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ABSTRACT

This thesis explores the variability of leaf traits resulting from changes in
season, ecosystem successional stage, and site characteristics. In chapter
two, I present a review of the use of remote sensing analysis for the
evaluation of Neotropical dry forests. Here, I stress the conclusion, drawn
from studies on land cover characterization, biodiversity assessment, and
evaluation of forest structural characteristics, that addressing temporal
variability in spectral properties is an essential element in the monitoring of
these ecosystems. Chapter three describes the effect of wet-dry seasonality
on spectral classification of tree and liana species. Highly accurate
classification (> 80%) was possible using data from either the wet or dry
season. However, this accuracy decreased by a factor of ten when data from
the wet season was classified using an algorithm trained on the dry, or vice
versa. | also address the potential creation of a spectral taxonomy of species,
but found that any clustering based on spectral properties resulted in
markedly different arrangements in the wet and dry seasons. In chapter 4, I
address the variation present in both physical and spectral leaf traits
according to changes in forest successional stage at dry forest sites in Mexico
and Costa Rica. I found significant differences in leaf traits between
successional stages, but more strongly so in Costa Rica. This variability
deceased the accuracy of spectral classification of tree species by a factor of

four when classifying data using an algorithm trained on a different



successional stage. Chapter 5 shows the influence of seasonality and
succession on trait variability in Mexico. Differences in leaf traits between
successional stages were found to be greater during the dry season, but were
sufficient in both seasons to negatively influence spectral classification of
tree species. Throughout this thesis, [ show clear and unambiguous evidence
of the variability of key physical and spectral leaf properties over various
temporal scales, with the conclusion that an understanding of this variability
must play a central role in the establishment of monitoring techniques for

dry forests.
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Chapter 1: Introduction

1.1 Introduction

In recognition of the paucity of research being carried out in the dry
forests versus more humid tropical biomes, Sdnchez-Azofeifa et al. (2003)
suggested three areas where concentrated remote sensing research would
best contribute to an overall better understanding of these environments.
First they advocate for an application of satellite remote sensing techniques
to identify and map the extent of dry forests, particularly secondary forests in
various stages of regeneration. Second, they suggest that methods of
estimating forest biophysical properties such as leaf area index be developed
using spectral analysis. These properties are key inputs to models of forest
productivity and their estimation using remote sensing allows for
inexpensive and efficient evaluation of this variable over large areas
(Roughgarden et al. 1991). Finally, they point to the increasing availability of
hyperspectral data sources as an opportunity to develop techniques for the
identification of individual tree species based on their reflectance

characteristics (Foody 2003; Kerr and Ostrovsky 2003).

Of these three research areas, the first two have been investigated
with good success in the intervening decade. Miles et al. (2006) estimated

global dry forest cover using MODIS data and Portillo-Quintero and Sanchez-



Azofeifa (2010) focused on the extent and distribution of the tropical dry
forests in the Americas, also addressing the issues of forest fragmentation
and conservation status. While not incorporated into the above estimations,
differentiation among early, intermediate, and late successional stages has
been carried out with success by Arroyo-Morra et al. (2005) and Hartter et al.
(2008) using Landsat ETM+ and TM data, respectively. More recently,
Castillo-Nunez et al. (2012) used high resolution LiDAR Vegetation Imaging
System (LVIS) data to differentiate among successional stages, also providing
additional detail in the intermediate stage. Leaf area index and biomass have
been modeled in the dry forest through the application of empirically derived
relationships with spectral indices (Kalacska et al. 2005b) as well as Bayesian

networks (Kalacska et al. 2005a), applied to ETM+ data.

The third research priority highlighted by Sanchez-Azofeifa et al
(2003) has proven the most complex. Though the high levels of species
diversity in the tropics pose an obvious challenge in spectrally based species
detection and biodiversity assessment relative to more species-poor
temperate environments, Clark et al. (2005) and Asner and Martin (2008)
have shown the potential for the distinction between species at both the
crown and leaf scales, respectively, in the humid tropics. Ultimately, the
process of species classification based on spectral reflectance rests on the
assumption that reflectance is more variable between species than among

individuals of the same species (Cochrane 2000). Casting this into the



context of the highly seasonal tropical dry forests, it is precisely this
variability that must be assessed in evaluating the potential for species
discrimination.

One of the advantages of a remote sensing approach to the analysis of
biophysical properties is the ability to reasonably survey not only across
space but time (Cohen and Goward 2004; Nagendra 2001). While the impact
of changes in geography and altitude on forest biophysical and spectral
properties have been acknowledged and investigated, (Asner and Martin
2008; Asner et al. 2009; Castro-Esau et al. 2006; Martin et al. 2007) and the
effects of seasonality on spectral properties have been shown to influence the
potential for discrimination between trees and lianas (Castro-Esau et al
2004; Kalacska et al 2007), the temporal domain has been less fully
explored. Particularly in highly seasonal environments such as tropical dry
forests, this presents an important knowledge gap, which must be filled in
order to take full advantage of the potential for remote sensed analysis to

contribute to our understanding of forest properties.

The question under investigation in this thesis is whether leaf
physical, chemical, and spectral properties show measurable variability in
response to changes in season and forest successional stage in tropical dry
forest environments. An improved understanding of diversity in leaf
chemical and physical characteristics is a necessary component of better

understanding ecosystem function (Townsend et al. 2007). Similarly, the



effect that this variability has on leaf spectral response will influence the
potentential for remote sensing of biodiversity and ecosystem function using

leaf spectral properties (Asner and Martin 2008).

This thesis is comprised of four separate stand-alone papers, related
by the common theme of furthering our understanding of tropical dry forests,
and in particular their temporal variability, through exploration of the
relationships between biophysical properties and ecosystem characteristics
and their impact on leaf spectral properties. Particular emphasis is placed on
exploration of temporal variation in leaf-level spectral and biophysical traits
between seasons and successional stages at two tropical dry forests located

in Mexico and Costa Rica.

Chapter 2, “Review of remote sensing of tropical dry forests” (Hesketh
and Sanchez-Azofeifa, 2013), contextualizes the discussion with a detailed
review of the state of the art in remote sensing in dry tropical environments.
As in other disciplines, research in dry tropical remote sensing has lagged
behind that conducted in temperate and rainforest ecosystems, and
researchers face unique challenges stemming from the extreme variability of
these forests. This chapter focuses on 1. The use of satellite remote sensing
in detecting and mapping dry forests, 2. The estimation of dry forest biomass
and productivity using remotely sensed data, 3. The potential for the

assessment of biodiversity through leaf-level spectral discrimination



between dry forest species and plant structural groups, and 4. The
application of optical remote sensing data in conjunction with LiDAR in the
assessment of forest structure and successional stage. The review concludes
with a discussion of the obstacles and opportunities related to furthering our
understanding of tropical dry forests through remote sensing, including
infrastructure and organization, emerging data sources and analysis
techniques, and the requirement for better understanding of the temporal

domain.

Directly addressing the effect of the extreme seasonality of tropical
dry forests, the main objective of Chapter 3, “The effect of seasonal spectral
variation on species classification in the Panamanian tropical forest” (Hesketh
and Sanchez-Azofeifa, 2012), is to quantify the impact of seasonality on the
potential for species level discrimination based on leaf-level spectral
reflectance. Dendrograms derived from the spectral reflectance of 47 species
of trees and lianas area analyzed based on a novel application of Horton'’s
laws as a means to investigate the variation in leaf optical properties of
species collected in both wet and dry forest. Additionally, the impact of this
spectral variation on species classification using a non-parametric decision
tree classifier is explored. In the context of research into the relationship
between taxonomy and spectral reflectance (Asner and Martin 2008; Asner
2008; Clark et al. 2005; Doughty et al. 2011) understanding the potential for

temporal variation in leaf spectral properties is an important step towards



better understanding the consistency of the relationship and its utility in

spectral classification.

Chapter 4, “Successional variation in spectral and biophysical leaf traits
in two American tropical dry forests”, focuses again on temporal variation in
leaf spectral properties, looking at the effect of forest successional stage on
variation in leaf spectral reflectance as well as a suite of biophysical and
chemical variables. This work was carried out at the Chamela Cuixmala
Biosphere Reserve (CCBR) in Mexico and Santa Rosa National Park (SRNP)
in Costa Rica which, while both dry forests, have different climatic and
edaphic characteristics. Most notably, SRNP receives almost twice the
growing season precipitation as does CCBR. Through statistical analysis,
variability in leaf water content, specific leaf area, pigment concentration,
foliar chemistry, and spectral properties are investigated. Classification
analysis is used to quantify the extent to which this variability impacts the
potential for accurate biodiversity assessment based on spectral reflectance.
In the context of a body of influential research that stresses the global
consistency of leaf trait relationships across biomes (Reich et al. 1997;
Wright et al. 2004), addressing the variability between successional stages
within a single site highlights the importance of microclimate and plot-level

differences in growing conditions in controlling leaf traits.



The objective of Chapter 5, “Effect of season and successional stage on
leaf properties in a tropical dry forest”, is to combine the temporal gradients
considered in chapters 3 and 4, and investigate seasonal variability in leaf
biophysical, chemical, and spectral properties at changing successional
stages. This work was conducted over two periods at CCBR encompassing
the height of the wet season and the last weeks of the growing season in the
period of fall senescence. The methodologies from chapter 4 are adapted to
show the changes in the effect of seasonality between early, intermediate,
and late stages of dry forest succession at a single site. The importance of
secondary forests in the neotropics (Joseph Wright and Muller-Landau 2006;
Wright 2005; Wright and Muller-Landau 2006) implies that an
understanding of the dynamics of forest succession is an integral part of
tropical forest monitoring. As such, an appreciation of the impact of forest
succession on leaf traits is a necessary prerequisite for the monitoring of the
forest regeneration. This underscores the importance of a thorough
understanding of the temporal sources of biophysical (and the resulting
spectral) variability before undertaking any kind of biodiversity analysis,

particularly in the seasonal tropics.

The four chapters that make up the body of this thesis emphasize the
importance of community-scale variability at a time when a focus of
influential research (e.g. Asner and Martin 2008; Asner et al. 2011; Wright et

al. 2004) is on the establishment of unifying trends. This thesis closes with



a summary outlining the conclusions reached in the preceding chapters in
the context of the importance of the temporal domain in understanding
biophysical and spectral variability at the leaf level, and the implications and

challenges for future research.
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Chapter 2: Review of remote sensing of tropical dry forests”

2.1 Introduction

For more than twenty years, tropical dry forests (TDFs) have been
recognized among the world’s most threatened ecosystems (Janzen 1988;
Murphy and Lugo 1986b; Olson 2000). These forests account for 49 percent
of the vegetated land cover in Mesoamerica and the Caribbean and 42
percent of all tropical forest vegetation worldwide (Murphy et al. 1995; Van
Bloem et al. 2004) with a current estimated total global cover of 1,048,700
km? (Miles et al. 2006), and are often areas of intense human occupation and
exploitation (Murphy and Lugo 1986a; Quesada and Stoner 2004; Sanchez-
Azofeifa et al. 2005a). In spite of this, these forests have been the subject of
only a fraction of the research devoted to tropical forests globally, with the
majority of study over the past 60 years focused on tropical humid forests or
rainforests (Sanchez-Azofeifa et al. 2005b). With increasing concern over the
health and conservation status of TDFs (Stoner and Sanchez-Azofeifa 2009),
there is a need for tools to better map and understand these important

resources.

* A version of this chapter has been published. Hesketh, M., & Sanchez-
Azofeifa, A. (2013). A Review of Remote Sensing of Tropical Dry Forests. In A.
Sanchez-Azofeifa, ].S. Powers, G.W. Fernandes, & M. Quesada (Eds.), Tropical
Dry Forests in the Americas: Ecology, Conservation, and Management (pp. 83-
100): CRC Press
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The benefit of satellite remote sensing to forest ecology is the
potential for a systematic, synoptic view of the earth at large spatial scales
and at regular intervals (Cohen and Goward 2004; Nagendra 2001;
Roughgarden et al. 1991). Satellite data have been used for the mapping and
monitoring of the distribution and change of plant species and land cover
types, deforestation, fire and insect damage, and human impact on the
environment. Additionally, these data have been used in the extraction of
biophysical characteristics (e.g. total above-ground biomass, leaf and woody
area indices (LAI and WAI, respectively), and canopy cover) which are key
components in a variety of ecological models, as well as calculations of
carbon balance and primary production (Castro-Esau et al. 2004; Foody
2003; Kerr and Ostrovsky 2003; Lambin 1999; Nagendra 2001). At smaller
scales, the use of high spectral resolution data at the leaf and crown level has
allowed for the evaluation the spectral elements of leaf properties and their
variation between and among species, structural groups, locations, and
seasons (Hesketh and Sanchez-Azofeifa 2012), in a manner that may be
adapted to larger spatial scales and used to better understand ecosystems at

the plot level and beyond (Asner and Martin 2008b).

The objective of this review is to explore the applications of remote
sensing to forest studies and the use of these tools and techniques in better
understanding TDFs. Following a discussion of the relationship between

spectral reflectance and biophysical and structural properties of vegetation,
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the chapter will review remote sensing challenges and findings in TDF
research, grouped broadly under four main areas: 1. The use of satellite
remote sensing data as an input to the classification of TDFs regionally and
globally, with the aim of mapping their extent and distribution, 2.The
estimation of TDF forest biomass and productivity, 3.The assessment of
biodiversity through spectral evaluation of species and plant structural
groups and 4. The application of optical and LiDAR remote sensing in the

assessment of forest structure and successional stage.

2.2 Remote Sensing of Vegetation

2.2.1 Spectral Characteristics of Green Vegetation

Investigation into leaf optics dates back to the first half of the
twentieth century (Billings and Morris 1951; Gates et al. 1965; Loomis 1965;
Shull 1929), and a prime objective of leaf spectroscopy has been to relate leaf
optical properties to chemical and biophysical characteristics. Spectral
reflectance at the leaf level is influenced by three characteristics: 1) the
internal cellular structure of the leaf, 2) leaf pigment content, and 3)
orientation relative to solar radiation (Turner et al. 1999). While leaf
morphology is highly variable by species and phenological stage, it tends to
be characterized by a relatively open structure, with palisade and spongy

mesophyll cells sandwiched between an upper and lower epidermis. The
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upper layer of the epidermis, called the cuticle, is a thin waxy coating
regulating transmittance of radiation into the leaf’s internal structure.
Chloroplasts are found throughout the palisade and mesophyll cells, but tend
to be concentrated towards the upper side of the leaf, provided that the leaf
has a horizontal orientation relative to the sun (vertically-oriented or
erectophile leaves tend to have chloroplasts distributed along both edges
(Jensen 2000)).

Radiation interacts with the leaf though absorption and scattering.
The cell structures within the leaf are large with respect to the wavelengths
of light, though the hair-like strands called grana within the chloroplast are
small enough (approximately 0.5x0.05 pm) to induce some scatter. Plants
absorb the ultraviolet and visible wavelengths efficiently, though absorption
decreases dramatically through the near and mid infrared parts of the
spectrum (0.70 - 1.8 pm). The structural components influencing these
decreases in the longer wavelengths are the large intercellular spaces in the
spongy mesophyll (the site of 0; and COz exchange), which result in high
internal scattering of radiation in the near infrared region, reducing
absorption and increasing reflectance of these wavelengths. This lowered
absorption in the higher-energy part of the spectrum is a mechanism to
control the thermal properties of the leaf, preventing overheating (Gamon et
al. 2005). Water vapor saturating these intercellular spaces interacts with
mid infrared radiation, resulting in absorption peaks at 0.97, 1.19, 1.45, 1.94,

and 2.7 um, and increased reflectance between them (Gates et al. 1965).
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Leaf pigment content most directly affects the spectral response in the
visible range of the spectrum (0.4-0.7 pm). Chlorophylls a and b absorb
strongly in the blue and red wavelengths, and much less so in the green. The
presence of other pigments within the leaf (carotenes and xanthophyll cycle
pigments) with similar absorption characteristics broadens these absorption
peaks. The ratio between this high absorption in the red region and high
reflectance in the near infrared region is exploited in a significant portion of
the index-based approaches to vegetation monitoring (le Maire et al. 2004).
As the leaf matures from initial flush to senescence pigment levels shift,
causing an alteration to the measured reflectance and the apparent color of
the leaf as chlorophyll levels increase and decrease throughout the growing

season, replaced by carotenes and anthocyanin (Gates et al. 1965).

2.2.2 Satellite Analysis of Vegetation

Aside from the issues of appropriate spatial, spectral and temporal
resolutions associated with all satellite remote sensed analyses (Nagendra
2001), there are challenges associated with mapping and monitoring
vegetation using airborne and satellite-derived spectral reflectance data. In
particular, the potentially distorting effects of the atmosphere, topography,
canopy architecture, and the influence of soil on spectral reflectance must be

understood and accounted for as a preliminary to any analysis.
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The effect of the atmosphere on reflectance is described as the
difference between the actual top of copy (TOC) reflectance and measured
top of atmosphere (TOA) reflectance. For remote sensed projects where data
are compared over either time or space, the effects of light scatter in the
atmosphere due to dust and aerosols must be accounted for (Myneni et al.
1995b). Song et al. (2001) suggest several means of correction, which are
summarized as follows. The first is dark object subtraction (DOS), by which
the effects of atmospheric scatter are registered as the brightening of the
darkest objects in a scene. The DOS method uses this difference to reduce the
brightness of the overall image relative to the difference between the
measured and assumed actual reflectance of these dark objects. The path
radiance (PARA) approach uses a similar set of relationships between the
blue, red, and middle infrared bands to approximate and correct for the
effects of atmospheric aerosols. Finally, relative atmospheric correction
takes advantage of the presence of pseudo invariant features over a time
series of images to account for atmospheric effects. These features, such as
rock outcrops or built structures, may be used to adjust each image so that
the reflectance of these features is standardized throughout the time series.
This method does not require estimation of atmospheric optical properties
and can correct for systematic variance as well as atmospheric, but is
unsuitable in cases where extreme phenological or environmental changes
have take place between the images, or where images are spatially

distributed. Similarly, topographic and forest structural characteristics can

17



influence the measured reflectance. Distortions due to bi-directional
reflectance from the canopy may cause “hot spots” in imagery (resulting from
sun/sensor geometry which places the sensor between the sun and the
canopy, resulting in an artificially brightened image), and changes in canopy
closure, gap spacing, and leaf clumping with the canopy can also induce

variation in reflectance (Myneni et al. 1995b).

Because the radiance measured above a vegetated surface is a
composite of both the vegetation itself and the background surface (typically
soil), it is important to appreciate the contribution of both. Soil effects are
most evident in areas of low canopy closure and low leaf area index (LAI),
and spectral indexing methods may attempt to reduce sensitivity to its effects
for studies where soil registers as background noise, obscuring the object of
interest (McDonald et al. 1998). Conversely, when surface parameters such
as the albedo are under study, it is important to accurately include the soil’s

contribution to total reflectance.

Table 2-1 details the air- and space-born optical sensors most
commonly used in forest analysis. While multispectral sensors still provide
the majority of large-scale satellite data, hyperspectral data, characterized by
many narrow contiguous spectral bands, have become increasingly common
in classification studies and the estimation of forest biophysical

characteristics. While the hyperspectral sensors listed are carried aboard
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aircraft or satellites, important primary research is also carried out at the leaf

scale using small, portable field spectrometers.

Sensor Spatial Spectral Coverage # Spectral
Resolution (m) (nm) Bands
NOAA AVHRR 1000 580-11500 5
MODIS 250-1000 620 - 14385 36
Landsat TM and ETM+ 28.5 450 - 12500 7
IKONOS 4 445 - 853 4
EO-1 HYPERION 30 400 - 2400 220
CASI 0.25-15 380 - 1050 288
HyMap 3-10 450 - 2500 126
AVIRIS 20 400 - 2500 224

Table 2-1. Overview of the spatial and spectral characteristics of the commonly used
platforms for earth remote sensing.

2.3 Mapping the Extent and Distribution of TDFs

The loss lost of TDF cover noted by Janzen (1988) prompted his
inclusion of these forests among the world’s most threatened biomes. Taking
into account the high degree of biodiversity and endemism found in TDFs
(Gentry 1982; Gillespie et al. 2000; Lott et al. 1987) and the concern over
forest degradation and fragmentation (Sanchez-Azofeifa et al. 2009), the
importance of the development of a clear inventory of TDF cover is clear.
Previous assessments of ecosystems at risk have largely failed in addressing
TDFs status as distinct from other tropical forest biomes (Miles et al. 2006),
though areas containing high proportions of TDFs have been identified as
biodiversity hotspots (Myers et al. 2000). Estimates of TDF cover and
distribution are important tools not only for planning and conservation, but

form part of an overall census of land cover. Inaccuracies in these forest
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maps, typically manifest as an overestimation of tropical rain forest and the
corresponding underestimation of TDF (Portillo-Quintero and Sanchez-
Azofeifa 2010), impact the accuracies of estimations of carbon stocks which,
in addition to their importance ecologically, are essential for the
implementation of conservation strategies based on payments for

environmental services (Kalacska 2005).

In addition to methodological challenges which may vary based on the
remote sensing platform and the analysis techniques employed in classifying
TDF cover, two issues are consistent in the literature: a lack of consensus on
just what constitutes TDF, and the timing of image acquisition, taking into

account the inherent seasonality of these forests.

There is general agreement that the basic characteristics of TDFs are
high temperatures, moderate but seasonal precipitation, and a forest canopy
dominated by deciduous trees (Murphy et al 1995; Murphy and Lugo
1986a). Holdridge (1967) defines tropical and sub-tropical TDFs as those in
frost free zones with a mean annual temperature > 17°C, between 250 and
2000 mm of annual precipitation and a ratio of potential evapotranspiration
to precipitation in the range of 1 - 2. Sanchez-Azofeifa et al. (2005b) amend
this, specifying a mean temperature of = 25°C, precipitation between 700
and 2000 mm and a minimum of three dry months per year of drought where

precipitation does not exceed 100 mm per month. Inconsistency among
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vegetation classification is of particular importance when comparing across
large geographic areas or among studies with varying methodologies (Blasco

etal 2000).

The second issue is the variability of vegetation spectral reflectance in
response to phenological changes throughout the growing season. Since
TDFs are intensely seasonal by definition, it follows that spectral response
follows similar annual patterns. A disregard for this variability may be
responsible for the traditional misrepresentation of TDFs in satellite-based
land cover assessments (Sanchez-Azofeifa et al. 2001). Both Kalacska et al
(2007b) and Portillo-Quintero and Sanchez-Azofeifa (2010) suggest the
superiority of satellite data collected during the dry season for accurate

classification of TDFs.

The only remote sensed analysis of TDF cover at a global scale was
carried out by Miles et al. (2006). Using a biogeographic classification
scheme developed by Olsen (2001) and including tropical and subtropical
grasslands, savannas and shrublands as well as tropical and subtropical dry
broad-leaved forests as locations of potential TDF cover, they produced a
potential cover map based on Vegetation Continuous Fields data at a 500 m
resolution from MODIS. Their findings indicate 104,700 km? total potential
TDF cover globally with the majority (66.7%) located in the Americas. The

authors further analyze the degree of forest change during the period of
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1980-2000 using 8 km resolution data from the Advanced Very High
Resolution Radiometer (AVHRR). Deforestation during this period was
greatest in Latin America, with an estimated 12% total decrease as compared
to an average estimated decrease of 2% throughout Asia and similarly low
values across most of Africa. Also addressed was the risk to TDF areas from
several potential threats: climate change, forest fragmentation, fire,
conversion to agriculture, and increasing human population density. The
study suggests that only 3.3% of forest cover global is not subject to threat
from one of these sources, with 31.7 - 59.2% subject to three or more and

>95% subject to at least two.

More recently, Portillo-Quintero and Sanchez-Azofeifa (2010) applied
an approach based around spectral classification rather than the use of
previously processed land cover products to generate a map of the extent
and distribution of TDFs throughout the Neotropics. MODIS surface
reflectance data were acquired during the dry season to improve the
separability of TDF from surrounding semi-deciduous and evergreen forests
(Kalacska et al. 2007b) and mosaicked into a continuous image covering the
American tropics. Using training sites collected from Landsat TM and ETM+
imagery over known vegetation types and validated using high-resolution
imagery from Google Earth (Google Inc. 2012), the MODIS data were
processed with the non-parametric decision tree classifier See5 (Rulequest

Reseach 2008). The resulting map shows a total of 519,597 km? of TDF
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across the Americas, with the greatest cover found in Mexico (38%), Bolivia
(25%) and Brazil (17%). Comparing this extent to the potential extent of the
“tropical and subtropical broad-leaf forest” defined by Olson (2001), an
average of 66% loss to anthropogenically attributed deforestation or

conversion was noted across the study area.

