte, 

2013).  

Appropriate fluidity of cellular membranes is also important for the entry of 

enveloped viruses (Howell et al., 1972;	
  Breisblatt and Ohki, 1976). Many viruses require 

cholesterol-rich domains in cellular membranes for entry. Many enveloped viruses, such 

as vaccinia virus (VACV) (Chung et al., 2005), varicella zoster virus (VZV) (Hambleton 
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et al., 2007), hepatitis C virus (HCV) (Kapadia et al., 2007), severe acute respiratory 

syndrome (SARS)-coronavirus (Lu et al., 2008) and HIV (Waheed and Freed, 2009) bind 

to receptors embedded within cholesterol-enriched microdomains or even fuse to these 

microdomains (Schroeder, 2010). Some nonenveloped viruses also require cholesterol-

rich domains for cell penetration (Marjomaki et al., 2002; Danthi and Chow, 2004). 

Compounds that disrupt these domains or modulate cellular cholesterol levels could have 

potential as antivirals, if cytotoxicity could be avoided. Cyclodextrins globally deplete 

cells of cholesterol and have broad antiviral activity. However, as expected, these 

activities are accompanied by the cytotoxic effects associated with cholesterol depletion 

(Kiss et al., 2010). More subtle modifications of cholesterol-rich domains still have 

antiviral effects and are better tolerated. For example, some phenothiazines active against 

HCV localize to cellular cholesterol-rich domains and increase their local fluidity, 

thereby impairing HCV entry (Chamoun-Emanuelli et al., 2013).  

Many viruses require cholesterol-rich membrane structures within cells for 

replication and assembly steps beyond entry. Flaviviruses, such as HCV and West Nile 

virus, for example, form replication complexes on cholesterol-rich membranous web 

structures (Mackenzie et al., 2007; Alvisi et al., 2011; Chatel-Chaix and Bartenschlager, 

2014). The glycoproteins of many enveloped viruses localize to cholesterol-rich domains, 

from which the virions are generally thought to bud (Pessin and Glaser, 1980; Scheiffele 

et al., 1999; Manie et al., 2000; Nguyen and Hildreth, 2000). Virion envelopes, therefore, 

are derived from specific subdomains of host cell membranes and consequently have 

lipid compositions distinct from that of the overall host cell membranes (Chazal and 

Gerlier, 2003). Under physiological conditions, the virion envelopes are mostly in the 
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liquid disordered phase (with some liquid ordered regions) under physiological 

conditions. Virion envelopes are commonly more ordered than typical cellular 

membranes (Polozov et al., 2008). Proteins embedded within the virion envelopes further 

decrease the fluidity of the envelopes (Schaap et al., 2012). As for any bilayer, decreased 

temperature or excessive sterol incorporation at physiological temperatures decrease 

virion envelope fluidity (Harada et al., 2005; Bales and Leon, 1978).  

Cholesterol content is critical for membrane fluidity. Cholesterol (Figure 5.1) has 

a tetracyclic ring system fused in the trans configuration, conferring planarity and rigidity 

(Ohvo-Rekila et al., 2002). Cholesterol has a single hydroxyl group at carbon 3 and a 

hydrocarbon chain at carbon 17 (Ohvo-Rekila et al., 2002). The polar hydroxyl group of 

cholesterol can interact with the aqueous phase or polar head groups of phospholipids and 

sphingolipids, whereas the steroid and hydrocarbon chain are buried in the hydrophobic 

core of the membrane. At physiological temperatures, which are above the gel to liquid-

crystalline phase transition temperature, the resulting interactions with phospholipid fatty 

acid chains, and the rigid and planar shape of cholesterol, increase membrane packing 

(Ohvo-Rekila et al., 2002), which reduces the membrane fluidity. These effects depend 

on the membrane composition. Overall, however, enrichment of sterols or sterol-like 

compounds into virion envelopes decreases envelope fluidity and inhibits infectivity. 

Viruses acquire their envelopes during budding from host cell membranes. 

Virions themselves have no enzymes or energy sources, and therefore cannot modify the 

envelope composition or fluidity. In contrast, cells actively regulate the composition and 

fluidity of their membranes. Cholesterol is internalized from exogenous sources (low-

density lipoprotein particles) by lipoprotein receptors (Brown and Goldstein, 1986). The 
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expression of these receptors is tightly regulated. Multiple sterol-response pathways that 

regulate cholesterol biosynthesis tightly control cholesterol homeostasis (Goldstein and 

Brown, 1990; Lange et al., 2004). Perturbation of the cholesterol regulatory mechanisms 

affects the sterol content in membranes, thereby altering membrane fluidity. Cellular 

membrane fluidity also depends on the length of the fatty acid chains and their degree of 

unsaturation, which is regulated by cellular proteins such as lipid desaturases (Aguilar 

and de Mendoza, 2006).  

I propose that modulators of membrane lipid bilayer fluidity can inhibit the 

infectivity of enveloped but otherwise unrelated viruses, including clinically important 

pathogens such as HCV. My objectives were to evaluate the antiviral mechanisms of 

viral- or host-targeted modulators of membrane fluidity. HCV was chosen as a primary 

model for these studies because it replicates within hepatocytes, which are the main 

cholesterol-synthesizing cells. Furthermore, the replication cycle of HCV is closely 

linked to cholesterol and lipid metabolism, as well as to intracellular membrane structures 

(Felmlee et al., 2013).  

The anti-HIV activities of the natural product glycyrrhizin (found in the roots of 

the licorice plant, Glycyrrhiza glabra) are the result of its effects on virion envelope 

fluidity (Harada, 2005). Glycyrrhizin is one of many secondary metabolites produced by 

plant species for protection against pathogens. As appropriate membrane fluidity is 

required by many pathogens, the production of secondary metabolites that modulate 

membrane fluidity may well have evolved as a broad defense mechanism against 

enveloped pathogens. Therefore, we sought to identify other natural products that have 

antiviral activity by modulating membrane fluidity. Curcumin (Figure 5.1), the principal 
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curcuminoid produced by the roots of Curcuma longa (turmeric), had been identified as a 

modulator of the fluidity of model lipid bilayers (Barry et al., 2009). Curcumin decreases 

membrane fluidity at physiological temperatures by inserting into lipid membranes in a 

transbilayer orientation (Barry et al., 2009). Curcumin also interferes with the activity of 

many diverse unrelated membrane proteins, likely through modifications of the physical 

properties of membranes (Ingolfsson et al., 2007). 

Curcumin has broad inhibitory activity against a number of enveloped viruses, 

including herpes simplex virus 1 (HSV-1) (Bourne et al., 1999; Kutluay et al., 2008; 

Zandi et al., 2010), HIV (Mazumder et al., 1995), Rift Valley fever virus (Narayanan et 

al., 2012), HCV (Kim et al., 2010; Chen et al., 2012), Japanese encephalitis virus (JEV) 

(Dutta et al., 2009), hepatitis B virus (HBV) (Rechtman et al., 2010), influenza A virus 

(IAV) (Chen et al., 2013) and Dengue virus (DENV)	
  (Padilla et al., 2014). The antiviral 

mechanisms were unclear, but were proposed to involve the direct inhibition of viral 

replication machinery (Mazumder et al., 1995) or modulation of cellular signaling 

pathways involved in viral replication (Kutluay et al., 2008; Dutta et al., 2009; Kim et 

al., 2010; Chen et al., 2012). However, the virion glycoproteins involved in entry steps 

are also membrane proteins, inserted into virion envelopes. Surprisingly, the potential 

effects of curcumin on envelope fluidity had not been examined. The broad activity of 

curcumin against unrelated enveloped viruses, but not against nonenveloped viruses 

(Chen et al., 2012), suggests that the target may well be the conserved virion envelope. 

My hypothesis was that curcumin inhibits the infectivity of HCV and other enveloped 

viruses by decreasing the virion envelope fluidity.  

 Unlike plants, mammals are not known to produce secondary metabolites as a 
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defensive strategy. However, innate immune mechanisms that modulate cellular 

metabolic pathways have evolved to contribute to pathogen defense. It would not be that 

surprising if mammals had also evolved broadly acting antiviral defenses targeting virion 

envelopes.  

Cholesterol-25-hydroxylase is an interferon-stimulated protein involved in 

establishing an antiviral state (Liu et al., 2013). Cholesterol-25-hydroxylase oxidizes 

cholesterol to 25-hydroxycholesterol (25HC). 25HC downregulates expression of the 

low-density lipoprotein receptor (LDL-R) and inhibits 3-hydroxyl-3-methyl-glutaryl-CoA 

reductase (HMG-CoA reductase) to decrease cellular cholesterol levels (Pezacki et al., 

2009). In mammalian cells, cholesterol is the most critical regulator of membrane 

fluidity. Therefore, my hypothesis was that induction of 25HC production inhibits HCV 

infectivity by modulating cellular membrane fluidity. 25HC was shown to be active 

against HCV replication (Pezacki et al., 2009), but its specific antiviral mechanisms 

remain unclear. More recently, 25HC was found to inhibit the entry of unrelated 

enveloped viruses by interfering with viral fusion (Liu et al., 2013). My objectives were 

to characterize the antiviral mechanisms of 25HC against HCV. 
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5.2 RESULTS 

5.2.1 Curcumin inhibits the infectivity of HCV and other enveloped viruses. HCV, 

HSV-1, VSV or PV virions (~100 infectious particles) were exposed to curcumin, THC 

or DMSO vehicle control in serum-free medium for 10 minutes at 37°C prior to infecting 

Huh7.5 cell monolayers. The foci of infected cells were detected by focus-forming or 

plaquing efficiency, and the infectivity was expressed as a percentage of the infectivity of 

virions treated with vehicle control. Curcumin inhibited the infectivity of the enveloped 

HCV, HSV-1 and VSV (EC50, 8.18 µM, 4.78 µM and 14.9 µM, respectively), but not the 

infectivity of the nonenveloped PV (Figure 5.2A). In contrast, THC did not inhibit the 

infectivity of any virus, even at concentrations up to 60 µM (Figure 5.2B). 

