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Abstract

Microscopic image analysis is a broad term that covers the use of digital image processing

techniques to process and analyze images obtained from a microscope. It is of significant

interest to a number of diverse fields such as medicine, biological research, cancer research,

drug testing, etc. A typical example is breast cancer, where the tumor proliferation speed

(tumor growth) is an important biomarker indicative of the breast cancer patients condition.

In practical scenarios, the most common method is to examine histological slides under a

microscope based on pathologists’ empirical assessments, which can be quite accurate in

several cases, but generally is slow and prone to fatigue-induced errors. Among the above

research fields, cell detection and cell counting are viewed as the central task or basis

of microscopic image analysis. In this thesis, I address automatic cell detection and cell

counting using computer vision and machine-learning methods.

Cell counting is to quantitate the population of specific cells from microscope images.

The ability of accurate cell counting is important for precision diagnostics in laboratory

medicine. I present a supervised learning framework with Convolutional Neural Network

(CNN) and cast the cell counting task as an end-to-end regression framework, where the

global cell count is taken as the annotation to supervise training, instead of following an

object classification or detection framework. Compared to the idea of counting by detection,

the regression framework evades the open and difficult problem of detection or segmentation

of individual cells, and is more suitable for the counting task, whose end goal is to acquire

the number of object instances. To further decrease the prediction error of counting, I

fine-tune several cutting-edge CNN architectures (e.g., Deep Residual Network) into the

regression model with Euclidean loss function rather than softmax loss function. As the

final output, the proposed approach not only estimates the total number of certain cells

in an image but also produces the spatial density prediction, which is able to describe the

local cell density of an image sub-region. In many clinical imaging systems, researchers

have confirmed that the topographic map that illustrates the cell density distribution is

a valuable tool correlated with disease diagnose and treatment. The proposed method is

ii



evaluated with several state-of-the-art approaches on three cell image datasets and obtain

superior performance.

As a related task to cell counting, cell detection focuses on localizing a certain type of

cells or cellular subunits in microscopy images. Here, not only is the population of target

cells of interest, but their locations in microscopy images are also valuable for subsequent

biomedical research and clinical diagnosis. I propose a cell detection method based on

Convolutional Neural Networks (CNNs) that uses encoding of the output pixel space. For

the cell detection problem, the output space is the sparsely labeled pixel locations indicating

cell centers. I employ random projections to encode the output space to a compressed vector

of fixed dimensions. Then, CNN regresses this compressed vector from the input pixels.

Furthermore, it is possible to stably recover sparse cell locations on the output pixel space

from the predicted compressed vector using L1-norm optimization. I conducted substantial

experiments on several benchmark datasets, where the proposed CNN + CS framework

(referred to as CNNCS) achieved the highestor at least top threeperformance in terms of

F1-score, compared with other state-of-the-art methods.

On the basis of the proposed CNNCS model, I further develop an end-to-end trainable

model, where the CNNCS model’s two key components (a CNN-based regression model and

CS-based sparse code predictor) are incorporated into a single network structure. Extensive

experiments demonstrate the superior performance of the end-to-end trainable model on

several challenging cell detection benchmark datasets.

Keywords: Cell Detection, Cell Counting, Convolutional Neural Network, Compressed

Sensing, Microscopic Image Analysis.
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Chapter 1

Introduction

1.1 Microscopy Image Analysis

Starting from the foundational theory of cells in the 19th century that found cells are the

basic building blocks of life, biologists have strived to discover the hidden principles behind

life. Significant progresses had been made across domains, but the demand to achieve

more knowledge and explanations of cellular mechanisms has been increasing. Researchers

want to manipulate cellular mechanisms to improve health, with more resources, effort,

and modern equipment. As one of the most significant inventions, light microscopy [95]

has promoted considerable research advances in cell biology ever since the 1670s when

Antonie van Leeuwenhoek made the first attempt to apply microscopic imaging at the

cellular level. In the present day, microscopic imaging techniques have enabled biologists

to see phenomena much smaller than at the cellular level, for example, visualizing the

transportation of chemicals or aggregation of proteins inside cells. Furthermore, microscopic

imaging techniques have made it quite easy to obtain a huge amount of images within a few

hours. The richness, dimensionality, and complexity of the microscopic images obtained by

modern imaging equipment challenge manual image processing and analysis. As a result,

automatic vision-based systems suitable for microscopic image processing and analysis have

become indispensable and critical for proceeding advances in cell biology. Dating back to

the mid-1950s, a system [89] was designed to automatically recognize smears of exfoliated

cells, in order to perform identification of cervical cancer. This system was the first attempt

to apply computers to the task of microscopic image processing and analysis. In the 1960s,

[71] developed an automatic images processing scheme for counting the number of white

blood cells in microscopic images. In their scheme, count estimation results are made by

simple colorimetric and morphological measurements. During the mid-1970s, for the first

time, a computer-assisted microscope [68] was designed to track and analyze morphological

characteristics of neuronal cells. The arrival of confocal microscopes made 3D cell image

analysis feasible in the 1980s. However up until the 1990s, computers had developed enough

computation capacity to deal with 3D data and complex 2D data (e.g., histopathology

[34]). At that time, the image processing and computer vision communities started to take
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over the task of microscopic image processing and analysis. After the year 2000, research

papers on this topic have grown dramatically. Existing microscopic image analysis papers

have become the foundation of cell-related research, including cell counting, cell detection,

recognition of cell types, quantification of cell migration and interaction, cellular sociology

or organization, and intracellular structures [75]. Among the aforementioned studies, cell

detection and cell counting are often viewed as a central task or basis of microscopic image

processing and analysis. The problems of cell detection and cell counting have received

considerable attention in past years [84]. In this thesis, I have developed deep-learning-based

cell detection and counting techniques that demonstrate excellent accuracies on benchmark

datasets.

Figure 1.1: Left picture shows a microscopy image with two target cells annotated by yellow
crosses at their centers. Right top pictures give details about the two target cells whose
nuclei are in mitotic phase. Right bottom pictures provide more examples of mitotic figures.

1.2 Cell Detection

1.2.1 Significance and challenges

Automatic cell detection is used to find whether there are certain types of cells present in an

input image (e.g., microscopy images) and to localize those in the image as shown in Figure

1.1. It is of significant interest to a wide range of medical imaging tasks and clinical appli-

cations. An example is breast cancer, where the tumor proliferation speed (tumor growth)

is an important biomarker indicative of a breast cancer patients prognosis. In practical sce-

narios, the most common method is to examine histological slides under a microscope based

on the pathologists’ empirical assessments, which could be quite accurate in several cases,

but is generally slow and prone to fatigue-induced errors. Manual analysis of microscopy

images also suffers from inter-observer variabilities. In comparison, automatic and robust
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cell detection are highly desirable and serve as an essential prerequisite for a wide variety

of subsequent tasks, such as cell segmentation, tracking, and recognition of cell types, etc.

Numerous procedures in biology and medicine require cell counting and detection. For in-

stance, a patients health can be inferred from the number of red blood cells and white blood

cells. In clinical pathology, cell counts from images can be used for investigating hypothe-

ses about developmental or pathological processes. And cell concentration is important in

molecular biology, where it can be used to adjust the amount of chemicals to be applied

in an experiment. In addition, the combination of cell detection and a successive stage of

cell classification can provide clinically useful information about objects of interest, such as

the presence (or quantity) of cancer cells in a microscopy image. The microscopy imaging

market is significant and projected to exceed USD 5 billion in 20181. Today every single mi-

croscope comes with a software suite that offers various types of automated image analysis,

including detection of cells. However, these commercially available cell detection tools are

not mature enough to serve the purpose of clinical diagnosis and applications. Recogniz-

ing the significance of cell detection and the inadequacy of available automated methods,

medical imaging research communities have created challenging benchmark datasets and

regularly organize challenges to keep track of the most recent progress in this area (see

for example ICPR 2012 [77] and ICPR 2014 [2], MICCAI 2013 [94] and MICCAI 2016 [1]

challenges).

Figure 1.2: Example of breast cancer tumor cells.

Cell detection and localization constitute several challenges that deserve our attention.

I enumerate some of these challenges below:

• Target cells are often surrounded by clutter represented by complex histological struc-

tures, such as capillaries, adipocytes, collagen, etc. It can be difficult to distinguish

the target cells from the background clutter.

• There are also significant variations in appearance among the target cells themselves.

Figure 1.2 visualizes a set of breast cancer tumor cells, which are all targets of interest

1https://www.photonics.com/a55526/Trends_in_Microscopy_A_Big_Market_Focused_on
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Figure 1.3: The density of target cells can vary a lot between images.

and present significant variations.

• Additionally, target cells can appear sparsely (only in tens), moderately densely (in

tens of hundreds), or highly densely (in thousands) in a typical 2000 by 2000 pixel

high resolution microscopy image, as shown in Figure 1.3.

• In many cases, the size of the target cell is small. It is unlike a general object detection

problem where a computer system has to detect extended objects, e.g., human or

vehicle detection.

These challenges render the cell detection and localization problems far from solved in

spite of significant recent progress in computer vision research.

1.2.2 Limitations of existing automated cell detection methods

In the last few decades, different cell recognition methods have been proposed [27]. Tra-

ditional computer vision-based cell detection systems adopt a classical image processing

pipeline, such as intensity thresholding, feature detection, morphological filtering, region

accumulation, and deformable model fitting.

Classical machine-learning-based cell detection approaches offered superior accuracy

over the aforementioned image processing pipeline. These methods follow a “hand-crafted

feature representation” & “classifier” framework. First, the detection system extracts one

or multiple features (e.g., HOG [17], LBP [70], LOG [51]) as the representation of input im-

ages. Then the method applies a classifier (such as Support Vector Machine) to the feature

vector for cell detection. “Hand-crafted feature representation” & “classifier” approaches

suffer from the following limitations:

1. It is a non-trivial and difficult task for humans to select suitable features. In many

cases, it requires significant prior knowledge about the target cells and background.

2. Most hand-crafted features contain many parameters that are crucial for overall

performance. Consequently, users need to perform a lot of trial-and-error experiments to

tune these parameters.
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3. Usually, one particular feature is not versatile enough. Features may often be tightly

coupled with a particular type of target cell and may not work well when presented with a

different type of target cell.

4. The performance of a hand-crafted feature-based classifier soon reaches an accuracy

plateau, even when trained with plenty of training data.

Deep neural networks recently have been applied to a variety of computer vision prob-

lems, and have achieved better performance on several benchmark computer vision datasets

[52], [32], [81]. The most compelling advantage of deep learning is that it has evolved

from fixed-feature design strategies towards automated learning of problem-specific fea-

tures directly from training data [54]. By providing massive amounts of training images

and problem-specific labels, users do not have to go into the elaborate procedure of the ex-

traction of features. Instead, Deep Neural Network (DNN) is optimized using a mini-batch

gradient descent method over the training data, so that the DNN allows autonomic learning

of implicit relationships within the data. For example, it has been demonstrated by sev-

eral works [66] [106] that shallow layers of DNN focus on learning low-level features (such

as edges, lines, dots), while deep layers of DNN form more abstract high-level semantic

representation (such as probability maps, or object class category).

With the advent of deep learning in the computer vision community, it is no wonder

that the state-of-the-art methods in cell detection are based on deep neural networks. The

essential idea behind all of these methods is that detectors are trained as a classifier in the

image pixel space, either as a pixel lableing [6] or as a form of region proposal network [13].

Thus, these methods predict the pixel coordinates of cells directly on a 2D image.

To explain the inadequacies of deep learning-based methods applied to cell detection,

first note that cell detection from microscopy is a point object (such as cell centroid)

detection problem. In comparison, object detection in computer vision refers to extended

object detection with bounding boxes, such as detection of cars and humans among various

other articulated objects that occupy a significant portion of the field of view. One could

try to label cells with bounding boxes for training a deep learner; however, this labeling task

may become nontrivial when a significant number of target cells are present with differing

sizes. I argue that general object detection methods with bounding boxes are not suitable for

point object detection. Thus, specially tailored methods need to be applied for cell detection.

State-of-the-art object detection categories fall into two groups: (a) methods dealing

with a sliding window mechanism to cope with large pixel space, and/or, (b) discretizing

the output space of bounding boxes and their locations. Region-based Convolutional Neural

Network (R-CNN) [32] and its two variants Fast-RCNN [31] and Faster-RCNN [74] fall into

the first category, while other significant methods, such as You Only Look Once (YOLO) [73]

and Single Shot MultiBox Detector (SSD) [60] fall into the second category.

The RCNN family ( [32], [35], [31], [74]) faces an overwhelming size of the output pixel

space, because potentially every pixel is a target. The sliding window mechanism in these
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methods tends to produce false positives.

SSD [60] presented a method for detecting objects in images using a single deep neural

network. SSD discretizes the output space of bounding boxes into a set of default boxes over

different aspect ratios and scales per feature map location. Its assumption is that bounding

boxes and locations are limited because of discretization. However, it then needs to regress

on the entire pixel space for cell detection and is very likely to produce many false positives,

like the RCNN family.

Similar in principle to the SSD method, YOLO [73] discretizes the pixel space into rather

bigger patches and thus attempts to control the number of potential cell locations in the

pixel space. However, larger discretization would be unsuitable for cell centroid detection

because it would miss many cells.

Thus, I note that the source of the limitations of recent state-of-the-art general object

detection applied to cell (centroid) detection is the combinatorial possibilities for cell lo-

cations on the entire pixel space. Therefore I argue that current general purpose object

detectors are not designed to cope well with this enormous combinatorial output space.

The general purpose extended object detector would also run into another trouble, if cell

detection is treated as a bounding box detection around small objects. For extended objects

(such as humans, vehicles), localization is considered successful if a detection bounding box

overlaps the actual bounding box by a threshold (e.g., 50%). For cell detection, the tolerance

needs to be much tighter in order for the localization to be meaningful. Because in many

cases, cells are quite small and also present huge variation in their density. Moreover, target

cells are often only subtly different from other cells. Consequently, these methods tend to

produce a significant amount of false positives.

There is yet another type of deep-learning-based methods (e.g, [6]) that explicitly try to

tackle the combinatorial output space by converting the detection problem into a density

prediction problem, where the modes of the density function serve as the point object (cell

centroid) locations. Density prediction is possible by using fully convolutional architecture

[81]; however, it has its own issues (e.g., nearby point objects can be merged to reduce the

recall). On the other hand, if density function is not smooth enough, it may produce a

significant number of false positives.

1.2.3 The proposed solution principle to cell centroid detection

I reiterate that cell detection from microscopy images is essentially a point object detec-

tion problem. An important consideration to solve point object detection is to overcome

the curse of dimensionality, which I efficiently handle by applying random projections and

regress on the reduced dimension. Reconstruction or restoration is possible from the re-

duced dimension because the final outputs (i.e., cell centroids) are quite sparse in the pixel

space.

Additionally, our proposed method creates the opportunity for efficient ensemble aver-
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aging by introducing redundancies in a single neural network. The ensemble mechanism

in our method enhances the accuracy of detections. Our method does not worry about

merging nearby point objects, because regression is occurring in a transformed domain, not

in the original pixel space. I also develop an end-to-end supervised deep learning framework

to solve the cell centroid detection problem.

1.2.4 Outline of the proposed approach

In this section, I outline our proposed solution to cell detection in comparison with state-

of-the-art cell detection methods. To explain the elements of novelty in our proposed cell

detection solutions, I first present the workflows of two state-of-the-art methods [13] and

[101] in the top two panels of Figure 1.4. It can be observed that the cell detectors of these

state-of-the-art methods are trained in the image pixel space, either as a region proposal

network [13] or as a spatial density predictor [101]. These methods strive to predict the

pixel coordinates of cell centroids directly on a 2D image. Non-trivial post processing is

inevitable to locate cell centroids.

The 3rd panel presents the proposed framework that integrates Convolutional Neural

Network (CNN) with compressed sensing (CS) for cell detection and localization. Here,

the CNN model predicts a fixed-length signal, which carries all the information about the

true location of target cells. Then the CS-based sparse code predictor recovers sparse cell

centroid locations. There are three principal reasons behind the conversion from detection in

pixel space to regression in vector signal space. The first reason is technical. This conversion

will let us turn the problem of detecting a variable number of targets into a fixed-length

vector regression task, where one can apply state-of-the-art CNN architectures. Secondly,

compared to pixel-level annotation of cells in image pixel space, a vector representation is

more robust to inevitable system errors and can carry a set of redundant information, which

provides us with the opportunity to do ensemble averaging to boost detection/localization

performance. The third one is rather pragmatic; that one would strive to find an end-to-end

training system that would make the training procedure simple and straightforward.

The training in the system (shown in the 3rd row) is occurring only within the CNN

model. Thus, the sensing matrix in CS-based sparse code predictor is fixed, e.g., a random

Gaussian matrix. This system is an intermediate framework before I migrate to an end-to-

end framework, which is shown in the bottom panel of Figure 1.4. An end-to-end training

system can back-propagate error signals from the very output end to all the previous mod-

ules in order to adjust the parameters of both the CNN model parameters and the sensing

matrix in the CS module. It is in contrast with a conventional sequential pipeline, where

each component is optimized independently and works one after another. The conventional

sequential pipeline has several limitations. One of them is the process interdependence or

error accumulation issue, which makes global optimization challenging. For example, a sys-

tem consists of two modules, where the first module (e.g., a CNN) is trained with original
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Figure 1.4: The 1st and 2nd row show the diagram of two state-of-the-art methods [13]
and [101], respectively, for cell detection. They represent the typical workflow of existing
cell detection methods, which totally work in image pixel space and always strive to directly
predict the x-y coordinate of target cells. The 3rd row gives the pipeline of the proposed
CNNCS cell detection method [described in chapter-4]. The 4th row illustrates our End-to-
End trainable version of the CNNCS method [described in chapter-5].
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input data, and the second module depends on the output of the first module. As I know,

the output of the first module is only an estimated result under certain loss functions or

optimization policies. Thus the second module cannot give optimal results due to error

accumulation, even though the second one is also trained to converge.

1.3 Cell Counting

1.3.1 Problem definition and significance

Automatic cell counting is to estimate the number of certain types of cells in microscopic

images. It is of great interest to a wide range of medical scenarios [16] [79] [76]. An example

is the diagnosis and treatment of breast cancer, which is one of the most common diseases

leading to death among the female population worldwide. The number of proliferating (e.g.,

Ki67 positive) tumor cells is an important index associated with the severity of disease clin-

ically. One available method of quantization involves counting the nuclei of proliferating

cells using traditional image analysis techniques on a microscopic image. However, it has

been proven to be challenging because of the inability to distinguish tumor cells from sur-

rounding normal tissue like vessels, fat, and fibrous tissue [28], especially because in reality

the resolution of the input medical image could be very high, at the same time that the

target cells could easily be extremely dense. Consequently, it is quite difficult to manually

count target cells one by one. This is the principal motivation for automatic cell counting.