Equally important as an accurate assessment of the extent and loss of
TDFs derived from distribution maps is an understanding of the degree of
continuity of the biome. Forest fragmentation poses a major risk to the
health of both flora and fauna, with smaller fragments (<10 km?) found to
have higher rates of species extinction and a greater risk of conversion to
other land covers (Laurance et al. 2002; Rodriguez et al. 2007a; Rodriguez et
al. 2007b). Sanchez et al. (2009) used a classification of TDFs based on data
from NASA’s 15 m Advanced Spaceborne Thermal Emission and Reflection
Radiometer satellite (ASTER) to evaluate the degree of fragmentation in
protected versus unprotected areas around Mexico’s Chamela-Cuixmala
Biosphere Reserve. They found that while both the size and number of forest
fragments remained relatively constant within a 15 km radius of the reserve,
beyond that boundary the number of patches increased while the average
patch size decreased considerably. Portillo-Quintero and Sanchez-Azofeifa
(2010) examined the proportions of forest fragments falling into < 2.5 km?,
2.5 - 10 km?, and = 10 km? classes across the Neotropics, finding generally

high proportions of forest in the > 10 km? class, with the lowest found in Peru
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and Costa Rica. Both the above studies consider the impact of protected
areas on TDF conservation and health. Sanchez-Azofeifa et al. (2009) note
the trend toward increasing fragmentation and decreasing patch size
accompanying increasing distance from protected areas, noting the
associated loss of connectivity between the residual fragments as a serious
threat to forest biodiversity. In spite of this, Portillo-Quintero and Sanchez-
Azofeifa (2010) report that only 4.5% of the TDF cover in the Neotropics is
subject to protection, compared with a global estimate of 16-18% of humid

forests, savannas and grasslands (Hoekstra et al. 2005).

2.4 Assessment of Forest Health (Biomass, Lear Area index,

Productivity)

Remote sensed analysis of forests has the potential to provide strong
linkages between spectral reflectance and forest biophysical characteristics
which may then be used as proxy for physical inputs to models of ecosystem
process, biosphere-atmosphere transfer, and carbon exchange (Hall et al
1995; Treitz and Howarth 1999). The goal of studies in this area has been to
develop methodology by which to accurately extract characteristics that are
not commonly included in forest inventories, such as leaf area index (LAI),
total above ground biomass (TAGB), and the fraction of absorbed
photosynthetically active radiation (fAPAR) from remotely sensed data over

large areas without further fieldwork. Though techniques involving neural
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networks have shown promise (Carpenter 1997; Kalacska et al 2005;
Running et al. 1986), research here has focused primarily on two methods.
Index-based approaches, based on empirical relationships between the
ground-sampled measurements and their spectral properties, exploit
differences in characteristic spectral regions of the reflected electromagnetic
radiation (Kalacska et al. 2004; Running et al. 1986; Turner et al. 1999). Due
to the relative simplicity of application, these methods have been by far the

most common (McDonald et al. 1998).

Conversely, methods employing the inversion of physically based
radiative transfer models have been investigated with some success
(Jacquemoud et al. 1996; Kuusk and Nilson 2000; le Maire et al. 2004). These
models, such as those by Li and Strahler (Li and Strahler 1986, 1992), use
reflectance as an input to derive biophysical variables such as LAL. Such
models calculate canopy reflectance by incorporating nested models of the
spectral properties of the individual contributing factors. An example is the
model by Kuusk and Nilson (2000), which incorporates the PROSPECT2 leaf
optical model (Jacquemoud et al. 1996), the 6S atmospheric transfer model
(Vermote et al. 1997), and the MCRM canopy reflectance model (Kuusk
1995), accounting also forest inventory and structural characteristics, as well
as the effects of soil and ground BDRF. Rautainen (2005) found that, while
this process only slightly over-predicted LAI values, such an approach is

subject to error from a multitude of sources, most importantly the input
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parameter relating to stand characteristics, which must be taken from forest
inventories (if available) or generalized. The ground truth LAI data is also
subject to error, as they are generally modeled as well, taken form allometric
equations. Even optical methods used for measuring LAl in situ operate on
the often-incorrect assumption of randomly dispersed clumping in the
canopy. Privette et al (1996) similarly note that while inverted physical
models have the virtue of accounting for bidirectional effects, and requiring
potentially less prior calibration than vegetation indices, they are
computationally more demanding, and require a priori knowledge of the

vegetation characteristic of the study site, which may not be readily available.

Reliable estimates of forest biomass are essential for understanding
the importance of forest environmental processes and in regional and global
carbon budgeting (Foody 2003; Houghton et al. 2001). The most direct
method typically employed for biomass estimation is direct correlation with
spectral reflectance or, more commonly, with a spectral vegetation index
(SVI) such as the normalized difference vegetation index (NDVI), then
validation through either destructive forest sampling or comparison with
allometric equations derived from previous sampling (Castro-Esau et al
2003). While this approach has been employed with some success in
temperate forests (Curran et al. 1992; Danson and Curran 1993; Peterson et
al. 1987), the relationship between SVIs and biomass has been found to be

generally poor in the tropics, with their overall denser forest cover, as most
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indices tend to saturate at higher LAIs (Kalacska et al. 2005; Myneni et al.
1995a). Foody et al. (2001) note only insignificant correlations (p<0.95)
between forest biomass and 230 permutations of six common ratio-based
SVIs calculated from Landsat TM data collected over Borneo, confirming

earlier results by Sader et al. (1989).

An alternative to direct correlation with TDF spectral properties has
been to exploit the relationship between forest age (or successional stage)
and biomass. Issues here, however stem from a poor understanding on the
age of succession and the site specificity of the equations used to derive

biomass from stand age (Castro-Esau et al. 2003)

Leaf area index, defined as the total one sided surface area of all leaves
in the canopy within a defined region (typically expressed m?m-2) (Gong et al.
2003), is a key indicator of potential evapotranspiration and thus
photosynthesis and stand productivity (Chason et al. 1991). As with forest
biomass, LAl has often been estimated by the application of regressions
between sampled LAI and SVIs, which show high sensitivity to changes in leaf
area at low to moderate values, reaching an asymptote at LAI values of 3-5
(Chen and Cihlar 1996; Turner et al. 1999; White et al. 1997). Numerous
ratio-based vegetation indices have been statistically related to LAI, typically
exploiting the variation in the red and near infrared reflectance of green

plants. Turner et al (1999) suggest that the relationships between
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vegetation indices from satellite multispectral data may be useful for
retrieving LAI, and note some issues that must me managed if these
estimations are to be accurate. They remark on the impact of image
processing procedures and the importance of corrections for atmospheric
effects, particularly when carrying out analyses between multiple sites or
dates. They found that, while topographic corrections had a marked effect on
the raw vegetation index values, they had little to no effect on the strength of
the index-LAI relationships. The prime issue with the SVI approach is the
tendency for the SVIs to saturate at the higher LAI levels found in tropical
systems (Birky 2001), attributed to the saturation of the individual spectral
bands when the forest reaches a certain level of green biomass (Kalacska et
al. 2004). Turner et al. (1999) recognize the tendency for vegetation index
values to reach an asymptote at LAls greater than 5 and note the importance
of selecting vegetation indices that are appropriate for the cover type under
evaluation. The goal in the development of these indices is to maximize the
sensitivity to changes in the characteristic under study (like chlorophyll
content) while minimizing sensitivity to background effects (such as the

influence of soil or the atmospheric) (Sims and Gamon 2002).

Kalacska et al. (2005b) test the relationship of SVIs to LAI in the TDFs
at two sites in Costa Rica and a third in Pacific Mexico. They found highly
significant correlations between LAI and SVIs (calculated from 28.5 m

Landsat ETM+ data) using nonlinear regression with a Lorentzian
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Cumulative Function. The best-fit spectral index varied slightly, with the
modified simple ratio (MSR) (Chen 1996) providing the strongest result at
two sites and the soil adjusted vegetation index 2 (SAVIZ) (Qi et al. 1994)
providing the best fit at the third. Kalacska et al. (2005) also explore the use
of Bayesian and neural network classifiers applied to Landsat ETM+ data as
an alternative approach to estimating dry tropical LAI. Both Bayesian and
neural network approaches were found to have a lower testing error than the
SVI approach (48.7% and 56.9%), respectively, vs. 64.9%) when tested during

the wet season at a TDF site in Costa Rica.

While estimations of both forest biomass and LAI stand as either
proxies for forest productivity or inputs into further calculations, there has
been some research into more directly measuring productivity via
investigation of the relationship between spectral reflectance and
photosynthetic rates, both in terms of absorbed photosynthetically active
radiation (APAR) and light use efficiency (LUE) at the leaf level. Gamon et al.
(2005) break down the gross photosynthetic rate into the product of LUE and
APAR, adapted from earlier work by Monteith (1977) on the components of
net primary productivity (NPP). APAR can be evaluated with commonly used
SVIs such as the simple ratio (SR) and NDVI (Gamon et al. 1995), and the
authors found consistently strong relationships between SR and the
measured fraction of absorbed photosynthetically active radiation (fAPAR) at

the crown scale at a TDF site in Panama (NDVI was found to saturate over
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dense canopies). Estimation of the LUE term was through the hyperspectral
photochemical reflectance index (PRI), which has been found to be sensitive
to xanthophyll cycle activity (Gamon et al. 1997; Gamon et al. 1992) and LUE
at leaf (Gamon et al. 1992; Penuelas et al. 1995), canopy (Stylinski et al
2002) and stand (Nichol et al. 2000; Rahman et al. 2001) scales. In the TDF
context, leaf scale PRI showed close correlation with measures of leaf
fluorescence (a measure of radiation use efficiency (Genty et al. 1989)). The
authors also noted a depression in PRI coincident with increased incident
photosynthetic photon flux densities (PPFD) at the crown scale, supporting
the relationship between PRI and LUE noted at the leaf scale and furthering
the prospect of the evaluation of net photosynthesis via optical remote

sensing.

2.5 Distinguishing Between Species and Structural Groups

Though sensors with moderate spatial and spectral resolution have
been effective in identifying and classifying broad forest classes and
estimating some forest properties, the high species densities found in both
the humid and dry tropics (Myers et al. 2000; Zhang et al. 2006), as well as
the general similarity in leaf reflectance among green vegetation (Portigal et
al. 1997) make the identification of individual plant species difficult or
impossible using these coarser-resolution data. The issue of pixel resolution

may be solved by the application of higher resolution data, such as from
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IKONOS or Digital Globe’s Quickbird satellites, which are able to resolve
individual tree crowns for analysis (Clark et al. 2005). While these sensors
have been used with moderate success in temperate forests (Fuentes et al
2001; Nagendra 2001; Nagendra and Gadgil 1999; Ustin et al. 2004), the
spectral resolution is insufficient in the context of the high species diversity
found in TDFs. As such, the majority of studies have been conducted using

leaf-level data collected using laboratory spectro-radiometers.

While the results of studies evaluating species discrimination using
optical data in wet tropical environments are encouraging (Clark et al. 2005;
Cochrane 2000; Gamon et al. 2006; Rivard et al. 2008) similar studies in TDF
environments have been slower in coming. Rather than work at the level of
discriminating among individual species, some studies have concentrated on
distinguishing between leaves of the two principle structural groups in
tropical canopies: trees and lianas (woody, self-supporting vines). This
distinction is important as the impact of lianas at the leaf level bears heavily
on the potential for automated species detection at the crown level and
coarser. Both Castro-Esau et al. (2004) and Kalacska et al. (2007a) evaluated
the spectral separability of these groups at sites in Panama. Both found that
trees and lianas could be distinguished accurately using data collected at a
dry forest site using a selection of supervised classifiers to process principle
component- and wavelet-transformed data. Using the same procedures at a

rainforest site, Castro-Esau et al. found they were less able to separate the

31



two structural groups. To explain this difference in separability between
trees and lianas in TDFs versus tropical rainforests, Sanchez-Azofeifa et al
(2009) proposed a liana syndrome, referring to a distinct set of plant traits
exhibited by liana species in dry forest environments. They suggest that
evolutionary adaptations made by liana species to contend with increased
water stress due to seasonal drought, such as delayed leaf loss at the end of
the rainy season (Kalacska et al. 2005a) and increased leaf water content
(Andrade et al. 2005; Schnitzer 2005), manifest spectrally as higher spectral
transmittance, lower absorbance, and overall increased reflectance. The
competitive advantage conferred by these adaptations in dry forests implies
the potential that increasing liana cover will be an ongoing consideration for

the automated evaluation of TDF biodiversity.

The basis for the differentiation between species or functional groups
is that leaf (or canopy) biochemistry is unique for a given species, resulting in
a chemical signature that may be used to identify that species, and that this
signature is expressed in that species’ spectral reflectance (Asner and Martin
2008a; Peterson et al. 1988). Though the studies mentioned here have
demonstrated strong correlations between taxonomy and leaf optical
properties, it is clear that understanding the scope of variation both in leaf
spectral properties and the biophysical traits that control them must be a
priority. Castro-Esau et al. (2006) found sufficient difference between

spectra of given species sampled at multiple sites in Costa Rica that accurate
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classification across sites was impossible. Martin et al. (2007) similarly found
strong environmentally-attributable variation in pigment and optical
characteristics among samples of M. polymorpha grown from seed sources
spanning a wide environmental (soil-altitude) gradient. Asner et al. (2009)
found in a study of 162 canopy species across a wide climatic gradient in
Australia that, though biophysical variables were strongly related to leaf
reflectance, variation in leaf chemical signatures varied far more in response
to taxonomy and species richness than to changes in climate. They did,
however, find the greatest chemical variation in lowland sites with moderate
precipitation levels, which echoes Townsend et al (2007), who found
maximal N:P variation according to rainfall in highly seasonal sites in Costa-

Rica.

The impact of this chemical and spectral variability is particularly
important in the TDF due to its strong seasonality and the accompanying
variation in leaf properties. Though the impact of leaf phenology has been
well noted (Kalacska et al. 2007a; Portillo-Quintero and Sanchez-Azofeifa
2010), spectral analysis has largely been limited to the tracking of NDVI (or
similar spectral indices) throughout the growing season using space-borne
sensors (Schwartz and Reed 1999; Zhang et al. 2003). The importance of
season on spectral response in the dry tropics have been demonstrated,
however, by Roberts et al (1998) who documented spectral changes

associated with leaf senescence in the Brazilian caatinga, and Hesketh and
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Sanchez-Azofeifa (2012), who found a tenfold decrease in classification
accuracy when applying a single nonparametric classifier across both rainy
and dry seasons. Underscoring the impact of seasonal and phenological
cycles on forest monitoring. This leaf level spectral variation has been found
to be exaggerated when scaled up to the level of the forest canopy (Zhang et

al. 2006).

2.6 Forest Structure and Successional Stage

TDFs have long been areas of intense human activity (Miles et al
2006), resulting in the high levels of deforestation and fragmentation driven
by fire, conversion for agriculture and habitation, and commercial logging
(Calvo-Alvarado et al. 2009; Colon and Lugo 2006). These forests in the
stages of recovery from human-induced disturbance are termed secondary
forests (Brown and Lugo 1990). Changes in the economic climate that drove
forest degradation in many areas of the dry tropics have resulted in a
increased rate of return of these forest on what was once cleared land (Calvo-
Alvarado et al. 2009). These secondary forests represent an important
element of the global capacity for carbon sequestration, but also a source of
potential error in the estimation of carbon budgets, as the capacity for carbon
uptake is dependent on forests’ species composition and the age of the
secondary growth (Brown and Lugo 1990; Foody et al. 1996; Uhl et al. 1988).

In response to increasing interest in these young forests and the role they
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play in ecological and economic models (Feldpausch et al. 2004; Koning et al.
2005), a need for remote sensing tools to asses the structure and

characteristics has been identified (Chambers et al. 2007).

The discrimination and mapping of forest structure in the tropics
shares some of the challenges associated with the mapping forest extents and
Total Above Ground Biomass (TAGB) addressed above, namely the
availability of quality, cloud free satellite imagery over the often-cloudy
tropics, and the site-specificity of the empirical relationships between stand
age and reflectance. Nonetheless, mapping of secondary forests and the
contained age classes or successional stages has been carried out with some
success in both the wet and dry tropics. Where remote sensing analysis in
the Brazilian Amazon using various data types and classification methods has
shown the potential for differentiating among primary and secondary forest
classes (Alves and Skole 1996) as well as successional stages (e.g. Kimes et al.
1999; Lucas et al. 2000), the increased variability in TDF sites has
complicated similar studies in the seasonally dry tropics (Kalacska et al

2005b).

The pronounced seasonality characteristic of TDFs presents an
additional challenge to discriminating between age classes in these forests
using optical data. As with studies mapping dry forest extent (Portillo-

Quintero and Sanchez-Azofeifa 2010), and discriminating between plant
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functional groups (Castro-Esau et al. 2004; Kalacska et al. 2007a), Arroyo-
Mora et al.(2005) used data from the dry or rainy-to-dry transitional seasons
to map dry forest succession in Costa Rica using Landsat ETM+. Their work
also addresses the issue of poor spectral correspondence with age-based
definitions of successional classes. Rather, they define forest successional
stages with respect to their structural elements (eg. stem density, basal area,
and the number of canopy layers). Comparing the separability of these
structural classes to that of stages based on time since abandonment (ca. 5-
10 yr, 19-22 yr, 22-30 yr, and primary growth) using cluster analysis and
pattern recognition techniques, they found that the structural classes were
consistently discernable while the age-based classes tended to overlap

considerably, precluding accurate classification.

Hartter et al. (2008) also used dry season data acquired from Landsat
for successful discrimination of TDF successional stages. Rather than age-
based definitions of secondary forest classes, they define early successional
classes as those with a woody basal area (BA) of < 15 m?ha! and mid-late
classes as those with a BA of > 30 m?ha-l. Landsat TM data was acquired over
two TDF sites in Mexico, and validated with BA surveys at 28 field plots. The
authors report an overall classification accuracy of 81% using a multi-stage
classification approach. First, the land cover was segmented into forest,
crops, and other categories using an SVI. Second, the forest class was further

divided into early and mid-late successional classes using the SVI data plus
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the first three principle components calculated from the Landsat TM data and
a texture layer (derived from the variance in spectral properties) as inputs.
Despite the high accuracy of the classification, the authors echo the sentiment
expressed in the previously-cited studies that consideration of the variability
imparted by changing phenology is an essential element of remote sending

analysis of TDFs.

Remote sensed analysis can also contribute to an improved
understanding of the ecological characteristics related to changing forest
successional stage. Using a 56 year chronosequence derived from
orthorectified aerial photography and Landsat ETM+ data acquired between
1944 and 2000 over Providencia Island, Columbia, Ruiz et al. (2005)
evaluated variability in species richness and diversity according to six age
classes ( <6, 6 - 10, 11 - 16, 17 - 31, 32 - 56, and >56 years since
abandonment) derived from the remote-sensed investigation. Through
comparison of diversity metrics (Shannon’s H, Simpson’s D) calculated from
field surveys carried out at plots located within the age classes identified
using the chronosequence, they found that while species density reached a
peak in the intermediate successional stages (32 - 56 years since
abandonment), the overall species richness increased linearly with stand age,
reaching a maximum in stands over 56 years old. While they acknowledge
the limitation of this method relative to traditional chronosequence

methodologies (interviews of residents, sometimes coupled with visual
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interpretation of air photos) in identifying exact stand ages, the authors note
the efficiency and effectiveness of the combination of Landsat data and
orthophotos in surveying and classifying a large geographic area, while
maintaining the benefit of the long (more than 50 years in this example) time

series available using archived aerial photographs.

Data outside the optical wavelengths has also been incorporated into
the analysis of forest structure and succession. In a TDF site in Yuccatan,
Mexico, Southworth (2004) explored the incorporation of the thermal
infrared data in Landsat TM band 6 to improve land cover classification,
including discrimination between early-mid and mid-late successional stages.
Using the relationship between surface temperature and successional stage,
they developed a series of hybrid optical/thermal indices that they found
allowed for a visually superior classification of primary and secondary
forests, though the addition of the thermal band did not statistically improve

the accuracy of the analysis.

An alternative with the potential to overcome some of the
shortcomings of optical data, namely the poor availability of cloud-free data,
saturation of vegetation indices, and confusion between forest classes
(Castro-Esau et al. 2003) is actively remote sensed data such as LiDAR (Light
Detection and Ranging). LiDAR measures the strength of the return of an

emitted signal to estimate the distance between the target and sensor (Lefsky
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et al. 2002). Waveform LiDAR, such as the LVIS (LiDAR Vegetation Imaging
System) measures multiple returns, providing not only canopy height but
also an estimation of the internal structure of the forest, providing a three-
dimensional picture of the canopy (Castillo-Nunez et al. 2011). Castillo et al.
(2012) used LVIS data to discriminate and map successional stages in Costa
Rica. Using an unsupervised classification of three return levels, they
generated a map of successional stages which corresponded well to a
“literature based” map extrapolated from the relationship between measured
canopy height in 20 field plots and the estimated canopy height from the
100% return level. Furthering this, they focused on the intermediate
successional stage identified by the classification and identified three classes
within this, better characterizing the areas of transition between the

early/intermediate and intermediate/late successional stages.

2.7 Conclusion

In 2003, noting a paucity of research in TDFs relative to temperate
wet tropical environments, Sanchez-Azofeifa et al. (2003) identified three
principle research priorities for remote sensing in TDF environments. First,
the application of remote sensing tools and spectral analysis to the
discrimination and characterization of secondary forest, citing the rapid
regrowth and biomass accumulation of TDFs following abandonment and

their then-unquantified potential as carbon sinks. Second, the
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characterization of forest biophysical parameters, particularly LAI, using
remotely sensed spectral proxies. Third, the development of hyperspectral
analysis techniques to characterize individual tree species based on their
spectral reflectance. Subsequent work has demonstrated progress in all
three of these research areas, but also highlighted new areas of importance in
the remote sensing of TDFs. Of particular importance is investigation into
the temporal and especially phenological characteristics of these forests.
TDFs are intensely seasonable by definition, and the studies cited here have
cited this source of variation as an obstacle to accurate spectral
characterization of land cover, biophysical characteristics, and forest
structure and composition. A second area of exploration is the integration of
multi-scale and multi-sensor data sources, taking advantages of overlapping
spatial, spectral, and temporal characteristics to better address the

challenges of remote analysis of TDFs.

The question of spectral variation in response to TDF phenology has
been shown to impact the characterization of all aspects of these forests by
optical remote sensing. Figure 2-1 summarizes the annual trajectory of NDVI
(as a proxy for LAI) and the related utility of spectral data for TDF research.
During the dry season, LAl (and accordingly NDVI) are low, and the overall
forest vertical structure less obscured by the leafy canopy. As such,
discrimination of TDF boundaries (e.g. Portillo-Quintero and Sanchez-

Azofeifa 2010) as well as structure and successional stage (e.g. Arroyo Mora
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et al. 2005; Hartter et al. 2008; Kalacska et al. 2005b) have been most
accurate during this phenophase. Conversely, LAI studies for forest biomass
estimation may best be conducted during the rainy season when consistent
NDVI values may be translated into more reliable biomass estimates. A
complication to this is the potential for spectral indices to reach an
asymptote or saturate in response to high LAI (Turner et al. 1999). Figure 2-
2 generalizes the potential for NDVI saturation as a function of stand age in
both tropical dry and wet forest environments. Due to more rapid growth
rates, tropical wet forest canopies reach sufficient LAI values to saturate the
index relatively early, where TDFs follow a slower successional trajectory,
resulting a larger temporal window within which NDVI remains sensitive to

variation in LAL
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Figure 2-2. Representation of the relative regeneration times of tropical wet forests (TWF)
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versus tropical dry forests (TDF) in terms of years since abandonment.
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Classification at the species and structural group level seem to be
optimally performed during different periods of the growing season. The
potential for discrimination between tree and liana species, as explored by
Castro-Esau et al. (2004) and Kalacska et al. (2007a) was highest during the
dry season, likely due to different adaptations to water stress among the two
structural groups, as proposed by Sanchez et al. (2009). While aircraft and
satellite sensors do not currently have the combination of high spatial and
spectral resolution required for species-level classification in the species-rich
tropics (Asner and Martin 2008a), studies conducted at the leaf level with
hyperspecral instruments have demonstrated high accuracies in
distinguishing between species at single sites within narrow temporal
windows. Issues of temporal variability become an obstacle when these
classifications are extended beyond the parameters of the original study, to
the extent that at this stage, the likelihood of automated classification of
species using a library of consistent spectral signatures seems low (Castro-
Esau et al 2006; Hesketh and Sanchez-Azofeifa 2012). It is clear that
virtually any remote sensed analysis of TDFs is subject to phenologically-
induced spectral variability, and that a clearer understanding of the nature

and scope of this variation must be one of the priorities of future work.