Curcumin inhibits virion infectivity when virions are pre-exposed (Figure 5.2). 

Time-of-addition experiments conducted by our collaborators (Dr. Eike Steinmann and 

colleagues, Twincore, Hannover, Germany) showed that curcumin did not inhibit HCV 

infection when cells were pre-treated, or treated after infection (Anggakusuma et al., 

2013). Curcumin inhibited HCV infection only when present at the time of infection 

(Anggakusuma et al., 2013), or when virions were pre-exposed (Figure 5.2), suggesting 

that it directly targets the virions. 

 Curcumin derivatives desmethoxycurcumin and bis-desmethoxycurcumin lack 

either one or both of the methoxy groups in the phenyl rings but have the same α, β-

unsaturated ketone groups as curcumin (Figure 5.1). Our collaborators further showed 

that they also inhibit HCV infectivity (Anggakusuma et al., 2013). I showed that THC, 

the only curcuminoid that lacks α, β-unsaturated ketone groups, did not inhibit HCV 

infectivity (Figure 5.2B). The methoxy groups, on the other hand, were dispensable. 
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Therefore, we postulated that the rigidity and planarity of curcuminoids, conferred by the 

α, β-unsaturated ketone groups, was critical for their antiviral activity. 

5.2.2 Curcumin decreases the fluidity of liposome membranes and virion envelopes. 

Other rigid and planar compounds, such as cholesterol, decrease membrane fluidity. I 

tested the effects of curcumin, THC and cholesterol on membrane fluidity using DPH 

fluorescence polarization (Lentz, 1989). The polarization of DPH increases as membrane 

fluidity decreases. The addition of curcumin to liposomes increased DPH polarization. As 

expected, so did the positive control, cholesterol (Figure 5.3A). Curcumin also decreased 

the fluidity of HCV and VSV envelopes (Figure 5.3B and 5.3C), whereas THC did not 

affect the fluidity of any tested membranes (Figure 5.3). Due the extended conjugation of 

curcumin, it has a more planar shape than THC. The planar shape of curcumin is 

consistent with the shape of other compounds that decrease membrane fluidity, such as 

cholesterol. 

5.2.3 Curcumin inhibits HCV binding to Huh7.5 cells. Binding requires appropriate 

membrane fluidity to allow for movements of viral glycoproteins in the envelope. If the 

antiviral activities of curcumin were a result of its effects on fluidity, then it should affect 

virion binding. I next evaluated the effects of curcumin on HCV virion attachment. R18-

labelled HCV virions pre-exposed to curcumin, THC or DMSO vehicle, were adsorbed 

onto Huh7.5 cell monolayers at 4°C. Unbound virions were removed by three washes, 

and the level of R18 fluorescence bound to cells was measured. Binding was expressed as 

a percentage relative to the binding of the DMSO vehicle control. Curcumin inhibited 

HCV binding in the absence or presence of serum (IC50, 35.1 µM or 11.4 µM, 

respectively), whereas THC did not (Figure 5.4A and 5.4B). 
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5.2.4 Curcumin inhibits HCV fusion to background levels. Like binding, viral fusion 

depends on appropriate membrane fluidity. Therefore, I tested the effects of curcumin on 

the fusion of HCV to Huh7.5 cells. R18-labelled HCV JFH-1 virions were exposed to 

curcumin, THC or DMSO vehicle prior to mixing with Huh7.5 cells. Fluorescence was 

dequenched by approximately 18% for HCV virions treated with DMSO vehicle, but by 

only 8% for HCV virions treated with 200 or 20 µM curcumin (EC99 or EC90 in 

infectivity assays, respectively) (Figure 5.55A). This low level of dequenching 

overlapped with the background dequenching at neutral pH in the assays (Figure 5.5A). 

As expected, THC did not inhibit HCV fusion (Figure 5.5B). These results could indicate 

that curcumin inhibits fusion directly or as a result of inhibiting attachment. To test these 

possibilities, virions were treated with curcumin following virion attachment at 4°C. 

Curcumin also inhibited fusion to background levels under these conditions (Figure 

5.5A).  

5.2.5 The cellular metabolite 25-hydroxycholesterol inhibits HCV infectivity. 

Curcumin, a plant natural product, inhibits viral infectivity by modulating membrane 

fluidity. Therefore, we proposed that mammalian cells could have similar natural 

antiviral defenses modulating virion membrane fluidity. Cholesterol metabolism is 

critical for the maintenance of membrane fluidity in cells. Therefore, we tested 25HC, a 

cholesterol metabolite induced in response to interferon and with known antiviral 

properties (Liu et al., 2013). HCV virions were pre-exposed to 25HC prior to infection of 

Huh7.5 cells, and focus formation was evaluated 72 hours later by immunocytochemistry. 

Pre-treatment of the virions inhibited their infectivity to cells (EC50, 4.31 µM) (Figure 

5.6), at similar concentrations as curcumin did (EC50, 8.18 µM) (Figure 5.2). 
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5.2.6 25HC decreases membrane fluidity, but does not inhibit HCV fusion when 

virions are pre-exposed. DPH-labeled HCV virions were exposed to 25HC, cholesterol, 

curcumin or vehicle control. 25HC exposure increased the fluorescence polarization of 

the DPH probe, demonstrating a decrease in the envelope fluidity (Figure 5.7A). 

However, 25HC decreased the envelope fluidity to a lesser extent than cholesterol or 

curcumin did (Figure 5.7A, P<0.01 or P<0.05, respectively, two-tailed unpaired t-test). It 

was unclear if this degree of fluidity decrease could affect fusion. I thus tested the effects 

of 25HC on fusion. R18-labelled HCV JFH-1 virions were exposed to 25HC or ethanol 

vehicle prior to mixing with Huh7.5 cells. 25HC did not inhibit HCV fusion when virions 

were pre-exposed, and only minimally inhibited fusion when the cells were pre-exposed 

(Figure 5.7B). Fusion was inhibited the most when the cells were treated after virion 

binding (Figure 5.7B), suggesting a cellular target, or a viral target exposed after virion 

binding to the cell. It is also possible that 25HC is rapidly metabolized (or stripped from 

the virions) upon exposure to cells. In such cases, 25HC would only affect fusion if 

added at the time of fusion. 

5.2.7 25HC inhibits the formation of HCV foci when cells are pre-treated, or treated 

after infection. 25HC modulates cholesterol levels in cells, which could affect HCV 

infectivity, replication, assembly or the infectivity of the progeny virions. Huh7.5 cells 

were pre-exposed to 25HC for 1 hour prior to infection, or cells were infected and then 

treated with 25HC for 4 hours or 72 hours. Pre-treatment of cells inhibited infection with 

HCV (EC50, 2.00 µM) (Figure 5.8A). Similarly, 25HC inhibited focus formation when 

cells were treated after infection for either 4 or 72 hours (EC50, 1.17 µM or 0.607 µM, 

respectively) (Figure 5.8B). The mechanisms of 25HC therefore differ from those of 
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curcumin, which was only effective when virions were pre-exposed or when added at the 

time of infection (Anggakusuma et al., 2013). 

5.2.8 25HC inhibits the production of infectious HCV particles. Huh7.5 cells were 

infected with 3 ffu/cell of HCV JFH-1 and incubated in the presence of 6 µM 25HC. 

Supernatant and cell-associated virions were harvested after 12, 24, 48 and 72 hours. 

25HC treatment inhibited the production of released and cell-associated infectious virions 

(Figure 5.9A and 5.9B). I then compared the infectious particles (FFU) and HCV RNA 

copies present in the infected cells and supernatants. 25HC caused a similar decrease in 

the cell-associated FFU and RNA copies (Figure 5.9C). However, 25HC inhibited the 

infectivity of the released particles to a greater extent than it inhibited the release of viral 

RNA copies into the supernatant (Figure 5.9C). There was a 10-fold decrease in the 

specific infectivity of cell-associated virions, and approximately a 500-fold decrease in 

the specific infectivity of virions released into the supernatant. 