1.3.2 Existing approaches and their limitations

Many traditional methods address counting tasks in an unsupervised manner, conduct-

ing grouping according to self-resemblances [61] or motion resemblances [72]. The count-

ing precision of these fully unsupervised approaches is finite, and consequently alternative

methods are proposed from the perspective of supervised learning. Following the suc-

cess of deep learning applied in computer vision like detection, segmentation, and localiza-

tion [52] [38] [36], the most recent cell counting-by-detection works choose a learning-based

approach, where each training object has annotation information, which is sometimes dot

annotation indicating the centroid of the object [15] [59] [101], and sometimes bounding-box

annotation around the object [97]. However, it is well known that the problem of detecting

and localizing individual object instances is far from being solved, especially in the real-

world application of cell counting where cell density can be extremely high [53] [14] [91].

For example, the number of cells can easily reach or exceed thousands per image, and the

cells also show huge variations in terms of type, size, shape, and appearance, etc.

Another related work is Fully Convolutional Neural Network (FCNN) [81], which has

produced remarkable results in semantic segmentation and spatial density prediction. (In

some ways, object counting can be seen as an integration over spatial density prediction.)

To build the end-to-end and pixel-to-pixel FCNN, its training phase requires pixel-wise
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annotation, which is strongly supervised information and gives much benefit to FCNN.

Consequently, work like [18] has been proposed.

Figure 1.5: Counting-by-detection framework, most of which requires the pixel-wise anno-
tation, is not a good choice in cell counting task, where cells could be extremely dense.

Figure 1.5 shows a cell image example with its two levels of annotations: (a) pixel-wise

annotation, where the nuclei of each cell is dot-annotate, and (b) global count, where the

total number of cell in the image is provided. Most counting-by-detection frameworks take

the strongly supervised pixel-wise annotation as input during training, and then generate

a global count (i.e., the total number of target cells) for the test image. However, the

automatic cell counting task is to predict a global count only, thus it may be unnecessary

to design an object-counting framework relying on the more expensive annotation data.

The problem of object counting from an image can be addressed from two distinct

directions: 1) developing an object detector, and 2) developing an object counter. These two

directions can be summarized as cell counting by detection and cell counting by regression.

Counting by detection

Counting by detection methods depend on vision-based object detectors, which are de-

signed to look for every target object instance within an image. After the detection of target

instances, object counting turns into a simple task. Many methods have chosen to fulfill

object counting task following the detection pipeline [99] [102] [98] [6] [91] [58]. In this case,

an object detection framework is designed to localize each object (e.g., cell, head, or vehicle)

one by one; after that, a counter naturally takes all the detected objects and produces the

final count. Following the success of deep learning applied in computer vision like detec-

tion, segmentation, and localization [52] [38] [36], most recent counting-by-detection works

choose a learning-based approach, where each training object has annotation information,

which is sometimes dot annotation indicating the centroid of the object [15] [59] [101], and

sometimes bounding-box annotation around the object [97]. However, it is well known that

the problem of detecting and localizing individual object instance is far from being solved,

especially in real world application of cell counting, where cells are quite densely distributed

in microscopic images [53] [14] [91]. For example, the number of cells can easily reach or

exceed thousands per image, and the cells also show huge variations in terms of type, size,
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shape, and appearance, etc. Approaches within this direction are able to provide precise

count estimation, if their fundamental suppositions are satisfied. However in general, these

counting schemes do not become reliable enough when confronted with more challenging

circumstances.

Counting by regression

Counting by regression approaches evade the open and difficult problem of detection

or segmentation of individual cells. Efforts are made to learn the relationship from image

representations (mainly various image global features) to the number of target instances.

And a wide range of machine learning models (e.g., neural networks [50] [50] [64]) are good

choices for solving such a standard regression problem. These methods abandon the known

information regarding the exact position of targets, only relying on the target count for

training.

Counting by density prediction [101] [57] can be viewed as a variant of counting by

regression, since object counting can be fulfilled by an integration over the spatial density

prediction. Counting by density prediction [101] formulated the task of cell counting as a

supervised learning process, which strives to learn the relationship between an input image

and its corresponding cell density map. The mechanism behind [101] is that cell density

prediction evades the difficult problem of detection or segmentation of individual cells, and

it is a good option for the cell counting task where only the quantity of cells is the demand.

Another relevant work is [57], which designed a novel supervised learning scheme for a

vision-based counting object, for example, predicting the number of cells. Similar to [101],

the problem of cell counting is cast as an approximation of a cell density map, over which

an integral can provide the number of target cells of the corresponding image so that it can

also avoid the difficult mission of learning to detect or localize individual cells. It has been

confirmed by several recent works [57] [101] that counting by regression is able to provide

more efficient and precise cell counting results than counting by detection methods.

1.3.3 Proposed solution to cell counting

It is necessary to mention that several counting by regression methods apply deep-neural-

network-based approaches, but their deep neural networks are usually trained and used

under multi-class classification structures. Thus, the counting problem is cast as a classifi-

cation problem, where the cell count is treated as class ID, and images with the same number

of objects are seen as belonging to the same class. During its test phase, each test image is

predicted with an integer class label, which indicates the number of objects in the image.

However as I know from the object classification task, training images of different categories

(for example, cat, bicycle, and airplane) are independent of each other, and softmax loss

function is used in classification CNN architectures [52] [44] [36]. A classification-orientated

CNN model treats cell counts 25 and 53 as far apart as counts 25 and 26. However from

the nature of cell counting, the distance between different cell counts is important. It is
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beneficial to treat the object counting task as a regression task [91] where counts 25 and 26

should be closer, and that could be correctly reflected in the regression setting.

Figure 1.6: Cell counting is better modeled as a regression problem than a classification
problem.

In our proposed solution to cell detection, I combine CNN-based regression with density

estimation for cell counting. The schematic of our method is shown in Chapter 3, Figure

3.1. Thus, it is a combination of counting by detection and counting by regression methods.

The advantages of proposed cell counting can be summarized as follows:

1. To capture the relationship between RGB cell image and its overall cell count, I

cast the cell counting task as developing an end-to-end regression framework, which is more

suitable for a counting task compared to counting by detection. Additionally, instead of

being applied for classification purposes, a convolutional neural network architecture with

Euclidean loss function is used for regression.

2. As the final output, the proposed approach not only estimates the global number of

certain cells in an image but also produces the spatial density prediction, which is able to

describe the local cell density of an image sub-region. In many clinical imaging systems [88]

[24] [104], researchers have confirmed that the topographic map that illustrates cell density

distribution is a valuable tool correlated with disease diagnose and treatment.

3. I utilize several popular CNN architectures (including the Deep Residual Network [36],

AlexNet [52]) into our regression model. To the best of our knowledge, this is the first piece

of work to expand the deep residual network from classification, detection, and segmentation

to microscopy cell counting.

1.4 Organization and Contribution of the Thesis

Considering the nature of cell detection and localization tasks (for example, point objects,

variable number of target cells, small size, sparse/high density, etc.), it is challenging to

adapt classic object detection algorithms to cell detection. In this thesis, I integrate Com-

pressed Sensing (CS) into a Convolutional Neural Network (CNN)-based detection frame-

work to overcome these challenges. Chapter 4 describes the pipeline of the proposed CNNCS

12



cell detection method. Chapter 5 describes the end-to-end trainable version of the CNNCS

method.

Furthermore, a framework is also developed for counting target cells present in a mi-

croscopy image. Our cell counting framework is described in chapter 3. While in chapter

2, all the background and related work on general object detection, cell detection, cell

counting, and compressed sensing theory is discussed.

The contribution of the proposed research can be summarized as follows.

• I cast the cell counting task as developing an end-to-end regression model, instead

of following the object classification or detection framework. The regression frame-

work evades the open and difficult problem of detection or segmentation of individual

cells, and is more suitable for the counting task. To further decrease the prediction

error of counting, I incorporate several cutting-edge CNN architectures (e.g., Deep

Residual Network) into the regression model with Euclidean loss function rather than

softmax loss function. The proposed method is evaluated with several state-of-the-art

approaches on three cell image datasets and obtains superior performance.

• It is the first attempt demonstrating that deep convolutional neural network can

work in conjunction with compressed sensing-based output encoding schemes toward

solving a significant medical image processing task: cell detection and localization

from microscopy images.

• I introduce redundancies in the CS-based output encoding that are exploited by CNN

to boost generalization accuracy in cell detection and localization. These redundancies

also help to reduce false detections.

• I demonstrate that the proposed CNNCS framework achieves competitive results com-

pared to the state-of-the-art methods on several benchmark datasets and challenging

cell detection contests.

• On the basis of the proposed CNNCS model, I further develop an end-to-end trainable

model, which enables parameters of CNNCS’s two key components being optimized

jointly.

• Furthermore, it is the first work that derives a back propagation rule for a sparse cod-

ing (i.e., compressed sensing) algorithm. Our back propagation rule is independent

of a sparse coding/compressed sensing algorithm. Also, our experiments on bench-

mark datasets show that our back propagation method increases accuracy by virtue

of end-to-end training.
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Chapter 2

Literature Survey

2.1 Cell Counting

Automated counting of cells from microscopy images or videos is a highly laborious and

time-consuming task experienced by many real-world applications. A great number of

processes in medicine and biology need cell counting; for example, a patient’s physical

condition can be deduced based on their quantity of red blood cells and white blood cells. In

clinical pathology, cell counts in microscopy images are quite helpful to infer the pathological

conditions or procedures of a patient, while in molecular biology, cell density is a key

reference for regulating the concentration of chemicals used in an experiment.

Some traditional methods address counting tasks in an unsupervised manner, conducting

grouping according to self-resemblances [61] or motion resemblances [72]. The counting pre-

cision of these fully unsupervised approaches is rather limited, and consequently alternative

methods are proposed from the perspective of supervised learning. Following the success of

deep learning applied in computer vision tasks, most recent methods (e.g., [57] [101] [59],

etc.) choose deep-neural-network-based approaches to count cells present within an image.

Flaccavento et al. [30] have developed a learning algorithm that counts the number of

cells in an image with a large field of view automatically, and can be used to investigate

colony growth in time lapse sequences. The images are acquired using a novel, small,

and cost-effective diffraction device that can be placed in an incubator during acquisition.

This device, termed a CyMap, contains a resonant cavity LED and CMOS camera with no

additional optical components or lenses. The counting method is based on structured output

learning, and involves segmentation and computation using a random forest. They show

that the algorithm can accurately count thousands of cells in a time suitable for immediate

analysis of time lapse sequences.

More recent cell counting methods can be summarized as one of two directions. The

first direction is cell counting by detection (e.g., [6]), which strives to segment or localize

cells as the first step of their approach. The second direction is cell counting by regression,

where there is no need for conducting prior cell detection or segmentation. For example,

density prediction methods [7] [29] [57] are representative research within this direction.
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Counting by detection

This direction relies on a vision-based object detector, which is designed to search for

every target example within an image. After the detection of all target examples, object

counting turns into a simple task. Nevertheless, it is well known that object detection

is still far from being solved, particularly when cells are quite densely distributed in mi-

croscopic images. For example, most present object detectors work by two phases: first

generating real-valued probability maps; then over each probability map, thresholding and

non maximum suppression operation is required in order to localize high confidence points

or regions corresponding to dense target examples [19] [69]. Other methods try to evade

non-maximum suppression by inferring the mapping relationship between parts and exam-

ples [8] [22] [56] [100] [107], but they are only reliable for circumstances where there are

a small number of objects in images, and they still need time-consuming reasoning pro-

cesses. On the other hand, some approaches believe that it is very likely that objects are

separable according to their different background appearances. As a result, the MonteCarlo

process [20] and morphological analysis [5] are feasible here for detection of every single

target example. Counting by detection-based methods is able to estimate object count

accurately, when their basic hypothesis is satisfied. But generally speaking, counting by

detection becomes not reliable enough once meeting with more challenging situations.

The method in [6] presented a machine-learning-based solution to the cell counting

problem. The approach contains three major steps. First, it utilizes a fast Maximally

Stable Extremal Regions (MSER) detector [65] to look for a large set of cell-like candidate

regions. Second, a structured SVM-based model is trained for evaluating every candidate

region by assigning a score in terms of its cell appearance. Finally, the non-overlapping

regions with high confidence scores are chosen by dynamic programming.

Counting by regression

Counting by regression-based methods directly predicts the number of target instances

from image representations (mainly various image global features), instead of paying at-

tention to the open problem of object detection. A variety of machine-learning approaches

(e.g., neural networks [50] [50] [64]) are available tools for the standard regression problem.

These approaches rely on the target count for training instead of the pixel location coor-

dinates of targets. Counting by segmentation approaches [12] [78] can be viewed as mixed

breeds of counting-by-detection and counting-by-regression methods since objects are first

segmented. Based on the global segmentation characteristics, the overall object counts are

regressed.

A fully convolutional neural network (FCN) [81] was proposed for the image segmen-

tation problem and had shown remarkable performance. Soon after the FCN was pro-

posed, [101] developed a FCN-based framework (as shown in Figure 2.1) for cell counting,

where their FCN is responsible for predicting a spatial density map of target cells, and then

the number of cells can be estimated by an integration over the learned density map. [101]

15



Figure 2.1: An overview of the FCN based framework for cell counting proposed in [101].
(a): Training image. (b): Dot annotations that create a Gaussian at the center of each cell.
(c): Image from the test set. (d): Estimated Density Map, the number of cells in a specific
region is calculated by integrating the density map over that region.

formulated the task of cell counting as a supervised learning process, which strives to learn

the relationship between an input image and its corresponding cell density map. The mech-

anisms behind [101] is that cell density prediction evades the difficult problem of detection

or segmentation of individual cells, and is a good option for cell counting tasks where only

the quantity of cells is required.

The method in [57] designed a novel supervised learning scheme for vision-based counting

object, for example, predicting the number of cells. Similar to [101], the problem of cell

counting is cast as an approximation of a cell density map, over which the integral can

provide the number of target cells of the corresponding image. By doing so they can also

avoid the difficult mission of learning to detect or localize individual cells. Given an image I,

the central idea of [57] is to learn a cell density function F of cell counts/square area in the

image. The method assumes that every pixel in an image is described by a feature vector

and formulates the density function as a linear transformation of the feature vector. Given

a set of training images, the density function parameter is optimized, so that the density

predicted for the training images resembles the ground truth density generated from the

user annotations. It has been confirmed by several recent works [57] [101] that counting by

regression is able to provide more efficient and precise cell counting results than those by

detection methods.

2.2 Cell Detection and Localization

Automatic cell detection is of interest to a wide collection of cell-related research, since it

is the foundation of many automatic studies ranging from cell type identification, quan-

tification of cell migration, to intracellular structures. The broad variation of cells and

microscopy imaging mechanisms ask for wide feasibility and generalization of cell detection

methods to a variety of scenarios. The task of cell detection also becomes more difficult

when the target cells becomes more dense, since cell clumping becomes quite common and
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cell sizes can change significantly. Furthermore, in many cases, both target cells and sim-

ilar structures are simultaneously present in a microscopic image. It becomes harder for

classical image processing techniques to still recognize the cells of interest.

Prior to the introduction of deep learning methods, cell detection and localization de-

pended on segmentation of cells. An effective summary can be found in [27]. Traditional

computer vision-based cell detection systems adopt classical image processing techniques,

such as intensity thresholding, feature detection, morphological filtering, region accumula-

tion, and deformable model fitting. For example, Laplacian-of-Gaussian (LoG) [51] operator

was a popular choice for blob detection; Gabor filter or LBP feature [70] offers many interest-

ing texture properties and had been attempted for a cell detection task [4]. Conventional cell

detection approaches follow the “hand-crafted feature representation”+“classifier” frame-

work.

Early research on automatic cell detection utilized domain-specific handcrafted features

to build representations of statistical, morphological, or textural characteristics of mitosis

[83] [49] [41] [93] [62] [96] [87]. Some of these works integrate two or more such features so as

to achieve high detection accuracy. For instance, [83] developed a pixel-wise classifier using

shape and texture features to localize target cells within a histology image. [41] designed

a system that combined statistics and morphological features, and then performed joint

analysis of the features using a decision tree classifier for mitosis detection. [87] distinguished

mitotic and non-mitotic areas according to general features and a combination of cascaded

adaboosts; it requires significant skills and prior knowledge to develop or choose appropriate

handcrafted features. Furthermore, in many cases, such features are not effective enough

to work as the representations of the properties of target cells, considering huge variations

in shapes and textures, consequently leading to a low detection accuracy.

Today, the state-of-the-art methods in detection and localization include deep learning

techniques for cell detection and localization. Recently, [101] presented a FCN-based frame-

work for cell detection, where their FCN is responsible for predicting a spatial density map

of target cells, and the local maximum point on the learned density map is considered as

target cells. In another application of deep learning, a cascaded network [13] has been pro-

posed for cell detection. [13] uses a FCN for candidate region selection, and then a CNN for

further discrimination between target cells and background. In contrast to approaches using

hand-crafted features, deep CNNs are able to learn hierarchical feature representations, and

have achieved significant accuracy in object recognition tasks [52] [85] [82].

In cell detection, [15] employed a deep CNN as a pixel-wise classifier followed by ad-hoc

post-processing to detect mitosis, and obtained the best performance in the 2012 ICPR

MITOSIS challenge with an F1 score of 78.2%, and 61.1% in the 2013 MICCAI challenge.

In [15], deep max-pooling convolutional neural networks were used to detect mitosis in

breast histology images. The networks were trained to classify each pixel in the images,

using a patch centered on the pixel as context. Afterward, post-processing was applied to
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the network output. But the deep CNN-based pixel-wise classifier is quite computationally-

intensive. For a single microscopic image containing hundreds to thousands of high-power

fields (HPFs), it is extremely time-consuming for the pixel-wise classifier to go through all

sub-windows for detection. This greatly limits its application in clinical practice. In [80],

expectation maximization has been utilized within a deep learning framework in an end-to-

end fashion for mitosis detection. This work presents a new concept for learning from crowds

that handles data aggregation directly as part of the learning process of the convolutional

neural network (CNN) via an additional crowd-sourcing layer. It is the first work where

deep learning has been applied to generate a ground-truth labeling from non-expert crowd

annotation in a biomedical context.

As a very practical sub-problem of cell detection, mitoses detection in breast histology

images has become a hot topic in recent years, and several automatic approaches have been

proposed. Initial works utilized hand-crafted features that are dedicated to certain proper-

ties of mitosis for automatic detection [83] [49] [41] [93] [62] [96] [87]. But in many cases,

these approaches are likely to show unsatisfactory performance due to the broad changes in

the appearance of mitosis. What’s more, the mimics often have a similar appearance and

are wrongly identified as mitoses by these hand-crafted features. In a recent work [15], the

task of mitosis detection was partly solved by deep convolutional neural networks (CNN),

which are able to learn high-level feature representations and show superior detection results

compared to other methods. This approach built a pixel-wise classifier using CNN, which

is quite computationally intensive and time-consuming, which limits its practical clinical

application.