A second area with the potential to advance our understanding of
TDFs is the fusion of various data sources to provide a more detailed and

accurate estimation of TDF characteristics. While the use of optical data at
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multiple spatial resolutions is discussed here (e.g. Arroyo Mora et al. 2005),
the use of complementary data types has been under-explored in TDF
studies.  Synthetic aperture radar imagery has the benefit of cloud
penetration, with the potential to fill imagery gaps in low temporal resolution
that result from high cloud cover over tropical areas, particularly during the
wet season (Sanchez-Azofeifa et al. 2003). Radar data also provide
complementary information content to optical data. While data in the visible
and infrared spectral regions provide information on the chemical and
structural characteristics of vegetation, radar data can supplement this with
additional information on surface texture and dielectric properties, aiding in
particular the separation of vegetation from bare soil and the estimation of
moisture content (Held et al. 2003). Similarly, LiDAR data, which can provide
detailed information on forest canopy structure (Skowronski et al. 2007)
have shown to increase the accuracy of species classification when combined
with airborne hyperspectral data set over a temperate forest (Dalponte et al.

2008), though this fusion is as-yet untried in the TDF.

A challenge to the application of these data fusions lies in the lack of
infrastructure for the organization and integration of the various spectral
and ecological data and metadata used in the analysis of forest characteristics
and processes (Quesada et al. 2009). The establishment of this infrastructure
has the potential to provide researchers with the opportunity to work at

nested spatial, spectral and temporal scales. For example, fPAR data can be
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collected in near real-time by ground based sensor networks, linked to time-
stamped daily phenological data from nearby sensor stations, which can be
further linked via GPS coordinates to air- and satellite-borne remote sensed
products. This coupling of field data and remote sensed imagery both
validates remote sensed products but addresses directly the temporal

dynamics of TDF ecosystems (Gamon et al. 2006).

Remote sensing analyses have become a critical component of
ecological research (Kerr and Ostrovsky 2003), particularly in the
assessment of remote regions and the exploration of patterns at various
spatial and temporal scales. Continued research and development,
particularly in the area of temporal and phenological variability, will be
crucial in better understanding TDFs and providing linkages between forest
biophysical and structural characteristics and the environmental factors that

govern them.
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Chapter 3: The effect of seasonal spectral variation on species
classification in the Panamanian tropical forestt

3.1 Introduction

Remote sensed analysis of tropical forest environments has until
recently been conducted along two separate lines: The first encompasses
moderate-to-coarse resolution, multi-spectral analysis of forest cover,
addressing natural and anthropogenic change or disturbance (Coppin and
Bauer 1996), and its properties (ex. forest phenology (Huemmrich et al
1999; Xiao et al. 2005; Zhang et al. 2003), composition (Castro-Esau et al.
2003), and landcover classification (Adams et al. 1995)). The second relies
on leaf-and canopy-level, high spectral resolution data to investigate the
relationships between optical characteristics and physiological (Sims and
Gamon 2002), biochemical (Asner 1998), and structural variables (Sanchez-
Azofeifa et al. 2009). One of the promises of the increasing quality and
availability of hyperspectral data and accompanying advances in analytical
techniques is the potential for investigation not just of species richness and
variation, but also of the interrelated biochemical and physiological
processes which impact canopy function and productivity at spatial scales

which bridge these two lines of inquiry (Asner 2008).

" A version of this chapter has been published. Hesketh, M., & Sanchez-Azofeifa,
G.A. (2012). The effect of seasonal spectral variation on species classification in
the Panamanian tropical forest. Remote Sensing of Environment, 118, 73-82.
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Classification of plant species at the leaf level has been most commonly
attempted using direct spectral-taxonomic relationships (Cochrane 2000).
Variations of this concept have been applied in boreal (Fuentes et al. 2001)
and chaparral (Ustin et al 2004) environments, though the increased
complexity and variability of tropical systems suggests some need for caution
in their application. An approach has been put forth to aid in species-level
mapping of tropical forest environments coupling hyperspectral reflectance
measurements with chemical signatures developed using the relationship

between leaf traits and species (Asner and Martin 2008).

High-resolution leaf spectral reflectance has the potential to allow for
estimation of leaf traits (Gamon et al. 2005; Gamon and Surfus 1999; Sims
and Gamon 2002) as well as for discrimination of structural groups (Castro-
Esau et al. 2004; Kalacska et al. 2007) and species type (Clark et al. 2005;
Zhang et al. 2003). The fundamental prerequisite to identification of tree and
liana species from leaf reflectance data is that spectral variation within
species is lower than the variation between species. That this condition can
be met has been demonstrated by the above studies, but typically with
classification restricted to a single site, and using a dataset collected within a

narrow temporal window (Asner and Martin 2008; Cochrane 2000).
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While exploration of temporal variation in leaf traits across plant
genera and families in the tropics has been minimal (Asner et al. 2009),
Roberts et al. (1997) have addressed leaf reflectance as a function of leaf age,
and Schwartz and Reed (1999), and Zhang et al. (2003) have all used leaf
optics to track forest phenology. Investigating spectral variation within
species, Castro-Esau et al. (2006) found sufficient difference in the optical
properties of species sampled across multiple sites that accurate automated
classification was impossible. Conversely, Asner et al. (2009) found in a study
of 162 canopy species across a wide climatic gradient in Australia that,
although biophysical variables were strongly related to leaf reflectance,
variation in leaf chemical signatures varied far more in response to taxonomy
and species richness than to changes in climate. They did, however, find the
greatest chemical variation in lowland sites with warm temperatures and
moderate precipitation levels, which echoes Townsend et al. (2007), who
found maximal N:P variation according to rainfall in highly seasonal sites in
Costa-Rica. Martin et al. (2007) found strong genetically-attributable
variation in pigment and optical characteristics among samples of M.
polymorpha grown from seed sources collected from a wide environmental
(soil type and altitude) gradient. Most recently, Sanchez-Azofeifa et al.
(2009) evaluated variation in optical and biophysical leaf traits between
structural groups (trees and lianas) and forest types (wet and dry tropical
forests) at two sites in Panama. Their results indicate significant differences

in pigment content, leaf thickness, and specific leaf area, dry-to-fresh mass
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ratio, and leaf water content between trees and lianas collected at a dry
forest site, but not at a rainforest site. This validates earlier work by Castro-

Esau et al. (2004) and Kalacska et al. (2007).

While research up to the present has addressed leaf properties (Asner
1998) and variability between environmental (Asner et al. 2009; Sanchez-
Azofeifa et al. 2009) and structural groups (Castro-Esau et al. 2004; Kalacska
et al. 2007), the question of temporal variation in leaf traits has been largely
unexplored at the leaf scale. It is clear from previous research (Castro-Esau
et al. 2004; Kalacska et al. 2007) that interseasonal spectral variation is a
major limiter to our ability to accurately classify forest species in an
unsupervised or automated setting, and that a better understanding of the
nature and extent of this variation will be critical in the refinement of existing
classification techniques and the development of new ones. Our objective,
therefore, is to evaluate the nature and extent of seasonal spectral variation
at both wet and dry tropical forest sites. Specifically, we test whether the
clustering of data from the same site yields similar patterns during the wet
and dry seasons, then address the effect that seasonal spectral variation has

on the accuracy of unsupervised classification of these data.
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3.2 Methods

3.2.1 Site Description

Data for this study were collected at two sites in Panama, taking
advantage of canopy cranes operated by the Smithsonian Tropical Research
Institute (STRI) to obtain access to the top of the forest canopy. The first site,
Parque Natural Metropolitano (PNM) is located just outside of Panama City.
The crane has a height of 42 m with a boom radius of 51 m. Annual rainfall
averages approximately 1800 mm, more than 90% of which falls between
May and December (Gamon et al. 2005). Liana species represent a sizable
proportion of canopy species at the park. Avalos and Mulky (1999)
estimated that contributions made by lianas to the canopy area surveyed by
the crane were variable between 14.0% during the dry season and 30.9%
during the rainy season. The full complement of canopy species considered

in this study is detailed in Table 3-1.

A second STRI crane is located in the rain forest at Fort Sherman (FS),
along the Caribbean coast near Coldn. Annual rainfall at this site is
approximately 3300 mm. The crane is 56 m high with a boom radius of 54 m
(Castro-Esau et al. 2004). While liana species are important contributors to

biodiversity at FS as well, it is to a lesser extent than at PNM (Table 3-1).
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Fort Sherman (rainforest) Parque Natural Metroploitano

Species Code Species Code
Doliocarpus multiflorus L27 Aristolochia maxima L1
Arrabidaea verrucosa L28 Stizophyllum riparium L2
Pleonotoma variabilis L29 Serjania atrolineata L3

Odontadenia punticulosa  L30 Stigmaphyllon hypergyreum L4

Dioclea wilsonii L31 Gouania lupuloides L5
Forsteronia myriantha L32 Mikania leiostachya L6
Tontelea ovalifolia L33 Bonamia trichantha L7
Maripa panamensis L34 Jacquemontia sp. L8
Pouteria reticulate L41 FPassiflora vitifolia L9
Lonchocarpus longifolium T11 Doliocarpus major L11
Carapa guianensis T12 Prionostema aspera L12
Matayba apetala T14 Doliocarpus dentatus L13
Cordia bicolor T17 Amphilophium paniculatum L14
Manilkara bidentata T19 Pithecoctenium crucigerum L15
Aspidosperma cruenta T21 Trichostigma octandrum L16
Brosimum utile T23 Hiraea reclinata L17
Ficus nymphaeifolia T25 Forsteronia spicata L18
Arrabidaea patellifera L19
Hippocratea volubilis L21
Serjania mexicana L22

Phryganocydia corymbosa  L23

Tetracera portobellensis L24
Anacardium excelsum T1
Luehea seemannii T2
Astronium graveolens T3
Cordia alliodora T4
Annona spraguei T5
Castilla elastica T6
Ficus insipida T9
Chrysophyllum cainito T10

Table 3-1. Species included in study. Codes beginning with L indicate liana species while
those beginning with T indicate Tree Species
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3.2.2 Data Collection and Analysis

Leaf spectral data were collected twice at each site: once during the
peak of the rainy season (May 2005), and once at the beginning of the dry
season (March 2007), but before complete leaf loss. A total of 17 species
were analyzed at FS, and 30 at PNM, with collection and sampling protocols
according to Kalacsca et al (2007) and Castro-Esau et al. (2006; 2004;
Sanchez-Azofeifa et al. 2009). Leaves were collected from the top of the
canopy (all sun-leaves) and selected such that galls and visible epiphytes
were avoided. Spectral data were collected using the ASD FieldspecFR
spectrometer using the ASD Leaf Clip device (Analytical Spectral Devices,
Boulder CO). The spectral range of the instrument is 350-2500 nm with a 3
nm resolution from 350-1000 nm and 10 nm from 1000-2500 nm. All data
was resampled to 1 nm resolution in post-process. Typically, 10 leaves per
species were collected with three spectra per leaf measured per sample. A
third data set, collected using the same protocols, was gathered during
during a rainy transitional period (February 2011). These data, as well as
those from 2007 (our dry season data), also include leaf area and wet/dry

weight measures for calculation of specific leaf area (SLA).

Principal components analysis (PCA) was applied to the hyperspectral
signatures to reduce the dimensionality and redundancy inherent in these

data (Schowengerdt 1996). PCA reduces the data to a set of orthogonal
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eigenvectors, which maximize variation and greatly reduce autocorrelation
(Kalacska et al 2007). The first 4 components in each resulting
transformation were retained such that >97% of the expressed variation in
the raw data was represented. Because leaf chemical and biophysical
characteristics were not available, spectral vegetation indices (SVIs) were
calculated from each input spectra to complement the PCA decompositions
and stand as proxy for these biophysical variables. Merzylak et al’s (1999)
plant senescence reflectance index (PSRI) increases proportionate to the
caratenoid/chlorophyll molar ratio, and serves in comparison of the balance
of these key pigments across seasons (Equation 1). Penuelas et al’s (1993)

water index (WI) stands as proxy for direct leaf water content (Equation 2).

(R678 — Rsoo)

750

[1] PSRI=

R
(2] WI=-
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Figure 3-1. General workflow of analysis showing the progress
of Dataset 1 through hierarchical clustering and dendrogram
analysis, and Dataset 2 through unsupervised classification.

Two resulting spectral datasets were used in subsequent analyses. The
first contained leaf spectra, averaged to the species level. The second
contained the retained principle components as well as the two SVIs, this
time at the level of the individual sample. Each dataset was repeated for each
season (dry and rainy) at each site (FS/wet and PNM/dry). The flow diagram
in Figure 3-1 outlines the paths these two datasets take through the

subsequent analyses.

Seasonal variation was tested using a set of two classification
procedures to separately evaluate both the structure of data classified during

different seasons, and the effect of cross-season classification on the overall
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accuracy. First, to visualize the effects of seasonal spectral variation, the raw
spectral data was classified using an agglomerative hierarchical clustering
algorithm implemented in Matlab (V. 7.8, The Mathworks 2009). The
resulting dendrograms not only illustrate the impact of seasonality on
species-level clustering, but allow evaluation of the difference between
clustering of spectral data collected during opposing seasons, directly
addressing a fundamental requirement for automated species identification:
that each species’ spectral “fingerprint” is insensitive to seasonal variation.
To address the impact of the mixing of the two principle plant structural
groups (trees and lianas), data were clustered first with trees and lianas

mixed, and again with trees and lianas considered separately.

Evaluation of seasonal variation in the structure of the dendrograms
was by comparison of the bifurcation ratio (Rp). This ratio was established
by Horton (1932, 1935) to describe the branching pattern of drainage
networks as they progressed toward a confluence, and is used here to
quantify the structure of the dendrograms in a way that can be compared
across seasons. Ry, has been used to quantify not only the complexity of river
systems, but also variation in the branching of vegetative shoots as a means
of evaluating genotypic plasticity (Oohata and Shidei 1971; Whitney 1976).
To calculate, branches are ordered according to Strahler’s streambed

organization of the tributaries of a trunk stream channel (Strahler 1952).
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The value for Rpat a given order p is the ratio of the number of branches at
that order (N) to the number at the next order higher (Equation 3) and is
proportionate to the complexity of the network. This ratio may also be
averaged across all orders for a general measure of dendrogram complexity

(Figure 3-2)

As well as variation in the branching structure of the dendrograms
generated from the clustering procedure, changes in the species composition
of each cluster were evaluated. Each species’ nearest neighbors were
compared for each season and each site, and the consistency between
seasons was calculated as the percentage of species with the same nearest
neighbors in each season. This metric of consistency quantifies the tendency
for spectrally similar species to cluster together at the lowest level of the
dendrograms. If reflectance is similar between seasons, the same species will
be found clustered together resulting in a high level of consistency. Greater
seasonal spectral variation will result in lower consistency between

dendrograms generated for different seasons at a given site.

70



Ry =N /' N
M) M p+1 .
R, a network complexity

u Rbw)

o] Z]
N

3.75

Figure 3-2. Diagrammatic explanation of Horton’s
Bifurcation Ratio (Ry). a. Demonstration of the scaling of
Ry relative to drainage network complexity. b.
Representation of Ry in the context of the dendrogram
analysis used in this study.

Second, to quantify the impact of seasonal variation on classification
accuracy, we adapted the method of Kalacska et al. (2007). As inputs, we
used the four retained principal components and the 2 SVIs, aggregated to
the sample level. For the classifier, we chose the non-parametric decision
tree classifier See5 (Rulequest Reseach 2008). See5’s cross-validation
function, which allows for a quick and direct evaluation of the overall
accuracy of within- and between-season classification, was used to evaluate

the effect of interseasonal spectral variation on overall classification
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accuracy. The classifier was applied twice to the data from each site: First,
the dataset from each season was split in half, with one half used to train the
classifier and the other half used to test its accuracy. Second, to test the
impact of seasonal variation on the accuracy of the classifier, the entire
dataset from the wet season will be used as the training set, then tested on
the entire dry season dataset, and vice versa. Classification accuracy was

calculated as the percentage of data in the testing set classified correctly.

3.3 Results

3.3.1 Interseasonal differences in spectral reflectance

The average spectral signatures of all species included in the
investigation are shown in Figure 3-3a and 3-3b for the wet and dry seasons,
respectively. Spectral features in the visible region (400 - 700 nm) are
reflective of leaf chemistry and pigment content, specifically chlorophyll
content, which results in strong absorption features both above and below
the 550 nm green peak (Boyer et al. 1988). Features in the near-infrared
(700 - 1100 nm) range most related to leaf structure (Woolley 1971), with
weak water absorption features at ~1000 and 1200 nm (Gao and Goetz

1995). Reflectance in the shortwave region (1500 - 2400 nm) region is
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controlled largely by water absorption (Gates et al. 1965). Where Figures 3-
3a and b demonstrate spectral variability among the species examined,
Figure 3-3c details the seasonal difference in reflectance at each wavelength
for each of the species tested. There is a difference here in the regions of
greatest seasonal spectral variation between the wet and dry forest sites. At
FS, the greatest spectral variation is found along the red edge (~720 nm).
This spectral range is important in this study as we employ SVIs as proxy for
measured leaf biophysical properties, and this region is sensitive to leaf
chlorophyll content (Curran et al. 1990). At PNV, difference in this spectral
region was muted in comparison to the short wave infrared region (1350-
2300 nm), which is governed largely by water absorption. This general
pattern in the seasonal variation is found in both tree and liana species at

both sites.

3.3.2 Variation in classification structure

Dendrograms resulting from hierarchical clustering of the full range
spectra from both sites show marked variation between wet and dry seasons
(Figure 3-4a-d). The values for Horton'’s bifurcation ratio (Rp) at both sites
and seasons are presented in Table 3-2. While the mean Ry (calculated
across all orders of p) shows some variation between wet and dry seasons at

each site (0.12 and 0.19 difference at FS and PNM respectively), these
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differences are muted in comparison to the differences found at each level of
w. Difference in Ry, between wet and dry seasons at the level of each order (i)
range between R, 0.2 and 1.0, with the exception of the value for u=2 at FS

site of Ry 2.2 (3-2).

a. Wet Season b. Dry Season c. Difference

FS

550 750 950 1150 1350 1550 1750 1950 2150 550 750 950 1150 1350 1550 1750 1950 2150 550 750 950 1150 1350 1550 1750 1950 2150

=T

PNM

550 750 950 1150 1350 1550 1750 1950 2150 550 750 950 1150 1350 1550 1750 1950 2150 550 750 950 1150 1350 1550 1750 1950 2150

Figure 3-3. Reflectance by wavelength of liana and tree species at both forest sites. a. Wet
season; b. Dry season; c. Absolute difference between wet and dry reflectance. Species
labels correspond to the codes in Table 1.

Seasonal variation in the organization of species within the
dendrogram, as demonstrated in Figure 3-4, was also noted at both study
sites. Similar groupings are uncommon at both sites, with consistency found
to be lower at PNM, with a value of 6.7%, than at FS, where just under one

quarter of species shared at least one neighbor between seasons.
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Figure 3-4. Dendrograms resulting from hierarchical clustering of Dataset 1: All species (a.
FS Wet, b. FS Dry, c. PNM Wet, d. PNM Dry); Lianas only (d. FS Wet, e. FS Dry, f. PNM Wet, g.
PNM Dry).

While differences in Ry are found at all levels of p (including the overall
mean) at both sites when the entire datasets (all tree and liana species) are
included, these differences are greatly muted when only the liana species

were considered. Tree species were not considered independently as the
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number of species in this group did not provide an adequate sample. The
resulting dendrograms are presented in Figure 3-4e-h. Interseasonal
variation in R, was found only in the data from PNM, while the smaller FS
sample showed no measurable difference between dendrograms calculated
for the wet and dry seasons (Table 3-3). The absolute difference in Ry
between seasons also shows a relationship to the sample size taxonomic
complexity of the data being processed. The liana group from FS showed no
difference in Ry between seasons (Table 3-3), indicating that there may be a
sample size threshold below which Ry, comparisons are not a realistic method
of analysis. The consistency of species composition at the lowest
dendrogram level was also lower at PNM than FS, though these results are
not substantially altered from those found when all species were considered

together, with lianas at PNM having a consistency of 4.6% and trees a

consistency of 22.2%.

Rp
H Wet Dry Difference
season season
1 1.43 1.58 0.15
2 3.5 2.72 0.78
PNM 3 6 7 1
mean 3.64 3.76 0.12
1 1.89 1.42 0.47
2 1.8 4 2.2
FS 3 c
mean 2.9 2.71 0.19

Table 3-2. Bifurcation ratios - complete species set considered
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Rp
H Wet Dry Difference
season season
1 1.83 1.47 0.36
2 2 3.75 1.75
PNM 3 3 4 1
mean 2.61 3.07 0.46
1 1.5 1.5 0
2 6 6 0
FS 3
mean 3.75 3.75 0

Table 3-3. Bifurcation ratios - only liana species considered

3.3.3 Effect of seasonality on classification accuracy

Figures 3-5 and 3-6 explore the spectral vegetation indices used in the
See5 classification, separating by functional group (lianas and trees) as well

as by site and season.

Higher plant senescence reflectance index (PSRI) values were observed
at the dry forest site and lower values at the rainforest site (Figure 3-5). The
effect of seasonality on this index seems to be inverted at the two sites,
however, with the dry season having generally higher PSRI values than the
wet season at PNM and the reverse at FS, with the exception of tree species at
FS. This seems to echo the influence of moisture-induced senescence on
spectral response shown in Figure 3-3. Differences among PSRI values

(Evaluated using Student’s t-test) tended to be significant between sites
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(Table 3-4) but not between seasons at a single site. Water index (WI) values
are unsurprising at the structural group level, though the variation in water
content between trees and lianas masks the effect of seasonality at each
when all species are taken together (Figure 3-6). Values here showed little

trend toward significant difference between sites or seasons (Table 3-4).
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Figure 3-5. PSRI compared between seasons and structural groups. Outliers are
represented by crosses.

78



FS WET

FS DRY

PNM WET

PNM DRY

FS L WET

FS L DRY

PNM L WET

PNM L DRY

FS T WET

FS T DRY

PNM T WET

PNM T DRY

FS DRY

PNM WET

©
vl

N
o

0.023

0.850t

Ne)
o

0.051*

0.011

o
—_

o°)
S

e°)
N

W
O

PNM DRY

FSL WET

FS L DRY

PNM L WET

PNM L DRY

FST WET

FST DRY

PNM T WET

PNM T DRY

Table 3-4. Significance values for differences between sites and seasons for the two SVIs used as inputs to classification. Stronly significand (p<0.05)
differences in bold. Weakly significant (p<0.10) differences indicated with *. Cases where t-test assumptions were not met and Mann-Whitney used in

place indicated with T.




Figure 3-7 shows the impact of seasonal variation in spectral properties on
species level classification accuracy. Using the PCA transformed data PSRI,
and WI, accuracy was evaluated as the percentage of correct classification,
splitting the data 50/50 for training and testing. In all cases, accuracy was
dramatically higher where the classification was tested using a classifier
trained on data collected during the same season as the test data. The
rainforest site (FS) showed accuracy of 80.4-83.5% when training and testing
data were from the same season, but dropped to 8.6-10.9% when opposing
seasons were evaluated. This decrease was more pronounced at the dry
forest (PNM) site, where within-season accuracy was between 80.7 and
83.0%, but between-season accuracy fell by more than a factor of 10, to 4.6-

7.7%.
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Figure 3-6. WI compared between seasons and structural groups
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Classifying each structural group separately yielded similar
results, though the smaller input datasets returned slightly higher accuracies
in almost all cases. Considering only lianas, the classifier returned average
accuracies of 84.2% for within-season classification at FS, and 19.3% for
between-season classification, with results of 85.5% and 11.6% for within-
and between-season classification at PNM. Accuracy for trees only was
higher still, with average accuracies of 89.5% and 16.3% for within- and

between-season classification at FS and 91.2% and 16.6% at PNM.