5.2.9 HCV virions produced by 25HC-treated cells are still able to bind and fuse.  

I next evaluated the cholesterol levels in cells treated with 25HC, and in virions produced 

by the treated cells. Huh7.5 cells were infected with 3 ffu/cell of HCV and treated with 6 

µM, 2 µM, 0.6 µM 25HC or vehicle control for 72 hours. Virions harvested from the 

supernatant were purified through a sucrose cushion. Cholesterol levels in virions or cells 

were determined using the Amplex Red cholesterol assay, according to manufacturer 

instructions. As expected, 25HC treatment decreased both cellular cholesterol levels and 

virion-associated cholesterol in the supernatant (Figure 5.10A). Although total virion-

associated cholesterol levels decreased, they were actually increased relative to the RNA 

copies present (Figure 5.10B). However, the overall fluidity of the envelopes of the 
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virions produced by cells treated with 25HC was similar to the vehicle-treated control 

(Figure 5.10C).  

HCV virion-associated cholesterol is critical for infectivity (Aizaki et al., 2008; 

Yamamoto et al., 2011). Since 25HC treatment decreases cellular cholesterol levels, I 

proposed as a model that less cholesterol would be incorporated into HCV virions, 

thereby inhibiting the infectivity of the progeny virions. To characterize the infectivity 

defect of virions produced by 25HC-treated cells, I tested their ability to bind and fuse to 

cells. Virions produced from the 25HC-treated cells were harvested after 72 hours and 

labeled with R18 to evaluate binding and fusion. Neither binding (Figure 5.11A) nor 

fusion (induced at the plasma membrane by lowered pH) (Figure 5.11B) was inhibited.  
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5.3 DISCUSSION 

In these studies, I showed that curcumin acts mainly on virion envelopes to 

decrease their fluidity, impairing both binding and fusion. In contrast, the main antiviral 

effects of 25HC result from modulation of cellular factors and not direct activities on 

virions.  

Curcumin had been recognized previously as a broad inhibitor of the infectivity of 

enveloped viruses (Chen et al., 2013). Curcumin inhibited the infectivity of 

representative enveloped viruses (IAV, JEV, DENV, and a herpesvirus, pseudorabies 

virus) when exposed to virions at the time of infection. However, curcumin did not 

inhibit replication if added after entry (Chen et al., 2013). EC50 in these studies were from 

~1-5 µM, in the same range that I found for HCV, HSV-1 and vesicular stomatitis virus 

(VSV). Curcumin inhibited the infectivity of VACV, but only by 70% at the highest 

concentration tested (60 µM) (Chen et al., 2013). As for other compounds that target the 

lipid envelope (e.g., aUY11, Chapter 4), the decreased efficacy against VACV may be 

the result of its second envelope, which is shed by nonfusogenic mechanisms prior to 

fusion (Law et al., 2006). Curcumin was not active against a nonenveloped virus, 

enterovirus 71, which is consistent with its lack of activity against the nonenveloped PV 

as presented in this thesis (Figure 5.2A). Curcumin (60 µM) disrupted the integrity of 

liposomal membranes and increased their permeability (Chen et al., 2013), but its 

specific effects on membrane fluidity were not tested. Changes in membrane fluidity 

often affect permeability (Lande et al., 1995). The inhibitory effects of curcumin on IAV 

infectivity were irreversible (Chen et al., 2013), as expected from its affinity for 
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membrane bilayers. Curcumin interfered with the HA activity of IAV (Chen et al., 2010), 

as expected for a modulator of envelope fluidity. 

Other groups reported that curcumin was active against other enveloped viruses, 

such as HIV, HSV-1 and HBV. Curcumin inhibited HIV replication, perhaps through 

interactions with viral integrase or protease (Mazumder et al., 1995; Vajragupta et al., 

2005). However, the antiviral activities of curcumin have been mainly attributed to 

modulation of cellular signaling pathways. Curcumin modulates signaling through 

several pathways, including the mitogen-activated protein kinase (Squires et al., 2003), 

phosphoinositide 3-kinase/protein kinase B/Akt (Chaudhary and Hruska, 2003) and 

nuclear factor kappa B (Bharti et al., 2003) pathways. These pathways are involved in the 

replication of viruses such as IAV (Nimmerjahn et al., 2004; Hirata et al., 2014). 

Curcumin was also reported to inhibit the replication of HCV replicons by affecting cell 

signaling, through mechanisms proposed to involve suppression of the Akt-SREBP-1 

pathway (Kim et al., 2010). Membrane-bound receptors or activators induce signaling 

through these pathways. Therefore, modulation of membrane fluidity may affect 

downstream activities of these signaling pathways. The effects of curcumin against HSV-

1 involved inhibition of VP16-dependent transcription activity by interfering with 

appropriate recruitment of RNA polymerase II to immediate-early gene promoters 

(Kutluay et al., 2008). However, the mechanisms are not clear. Curcumin was even 

reported to be active against one nonenveloped virus, coxsackievirus B3 (CBV3), but did 

not affect viral binding (Si et al., 2007). Instead, the antiviral activities of curcumin were 

attributed to modulation of the ubiquitin-proteasome system. Curcumin promotes the 
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polyubiquitination of cellular proteins, thereby decreasing the free ubiquitin pools in cells 

that are required for the replication of CVB3 (Si et al., 2007).  

None of the studies cited in the previous paragraph directly tested the effects of 

curcumin on virion infectivity. Typically, curcumin was added to cell cultures before 

infection or during the course of infection. The effects on viral replication or yield could 

be the result of activities against cellular factors as proposed, or alternatively could result 

from the direct effects on virion infectivity during the early stages of infection. Time-of-

addition studies should be used to differentiate between direct effects on virions and 

potential effects on cellular factors. In this thesis, I showed that curcumin directly inhibits 

the infectivity of unrelated enveloped viruses HCV, HSV-1 and VSV (Figure 5.2A). I 

also showed that curcumin directly decreases the fluidity of virion envelopes (Figures 

5.3B and 5.3C) to inhibit binding and fusion. 

 Glycyrrhizin, the major component of licorice root extract, is another natural 

product with broad antiviral effects and which modulates membrane fluidity. 

Glycyrrhizin inhibits the infectivity of IAV (Wolkerstorfer et al., 2009), HIV-1 (Harada, 

2005), hepatitis A virus (HAV) (Crance et al., 1994) and SARS-CoV (Hoever et al., 

2005) by targeting entry steps. Like cholesterol and curcumin, glycyrrhizin decreases 

membrane fluidity. This effect is responsible for its inhibitory effects on HIV fusion 

(Harada, 2005). Unexpectedly, glycyrrhizin only inhibited entry of HCV pseudoparticles 

at high micromolar concentrations (as measured by luciferase activity after 48 hours). 

However, direct effects on HCV virion infectivity were not tested (Matsumoto et al., 

2013). Glycyrrhizin was shown to inhibit the release of infectious HCV particles, without 

affecting cell-associated infectivity (Matsumoto et al., 2013). Glycyrrhizin treatment 
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resulted in the accumulation of HCV core protein on lipid droplets (the platform for 

virion assembly) and on endoplasmic reticulum attached to lipid droplets (Matsumoto et 

al., 2013). The effects of glycyrrhizin on release of infectious HCV particles were 

attributed to inhibition of phospholipase A2, a known target of glycyrrhizin (Okimasu et 

al., 1983). In part, the inhibitory effects of glycyrrhizin on PLA2 are the result of its 

effects on the physical state of the membrane (which is the PLA2 substrate) (Okimasu et 

al., 1983). Glycyrrhizin may well also affect the composition or fluidity of intracellular 

membrane compartments to contribute to the inhibition of the release of infectious HCV 

particles. Of course, other mechanisms are also possible, and other specific inhibitors of 

PLA2 also affected HCV secretion (Matsumoto et al., 2013). 

Curcumin and glycyrrhizin are two examples of plant natural products that target 

lipid membranes. Not surprisingly, the mammalian innate immune system has evolved 

similar antiviral approaches that modulate the lipid composition and fluidity of 

membranes. Interferon-stimulated genes (ISGs) encode proteins with activities that 

generate a general antiviral state in cells. One such ISG encodes cholesterol-25-

hydroxylase, which oxidizes cholesterol to 25HC (Park and Scott, 2010). 25HC is a 

regulatory factor involved in cholesterol homeostasis (Figure 5.12). 25HC suppresses 

SREBP-2, which regulates the sterol biosynthesis pathway (Brown and Goldstein, 1999). 

It also activates the liver X receptor (LXR), a nuclear receptor which downregulates the 

LDL receptor under conditions of excess cholesterol (Ma et al., 2008). 25HC also 

suppresses the mevalonate pathway by inhibiting the critical regulatory enzyme, HMG-

CoA reductase (Brown and Goldstein, 1997; Pezacki et al., 2009). 25HC also 

downregulates expression of the LDL receptor, which decreases the uptake of exogenous 
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cholesterol into cells (Pezacki et al., 2009). The overall effects of 25HC result in 

inhibition of HCV infection (Su et al., 2002; Pezacki et al., 2009; Owen et al., 2009). 

25HC was only recently connected to interferon-mediated antiviral immunity 

(Blanc et al., 2013; Liu et al., 2013). Induction of 25HC production inhibited the 

infectivity of enveloped viruses (IAV, HSV-1, VZV, HIV-1, VSV, Ebola virus, Nipah 

virus and Rift Valley fever virus) but not that of a nonenveloped virus, adenovirus (Blanc 

et al., 2013; Liu et al., 2013; Gold et al., 2014). 25HC was also shown to amplify 

inflammatory signalling, thereby modulating immune responses (Gold et al., 2014). 