To conquer the weaknesses of the above-mentioned approaches, [13] design an efficient

and precise scheme to localize mitosis by developing a novel deep cascaded neural network

(CasNN), which consists of two modules. First, a fully convolutional network (FCN)-based

coarse retrieval model is proposed for identification and detection of mitosis candidates. This

coarse retrieval module is able to find mitosis candidates within a whole microscopic image,

and at the same time, keep a high sensitivity. Given those candidates, a fine discrimination

module is designed for further discrimination of mitosis from similar mimics. Since the

search range has been reduced from the whole image to only the candidates, the mitoses

detection speed of [13] in a normal histology image is claimed to be 60 times faster than the

state-of-the-art method [15]. To avoid overfitting caused by a limited number of training

data and also boost the detection performance, the fine discrimination module is pre-trained

on a large generalg image dataset, then fine-tuned on the mitosis detection dataset.

Figure 2.2 presents the schematic of approach [13], which is comprised of two cascaded

convolutional neural networks working jointly. The model is a fully convolutional network,

which is responsible for efficiently detecting mitosis candidates. It is referred to as the

coarse retrieval model Nc, which produces a score map showing the probability of mitosis

candidates existing in corresponding locations. Then the second model takes the detected
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Figure 2.2: An overview of the deep cascaded networks for cell detection proposed in [13].

candidates as input for further recognition between mitoses and false targets with similar

appearances. The second model is built by transferring deep and rich feature hierarchies

trained by deep convolutional neural networks on a huge natural image dataset. The second

is referred to as the fine discrimination model Nf, which has a stronger ability to build feature

representations for input images than the CNNs that are barely trained on histopathological

images, and is able to distinguish mitoses from hard mimics more accurately.

In recent years, several public cell detection contests have received considerable research

attention, and also released their corresponding cell datasets, e.g., the MITOSIS contest at

ICPR 2012 (Roux et al., 2013), the AMIDA13 contest at MICCAI 2013 (Veta et al., 2014),

the MITOS-ATYPIA challenge at ICPR 2014, and the AMIDA16 contest at MICCAI 2016

with extensively enlarged data. These contests and datasets provide good opportunities for

conducting experiments, algorithm evaluation, comparisons with cutting-edge methods, and

are a significant contribution to the advances of cell detection research. In the experiments

within this thesis, I also carried out considerable experiments on these challenging datasets.
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Chapter 3

The Cell Counting Framework

3.1 Introduction

Cell counting is an important problem of counting or quantification of the number of cells for

medical diagnosis and treatment, with several applications in research and clinical practice.

For example, the complete blood cell count is able to assist a physician to determine the

causes behind of patients’ unwell feeling. Numerous sub researches in biology and medicine

are in demand of the counting of cells. In medicine, the concentration of various blood cells,

such as red blood cells and white blood cells, can give crucial information regarding the

health conditions of a person. Studies that examine the growth speed of microorganisms (in

other words: how fast they divide to create new cells) require cell counting. Many recent

methods solve the problem of automated cell counting as an image analysis task, where they

develop computer vision based recognition algorithms on high-quality microscopy images.

A wide range of image analysis techniques can be employed for this purpose. In this chapter,

we present a supervised learning framework with Convolutional Neural Network (CNN) and

cast the cell counting task as a regression problem.

3.2 System overview

The system overview of our framework appears in Figure 3.1. In the training phase, a

Convolutional Neural Network (CNN) is utilized to build a regression model between an

image patch and its cell count number. We employ several kinds of CNN architectures

and use Euclidean loss function during training, to enable the regression model to fit the

cell counting task. To prepare the training data, we generate a large number of square

patches from every training image. Along with each training patch, there is a patch count,

which indicates the number of target cells present in the patch. After that, patch rotation

is performed on the collected training patches for the purpose of making the system more

robust to rotational variance and data augmentation.

In the test phase, one test image is cropped into a number of overlapping test patches

with the same size as the training patches in the sliding-window manner. Each of these test
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Figure 3.1: The system overview of the proposed cell counting framework.
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patches is passed into the CNN-based regression model, and then the estimated cell count

of the input test patch is output from the last layer of the CNN model. After predicting cell

counts for all the patches, we perform a 2-D Linear Interpolation over the estimated cell

count and its corresponding x -y coordinates to build a heatmap, which provides a spatial

density prediction as shown in Figure 3.1. Lastly, integrating these interpolated counts

on pixel locations provides us the final count on the test image. The whole procedure is

illustrated in Figure 3.1.

3.3 Data Preparation and Processing

In automatic cell counting task, the resolution of a miscroscopy image can be high, at

the same time the target cells could be very dense. Consequently, it is quite difficult to

manually count target cells one-by-one. This is the principal motivation for deleoping an

automatic cell counting method. Considering the nature of these medical images, which

need automatic cell counting, data preparation and processing is naturally necessary. In

this work, we crop an image into consistent patches and then perform training and prediction

over these patches, in order to (1) make the approach more robust to scale variance, (2)

avoid resizing original microscopy image, which could cause information loss, (3) prepare

more training data to prevent the CNN based regression model from overfitting during

training.

The proposed method operates by first partitioning an image into smaller patches.

Patches are generated in a sliding window manner: from the top-left corner of a large

W -by-H image with a certain patch size and stride size. Usually, stride size is set smaller

than half of path size to ensure that adjacent patches have overlapping region. To construct

training data, every training patch is accompanied by a patch count, which is an integer

indicating how many cells exist in the patch. Then for data augmentation, a training patch

is rotated from 0 degree to 360 degree with a certain rotation step, for example 30 degrees.

3.4 Convolutional Neural Network Regression Model

3.4.1 Classification vs Regression for Counting

As we know, in a CNN-based classification model, the network outputs a vector whose size is

the same size as the number of classes. The i -element in the vector describes the confidence

score that the input image belongs to the i -th class. During test phase, the index with the

highest confidence score is selected as the final classification result. Softmax loss is widely

used for classification problem.

However for counting problems, it is not proper to take cell count number as class

index. The reason why regression is a better choice than classification for counting task

has been explained in the background section of Chapter 2. In our counting-by-regression

model, the difference between ground-truth value and the estimated value can be better
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preserved during calculating the error. This information is quite helpful for optimizing the

CNN weights more accurately in the back-propagation phase. The layer of our regression

model outputs a single number, indicating the number of cells that our model predicts. In

our model, we employ two kinds of CNN architectures, the first one is AlexNet [52] which

consists of 5 convolution layers + 3 fully connected layers; the other is the deep residual

network (ResNet) [36]. In both of these architectures, the loss function is defined as the

Euclidean loss, which measures the sum of squares of differences between the ground truth

and prediction. We train the AlexNet model from scratch with Softmax and Euclidean loss

layer respectively, the performance improvement of regression over classification is experi-

mentally explained in Table 3.1. And Figure 3.4 provides 6 examples of cell counting result

by the proposed counting-by-regression method.

3.4.2 Deep Residual Network for Regression

Since the 2012 ImageNet competition, convolutional neural networks have become popular

in large scale image recognition tasks, several milestone networks (including AlexNet [52],

VGGNet [44] and GoogLeNet [86], etc) have been proposed. Recently, the introduction

of residual connections into deep convolutional networks has yielded state of the art per-

formance in the 2015 ILSVRC challenge. This raises the question of whether there is any

benefit in introducing deep residual network (ResNet) [36] into the cell counting task. In

the following section, we are going to explain the network architecture and its components

used in this chapter.

Convolutional layer. It consists of a set of learnable filters. During the forward

pass, we slide each filter along the width and height of the input volume and compute dot

products between its weights and the activation map from previous layer. Intuitively, the

filters will be trained to be active to some type of visual feature such as an edge of some

orientation or a blotch of some color on the first layer.

Pooling layer. It works by down-sampling the convolutional features using the max

operation (max-pooling) or average operation (average-pooling). Pooling layer is usually

inserted between successive convolutional layers, in order to reduce the amount of network

parameters and also to control overfitting.

Batch Normalization layer. The ResNet [36] architecture uses Batch Normalization

(BN) layer [39] right after each convolution and before activation. Normalization is often

used as a pre-processing step to make the data consistent. When the input flows through a

deep network, the weights and parameters adjust the values of the input, sometimes making

the data too big or too small again. Batch Normalization layer allows us to normalize the

data in each mini-batch across the network rather than just performing normalization once

in the beginning, thus this problem is largely avoided. [39] has demonstrated that batch

normalization helps to boost the learning speed and also increase the overall accuracy.

Fully-Connected layer. As the name implies, each neuron in a Fully-Connected (FC)
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layer has full connections to all neurons in the previous layer. After gathering all the

responses from previous layers into each of its neuron, fully connected layer is responsible

for computing a class-specific confidence vectors, where its each neuron outputs a score for

a certain class. For example, the ResNet ends with a 1000-way fully-connected layer, on

which the class with maximum score is selected as its final predicted label.

Overall Architecture.

Different from other CNN architectures, ResNet consists of a number of Residual Blocks.

Each residual block is a made up of Convolutional layer, Batch Normalization layer and

a shortcut that connects the original input with the output as shown in Figure 3.2 (a)

and (b), where a Residual Block with Identity Shortcut (RB-IS) and a Residual Block

with Projection Shortcut (RB-PS) is illustrated, respectively. The mathematical model of

residual block can be summarized as:

yl = F (Xl, {Wl}) + h(Xl) Xl+1 = f(yl) (3.1)

h(Xl) =

{
Xl identity mapping
WpXl projection mapping

(3.2)

Xl and Xl+1 are the input and output of the l-th residual block, F (Xl, {Wl}) stands

for the residual function, and f is a activation function (e.g. ReLU). h(Xl) represents

the shortcut connection: identity mapping or projection mapping. If the dimension of Xl

and Xl+1 is the same, the identity shortcuts is used; otherwise a linear projection Wp is

performed on the shortcut connections to match the dimension, that is projection mapping.

The central idea [36] of ResNet is to learn the additive residual function F with respect to

h(Xl), with a key choice of using an identity mapping and/or projection mapping.

Figure 3.2 (a) and (b) show two types of Residual Blocks, which are used in different

layers of ResNet model (c) according to whether the dimensions of input and output are

the same. Nr1, Nr2, Nr3 and Nr4 represent the number of residual blocks used in four

sections of ResNet model. For example, Nr1=3, Nr2=4, Nr3=6 and Nr4=3 in ResNet-

50. Additionally, it has been demonstrated that pre-trained network can be adjusted to

be effective for other computer vision tasks. We modify the last fully-connected layer of

ResNet from outputting a 1000-D vector to outputting 1 item indicating the predicted

number of cells. Additionally, we replace the softmax loss with Euclidean loss. After that,

we perform fine-tuning on the weights in fully-connected layer of the ResNet using cell

datasets, the parameters of previous layers are preserved. Finally, we obtain three ResNet

based regression models for cell counting.

3.5 Datasets and Evaluation Metric

First, we describe the three cell datasets, on which the proposed method and other com-

parison methods are evaluated. The first dataset [45] involves 100 stained histology images
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Figure 3.2: (a) RB-IS stands for the Residual Block with Identity Shortcut; (b) RB-PS is
the Residual Block with Projection Shortcut; (c) An illustration of the architecture that we
used in this chapter.

of colorectal adenocarcinomas. A total of 29,756 nuclei were marked at/around the center.

The second dataset [57] consists of 200 highly realistic synthetic emulations of fluorescence

microscopic images of bacterial cells. The third dataset [102] comprise of 55 high resolution

RGB images, each of them is a microscopic image of proliferative tumor cells area with a

high resolution of 1920-by-2560 pixels. The tumor cell diameter is about 10-20 pixels or 10

micrometer in physical length.

Table 3.1: Size is the image size; Ntr/Nte is the number of images selected for training
and testing; AC indicates the average number of cells; MinC-MaxC is the minimum and
maximum numbers of cells.

Cell Dataset Size Ntr/Nte AC MinC-MaxC

Nuclei [45] 500×500 50/50 310.22 1-1189
Bacterial [57] 256×256 100/100 171.47 74-317
Ki67 Cell [102] 1920×2560 45/10 2045.85 70-4808

To build this Ki-67 cell image dataset, a 10X microscopic field representing the highest

proliferative area was acquired using a Nikon Eclipse E600 microscope with 0.25 aperture

and a QImaging Micropublisher 5.0 RTV camera equipped with a Sony ICX282 CCD,

finally it gives us 24-bit color pictures with a resolution of 1920 x 2560 pixels. All of the

three evaluation cell datasets have their dotted annotation available, which represents the
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Figure 3.3: Example of the three evaluation datasets and dotted annotation. The three
datasets are used in both cell counting and cell detection for evaluation.

location of cells as shown in Figure 3.3. For the three datasets, we randomly select images

for training and testing. Details of the three evaluation datasets are summarized in Table

3.1.

In all the experiments, we use the Mean Relative Error (MRE) and Mean Absolute

Error (MAE) as the metric for quantitative evaluation: where N is the total number of test

images, ti and pi are the true and predicted numbers of cells in the i -th test image. MRE

and MAE are defined as follows:

MRE =
1

N

N∑
i=1

|ti − pi|
ti

(3.3)

MAE =
1

N

N∑
i=1

|ti − pi| (3.4)

3.6 Implementation Details

The proposed method is implemented in Matlab, and we utilize Caffe [38], a fully open

source implementation of Convolutional Neural Network, which affords clear access to Mat-

lab/Python with support for GPU computation. As discussed in image partion part, each

original RGB images is partitioned under certain rotation, stride size, and patch size. After

taking experiments under different settings, we use stride size = 30 (pixels), patch size =

60×60 (pixels) and rotation step = 30 for the nuclei data; stride size = 20 (pixels), patch

size = 40×40 (pixels) and rotation step = 30 for the bacterial data; stride size = 50 (pix-

els), patch size = 200×200 (pixels) and rotation step = 30 for the Ki-67 cell data. All the

experiments are run on a machine with Intel Core i7-4790K CPU@4.00 GHz x 8 and GPU

GeForce GTX TITAN Black/PCIe/SSE2.
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Figure 3.4: Spatial density prediction and counting results on the cell datasets. Original cell
image is shown in on left side; the middle panel shows the patch level prediction, which is a
middle result of our cell counting result; The right panel shows the spatial density prediction
map (measured in number/square pixel) as well as the global counts of ground-truth and
our prediction. From the patch level prediction curve, we can see that our estimated counts
for each patch approximate the pattern of ground truth counts well.
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3.7 Counting Performance using Different Models

First, we are going to investigate the performance difference between Classification (C)

model and Regression (R) model for the cell counting task. The whole framework follows the

pipeline shown in Figure 3.2. As for the CNN architecture, we employ AlexNet (5conv+3fc)

and ResNet (50 layers) separately. And softmax loss function and Euclidean loss function

are used respectively in the classification and regression model. We conduct this comparison

experiment on all the three cell datasets and evaluate the performance in terms of Mean

Relative Error and Mean Absolute Error (std also provided). Table 3.2 shows that on all the

three datasets, the regression model gives lower prediction error by considerable margins

than the classification model, which experimentally support the previous discussion. It is

also necessary to note that the AlexNet based regerssion model outperforms the ResNet

based classification model. Table 3.3 shows the counting performances using ResNets with

different number of layers. The 50/101/152-layer ResNet based regression models are used

in this experiment. We can observe that ResNet-152 model shows the lowest prediction

error, followed by ResNet-101 and ResNet-50 respectively.

Table 3.2: Counting performance in terms of MRE and MAE±std comparison between
Classification (C) and Regression (R) model

MRE Nuclei-dataset Bacterial-dataset Ki67-dataset

AlexNet(C) 0.2175 0.0918 0.1226
AlexNet(R) 0.2019 0.0651 0.0959
ResNet(C) 0.2104 0.0772 0.1170
ResNet(R) 0.1925 0.0539 0.0775

MAE±std Nuclei-dataset Bacterial-dataset Ki67-dataset

AlexNet(C) 20.7636±13.9416 12.9667±4.5361 213.5302±65.7220
AlexNet(R) 18.5720±12.6055 9.2591±3.3142 151.2059±44.6032
ResNet(C) 19.8742±13.5217 11.8711±3.8247 169.5076±50.2124
ResNet(R) 17.1437±11.5073 8.2064±2.8515 128.7426±40.5621

Table 3.3: Counting performance in terms of MRE and MAE±std using different models.

MRE Nuclei-dataset Bacterial-dataset Ki67-dataset

ResNet-50(R) 0.1925 0.0539 0.0775
ResNet-101(R) 0.1845 0.0507 0.0697
ResNet-152(R) 0.1666 0.0450 0.0641

MAE±std Nuclei-dataset Bacterial-dataset Ki67-dataset

ResNet-50(R) 17.1437±11.5073 8.2064±2.8515 128.7426±40.5621
ResNet-101(R) 16.3164±10.8762 7.7542±2.4580 116.3076±39.0215
ResNet-152(R) 14.9275±10.4368 7.4741±2.2248 108.3014±40.4698
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3.8 Comparison with state of the art

We carry out experimental performance comparison between our method and three other

state of the art approaches (presented in [6], [57], [79]) on three evaluation datasets. The

counting result from ResNet-152 regression model is used in our approach. Figure 3.5 pro-

vides the cell counts of ground-truth and four predictions of “Le.count” [57], “Le.detect” [6],

“DeepFeat” [79] and “The proposed” on every test image. To quantify Figure 3.5, Table.3.4

reports the performance in terms of Mean Relative Error (MRE) and Mean Absolute Error

(MAE) over the three evaluation datasets.

The proposed method has achieved very competitive result on Nuclei dataset and Ki67

dataset, MRE=16.66% and 6.41% respectively. The images from Nuclei and Ki67 datasets

contain 310.22 and 2045.85 cells on average, our proposed method is able to predict with

only 14.93 and 108.30 cells in terms of mean absolute error; while other three methods gives

33.89-71.80 and 189.35-259.67 error cells on average.

On Bacterial dataset, the proposed method gives MRE=4.50%, but [101] makes 2.4%

further improvement over our result. The central idea of [101] is to estimate a density

function whose integral over any image region gives the count of objects within that region.

In its learning phase, each cell is dot-annotated and is assigned a real-valued Sift feature

vector describing the local appearance. It means that for each cell, [101] needs its x -y

coordinate on an image and then compute the Sift feature on the image sub-region around

this cell. In comparison, the proposed method only takes the number of cells as annotation

to an image patch during training. As one can imagine, for an image containing hundreds

to thousands of cells, the complexity and time consuming of [101] will increase greatly.

Furthermore, when it comes to the much more dense datasets (Nuclei and Ki67), the Sift

descriptor based learning of [101] becomes less reliable.

It is also necessary to mention that the MRE values of all the four methods on Nuclei

dataset are higher than those on other two datasets, because Nuclei dataset has several test

images, which only contains a few cells e.g. 1, 4 or 8. For example, predicting the cell count

from 1 (ground truth) to 2 or from 4 (ground truth) to 6 will greatly affect the final MRE

value.