100 BAll Species UOLianas BTrees
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(Dry) (Wet) (Dry) (Wet)

Figure 3-7. See5 classification accuracy for both wet (FS) and dry (PNM) sites, expressed as
percentage. Where training and testing data are taken from the same season, only that
season is labeled. Where training and testing data are from opposing seasons, the label
reflects training and testing seasons as: train (test).
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3.3.4 Specific Leaf Area

While no biophysical data were collected along with our wet season
(2005) spectral data, we were able to compare specific leaf area (SLA) data
from the dry season with unpublished data from the same sites collected
during a rainy period during the wet-dry transition in February 2011. SLA is
relevant, as it has been shown to be an important predictor of other traits in
the leaf economics spectrum (Wright et al. 2004) as well as a linkage
between chemical and spectral signatures (Asner et al. 2009). A paired t-test
comparing SLA between these growing periods showed a strongly significant

difference (P < 0.001).

3.4 Discussion

Throughout this investigation, we found consistent evidence that leaf
spectral properties vary between seasons to a sufficient extent that the
results of spectral clustering for wet and dry seasons were measurably
dissimilar and classification accuracy was dramatically affected.
Methodologies using only spectral data for the classification of species and
assessment of biodiversity are still a subject of exploration and development
and this evidence of the impact of seasonality on leaf spectral response

suggests that an understanding of the spectro-temporal domain is an
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essential step in their refinement.

3.4.1 Variation of leaf spectral reflectance with season

Variation in leaf spectra between seasons indicates a fundamental
difference in plant function between wet and dry forest environments, also
noted in Sdnchez-Azofeifa et al. (2009). Rather than the actual reflectance or
spectral signature of a given species, we are concerned with the extent and
location of the greatest variation in the signature between seasons. At FS,
our wet forest site, this variation was most pronounced along the red edge,
between 550 and 750 nm. This spectral region encompasses the
wavelengths typically used in the estimation of chlorophyll (Gates et al,
1965, Boyer et al, 1988), indicating that the primary driver to spectral
variation in this ecosystem is likely variation in the relative abundances of
leaf pigments. Conversely, the dry site PNM showed substantially less
variation in this spectral region, with the greatest sources of variation found
at longer wavelengths in the near- and shortwave-infrared regions, where
reflectance is governed largely by absorbance by water. This is perhaps
unsurprising in a drier forest environment where species are particularly
sensitive to moisture variation (Murphy and Lugo 1986), but it indicates that
spectral variation cannot be simply tied to a common source, and should be

considered in the context of local-scale ecology.
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While our results are based strictly on spectral data, the inclusion of
two spectral indices is intended to impart a component to the classification
procedure that has a more direct ecological interpretation. Of the two indices
used, PSRI values more clearly indicate a relationship between seasonality
and leaf spectral response. The inversion in response to seasonality at the
two sites indicates a fundamental difference in the composition and
functional ecologies of wet vs. dry forest environments. Notably, the
seasonally dry site at PNM carries a much higher liana load than does the wet
site at FS (73% vs. 53% of species accessible by the crane in our sample).
Schnitzer (2005) suggests that the evolution of a more efficient vascular
system and deeper root network impart a competitive advantage to liana
species in dry environments that they don’t enjoy in wetter ecosystems
where water stress is less prevalent. The implication for classification is that
their drought adaptation allows lianas to respond differently to seasonality in
precipitation than trees, with later leaf loss following the onset of the dry
season (Kalacska et al. 2005), and generally higher leaf water content
(Andrade et al. 2005; Schnitzer 2005). Sanchez-Azofeifa et al (2009)
propose a liana syndrome, referring to a distinct set of plant traits exhibited
by liana species in dry forest environments. They found that the drought
adaptations noted by Schnitzer (2005) and Andrade et al. (2005) manifest in
lianas as higher spectral reflectance, higher transmittance, and lower
absorbance, producing reduced heat load, leaf-to-air vapor pressure

difference and potential for water stress. These traits are revealed in dry
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forest environments, where they confer an advantage to lianas relative to the
surrounding tree species (Sanchez-Azofeifa et al. 2009). More efficient
resource allocation in these drier environments results in lower
susceptibility to drought and a longer growing season than the surrounding
trees. This has led to a general increase in liana load in tropical dry forests
(Schnitzer et al. 2011). As well as registering at the leaf level, this syndrome
potentially affects remote monitoring of forest phenology where a positive
shift in the liana/tree ratio causes an apparent increase in greenness during
the onset of the dry season. This variation is reflected in the estimated leaf
water content (from spectral water index values) when the two structural
groups are considered independently, though it is masked when the groups

are merged.

3.4.2 Classification Structure

Our results indicate that the variation imposed by seasonality on leaf
optical properties is more than sufficient to affect the results of clustering
and classification processes applied to the spectral data. Dendrograms
resulting from agglomerative clustering of the full spectral dataset (Figure 3-
4) were analyzed for variation between seasons in both the composition of
the clusters produced and the branching structure of the dendrograms

themselves.
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If seasonality were unimportant, the same type of spectral data,
clustered in the same manner, would yield clusters where the same species
were found in close association to each other in both seasons. Our results
indicate that this is seldom the case, with consistency between the seasons
not exceeding 25%, and as results as low as 6.6 % at the dry forest site. That
consistency should be lower at the drier of our study sites is generally
consistent with Asner et al. (2009), who found stronger associations between
biological and spectral properties in wetter, cooler forest environments.
There is, however, some inconsistency in the literature on this count. Both
Castro-Esau et al. (2004) and Kalacska et al. (2007) found that classification
at a structural group level (separating tree and liana species) was more
accurate in dry forest environments. It's possible that this seeming
contradiction is a function of the level of analysis (structural group vs.
species) related to differing adaptive strategies of lianas and trees. In Castro-
Esau et al (2004) lianas were found to have lower overall chlorophyll
concentration which, when coupled with and offset phenological cycle and a
greater tendency towards deciduousness (Avalos and Mulkey, 1999), may
help explain why lianas were more easily distinguished from trees during the
dry season. This ecophysiological distinction between liana and tree species

in tropical dry forest has since been expanded upon by Sanchez et al. (2009).
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The changes imposed on clustering results imposed by seasonal
spectral variation were addressed in this paper using Horton’s bifurcation
ratio (Strahler 1957). This approach allows for comparison of both the
internal and overall structural variability of the dendrograms generated by
the clustering process with time as the independent variable. In comparing
Ry between seasons at our two sites, we find that not only are the final
clusters affected by interseasonal variation (wet vs. dry), but also the internal
structure of the dendrograms. The absolute difference in Ry, between seasons
also shows a relationship to the sample size and taxonomic complexity of the
data being processed. While differences in Ry are found at all levels of p
(including the overall mean) at both sites when the entire datasets (all tree
and liana species) are included, these differences are greatly muted when

only the liana species were considered.

3.4.3 Effects of Seasonality on Classification Accuracy

Classification was successful at each site, with accuracies ranging from
80.43% to 93.48%, provided that both training and testing data were drawn
from the same season. This is consistent with the accuracies reported by
Clark et al. (2005), with an accuracy of 92.0% in classifying a set of 7 tree
species in Costa Rica, and Castro et al (2006), who reported accuracy of

better than 80% at each of six sites in Costa Rica, Panama, and Mexico.
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Certainly sample size has an influence on overall accuracy. Castro et al
(2006) report a decreasing trend in classification test accuracy from
approximately 85% for 20 species, projecting a linear decrease to 69% with
100 species, with accuracy eroding beyond that. Our results show a similar
relationship between sample size and accuracy, though our sample size is
smaller overall and the decrease in sample size when structural groups are
considered separately is accompanied by a decreased taxonomic complexity,
which may also influence the accuracy of the classification. Our highest
classification accuracies, both within-season and between-season, are found
where the sample size is smallest. Where only trees are considered,
dropping the overall sample to 8 species at both sites, we achieve an average
within season accuracy of approximately 90%, in line with Clark et al. (2005).
Where the sample is largest, accuracy drops to values similar to Castro et al.
(2006), with an average of 82% found for a sample of 30 species of mixed

trees and lianas.

Recent work has made it clear both that liana species differ at the leaf
trait level from tree species (Castro et al. 04, 06, Kalakska et al. 07)) and that
lianas exhibit a different set of traits and adaptations that seem to be tied to
the local environment and are manifest both physiologically and spectrally
(Sanchez-Azofeifa et al. 2009). In the context of this study, this implies that
not only an understanding of within-species interseasonal variation, but the

effect of environment (particularly the contrast between rainforest and dry
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tropical forests) are essential for the implementation of accurate automated
classification on a broad scale. This issue is exacerbated by what appears to
be increases in overall liana abundance in American tropical forests

(Schnitzer and Bongers 2011).

The unique characteristics of lianas suggest a need for caution in the
process of scaling the results of leaf level spectral analyses to the canopy and
landscape scales. Sanchez-Azofeifa and Castro (2006) noted two impacts of
increased liana abundance at the canopy scale: First, that overall reflectance
near the green peak (550 nm) was higher in canopies with higher levels of
liana infestation and; Second, that liana infestation reduced the difference in
spectral reflectance between tree species. They note in particular the
difficulty that this implies for the potential use of SVIs in differentiating tree
species. This complication may be added to the issue of seasonal spectral
variation addressed in this paper. Not only are the leaf-level spectra of trees
and lianas highly variable between wet and dry seasons, but these two
structural groups respond to seasonality differently in changing
environments and further variability in liana infestation can obscure spectral

characteristics at the canopy (and coarser) scales.
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3.5 Conclusions and Directions for Expansion

Our results confirm that inter-seasonal variation in leaf optical
properties is measurable and sufficient to preclude automated classification
of species at the leaf level using a “database” approach. Analysis of
dendrograms derived from an agglomerative clustering of full-range spectra
show strong differences in the arrangement of species when spectral data is
collected in the wet versus the dry season, and that neither clustering seems
to follow any pattern consistent with species taxonomy or structural group.
Further, even using the moderate sample size of the current study, we found
differences in the internal structure of the dendrograms, quantified by
comparison of Horton’s bifurcation ratio. The effect that these seasonal
differences in spectral properties has on the potential for automated species
classification is reflected in the dramatic decrease in accuracy found when
comparing within- and between-season classification accuracy using a non-
parametric classifier. Our results here indicate a general ten-fold decrease in
overall accuracy when a classifier trained using data from the wet season is
applied to data from the dry season, or vice versa. This result reinforces
previous work, which found a strong influence of environment on

classification accuracy (Castro-Esau et al. 2004; Kalacska et al. 2007).
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We recognize, however, that our results here are based on analysis of
purely optical data, with spectral indices standing in for measured
biochemical data. The promising results of Asner and Martin (2008) and
Asner et al. (2009) build on relationships between leaf optical properties and
leaf chemistry, but exploration of the strength and consistency of these
relationships across temporal and geographic gradients must be a priority of
research to come. Our findings using purely spectral data point to the value
of further study, expanding the seasonal data collection to include a
biochemical survey of the leaves collected to complement the spectral
analysis. Such an expanded analysis would allow for the exploration of not
just the extent of seasonal spectral variation, but also the sources and drivers

to this change.
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Chapter 4: Successional variation in spectral and biophysical leaf traits
in two Latin American tropical dry forests.

4.1 Introduction

Leaves play an important role in moderating the thermal, light, and
moisture environment within the forest canopy (Fernandes et al 2003;
Fournier et al. 2003; Gamon et al. 2005b). Structural and biochemical traits,
which are indicators of leaf function, tend to vary in coordinated ways,
reflecting differences among and between species, as well as the influence of
environmental conditions (Martin et al. 2007). Further, this covariance has
been shown to describe general patterns in leaf resources allocation and

longevity (Osnas et al. 2013; Wright et al. 2004a)

Relationships between these biophysical traits and leaf spectral
properties (Asner 1998; Gates et al. 1965; Woolley 1971) allow for the use of
remotely sensed data to aid in forest characterization in situations where
field-based assays may be unfeasible for reasons of economics or logistics
(Kalacska et al. 2005). High-resolution spectroscopy has been used to
explore the relationship between leaf reflectance and photosynthetic
capacity (Gamon et al. 2005a), plant functional traits (Alvarez-Afiorve et al
2012), and leaf chemistry (Asner et al. 2011; Doughty et al. 2011). The
increasing availability of higher spatial and spectral resolution data have

provided opportunities to apply these relationships between leaf physical
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and spectral characteristics to the assessment and modeling of species
diversity and composition at both leaf and canopy scales (Asner and Martin

2008; Clark et al. 2005).

Because foliage adapt to changing environmental conditions such as
variability in illumination, moisture availability, and soil properties (Welles
1990); leaf traits and spectral properties can be expected to vary across
geographic and temporal gradients. In tropical forests, characterized by high
species diversity and endemism, the extent and nature of variation in leaf
physical and chemical traits are still poorly understood (Asner et al. 2009).
Townsend et al. (2007) found a pattern of N:P variation associated with
precipitation rates at highly seasonal sites in Costa Rica. Martin et al (Martin
et al. 2007) explored patterns in pigment and optical properties of
greenhouse-grown M. Polymorpha grown from seed sources spanning a wide
variety of soil types and elevations. Variation in chemical and spectral
characteristics of 162 canopy species in Australia was investigated by Asner
et al. (2009), who point to strong taxonomic controls on leaf chemical
signatures. While they suggest that taxonomy may be the prime driver to
variation, they also found patterns associated with climate, with the
maximum chemical and spectral diversity found in warm lowland sites with

moderate annual precipitation.
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Castro-Esau et al. (2004), Kalacska et al (2007a), and Sanchez-
Azofeifa et al (2009) have all addressed variation in leaf traits and spectral
properties in tree and liana species between dry- and rainforest
environments in Panama. The earlier studies both report differences in the
ability to discriminate between leaves of tree and liana species based on their
spectral reflectance at dry and wet forest sites. Sanchez-Azofeifa et al. (2009)
explain this trend through exploration of leaf traits and internal structure,
noting specific physiological adaptations in liana species collected in dry
environments that allow for more accurate spectral discrimination between
the structural groups when compared with the same type of structural
element in tropical rainforests. Attempting to explain Schnitzer’s (2011)
comments on increasing liana abundance in tropical forests, Asner and
Martin (2012) later also found physiological differences between liana and
tree leaves in the humid tropics, especially among traits related to light
capture and growth. Their survey of 22 chemical and physical leaf traits from
more than 7200 species of trees and lianas reinforces the conclusions of
Sanchez-Azofeifa et al. (2009), and suggest a physiological advantage of

lianas in forests undergoing disturbance.

Trait and spectral variation in response to temporal gradients has
been particularly under-explored, though Roberts et al. (1998) show patterns
in leaf reflectance related to leaf age in Caatinga forests, and numerous

studies have used variation in pigment-sensitive vegetation indices to
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monitor phenology at stand scales (e.g. Eklundh and Olsson 2003; Zhang et
al. 2003). This lack of consideration for the temporal dimension may be
related to a bias in the literature toward studies on Amazonian and other
rainforest environments, where phenological patterns are muted compared
with more seasonal environments (Morellato et al 2000). The less
pronounced phenological curve of these largely evergreen forests is less

likely to result in significant variation in leaf physical and spectral properties.

Though they receive less attention than rainforests (Sanchez-Azofeifa
et al. 2005b), tropical dry forests are among the world’s most threatened
ecosystems (Janzen 1988; Murphy and Lugo 1986b; Olson 2000), accounting
for 48% of vegetation cover in Mesoamerica and the Caribbean and 42% of
all tropical forests worldwide (Murphy et al. 1995; Van Bloem et al. 2004). In
the Americas, dry forests occupy 519,597 km? of the total landcover (Portillo-
Quintero and Sanchez-Azofeifa 2010). These dry environments can exhibit a
distinct set of leaf traits (Sanchez-Azofeifa et al. 2009) and an intense
wet/dry seasonality that can directly influence spectral analysis and

classification (Hesketh and Sanchez-Azofeifa 2012).

Because tropical dry forests are often areas of intense human
occupation and exploitation (Murphy and Lugo 1986a; Quesada and Stoner
2004; Sanchez-Azofeifa et al. 2005a), secondary forests are common, creating

a temporal gradient as mature forests are converted to a mosaic of
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successional stages related to the time since abandonment at the site scale.
This successional variability is expressed as changes in species composition
and stand structure (Feeley et al. 2005; Kalacska et al. 2007b; Ruiz et al
2005), as well as spectral reflectance from a stand scale (Arroyo Mora et al.
2005). As such, the primary objective in this study is to investigate the extent
to which this successional gradient is expressed in leaf traits and spectral
properties of a set of species common to all successional stages at two
tropical dry forest sites. Specifically, we ask first whether, when controlling
for species composition, changing forest successional stage results in
variability in (1) leaf structural and chemical traits, (2) leaf pigment levels
and the associated spectral indices, and (3) the strength of correlations
between the above leaf traits. Secondly, we ask if the same successional
changes result in a corresponding variability in leaf spectral properties, and
whether this variation is sufficient to affect the accuracy of species

classification based on spectral reflectance.

4.2 Methods

4.2.1 Site Description

Leaf samples were collected during the wet seasons of 2009 and 2010

at the Chamela-Cuixmala Biosphere Reserve in Mexico (CCBR) and Santa

Rosa National Park in Costa Rica (SRNP), respectively (Figure 4-1). The
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Chamela-Cuixmala Biosphere Reserve (CCBR) is on the west coast of Mexico
in the province of Jalisco (19°22" - 19°35’N, 104°56” - 105°03'W) with a
mean annual temperature (1978-2007) of 25.2° C (x1.3° ()
(http://www.ibiologia.unam.mx/ebchamela/). The area experiences a highly
seasonal pattern of rainfall (Garcia-Oliva et al. 2002), with a mean annual
precipitation (1977-2006) of 741 mm (*256 mm) occurring mainly during
the wet season months of June through October

(http://www.ibiologia.unam.mx/ebchamela/).

a. CCBR, Mexico

b. SRNP,
Costa Rica

0 1,000 2,000 Km

Figure 4-1. Map showing study areas. a. Chamela Cuixmala Biosphere Reserve
(CCBR), Jalisco, Mexico. b. Santa Rosa National Park (SRNP), Guanacaste, Costa Rica.
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The Chamela-Cuixmala Biological Station was established by the
National Autonomous University of Mexico in 1971, with the objective of
researching and protecting dry forest environments (Sarukhan et al. 1979).
The present day CCBR was established in 1993 with the addition of
surrounding areas to the 3,319 hectares of land attached to the Biological
Station in acknowledgement of their ecological importance (Gentry et al
1995), resulting in a total protected area of 13,142 hectares (Ceballos et al.
1999). Conversion from primary to secondary forest in the area surrounding
the CCBR is the result of a push by the Mexican government beginning in
1943 encouraging agriculture, cattle raising, and tourism (Castillo et al. 2005;

Sanchez-Azofeifa et al. 2009).

The dry forest successional gradient at the CCBR is the result of the
abandonment of cultivated areas following a pattern of slash and burn
clearing, cultivation, then use as pasture for cattle (Avila-Cabadilla et al
2009). Within the mosaic created by varying the time-since abandonment,
permanent plots have been established at early, intermediate, and late
(mature) successional stage. A description of the physiognomy and forest
structure of these plots can be found in Avila-Cabadilla et al. (2009) In order
to minimize variation resulting from changes in altitude and aspect, sites
were all located on slopes of 15° to 25° at an average height of 23 meters
above sea level (masl). North facing slopes were avoided as they have shown

increased altitude-related heterogeneity in plant community composition
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(Balvanera et al. 2002). The successional stages at CCBR were based on the
time since final abandonment, with early stage plots set at 3 - 5 years,
intermediate at 8 - 12 years, and late stage plots at > 50 years without
disturbance. Shrubs dominated the early stage plots, with an emergent
canopy averaging 5 m. The intermediate and late stages share an average
canopy height of 10 m. Both stages are dominated by deciduous species,
though overall species richness is 15% greater in the late stage (Chazdon et
al. 2007). Early and intermediate stage plots were located a minimum of

1000 m away from the surrounding mature forest to avoid edge effects.

Santa Rosa National Park (SRNP) occupies 49,500 hectares in the
northeast of Costa Rica in the Guanacaste Province (10°48'53”N,
85%36”54W), within the Guanacaste Conservation Area, which contains all of
the dry forest in Costa Rica (Allen 2001; Janzen 2000; Portillo-Quintero and
Sanchez-Azofeifa 2010). Typical of dry forests, precipitation is concentrated
during the wet season, experienced here from December through May. The
average annual rainfall is 1500 mm (Arroyo Mora et al. 2005), though this
values is highly variable ranging from 915 - 2558 mm per year (Janzen

1993).

Historically, SRNP followed a similar pattern of land use as CCBR, with
the land serving as a cattle raising hacienda for almost 200 years prior to the

establishment of the national park (Castillo-Nunez et al. 2011). During the
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second half of the 20t Century, the area was heavily logged, primarily for
Swietenia macrophylla (Burnham 1997). The present day mosaic of biotic
communities, composed of pastures and secondary dry forests in different
stages of succession, has evolved since the park’s establishment according to
varying histories and intensities of land use in the area (Janzen 1988;

Kalacska et al. 2004a; Kalacska et al. 2004b).

Definition of successional stages at SRNP was via stand structural
characteristics rather than time since abandonment. The early stage was
defined as areas made up of patches of woody vegetation and shrubs with a
single layer canopy having a maximum height of 6 - 8 m. Dominant species
are almost entirely deciduous, losing the majority of their leaves during the
dry season. Canopy trees in the intermediate stage are between 10 - 15
meters in maximum height and deciduousness drops to approximately 80 %.
In the late stage, the canopy is taller (15 - 30 m) and more complex, with
evergreen species dominating from 50 to 90 % of the upper crown. A more
detailed account of the structure and composition of the successional stages
may be found in Kalacska et al. (2004a) and Arroyo-Mora et al. (2005). The
topography of the region of the park where the study sites were located is
relatively flat, with an average slope of 7°, so the effects of topography were
minimized, and the plots were located with the same considerations as at

CCBR.
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An overview of the common species found in the established
permanent plots may be found for CCBR in Alvarez-Afiorve et al. (2012) and
for SRNP in Arroyo Mora et al (2005). For this study, we concentrated at
each site on species that were found in all three successional stages, detailed
in Table 4-1. No trends in leaf traits separate the species chosen from those
not found in all successional stages, but the species selected tended to be
among the dominant species in each stage. While this limits the size of the
sample, it allows for the standardization of stand complexity and
composition across sites, providing a clearer picture of physiological changes

between successional stages.

A focus on species common to all successional stages was an essential
element of the study design. A majority of studies addressing variation in
leaf traits (e.g. Asner and Martin 2008; Asner and Martin 2012; Wright et al.
2004b) have addressed large datasets and include taxonomy as an
explanatory, rather than controlled, variable, though Martin et al. (2007) is a
notable exception. Because our objective is to evaluate trait variability with
respect to a temporal gradient (in this case forest successional stage),
standardizing the taxonomic composition of our sample was an essential

element of the experimental design.
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Family
Achatocarpaceae*
Boraginaceae
Polygonaceae
Euphorbiaceae*
Flacourtiaceae
Leguminosae
Leguminosae
Leguminosae

Polygonaceae

Family
Fabaceae*
Rubiaceae
Fabaceae
Burseraceae
Cochlospermaceae
Ebenaceae
Fabaceae*
Rubiaceae
Malvaceae*
Malvaceae
Nyctaginaceae
Verbenaceae*
Hippocrateaceae

Meliaceae

Genus species
Achatocarpus gracilis*
Cordia alliodora
Coccoloba liebmanii
Croton suberosus*
Casearia tremula
Haematoxylum brasiletto
Lonchocarpus constrictus
Lonchocarpus eriocarinalis

Ruprechtia fusca

Genus species
Acosmium panamense*
Alibertia edulis

Ateleia herbert-smithii
Bursera simaruba
Cochlospermum vitifolium
Diospyros salicifolia
Gliricidia sepium*
Guettarda macrosperma
Luehea candida*

Luehea speciosa

Pisonia aculeata
Rehdera trinervis*
Semialarium mexicanum

Swietenia macrophylla

Table 4-1. Common species surveyed at the CCBR
in Mexico (a.) and SRNP in Costa Rica (b.).
Species marked with an * were removed from the
second phase of the classification analysis

4.2.2 Data Collection.

Collection protocols were the same at each site, with all samples
collected during the peak of the rainy season to minimize any variability
associated with annual phenological cycles (e.g. leaf stress at the beginning

and end of the growing season). Trees were located in plots previously
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established at each of the two sites, with no replication of species made
between plots of the same successional stage. Leaf-bearing branches were
harvested from sun-exposed canopy trees and stored for transportation in
plastic bags containing moist paper towel to prevent drying. Leaves were left
on the branch to aid in preservation. Samples were then transported to an
onsite lab for immediate initial processing. The interval between harvest and
initial analysis was never to exceed 6 hours as Foley (2006) indicates that
spectral features related to leaf pigments, structure, and water content are
relatively stable within this time frame, provided steps are taken to maintain
moisture content, as described above. The number of samples measured per

species, per stage, are summarized in Table 4-2.