Blanc et al. found that 25HC acted by different mechanisms for different viruses. Its 

effects also depended on the cell type, suggesting effects on cellular factors (Blanc et al., 

2013). Liu et al. characterized the effects of 25HC on viral entry. They proposed that 

25HC blocked the fusion of HIV and VSV by altering the properties of the host cell 

membrane (Liu et al., 2013).  

My findings in the context of HCV are in agreement with the published data. 

Although 25HC did inhibit HCV infectivity when virions were pre-exposed, it was 

tenfold more potent when cells were pre-treated, or treated after infection. Therefore, the 

main antiviral mechanisms of 25HC likely involve effects on cellular factors during 

fusion or subsequent replication steps, particularly in the production and secretion of 

infectious virions. Most notably, HCV virions produced by 25HC-treated cells had 

decreased specific infectivity (Figure 5.9C), suggesting that the progeny virions were 

defective in their ability to infect cells. Virions produced by 25HC-treated cells were still 

able to bind and fuse to cells normally when fusion was induced at the plasma membrane 

by exposure to low pH (Figure 5.10A and 5.10B). The cholesterol levels relative to the 
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RNA copies in virions produced by 25HC-treated cells were increased (Figure 5.11B), 

although the overall fluidity of the virion envelopes was unaffected by 25HC treatment 

(Figure 5.11C).  

Direct exposure of HCV virions to 25HC decreased the envelope fluidity. 

However, 25HC decreased HCV envelope fluidity to a lesser extent than either 

cholesterol or curcumin (Figure 5.7A), and the effect was not sufficient to inhibit 

infectivity. Cholesterol and curcumin are both planar and rigid, and insert similarly into 

membranes in a transbilayer orientation (Barry et al., 2009). Both induce ordering in 

membranes, which contributes to decreased fluidity (Barry et al., 2009). In contrast, 

25HC has a bent shape and orients in membranes differently from cholesterol, with the 

sterol tail angled towards the bilayer surface such that both hydroxyl groups interact with 

phospholipid headgroups (Olsen et al., 2009). 25HC also alters membrane structure in 

different ways from cholesterol (Olsen et al., 2011). For example, oxysterols such as 

25HC are thought to increase membrane permeability and induce membrane expansion or 

membrane thinning by forming a network of hydrogen bonded oxysterols (Olsen et al., 

2012). Such perturbations in the membrane could induce packing of cholesterol 

molecules to generate localized regions of decreased fluidity within the membrane. 

However, the potential effects of 25HC on membrane fluidity have not been fully 

characterized.  

Alterations of host cell lipid and cholesterol metabolism are known to disrupt 

HCV replication complexes (Sagan et al., 2006). HCV replication relies on appropriate 

cholesterol content in intracellular membranes, particularly for the formation of 

membranous webs (where replication occurs) and lipid droplet integrity (where assembly 
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occurs). Inappropriate fluidity of these membrane structures could impair genome 

replication, through improper localization of viral and cellular proteins. It could also 

result in retention of HCV proteins on lipid droplets, as in glycyrrhizin-treated cells 

(Matsumoto et al., 2013).  

Other innate immune mechanisms targeting cellular cholesterol homeostasis have 

been described. Interferon-inducible transmembrane (IFITM) proteins also inhibit the 

entry of several unrelated enveloped viruses (Bailey et al., 2012; Brass et al., 2009; 

Feeley et al., 2011; Huang et al., 2011). Several IFITMs were shown to interact with two 

oxysterol regulators (vehicle-associated membrane protein-associated protein A and 

oxysterol-binding protein) involved in cholesterol homeostasis (Amini-Bavil-Olyaee et 

al., 2013). These interactions resulted in accumulation of cholesterol in endosomal 

compartments and blocked viral entry into the cytosol (Amini-Bavil-Olyaee et al., 2013). 

Consistently, IFITM-mediated inhibition of viral entry could be bypassed by inducing 

viral fusion at the plasma membrane (Huang et al., 2011), as I found for 25HC. Since 

25HC and other oxysterols are known to trigger cholesterol trafficking from the plasma 

membrane (Olsen et al., 2011), 25HC-induced accumulation of cholesterol in 

intracellular compartments may block viral entry by similar mechanisms as the IFITMs. 

Curcumin and 25HC are not ideal drug candidates. Their pharmacological 

properties are unfavourable for further development as drugs. Curcumin is not stable in 

aqueous solution under physiological conditions, being readily degraded to ferulic acid, 

feruloylmethane, vanillin and acetone (Anand et al., 2007). Curcumin has low 

bioavailability. The levels of curcumin in the plasma reach only ~10 nM in patients 

administered several grams of curcumin per day (Anand et al., 2007). Incorporation of 
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curcumin into liposomes improves its stability (Barry et al., 2009) and confers enhanced 

clinical efficacy, at least in cancer trials (Wang et al., 2008a). Novel delivery strategies, 

such as nanoparticles, may further improve the bioavailability of curcumin. 25HC is 

likely too rapidly metabolized to be useful as a drug (Taylor and Kandutsch, 1989). 25HC 

also broadly disrupts cellular cholesterol homeostasis and would likely affect too many 

signaling pathways, resulting in cytotoxic effects (Clare et al., 1995). 

Although curcumin and 25HC are not drug candidates themselves, they are useful 

as probes to characterize the requirements for appropriate membrane fluidity during viral 

entry and subsequent replication steps. Identification of their antiviral mechanisms may 

lead to the rational design of small molecules that modulate membrane fluidity and lipid 

composition. Such molecules could be designed to selectively affect viral replication 

steps, with enhanced antiviral activities and better pharmacological profiles. 
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Figure  5.1. Structures  of  curcuminoids,  cholesterol  and  25-hydroxycholesterol 
(25HC). Curcuminoids  include  curcumin,  bis-desmethoxycurcumin, 
desmethoxycurcumin  and  tetrahydrocurcumin  (THC).  Curcumin,  bis-
desmethoxycurcumin and desmethoxycurcumin exist as keto-enol tautomers. 

Figure  5.1.  Chemical  structures  of curcuminoids,  cholesterol  and  25-
hydroxycholesterol (25HC). Curcuminoids include curcumin, bis-desmethoxycurcumin, 
desmethoxycurcumin and tetrahydrocurcumin (THC). Curcumin, bis-
desmethoxycurcumin and desmethoxycurcumin exist as keto-enol tautomers. 

Curcumin 

Cholesterol 

O

HO

H3CO

O

OH

OCH3
O

HO

H3CO

OH

OH

OCH3

HO

H

HH

H

25-hydroxycholesterol (25HC) 

OH

HO

H

HH

H

O

HO

H3CO

O

OH

OCH3

Tetrahydrocurcumin (THC) 

O

HO

O

OH

Bis-desmethoxycurcumin 

O

HO

H3CO

O

OH

Desmethoxycurcumin 

O

HO

H3CO

OH

OH

O

HO

OH

OH



	
   220	
  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  5.2.  Curcumin,  but  not  THC,  inhibits  the  infectivity  of  enveloped  viruses. 
Infectivity  of  unrelated  enveloped  (HSV-1,  HCV  and  VSV)  or  nonenveloped  (PV) 
viruses  pre-exposed  to  curcumin (A) or  THC (B). Infectivity  of  treated  virions  was 
evaluated by plaquing efficiency or focus-forming efficiency (average ± SD; n = 3). THC 
was cytotoxic at concentrations above 60 µM. 

Figure  5.2. Curcumin,  but  not  THC,  inhibits  the  infectivity  of  enveloped  viruses. 
Infectivity of unrelated enveloped (HSV-1, HCV and VSV) or nonenveloped (PV) viruses 
pre-exposed to curcumin (A) or THC (B). Infectivity of treated virions was evaluated by 

plaquing efficiency or focus-forming efficiency (average ± SD; n = 3). THC was cytotoxic 
at concentrations above 60 µM. 
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Figure  5.3. Like  cholesterol,  curcumin  decreases  membrane  fluidity. DPH-labelled 
liposomes  (A),  HCV  virions  (B)  or  VSV  virions  (C)  were  exposed  to  increasing 
concentrations  of  curcumin,  cholesterol  or  THC  for  10  minutes  at  37°C.  DPH 
fluorescence polarization was measured. An increase in polarization indicates a decrease 
in  membrane  fluidity.  The  graph  shows  the  result  of  two  independent  experiments 
(average ± range; n = 2). Several error bars are too small to be seen at this scale. 
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concentrations  of curcumin,  cholesterol  or  THC  for  10  minutes  at  37°C.  DPH 

fluorescence polarization was measured. An increase in polarization indicates a decrease 
in  membrane  fluidity.  The  graph  shows  the  result  of  two  independent  experiments 
(average ± range; n = 2). Several error bars are too small to be seen at this scale. 
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Figure  5.4. Curcumin  inhibits  binding  of  HCV  JFH-1  virions  to  Huh7.5  cells. 
Binding  of  HCV  virions  exposed  to  curcumin  or  tetrahydrocurcumin  (THC)  in  the 
absence (A) or  presence (B) of  serum.  R18-labeled  HCV  virions  (1,500  ffu)  were 
exposed  to  the  test  compound  for  10  minutes  at  37°C,  and  then  cooled  to  4°C  prior  to 
being  added  to  pre-chilled  Huh7.5 cell  monolayers  (1.5  x  105 cells).  Cells  and  virions 
were then incubated at 4°C for 1 hour, then washed three times with cold PBS. Cells and 
attached virions were lysed, and lysates were examined for R18 fluorescence. Binding is 
expressed  as  a  percentage  relative  to  the  R18  fluorescence  of  DMSO  vehicle-treated 
virions after standardization to the total amount of fluorescence detected for each sample. 
A, average ± S.D.; n = 4. B, average ± range; n = 2. 