3.8.1 Comparison with FCN based Cell Counting Scheme

Recently, fully convolutional network (FCN) has been applied to the cell counting task

by [101], where FCN predicts a spatial density map of target cells. Then, the number of

cells can be estimated by integration over the density map, as in the proposed framework.

We follow this FCN-based method and carry out comparison experiment on the evaluation

datasets. We have observed that the density map predicted by FCN is not accurate for cell

counting task in several cases. Figure 3.6 illustrates the density map predicted by FCN and

our method, where the estimated cell count is also shown in the figure caption. As shown

in the Figure 3.6, FCN generates a cell density map, however for some images, where target
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Figure 3.5: The estimated count versus ground-truth of different approaches on the three
evaluation datasets. 30



Table 3.4: Counting performance (MRE) and (MAE±std) comparison on the three evalu-
ation datasets.

MRE Nuclei-dataset Bacterial-dataset Ki67-dataset

DeepFeat [79] 0.3581 0.1751 0.1249
Le.count [57] 0.2674 0.0208 0.1151
Le.detect [6] 0.3206 0.1083 0.1540
The proposed 0.1666 0.0450 0.0641

MAE±std Nuclei-dataset Bacterial-dataset Ki67-dataset

DeepFeat [79] 71.8046 ± 51.4109 25.4792 ± 19.1504 189.3559 ± 53.6329
Le.count [57] 51.4479 ± 39.8087 6.4061 ± 3.5657 185.9391 ± 60.5042
Le.detect [6] 33.8995 ± 23.9252 18.1937 ± 13.4393 259.6736 ± 85.0594
The proposed 14.9275 ± 10.4368 7.4741 ± 2.2248 108.3014 ± 40.4698

cells are extremely dense just like the 3th and 4th examples, the cell density map is not

accurate enough compared with our prediction. And for most cases, those strong activation

regions are blurry (like 1th and 2th examples) or merged with neighboring cells (like 3th

and 4th examples). Consequently, the total cell counts estimated by FCN is less reliable

compared with our estimated cell counts, especially in cell-dense images.

3.9 Challenge of Imbalanced Data

Another significant challenge is the imbalanced data that is also a common problem in many

medical image analysis tasks and can be characterized as having many more instances of

certain classes than others. Our observations are as follows:

1. As we know, a machine learning model (e.g. CNN) is trained by iteratively adjusting

the weights, so that the error between the computed output of the network and the targeted

output is minimized. During training, the error (i.e. cell count error) of sparse images (i.e.

images containing a few cells) is much smaller than the counting error for dense images (i.e.

images containing a lot of cells). Therefore, it has been observed that the gradient vector

will be dominated by that of the dense images. Consequently, if weights are recalculated

in the direction of the gradient vector, the network error of the dense images will decrease

significantly and that of the sparse images may even increase significantly.

2. As a consequence, sparse images will suffer more from the imbalanced data problem

compared to the dense images. This is what we observe in Figure 3.7, that the prediction

error rates of images with sparse-disease-cells is higher than images with dense-disease cells,

in general.

3. Furthermore, in the real-world application of cell counting, most test images have

sparse or medium number of target cells, images with dense cells are rare. Thus, the imbal-

anced data problem has become a major difficulty to the cell counting task. Unfortunately,
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Figure 3.6: Each row corresponds to an input example and its prediction results by
two approaches. The cell counts of ground-truth, FCN’s result and our result are re-
spectively, first row: {24, 27.13, 25.60}, second row: {112, 120.54, 117.26}, third row:
{4157, 4372.49, 4239.30}, fourth row: {3487, 3621.33, 3408.14}.
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Figure 3.7: Three cell images with sparse/medium/dense target cells. T, P and E indicates
the True cell count, Predicted cell count and Error rate. The first row shows the estimation
result of FCN-based counting method, which is the-state-of-art approach recently. The
second row is the estimation result of the proposed approach with data balancing. It is
observed that the prediction error rates of images with sparse-disease-cells is higher than
those of images with dense-disease-cells.

most existing cell counting approaches assume a relatively balanced data distribution effec-

tively ignoring the imbalanced data issue.

3.9.1 Balancing Training Data

Considering the nature of these medical images, data preparation and pre-processing is

necessary. In this work, we first crop the training images into consistent patches and then

perform training and prediction over these patches, in order to (1) make the approach more

robust to scale variance, (2) avoid resizing original microscope image, which could cause

information loss, (3) prepare more training data to prevent the CNN based regression model

from overfitting during training.

The proposed method operates by first partitioning images to smaller patches. Patches

are generated with a certain patch size and stride size. Usually, stride size is set smaller than

half of patch size to ensure that adjacent patches have overlapping region. To construct

training data, every training patch is accompanied by a patch count, which is an integer

indicating how many cells exist in the patch.

For data augmentation, a training patch is rotated from 0 degree to 360 degree with a

variable rotation step. We change this rotation step with respect to cell density per patch,

in order to make our training data more balanced. The details for balancing training data

is discussed in the following paragraphs.

As discussed in introduction part, a machine learning model (e.g. CNN) is trained to
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Figure 3.8: Left panel shows the original distribution of a training data. Right panel shows
balanced data distribution after augmenting number of sparesely populated patches by
rotations.

produce a smaller overall loss or error during the training phase. However, due to the pres-

ence of imbalanced training data, the error of the dense images will decrease significantly

and that of the sparse images will increase significantly, typically. Thus, during predic-

tion cell counts for densely populated images will be more accurate than for the sparsely

populated ones.

Given the above observation, we are motivated to tune the distribution of training data

to be more balanced by data augmentation. It means that for sparse images, we perform

patch rotation with a smaller rotation step, so that more training images are available for

sparse side, conversely less training images for dense side. Compared to building a weighted

loss function and modifying corresponding back propagation of neural network, the proposed

scheme is a convenient solution to the imbalanced data problem, and can be easily applied

to other existing cell counting approaches. After making the training data more balanced

with respect to cell density as shown in the Figure 3.8, we train the proposed approach

again on the balanced data, which is indicated as “Proposed-balanced.” Note that shape of

the balanced data histogram is (roughly) inversely proportional to the number of cells.

3.10 Experiment after Balancing Cell Data

Here one further experiment is made to explore the influence of imbalanced data. We

organize this experiment in the following steps:

1. We generate about 2500 test patches in size of 224-by-224, and the number of cells

in those patches are in the range of [0,273], which covers the cell density range from “very

sparse” to “very dense”. (Actually, more than 130 cells in a 224-by-224 patch is already

quite dense.)

2. We run FCN-based counting and our counting approaches on the 2500 test patches

to collect their estimated cell counts. The counting results estimated by FCN, the pro-

posed approach and the proposed approach with balancing data are indicated as “FCN”

“Proposed” and “Proposed-balanced” in the following part.

3. To visualize the result, we rank ground-truth cell counts in the ascending order, so
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that the x-axis in Figure 3.9 represents the cell density from “sparse” to “dense”. Then

we compare the cell counts given by three approaches under an environment, where the

cell density increases (as shown in the top-left image in Figure 3.9). Furthermore, we

compute the “Error=Estimate-True” and “(Estimate-True)/True” for better visualization

and analysis (as shown in the top-right and bottom-right image in Figure 3.9).

Figure 3.9: Accuracies of FCN-based and proposed cell counting approaches with increasing
cell density.

From the top-left panel of Figure 3.9, we observe that all the three methods (FCN, Pro-

posed, Proposed-balanced) try to approximate the ground-truth curve. From the bottom-

right of Figure 3.9, the performance difference between the three methods becomes clear.

It shows that with the increasing of cell density, the relative error of FCN increases much

more quickly than those of Proposed and Proposed-balanced. We believe the issue of data

balancing is behind such behavior. Note that in an image the density map varies from one

part to another and the density map also varies across training images. Because, work-

ing with Euclidean loss, FCN does not compensate for this data imbalance. As a result,

it produces large relative counting errors for sparely populated areas or images. Another

practical disadvantage of FCN that its prediction is dependent on smoothing kernels used

over dotted annotations - it is difficult to use a single smoothing kernel that works over a

range of densely and sparsely populated cell images.

For the proposed method, we observe that when we compensate for the data imbalance,

we achieve better accuracy. In dense patches side, Proposed-balanced performs slightly

better than the Proposed; in the sparse patches side, Proposed-balanced performs much

better than Proposed and FCN.
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3.11 Performance and Comparison with State-of-the-art

We carry out experimental accuracy comparison between our method and 4 other state of the

art approaches: “Le.count” [57], “Le.detect” [6], “DeepFeat” [79] and “FCN.count” [101].

“Proposed” and “Proposed-Balanced” refer to our method without and with data balancing,

respectively. Table 3.5 reports accuracies in terms of Mean Relative Error (MRE) and Mean

Absolute Error (MAE) for the three evaluation datasets.

Table 3.5: Counting performance (MRE) and (MAE±std) comparison on the three evalu-
ation datasets.

MRE Nuclei-data Bacterial-data Ki67-data

DeepFeat [79] 0.3581 0.1751 0.1249
Le.count [57] 0.2674 0.0208 0.1151
Le.detect [6] 0.3206 0.1083 0.1540

FCN.count [101] 0.2514 0.0843 0.1087
Proposed 0.1666 0.0450 0.0641

Proposed-Balanced 0.1436 0.0338 0.0527

MAE±std Nuclei-data Bacterial-data Ki67-data

DeepFeat [79] 71.80 ± 51.41 25.47 ± 19.15 189.35 ± 53.63
Le.count [57] 51.44 ± 39.80 6.40 ± 3.56 185.93 ± 60.50
Le.detect [6] 33.89 ± 23.92 18.19 ± 13.43 259.67 ± 85.05

FCN.count [101] 25.25 ± 17.75 14.54 ± 7.65 134.87 ± 46.55
Proposed 14.92 ± 10.43 7.47 ± 2.22 108.30 ± 40.46

Proposed-Balanced 13.54 ± 8.76 6.79 ± 2.07 105.81 ± 37.63

With data balancing the proposed method has achieved very competitive result on

Nuclei dataset and Ki67 dataset, MRE=14.36% and 5.27% respectively. The images from

Nuclei and Ki67 datasets contain 310.22 and 2045.85 cells on average, our proposed balanced

method is able to predict with only 13.54 and 105.81 cells in terms of mean absolute error;

while other three methods gives 33.89-71.80 and 189.35-259.67 error cells on average.

3.12 Summary of this chapter

In this chapter, we present a novel regression based method for cell counting using latest

architectures of convolutional neural network. As the output, spatial density map and

global cell count are provided. The proposed method is able to handle both dense and

sparse cell microscopy images. We have experimentally demonstrated that the proposed

approach achieved superior performance compared with several recent related methods.

36



Chapter 4

The Cell Detection Framework

4.1 Introduction

Output encoding often leads to superior accuracies in various machine learning tasks. In

this chapter we look at a significant task of cell detection/localization from microscopy

images as a test case for output encoding and supervised learning with a convolutional

neural network (CNN). Since the output space is sparse for the cell detection problem (only

a few pixel locations are cell centers), we employ compressed sensing (CS)-based output

encoding here. Using random projections, CS converts the sparse, output pixel space into

dense and short (i.e., compressed) vectors. As a regressor, we use a deep CNN to predict

the compressed vectors. Then applying a L1-norm recovery algorithm to the predicted

vectors, we recover sparse cell locations in the output pixel space. We demonstrate CS-

based output encoding provides us with the opportunity to do ensemble averaging to boost

detection/localization scores. We experimentally demonstrate that the proposed CNN +

CS (referred to as CNNCS) framework is competitive or better than the the state of the art

methods on benchmark datasets for microscopy cell detection. In the AMIDA13 MICCAI

grand competition, we achieve the 3rd highest F1-score in all the 17 participated teams.

Output encoding transforms the labels (such as 1-hot vectors in classification) of training

examples into a different representation, where an inverse transformation can be applied to

recover the original label. Generally, an ensemble of machine learners is trained to predict

the transformed label. Finally, an inverse transformation or decoding is applied to retrieve

the original output labels.

One of the earliest research in the output encoding with error correcting ability [21] had

shown superior accuracy. In the recent past, redundancy in the output representation [92]

yielded more accurate predictions. The RAKEL method constructs many random a k-

labelsets that are subsets of the multiple labels and trains classifiers for those. Then, it

combines the ensemble by voting [92].

When the output label is sparse, a natural question for output encoding is how to exploit

this sparsity. Eventually, output encoding of sparse vectors borrowed an elegant tool called

compressed sensing or compressive sensing (CS) [23,25] from the signal processing commu-
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nity. CS is theoretically and algorithmically rich and has several practical applications, such

as reducing MRI scan time for patients and building a smaller and cheaper camera. Under

the premise of CS, an unknown signal of interest is observed (sensed) through a limited

number of linear observations. Then, it is possible to obtain a stable reconstruction of the

unknown signal from these observations, under a general assumption that the signal is sparse

or can be represented sparsely with respect to a linear basis [23, 25]. The signal recovery

techniques typically rely on convex optimization with a L1 norm regularization. Exam-

ples include orthogonal matching pursuit (OMP) [9], dual augmented Lagrangian (DAL)

method [90], Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) [33], etc.

The principle behind CS-based output encoding is straightforward. First, the (sparse)

output label signal is projected to a shorter and dense vector. A machine learner is then

trained to regress this short and compressed vector. A recovery algorithm, which is typi-

cally a L1-norm convex optimization, recovers the sparse output vector from the predicted

compressed vector.

In the past, CS-based encoding was used in conjunction with linear and non-linear pre-

dictions [37,43,47]. Hsu et al. [37] proves a generalization error bound for CS-based output

encoding. Not surprisingly, the generalization error is bound by the sum of two components-

the prediction error from the machine learner (regressor) and the reconstruction error of

the recovery algorithm [37]. In particular, Hsu et al. [37] showed that theoretically, using

a linear predictor along with CS-based encoding is no more difficult than using a linear

predictor alone [37].

Use of non-linear predictors with CS-based output encoding is somewhat recent in ma-

chine learning. Viswanathan et al. [47] used Bayesian inference with CS and showed good

accuracy in prediction. Recently, decision trees and gradient boosting have been used in

conjunction with CS encoding to yield good prediction accuracies [43].

Continuing this trend, in this chapter, we combine CS-based output encoding with

deep convolutional neural net (CNN). We refer to our proposed framework as CNNCS

(convolutional neural network + compressed sensing). There are some advantages of using

CS-based output encoding. First, the compressed output vector is much shorter in length

than the original sparse pixel space. So, the memory requirement would be typically smaller

and consequently, over-fitting in the CNN would be under control. Thus, compressing the

output space can be viewed as a form of regularization on the network. Next, there are

plenty of opportunities to apply ensemble average to improve generalization accuracy. In

the present chapter, we exploit this opportunity by creating compressed but redundant

representations. Furthermore, CS-theory dictates that pairwise distances in the sparse

space are approximately maintained in the compressed space. So, even after the output

space encoding, CNN still targets the original output space in an equivalent distance norm.

A significant test application for CNNCS is automatic cell detection from microscopy

images. Automatic cell detection is to find whether there are certain types of cells present in
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an input image and to localize these cells in the image. It is of significant interest to a wide

range of medical imaging tasks and clinical applications, such as diagnosis of breast cancer.

To see, why the cell detection application fits the sparsity assumption in CS, consider the

following. If there are 5000 cells present in an image of size 2000-by-2000 pixels, this fraction

is 5000/(2000 ∗ 2000) = 0.00125, signifying that even a dense cell image is still quite sparse

in the pixel space.

Our contributions in this chapter are as follows. First, this is one of the first attempt

to combine deep learning with CS-based output encoding to solve cell detection and lo-

calization. Second, we introduce redundancies in the CS-based output encoding that are

exploited by CNN to boost accuracy in cell detection and localization. Third, on benchmark

datasets CNNCS achieves excellent accuracy compared to the state of the art method. In

one such dataset, CNNCS secures the first position and in another it ranks second among

its competitors.

4.2 Compressed Sensing Theory

During the past decade, compressed sensing or compressive sensing (CS) [23] has emerged

as a new framework for signal acquisition and reconstruction, and has received growing

attention, mainly motivated by the rich theoretical and experimental results shown in [67],

[26], [23] and so on. As we know, the Nyquist-Shannon sampling theorem states that a

certain minimum sampling rate is required in order to reconstruct a band-limited signal.

However, CS enables a potentially large reduction in the sampling and computation costs

for sensing/reconstructing signals that are sparse or have a sparse representation under

some transforms (e.g. Fourier transform).

Under the premise of CS, an unknown signal of interest is observed (sensed) through

a limited number of linear observations. It is possible to obtain a stable reconstruction of

the unknown signal from these observations, under a general assumption that the signal is

sparse or can be represented sparsely with respect to a linear basis [67], [26], [23]. The signal

recovery techniques typically rely on convex optimization with a penalty expressed by L1

norm, for example, the Orthogonal Matching Pursuit (OMP) [9] is a widely-used algorithm,

which requires the degree of signal sparsity (i.e. the number of targets in detection problem)

as a given variable. Dual augmented Lagrangian (DAL) method [90] is another choice, which

doesn’t need the signal sparsity degree as input. [33] proposed two versions of a very fast

and trainable algorithm that produces approximate estimates of the sparse code that can

be used to compute good visual features, or to initialize exact iterative algorithms. Its main

idea is to train a non-linear, feed-forward predictor with a specific architecture and a fixed

depth to produce the best possible approximation of the sparse code.

Three major components of CS theory can be generally summarized as: (1) to obtain

observation vectors of the original sparse signal, (2) signal transmission or processing, (3) to

recovery the original signal from the received observation vectors, which probably contains
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error or noise.

Suppose we have a n-dimensional vector (signal) a, if a is a sparse signal or could be

represented sparsely in a certain transform domain, the CS theory guarantees that a can be

recovered exactly by taking random measurements much less than n. If there are at most k

non-zero entries in a, we say that a is k-sparse. In order to take the measurements, we first

introduce the sensing matrix D, which is a m × n matrix with m � n, then the random

non-adaptive measurements are obtained by a linear system:

x = Da (4.1)

Figure 4.1: Original signal (red) and Recovered signal (blue) by L1 minimization recovery.

The CS theory says that the signal can be recovered exactly if the number of measure-

ments obeys the condition m ≥ (Cm)(k)log(n), where Cm is a small constant greater than

one. The signal can be reconstructed by solving the following convex optimization problem:

â = argmin
a

‖a‖1 subject to x = Da (4.2)

The sensing matrix D should satisfy with Restricted Isometry Property (RIP) condition,

which states that:

(1− δ)‖a‖2 ≤ ‖Da‖2 ≤ (1 + δ)‖a‖2 (4.3)

The restricted isometry property for any k-sparse vector. The restricted isometry constant

is δ, 0 < δ < 1. RIP property implies that the sensing matrix D is guaranteed to only

change the length of any vector a “very little” as long as the vector a is at least k-sparse.