Samples Collected
Spectra 15*
Structural Variables 5

Pigment Concentration

Foliar Chemistry 1

Table 4-2. Number of samples collected for each species at each
successional stages at both CCBR and SRNP. Structural variables
were SLA, water content, and leaf thickness. Pigments sampled
were total chlorophyll and carotenoid levels. Foliar chemical
analysis was for nitrogen.

The suit of biophysical measurements used in the study is indicated as
Table 4-3. All leaf physical and spectral measurements were conducted in lab
facilities at CCBR and SRNP, respectively. For these traits, five leaves per
species, per stage were selected, and the measurements carried out within 6

hours of collection in the field, as described above. Additionally, five leaves
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per species, per stage were selected for pigment analysis, to be carried out at
the University of Alberta upon return from the field. Leaf cores 3.8 cm? in
area were extracted from these additional five leaves and immediately frozen
at -10 °C for later pigment analysis. These samples were kept frozen in
transit between the study sites and the university facilities. Finally, leaf
material from each species and stage was dried for chemical analysis, also
carried out at the University of Alberta upon return from the field. In all
cases, healthy (free of insect damage, noticeable epiphylls, and galls) and

mature leaves were selected.

The leaf structural traits recorded were leaf thickness, fresh and dry
weight, and leaf area, from which water content and specific leaf area (SLA)
were also derived. Leaf thickness, which has been shown to vary with
successional stage and impact chlorophyll and nitrogen estimation (Campbell
et al. 1990; Marenco et al. 2009), was measured using a digital micrometer
(model 293-344. Mitutoyo, Takatsu-ku, Japan). Measurements were
collected at three points on each leaf, between the veins and equidistant
between the leaf edge and midrib, and the average of the three
measurements recorded to the nearest 0.001 mm (Sanchez-Azofeifa et al

2009).

Leaf area was recorded in the field using digital scans of the fresh

leaves at 300 dpi. These scans were later converted to aerial measurements
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by using a pixel counting approach carried out in Adobe Photoshop, and
reported in mm?. Leaf fresh and dry weights were determined by weighing
the fresh leaves immediately upon their removal from the branch, then again

after drying for a period of 36 hours in a 60°C drying oven.

Leaf water content and SLA were derived from the above. Water
content was expressed as the percent ratio of the difference between the
fresh and dry weights and the fresh weight (equation 1). SLA was recorded

as the ratio of fresh surface area to dry weight.

[1] (((fresh weight - dry weight) / fresh weight) * 100)

Chemical analysis was carried out on leaf material dried as described
above and transported back from the field sites and comprised estimation of
the nitrogen and phosphorous content of each species collected at each
successional stage. These chemicals are necessary for leaf light capture and
growth (Asner 1998) and have been shown to be related to forest primary
production (Townsend et al. 2007). Nitrogen (as % mass) was estimated
using a combustion element analyzer (Richards 1993). Phosphorus (also as
% mass) was estimated by digestion followed by colorimetric analysis
(Richards 1993). Because the chemical analyses were performed on dried
and pulverized leaf material, only one measure per species, per successional
stage, was recorded. As a result, only the variation between species or

sites/successional stages is determinable for these variables, as the within-
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species variation for a given site/successional stage is not estimable from a
sample containing leaf matter from several individuals. Additionally, the
resulting decrease in the size of the dataset for these variables decreases the
likelihood of a significant difference between successional stages according

to the statistical tests used.

Chlorophyll and carotenoid pigments are likewise related to leaf light
capture and growth. Leaf pigment analysis was carried out using a process of
dimethyl sulfoxide (DMSO) extraction and analysis using a
spectrophotometer (SMART Spectrometer, LaMotte Company, Chestertown,
MD, USA) with a spectral range of 300 - 1000 nm and resolution of 1 nm (2
nm accuracy) (Hiscox and Israelstam 1979; Richardson et al. 2002). The leaf
cores collected and frozen in the field were removed from cold storage,
immersed in a 10 ml DMSO solution and warmed in a water bath at 65°C for
20 minutes. This solution was then cooled and transferred to disposable
cuvettes (~3 ml) for spectral analysis. Using the spectrophotometer,
absorbance was measured at 447, 645, and 663 nm wavelengths selected via
calibration using pure chlorophyll a, and b extracts. Estimates of chlorophyll
a, chlorophyll b, total chlorophyll, and carotenoid content were calculated
based on Arnon’s (1949) relationships, using the equations below, and

converted to per-area units.

(2] TotalChI(ChL, + Chl,) = (12.15% Ay, =279 % A+ (2115% Agyg = 5.1% Ag)
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;3] Carotenoid = (1000* A, ~182~Chl, ~85.2~Ch,)

Spectral reflectance of the five leaves measured for thickness and
water content in the field was carried out at the field site within the 6 hour

window described above as per Foley et al. (2006).

Spectra were collected using a portable field spectrometer (Unispec
SC, PPSystems, Amesbury, MA, USA). The device uses a bifurcated fiber optic
connected to a leaf clip to measure a 3.46 mm? area in the range of 400 -
1100 nm with a spectral resolution of 10 nm and an accuracy of < 0.3 nm.
Measurements were taken three times for each leaf, at the locations used for

thickness measurements described above, and later averaged per leaf.

4.2.3 Statistical Analysis

Summary statistics were calculated for each of the measured variables
as described in Table 4-3. Variability in leaf traits was assessed at each site in
two ways, first at the site level between all three successional stages, and
then between paired successional stages (early-intermediate, early-late, and
intermediate-late) to assess the point along the successional pathway at
which the variability was greatest. ANOVA analyses were performed to
evaluate the difference in leaf traits among the tree successional stages at the

site level. Then, paired t-tests (McDonald 2009) were used to investigate the
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extent of variation between the paired stages.

Normality tests were

conducted before the t-tests using SigmaPlot 11.0 (Systat Software, San Jose,

California 2008). Wherever a variable failed to meet the assumptions for a

given parametric test, the non-parametric alternative was used (Kruskal-

Wallis H-test and Mann-Whitney U-test for ANOVA and t-tests, respectively

(Sokal and Rohlf 1995)). Finally, the interrelatedness of leaf traits at each

site was examined using Pearson correlation analysis (Daniel 2005)

a. Stage Mean SD b. Stage Mean SD
Water e 62.87 6.18 Water e 63.05 7.20
Content i 62.62 5.17 Content i 64.45 4.69
(%) | 64.99 7.22 (%) I 63.80 8.86
Thick e 181.75 49.56 Thick e 281.35 58.61
ICKNess 1 i 164.40 37.64 ickness 1 i 25282 6171
(um) (um)
| 175.42 53.00 I 238.18 49.78
SLA e 157.89 35.90 SLA e 140.92 80.82
(cm2/g) i 172.05 56.33 (cm2/g) i 148.88 57.04
g | 181.20 64.54 g I 158.89 81.53
e 419.63 132.43 e 304.63 124.99
Chl (m- . Chl (m- )
2 i 363.71 113.09 2 i 504.13 148.33
mol/m?) mol/m°)
| 386.03 150.32 I 556.40 190.91
c e 173.19 47.17 c e 138.68 53.91
ar (m- i 150.94 49.79 ar (m- i 19026 61.98
mol/m?) mol/m°)
| 154.02 56.78 I 226.12 110.49
e 0.48 0.06 e 0.43 0.09
mND705 i 0.48 0.06 mND705 i 0.59 0.07
| 0.45 0.09 I 0.59 0.06
e 0.03 0.05 e -0.02 0.07
DD i 0.04 0.05 DD i 0.11 0.04
| 0.00 0.06 I 0.11 0.04
e 3.86 0.83 e 1.81 0.69
N % i 3.59 0.75 N % i 2.68 0.77
| 3.68 0.41 | 2.55 0.79
e 0.20 0.05 e 0.11 0.08
P% i 0.19 0.05 P% i 0.11 0.03
| 0.23 0.05 | 0.10 0.04

Table 4-3. The assemblage of leaf traits collected at the three successional
stages at each of the two study sites. a. CCBR. b. SRNP.
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4.2.4 Spectral Analysis

To link the leaf physical and biochemical traits to leaf spectral
properties, we used two Spectral Vegetation Indices (SVIs). While
empirically-derived hyperspectral indices have shown in general to exhibit
greatly varying performance in terms of accurately reflecting measured
pigment contents when applied outside the dataset with which they were
developed (le Maire et al. 2004), we have selected two indices shown to
perform consistently across environments. The first is based on the
Normalized Difference Vegetation Index (NDVI), generally expressed as the
ratio of the difference to the sum of the Near Infrared and Visible portions of

the EM spectrum (Rouse Jr et al. 1974):

NDVI = (RNIR B RRED)
R

[4] (RN1R+ RED)

Sims and Gammon’s (2002) refinement, the modified normalized
difference index (mND705), narrows the spectral range sampled and
includes additional information from the blue part of the spectrum to

increase the index’s sensitivity to changes in leaf pigment levels.

(R750 B R705)
(R750 + R705 - 2R445)

mND705 =

[6]
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le Maire et al’s (2004) double difference (DD) index was developed to
overcome the site- or dataset- specificity inherent in many SVIs, and was
found by the authors to be more sensitive to pigment levels than many more
complex approaches (ie. Neural networks, derivative-based analysis) of

estimating these pigment contents.

[7] DD = (R749 - R720) - (R701 - R672)

4.2.5 Classification Analysis

In order to evaluate the effect of changing successional stage on leaf-
level spectral classification of tree species at these sites, a classification
approach was used after the method described in Hesketh and Sanchez-
Azofeifa (2012). A suite of variables were derived from the raw spectral data
and used as inputs to a classification and cross referencing process to
uncover the effect that varying stand age has on the accuracy of the

classification process.

The raw spectra were transformed two ways. First, principle
component analysis (PCA) was performed on the spectra so as to reduce the
dimensionality and redundancy inerrant in hyperspectral data while

retaining the variation contained in each band (Kaldcska et al 2007a;
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Schowengerdt 1996). The first 4 principle components were retained,
accounting for more than 97% of the variation in the original spectra.

Second, two spectral indices were included to stand in for important
biophysical variables: pigment and water content. = While physical
measurements of theses leaf traits were collected, we chose spectral proxies
for the classification analysis to address the potential for automated,
database-style spectral classification as addressed by Asner and Martin
(2008) Castro-Esau et al. (2006). The particular indices selected were
chosen to allow direct comparison with the results described in Hesketh and
Sanchez-Azofeifa (2012). Merzlyak et al’s (1999) Plant Senescence
Reflectance Index (PSRI) was included to provide an estimate of chlorophyll
and carotenoid pigments. PSRI increases proportionate to the
carotenoid/chlorophyll molar ratio, and stands as an indicator of the balance
between these key pigments. Penuelas et al’s (1993) Water Index (WI) was

included to provide a spectral representation of leaf water content.

PSRI = (Rggo = Rspo)
[8] (Rys0)

[9] WI= Roy
R970
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These six variables (PC1-PC4, PSRI, WI) were used as inputs to the
nonparametric decision tree classifier See 5 (Rulequest Research, St Ives,
NSW, Australia, 2008). See5 includes a cross-reference function to allow for
the evaluation of the accuracy of a classification tree trained on a given
successional stage when applied to data from a different stage (e.g. testing a
classifier trained on early successional stage data on data from the late
stage). The classification was run nine times at each of the two sites: three
times with the training and testing datasets taken from the same stage (early,
intermediate, and late), and a further six using all possible combinations of
successional stages for the training and testing datasets. Classification
accuracy was reported as a percentage (# individuals from the testing

dataset classified correctly / total # individuals).

4.3 Results

4.3.1 Do leaf structural and chemical traits vary with successional stage?

We found that the potential for variability in leaf chemical and

structural traits among early, intermediate, and late successional stages was

site specificc At SNRP, 5 of the 7 traits measured showed significant

variability with the exception of water content and phosphorous content

(Table 4-4). At CCBR, with just over half the mean annual rainfall as
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measured at SNRP, none of the 7 traits showed significant variability

according to successional stage.

Site CCBR SRNP
# Species 9 14

Water 0.278* 0.13*

Thickness 0.267 0.001
SLA 0.312* 0.005*
Chlorophyll 0.203* <0.001*
Carotenoids 0.127* 0.001*
mND705 0.031* 0.001*
DD 0.002* <0.001*

N 0.726 0.05

P 0.233 0.166*

Table 4-4. p-values from one-way analysis of variance among the three successional stages
at each study sites. Boldface text indicates differences significant to the 0.05 level. Values
with an * indicate data which did not satisfy ANOVA assumptions and Kruskal-Wallis results
were substituted.

Considering the structural variables (leaf thickness, water content,
and specific leaf area), we found significant differences among the three
successional stages in leaf thickness and SLA at SRNP but not at CCBR (Figure
4-2, Table 4-4). Figure 4-2b shows a pattern of decreasing thickness with
each later successional stage at SRNP (H= 20.003, p= 0.001), where no
noticeable trend exists in the data at CCBR. Looking more closely at
differences between the stages themselves, a pairwise comparison of leaf
thickness among successional stages shows significant differences between
early and intermediate (U= 1674, p= 0.001) and early and late stages (U:
1414, p= <0.001) at SRNP, while again, no significant difference was noted at

CCBR (Table 4-5).
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Figure 4-2. Structural Variables at the two study sites.
a. Leaf Thickness, b. Water Content, c. Specific Leaf Area.
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a. Water Thickness SLA Chl. Car. N P mND705 DD

CCBR | 0.142 0.423 0.112 0.317 0.089 0.604 0.243 0.039 0.029
SRNP | 0.253 <0.001 0.001 <0.001 <0.001 0.018 0.444 <0.001 <0.001

b. Water Thickness SLA Chl. Car. N P mND705 DD

CCBR | 1.000 0.176 0.468 0.036 0.034 0.5 0.655 0.819 0.32
SRNP | 0.051 0.001 0.038 <0.001 <0.001 0.005 0.105 <0.001 <0.001

c. Water Thickness SLA Chl. Car. N P mND705 DD

CCBR | 0.165 0.704 0.516 0.375 0.834 0.791 0.107 0.02 0.001
SRNP | 0.253 0.348 0.341 0.072 0.028 0.266 0.266 0.496 0.696

Table 4-5. p-values from pairwise comparisons between successional stages at each study
site. Boldface results indicate significance at 0.05. * indicates that t-test assumptions were
not met, so Mann-Whitney was performed instead. Successional stage combinations: a.
early-late, b. early-intermediate, c. intermediate-late.

Similar trends were noted among the SLA measurements. SRNP
showed significant differences among the three stages (H= 10.591, p= 0.005),
with the greatest variation found between the early-intermediate and early-
late pairings (U= 1951.5, p= 0.038; U= 1667, p=0.001, respectively). Even
though Figure 4-2c indicates an increasing trend in mean SLA with increasing
succession at CCBR, these differences were found to be insignificant both

overall and between the paired stages.

In spite of the indications of a rainfall-mediated trend in trait variation
between the two sites, variation in leaf water content was found to be
insignificant in all tests. Further, there were no general trends observable in
the data in Figure 4-2a, other than an increase in the mean value between the

intermediate and late stages at CCBR.
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Variation in leaf chemistry (nitrogen and phosphorus levels) was
generally found to be not significant between the stages, with the exception
of N at SRNP (H=9.389, p= 0.009) (Figure 4-3). While the significant increase
in nitrogen between both the early-intermediate and early-late successional
stages (U=36, p=0.005; U=46, p= 0.018) result in a general increasing trend in
the N:P ratio along the successional gradient (Figure 4-3c), this trend itself is
not significant. Investigating this pattern between the drier CCBR site and
the wetter SRNP, Figure 4-4 shows the linear relationship between nitrogen
and phosphorous contents. Where CCBR shows very little variation in the
slope of the regression line between successional stages, the slope of the line
at SRNP increases by more than a factor of 6 between the early and
intermediate stages, with a continued, but milder increase between

intermediate and late.
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4.3.2 Do leaf pigment content and the associated SVIs vary with successional

stage?

Both the total chlorophyll and carotenoid levels were significantly
different between successional stages at SRNP, but not at CCBR (H= 73.25, p=
<0.001 and H=42.26, p= 0.001) for chlorophyll and carotenoids, respectively.
The increasing trend from early to late stages in both pigments at SRNP
(Figure 4-5) resulted in significant differences between the not just early-
intermediate and early-late pairs (t=-8.544, p= <0.001 and U= 617, p= <0.001
for chlorophyll, t= -5.216, p= <0.001 and U= 1004, p= <0.001 for
carotenoids), but also between the paired intermediate and late stages (Chl:
U= 2018, p= 0.072; Car: U= 1921, p= 0.028). This was the only example of
significant difference in a physical (non-optical) trait between the
intermediate and late stages. At CCBR, both pigments exhibited a non-
significant decreasing trend across the three stages as opposed to the strong
increases noted at SRNP. This decrease was significant only between the
early and intermediate stages (t= 2.13, p=0.036 and t= 2.152, p= 0.034 for

chlorophyll and carotenoid contents, respectively).
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Figure 4-5. Pigment content at the two study sites. a. Total
Chlorophyll, b. Carotenoids.

The SVI's included in the spectral analysis were designed to be
sensitive to these pigment levels (le Maire et al. 2004; Sims and Gamon
2002), and should therefore follow similar trends. This is generally the case
at SRNP, where strongly significant differences were noted across the three
stages (F=118.41, p= 0.001 for mND705 and H= 102.51, p= <0.001 for DD).
Both indices however show a slight decline from the intermediate to late
stages, as compared to the increase noted in chlorophyll levels (Figures 4-6a

and 4-5a). This is reflected in the insignificant difference between these

125



stages, though significance is retained among the early-intermediate and

early-late combinations (t= -12.626, t= 12.552 and U= 362, U= 345.5 for

mND705 and DD, all with p= <0.001). We also found significant differences

between the indices in the ANOVA results at CCBR, the only case in this

analysis to do so (H = 6.955, p=0.031 and F= 6.459, p= 0.002 for mND705 and

DD). This difference was reflected for mND705 and DD at both the early-late

(t=-2.098, p= 0.039 and t= 2.223, p= 0.029) and intermediate-late stage (U=

723.5, p=0.02 and t= 3.334, p= 0.001) pairings.
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4.3.3 Does the strength of correlations among leaf traits vary with successional

stage?

Tables 4-6 and 4-7 address the correlation between the measured
physical and optical leaf traits at changing levels of aggregation, with the
three successional stages at each site grouped (Table 4-6) and for each
successional stage at each site separately (Table 4-7). In general, the
strength of correlations, and the number of strongly related variables
increased with increasing specificity of the data set, in spite of the decreasing

size of the sample.

Water Thick SLA CHL CAR N P mND705 DD

0.37 0.00 0.75 0.85 0.36 0.18 0.17 0.04
0.00 0.87 0.00 0.00 0.00 0.11
0.94 0.19 0.16 0.21 0.17
0.00 0.00 0.06 0.99
0.01 0.98 0.32
0.00 0.55
0.00 0.55
0.01

Thick
SLA | 0.00

CHL | 0.73 0.83
CAR | 0.68 0.99 0.77

N | 0.02 0.07 0.51 0.00 0.15

P| 0.01 0.04 0.61 0.00 0.13
mND705 | 0.17 0.16 0.03 0.49 0.98 0.47 0.77
DD | 0.35 0.77 0.37 0.29 0.50 0.86 0.96

CCBR

Table 4-6. p-values from Pearson correlation between leaf traits from the combined
successional stages at each of the CCBR and SRNP study sites. Boldface values indicate
significance of p < 0.05.
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CCBR

Water Thick SLA CHL CAR mND705 DD N P
Water 0.24 0.09 0.15 0.01 0.00 046 0.36
Thick | 0.01 0.02 0.86 0.00 0.00 0.21 0.73
SLA | 0.03 0.00 0.18 0.30 0.93 0.65
CHL | 0.00 0.19 0.00 0.00 0.89 0.80
CAR | 0.12 0.17 0.01 0.00 0.00 0.31 0.62
mND705 | 0.02 0.01 046 0.01 0.56 0.00
DD | 0.00 0.05 0.93 0.00 0.21 0.00
N | 0.29 0.33 0.08 0.10 0.22 0.32
P| 0.95 0.87 0.83 0.26  0.40 0.36
Water Thick SLA CHL CAR mND705 DD N P
0.09 0.43 0.15 0.04 0.06 0.22 0.03
Thick | 0.91 0.04 0.13 0.00 0.00 0.04 0.11
SLA | 0.00 0.00 0.45 0.55 0.84 0.51 0.35
CHL | 0.28 0.54 0.90 0.72 0.65 0.42
CAR | 0.37 0.72 0.74 0.80 0.13 0.72
mND705 | 0.74 0.26 0.88 0.93 0.10
DD | 0.64 0.44  0.77 0.49 0.00
N | 0.23 0.31 0.12 0.35 0.26 0.04
P| 0.55 0.39 0.54 0.48 0.38 0.10
Water Thick SLA CHL CAR mND705 DD N P
Water 0.26 0.00 0.57 0.50 0.97 0.74 0.08 0.22
Thick 0.19 0.04 0.15 0.13 0.03 0.01
SLA | 0.00 0.51 0.84 0.93 0.07 0.04
CHL | 0.30 0.12 0.00 0.01 0.45 0.83
CAR | 0.20 0.08 0.14 0.54 0.98 0.78 0.35
mND705 | 0.47 0.29 0.45 0.02 0.14
DD | 0.44 0.13 0.71 0.01 0.06
N | 096 0.54 0.39 0.65 0.83
P| 0.19 0.48 0.77 0.28 0.11

Table 4-7. p-values from Pearson correlation between leaf traits by successional stage at
each of the CCBR and SRNP study sites. Boldface values indicate significance of p< 0.05. a.

Early Stage, b. Intermediate Stage, c. Late Stage.
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Only a handful of traits are significantly related at all three
successional stages (Table 4-7). Specific leaf area is well correlated with the
other structural variables (r= 0.46 and -0.62; 0.52 and -0.38 for water
content and leaf thickness at CCBR and SRNP, respectively, p= 0.00 in all
cases), very much in keeping with the findings of Wright et al. (2004a). SLA
did not, however, correlate with either pigment levels or foliar chemistry
(with the exception of N at CCBR with r= 0.43, p= 0.03)), contrary to the
findings of Asner et al. (2009). When considering the successional stages
separately, the chemical variables did not correlate consistently with other
traits across all three stages, though nitrogen showed a significant
relationship with mND705 in the intermediate stage at CCBR (r= 0.68, p=
0.04), and phosphorus and nitrogen were related in the intermediate and late
stages at SRNP (r= 0.72 and 0.84, respectively, p= 0.00. Significant
relationships were noted between both SVIs and chlorophyll at both sites in
the early and late successional stages (r= 0.37 and 0.47, 0.35 and .041 for
mND705 and DD at CCBR early and late stages, respectively, p< 0.02. r= 0.35
and 0.34, 0.38 and .032 for mND705 and DD at SRNP early and late stages,

respectively, p< 0.01), but not at either site in the intermediate stage.

4.3.4 Do leaf optical properties vary with successional stage?

Leaf spectral reflectance, shown in Figures 4-7 and 4-8, shows

patterns of variability attributable to differences in moisture availability at
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each site. Figures 4-7d and 4-8d show the areas of greatest change in the
spectrum between the early and late stages, as that was the pairing which
showed the strongest and most significant differences between the
biophysical traits. At SRNP, this difference tended to be maximized along the
“red edge” (~720 nm). This is the region of the spectrum used in the
calculation of the two chlorophyll-sensitive SVIs used here, which were found
without exception to be significantly different (p= <0.001) in the same
pairing of successional stages. The differences at CCBR were less dramatic,
but were generally shifted further towards the near-infrared region of the
spectrum, more indicative of changes in structural and water-controlled

features between the early and late successional stages.
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Figure 4-7. Spectral reflectance at: a. early, b. intermediate, c. late, and d. difference between
e and | for CCBR. Panels a, b, and c share a common scale bar.
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4.3.5 Is spectral variation between successional stages sufficient to affect the

accuracy of species level classification?