Figure 5.4. Curcumin inhibits binding of HCV JFH-1 virions to Huh7.5 cells. Binding 
of HCV virions exposed to curcumin or tetrahydrocurcumin (THC) in the absence (A) or 
presence (B) of  serum.  R18-labeled  HCV virions  (1,500 ffu)  were  exposed  to  the  test 
compound  for  10  minutes  at  37°C,  and  then  cooled  to  4°C  prior  to  being  added  to  pre-
chilled Huh7.5 cell monolayers (1.5 x 105 cells). Cells and virions were then incubated at 
4°C for 1 hour, then washed three times with cold PBS. Cells and attached virions were 
lysed,  and  lysates  were  examined  for  R18  fluorescence.  Binding  is  expressed  as  a 
percentage  relative  to  the  R18  fluorescence  of  DMSO  vehicle-treated virions  after 
standardization to the total amount of fluorescence detected for each sample. A, average ± 
S.D.; n = 4. B, average ± range; n = 2. 
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Figure  5.5. Curcumin inhibits  the  fusion  of HCV  JFH-1  virions  to  Huh7.5  cells. 
Fluorescence  dequenching  of  HCV  exposed  to  curcumin (A) or  THC (B) (average  ± 
range;  n  =  2).  R18-labeled  HCV  virions  (104 ffu)  were  exposed  to  DMSO  vehicle, 
curcumin or THC for 10 minutes at 37°C, and then cooled to 4°C prior to being added to 
pre-chilled Huh7.5 cells (1 x 106 cells). Alternatively, virions were first allowed to attach 
to  cells  at  4°C,  and  then  virion-cell  complexes  were  exposed  to  curcumin.  Fusion  was 
triggered by increasing the temperature and lowering the pH. 

Figure  5.5. Curcumin,  but  not  THC,  inhibits  the  fusion  of  HCV  JFH-1 virions  to 
Huh7.5  cells. Fluorescence dequenching  of  HCV  exposed  to curcumin (A) or THC (B) 
(average  ±  range;  n  =  2).  R18-labeled  HCV virions  (104 ffu)  were  exposed  to  DMSO 
vehicle, curcumin or THC for 10 minutes at 37°C, and then cooled to 4°C prior to being 
added to pre-chilled Huh7.5 cells (1 x 106 cells). Alternatively, virions were first allowed 
to attach to cells at 4°C, and then virion-cell complexes were exposed to curcumin. Fusion 
was triggered by increasing the temperature and lowering the pH. 
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Figure 5.6. 25HC inhibits HCV infectivity to Huh7.5 cells. Infectivity of HCV virions 
exposed to 25HC (virion treatment, open circles) was tested by focus-forming efficiency. 
HCV virions (~100 ffu) were exposed to 25HC for 10 minutes at 37°C, prior to infection 
of  Huh7.5  cell  monolayers  At  72  hours  post-infection,  cells  were  fixed  and  foci  of 
infected cells were detected by immunocytochemistry. Dose-response line graphs present 
the average ± range (n = 2). 

Figure 5.6. 25HC inhibits HCV infectivity to Huh7.5 cells. Infectivity of HCV virions 
exposed to 25HC (virion treatment, open circles) was tested by focus-forming efficiency. 
HCV virions (~100 ffu) were exposed to 25HC for 10 minutes at 37°C, prior to infection 

of  Huh7.5  cell  monolayers  At  72  hours  post-infection,  cells  were  fixed  and  foci  of 
infected cells were detected by immunocytochemistry. Dose-response line graphs present 

the average ± range (n = 2). 
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Figure 5.7. 25HC decreases the fluidity of HCV envelopes, but not enough to affect 
fusion when virions are pre-exposed. (A) DPH-labelled HCV virions exposed to 25HC 
or cholesterol were tested for DPH fluorescence polarization. 25HC reduced the fluidity 
of the virion envelopes, as shown by an increase in DPH polarization, but not to the same 
extent as cholesterol (chol.) or curcumin (curc.). Bar graphs present the average ± S.D. (n 
=  3)  (**,  P<0.01;  *,  P<0.05;  two-tailed  unpaired t-test). (B) R18-labelled  HCV  JFH-1 
virions  or  Huh.75  cells  were  pre-exposed  to  20  µM  25HC  for  10  minutes  at  37°C. 
Alternatively, virions were allowed to attach to Huh7.5 cells at 4°C for 1 hour, and then 
virion-cell complexes were exposed to 20 µM 25HC for 10 minutes at 37°C. Fusion was 
inhibited to the greatest extent when cells were treated after attachment of virions. Graphs 
present the average ± range (n = 2).  

Figure 5.7. 25HC decreases the fluidity of HCV envelopes, but does not affect fusion 
when virions  are  pre-exposed.  (A) DPH-labelled  HCV virions  exposed  to  25HC  or 
cholesterol were tested for DPH fluorescence polarization. 25HC reduced the fluidity of 

the virion  envelopes,  as  shown  by  an  increase  in  DPH  polarization,  but  not  to  the  same 
extent as cholesterol (chol.) or curcumin (curc.). Bar graphs present the average ± S.D. (n 

=  3)  (**,  P<0.01;  *,  P<0.05;  two-tailed  unpaired t-test). (B)  R18-labelled  HCV  JFH-1 
virions  or  Huh.75  cells  were  pre-exposed  to  20 µM  25HC  for  10  minutes  at  37°C. 
Alternatively, virions were allowed to attach to Huh7.5 cells at 4°C for 1 hour, and then 

virion-cell complexes were exposed to 20 µM 25HC for 10 minutes at 37°C. Fusion was 
inhibited to the greatest extent when cells were treated after attachment of virions. Graphs 

present the average ± range (n = 2).  

0 100 200
0

5

10

15

Vehicle

Pre-treat virions

Pre-treat cells

Treat cells after attachment

Vehicle (pH 7.4)

Time (min)

F
u
si
o
n,
 
%

(B) 

(A) 

Chol. Curc. 25HC 
1.0

1.1

1.2

1.3

1.4

1.5

0 µM

6 µM

*

**

N
or
m
al
iz
e
d 
p
ol
ar
iz
at
i
o
n



	
   226	
  

 

 

 

 

 

 
 
 
 
 
Figure 5.8. 25HC inhibits HCV focus formation when Huh7.5 cells are pre-treated, 
or  treated  after  infection. Huh7.5  cell monolayers  were  first  exposed  to  25HC  for  1 
hour  at  37°C  (cell pre-treatment, filled diamond) (A) or  untreated  (treat  after  infection) 
prior to infection with HCV virions (~100 ffu). After 4 hours, inocula were removed, and 
cells were washed twice with DMEM prior to being overlaid with DMEM-10% FBS, or 
DMEM-10%  FBS  containing  25HC  for  4  hours  or  72  hours  (treat after infection, filled 
circles or squares, respectively) (B). At 72 hours post-infection, cells were fixed and foci 
of  infected  cells  were  detected by  immunocytochemistry.  Dose-response  line  graphs 
present the average ± range (n = 2). 

Figure 5.8. 25HC inhibits HCV focus formation when Huh7.5 cells are pre-treated, 
or treated after infection. Huh7.5 cell monolayers were first exposed to 25HC for 1 hour 
at 37°C (cell pre-treatment, filled diamond) (A) or untreated (treat after infection) prior to 

infection  with  HCV virions  (~100 ffu). After  4  hours, inocula  were  removed,  and  cells 
were  washed  twice  with  DMEM  prior  to  being  overlaid  with  DMEM-10%  FBS,  or 

DMEM-10%  FBS  containing  25HC  for  4  hours  or  72  hours  (treat  after  infection,  filled 
circles or squares, respectively) (B). At 72 hours post-infection, cells were fixed and foci 
of  infected  cells  were  detected  by  immunocytochemistry.  Dose-response  line  graphs 

present the average ± range (n = 2). 
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Figure  5.9. 25HC  decreases  the  specific  infectivity  of  HCV  JFH-1  virions  released 
into the supernatant. Huh7.5 cell monolayers were infected with HCV JFH-1 (MOI of 
3). After 3 hours, the inoculum was replaced with DMEM-10% FBS containing 25HC. 
At 12, 24, 48 and 72 hpi, supernatant (A) and cell-associated (B) virions were harvested 
and  titrated.  At  72  hpi,  supernatant  and  cell-associated  RNA  copies  were  titrated  and 
compared  to  FFU (C).  Line  graphs  present  the  average  ±  range  (n  =  2)  (dashed  line, 
detection limit) 
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Figure 5.10. 25HC treatment of cells does not specifically decrease virion cholesterol 
content. Huh7.5 cells infected with HCV (MOI, 3 ffu/cell) were treated with 25HC for 
72  hours.  Cholesterol  levels  in  cells  or  virions  purified  from  the  supernant  were  then 
measured (A). Virion-associated cholesterol decreased proportionally to virion RNA (B). 
The fluidity of the envelopes of virions produced by 25HC-treated cells was unaffected, 
in contrast to the direct exposure of HCV virions to 25H (**, P<0.01; two-tailed unpaired 
t-test) (C). Graphs present the average ± range (n = 2) of two independent experiments. 