It has been proved that several matrices satisfy the sufficient RIP condition, like random

Gaussian and partial Fourier matrices.

The central idea of compressed sensing (CS) theory [23] can be summarized that if a

signal is sparse, then under certain sufficient condition, it can be reconstructed exactly from

a small set of random linear measurements using tractable optimization algorithms. Figure

4.1 shows an example sparse signal and its recovery using CS techniques.

4.3 Compressed Sensing in Machine Learning

Literature is not abundant when it comes to combining CS and DL. DL architectures

were applied for video compressive sensing [59]. A large improvement in reconstruction
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quality was obtained compared to existing approaches. In their work, a fully-connected

neural network is trained to map directly temporal CS measurements to video frames. [38]

developed a general theory for a variant of the popular error correcting output code scheme,

using ideas from compressed sensing. They consider multi-label prediction problems with

large output spaces under the assumption of output sparsity. The method can be regarded

as a simple reduction from multi-label regression problems to binary regression problems.

They also prove robustness guarantees for this method in the form of regret transform

bounds (in general).

4.4 Compressed Sensing for Cell Detection

Suppose, we have a n-length signal a, which carries the location information of target

cells. Because a is sparse, the CS theory guarantees that a can be recovered from linear

observations x using (4.2).

As shown in Figure 4.2, for a training image, each cell location is converted to a positive

element in the binary signal a. So, each positive element of a samples one column of the

sensing matrix. This way the annotation mask B is encoded into the observed signal x.

After â is recovered, it is easy to get the pixel-level annotations B. Since, â is equivalent

to pixel-level annotations B, by applying a threshold (T ) on â and reshaping back to B.

Figure 4.2: Converting a binary pixel-wise annotation to n-length real-value signal according
to Compressed Sensing theory.

During the encoding phase, each pixel-level annotation is converted to a positive element

in the binary signal a, then each positive element samples one column of the sensing matrix,

finally the annotation mask B is encoded into a summation of these samples. It means that

we build a n-length signal x as the representation of pixel-level annotations B.

Previously, it is the coordinates of annotations that carry the location information of

a cell, consequently, small error or bias in B can result in a false detection. Now, the

location information of cells is encoded into the pattern of the n-length signal x. It has

been experimentally observed that accurate recovery of pixel-level annotations B can still

be obtained from signal x̂, even though every element of signal x̂ has been disturbed by

system error or bias to some extent. The whole process is shown in Figure 4.2.
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4.5 System Overview

The proposed detection framework consists of three major components: (1) cell location

encoding phase using random projection, (2) a CNN based regression model to capture the

relationship between a cell microscopy image and the encoded signal x, and (3) decoding

phase for recovery and detection. The flow chart of the whole framework is shown in Figure

4.3.

During training, the ground truth location of cells are indicated by a pixel-wise binary

annotation map B. We propose two cell location encoding schemes, which convert cell

location from the pixel space representation B to a compressed signal representation x.

Then, training pairs, each consisting of a cell microscopy image and the compressed signal

x, train a CNN to work as a multi-label regression model. We employ the Euclidean loss

function during training, because it is often more suitable for a regression task. Image

rotations may be performed on the training sets for the purpose of data augmentation as

well as making the system more robust to rotations.

During testing, the trained network outputs an estimated signal x̂ for each test image.

After that, a decoding scheme is designed to estimate the ground truth cell location by

performing L1 minimization recovery on the estimated signal x̂, with the known sensing

matrix.

4.6 Cell Location Encoding and Decoding Scheme

4.6.1 Encoding Schemes

In the CNNCS framework, we employ two types of random projection-based encodings as

described below.

Scheme-1: Encoding by Reshaping

For the cell detection problem, cells are often annotated by pixel-level labels. The most

common way is to attach a dot or cross at the center of every cell, instead of a bounding

box around the cell. So, let us suppose there is a pixel-wise binary annotation map B of

size w-by-h, which indicates the location of cells by labeling 1 at the pixels of cell centroids,

otherwise labeling 0 at background pixels. To vectorize the annotation map B, the most

intuitive scheme is to concatenate every row of B into a binary vector a of length w × h.

Thus, a positive element in B with {i, j} coordinates will be encoded to the [i+h(j−1)]-th

position in a. a is also a k-sparse signal, so, there are at most k non-zero entries in a. Here,

we refer this intuitive encoding scheme as “Scheme-1: Encoding by Reshaping”.

After the vector a is generated, we apply a random projection. CS theory guarantees

that a can be fully represented by linear observations x:

x = Da, (4.4)
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Figure 4.3: The system overview of the proposed CNNCS framework for cell detection and
localization.
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provided the sensing matrix D satisfies a restricted isometry property (RIP) condition [67],

[26]. In many cases, D is typically a m× n (m � n = hw) random Gaussian matrix.

Scheme-2: Encoding by Projection

For the encoding scheme-1, the space complexity of the interim result a is O(wh). For

example, to encode the location of cells in a 260-by-260 pixel image, scheme-1 will produce a

as a 67,600-length vector; so that in the subsequent CS process, a huge sensing matrix in size

of m-by-67600 is required in order to match the dimension of a, which will make the system

quite slow, even unacceptable for larger images. To further optimize the encoding scheme,

we propose a second scheme, where the coordinates of every cell centroid are projected onto

multiple observation axes. We refer the second encoding scheme as “Scheme-2: Encoding

by Projection.”

To encode location of cells, we create a set of observation axes OA = {oal} , l =

1, 2, . . . , L, where L indicates the total number of observation axes used. The observa-

tion axes are uniformly-distributed around an image (See Figure 4.4, left-most picture) For

the l-th observation axis oal, the location of cells is encoded into a R-length (R =
√
w2 + h2)

sparse signal, referred as al (See Figure 4.4, third picture). We calculate the perpendicular

signed distances (al) from cells to oal. Thus, al contains signed distances, which not only

measure the distance, but also describe on which side of oal cells are located. After that,

the encoding of cell locations under oal is xl, which is obtained by the following random

projection:

xl = Dal, (4.5)

where, D is typically a m× n random Gaussian matrix. Here, the number of observations

m is much smaller than n. We repeat the above process for all the L observation axes and

obtain each xl. After concatenating all the xl, l = 1, 2, . . . , L, the final encoding result x is

available, which is the joint representation of cells location. The whole encoding process is

illustrated by Figure 4.4.

Figure 4.4: Cell location encoding by signed distances (Scheme-2).

For encoding scheme-2, the size of the sensing matrix D is m-by-
√
w2 + h2. In com-

parison, encoding scheme-1 requires a much larger sensing matrix of size m-by-wh. The

first advantage of encoding scheme-2 is that it dramatically reduces the size of the sensing

matrix, which is quite helpful for the recovery process, especially when the size of images is

44



large. Secondly, the encoding result x carries redundant information about cell locations.

In the subsequent decoding phase, averaging over the redundant information makes the final

detection more reliable. More details can be found in experiments section. A final point

is that in case more than one cell locations are projected to the same bin in a particular

observation axis, such a conflict will not occur for the same set of cells at other observation

axes.

4.6.2 Decoding Scheme

Recovery of al can be estimated from the predicted compressed signal x̂l by solving the

following L1 norm convex optimization problem:

âl = argmin
a

‖a‖1 subject to x̂l = Dal (4.6)

After âl is recovered, every true cell is localized L times, i.e. with L candidate positions

predicted. The redundancy information allows us to estimate more accurate detection of a

true cell.

The first two images of Figure 4.5 from left present examples of the true location signal

a and decoded location signal â, respectively. The noisy signed distances of â are typically

very close to each observation axis. That is why we create observation axes outside of the

image space, so that these noisy distances can be easily distinguished from true candidate

distances. This separation is done by mean shift clustering, which also groups true detec-

tions into localized groups of detections. Two such groups (clusters) are shown in Figure 4.5,

where the signed distances formed circular patterns of points (in green) around ground truth

detections (in yellow). Averaging over these green points belonging to a cluster provides us

a predicted location (in red) as shown in Figure 4.5.

Figure 4.5: Cell Location Decoding Scheme. From left to right: true location signal a,
decoded location signal â and detection results. Yellow crosses indicate the ground-truth
location of cells, green crosses are the candidates points, red crosses represent the final
detected points.
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Figure 4.6: An illustration of the process of signal prediction by convolutional neural net-
work. The bottom row presents the feature maps learned from Convolutional (Conv) layers
of the CNN with training process going on. The current CNN follows the AlexNet archi-
tecture. These feature maps come from the Conv1, Conv1, Conv2, Conv3, Conv3, Conv4
and Conv5 respectively. The top-right picture shows the ground-truth compressed signal
(red) and compressed signal (blue) predicted from the Fullly-connected (Fc) layer of the
CNN. From the picture, we can observe that the predicted signal approximate the pattern
of ground truth signal well.

4.7 Signal Prediction by Convolutional Neural Network

We utilize a CNN to build a regression model between a cell microscopy image and its cell

location representation: compressed signal y. We employ two kinds of CNN architectures.

One of them is AlexNet [52], which consists of 5 convolution layers + 3 fully connected layers;

the other is the deep residual network (ResNet) [36] where we use its 152-layer model. In

both the architectures, the loss function is defined as the Euclidean loss. The dimension of

output layer of AlexNet and ResNet has been modified to the length of compressed signal

y. We train the AlexNet model from scratch, in comparison, we perform fine-tuning on the

weights in fully-connected layer of the ResNet.

To prepare the training data, we generate a large number of square patches from training

images. Along with each training patch, there is a signal (i.e. the encoding result: y), which

indicates the location of target cells present in the patch. After that, patch rotation is

performed on the collected training patches for data augmentation and making the system

rotation invariant.

The trained CNN not only predicts the signal from its output layer, the feature maps

learned from its Conv layers also provide rich information for recognition. Figure 4.6 visu-

alizes the learned feature maps, which represents the probabilistic score or activation maps

of target cell regions (indicated by green boxes in the left image) during training process.

It can be observed that higher scores are fired on the target regions of score masks, while

most of the non-target regions have been suppressed more and more with training process

going on.

To further optimize our CNN model, we apply Multi-Task Learning (MTL) [11]. During
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training a CNN, two kinds of labels are provided. The first kind is the encoded vector:

x, which carries the pixel-level location information of cells. The other kind is a scalar:

cell count (c), which indicates the total number of cells in a training image patch. We

concatenate the two kinds of labels into the final training label by label = {x, λc}, where λ

is a hyper parameter. Then, Euclidean loss is applied on the fusion label. Thus, supervision

information for both cell detection and cell counting can be jointly used to optimize the

parameters of our CNN model.

4.8 Theoretical Justification

Equivalent Targets for Optimization

We first show that from the optimization standpoint, compressed vector is a good proxy

for the original, sparse output space. This result directly follows from the CS theory. As

mentioned before, a indicates the cell location represented in pixel space, and x is the cell

location represented in compressed signal space. They follow the relationship: x = Da,

where D is the sensing matrix. Let us assume that ap and ag are respectively the prediction

and ground-truth vectors in the pixel space. Similarly, we have xp and xg as their compressed

counterparts, respectively.

Claim: ‖xg − xp‖ and ‖ag − ap‖ are approximately equivalent targets for optimization.

Proof: According to the CS theory, a sensing matrix D ∈ R
m×d should satisfy the

(k, δ) − restricted isometry property ((k, δ)−RIP ), which states that for all k−sparse

a ∈ R
d, δ ∈ (0, 1), the following holds [67], [26], [23]:

(1− δ) ‖a‖ ≤ ‖Da‖ ≤ (1 + δ) ‖a‖. (4.7)

Note that if the sensing matrix D satisfies (2k, δ)-RIP, then (4.7) also holds good. Now

replace a with (ag − ap) and note that (ag − ap) is 2k-sparse. Thus,

(1− δ) ‖ag − ap‖ ≤ ‖xg − xp‖ ≤ (1 + δ) ‖ag − ap‖ . (4.8)

From the right hand side inequality, we note that if ‖ag − ap‖ is small, then ‖xg − xp‖
would be small too. In the same way, if ‖xg − xp‖ is large, then the inequality implies that

‖ag − ap‖ would be large too. Similarly, from the left hand side inequality, we note that

if ‖ag − ap‖ is large then ‖xg − xp‖ will be large, and if ‖xg − xp‖ is small then ‖ag − ap‖
will small too. These relationships prove the claim that from the optimization perspective

‖xg − xp‖ and ‖ag − ap‖ are approximately equivalent.

A Bound on Generalization Prediction Error

In this section we mention a powerful result from [37]. Let x be the predicted compressed

vector by the CNN, a be the ground truth sparse vector, â be the reconstructed sparse

vector from prediction, and D be the sensing matrix. Then the generalization error bound
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provided in [37] is as follows:

‖â− a‖22 ≤ C1 · ‖x−Da‖22 + C2 · sperr(â, a), (4.9)

where C1 and C2 are two small constants and sperr measures how well the reconstruction

algorithm has worked [37]. This result demonstrates that expected error in the original space

is bound by the expected errors of the predictor and that of the reconstruction algorithm.

Thus, it makes sense to apply a very good machine learner such as deep CNN that can

minimize the first term in the right hand side of (4.9). On the other hand, DAL provides

one of the best L1 recovery algorithms to minimize the second term in the right side of

(4.9).

4.9 Experiments

4.9.1 Datasets and Evaluation Criteria

We utilize seven cell datasets, on which CNNCS and other comparison methods are eval-

uated. The 1st dataset [46] involves 100 H&E stained histology images of colorectal ade-

nocarcinomas. The 2nd dataset [10] consists of 200 highly realistic synthetic emulations

of fluorescence microscopic images of bacterial cells. The 3rd dataset [102] comprises of

55 high resolution microscopic images of breast cancers double stained in red (cytokeratin

epithelial marker) and brown (nuclear proliferative marker). The 4th dataset is the ICPR

2012 mitosis detection contest dataset [77] including 50 high-resolution (2084-by-2084) RGB

microscope slides of Mitosis. The 5th dataset [2] is the ICPR 2014 grand contest of mitosis

detection, which is a follow-up and an extension of the ICPR 2012 contest on detection of

mitosis. Compared with the contest in 2012, the ICPR 2014 contest is much more chal-

lenging, which contains a much larger number of images for training and testing. The 6th

dataset is the AMIDA-2013 mitosis detection dataset [94], which contains 676 breast cancer

histology images belonging to 23 patients. The 7th dataset is the AMIDA-2016 mitosis

detection dataset [1], which is an extension of the AMIDA 2013 contest on detection of mi-

tosis. It contains 587 breast cancer histology images belonging to 73 patients for training,

and 34 breast cancer histology images for testing with no ground truth available. For each

dataset, the annotation that represents the location of cell centroids is shown in Figure 4.7,

details of datasets are summarized in Table 4.1.

Figure 4.7: Dataset examples and their annotation.
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Table 4.1: Size is the image size; Ntr/Nte is the number of images selected for training and
testing; AC indicates the average number of cells per image.

Cell Dataset Size Ntr/Nte AC

Nuclei [46] 500×500 50/50 310.22
Bacterial [10] 256×256 100/100 171.47
Ki67 Cell [102] 1920×2560 45/10 2045.85
ICPR 2012 [77] 2084×2084 35/15 5.31
ICPR 2014 [2] 1539×1376 1136/496 4.41

AMIDA 2013 [94] 2000×2000 447/229 3.54
AMIDA 2016 [1] 2000×2000 587/34 2.13

For evaluation, we adopt the criteria of the ICPR 2012 mitosis detection contest [77],

which is also adopted in several other cell detection contests. A detection would be counted

as true positive (TP ) if the distance between the predicted centroid and ground truth cell

centroid is less than ρ. Otherwise, a detection is considered as false positives (FP ). The

missed ground truth cells are counted as false negatives (FN). In our experiments, ρ is set

to be the radius of the smallest cell in the dataset. Thus, only centroids that are detected

to lie inside cells are considered correct. The results are reported in terms of Precision:

P = TP/(TP + FP ) and Recall: R = TP/(TP + FN) and F1-score: F1 = 2PR/(P + R)

in the following sections.

4.9.2 Experiments with Encoding Scheme-1

To evaluate, we carry out performance comparison experiment between CNNCS and three

state of the art cell detection methods (“FCN-based” [101], “Le.detect” [6], “CasNN” [13]).

In this experiment, the scheme-1: encoding by reshaping is applied in CNNCS.

For the four methods to provide different values of Precision-Recall as shown in Figure

4.8, we tune hyper parameters of every method. With scheme-1, CNNCS has a threshold

T to apply on the recovered sparse signal â before re-shaping it to a binary image B. T

is used to perform cell vs. non-cell binary classification and can be treated as a hyper

parameter during training. In “FCN-based” [101], there is also a threshold applied to the

local probability-maximum candidate points to make final decision about cell or non-cell.

Similarly, in the first step of “Le.detect” [6], researchers use a MSER-detector (a stability

threshold involved here) to produce a number of candidate regions, on which their learning

procedure determines which of these candidates regions correspond to cells. In the first

experiment, we analyze the three methods using Precision-Recall curves by varying their

own thresholds.

Figure 4.8 presents Precision-Recall curves on three cell datasets. All the four methods

give reliable detection performances in the range of recall=[0.1-0.4]. After about recall=0.6,

the precision of “FCN-based” [101] drops much faster. This can be attributed to the fact

that “FCN-based” [101] works by finding local maximum points on a cell density map.

However, the local maximum operation fails in several scenarios, for example when two cell
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density peaks are close to each other, or large peak may covers neighboring small peaks.

Consequently, to obtain the same level of recall, “FCN-based” [101] provides many false

detections.

Furthermore, it also can be observed that CNNCS has an improvement over “Le.detect”

[6] (red line clearly outperforms black line under varying recall values). This can be largely

explained by the fact that traditional methods (no matter if [6] or [101] is used) always try

to predict the coordinates of cells directly on a 2-D image. The coordinates are sensitive

to system prediction bias or error, considering the nature of cell detection that cells are

small and quite dense in most cases. It is not surprising that “Le.detect” [6] will miss

some cells and/or detect other cells in wrong locations. In comparison, CNNCS transfers

the cell detection task from pixel space to compressed signal space, where the location

information of cells is no longer represented by {i, j}-coordinates. Instead, CNNCS performs

cell detection by regression and recovery on a fixed length compressed signal. Compared to

{i, j}-coordinates representation, the compressed signal is more robust to system prediction

errors. For example, as shown in the right top corner of Figure 4.6, even though there are

differences between the ground-truth compressed signal and predicted compressed signal,

the whole system can still give reliable detection performance as shown in Figure 4.8.

To get a better idea of the CNNCS method, we visualize a set of cell images with their

detected cells and ground-truth cells in Figure 4.9. It can be observed that CNNCS is able

to accurately detect most cells under a variety of conditions.

4.9.3 Experiments with Encoding Scheme-2

The influence of several hyperparameters to overal performance

Table 4.2: The influence of M to overal performance.