Spectral variability between successional stages had a strong negative
influence on classification accuracy (Figure 4-9). The highest accuracy was
found at SRNP, classifying within the intermediate stage (82.5%), with the
lowest at CCBR, using a classifier trained in the early stage to classify data
from the intermediate (7.4%). The various combinations are pictured in
Figure 4-9 with the resulting classification accuracies listed in Table 4-8a.
Without exception, classification accuracy was substantially higher when
classifying within stages, rather than across stages, with an average decrease

in accuracy by a factor of 4. (Table 4-8b).
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Figure 4-8. Spectral reflectance at: a. early, b. intermediate, c. late, and d. difference between
e and | for SRNP. Panels a, b, and c share a common scale bar.

Examination of the between-stage classification results showed that a
large portion of the between-stage accuracy was attributable to a limited
number of species (Achatocarpus gracilis and Croton suberosus at CCBR and
Acosmium panamense, Gliricidia sepium, Luehea candida, and Rehdera
trinervis at SRNP). To test the effect of the presence of a small number of
species which show consistent spectral properties across successional stages,
these species were removed from the dataset and the See5 classification run
a second time. The resulting within-stage accuracy was increased in the
early stage at both sites, but decreased slightly in the intermediate and late
stages (Table 4-8a). With only one exception however (where the classifier

was trained on the early and tested on the intermediate stage at CCBR),
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accuracy was substantially decreased in all the between-stage classifications,
indicating that the stability of classification results was largely the product of
spectral consistency among a handful of species. Mean classification
accuracy within successional stages was relatively constant at both sites
following the removal of the above species (Table 4-8b). Mean between-
stage accuracy, however, was decreased by approximately 17.2% at CCBR
and 38.7% at SNRP, resulting an increase in the overall decrease in accuracy

of 25.5% (Table 4-8b).
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Figure 4-9. Accuracy of the See5 classification process for each training_testing stage
combination. Accuracy levels for each site and stage combination in Table 4-8.
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a Stages C(a:ﬁR CCBR adj. SRNP all SRNP adj. Avgall Avg adj.
e_e | 82.09 92.31 77.32 82.35 80.91 87.33
i_i| 55.22 53.85 82.47 79.41 76.45 66.63
1| 76.12 71.15 79.38 77.94 82.39 74.55
e_i 7.41 9.52 31.79 13.33 23.35 11.43
e || 27.41 20.95 19.49 15.56 20.35 18.25
i_e| 12.59 12.38 21.03 14.81 17.59 13.60
i_l| 20.00 11.43 22.56 11.85 19.74 11.64
lLe| 27.41 23.81 19.49 17.04 18.41 20.42
Li| 20.00 16.19 20.00 18.52 18.06 17.35

b Accuracy C(a:ﬁR CCBR adj. SRNP all SRNP adj. Avgall Avgad,.
Within | 71.14 72.44 79.73 79.90 79.92 76.17
Between | 18.89 15.65 22.86 14.02 19.91 14.83
Factor 3.77 4.63 3.49 5.70 4.01 5.13

Table 4-8. a. See5 Classification accuracy: Expressed as a percentage of individuals classified
correctly versus the number of individuals in the testing data set. The clear columns (labeled
all) include all the common species as listed in Table 1 while the shaded columns (adj.) refer
to classification accuracy following the removal of anomalously consistent species (2 from
CCBR and 4 from SRNP). b. Mean classification accuracy within successional stages and
between stages. Factor is the magnitude of the variation between within- and between-stage
classification, expressed as the ratio of within- to between-stage accuracy.

Of the six inputs to the classifier, the two with a clear ecological
interpretation are the SVIs PSRI and WI. When these variables were
compared between the six removed species and those remaining (7 at CCBR
and 10 at SRNP), significant differences were found in all stages except for
PSRI at CCBR early and late (U=1305, p= 0.154 and U= 1422, p= 0.420) and
WI at SRNP late (U= 3324, p= 0.72) and CCBR early (U=1221, p= 0.061).
Mann-Whitney tests on the biophysical variables controlling these indices

showed significantly higher water content values at all three stages in CCBR
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(U= 10, 62, 34 for early, intermediate and late, p= <0.001 for all) and in the

intermediate stage at SRNP (U=338, p= 0.036).

4.4. Discussion

The results presented here indicate that leaf structural and chemical
traits, as well as leaf pigment content, have the potential to differ significantly
between forest successional stages at a given site. This trait variability is
influenced by site characteristics, so that the extent and direction of changes
detected between successional stages are not the same at CCBR and SRNP.
Additionally, the spectral reflectance of leaves was found to be variable
between successional stages to the extent that automated species level
classification was impossible when successional variability was not taken

into account.

4.4.1 Variation in leaf traits in response to forest successional stage

Variability between successional stages among the plant traits
evaluated here was generally significant in ANOVA analysis at SRNP, but only
the SVIs showed significant differences between stages in the same tests at
CCBR (Table 4-3). Traits exhibiting significant differences between
successional stages tended to be those following a clear trend from early to

late succession. Such a trend is noticeable at SRNP in SLA, pigments, SVIs and
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the N:P ratio (increasing) and leaf thickness (decreasing). The general lack of
statistically significant differences between the three successional stages at
CCBR noted in Table 4-3 may be attributable to the fact that this trend was
not observed. For all structural and biochemical traits except for water
content and SLA (Figure 4-2a and c), the mean value at the intermediate
stage ran contrary to the general trajectory established by the early and late

stages.

The between-stage variability also represents a deviation from the
Leaf Economics Spectrum (LES) proposed by Wright et al (2004a). Where
the LES describes functional trade-offs that apply globally across a broad
range of species and climates, our results point to the presence of local-scale
variability that doesn'’t fit this pattern. This deviation is reflected in a recent
study by Funk and Cornwall (2013), who also report context-dependent
variability that doesn’t fit the pattern described by the LES. Both their results
and ours underscore an important point: While relationships such as the LES
are effective tools for understanding global-scale patterns in leaf traits, these
patterns don’t necessarily hold at the community level, where local-scale

variation may produce different results.

The number of significantly related leaf traits remained unchanged at
SRNP across the three successional stages, with 13 significant relationships

found at each stage, though the related traits were inconsistent from stage to
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stage. Leaf traits at CCBR showed fewer correlations overall, though similar
general patterns emerged. SLA was consistently related with leaf water
content and leaf thickness, and chlorophyll and carotenoid pigments showed
significant relationships at all stages. Contrasting with SRNP, the greatest
number of correlations was found at the early successional stage (16),
decreasing to 6 at each of the intermediate and late stages. There is little in
the literature with which to compare variation of trait-correlations in
response to changing forest succession, but this trend is consistent with
Poorter et al. (2008), who note that relationships between traits are much

stronger for younger, smaller trees than for more mature individuals.

4.4.2 Impact of site characteristics on trait variability

Variability in leaf traits at the site level was strongly divergent
between CCBR and SRNP. The high degree of difference between stages
found here is consistent with Asner et al. (2009), who studied variability in
chemical and spectral properties of 162 species across a
climate/precipitation gradient in Australia. They found that variation was
greatest at lowland sites with high temperature and moderate precipitation.
SRNP has a mean annual rainfall of 1500 mm, slightly below the range they
describe, but is intensely variable, with values upwards of 2500 mm reported
(Janzen 1993). Water limitation is undoubtedly a greater factor at CCBR,

with mean annual precipitation of just over half the SRNP average.
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Soil characteristics are also more favorable for growth at SRNP, with
Cambisol-dominated topsoil and a relatively high organic carbon content
(2.48% by weight). CCBR by contrast it dominated by sandy Regosols, with a
much lower organic content (0.41%) (FAO et al. 2012). It may be that this
water-stressed environment, common to all successional stages, restricts the
development of distinct leaf traits associated with advancing successional

stage.

Differences in the extent of successional variability leaf traits between
the sites may be related to differences in the criteria used in establishing the
permanent plots. The plots at CCBR were established based on time since
abandonment, (Avila-Cabadilla et al. 2009), whereas those at SRNP were
defined based on stand structural characteristics (Arroyo Mora et al. 2005;
Kalacska et al. 2004a). The environmental constraints at CCBR, notably
poorer soils and lower mean precipitation, may prevent the development of
functionally distinct collections of leaf traits within the temporal boundaries
applied to the selection of the plots. The plots at SRNP, selected based on
stand characteristics rather than time since abandonment and less
constrained resources, may have a greater likelihood of containing a more

distinct successional profile of leaf traits.
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4.4.3 Variability in leaf spectral reflectance

Variability in spectral reflectance between successional stages
(Figures 4-7 and 4-8) is concentrated in different parts of the
electromagnetic spectrum at each of the study sites. While within-stage
variation between species is unremarkable, examination of the spectral
regions that exhibit the greatest difference between the early and late stages
(the most significantly different pairing for the majority of leaf traits) shows
two distinct patterns. At CCBR, the drier of the two sites, spectral variation
between the stages tended to be greatest in the region controlled primarily
by leaf structural and moisture characteristics (Gates et al. 1965), whereas
the region of greatest difference at SRNP is governed most strongly by leaf
pigment content, particularly chlorophyll (Boyer et al. 1988; Gates et al

1965).

This pattern of differences in key spectral regions points to a
fundamental difference in plant function according to differences in site
characteristics, and particularly in response to different precipitation
regimes. The variation noted here seems to indicate physiological changes in
leaf characteristics related to moisture stress at the relatively dry CCBR site,
where leaf structure at SRNP appears to be more consistent between the
stages. Instead, at SNRP where precipitation is less likely to be a limiting

factor, variation is expressed instead as changes in the relative abundances of
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photosynthetic pigments between the stages. Castro-Esau et al (2004),
Sanchez-Azofeifa et al (2009), and Hesketh and Sanchez-Azofeifa (2012)
have all noted similar patterns of leaf properties in response to differences in
precipitation regimes. It seems clear that at the site level, environmental
constraints driven by micro-climate and soil type may influence the
assemblage of traits most affected by changing successional stage.
Accordingly, not just the extent of spectral variation but also the location of

that variation within the spectrum vary as well.

4.4.4 Impact of forest succession on classification accuracy.

Within each site and successional stage, classification accuracy was
relatively high, with a maximum value (before the removal of the most
consistent species) of 82.5% at SRNP in the intermediate stage. The lowest
accuracy, 55.2%, was found at the same stage in CCBR, though all other
within-stage classifications had accuracies above 76.0%. This is slightly
lower than previous findings by Clark et al. (2005), who report 92.0%
accuracy of a set of 7 rainforest species collected in Costa Rica, but in the
range of Castro-Esau et al. (2006) who found accuracies of 80.0% or higher at
a collection of dry to wet tropical sites throughout Costa Rica, Panama, and
Mexico. Our relatively low classification accuracy as compared with Clark et
al. (2005) is likely a result of differences between the data sets and classifiers

used. While we have intentionally limited the number of spectral inputs to
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our classification with an interest toward evaluating the plausibility of simple
and efficient automated species discrimination, they include a greater
number of spectral bands in their analysis (30 wavebands to our 6). This
accords with similar species level classification by leaf chemistry where
accuracy was found to increase with increasing dimensionality of the input
dataset, rising from approximately 55% using 6 inputs to 90% with 20 (Greg

Asner, 2010, personal correspondence).

While a negative relationship between sample size and classification
accuracy was expected to manifest as increased accuracy following the
removal of the six anomalously consistent species, this was only found to be
true in the early successional stage. Castro-Esau et al. (2006) project a linear
decrease from 85.0% with 20 species to 69.0% with 100 species. However,
in spite of the modest sample size resulting from a focus on species common
to all three successional stages, our average within-stage accuracy was
typically lower than both their projections and the results of Hesketh and
Sanchez-Azofeifa (2012), achieved with the same classifier used here on 30

species in the Panamanian dry forest (Table 4-7b).

The decrease in accuracy from within-stage to between-stage
classification, was consistent and unambiguous, with a typical reduction to
approximately 25% of the within-stage accuracy where all common species

were included, and 20% where the six anomalously consistent species were
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removed from the classification.  Apart from their high between-stage
classification accuracy, the species removed (Achatocarpus gracilis and
Croton suberosus at CCBR and Acosmium panamense, Gliricidia sepium, Luehea
candida, and Rehdera trinervis at SRNP) exhibit little in common with each
other. They do not cluster taxonomically, though the Acosmum and Gliricidia
species share the family Fabaceae. As discussed above, it is likely that water
availability and retention at the leaf level plays an important roll in
determining leaf spectral characteristics, and this is evident in the
classification results. This conclusion supports the findings of Castro-Esau et
al. (2004), who found that lianas and trees at two sites in Panama could be
accurately discriminated between using spectral reflectance at a dry forest
site, but not at a rainforest site. Clearly, the role of microclimate in general
and precipitation as well as soil moisture in particular must be considered in

any classification undertaken in the seasonally dry tropics.

4.4.5 Applications and directions for further study

While investigation into leaf biophysical and spectral variation of the
type described here is important from the perspective of better
understanding the plant physiology of tropical dry forests and contributing
to the dialogue surrounding the development of spectral taxonomic
relationships (Asner and Martin 2008; Ustin and Gamon 2010), this variation

is of particular importance in assessing the potential for reliable species-level
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discrimination of plant species or functional types using airborne remote
sensing. One of the goals of remote sensing of forests is the use of these data
for automated retrieval of biodiversity and species information (Asner and
Martin 2008). The requirement for species discrimination is that
interspecies variability in leaf properties is greater than intra-species
variability (Castro-Esau et al. 2006). It follows then that an understanding of
the scope and variation of plant traits across any number of environmental
(ie. temperature, precipitation, altitude) and temporal (seasonal,
phenological, successional) gradients is integral to the development of
techniques that can be applied with confidence over a variety of

environments.

Recent promising results, such as those of Clark et al. (2005) and
Asner and Martin (2008) point to the potential for monitoring biodiversity
via high spatial and spectral resolution imaging, but both ignore the temporal
dimension, which has been demonstrated to be an important contributor to
leaf-level spectral variability (Hesketh and Sanchez-Azofeifa 2012). Further,
the majority of studies into leaf trait variability and classification in the
tropics have taken place in rainforest environments, while seasonally dry
forests are largely overlooked. This is important, as numerous studies have
demonstrated that these environments may yield entirely distinct patterns of
trait relationships from more humid forests (Sanchez-Azofeifa et al. 2009).

Castro-Esau et al. (2004) showed that discrimination between trees and
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lianas at two sites in Panama was influenced largely by the precipitation
regime at the site level. They found that spectral characteristics expressed
during the dry season at a seasonal site allowed for accurate discrimination
between functional groups, whereas differences were less clear at a

rainforest site.

Sanchez-Azofeifa et al. (2009) found a distinct pattern of leaf traits
among liana species in dry versus rainforest environments. Drought
adaptation by lianas, noted by Schitzer (2005) and Andrade et al (2005), are
expressed as higher spectral reflectance and transmittance and lower
absorbance, resulting in better heat management and a lower risk of water
stress. These traits are most pronounced in dry environments where the
advantage they impart relative to host trees is maximized. While our study
focus solely on tree leaves, in light of the impact of lianas on canopy spectral
response (Sanchez-Azofeifa and Castro-Esau 2006) and the tendency for
lianas species to show distinct patterns in leaf biophysical and optical
characteristics, particularly in drier environments (Sanchez-Azofeifa et al
2009), investigation into the effect of successional stage on liana leaf traits
would be an important contribution to the overall understanding of leaf
spectral and biophysical variation in the tropics. Liana species are an
increasingly important component of tropical canopies in the Americas

(Schnitzer et al. 2011) and an understanding of their unique leaf traits as well
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as variability in liana loading of host trees is an important element in

interpreting tropical canopies.

If the classification procedures described here are to be adapted to the
canopy scale for use with airborne spectroscopy, variation in forest
structural and compositional characteristics between successional stages
becomes an important consideration. Species diversity tends to increase and
stem density tends to decrease asymptotically with time since abandonment
(Powers et al. 2009). Kalacska et al. (2005) detail the variation in leaf area
index (LAI) plant area index (PAI) and canopy openness between
successional stages at three tropical sites, including CCBR and SRNP.
Decreasing canopy openness and increasing vertical complexity moving from
early to late successional stages control the importance of the herbaceous
understory at the forest floor in contributing to canopy-level spectral
reflectance. That is, where the spectral properties of understory vegetation
are an important contributor to overall stand-level reflectance in early stage
forests, this contribution decreases as the forest matures and the canopy
becomes more closed. While these differences allowed for discrimination
between successional stages based on a linear relationship between LAI/PAI
and vegetation indices calculated from Landsat 7 ETM+ imagery, this
variation, coupled with the potential for inter-species spectral and
biophysical variability in addition to changing species composition between

successional stages (e.g. Kalacska et al. 2004a) suggests a very complex set of
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variables. As a result, the site-to-site portability of relationships between

optical and structural stand characteristics may be impacted.

4.5 Conclusions

We demonstrate here the potential for significant variation in leaf
biophysical and spectral characteristics between early, intermediate, and late
stages of succession. Site characteristics and microclimate have a clear
impact on the magnitude of the difference between successional stages, with
the more productive Costa Rican site exhibiting a clearer distinction between
leaf traits among the three successional stages. The trend of asymptotic
increase in complexity following a disturbance described by Powers et al
(2009) is echoed by a pronounced change in leaf properties between the
early and intermediate stages, with a more modest change between the
intermediate and late. While this variation doesn’t occur to the same extent
in both of the environments studied, in both cases it was sufficient to inhibit
accurate species level classification based on leaf spectral reflectance.
Classification accuracies of approximately 80% were eroded by a factor of 4

to 5 when applied without consideration for successional stage.

This study represents an alternative approach to a trend in the
ecophysiological literature for studies combining large assemblages of

species for evaluation against a variety of environmental conditions, but
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overlook local-scale variability and the influence of microclimate (e.g. Asner
and Martin 2008; Asner et al. 2009; Martin and Asner 2009). This local
variation, even within species, is measurable and complex, influenced by site
characteristics, temperature and precipitation regimes, and patterns of land-
use history. A continued exploration of these characteristics, expanded to
include other structural groups such as liana species and the herbaceous
elements of the forest understory will provide a valuable addition to larger,

species-intensive analysis.
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Chapter 5: Effect of season and successional stage on leaf properties in
a tropical dry forest

5.1 Introduction

Dry forests in the neotropics, characterized by a naturally fragmented
distribution (Pennington et al. 2009), have been further fragmented by
deforestation related to commercial logging, agriculture, pasture, and
human-induced fires (Calvo-Alvarado et al. 2009; Colon and Lugo 2006;
Corlett 1995; Rudel et al. 2002; Silver et al. 2000). These forests have been
heavily exploited since early colonial times, with climatic and edaphic
conditions conducive to development and cultivation (Ewel 1999; Quesada et
al. 2009; Tosi and Voertman 1964). As a result, they are among the world’s
most threatened ecosystems (Gentry 1982; Janzen 1988; Murphy and Lugo
1986a), with more than 40% deforestation in dry forests regions reported in
Latin America (Olson 2000). In Mexico, which accounts for 38% of the total
dry forest coverage in the neotropics (Portillo-Quintero and Sanchez-
Azofeifa 2010), nearly 60% of original dry forests have been converted to
other uses, and much of what remains exists as fragments in marginalized
areas, such as on steep slopes (Trejo and Dirzo 2000). Miles et al. (2006)
estimate that while 97% of tropical dry forests globally are under threat by
some combination of climate change, fragmentation, fire, and conversion for

agriculture, only 28.5% enjoys any kind of protected status. Even these
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forests may be threatened, as fragmentation of surrounding forests increases

(DeFries et al. 2005; Sanchez-Azofeifa et al. 2009).

This pattern of disturbance has lead to the recognition of secondary
forests, or those in various stages of regeneration, as the tropical forests of
the future (Corlett 1994; Joseph Wright and Muller-Landau 2006; Wright
2005; Wright and Muller-Landau 2006). Because secondary forests are more
efficient carbon sinks than mature forests (Brown 1993; Dixon et al. 1994;
Fearnside and Guimaraes 1996; Uhl et al. 1988), an understanding of the
distribution of these forests is an important element of global carbon models
(Kimes et al. 1999). A need for estimates of the extent and distribution of
secondary forests in the tropic has led to a call for techniques to monitor this
forests using satellite remote sensing (Arroyo-Mora et al. 2005; Castillo et al.

2012; Foody et al. 1996; Steininger 1996).

Longstanding interpretation of the successional characteristics of
tropical dry forests predict a more rapid recovery following disturbance than
would be expected in wet forests due to a supposed simplicity in their
structure and composition and a dominance of clonal reproduction through
coppicing (Ewel 1977; Murphy and Lugo 1986b; Segura et al. 2003). In fact,
high levels of phylogenetic (Gillespie 2005) and genetic (Quesada et al. 2004)
diversity indicate a number of sexual systems as the primary mode of forest

reproduction (Quesada et al. 2009). This supports the idea of a system of
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wind and animal dispersed seeding, as suggested by Janzen (Janzen 1988),
which may actually be slower and more susceptible to disturbance due to the
seasonality of the growing season and the reliance on granivory and zoophily
(Bawa 1990; Cascante et al. 2002; Fuchs et al. 2003; Quesada et al. 2001).
Castillo et al. (2011) confirm this using LiDAR data to map dry forest canopy
heights, finding a pattern of dome-shaped canopies which reflects vertebrate-

dispersed seeding.

The successional pathways initiated by secondary forest regeneration
give rise to a temporal gradient of successional stages, which influence the
structure and composition of forested areas (Kalacska et al. 2007b; Kalacska
et al. 2004; Kalacska et al. 2005). Mapping studies have indicated that at the
pixel scale, the reflectance characteristics of secondary forests “merged” with
those of mature stands after anywhere from 2 to 14 years, depending on the
spatial and spectral resolutions of the sensors used (Fearnside 1982;
Steininger 1996). In the dry forests, the pronounced seasonality introduces a
second temporal gradient. This wet/dry seasonality results in a very
dynamic canopy which has a pronounced impact on the discrimination of
forest types (Portillo-Quintero and Sanchez-Azofeifa 2010), functional
groups (Castro-Esau et al. 2004; Kalacska et al. 2007a) and species (Hesketh

and Sanchez-Azofeifa 2012) at scales ranging from the leaf to the stand.
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Succession in secondary forests can be measured using a number of
different methods, including palynology (analysis of pollen in the fossil
record), stand reconstruction,and the long-term monitoring of permanent
forest plots, but the chronosequence method has become one of the most
commonly used hazdon et al. 2007). Chronosequences, or space-for-time
substitutions, use multiple plots of different ages, or times-since-
abandonment, to stand for different forest successional stages (Kalacska et al.
2005; Lehmkuhl et al. 2003), allowing for the simultaneous study of different
successional stages. Criticism of the method is based on the assumptions that
1. biotic and abiotic components of all sites follow the same history; and 2.
that the variability found between sites in a chronosequence is in fact the
result of changing successional stage rather than other environmental or
anthropogenic factors (Johnson and Miyanishi 2008). This assumption is
difficult to prove, though the topographic conditions, land use histories, and
substrates underlying chronosequence plots are standardized to limit the
potential for variable successional pathways (Quesada et al. 2009). While the
common alternative, the tracking of permanent plots, may be ideal in
principle, the high financial and human investment necessary to establish
long-term studies limits the number of sites. This, coupled with the high
environmental and species variability in tropical environments makes if
difficult to rely on these studies to fully represent the variety of potential
successional pathways (Guariguata and Ostertag 2001). Further, while

chronosequence analysis has predicted trends in such characteristics as basal
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area (Chazdon et al. 2007; Pascarella et al. 2000) more effectively than
species richness (Pascarella et al. 2000; Sheil 2001) and species density
(Chazdon et al. 2007; Johnson and Miyanishi 2008), it is the only way to
address the potential variation in leaf traits in response to changing
successional stage. No other method allows for data collection in a narrow
temporal window, standardizing for both intra- and inter-annual variation in

environmental conditions at the site level.