Figure 5.10. 25HC treatment of cells does not specifically decrease virion cholesterol 
content. Huh7.5 cells infected with HCV (MOI, 3 ffu/cell) were treated with 25HC for 72 
hours.  Cholesterol  levels  in  cells  or virions  purified  from  the supernant  were  then 

measured (A). Virion-associated cholesterol decreased proportionally to virion RNA (B). 
The fluidity of the envelopes of virions produced by 25HC-treated cells was unaffected, in 

contrast to the direct exposure of HCV virions to 25H (**, P<0.01; two-tailed unpaired t-
test) (C). Graphs present the average ± range (n = 2) of two independent experiments. 
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Figure 5.11. Effects of 25HC on binding and fusion of virions produced by treated 
cells. Huh7.5 cells infected with HCV (MOI, 3 ffu/cell) were treated with 6 µM 25HC for 
72 hours. Virions were then harvested from the supernatants, labeled with R18 membrane 
dye, and tested for their ability to bind and fuse to cells (A). Neither binding nor fusion 
(induced at the plasma membrane by low pH) was affected.  

Figure  5.11. Effects  of  25HC  on  binding  and  fusion  of virions  produced  by  treated 
cells. Huh7.5 cells infected with HCV (MOI, 3 ffu/cell) were treated with 6 µM 25HC for 
72 hours. Virions were then harvested from the supernatants, labeled with R18 membrane 
dye, and tested for their ability to bind and fuse to cells (A). Neither binding nor fusion 
(induced at the plasma membrane by low pH) was affected.  
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CHAPTER 6: DISCUSSION AND FUTURE DIRECTIONS 

6.1 CHARACTERIZATION OF ANTI-ENTRY MECHANISMS 

Most antivirals in current clinical use have some limitations, such as selection for 

resistance, toxicity and a narrow spectrum of activity. Ideally, new antiviral strategies 

will circumvent some of these limitations. In this thesis, I describe the characterization of 

the mechanisms of small molecule inhibitors of viral entry. Entry inhibitors prevent 

infection of uninfected cells and inhibit virus replication at a step before persistent 

reservoirs are established. Entry steps are also conserved among many unrelated viruses. 

Despite these advantages, only two antiviral drugs that target binding or fusion are 

currently in clinical use, maraviroc and enfuvirtide. They inhibit binding and fusion, 

respectively, but both are active only against HIV (Dorr et al., 2005; Wild et al., 1994). 

No truly broad-spectrum entry inhibitors have yet been approved for clinical use.  

Using small molecules as probes, I have identified and characterized three 

mechanisms by which it is possible to inhibit entry of several unrelated viruses. Some of 

the small molecules that I used are themselves not ideal drug candidates. Nonetheless, the 

identification of their antiviral mechanisms opens the possibility for the design of novel 

antiviral candidates that may overcome some limitations of current therapies. 

6.1.1 Virion attachment to heparan sulfate- or sialic acid-containing glycans. The 

initial binding of virions to cellular glycans is a conserved step in the entry of most 

human viruses. I showed that epigallocatechin gallate (EGCG), a polyphenol from green 

tea, is active against all viruses that I tested that bind to glycans. Glycan-binding viruses 

account for the vast majority of human viruses. The data in this thesis support a model in 

which EGCG competes with cellular HS or SA for binding to virion glycoproteins 
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(Figure 6.1). The majority of human viruses bind to either HS or SA, which accounts for 

the remarkable broad-spectrum activities described for EGCG.  

The proposed targets of EGCG are highly mutable virally encoded proteins. 

Therefore, EGCG suffers from the same major limitation as targeting any viral protein, 

the prompt selection for resistance. EGCG resistance emerged after only five passages of 

IAV in the presence of increasing concentrations of EGCG. Mutations conferring 

resistance mapped to the stalk region of hemagglutinin (HA) from both H1N1 (A/Puerto 

Rico/8/34) and H3N2 (A/Aichi/2/68) strains. However, EGCG (or other compounds 

acting by similar mechanisms) could be combined with other antiviral agents to limit the 

selection for resistance. EGCG targets an entry step, which is complementary to the 

targets of most currently approved antivirals. Cross resistance is therefore less likely to be 

selected for. In the context of HCV, combinations of entry inhibitors with current direct 

acting antivirals were found to be promising treatment strategies (Xiao et al., 2014). Our 

collaborators tested EGCG in combination with other anti-HCV drugs and observed a 

strong additive effect (Ciesek et al., 2011), indicating that EGCG (or related compounds 

acting by similar mechanisms) could be used in combination therapy. Combination 

regimens are already commonly used in the treatment of HCV and HIV infections, to 

limit the selection for resistant variants (Liang and Ghany, 2013; Henrich and Kuritzkes, 

2013).  

6.1.2. Modulation of membrane curvature. The rigid amphipathic fusion inhibitors 

(RAFIs) such as aUY11 and dUY11 inhibit the fusion of enveloped but otherwise 

unrelated viruses by preventing the formation of the negative membrane curvature 

required for fusion (Figure 6.2). Enrichment in the outer leaflet of phospholipids with 
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hydrophilic headgroups larger than their hydrophobic tails has been known for many 

years to prevent fusion of enveloped viruses (Chernomordik et al., 1998; Gunther-

Ausborn et al., 1995; Gaudin, 2000b). These phosopholipids, however, are not useful as 

drugs. They are disruptive to all membranes, having signalling activities, and are too 

rapidly metabolized. The RAFIs, on the other hand, are synthetic compounds that have 

the same antiviral activities as phospholipids, but do not suffer from the same limitations. 

The RAFI aUY11 is neither cytotoxic nor cytostatic (St Vincent et al., 2010), with 

no apparent effects on cellular fusions. Virions and cells (and cellular vesicles) differ in 

size, curvature, lipid composition and, most critically, the energy available for fusion. 

Virions are metabolically inert and viral fusion depends solely on the energy provided by 

binding and rearrangements of the virion glycoproteins. In contrast, cells use energy-

consuming processes (described in Chapter 1) to overcome the energy barriers required 

for fusion. Virions (~100 nm) are smaller than most cellular vesicles that are involved in 

endocytotic processes (~500-1000 nm), although other intracellular vesicles are similar in 

size to virions. Interestingly, aUY11 was most potent against Sindbis virus (EC50, 0.009 

µM) and least potent against HSV-1 (EC50, 0.258 µM). These differences correlate 

somewhat with virion size (Figure 6.3). aUY11 was even less potent against VACV 

(EC50, 24.6 µM), which could be the result of its second envelope, which is shed by 

nonfusogenic mechanisms (Law et al., 2006). VACV is larger than all other enveloped 

viruses I tested (Benhnia et al., 2013), which could contribute also to its decreased 

sensitivity to aUY11. Smaller virions, such as Sindbis virus, have stronger positive 

curvature and may require more energy for the formation of the negatively curved stalk. 
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Consequently, virions of smaller size would be more sensitive than larger virions (or 

cellular vesicles) to increases in the energy barrier to fusion posed by RAFIs.  

Virions and cellular vesicles differ also in their membrane compositions. Virion 

envelopes have a high membrane protein content and are rich in cholesterol. 

Consequently, virion envelopes have decreased fluidity relative to most cellular 

membranes. The outer leaflet of virion envelopes is often enriched in lipids of appropriate 

shape to favour positive curvature (Chan et al., 2008). For example, viral envelopes often 

contain a higher proportion of sphingomyelin relative to cellular membranes (Brugger et 

al., 2006; Quigley et al., 1971). The localization of RAFIs may also differ in virion and 

vesicle membranes. Since the large polar head group of aUY11 likely precludes its 

translocation across leaflets, aUY11 would preferentially localize to the outer leaflets of 

virions. Any aUY11 in intracellular vesicles would instead reside in the inner leaflet as 

the result of membrane inversion during endocytosis. RAFIs localized to inner leaflets 

are not expected to affect stalk formation. Molecules of inverted cone shape only inhibit 

fusion when localized to the external leaflet of fusing vesicles. These factors likely all 

contribute to the selectivity of aUY11 and other RAFIs for inhibiting viral fusion without 

affecting cellular fusions. 