M Precision Recall F1-score

45 0.3937 0.5972 0.4744
59 0.4896 0.6128 0.5443
89 0.6671 0.6954 0.6810
74 0.5864 0.7202 0.6465
96 0.6358 0.8604 0.7312
102 0.6712 0.8778 0.7607
112 0.8720 0.8052 0.8371
125 0.6513 0.8363 0.7323
132 0.4756 0.8487 0.6096
152 0.4775 0.7581 0.5859
165 0.4896 0.6753 0.5676

Based on the above experiments, we acquire some basic understanding of the influence

of each important hyper parameter on the overall detection accuracy. Then we perform

random search by choosing a narrow ranges for the hyper parameters, and tune them

jointly. After that, we obtain a group of hyper parameters and cooresponding cell detection

result as shown in Table 4.5.
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Figure 4.8: Precision and recall curves of four methods on three datasets.
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Figure 4.9: Detection results. Ground-truth: red, Prediction: blue. Left part shows the
ground truth signal and the predicted sparse signal that carries the location information of
cells; right part shows the ground-truth and detected cells.

Experiment on ICPR 2012 mitosis detection dataset

To evaluate the performance of encoding scheme 2, we carry out the second group of per-

formance comparison experiments. In the first experiment, we apply the proposed method

on the ICPR 2012 mitosis detection contest dataset, which consists of 35 training images

and 15 testing images. For the training process, we extracted image sub-samples (260-by-

260) with no overlap between each other from the 35 training images. After that every 90◦

image rotation is performed on each sub-sample for data augmentation, resulting in a total

of 8,960 training dataset. In addition, we perform random search to tune the three hyper

parameters in scheme-2: (1) the number of rows in sensing matrix: m, (2) the number of

observation lines: L and (3) the importance (λ) of cell count during MTL. After that, the

best performance is achieved when m = 112, L = 27, λ = 0.20. Furthermore, we trained

five CNN models to reduce the performance variance introduced by a single model and

to improve the robustness of the whole system. Recently, deep residual network (ResNet)

introduces residual connections into deep convolutional networks and has yielded state of

the art performance in the 2015 ILSVRC challenge [36]. This raises the question of whether

there is any benefit in introducing and exploiting more recent CNN architectures into the

cell detection task. Thus, in the experiment, we have explored the performance of CNNCS

with different neural network architectures (AlexNet and ResNet). Finally, CNNCS gets the
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Table 4.3: The influence of L to overal performance.

L Precision Recall F1-score

6 0.4390 0.5279 0.4793
15 0.5194 0.6753 0.5872
27 0.7040 0.8896 0.7860
38 0.7229 0.8214 0.7690
46 0.5595 0.8584 0.6774
58 0.5362 0.6825 0.6024
72 0.5276 0.6851 0.5961

Table 4.4: The influence of λ to overal performance.

λ Precision Recall F1-score

0.10 0.4204 0.7151 0.5295
0.15 0.5158 0.8989 0.6555
0.20 0.6224 0.8750 0.7275
0.25 0.5310 0.7477 0.6210
0.30 0.4430 0.7267 0.5505

highest F1-score among all the comparison methods, details are summarized in Table 4.6.

Compared to the state of the art method: CasNN-average [13], CNNCS with ResNet

and MTL achieved a better performance with F1-score 0.837. It can be observed from

Table 4.6 that the precision of our method outperforms the previous best precision by

0.06-0.07, and recall also has recorded about 0.02 improvement. This phenomenon can

be attributed to the detection principle of our method, where every ground-truth cell is

localized with multiple candidate points guaranteed to be around the true location, then

the average coordinates of these candidates is computed as the final detection. As a result,

localization closer to the true cell becomes more reliable compared to other methods, thus

leading to a higher precision. In addition, an improvement of F1-score from 0.833 to 0.837

achieved by MTL demonstrates that the knowledge jointly learned from cell detection and

cell counting provides further benefits at negligible additional computations.

Experiment on ICPR 2014 mitosis detection dataset

In the second experiment, we evaluated CNNCS on the ICPR 2014 contest of mitosis de-

tection dataset (also called MITOS-ATYPIA-14), which is a follow-up and an extension

of the ICPR 2012 contest on detection of mitosis. Compared with the contest in 2012,

the ICPR 2014 contest is much more challenging, which contains more images for training

and testing. It provides 1632 breast cancer histology images, 1136 images for training, 496

images for testing. Each image is in the size of 1539×1376. We divide the training images

into training set (910 images) and validation set (226 images). We perform random search

on the validation set to optimize the hyper parameters. The best performance on MITOS-

ATYPIA-14 dataset is achieved when m = 103, L = 30, λ = 0.24. On the test dataset,

we have achieved the highest F1-score among all the participated teams. The F1-score of
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Table 4.5: Hyperparameters tuning by random search on validation set of AMIDA 2016
dataset.

M L λ Precision Recall F1-score

118 31 0.20 0.5691 0.6781 0.6188
115 35 0.29 0.6149 0.6531 0.6340
107 24 0.21 0.5312 0.7408 0.6188
105 20 0.24 0.5568 0.7321 0.6326
106 39 0.18 0.5570 0.6679 0.6075
121 29 0.25 0.6373 0.6104 0.6236

Table 4.6: Results on testing set of ICPR 2012 grand challenge of mitosis detection.

Method Precision Recall F1-score

UTRECHT 0.511 0.680 0.584
NEC [63] 0.747 0.590 0.659
IPAL [40] 0.698 0.740 0.718
DNN [15] 0.886 0.700 0.782

RCasNN [13] 0.720 0.713 0.716
CasNN-single [13] 0.738 0.753 0.745
CasNN-average [13] 0.804 0.772 0.788

CNNCS-AlexNet 0.860 0.788 0.823
CNNCS-ResNet 0.867 0.801 0.833

CNNCS-ResNet-MTL 0.872 0.805 0.837

all the participated teams are shown in Table 4.7. As we see, the CNNCS method shows

significant improvement compared to the results of other teams in all the histology slice

groups. On an average, CNNCS has almost doubled the F1-score of teams at the second

place.

Table 4.7: Results on testing set of ICPR 2014 contest of mitosis detection.

Slice group CUHK MINES YILDIZ STRAS CNNCS

A06 0.119 0.317 0.370 0.160 0.783
A08 0.333 0.171 0.172 0.024 0.463
A09 0.593 0.473 0.280 0.072 0.660
A19 0.368 0.137 0.107 0.011 0.615

Average 0.356 0.235 0.167 0.024 0.633

Experiment on AMIDA 2013 mitosis detection dataset

The third experiment was performed on the AMIDA-2013 mitosis detection dataset, which

contains 676 breast cancer histology images, belonging to 23 patients. Suspicious breast

tissue is annotated by at least two expert pathologists, to label the center of each cancer

cell. We train the proposed CNNCS method using 377 images, validate on 70 training

images and test it on the testing set of AMIDA-2013 challenge that has 229 images from

the last 8 patients. We employ ResNet as the network architecture with data balancing and

MTL in the training set. Similar to previous experiments, we perform random search on the
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validation set to optimize the hyper parameters. The best performance on AMIDA-2013

dataset is achieved when m = 118, L = 25, λ = 0.32. Finally among all the 17 participated

teams, we achieve the third highest F1-score=0.471, which is quite close to the second

place, and has a significant improvement over the fourth place method [80]. For details,

Table 4.8 summarizes the comparison between CNNCS and other methods.

Table 4.8: Results on testing set of AMIDA-2013 MICCAI grand challenge of mitosis de-
tection.

Method Precision Recall F1-score

IDSIA [15] 0.610 0.612 0.611
DTU 0.427 0.555 0.483

AggNet [80] 0.441 0.424 0.433
CUHK 0.690 0.310 0.427

SURREY 0.357 0.332 0.344
ISIK 0.306 0.351 0.327

PANASONIC 0.336 0.310 0.322
CCIPD/MINDLAB 0.353 0.291 0.319

WARWICK 0.171 0.552 0.261
POLYTECH/UCLAN 0.186 0.263 0.218

MINES 0.139 0.490 0.217
SHEFFIELD/SURREY 0.119 0.107 0.113

SEOUL 0.032 0.630 0.061
UNI-JENA 0.007 0.077 0.013

NIH 0.002 0.049 0.003

CNNCS 0.3588 0.5529 0.4352

Experiment on AMIDA 2016 mitosis detection dataset

In the fourth experiment, we participated in the AMIDA-2016 mitosis detection challenge

(also called TUPAC16), which is a follow-up and an extension of the AMIDA-2013 contest

on detection of mitosis. Its training dataset has 587 breast cancer histology images in size

of 2000×2000, belonging to 73 patients. Its test dataset contains 34 breast cancer histology

images in the same size without publicly available ground truth labels.

We train the proposed CNNCS method using randomly chosen 470 training images

and validate on the remaining 117 training images. Additionally, we apply the following

ensemble averaging technique to further increase precision and recall values. Originally,

we have partitioned every test image into about 100 non-overlapping patches. Instead of

starting the partitioning from the top-left corner, now we set the starting point of the first

patch from {offset, offset}. The offset values are set as 0, 20, 40,..., 160, and 180 (i.e. every

20 pixel) resulting in a total of 10 different settings. Under every offset setting, CNNCS

method is run on all the generated patches and provides detection results. Then, we merge

detection results from all the offset settings. The merging decision rule is that if there are

6 or more detections within a circle in radius of 9 pixels, then we accept average of these

locations as our final detected cell center. Other implementation settings are similar to

the settings in the experiment of AMIDA-2013. The best performance on AMIDA-2016
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Table 4.9: Results of AMIDA-2016 MICCAI grand challenge of mitosis detection (my
method’s result is on the validation set).

Team F1-score

Lunit Inc. 0.652
IBM Research Zurich and Brazil 0.648
Contextvision (SLDESUTO-BOX) 0.616

The Chinese University of Hong Kong 0.601
Microsoft Research Asia 0.596

Radboud UMC 0.541
University of Heidelberg 0.481

University of South Florida 0.440
Pakistan Institute of Engineering and Applied Sciences 0.424

University of Warwick 0.396
Shiraz University of Technology 0.330

Inha University 0.251

CNNCS (on validation set) 0.634

dataset is achieved when m = 115, L = 35, λ = 0.29. Finally, we achieved F1-score=0.634

on the validation set (becuase of the lack of publicly available test set), which is the third

highest in all the 15 participated teams. Table 4.9 provides more details of the contest

results. Furthermore, Figure 4.10 provides twelve examples of our detection results in the

AMIDA-2016 grand challenge of mitosis detection.

4.9.4 Experimental justification for compressed sensing

Training a regression model without random projection

To better understand the meaning of applying output space encoding, we perform an ex-

periment, where we do not use random projections. Thus, the representation of true cell

locations stays in the pixel space. We still use cell location encoding scheme 2, which en-

codes the i-j coordinates of cells to a sparse code a, which indicates the signed distances

from cells to observation lines. We train the same CNN based regression model with the

same architecture as before. During testing, the trained CNN based regression model will

estimate a sparse code â, from which predicted cells’ i-j coordinates are predicted. We refer

this CNN based regression model as “CNN-only”.

Figure 4.11 visualizes three typical examples of cell detection results given by the CNN-

only. The prediction errors from the trained CNN-only model results in the position shift

of detected points (green points in Figure 4.11). Previously, in the CNNCS model, with

the constrain from L1 minimization based decoding, a predicted point (green point) is

typically closer to an observation line than ground-truth point, because its total distance

(can be regarded as kind of energy) has been consumed by small noisy points. To look

at a higher level, these results in the phenomenon that predicted points by observation

lines form a cluster, which is almost around a ground-truth point (red point), as shown

in Figure 4.10. Then we perform meanshift clustering to find the final detection (red
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Figure 4.10: Results on AMIDA-2016 dataset. Yellow cross indicates the ground-truth
position of target cells. Green cross indicates cell position predicted by each observation
axis. Red cross indicates the final detected cell position, which is the clustering center of
all green crosses.

Figure 4.11: Cell detection results by the CNN-only model. Yellow cross indicates the
ground-truth position of target cells. Green cross indicates cell position predicted by each
observation axis. Red cross indicates the final detected cell position, which is the clustering
center of all green crosses.
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point). But for CNN-only, there is no such structured property among these predicted

points (green points). They are the response of every strong element of a sparse code in

the pixel space. And there is no correlations or constrain between these strong elements

(unlike the constrain from L1 minimization based decoding). Furthermore, the sparse code

is predicted by the CNN based regression model, and is directly affected by the CNN

prediction errors. An error in the CNN output vector will directly result in pixel shifts

of predicted points. All these observations serve as strong motivations to apply CS-based

output space encoding in the CNNCS model. We compare accuracies of CNNCS and CNN-

only models on four benchmark datasets mentioned before. Precision, Recall and F1-scores

are summarized in Table 4.10-Table 4.13. The quantitative performance comparison further

verify the importance of introducing CS-based output space encoding.

Table 4.10: Results of CNNCS and CNN-only on validation set of AMIDA-2016 dataset.

Method Precision Recall F1-score

CNN-only 0.3271 0.4089 0.3635
CNNCS 0.5646 0.7240 0.6344

Table 4.11: Results of CNNCS and CNN-only on testing set of AMIDA-2013 dataset.

Method Precision Recall F1-score

CNN-only 0.2361 0.3180 0.2710
CNNCS 0.3588 0.5529 0.4352

Table 4.12: Results of CNNCS and CNN-only on testing set of ICPR-2014 dataset.

Method Precision Recall F1-score

CNN-only 0.3408 0.4351 0.3822
CNNCS 0.6157 0.6510 0.6329

4.10 Summary of this chapter

This is the first attempt to demonstrate that deep convolutional neural network can work

in conjunction with compressed sensing-based output encoding schemes toward solving a

significant medical image processing task: cell detection and localization from microscopy

images. In this work, we made substantial experiments on several benchmark datasets and

challenging cell detection contests, where the proposed CNN + CS framework (referred to

as CNNCS) achieved very competitive (the highest or at least top-3 in terms of F1-score)

results compared to the state of the art methods in cell detection task. In addition, the

CNNCS framework has the potential to be End-to-End trained, which is described in the

next chapter.
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Table 4.13: Results of CNNCS and CNN-only on testing set of ICPR-2012 dataset.

Method Precision Recall F1-score

CNN-only 0.411 0.443 0.426
CNNCS 0.872 0.805 0.837
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Chapter 5

End-to-End Training of CNN with
Compressed Sensing

5.1 Introduction

Chapter 4 provides a detailed description on our proposed CNNCS framework for cell de-

tection. The CNNCS framework consists of two components, one is a CNN based regressor,

the other is a CS-based decoder that predicts a sparse vector.

During training, only the CNN based regressor is trainable. During testing, the two

components are used in a cascaded processing pipeline. As mentioned before, the CNN

based regressor is responsible for estimating a compact and dense code x̂. Any deviations

between the the predicted code x̂ and ground truth x are the prediction error of the first

module. This error will pass to the second module and affect the accuracy of the recovered

sparse code predicted by the second module. The principal limitation of CNNCS model is

the lack of adaptation of the CS-based decoder to the noisy signal predicted by the CNN.

To tackle this problem, in this chapter, we propose a refined CNNCS framework which

renders the cascaded structure of CNNCS end-to-end trainable. In the end-to-end train-

able model, the loss value from the very end will be back propagated through the whole

architecture and the parameters of both the CNN based regressor and the CS based sparse

code predictor can be adjusted jointly during back propagation. Thus, the CS decoder can

adapt to the noisy prediction of CNN and vice-versa. In this chapter, we first introduce a

trainable sparse code prediction algorithm, called LISTA [33], as a CS decoder. Next, we

derive a backpropagation rule for a CS decoder that is to the best of our knowledge the

first such use of backpropagation across a sparse coding / decoding layer in an end-to-end

architecture.

5.2 System Overview

Different from the CNNCS model that consists of two cascaded components, a CNN based

regressor and a CS based sparse code predictor, the end-to-end trainable model is a single
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neural network. This end-to-end model is for the perpose of joint optimization of all the pa-

rameters. The first ol layers of the end-to-end trainable model are observation layers, which

encode an input image into a dense code x via a convolutional neural network structure.

The dense code x forms the representation of the locations of target cells in an image. ol can

make use of a particular CNN architecture, such as, AlexNet or ResNet. The subsequent rl

layers are reconstruction layers, which follow the architecture of the trainable sparse code

predictor described in the next section. We implement the trainable sparse code predictor

as the reconstruction layers and insert it into the whole architecture. The reconstruction

layers perform L1 minimization to reconstruct a sparse code a for each dense code x. Then

the sparse code a can be simply decoded back to the location of target cells in the pixel

space.

Figure 5.1: System overview of the proposed end-to-end trainable model for cell detection.

Figure 5.1 illustrates the system overview of the end-to-end trainable model, where the

dense code x̂ and the sparse code â are the outputs of ol and rl, respectively. x and a are

the ground-truth codes corresponding to x̂ and â. We apply L1 norm loss to measure the

error between sparse codes a and â, and apply L2 norm loss to measure the error between

dense codes x and x̂.

We develop two versions of the end-to-end trainable model. In the first version, we use

LISTA [33] as rl. Because, LISTA has the structure of a recurrent neural network, Tensor-

flow [3] can backpropagating across it. In the second version, we make use of the derived

backpropagation rule across rl. This reinforcement of the backpropagation further enhances

the accuracy of version 1. Detailed mathematical derivations of the back propagation rule

appears in the Appendix.

5.3 A Trainable Sparse Code Predictor

To build an end-to-end trainable model, the first task is to have a trainable sparse code

predictor. Sparse coding is the task of recovering input sparse vectors using a linear combi-

nation of over complete basis vectors. Sparse coding has been used in the computer vision
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based object recognition [48], [42], [55], [103], [105]. In this section, we introduce an efficient

method, called LISTA [33], for acquiring accurate approximations of optimal sparse codes.

For a given input vector x ∈ R
m, the problem of sparse coding or compressed sensing

is to find the optimal sparse code a ∈ R
n that minimizes a cost function that combines the

reconstruction loss and an L1 sparsity penalty on the code:

E (x, a,D) =
1

2
‖x−Da‖22 + β‖a‖1 (5.1)

where D is the sensing matrix (also known as dictionary matrix) whose columns are normal-

ized basis vectors, β is a coefficient controlling the sparsity penalty. For a given x and D,

the optimal code is defined as â = argminaE (x, a,D). Usually, the dictionary matrix D is

optimized by minimizing E (x, a,D) over training set using the stochastic gradient descent

method. A Gabor-like filter is often obtained after training the above system, which is able

to cover the space of positions, frequencies, and orientations.

To design a trainable encoder that is able to approximate sparse codes, a desired char-

acteristic of such encoders is that they should be continuous and almost everywhere dif-

ferentiable with respect to their parameters and inputs. Differentiability in regard to the

parameters can guarantee that gradient based learning methods are feasible for training.