Because an assessment of the variability in leaf properties is an
important element of remote monitoring, various studies have investigated
this variation along environmental (Asner and Martin 2008; Asner et al
2009; Martin et al. 2007) and functional (Castro-Esau et al. 2004; Sanchez-
Azofeifa et al. 2009) gradients. Few studies, however, have been directed
towards the temporal properties of these highly variable forests. Better
understanding the variability in leaf biophysical and optical properties in
response to forest succession is a critical step in establishing methods for

classifying and monitoring secondary forests.

As such, the objective of this study is to investigate the impact of
seasonality and successional stages on leaf traits and spectral reflectance at a
very dry tropical forest in Mexico. First we examine the variability among a
suite of leaf traits along a successional gradient during the wet and dry

seasons, addressing differences between seasons as well as between pairings

161



of successional stages. Second, we explore the effect of seasonality on leaf
spectral properties. Finally, we address the effect of variation in leaf spectral
reflectance due to changing season and successional stage on the potential

for accurate species classification.

5.2 Methods

5.2.1 Study Site

Data for the analysis were collected at the Chamela-Cuixmala
Biosphere Reserve (CCBR) in the Province of Jalisco, Mexico (19°22" -
19°35’N, 104°56” - 105°03’'W). The site falls toward the dry end of the
rainfall spectrum for tropical dry forest as defined by Sanchez-Azofeifa et al.
(2005), with mean annual precipitation of 741 mm (*¥256 mm) occurring
during the short wet season of June through  October
(http://www.ibiologia.unam.mx/ebchamela/). @ An average temperature
during 1978 - 2009 of 25.2° C (¢1.3° C)(Kalacska et al. 2004; Maza-Villalobos

etal 2011) is relatively cool among tropical dry forests, as defined above.
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Figure 5-1. Map showing the location of the Chamela Cuixmala
Biosphere Reserve (CCBR), in Jalisco, Mexico.

Successional stages at CCBR have been defined as chronosequences on
the basis of time since abandonment following a land-use pattern of
cultivation followed by pasture (Avila-Cabadilla et al. 2009). At the time of
data collection, plots located in the early stage had been abandoned 3 - 5
years, those in the intermediate stage for 8 - 12 years, and those listed as

mature for a minimum of 50 years. A more detailed account of the land use
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history and site characteristics is provided in the previous chapter as well as

in Avila-Cabadilla et al. (2009) and Alvarez-Afiorve et al. (2012).

5.2.2 Data Collection

Leaf samples were collected and analyzed during 2009 and 2010. The
2009 collection was carried out in September at the height of the wet season
(WET). Data from 2010 collection was collected in late in October during the
senescent period and is referred to here as dry season data (DRY), though the
trees had not yet begun to drop their leaves. The list of species analyzed is
detailed in Table 5-1. Protocols for site selection, leaf collection and

transportation were the same as those described in chapter 4.

The leaf traits included in the study are listed in Table 5-2. Structural
traits (water content, leaf thickness, and specific leaf area (SLA)) and leaf
level spectral reflectance were collected within 6 hours of leaf harvest, during
which these properties are relatively stable (Foley et al. 2006). Leaf spectral
reflectance (400 - 1100 nm) was measured at this time using a PP Systems
Unispec SC spectrometer (PP Systems, Amesbury, MA). Two vegetation
indices were calculated: the mND705 (Sims and Gamon 2002) and the double
difference (DD) (le Maire et al. 2004). These two indices have been shown to
be more reliably applied across a variety of site conditions and species

assemblages than many of the alternative indices (le Maire et al. 2004).
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Family

Achatocarpaceae

Flacourtiaceae
Boraginaceae
Polygonaceae
Euphorbiaceae
Leguminosae
Leguminosae
Leguminosae
Polygonaceae

Family
Leguminosae
Flacourtiaceae
Boraginaceae
Euphorbiaceae
Leguminosae
Leguminosae
Leguminosae
Polygonaceae

Genus species
Achatocarpus gracilis
Casearia tremula*

Cordia alliodora*
Coccoloba liebmanii

Croton suberosus
Haematoxylum brasiletto*
Lonchocarpus constrictus*
Lonchocarpus eriocarinalis*
Ruprechtia fusca*

Genus species

Caesalpinia caladenia
Casearia tremula*

Cordia alliodora*

Croton pseudoniveus
Haematoxylum brasiletto*
Lonchocarpus constrictus*
Lonchocarpus eriocarinalis*
Ruprechtia fusca*

Table 5-1. Species included in the investigation.
a. Wet season; b. Dry season. Species marked
with an asterisk are common to both seasons.

Leaf pigment content (chlorophyll a, b, total chlorophyll, and
carotenoids) was estimated by a process of Dimethyl Sulfoxide (DMSO)
digestion and absorption spectroscopy performed on frozen leaf cores
transported back from the field site (Hiscox and Israelstam 1979; Richardson
et al. 2002). Foliar chemistry (nitrogen and phosphorous) were estimated
from dry leaf material using a combustion element analyzer (N) and
colorimetric analysis (P) (Richards 1993). Chapter 4 outlines more

exhaustive description of the instruments and laboratory procedures

followed in the estimation of each trait.
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5.2.3 Statistical Analysis

Summary statistics were calculated for each of the measured variables
(Table 5-2). In order to measure variation between successional stages, one-
way ANOVA analysis was carried out on the wet and dry season data for each
season. Wherever the ANOVA assumptions were not met, the non-

parametric Kruskal-Wallis H-test was substituted.

Pairwise analysis of each trait was carried out in two ways: First,
differences between paired successional stages were analyzed to determine
the locations along the successional gradient where each trait showed
greatest variability. The pairings used were early and late (E/L) successional
stages, early and intermediate (E/I), and intermediate and late (I/L), and the
tests were carried out separately for each season. Second, differences
between wet and dry seasons were evaluated separately for each trait at each
successional stage. The pairwise analyses use Student’s t-test where
possible, and the non-parametric Mann-Whitney U-test where the
assumptions for parametric statistics were not met. Variability in the
interrelatedness of the leaf traits across the successional gradient was
evaluated using correlation analysis on both the combined successional

stages for each season, and for each stage separately.
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a. Stage Mean SD b. Stage Mean SD
Water e 62.87 6.18 Water e 53.82 4.70
Content i 62.62 5.17 Content i 56.26 5.51
(%) | 64.99 7.22 (%) | 50.19 7.12
. e 181.75 49.56 . e 228.65  92.31
Thickness | . 16140 37.64 Thickness | 10008 86.91
(um) (um)
| 175.42 53.00 | 205.61  78.02
e 157.89 35.90 e 104.44 5558
SLA . SLA .
(cm2/g) [ 172.05 56.33 (cm2/g) [ 122.59  67.28
| 181.20 64.54 | 157.97  50.58
e 419.63 132.43 e 399.14 173.48
nﬁ::/(n':‘;) i 363.71 113.09 nﬁ::/(n':‘;) [ 385.15  171.25
| 386.03 150.32 | 358.35 170.20
e 173.19 47.17 e 130.70  34.78
Car (mz' i 15094 49.79 Car (mz' i 153.11  64.60
mol/m?) mol/m°)
| 154.02 56.78 | 134.33 63.30
e 0.48 0.06 e 0.53 0.06
mND705 i 0.48 0.06 mND705 i 0.48 0.08
| 0.45 0.09 | 0.51 0.06
e 0.03 0.05 e 0.08 0.05
DD i 0.04 0.05 DD i 0.04 0.07
I 0.00 0.06 I 0.07 0.06
e 3.86 0.83 e 2.50 0.30
N % i 3.59 0.75 N % i 2.25 0.37
| 3.68 0.41 [ 2.41 0.31
e 0.20 0.05 e 0.16 0.03
P% i 0.19 0.05 P % i 0.20 0.05
| 0.23 0.05 [ 0.23 0.09
e 21.04 6.85 e 16.69 3.39
N:P i 20.11 4.99 N:P i 12.41 4.40
| 16.94 3.69 | 12.02 4.85

Table 5-2. Leaf traits collected during the a. Wet season, and b. Dry season.

5.2.4 Classification Analysis.

The effect of spectral variability between seasons and successional
stages on the potential for accurate classification of tree species was

estimated through the application of a non-parametric decision tree classifier
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(See5, Rulequest Research, St Ives, NSW, Australia, 2008). As inputs to the
classifier, a set of 6 variables was calculated from the raw spectral data.
Inputs 1 - 4 were the first four principal components of the spectra from
each species, used here to reduce the high correlation and redundancy
exhibited by hyperspectral data (Kalacska et al. 2007a; Schowengerdt 1996).
To link the spectral inputs to biophysical properties, Merzlyak et al’s (1999)
plant senescence reflectance index (PSRI) was used to estimate the
chlorophyll and carotenoid balance of each species, and Pefiulas et al’s
(1993) water index (WI) was included as a spectral surrogate for measured

leaf water content.

The effect of variability along seasonal and successional gradients was
evaluated by applying the classifier in two ways. First, each season was
treated individually, and training/testing combinations were established
between the successional stages whereby a classifier trained on data from
one successional stage was then tested for accuracy when used to classify
data from another stage. All possible combinations of within- and between-
stage classification were tested and the accuracy reported as the percentage
of species in the testing set classified correctly in each pairing. Second, the
effect of seasonality within each successional stage was explored by
comparing the accuracy of classifiers trained and tested within a single
season with those trained on wet season data, then applied to data from the

dry season and vice versa. This seasonally cross-referenced approach was
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repeated for each successional stage. To normalize the datasets between the
seasons, we limited the classification to species common to both in both. Asa
result, this second round of classifications included only the species marked

with an asterisk in Table 5-1.

5.3 Results

Differences in leaf traits were noted throughout the analysis, between
both seasons and successional stages. One-way ANOVA analysis (Table 5-3)
uncovered a greater magnitude of difference at the trait level between
successional stages during the dry season than during the wet. Water
content (H=17.65, p= 0.001), SLA (H=14.30, p= 0.001), Carotenoids (H= 7.18,
p= 0.028), and both vegetation indices (mND705: H= 8.45, p= 0.015; DD: H=
9.47, p= 0.003) all show significant differences among the three successional
stages during the dry season. During the wet, only the chlorophyll index

mND705 shows significant variation (H= 9.96, p= 0.031).
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Season Wet Dry

# Species 9 8
Water Content 0.278* 0.001*
Thickness 0.312 0.073*
SLA 0.312%* 0.001*
Chlorophyll 0.203* 0.609*
Carotenoids 0.127* 0.028*
mND705 0.031* 0.015*
DD 0.219* 0.003*
N 0.730 0.361
P 0.222 0.099

Table 5-3. Results of one-way ANOVA analysis of
differences between the three successional stages
(early intermediate, and late) during each season.
Significant results are in bold (p= <0.05). Results
marked with an * indicate substitution of Kruskal-
Wallis test where ANOVA assumptions were
unmet.

5.3.1 Structural Traits

Among the three structural traits considered, water content, leaf
thickness, and SLA (Figure 5-2), we found the greatest difference between
seasons in water content, which showed significant differences between
seasons at all successional stages (U= 0.00 and p= <0.001 at all stages) (Table
5-4). Differences in water content were also significant between all three
pairings of successional stages, with p values ranging from 0.023 (U= 564.5)

between E/L, to <0.001 (U=381.5) between the [/L (Table 5-5).
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a. Water | Thick SLA Chl Car mND705 DD N P N:P

Wet | 0.142 0.423 0.112 0.317 | 0.089 0.039 0.029 | 0.604 | 0.243 | 0.793

Dry | 0.023 | 0.194 | <0.001 | 0.301 | 0.817 0.186 0.243 | 0.583 | 0.038 | 0.061

b. Water | Thick SLA Chl Car mND705 DD N P N:P

Wet | 1.000 | 0.176 0.468 | 0.036 | 0.034 0.819 0.32 0.5 0.655 | 0.161

Dry | 0.010 | 0.023 0.231 0.725 | 0.076 0.003 0.002 | 0.196 | 0.091 | 0.055

c. Water | Thick SLA Chl Car mND705 DD N P N:P

Wet | 0.165 0.704 0.516 | 0.375 | 0.834 0.02 0.001 | 0.791 | 0.107 | 0.155

Dry | <0.001 | 0.353 0.027 | 0.329 | 0.088 0.437 0.26 0.445 | 0.442 | 0.876

Table 5-4. p-values from pairwise comparisons by successional stage. a. early / late pairing,
b. early / intermediate pairing, and c. intermediate / late pairing. Results in bold indicate
significant differences (p= <0.05). Results marked with an * indicate substitution of Mann-
Whitney test where t-test assumptions were unmet.

Stage | Water Thick SLA CHL CAR mND705 DD N P N:P
E <0.001 0.051 <0.001 .04 <0.001 0.002 <0.001 0.001 0.075 0.229
| <0.001 0.802 0.006 0.755 0.809 0.801 0.721 0.002 0.265 0.008
L <0.001 0.168 0.140 0.313 0.061 <0.001 <0.001 <0.001 0.885 0.049

Table 5-5. p-values from pairwise comparisons of wet and dry season results at each
successional stage. Significantly-different (p= <0.05) pairings are highlighted.

SLA varied according to a similar pattern, with significant seasonal
differences in the E/I successional stages (U= 407, p= <0.001 and U= 558, p=
0.006, respectively). Again, variation between paired successional stages
was restricted to the dry season. There was an increasing trend from early to
late stage, with significant differences noted between the E/L (U= 397, p=

<0.001) and I/L (U= 569, p= 0.027) stages.
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All three traits were strongly correlated during the wet season, both
with the successional stages grouped and separated (Tables 5-6 and 5-7). No
pattern emerged in the correlation of these structural traits during the dry
season though leaf thickness and water were significantly related in the
intermediate stage (r= 0.48, p= <0.001, and SLA was related to both water

content (r= 0.63) and thickness (r=-0.71)in the late (p= <0.001 for both).

Water Thick SLA CHL CAR N P mND705 DD

0.08 0.15 0.07 0.72 0.90 0.22 0.65 0.71
0.00 0.00 0.57 0.60 0.25 0.23
0.02 0.63 0.62 0.77 0.73
0.72 0.23 0.03 0.04
0.70 0.77 0.70
0.18 0.18
0.35 0.51
0.00

Thick
SLA | 0.00
CHL | 0.73 0.83
CAR | 0.67 0.99 0.77
N | 0.17 0.16 0.03 0.49 0.98
P| 0.35 0.77 0.37 0.29 0.50
mND705 | 0.02 0.07 0.51 0.00 0.15 0.47
DD | 0.01 0.04 0.61 0.00 0.13 0.77 0.96

WET

Table 5-6. p-values from Pearson correlation between leaf traits with all three successional
stages summed. Significantly-related (p= <0.05) pairings are highlighted.
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Water Thick SLA CHL CAR mND705 DD N P
Water 0.08 0.15 0.07 0.72 0.65 0.71 0.10 0.72
Thick | 0.01 0.00 0.00 0.25 0.23 0.44 0.23
SLA | 0.03 0.00 0.02 0.77 0.73 0.35 0.32
CHL | 0.00 0.19 0.03 0.04 0.14 0.65
CAR | 0.12 0.17 0.01 0.73 0.70 0.91 0.53
mND705 | 0.02 0.01 0.46 0.01 0.00
DD | 0.00 0.05 0.93 0.00 0.21 0.00
N | 0.29 0.33 0.08 0.10 0.22 0.32
P| 095 0.87 0.83 0.24 0.40 0.36
Water Thick SLA CHL CAR mND705 DD N P
0.00 0.81 0.28 0.31 0.61 0.56 0.85 0.38
Thick | 0.91 0.01 0.07 0.19 0.09 0.38 0.16
SLA | 0.00 0.00 0.01 0.00 0.00 0.50 0.55
CHL | 0.28 0.54 0.01 0.01 0.31 0.78
CAR | 0.37 0.72 0.74 0.01 0.30 0.72
mND705 | 0.74 0.26 0.88 0.93 0.90 0.63
DD | 0.64 0.44 0.77 0.49 0.00
N | 0.23 0.31 0.12 0.35 0.26 0.04
P| 0.55 0.39 0.54 0.48 0.38 1.00
Water Thick SLA CHL CAR mND705 DD N P
0.54 0.00 0.54 0.54 0.02 0.01 0.41 0.52
Thick 0.05 0.02 0.22 0.23 0.98 0.64
SLA | 0.00 0.40 0.17 0.10 0.30 0.57
CHL | 0.30 0.12 0.27 0.58 0.41 0.59
CAR | 0.20 0.08 0.14 0.64 0.30 0.98 0.82
mND705 | 0.47 0.29 0.45 0.02 0.14
DD | 0.44 0.13 0.71 0.01 0.06
N | 0.96 0.54 0.39 0.65 0.83
P| 0.19 0.48 0.77 0.28 0.11

WET

Table 5-7. p-values from Pearson correlation between leaf traits for each site at each
successional stage. a. early, b. intermediate, c. late. Significantly-related (p= <0.05) pairings
are highlighted.

174

Ada

Ada

Ada



5.3.2 Chemical Traits

Foliar nitrogen levels were significantly lower during the dry season
at all successional stages (U= 2, p= <0.001; U= 4, p= 0.002, and U= 1, p=
<0.001 at early, intermediate, and late) (Figure 5-3, Table 5-4) though
differences between stages were non significant for either season (Table 5-
5). Phosphorous was strongly, but not significantly different between wet
and dry seasons only for the early successional stage (U= 17, p= 0.075).
Between successional stages, phosphorous showed significant variability
between the E/l stages (U= 12, p= 0.038) and strong but non-significant

variability between the E/I (t =-1.81, p= 0.091).

Nitrogen concentration followed a similar pattern of decrease
between the early and intermediate stages, then an increase to an
intermediate value in the late. Phosphorous exhibited a general pattern of
increase with increasing successions, though that increase was concentrated
between the E/I stages during the dry season (Figure 5-3a and b). Patterns
in the resulting N:P ratio show no consistency in their pattern between
seasons (Figure 5-3c). Differences in the ratio between successional stages
were strong but not significant between the early and both intermediate and
late stages (t= 2.038, p= 0.061 and t= 2.089, p= 0.055). N:P varied
significantly between seasons in both the intermediate and late stage (U= 8,

p=0.006 and U= 15, p= 0.049).
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Correlations between nitrogen and phosphorous were weak, both
with the successional stages grouped and separated. No relationships were

noted among leaf chemical levels and any of the other traits measured.

5.3.3 Leaf Pigments and SVIs

Of the leaf pigments, the only significant difference between the
seasons was in carotenoid levels in the early successional stage (U= 326, p=
<0.001), though differences in that pigment in the late stages were nearly
significant as well (U= 687, p= 0.061) (Figure 5-4, Table 5-4). Carotenoids
were significantly different in the wet season between the E/I pair (t= 2.152,
p= 0.034) and non significantly different in the dry between the E/I and I/L
pairs (U= 450, p= 0.076 and U= 622, p= 0.088). The only significant variation
in chlorophyll content was found between the E/I stages during the wet

season (t= 2.130, p= 0.036) (Table 5-5).
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Figure 5-4. Leaf Pigments. a. Chlorophyl], b. Carotenoids

The two pigments were significantly related to each other both at the
level of the season, with all successional stages grouped, and at each
individual stage(r= 0.97 or higher at all sites and stages, p= <0.001 for all)
(Tables 5-6 and 5-7). The spectral vegetation index mND705 was correlated
with chlorophyll in the early and late stages during the wet season (r= 0.37
and 0.34; p= 0.01 and 0.02, respectively) and the early and intermediate

stages during the dry (r= 0.35 and 0.39; p= 0.03 and 0.01, respectively), as
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well as carotenoids during the intermediate stage during the dry season (r=
0.41, p= 0.01) (Figure 5-5). DD was correlated to a similar extent in all cases.
Additionally, mND705 was related during the wet season to water content
and leaf thickness in the early stage (r = -0.36 and -0.37; p= 0.02 and 0.01,
respectively) and nitrogen in the intermediate stage (r = 0.68, p= 0.04).
During the dry season it was related to SLA during the intermediate stage (r=

0.42, p=0.00) (Table 5-7).
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Figure 5-5. Spectral Vegetation Indices. a, mND705, b. DD
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The indices exaggerate the variability in pigment content, and show
significant variation between seasons in the early and late successional
stages (mND705: U= 546.5, p= 0.002 and U= 495.5, p=<0.001. DD: U= 409, p=
<0.001 and U= 362, p= <0.001) (Table 5-4). Between successional stages,
both indices were variable between the E/L and [/L stages in the wet season,

and between the E/I stages in the dry season.

5.3.4 Spectral Variability

Variation in leaf spectra, averaged across the six species that
underwent spectral classification, was expressed differently during the wet
and dry seasons. Figure 5-6a shows the absolute difference in mean
reflectance values between paired successional stages (early/intermediate,
early/late, and intermediate/late). Spectral variation was concentrated in
the range of 750 to 1050 nm, the spectral region most indicative of leaf
moisture and structural properties (Gates et al. 1965). The same differences
between the stages, when calculated for the dry season, show an increased
prominence of the spectral regions centered at 550 and 700 nm, regions
sensitive to plant pigment concentrations (Boyer et al. 1988). Additionally,
the relative magnitude of the variability between the successional pairs was
reversed, with the greatest difference found between the intermediate/late

pair and the least between the early/intermediate pair during the wet season
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and the inverse during the dry. The early/late successional pairing was

intermediary during both seasons.
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Figure 5-6. Absolute difference in reflectance between successional
stages during the: a. Wet season, and b. Dry season. Legend codes
indicate the successional stages between which the spectral
difference was calculated. e_i: difference between early and
intermediate stages, e_l: difference between early and late stages, and
i_l: difference between intermediate and late stages.
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Figure 5-7 shows a pattern of increasing spectral difference between
seasons with advancing successional stages. In the early stage, spectral
differences are almost entirely concentrated in wavelengths longer than 750
nm. While the magnitude of spectral difference in this region increases with

successional stage, so does the difference at the “green peak” region around

550 nm.
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Figure 5-7. Absolute difference between average spectral
reflectance in the wet versus the dry season at each successional

stage.

The impact of variability in leaf spectral properties is shown in
Figures 5-8 and 5-9, which detail the effect of changing successional stage
and season on the accuracy of an automated non-parametric classifier.

Considering the effect of succession on spectral classification, in all but one
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case (the intermediate stage during the wet season) accuracy was a
minimum of 75% when testing the classifier on data collected in the same
successional stage for which it was trained (Table 5-8a). This accuracy
erodes substantially when the classifier is tested on data from a stage
different from the training data. In the most extreme case, when a classifier
trained during the wet season in the early stage is then applied to
intermediate stage data from the same season the accuracy drops by 75%
(from 82% to 7%). This trend is maintained during each season for all
combinations of successional stages, with an average reduction in

classification accuracy by a factor of 4.4.
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Figure 5-8. See5 classification accuracy: Effect of successional
stage by season. X-axis labels indicate the seasons from which the
training and testing data were taken from. d: dry season, w: wet
season.
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Figure 5-9. See5 classification accuracy: Effect of season by
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from which the training and testing data were taken from. e:
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The importance of the temporal domain is reinforced when
comparing the impact of changing season on classification results at each
successional stage. Accuracy when classifiers are trained and tested on the
same season/stage is consistently over 75% (again, the intermediate stage
during the wet season is an exception). When these same classifiers are then
tested on data from the opposite season, accuracy is a fraction of the within-
season results (Table 5-8b). This reduction is variable across successional
stages, with the greatest decrease noted in the intermediate stage where

accuracy is reduced by a factor of 11.33. Even in the late stage, where
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classification is least impacted by seasonal variation, the erosion in accuracy

is more than 75%.

a. Wet Dry Mean
e_e | 82.09 83.33 82.71
i_i|55.22 91.67 73.45

1] 76.12 91.67 83.9

e_i| 741 30.83 19.12

e || 27.41 14.17 20.79
i_e|12.59 19.17 15.88
i_l|20.00 16.67 18.34

l_e| 27.41 8.33 17.87

_i| 20.00 13.33 16.67
Within | 71.14 88.89 80.02
Between | 18.18 17.86 18.02
Factor | 3.91 4.98 4.44
b. Early Intermediate Late
d_d | 88.89 88.89 88.89
w_w | 88.89 62.22 77.78
d_w | 13.33 5.56 13.33
w_d| 12.22 7.78 26.67
Within | 88.89 75.56 83.33
Between | 12.78 6.67 20.00
Factor | 6.96 11.33 4,17

Table 5-8. See5 classification accuracy, expressed
as a percentage of individuals classified correctly
versus the number of individuals in the testing
data set. a. Cross-validated comparing
successional  stages. b. Cross-validated
comparing wet and dry seasons within each
successional stage. Factor is the magnitude of the
variation between the within- and between-stage
classification, expressed as the ration of within-
to between-stage accuracy.
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5.4 Discussion

Our results suggest a potential for significant differences between leaf
structural traits, pigment levels, and chemical concentrations during the wet
and dry seasons in a tropical dry forest, but that these differences vary with
changing successional stage (Tables 5-4 and 5-5). Further, these differences
translate into variability in spectral reflectance of a magnitude that
negatively impacts the potential for accurate classification of even a modestly

sized data set based on species-level spectral characteristics.