Since lipids are not virally encoded, antivirals that target lipids and act through 

non-biochemical mechanisms are expected to have a higher barrier to selection for 

resistance. Resistance to other lipid-targeting antivirals (such as LJ001, PD404182,	
  

curcumin and glycyrrhizin) has not yet been documented in the public literature. Arbidol 

interacts with both lipid membranes and tryptophan residues of viral proteins and is 

thought to inhibit fusion by stabilizing the interactions between virion glycoproteins and 
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lipid membranes (Teissier et al., 2011b). In the case of IAV, arbidol stabilizes HA to 

inhibit the low pH-induced conformational changes that promote fusion (Leneva et al., 

2009). As expected for a compound that at least partially targets a virally encoded 

protein, arbidol does select for resistance mutations in the HA2 stalk region of IAV HA 

(Leneva et al., 2009). Single amino acid substitutions in HA2 increase the pH required 

for fusion, thereby allowing fusion to proceed despite the arbidol-induced stabilization. In 

another study, arbidol selected for resistant Chikungunya virus mutant with a similar 

single amino acid substitution in the E2 envelope protein (Delogu et al., 2011). 

I was not able to select for IAV resistance to aUY11 after 10 passages (Chapter 

4), and dUY11 did not select for HSV-1 resistance after 11 passages (Dr. Mireille 

St.Vincent, unpublished). Therefore, neither IAV nor HSV-1 readily selected for RAFI-

resistant variants. Theoretically, mutant strains with increased fusion efficiencies could 

overcome the effects of RAFIs. For example, mutations in virion fusion proteins could 

help to overcome the increased energy barrier for fusion (perhaps by mechanisms similar 

to those that confer resistance against arbidol). An increased number of virion 

glycoproteins could also provide increased energy to overcome the barrier posed by 

RAFIs. In the case of IAV, at least three hemagglutinin trimers are required for 

hemifusion (Danieli et al., 1996). The extent and rate of fusion depends on the surface 

density of fusion proteins (Dutch et al., 1998; Clague et al., 1991). Variants with higher 

densities of fusion proteins could potentially be resistant to RAFIs. Viral variants with 

altered lipid envelope compositions could also be resistant, if enriched in the presence of 

lipids that promote negative curvature and thereby promote fusion (Stiasny and Heinz, 

2004; Chernomordik, 1996). Such modifications likely require a number of critical 
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mutations, however, resulting in a higher barrier to resistance than traditional antiviral 

approaches targeting viral proteins. In summary, RAFIs are less likely to select for 

resistance than drugs targeting viral proteins, a most desirable property for an antiviral 

drug candidate. 

6.1.3 Modulation of membrane fluidity and composition. My studies with curcumin 

demonstrate the importance of appropriate virion envelope fluidity for binding and 

fusion. Modulation of membrane fluidity is another example of a biophysical mechanism 

that targets lipid membranes, instead of virally encoded proteins. Like other lipid-targeted 

approaches, there is likely a higher barrier to resistance against curcumin than against 

traditional antivirals (as I described for RAFIs). Not unexpectedly, resistance to curcumin 

or glycyrrhizin, which also targets membrane fluidity (Harada, 2005), has not yet been 

reported. It is possible to envision some potential resistance mechanisms. Virions with 

altered lipid composition may be able to overcome the effects of curcumin. For example, 

virions with higher envelope fluidity may be less sensitive to the fluidity decreases 

imposed by curcumin. The lipid composition of virion envelopes typically reflects the 

membrane where budding took place. Viruses resistant to curcumin could potentially bud 

from different membranes, although this would require altered localization of viral 

structural proteins and would likely require a number of mutations. In the event of 

resistance, curcumin (or molecules acting by similar mechanisms) could be used in 

combination therapy, as described for EGCG. Our collaborators tested several HCV 

antiviral agents in combination with curcumin, and showed that the presence of curcumin 

increased their efficacy up to 10-fold (Anggakusuma et al., 2013). 

 Curcumin has cytotoxic effects in the micromolar range (Sharma et al., 2005), 
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only slightly above its antiviral concentrations (EC50, ~10 µM). It was shown to induce 

apoptosis through multiple processes related to p53 stability, cytochrome C release (and 

subsequent activation of caspases), and generation of reactive oxygen species (Woo et 

al., 2003). However, the specific mechanisms are unclear. Curcumin oxidizes thiol 

residues in membrane proteins at the mitochondrial transition pore, causing 

mitochondrial dysfunction (Morin et al., 2001; Ligeret et al., 2004), which could 

contribute to cytochrome C release. The α, β-unsaturated carbonyl group of curcumin is a 

highly reactive Michael acceptor, commonly associated with toxicity (Mulliner et al., 

2011). Nonetheless, curcumin was well-tolerated in a number of human trials, although 

its pharmacokinetic and pharmacodynamic properties are not favourable (Sharma et al., 

2005). From an antiviral perspective, the mechanisms responsible for the cytotoxicity of 

curcumin are not necessarily involved in its antiviral activities, which depend on the rigid 

and planar shape of the molecule and not on specific chemical groups or reactivities. 

Structure-activity relationship (SAR) studies of curcumin and other fluidity modulators 

would be required to explore its antiviral potential. 

 

6.2 CHEMICAL BIOLOGY AND VIRAL ENTRY MECHANISMS 

In addition to their potential as antivirals, small molecules are useful as probes to study 

viral or cellular activities and host-virus interactions. In this thesis, the use of small 

molecules to probe anti-entry mechanisms led to the identification of novel functions in 

viral entry. 

6.2.1 Virion attachment to heparan sulfate- or sialic acid-containing glycans. 

Although most human viruses bind to cellular glycans, the specific requirements for 
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binding were thought to be different. One group of viruses binds to heparan sulfate (HS) 

in cellular glycosaminoglycans, whereas another group binds to terminal sialic acid (SA) 

moieties in cellular sialoglycans. No small molecule had previously been identified that 

could inhibit the binding of both groups. Most unexpectedly, I found that EGCG 

inhibited the attachment of both groups of viruses, providing the first evidence of 

common requirements for binding of viruses to HS- or SA-containing glycans.  

EGCG-resistant IAV variants had mutations in the HA2 stalk region (Figure 

3.13), which is known to be in involved in fusion but not thought to have roles in binding. 

HA2 is relatively well conserved amongst IAV and influenza B virus (IBV) (Krystal et 

al., 1982). As such, monoclonal antibodies that bind the HA stalk domain are broadly 

cross-reactive and neutralizing (Ekiert et al., 2009). Such antibodies were proposed to 

block the conformational rearrangements of HA required for membrane fusion. It may be, 

however, that HA binding is impaired as well. The epitopes for the cross-reactive 

antibodies are the membrane proximal portions of HA2, in the same region as the 

mutations that confer resistance to EGCG. The EGCG mutations suggest that the stalk 

region of HA may also contribute to binding, either directly or through effects on the 

overall structure of HA. Like IAV HA, the reovirus (RV) sigma 1 protein is responsible 

for attachment to SA-containing glycans. Sigma 1 has an alpha-helical stalk and a 

globular head domain, and like HA, exists as a trimer. Structural and functional studies 

showed that the globular head engages junctional adhesion molecule-A (JAM-A), the 

specific secondary receptor for RV (Kirchner et al., 2008). Interestingly, sequences in the 

membrane proximal region of the sigma 1 stalk bind to SA-containing glycans (Reiter et 
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al., 2011). It may be that the corresponding membrane proximal regions of IAV HA also 

contribute to SA binding. 

6.2.2. Membrane curvature and viral fusion. Historically, virus-to-cell fusion has been 

widely used as a model for cellular fusions, on the assumption that both types of fusions 

involve the same basic mechanisms. The data in this thesis support a model in which 

RAFIs inhibit fusion by preventing formation of the negative curvature in the hemifusion 

stalk, which was thought to be a conserved requirement (that was formed by similar lipid 

rearrangements) for both viral and cellular fusion. However, RAFIs inhibited virus-to-

cell, virus-to-liposome and liposome-to-cell fusions, but had no apparent effects on 

cellular fusions, suggesting critical differences between viral (or liposome) and cellular 

fusions. As described above, differences in energy availability, vesicle size and curvature, 

and lipid composition may be involved. RAFIs could be used as probes to characterize 

the differential requirements for virus-to-cell fusion and cellular fusions. 

6.2.3 Membrane fluidity and viral entry. Membrane fluidity depends on many factors, 

including lipid composition and temperature. The decreases in membrane fluidity 

resulting from curcumin insertion into membranes were sufficient to inhibit the entry 

steps of HCV and the infectivity of other enveloped viruses. In contrast, the (lesser) 

decreases in membrane fluidity induced by 25HC (likely through different mechanisms) 

did not correspond with anti-entry activities. To a certain extent, therefore, virions can 

apparently overcome decreases in virion envelope fluidity to bind and fuse. These 

findings suggest specific requirements for fluidity and lipid composition for viral entry. 

The relationship between membrane fluidity and viral infectivity has not been well-
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characterized. Curcumin, 25HC, and other related compounds could be used as probes to 

identify these requirements. 

 

6.3 FUTURE DIRECTIONS 

6.3.1 Virion attachment to heparan sulfate- or sialic acid-containing glycans. I 

showed in my thesis that EGCG and some other gallate-containing compounds (alkyl 

gallate derivatives and pentagalloylglucose, PGG) inhibited the infectivity of HS- and 

SA-binding viruses. I proposed that the gallate moiety is the critical determinant for 

antiviral activity, but the adjoining moieties contribute to potency. To test this model, 

SAR studies will be done with a series of chemically synthesized gallate derivatives. 