Differentiability in regard to the input enables that gradients can be back propagated to

the input. The central idea is to develop a non-linear and feed-forward architecture with

a definite depth that is trainable to approximate an optimal sparse code. The architecture

of the encoder is denoted as a = f (x,W ), where W represents all the trainable parameters

of the encoder. During training, the stochastic gradient descent method is performed to

minimize a loss function L(W ), which measures the squared error between the predicted

code and the optimal code averaged over a training set
(
x1, . . . , xP

)
:

L(W ) =
1

P

p−1∑
p=0

L (W,xp) (5.2)

L (W,xp) =
1

2
‖âp − f (W,xp) ‖2 (5.3)

where âp = argminaE (xp, a,D) is the optimal code for instance xp. The training method

follows the stochastic gradient descent:

W (n+ 1) = W (n)− η (j)
dL

(
W,x(n mod P )

)
dW

(5.4)

where η (n) equals to 1/n to guarantee convergence.

As an effective and effecient solution to sparse coding, [33] proposed a Learned Iterative

Shrinkage-Thresholding Algorithm (LISTA). Figure 5.2 presents the system overview of

LISTA. Top picture shows the flow chart of the ISTA sparse coding method. The optimal

sparse code is obtained by iterating: a (k + 1) = hα (Wex− Sa (k)), with a(0) = 0, where

x is the input, hα is a coordinate wise shrinking function with threshold α, We is the
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Figure 5.2: ISTA and LISTA sparse code predictor

transpose of the dictionary matrix D, and S is DTD. Bottom picture shows the sparse

encoder Learned ISTA can be seen as a time unfolded version of the ISTA method, here

with 3 iterative units. The matrices We and S, are trained to minimize the estimation error

to the optimal sparse code. The method allows us to impose restrictions on S in order to

further reduce the computational complexity (e.g. keeping many terms at 0, or using a

low-rank factorized form). Parameters W = (We, S, θ) are iteratively optimized over a set

of training samples. The gradient dL(W,xp)/dW is computed during the back-propagation

phase. The structure can be viewed as a time unfolded recurrent neural network (RNN),

where S is shared among the layers of the RNN. We implement the trainable sparse code

predictor using the deep learning library, Tensorflow [3], on which the CNN based regressor

is also implemented.

In the first experiment, we would like to verify the implemented sparse code predictor by

training a predictor and testing it for sparse coding task. We apply the cell location encoding

scheme-2 introduced in section 4.4.1 on the dataset AMIDA-2016 [1]. Here, we choose cell

location encoding scheme-2, since it requires a small sensing matrix and saves memory

compared to the cell location encoding scheme 1. In this verification experiment, we use

only two axes to encode the location of cells in an image. The size of each image is 200-by-

200 pixels, so the length of a single sparse code encoded by each axis is
√
2∗200 = 283. For

every sparse code, encoding scheme-2 produces a dense code (or called observation vector),

which is the result of multiplication between the sparse code and the sensing matrix. Then,

each sparse code and its corresponding dense code consists of the training pair for training

the sparse code predictor. Given 58,700 training images of the AMIDA-2016 dataset, we will

have 58,700 pairs of sparse and dense codes, on which we train the sparse code predictor.

Figure 5.4 presents the training loss after training the sparse code predictor 14,400 iterations.

The training process is controlled to output the training loss every 20 iterations, so the loss

curve is 720 in length as shown in Figure 5.4. For the purpose of better visualization, we

concatenate the two 283-dimention sparse codes (each of them corresponds to one axis)

together, they become a 566-dimention sparse code as shown in each row of Figure 5.3.

The first row of Figure 5.3 depicts the ground-truth sparse code after using cell location
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Figure 5.3: An illustration of sparse code prediction by LISTA. The 1st row shows the
ground truth code. The 2nd 3rd and 4th rows present the predicted sparse by LISTA
model trained after 3000, 7800 and 14400 training iterations.
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Figure 5.4: The training loss (Y-axis) after training the sparse code predictor 14,400 itera-
tions (X-axis).

encoding scheme-2. The 2nd 3rd and 4th rows show the predicted sparse by the LISTA

model trained after 3000, 7800 and 14400 training iterations.

As shown in the first row, the ground-truth code contains two non-zero elements, corre-

sponding to one cell observed by two axes. The horizontal position of each non-zero element

describes the relative positional shift of a cell along an axis. The vertical magnitude of each

non-zero element indicates the perpendicular distance from a cell to an axis. The positive

or negative sign represents that the cell appears on which side (right or left) of the axis line.

The first information that Figure 5.3 gives us is that fewer noisy elements are predicted

with as training progresses. In the sparse code predicted by the LISTA model trained after

3000 iterations (i.e. the second row), the noisy elements are hard to distinguish from the

true elements. As the training process continues, the two true elements in the predicted

sparse code becomes more pronounced compared to the noisy elements. This phenomenon

can also be observed in the training loss as shown in Figure 5.4, where the training loss de-

creases fast at beginning and keeps going down with a slower convergence at later iterations.

Furthermore, the vertical magnitudes of true elements become closer to their ground-truth

magnitudes as the training progresses.

5.4 End-to-end trainable model: version 1

5.4.1 The Network Architecture and Loss Function

Figure 5.5 illustrates the detailed structure of the our first version of the end-to-end trainable

model. During the forward pass, for each image, the ol predict a mL-length dense code

x̂ = [x̂1, x̂2, . . . , x̂L]
T , from which the reconstruction layers recover the sparse code â. The
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ol are built as a CNN based regressor, where a combination of deep convolutional layers

with fully connected layers constructs image representations that are particularly effective

for regression from raw pixels to label vectors. We utilize different CNN architectures as

the core machinery for predicting the dense code. The ol are responsible for mapping each

microscopy image to a dense code x. This fixed length dense code carries L sets of complete

representation regarding the positions of target cells. In this framework, we employ L1 norm

loss to measure the loss of sparse recovery algorithm, and L2 norm loss to measure the loss

of the CNN based regression. During the backward pass, a weighted total loss combining

on the L1 loss and L2 loss will be back propagated to adjust the parameters of observation

layers and reconstruction layers. The weighted overall loss is designed as

loss =
1

2
‖x̂− x‖22 + λ‖â− a‖1 (5.5)

where λ balances between dense code errors and sparse code errors. To optimize the

weights in observation layers and reconstruction layers jointly, we train the whole model

according to the overall loss (5.5) using gradient descent during backpropagation. Supervi-

sion information are from x and a, both of them carry pixel level information about true

cell locations. We implemented this end-to-end trainable model using Tensorflow [3].

Figure 5.5: The network architecture of the End-to-End training model.

5.4.2 Model Optimization

Figure 5.6 presents the loss curves during training CNN, LISTA, and F1 scores on validation

set. Here, the CNN is fine tuned from previous ResNet CNNCS, with λ = 1.5. A total of

14,400 iterations were used (display training loss every 20 iterations). LISTA depth T=30

was used. After every 2,880 training iterations, we evaluated the trained model on the

validation set of AMIDA-2016 dataset to obtain the Precision, Recall and F1 score. The

F1 scores have been plotted in Figure 5.6. The corresponding Precision and Recall values

are shown in Table 5.1.

As Figure 5.6 shows, the training loss of LISTA starts from a relatively high value since

it is trained from scratch, and then keeps decreasing with the training iterations. The fine

tuning loss of CNN shows a more gradual decrease. Only fully connected layers of the CNN
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Figure 5.6: Training loss of the end-to-end trainable model

model was fine tuned. The F1 scores on the validation shows continued improvements over

training iterations.

Table 5.1: Cell detection performance with respect to training iteration on validation set of
AMIDA-2016.

Training iteration Precision Recall F1-score

2,880 iterations 0.1641 0.1828 0.1729
5,760 iterations 0.3472 0.3583 0.3527
8,640 iterations 0.4605 0.5567 0.5041
11,520 iterations 0.5459 0.6616 0.5982
14,400 iterations 0.5936 0.7370 0.6576

To better understand the model, we conducted several experiments, where the influence

of important hyper parameters to cell detection performance was explored. After exploring

the hyper parameters one by one, random search was applied to find the optimal setting of

the hyper parameters. The 1st hyper parameter is λ in (5.5). The Precision, Recall and

F1-scores under different values of λ are given in Table 5.2.

λ controls the proportion of sparse loss in the total loss. Our experiment shows that it

is better to set λ larger than 1.0, since it will not lead to loss of supervision information

provided by error of LISTA. However, we notice that both “Precision” and “Recall” decrease

when λ is increased to 2.0. A probable explanation is that a high “Precision” will result

in a poor optimization of CNN. Since the CNN is fine-tuned from a pre-trained CNNCS

model, it does not show a sharp decline in the F1-scores, as λ decreases.

The 2nd hyper parameter is the number of LISTA’s iterative units, i.e. T . From our
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Table 5.2: Cell detection performance with respect to λ on validation set of AMIDA-2016.

λ Precision Recall F1-score

λ=0.3 0.3772 0.4081 0.3920
λ=0.5 0.4399 0.4536 0.4466
λ=1.0 0.5258 0.5826 0.5527
λ=1.5 0.5922 0.7284 0.6533
λ=1.7 0.5943 0.7304 0.6554
λ=2.0 0.5861 0.7195 0.6460

previous experiments, we know that a higher T can help LISTA to recover sparse codes

better with a lower reconstruction loss. The Precision, Recall and F1-score under different

values of T are given in Table 5.3. We can see that the F1-score increases with the increase

of T . But after T = 30, the benefit from increasing T becomes smaller, probably due to a

vanishing gradient problem in the RNN.

Table 5.3: Cell detection performance with respect to T on validation set of AMIDA-2016.

T Precision Recall F1-score

T=5 0.5103 0.6792 0.5828
T=20 0.5764 0.7215 0.6408
T=30 0.5936 0.7370 0.6576
T=45 0.5983 0.7370 0.6604

The 3rd hyper parameter is the bandwidth parameter of mean-shift clustering. Since

we perform mean-shift clustering on all the detected candidate points by observation axes

to obtain the final detection. This parameter controls the tightness of the clustering. The

F1 scores under different values of bandwidth are given in Table 5.4. The Precision, Recall

under different values of Bandwidth are also given in Table 5.4.

Table 5.4: Cell detection performance with respect to clustering bandwidth on validation
set of AMIDA-2016.

Bandwidth Precision Recall F1-score

Bandwidth=25 pixels 0.1789 0.4208 0.2511
Bandwidth=35 pixels 0.3420 0.5821 0.4309
Bandwidth=45 pixels 0.5972 0.7263 0.6555
Bandwidth=55 pixels 0.4852 0.5609 0.5203
Bandwidth=65 pixels 0.3127 0.2586 0.2831

In general, the bandwidth parameter has a strong influence on both the “Precision”

and “Recall”. A higher Bandwidth will result merge more points into the same clusters,

reducing “Recall”. This is undesirable when we have multiple target cells in an image. On

the other hand, setting a small bandwidth parameter will decrease “Precision”.

The 4th hyper parameter is the number of observation axes, i.e. L, which is another

important parameter. To explore the performance benefit limit of doing ensemble averaging

with observation axes, L is set as high as 100. And corresponding Precision, Recall and
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F1-score under different values of L are given in Table 5.6. Three representative examples

of detections are illustrated in Figure 5.13. While a large value of L is better for ensemble

averaging, it also introduces more error for CNN prediction, becuase CNN needs to predict

a larger vector. This behaviour is reflected in in Table 5.6

Table 5.5: Cell detection performance with respect to L on validation set of AMIDA-2016.

L Precision Recall F1-score

L=2 0.5619 0.5587 0.5603
L=15 0.5790 0.6172 0.5975
L=25 0.5936 0.7370 0.6576
L=35 0.6175 0.7189 0.6644
L=100 0.5728 0.6847 0.6238

Table 5.6: Cell detection performance with respect to M on validation set of AMIDA-2016.

M Precision Recall F1-score

M=90 0.5619 0.5587 0.5603
M=100 0.5790 0.6172 0.5975
M=110 0.6175 0.7189 0.6644
M=120 0.5936 0.7370 0.6576

Based on the above experiments, we acquire some basic understanding of the influence

of each important hyper parameter on the overall detection accuracy. Then we perform

random search by choosing a narrow ranges for the hyper parameters, and tune them

jointly. After that, we obtain a group of hyper parameters and cooresponding cell detection

result as shown in Table 5.7.

Table 5.7: Hyperparameters tuning by random search on validation set of AMIDA 2016
dataset.

M L T Bandwidth λ Precision Recall F1-score

115 35 31 43 1.591 0.5317 0.6689 0.5924
109 39 38 44 1.465 0.6082 0.7384 0.6670
118 41 40 42 1.517 0.6011 0.7374 0.6623
120 36 42 46 1.788 0.5536 0.7348 0.6315
102 32 35 43 1.474 0.5791 0.5613 0.5701
112 40 41 48 2.192 0.5589 0.6076 0.5823
122 37 33 51 1.571 0.6442 0.6949 0.6686
115 31 48 47 1.592 0.5462 0.5524 0.5493
116 42 36 42 1.963 0.5820 0.7403 0.6517
123 40 33 45 1.509 0.5570 0.6679 0.6075
106 38 39 48 1.415 0.6373 0.6104 0.6236
115 33 46 41 1.142 0.4973 0.7367 0.5937
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Table 5.8: Cell detection performance of the end-to-end trainable model version 1.

Dataset Precision Recall F1-score

AMIDA-2016 (validation) 0.6442 0.6949 0.6686
AMIDA-2013 (testing) 0.5988 0.6028 0.6008
ICPR-2014 (testing) 0.6421 0.6745 0.6579
ICPR-2012 (testing) 0.8637 0.8385 0.8509

5.5 End-to-end trainable model: refined version

After building the initial end-to-end trainable model, I am still interested to further refine

the model. According to my experiment and also pointed out by [33], if we increase the

number of iterative units, which means we build deeper reconstruction layers, we can reduce

the sparse code reconstruction error. But after more experiments, we also find that using

more iterative units is not always helpful. Because although from the perspective of sparse

code reconstruction, deeper reconstruction layers are able to reduce reconstruction error,

but from the perspective of the whole end-to-end trainable model, deeper reconstruction

layers will lead us to the problem of gradient vanishing. It means that gradient tends to get

smaller and smaller, even vanish, when it moves backward closer to the layers at the input

end. As a result, the neurons in the bottom layers are hard to be fully optimized. Figure

5.7 illustrates the influence of vanishing gradient problem to the network training process.

Figure 5.7: An illustration of the evolution of values in the first observation layer through
a training process seen in TensorBoard, under the ”histograms” tab.

Figure 5.7 visualizes weights (left) and gradients (right) of the first observation layer

and how their value distribution (X-axis) change from training iteration 0 to 1000 (Y-axis).
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The top panel shows the weights and the gradients when 5 iterative units are used in

the reconstruction layers. The bottom panel corresponds to the weights and the gradients

when 50 iterative units are used in the reconstruction layers. In both top and bottom panel,

observation layers follow the architecture of AlexNet, and made up of 5 convolutional layers

and 3 full-connected layers. As we can see, the change of weights is much more obvious in the

top panel; in comparison, the weights in the bottom panel are not evolving. Furthermore,

the gradient in the bottom panel is quite close to 0. Its major distribution is in the range

between -0.000002 to 0.000002. In comparison, the gradient in the top panel is in the

range between -0.005 to 0.005, i.e. 2500 times larger. Weights not evolving and extremely

small gradients are the symptom of the vanishing gradient problem, which we should pay

more attention when the neural network becomes deeper. In order to solve this problem,

I derive my own back propagation rule for sparse coding. And the back propagation rule

is independent of specific sparse coding algorithm. In other words, for LISTA [33], for

DAL [90], for OMP [9], or any other sparse coding algorithm, the back propagation rule is

effective. To do that, lets first go back to the sparse coding problem itself.

5.5.1 Mathematical Derivation of Back Propagation Rule

The central idea of L1 minimization algorithm is to find an optimized sparse vector â by

minimizing cost function (5.6), where D is the sensing matrix and x indicates the input

dense code:
1

2
‖Da− x‖22 + λ‖a‖1 (5.6)

In order to update weights of CNN and sensing matrix during the backward pass, we

differentiate (5.6) with respect to x and D. The details of mathematical derivation can be

found in the Appendix. Here we provide the derivation results:

δx = D (:, p)
[
DTD (p, p)

]−1
δa (p) (5.7)

δD (:, p) = (x−Da) δa (p)T
[
DTD (p, p)

]−1 −D (:, p)
[
DTD (p, p)

]−1
δa (p) a (p)T (5.8)

where a stands for the output vector from sparse recovery, and contains the predicted

location information of cells. δa, δx and δD are the partial derivatives of the overall network

loss with respect to a, x, and D, respectively. D is the sensing matrix. p = {i : ai 	= 0}
is a set of indices. D(:, p) indicates the columns of matrix D, whose indices belong to the

set p. DTD (p, p) indicates the principal sub matrix of DTD with column and row indices

belonging to set p. Based on (5.7) and (5.8), the network is able to optimize or update

x and D during the back propagation, so that the whole framework can be trained in an

End-to-End fashion.

To experimentally verify these derivations (5.7) and (5.8), we perform numerical gradient

check on the above partial derivatives δx and δD. During the gradient check, we first

compute the numerical gradient of δx according to:

δxi ≈ ||a− ci||22 − ||a− b||22
h

i = 1, 2, . . . ,m. (5.9)
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where a, b and c are sparse codes corresponding to dense code x, y and y+eih, respectively.

h indicates a small deviation value. ei is a m-length one-hot vector with only one positive

at its i-th position. ei = [0, . . . , 1, . . . , 0] , i = 1, 2, . . . ,m. Then, we compute the gradient

according to backpropagation rule (5.7). Figure 5.9 shows that the numerical gradient (5.9)

and the gradient computed according to backpropagation (5.7) are consistent with each

other.

Figure 5.8: An explanation diagram about how we compute numerical gradients. The top
two panels present two examples of a sparse code a and a dense code x. The bottom panel
shows the relationship between several important notations.

5.5.2 Efficient Back Propagation

Our derived backpropagation rules (5.7) and (5.8) are not computationally efficient for a

batch training, which is a normal practice for training a neural net. To examine why it is

so, note that the partial derivatives depend on the set p, which is in turn different sparse

codes a for the member of the batch. Thus, rules (5.7) and (5.8) require matrix inversion

for each member of the batch, rendering the rule impractical in batch stochastic gradient

descent. This observation forces us to develop an approximate gradient computation, which

would be batch friendly.

Our first observation is that in equations (5.7) and (5.8), DTD is close to a diagonal

matrix when D is random Gaussian. Actually, any incoherent matrix D will induce this

property to DTD. An example of DTD is visualized in Figure 5.10. Second, if we examine

any rows of DTD, we find that the values of diagonal elements are dominant compared to

the values of elements in other positions as shown in Figure 5.11. So we can approximate

DTD by its diagonal matrix diag(DTD), which retains the original values of DTD at the

diagonal. In other words, we approximate
[
DTD (p, p)

]−1
by

[
diag

(
DTD

)
(p, p)

]−1
. Then
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Figure 5.9: Gradient check between the gradient δx computed according to equation (5.7)
and numerical gradient. They are simultaneously plotted in the third panel, where two
curves almost overlap with each other, with only small blue tips can be seen above some
red peaks.
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because diag(DTD) is a diagonal matrix, so its inversion matrix become very simple, which

is the inversion of its diagonal elements.