5.4.1 Differences in leaf traits between seasons

Unsurprisingly, water content was the leaf trait that varied most
strongly between seasons, with a significance of p= < 0.001 regardless of
successional stage. Evidence from previous studies that precipitation
regimes are a strong determinant of leaf traits at the site level (Sanchez-
Azofeifa et al. 2009) supports the notion that this variability in leaf water
content is a driver to the patterns of seasonal variation described here.
Variation among traits identified as contributors to the leaf economic
spectrum (LES) (Reich et al. 1997; Wright et al. 2004) show responses to
seasonality, as photosynthetic capacity declines with leaf senescence. The

LES asserts a pattern of covariance between foliar nitrogen, SLA, and leaf
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lifespan correlated to changes in maximum photosynthetic capacity (Amax)

that is essentially consistent across biomes and climate at a global scale.

In our site-level analysis, nitrogen in particular shows a strong
decrease from wet to dry season at all successional stages (Figure 5-3a, Table
5-4). In keeping with the LES, we also observed corresponding seasonal
decreases in SLA in both the early and intermediate stages (the late stage was
non-significant, but relatively strong, with p= 0.14). Basing our expectations
on the LES, a similar decrease in chlorophyll content should have been
associated with decreased dry-season productivity, but significant
differences in pigment concentration were only noted in the early
successional stage. The SVIs mND705 and DD that correlated significantly
with chlorophyll levels in the majority of stage/season combinations (Table

5-6) did, however, present differences between the seasons in the late stage.

Amax was not measured as part of the data collection for this study, and
as a result we cannot speak directly to the consistency of the relationship
between the traits comprising the LES. We can, however, point to important
differences in leaf traits between seasons within sites. Given that these traits
have a well-established impact on productivity (Falster et al. 2011; Poorter
and Bongers 2006), and that mapping and monitoring efforts using remotely

sensed data often exploit variability in the photosynthetically-active region of
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the electromagnetic spectrum, it follows that these seasonal differences can

impact estimation of the extent and distribution of these seasonal forests.

5.4.2 The importance of forest succession in seasonal variability in leaf traits

While trait-level variation in leaf properties according to changing
forest successional stage was not as pronounced as that attributable to
seasonal variation, we noted consistent patterns of increase or decrease
along the successional gradient (Fig 5-2). Interestingly, in 5 of the 9 traits
considered during the wet season the trajectory defined by the early and late
stages was not conformed to by the data from the intermediate stage. During
the dry season 6 of 9 traits followed this trend. This tendency for the
intermediate successional stage to deviate from a trajectory established by
the early and late stages suggests that plots established according to time
since abandonment may not reflect the structural and physiological changes

attributable to forest succession.

This calls into question the assumptions underlying the
chronosequence approach to evaluating successional pathways, namely that
species at an intermediate successional stage, according to the time since
abandonment, are indeed following a linear trajectory which will lead to the
same climax state as the late stage plots. While we’re unaware of any

previous research directly relating variability in leaf traits to forest
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successional stage in tropical dry forests, Loebeck et al (2013) noted
different trajectories of trait variation according to stand age in wet versus
dry tropical forests in Mexico. Where the measured leaf traits in the dry
season indicated a shift from conservative to acquisitive strategies with
increasing stand age, likely driven by an need for heightened drought
tolerance in the harsher and more open early successional stage, in the wet
forest, the reverse trend was noted, suggesting light, rather than water,
limitation was the driving force. The fact that our data tend away from a
linear trajectory from early to late stage may indicate either differences in
the environmental conditions or the successional pathways at the
intermediate stage sites, or it may be that a more detailed chronosequence
(ie. with more age classes represented) would serve to smooth out the

general trends indicated by the early and late stage measurements.

Land use history typically explains the creation of successional
pathways in secondary forests in the dry tropics (Castillo et al. 2005). That
said, the progression from pioneer to climax stages of forest development is
then moderated by site characteristics (e.g. species composition topography,
soil type, latitude) and microclimate (Corlett 1994; Denslow 1996; Janzen
1983, 1988, 2000). Arroyo-Mora et al. (2005) demonstrated an approach
using high-resolution satellite imagery (Landsat ETM+ and IKONOS) to
discriminate between early, intermediate, and late successional stages in

Costa Rica. Rather than time since abandonment, they define successional

189



stages via forest structural characteristics and species assemblages (Kalacska
et al. 2004). Though the analysis focuses on the relationship between
spectral reflectance and woody area index and forest structure at the canopy
scale, their results suggest far less overlap between successional stages than
is evident in the spectral indices included here (Figure 5-5). The influence of
the criteria for the selection of successional stages is also reflected in an
earlier study, described in chapter 4, which found greater variation
attributable to succession during the wet season at the same Costa Rican
sites detailed by Arroyo-Morro et al. (2005) than in the Mexican sites used

here, defined based on time since abandonment.

5.4.3 Spectral variability

Variation in leaf spectra between seasons was concentrated above
750 nm, the spectral region most indicative of leaf moisture and structural
properties (Gates et al. 1965) (Figure 5-7). This is consistent with previous
findings that spectral variation in dry environments (CCBR has mean annual
rainfall positioned towards the low end of the spectrum ascribed to tropical
dry forests (Sanchez-Azofeifa et al. 2005)) is concentrated in wavelength
regions most influenced by water stress, as opposed to the region dominated
by leaf pigment properties (500 - 750 nm) as found in more humid
environments (Hesketh and Sanchez-Azofeifa 2012). The magnitude of this

variation changed between successional stages, however, with seasonal near
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infrared variation in the late stage almost 4 times the values noted in the
early. This reflects the inverse trends in measured water content during each
season: while mean leaf water content raised from 62.9% in the early stage
to 65.0% in the late during the dry season, water dropped during the dry
season from 53.8% in the early to 50.2% in the late stage (Table 5-2).
Likewise, the more modest increase in reflectance at the “green peak” of 550
nm is related to increases in variability in leaf chlorophyll with increasing

succession.

Within-season variability in leaf reflectance showed marked
differences between the wet and dry datasets (Figure 5-6). During the wet
season, differences between paired successional stages characterized by
peaks in water-dominated wavelengths with a shape similar to the wet/dry
season differences in Figure 5-7. During the dry season, however, the
differences attributable to water features were minimized, and marked
increases in spectral difference between successional stages were found both
centered at 550 nm and 725 nm. These spectral regions, controlled largely
by leaf pigment content are used in the calculation of spectral indices to
estimate chlorophyll content and general vegetation health and abundance
(le Maire et al. 2004; Sims and Gamon 2002). This increase in variability in
these regions corroborates the results of Castro-Esau et al. (2004), who
reported an ability to discriminate between tree and liana species during the

dry season at a dry forest sites in Panama, while finding the same distinction
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difficult or impossible during the rainy season or at a rainforest site.
Extrapolating to coarser spatial scales, Kalacska et al. (2007b) stress the
importance of considering seasonality, evaluating the utility of EO-1
Hyperion data to map forest structural and floristic diversity using dry
season imagery. Portillo and Sanchez-Azofiefa (2010) also found that dry
season imagery from MODIS was more effective in mapping the extent of
tropical dry forests than imagery from the wet season. While these canopy
scale analyses also take into account seasonal variability in stem density,
vertical structure, and species composition (Kalacska et al. 2004) which is
revealed during the dry season, we suggest that the differences noted here in

leaf spectral response play a role in these findings as well.

5.4.4 Variability in classification accuracy

Classification within seasons was accomplished with high accuracy in
all cases, and particularly during the dry season. Here results are consistent
with those of Clark et al. (2005), who report overall classification accuracy of
92.0% using a set of 7 species at the scale of individual tree crowns at La
Selva Biological Station in Costa Rica. Accuracy was lower in almost all cases
during the wet season due to the extent and locations of spectral variability
discussed in the previous section. Minimum within-season classification

accuracy was obtained in the intermediate successional stage during the wet
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season, and is attributable to a decrease in spectral variability in the 550 nm

region controlled by leaf pigment content.

Testing the results across seasons provided reductions in
classification accuracies similar to that of Hesketh and Sanchez-Azofeifa
(2012), who found a reduction in average classification accuracy of a set of 8
tree species at a dry forest site from 90.2% within seasons to 16.6% between
seasons, a decrease by a factor of 5.45. The notable deviation from this
(Table 5-8b) is the difference in classification accuracy between seasons in
the intermediate successional stage, but this is attributable to the
compounding of the low wet season classification accuracy in this stage with
the cross-seasonal classification. Restructuring the classification to control
for seasonality resulted in a more modest reduction in accuracy when cross-

classifying, this time combining successional stages (Table 5-8a).

5.5 Conclusions

We demonstrate here that leaf structural and chemical traits as well
as leaf spectral reflectance vary substantially along two temporal gradients in
a tropical dry forest: seasonal and successional. First, variation according to
wet/dry seasonal cycles is significant, particularly in traits related to water
content and photosynthesis. Along the same seasonal gradient, spectral

reflectance differed enough that automated species-level classification was
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impossible when data from the two seasons were combined. This seasonal
variation compounded variation between forest successional stages among
biophysical traits, and the decreased moisture availability during the dry
season produced markedly different patterns in spectral variation between

stages than was noted during the wet season.

There has been a trend toward studies of leaf traits searching for
patterns at scales which attempt to unify processes across broad ranges of
species and biomes (Asner and Martin 2008; Reich et al. 1997; Wright et al.
2004). These analyses describe general trends but tend to mask the
importance of local variation. While an assemblage of traits may array well
along a gradient spanning many biomes, variability at the site and species
level according to gradients in age, phenology and microclimate are
important. Mobilizing broad patterns in leaf traits in concert with remote
sensing analysis for the monitoring of forest characteristics is an attractive
proposition, but our results suggest that any detailed analysis must also
account for local-scale variation and an appreciation of the temporal
dynamics of the environment under investigation, including seasonal

variation in micro-climatological conditions and soil moisture.

While this poses challenges for species classification, leaf trait and
spectral variation driven by successional changes indicates a potential for the

refinement of forest inventories to include information on ecological
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succession.  Studies have shown the advantages of data from particular
phenophases for the remote estimation of LAI (Kalacska et al 2005),
structural group discernment (Castro-Esau et al. 2004), and land cover
classification (Portillo and Sanchez-Azofeifa 2010). While we've
demonstrated here a negative impact of spectral variability on the accuracy
of a relatively simple classifier, this same variability may prove a useful data

source for the differentiation of secondary forests and successional classes.

In the context of initiatives such as REDD+, remote sensing is
currently used to monitor deforestation, but assessing forest degradation and
stages of regeneration are more complicated (De Sy et al. 2012). A better
understanding of the variability in leaf biophysical properties and the
resulting spectral characteristics is the first step towards methods for remote
monitoring of forest successional stage, which may be related to stand
biomass and incorporated into carbon budgets that can in turn inform
conservation and resource management efforts. The results presented here
indicate potential for leaf trait variability to direct discrimination of forest
age classes, but also point to the need for further investigation into the
temporal dynamics of leaf properties, particularly in highly seasonal

environments.
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Chapter 6: Conclusions and Implications

6.1 Introduction

An essential element for the utility of remote sensing observations in
the monitoring of forest environments is an understanding of the consistency
of relationships between biophysical variables and their spectral properties
across various geographic and temporal gradients. The effectiveness of
automated biodiversity assessment as proposed by Asner and Martin (2008)
as well as the scalability of the relationships described in the worldwide leaf
economics spectrum (LES) (Reich et al. 1997; Wright et al. 2004) rely on this
assumption of consistency among leaf properties and the relationships
between them. That this assumption holds at spatial scales of the continental
and greater, as well as within certain biomes such as the Amazon rainforest is
likely, but its limits have been insufficiently studied in other regions. In
particular, tropical dry forests, characterized by high species diversity and
intense wet-dry seasonality, represent a potential obstacle to the universal

application of these concepts.

To date, the majority of studies addressing the variability in physical
and spectral leaf traits in the tropics have focused on non-temporal drivers to
trait variability, with attention paid to variables such as site characteristics

(Castro-Esau et al. 2006), genetics (Martin et al. 2007), climate (Asner et al.
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2009), and rainfall (Townsend et al. 2007). While remote sensing analyses
identifying the extent and location of forest types (Miles et al. 2006; Portillo-
Quintero and Sanchez-Azofeifa 2010), evaluating forest productivity (Gamon
et al. 2005; Kalacska et al. 2005; Kaacska et al. 2005), and mapping forest
structure (Alves and Skole 1996; Kimes et al. 1999; Kimes et al. 1998) have
all noted the influence of phenology, direct investigation of temporal

variation at the leaf scale has been underexplored.

The work represented in this thesis addresses the issue of temporal
variability in leaf biophysical and spectral properties, which, while not
unique to tropical dry forest environments, are particularly important in the
context of remote detection and monitoring of these ecosystems at all spatial
scales. Chapter 2 contextualizes this issue via a review of the body of
literature on remote sensing in the dry tropics. Chapter 3 tackles the highly
seasonal nature of tropical dry forests, and the resulting impact on the
potential for spectral classification of tree and liana species. Chapters 4 and 5
address the effects of the conversion of forests from primary to secondary,
and the variability in leaf structural, chemical, and spectral traits imposed by
the process of forest succession. As a whole, the thesis contributes to the
understanding temporal variability in leaf properties, and the effect this has
on the application of remote sensing tools to the monitoring of dry forest

characteristics.
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6.2 Conclusions and Contributions

Remote sensing analysis has become a critical tool in the assessment
of the nature and distribution of forests. Study into forest structure,
productivity, and biodiversity using remote sensing techniques has been
particularly valuable in assessing difficult to reach areas and evaluating
spatial and temporal patterns that may be difficult or impossible to survey
using traditional ecological methods. Chapter 2, “Review of remote sensing of
tropical dry forests”, stands as the only synoptic review of the state of remote
sensing research focused purely on tropical dry forest environments.
Categorized broadly under the subheadings of tropical dry forest
classification and mapping, assessment of forest health and productivity,
species and structural group discrimination, and the differentiation of
structural types and successional stages, the included literature
demonstrates the progress made towards the establishment of linkages
between fry forest ecology and remote sensed measurements, particularly
during the past decade. These linkages form the basis of remote sensing
analysis, where spectral information stands as a proxy for direct
measurement of biophysical variables. The challenges to establishing these
linkages in the dry tropics identified in the literature, while dependent on the
scale and focus of the analysis, are related to the temporal characteristics of

the biome.
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Alongside the demonstration of the importance of research into dry
forests, the review’s most significant contribution is the consistent evidence
of the importance of the dynamic characteristics of dry forests. In particular,
forest phenology is shown to have a profound impact on the discrimination
of dry forest boundaries (Portillo-Quintero and Sanchez-Azofeifa 2010), the
modeling of forest structural characteristics (Kalacska et al. 2005), and the
separation of species (Hesketh and Sanchez-Azofeifa 2012) and structural

groups (Castro-Esau et al. 2006; Castro-Esau et al. 2004).

High temporal variability, coupled with the high biodiversity found in
tropical environments, lends a unique set of challenges to remote sensing
analysis of tropical dry forests. These conclusions not only comprise a
contextual framework for the following chapters, but suggest the overall
need for the incorporation of a dynamic or temporal dimension into
investigation of dry forest characteristics and function. Looking forward, the
review suggests gaps in our knowledge of the importance of tropical dry
forest dynamics that may be addressed by the targeting of future research
and the application of emergent technology. Widespread study of dry forest
temporal characteristics is hobbled at the leaf level by the expense and time
associated with rigorous fieldwork, and at the canopy scale by the trade-offs
between spatial resolution and return time of currently-available satellite
data, as well as a relative lack of hyperspectral data. Advances in wireless

sensor network (WSN) technology have the potential to fill in these temporal
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gaps, with the ability to monitor variability local-scale environmental
variables such as humidity, temperature, photosynthetically active radiation,
and leaf temperature in near real-time (Sanchez-Azofeifa et al. 2011). When
coupled with more traditional spectral and biophysical surveys of forest
characteristics, data from WSNs may provide insight into the environmental

drivers to observed variability in physical and optical properties.

As the availability and quality of hyperspectral data at spatial scales
from the leaf to the canopy increases, the potential for accurate species level
discrimination of trees and other elements of the forest canopy is closer to
being realized. While research to date has demonstrated the possibility of
accurate discrimination between a limited number of species based on
spectral reflectance, the prospect of efficient automated biodiversity
monitoring suggested by Asner and Martin (2008) is an optimistic indication
of the future. In Chapter 3, “The effect of seasonal spectral variation on species
classification in the Panamanian tropical forest”, we test one of the
prerequisites for this type of analysis, namely that the spectral properties of
an assemblage of species are sufficiently consistent through time that a
database of spectral signatures can be created and used to guide an
automated classification approach. In dry forests, where intense wet/dry
seasonality and a strong phenological profile are the norm, this variability

presents a significant obstacle to accurate species discrimination.
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Our results, which consider 43 species of trees and lianas collected
during both wet and dry seasons at two forest sites suggest that a non-
parametric classification approach had little difficulty distinguishing among
species at a given site, provided all the data was collected during the same
season. Classification accuracy in this scenario was consistent with Clark et
al. (2005), but dropped by more than a factor of 10 when the classifier was
applied to data from another season. We demonstrate here that the influence
of seasonality on leaf spectral properties is pronounced and unambiguous.
While the prospect of implementing an efficient automated method of
biodiversity assessment as proposed by Asner and Martin (2008) is
attractive, this study shows clearly that in seasonal environments such as
tropical dry forests, variability in spectral reflectance between the seasons
precludes accurate classification which does not take into account the

temporal domain.

The consistency of spectral signatures across phenophases is a
requirement for database-type automated classification, and the spectral
variability indicated by this study casts serious doubt on the prospect of the
implementation of such a process. Through a direct focus on temporal
changes in leaf spectral properties and the incorporation of innovative
techniques for the quantification of spectral variation, this study is an
important contribution to the understanding of the spectro-temporal

dynamics of tropical dry forests. Our results support those of Castro-Esau et
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al. (2006) and indicate that an understanding of the role of phenologically-
induced spectral variation must be an integral component of any
classification exercise, certainly in seasonally dry forests, but potentially in

forests with less dramatic annual cycles.

Whether or not secondary forests are indeed the tropical forests of the
future (Wright 2005; Wright and Muller-Landau 2006), there is no question
that intensive human development and conversion have altered the
distributions and character of much of what has historically been primary
tropical dry forest (Castillo et al. 2005). Chapter 4, “Successional variation in
spectral and biophysical leaf traits in two Latin American tropical dry forests”
addresses the impact of changes in forest successional stage, on both
biophysical and spectral leaf properties measured during the wet season at

dry forests in Costa Rica and Mexico.

Statistical analysis of a suite of traits including leaf structural,
chemical, and spectral properties showed a pattern of significant differences
among early, intermediate, and late successional stages at the Costa Rican
site, while the level of difference found at the Mexican site was insignificant
among all but the spectral measurements. Differences in the scale of
variation between the two study sites may be attributable to the criteria used
in defining the successional stages. Where the Mexican sites were

established using a chronosequence based on time since abandonment, the
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sites in Costa Rica were defined based on forest structural characteristics.
Though the Mexican sites were selected to control for topographic and
edaphic variations that would influence the rate of succession, our results
echo Arroyo-Mora et al. (2005), suggesting that the more empirical criteria
used at the Costa Rican field sites results in more pronounced variability
between the successional stages. Looking ahead, this consideration for the
criteria by which these stages are identified may be an important element in
establishing consistent definitions of successional stages and, accordingly, an
understanding of trait variation that is more relatable from site to site.
Classification analysis was carried out to address the impact that this
biophysical and spectral variation may have on efforts to monitor
biodiversity via remote sensing. Species-level spectral classification using a
non-parametric classifier showed a reduction in accuracy by a factor of
between 3.7 and 5.7 when species were classified using a classifier trained on
the same species but from a different successional stage. An essential
contribution of the study was the consistency of the species composition of
the sample at each successional stage, effectively controlling for variation
imposed by taxonomy and isolating the temporal trend. Additionally, while
this study reinforces the importance of temporal dynamics, this time related
to forest successional stage, in controlling spectral variation, we also show
that the biophysical and chemical traits which control spectral reflectance

may be measurably affected by the same successional dynamics.
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Combining the temporal scales addressed in the previous chapters,
Chapter 5, “Effect of season and successional stage on leaf properties in a
tropical dry forest”, looks at the interplay between the seasonality inherent in
dry forest environment and the levels of succession created by secondary
forest regeneration in controlling both biophysical and spectral leaf
properties. Using a similar set of analyses as those described in Chapter 4,
we found difference in the successional variability between the wet and dry
seasons at a dry forest site in Mexico. Significant variation was found among
leaf structural, pigment, and spectral properties during the dry season, while
only spectral response varied during the wet. As found in chapter 4, the level
of variation between the early and intermediate successional stages tended

to be greater than between the intermediate and late.

Classification analysis showed an average reduction in classification
accuracy attributable to variation due to changing successional stage by a
factor of 3.9 during the wet season and 5.0 during the dry. When controlling
for successional stage and testing the effect of season, accuracy was reduced
by a factor of 4.2 in the late successional stage, 7.0 in the early, and 11.3 in
the intermediate. Analysis of leaf spectral reflectance by season showed a
shift in the region of greatest variability from wavelengths controlled by
photosynthetic pigment levels during the wet season to those controlled

primarily by leaf water content during the dry.
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Overall, the study shows that significant physiological variability,
attributable to both seasonality and changes in forest successional stage,
translates into variability in leaf spectral reflectance to the extent that
spectral classification of species is negatively impacted. As with chapters 3
and 4, the strict control of the species assemblage sampled at each
successional stage was an essential element of the experimental design.
While this consistency allows in our case for the focus to be placed on
variability associated with successional and environmental variables, it will
be important in future to better assess how this variability changes in nature
and magnitude at the level of individual species. This relationship between
species and the magnitude of variation may be of particular importance in
less species-rich temperate forests where each species represents a greater

proportion of the overall forest cover.

6.3 Overall Significance

In recent years, study into the relationships between leaf traits has
focused on continental- to global-scale, cross biome comparisons that seek to
unify covariance of leaf properties, such as the LES (Reich et al. 1997; Wright
et al. 2004) and the concept of Spectranomics put forth by Asner and Martin
(2008). Both these concepts show that useful and statistically significant
trends may be found through the consideration of huge datasets combining

thousands of species from across a wide variety of locations and biomes.
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However, while these concepts are valuable at the scales at which they were
developed, they fail to highlight the potential for significant variability of leaf
biophysical and spectral properties at smaller scales (Funk and Cornwell

2013) and are not supported by work carried out at more local scales.

The risk of overlooking the role played by trait variation induced by
phenology, microclimate, or site characteristics in the development of
classification or monitoring procedures is that highly accurate spectral
classification of the type reported by Clark et al. (2005) and Asner and Martin
(2008) are not repeatable in any environment where this variability is
pronounced. These issues would likely be compounded when scaling to the
crown and stand scales by intra-species variation as described by Zhang et al.

(2006).

The studies presented here contribute unambiguous evidence of trait
variability in dry forests at the site level, not just between sites but also in
response to the temporal dynamics at a given site. This temporal variability,
associated with the intense seasonality characteristic of the dry forest biome
as well as with changing successional stages resulting from the regeneration
pathways of secondary forests, directly impacts not just the universal
applicability of the above relationships, but also any strategies for the remote

mapping and monitoring of this important class of tropical forests.
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The development of remote sensing and GIS tools for tropical forest
monitoring is ongoing and a great deal of work remains to refine and validate
these techniques. By focusing of the temporal characteristics of seasonally
dry tropical forests, the studies presented here address a major gap in our
understanding of the extent of physiological variability of leaf traits and the
resulting implications for remote monitoring. The most significant
contribution of this thesis, then, is the reminder that in spite of the
attractiveness of unified theories of trait relationships and automated,
database-style biodiversity assessment, the importance of local scale

ecological and temporal variation must not be underestimated.
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