These will include digallate and trigallate compounds, with the gallate moieties 

connected by different linkers. Linkers lacking the reactive gallate carbonyl are expected 

to be more stable. However, it is yet unknown whether the gallate carbonyl is important 

for antiviral activity. The SAR studies may result in a lead compound for further antiviral 

optimization and development, but could also be used to probe the binding requirements 

of HS and SA binding viruses. EGCG inhibited the binding of HS-binding viruses at 

lower concentrations than SA-binding viruses, although the alkyl gallates inhibited 

infectivity of both groups at similar concentrations. Differential activities of gallate-

containing compounds could highlight subtle differences in binding mechanisms. 

 I isolated H1N1 and H3N2 IAV variants that were resistant to EGCG, with single 

amino acid substitutions mapping to the HA stalk. To validate that the mutation is 

responsible for resistance, marker rescue experiments should be performed. We could 

also use reverse genetics approaches to introduce the mutations into wild-type IAV 



	
   240	
  

strains, and test their susceptibility to EGCG. Another objective is to select for resistance 

in HS-binding viruses (such as HSV-1) or other SA-binding viruses (such as RV). 

Comparisons of resistant viruses would provide insights into the antiviral mechanisms of 

EGCG, and perhaps also into the binding mechanisms of HS- and SA-binding viruses. 

 We should also attempt more direct approaches to identify the binding site of 

EGCG. Although modelling studies indicated that EGCG could fit into the globular 

receptor-binding domain of IAV HA (Ge et al., 2014), EGCG may well bind elsewhere. 

We could heterologously overexpress and purify virion proteins (such as IAV HA or 

HSV-1 gC) and use mass spectrometry methods to identify the specific binding sites of 

EGCG, based on deuterium exchange (Chalmers et al., 2011). 

6.3.2. Membrane curvature and viral fusion. As described in earlier sections, the 

RAFIs selectively inhibit viral fusions without apparent effects on cellular fusions. Virion 

envelopes and cellular vesicles differ in size, curvature, lipid composition and the energy 

available for fusion, all of which may contribute to the selectivity of RAFIs for viral 

fusions. These possibilities could be tested by liposome fusion assays, such as those I 

described in Chapter 4, using liposomes of different diameters and different lipid 

compositions that more close resemble either virions or cellular vesicles. To test the 

hypothesis that RAFIs localized in the inner leaflet (of intracellular vesicles) does not 

inhibit fusion, asymmetrical liposomes that contain aUY11 only in the inner leaflet could 

be tested for their ability to fuse.  

 The most critical difference between cellular and viral fusions is likely the energy 

available for fusion. Yeast vacuole fusion assays, a model for eukaryotic vesicular 

fusions, could be used to examine the effects of cellular fusion factors (and energy) on 
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the activity of RAFIs. Yeast vacuole fusion depends on conserved cellular factors that 

include SNAREs. RAFIs may inhibit yeast vacuole fusion in the absence of cellular 

fusion factors and under limiting ATP. We could also test if increased energy availability 

during viral fusion would overcome the effects of RAFIs, using liposomes reconstituted 

with IAV HA (Gunther-Ausborn et al., 1995). In such a system, energy can be regulated 

by the number of HA trimers, pH and temperature. For example, exposure to low pH 

overcomes the IFITM3-mediated inhibition of IAV fusion (Desai et al., 2014). 

 Using conventional serial passage approaches, we were not yet able to select for 

aUY11- or dUY11-resistant viruses. We may still be able to select for resistance with 

more passages. If not, we could attempt to select for resistance with weaker, less potent 

RAFIs, or use chemical mutagenesis approaches to mutagenize the viruses prior to 

selection. These methods could facilitate the selection of RAFI-resistant variants. 

Analysis of the resistant variants would contribute to our understanding of the antiviral 

mechanism of RAFIs, and also viral fusion mechanisms. 

6.3.3 Membrane fluidity and composition. My characterization of the mechanisms of 

curcumin in this thesis was focused on HCV. However, curcumin has broad activity 

against enveloped viruses (Chen et al., 2013), and my model is that the antiviral effects of 

curcumin depend on its modulation of virion envelope fluidity. Accordingly, I expect 

curcumin to act by similar mechanisms against all enveloped viruses. To test this model, 

we should next evaluate the effects of curcumin on the fluidity and entry steps of other 

enveloped viruses, using the binding and fusion assays described in this thesis. These 

experiments would test our model for the antiviral mechanisms of curcumin and could 
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also point to differential fluidity requirements for the entry steps of different enveloped 

viruses. 

 Resistance to curcumin has not been documented in the literature. Based on the 

proposed mechanism, I expect curcumin to have a high barrier to resistance. Nonetheless, 

resistance mechanisms are of course possible to envision. Future studies should be done 

to isolate resistant viruses by serial passage in the presence of increasing curcumin 

concentrations, using an RNA virus such as IAV (as I have done for EGCG and aUY11, 

Chapters 3 and 4). One potential resistance mechanism is alteration of lipid composition 

in virion envelopes. To test that possibility, liposomes of different lipid composition 

could be prepared, treated with curcumin, and induced to fuse (as described in section 

6.3.2 for RAFIs). 

 Curcumin is planar and rigid, and inserts into membranes in a transbilayer 

orientation similar to cholesterol (Barry et al., 2009). It induces ordering in membranes, 

which influences many membrane properties, including fluidity. Curcumin, glycyrrhizin 

and cholesterol all decrease membrane fluidity, with corresponding broad antiviral 

activities (Chapter 5, Chen et al., 2013; Harada, 2005). Their structures share the 

common features of rigidity, planarity and at least one terminal hydrophilic moiety. 

25HC, in contrast, has a bent shape and affects membrane fluidity to a lesser extent, 

likely by mechanisms distinct from those of curcumin or cholesterol (discussed in 

Chapter 5). To my knowledge, structure-activity relationship studies for membrane 

fluidity-modulating antivirals have not been done. Such studies would be useful to 

identify and optimize antiviral candidates, and to elucidate the specific fluidity 

requirements for the entry steps of enveloped viruses. 
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 25HC broadly affects cellular membrane fluidity and lipid composition. Its effects 

on virion envelope fluidity were not sufficient to inhibit entry, but its effects on cellular 

membranes and signalling impact the production of infectious HCV particles. HCV 

replication and assembly rely on appropriate cholesterol content in intracellular 

membranes. Inappropriate fluidity or lipid composition of these membrane structures 

could impair genome replication, through improper localization of viral and cellular 

proteins. Cellular imaging studies could be used to examine the integrity and localization 

of subcellular membrane compartments, and the localization of viral proteins to these 

compartments, when infected cells are treated with 25HC. 

Treatment of cells with 25HC and other oxysterols triggers cholesterol trafficking 

from the plasma membrane to the endoplasmic reticulum (Lange et al., 1999; Lange et 

al., 2004; Olsen et al., 2011), from which HCV virions bud. Such modifications to the 

lipid composition of the endoplasmic reticulum could therefore affect the composition of 

virion envelopes. These possibilities could be tested by lipidomics approaches to evaluate 

the lipid content of purified HCV virions, with or without 25HC treatment. 

 Other sterol-derived small molecules with antiviral activities may also act 

similarly to 25HC by modifying the fluidity or composition of cellular membranes. For 

example, 25-hydroxyvitamin D3 inhibits the production of infectious HCV particles 

similarly to 25HC (Matsumura et al., 2012). Identification of other natural products and 

innate small molecules with effects on membrane composition and fluidity would be 

useful to characterize the potential antiviral mechanisms involved and to better 

understand their roles in innate immunity. 
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6.4 CONCLUSIONS 

Overall, I have identified three distinct mechanisms to inhibit different entry steps of 

unrelated viruses. Identification of these mechanisms opens the possibility for the rational 

design of small molecule entry inhibitors with broad-spectrum activities and appropriate 

pharmacological properties. Furthermore, the small molecules described in this thesis are 

useful as probes to characterize viral entry steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   245	
  

 

 

 

 
 
Figure 6.1. Model for the proposed antiviral mechanism of EGCG and other gallate-
containing  compounds. EGCG  competes  with  cellular  HS  or  SA  for  binding  to  virion 
glycoproteins.  
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Figure 6.2. Proposed model for the antiviral mechanism of RAFIs. The RAFIs insert 
into the outer leaflet of virion envelopes to inhibit formation of the negative membrane 
curvature required to form the hemifusion stalk intermediate.  

Figure  6.2.  Proposed  model  for  the  antiviral  mechanism  of  RAFIs.  The  RAFIs  insert  into  the 
outer leaflet of virion envelopes to inhibit formation of the negative membrane curvature required 
to form the hemifusion stalk intermediate.  
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Figure 6.3. The EC50 of aUY11 increases with the virion surface area. Shown on the 
graph  (from  lowest  EC50 to  highest)  are  Sindbis  virus,  VSV,  IAV  (average  of  four 
strains), HSV-2 and HSV-1. 
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