[
diag

(
DTD

)
(p, p)

]−1
=

[
diag

(
DTD

)]−1
(p, p) (5.10)

Equation (5.10) implies that for the entire batch, we need to invert the diagonal matrix

once that is also computationally trivial.

However, numerical instability may still arise during inversion of the diagonal matrix.

Thus, we further note that the diagonal elements of DTD should be very similar to each

other considering D as a random Gaussian matrix. This observation is also clear from

Figure 5.11. So, practically we can even ignore the matrix inversion altogether and arrive

at a numerically stable and batch friendly backpropagation rule for δx as follows:

δx = D (:, p) δa (p) . (5.11)

Similarly, for δD, a practical backpropagation rule would be:

δD (:, p) = (x−Da) δa (p)T −D (:, p) δa (p) a (p)T (5.12)

Figure 5.10: An illustration of the diagonal matrix DTD.

5.5.3 Experimental evidence for end-to-end training

In order to find out, whether the end-to-end training is indeed helpful or not, we carry out

experiments with the two versions of the end-to-end models and compare these results with

CNNCS. However, while CNNCS uses DAL algorithm for L1 recovery, while our end-to-end

model uses LISTA for the same. Thus, to make a fair comparison with the non-end-to-end
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Figure 5.11: Three randomly chosen rows of the diagonal matrix DTD.

75



version, we use ISTA in place of DAL. So that at the component level, the CNNCS model

and the end-to-end trainable model are equivalent. Then, we train the CNNCS model

again using the same settings as discussed in chapter 4 and obtain its performance on four

evaluation datasets. The performance comparisons are shown in Table 5.9-Table 5.12, which

summarize the results of the original CNNCS model, the CNN-ISTA model, the end-to-end

trainable model version 1 and the end-to-end trainable model version 2 on the datasets:

AMIDA-2016, AMIDA-2013, ICPR-2014, and ICPR-2012. Here, the CNN-ISTA model is

the modified CNNCS for comparison. It can be seen that CNN-ISTA shows a similar level

of F1 score compared with CNNCS. But the two versions of the end-to-end trainable model

outperform CNN-ISTA with significant improvements about 2%-15% in terms of their F1

scores on four datasets. These comparions indicate that the performance improvement is

owing to the end-to-end training.

Table 5.9: Performance of end-to-end trainable models on validation set AMIDA-2016
dataset.

Method Precision Recall F1-score

CNNCS 0.5646 0.7240 0.6344
CNN-ISTA 0.5478 0.7314 0.6264

End-to-end trainable v1 0.5936 0.7370 0.6576
End-to-end trainable v2 0.6423 0.7352 0.6856

Faster-rcnn 0.4961 0.7728 0.6043

Table 5.10: Cell detection performance of four models on testing set of AMIDA-2013 dataset.

Method Precision Recall F1-score

CNNCS 0.3588 0.5529 0.4352
CNN-ISTA 0.3952 0.5879 0.4727

End-to-end trainable v1 0.5988 0.6028 0.6008
End-to-end trainable v2 0.6137 0.6541 0.6332

Faster-rcnn 0.4875 0.7319 0.5852

Table 5.11: Performance of end-to-end trainable models on testing set of ICPR-2014 dataset.

Method Precision Recall F1-score

CNNCS 0.6157 0.6510 0.6329
CNN-ISTA 0.6210 0.6527 0.6365

End-to-end trainable v1 0.6421 0.6745 0.6579
End-to-end trainable v2 0.6384 0.7056 0.6703

Faster-rcnn 0.5351 0.7520 0.6253

In addition, I also compare the method with state-of-the-art detection method faster-

rcnn [74]. I follow the implementation of faster-rcnn 1. I download the faster-rcnn model,

which is an ImageNet-pre-trained VGG-16 net. Then fine tune the faster-rcnn model on

the cell datasets. To build training data,I generate a bbox in size of 50*50 (the biggest size

of mitosis) around every true target cell. As you can see, faster-rcnn gives F1-scores that

1https://github.com/ShaoqingRen/faster_rcnn
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Table 5.12: Cell detection performance of four models on testing set of ICPR-2012 dataset.

Method Precision Recall F1-score

CNNCS 0.872 0.805 0.837
CNN-ISTA 0.853 0.791 0.821

End-to-end trainable v1 0.8637 0.8385 0.8509
End-to-end trainable v2 0.8793 0.8454 0.8620

Faster-rcnn 0.5334 0.8152 0.6440

are slightly lower than the original CNNCS method, but much lower than the end-to-end

trainable models. Figure 5.12 visualizes the detection results given by faster-rcnn. Yellow

box is the prediction by faster-rcnn. Green box is the ground truth. For each prediction,

there is a confidence score attached.

Figure 5.12: Cell detection results given by Faster-rcnn.

5.5.4 Cell detection result by end-to-end trainable model

Figure 5.13 visualizes three examples of cell detection result by End-to-End framework,

and the ground-truth (top) and predicted (bottom) sparse code comparison. Each green

cross indicates a cell location predicted by an observation axis; yellow cross indicates the

ground-truth position of the target cell. The size of each image is 200-by-200 pixels, so

the length of a single sparse code encoded by each axis is
√
2 ∗ 200 = 283. Now we use 25

observation axes. For the purpose of a better visualization, we concatenate 25 sparse codes

(each of them is in 283-dimention and corresponds to one axis line) together, they become

a 7075-dimention long sparse code, which is shown in the right panels of Figure 5.13. In

the left panel we show two example detections.

In addition to the successful detection, Figure 5.14 also provides two representative

failure detection examples. For the proposed cell detection method, the biggest challenge
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Figure 5.13: Left figures show the examples of cell detection results. Right figures present
the ground-truth (top) and predicted (bottom) sparse code. Yellow cross indicates the
ground-truth position of target cells. Green cross indicates cell position predicted by an
observation axis. Red cross indicates the final detected cell position, which is the clustering
center of all green crosses.
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Table 5.13: Cell detection performance of the end-to-end trainable model version 2.

Dataset Precision Recall F1-score

AMIDA-2016 (validation) 0.6423 0.7352 0.6856
AMIDA-2013 (testing) 0.6137 0.6541 0.6332
ICPR-2014 (testing) 0.6384 0.7056 0.6703
ICPR-2012 (testing) 0.8793 0.8454 0.8620

Table 5.14: End-to-end trainable algorithm procedure summary.

comes when there are multiple target cells in an image, especially when these target cells are

spatially close. If we use more observation lines e.g. 25 and 100 lines are used respectively.

There are many candidate points (as shown in green color) detected by each observation

axis line. Under the above circumstance, these candidate points are very likely to be mixed

together. Thus it is hard to find the acceptable detection results by clustering on them.

Table 5.14 provides an algorithm procedure summary.

79



Figure 5.14: Failure cases of the proposed cell detection method.
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Chapter 6

Conclusion and Future work

First, we present a supervised learning framework with Convolutional Neural Network

(CNN) and cast the cell counting task as a regression problem, where the global cell count

is taken as the annotation to supervise training. To capture the relationship between RGB

cell image and its overall cell count, cell counting task is formulated as developing an end-

to-end regression framework, which is more suitable for counting task instead of following

the classification or detection framework. Additionally, instead of being applied for classi-

fication purpose, a convolutional neural network architecture with Euclidean loss function

is used for regression. To further decrease the prediction error of counting, we utilize sev-

eral popular CNN architectures (including the Deep Residual Network, AlexNet) into our

regression model. To the best of our knowledge, this is the first piece of work to expand

the deep residual network from classification, detection, segmentation to object counting.

As the final output, the proposed approach not only estimate the global number of certain

cells in an image but also produce the spatial density prediction, which is able to describe

the local cell density of an image sub-region. In many clinical imaging systems, researchers

have confirmed that the topographic map that illustrates the cell density distribution is a

valuable tool correlated with the disease diagnose and treatment. The proposed method was

compared with three state-of-the-art approaches on three cell image datasets and obtain

superior performance.

Second, cell detection methods have evolved from employing hand-crafted features to

deep learning-based techniques. The essential idea of these methods is that their cell clas-

sifiers or detectors are trained in the pixel space, where the locations of target cells are

labeled. Furthermore, treating the cell detection/localization as a regression task is tricky,

because the length of output cell centroid locations is unknown. Thus, regressing on a fixed

length vector is hardly an option. Our key observation for cell detection or localization is

that the output space is quite sparse: an automated system needs to label a small frac-

tion of the total pixels as cell centroid locations. We seek a different route and propose a

convolutional neural network (CNN)-based cell detection method that uses encoding of the

output pixel space. We employ compressed sensing (CS)-based output encoding here. Using
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random projections, CS encodes the sparse, output pixel space into a dense and compressed

vector of fixed dimension. Then, we use a deep convolutional neural network based regres-

sor to predict this compressed vector from the input pixels. Furthermore, it is possible to

stably recover sparse cell locations on the output pixel space from the predicted compressed

vector using L1-norm optimization. In the past, output space encoding using compressed

sensing (CS) has been used in conjunction with linear and non-linear predictors. To the

best of our knowledge, this is the first successful use of CNN with CS-based output space

encoding. We demonstrate CS-based output encoding provides us with the opportunity to

do ensemble averaging to boost detection/localization scores. We made substantial experi-

ments on several benchmark datasets, where the proposed CNN + CS framework (referred

to as CNNCS) achieved the highest or at least top-3 performance in terms of F1-score,

compared with other state-of-the-art methods. The contribution of the proposed algorithm

can be summarized as follows. First, this is the first attempt to combine deep learning with

CS-based output encoding to solve cell detection and localization problem. Second, we try

to overcome the aforementioned class imbalance issue by converting a classification problem

into a regression problem, where sparse cell locations are distributed by a random projection

into a fixed length vector as a target for the regression. Third, we introduce redundancies in

the CS-based output encoding that are exploited by CNN to boost generalization accuracy

in cell detection and localization. This redundancies also help to reduce false detections.

Fourth, we demonstrate that the proposed CNNCS framework achieves competitive results

compared to the state-of-the-art methods on several benchmark datasets and challenging

cell detection contests.

The CNNCS framework consists of two components used in a cascaded pipeline. Any

deviations prediction error from the first module will pass to the second module and affect

the accuracy of the recovered sparse code predicted by the second module. To tackle this

problem, on the basis of the proposed CNNCS model, I further develop an end-to-end

trainable model, which makes all the parameters of CNNCS’s two key components able

to be optimized jointly, and avoids non-trivial pre-processing or post-processing operations,

which requires significant prior knowledge about the task and the dataset. In the end-to-end

trainable model, the loss value from the very end will be back propagated through the whole

architecture and the parameters of both the CNN based regressor and the CS based sparse

code predictor can be adjusted jointly during back propagation. Furthermore, we make

detailed mathematical derivations on the partial derivative of total loss with to network

parameters and perform gradient check to verify the mathematical derivations. After that,

we modify the error back propagation rule for training the end-to-end model, so as to

overcome the vanishing gradient problem. It is the first work that derives a back propagation

rule for a sparse coding (i.e., compressed sensing) algorithm. Our back propagation rule

is independent of a sparse coding/compressed sensing algorithm. Also, our experiments on

benchmark datasets show that our back propagation method increases accuracy by virtue
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of end-to-end training.

I believe the CNNCS framework has big application potential in other point object

detection problem (e.g. crowded people detection) and general object detection problem

(e.g. vehicle detection with bounding boxes). The proposed method is not specific to cell

(centroid) detection. Because the method doesn’t care the encoded point is a centroid of

a cell or a corner point of a bounding box. For object detection with bounding boxes, the

prediction of a bounding box can be formulated as prediction of two diagonal points of

a bounding box, then my method can be transplanted there without big algorithm level

modifications. In summary, the biggest future plan is to transform the idea behind CNNCS

into a more general object detection method.
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Appendix

Before starting the mathematical derivation of gradients, let us first look at a related op-

timization problem, ridge regression, which explains why we needed to derive backpropa-

gation rules carefully for the L1 recovery problem. The ridge regression problem solves the

following optimization:

argmin
a

‖ x−Da ‖22 +λ ‖ a ‖22 (6.1)

For the ridge regression, there is a closed form solution:

a =
(
DTD + λI

)−1
DTx (6.2)

Thinking from the perspective of training a neural network, the above solution directly tells

us about how a is computed through the forward pass. Furthermore, we can derive a back

propagation rule based on the closed form solution. The output code a can be viewed as a

function of input code x. So we have the Jacobian:

Ja
x = D

(
DTD + λI

)−1
(6.3)

and the partial derivative of the cost with respect to x:

δx = Ja
xδa = D

(
DTD + λI

)−1
δa. (6.4)

For the L1 minimization problem there is no closed form solution for the forward pass.

The central idea of L1 minimization algorithm is to find an optimized vector a according

to the following loss function:

argmin
a

1

2
‖ x−Da ‖22 +λ ‖ a ‖1, (6.5)

where D ∈ R
m×n, a ∈ R

n×1, x ∈ R
m×1.

To derive backpropagation for (6.5), we replace the L1 norm by a smooth, convex

approximation f (a). An example smooth approximation is f(a) =
√
a2 + ε2, where ε is a

small positive number. So, our minimization problem becomes:

argmin
a

1

2
‖ x−Da ‖22 +λf (a) (6.6)

To get the a that minimizes the 6, the necessary and sufficient condition is given as:

DT (Da− x) + λf
′
(a) = 0 (6.7)
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Derivation of partial derivative δx

Now differentiating the equation (6.7) with respect to x, we get

DTD

(
∂a

∂x

)
+ λdiag

(
f

′′)(
∂a

∂x

)
= DT (6.8)

In other words, (
∂a

∂x

)T

= D
[
DTD + λdiag

(
f

′′)]−1
(6.9)

so

δx =

(
∂a

∂x

)T

δa (6.10)

(
∂a

∂x

)T

is the Jacobian matrix, so that

∂a

∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂a1
∂x1

. . .
∂an
∂x1

∂a1
∂x2

. . .
∂an
∂x2

...
. . .

...
∂a1
∂xn

. . .
∂an
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.11)

f
′
(a) is defined as f

′
(a) =

[
∂f

∂a1

∂f

∂a2
. . .

∂f

∂an

]T
and f

′′
(a) is a diagonal matrix:

f
′′
(a) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f

∂a21
0 . . . 0

0
∂2f

∂a22
. . . 0

...
...

. . .
...

0 0 . . .
∂2f

∂a2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.12)

Then we have
∂a

∂x
= D

[
DTD + λf

′′
(a)

]−1
(6.13)

Let p be any set of indices. Let us denote by A (:, p) all the column of matrix A, whose

indices belong to the set p. Similarly, A(q, p) denotes the sub-matrix of the sequence matrix

A, where rows and column indices belong to the sets q and p, respectively.

Now let p and q denote two specific sets: p = {i : ai 	= 0} and q = {i : ai = 0}. So now

we can rewrite (6.13) as:

[
∂a

∂x
(:, p)

∂a

∂x
(:, q)

]
=

[
D (:, p) D (:, q)

] [DTD (p, p) + λf
′′
(a) (p, p) DTD (p, q)

DTD (q, p) DTD (q, q) + λf
′′
(a) (q, q)

]−1

(6.14)
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Using Schur’s complement, we can get that[
DTD (p, p) + λf

′′
(a) (p, p) DTD (p, q)

DTD (q, p) DTD (q, q) + λf
′′
(a) (q, q)

]−1

=

[
Ip 0

−
[
DTD (q, q) + λf

′′
(a) (q, q)

]−1
DTD (q, p) Iq

]
[
U 0

0
[
DTD (q, q) + λf

′′
(a) (q, q)

]−1

][
Ip −DTD(p, q)

[
DTD (q, q) + λf

′′
(a) (q, q)

]−1

0 Iq

]

(6.15)

where U =

(
DTD (p, p) + λf

′′
(a) (p, p)−DTD (p, q)

[
DTD (q, q) + λf

′′
(a) (q, q)

]−1
DTD (q, p)

)−1

; Ip and Iq are identity matrices of order |p| and |q|, respectively.
Note that λf

′′
(a) (p, p) → 0 and λf

′′
(a) (q, q) becomes diagonal matrix with diagonal

entries trending to infinity. This property is actually a common property of any reasonable

L1 norm approximation functions. For example, fε (a) =
√
a2 + ε is a widely-used approx-

imation function, whose second order derivative is f
′′
ε (a) =

1√
a2 + ε

− a2

(a2 + ε)3/2
. It is

easy to find that its second order derivative satisfies the property that: f
′′
ε (a) =⇒ ∞, when

ε → 0, a = 0; and f
′′
ε (a) =⇒ 0 when ε → 0, a 	= 0. Thus, we also have

[
DTD (q, q) + λf

′′
(a) (q, q)

]−1 −→ 0 (6.16)

Combine these results together, we get:[
DTD (p, p) + λf

′′
(a) (p, p) DTD (p, q)

DTD (q, p) DTD (q, q) + λf
′′
(a) (q, q)

]−1

−→
[[
DTD (p, p)

]−1
0

0 0

]
(6.17)

So, we have [
∂a

∂x
(:, p)

∂a

∂x
(:, q)

]
=

[
D (:, p) D (:, q)

] [[DTD (p, p)
]−1

0
0 0

]

=
[
D (:, p)

[
DTD (p, p)

]−1
0
]

(6.18)

Now suppose δa ≡ gradient of loss with respect to a, then gradient of loss with respect to

x is

δx =

[
∂a

∂x
(:, p)

∂a

∂x
(:, q)

] [
δa (p)T δa (q)T

]
(6.19)

δx = D (:, p)
[
DTD (p, p)

]−1
δa (p) (6.20)

Derivation of partial derivative δD

Let’s start from the equation:

DTDa+ λf
′
(a) = DTx (6.21)
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Let us partition Dm×n as Dm×n =
[
D1 D2 . . . Dn

]
where D

′
is are m×1 column vectors.

With these notations, the above equation can be written as:

DT
i

n∑
j=1

Djaj + λf
′
(ai) = DT

i x ∀i = 1, 2, . . . , n (6.22)

Differentiating (6.22) with respect to Di, we obtain:

n∑
j=1

Djaj +Diai +
n∑

j=1

DT
i Dj

∂aj
∂Di

+ λf
′′
(ai)

∂ai
∂Di

= x ∀i = 1, 2, . . . , n (6.23)

Differentiating (6.22) with respect to Dk, we obtain:

Diak +

n∑
j=1

DT
i Dj

∂aj
∂Dk

+ λf
′′
(ai)

∂ai
∂Dk

= 0,

⎧⎨
⎩

i = 1, 2, . . . , n,
k = 1, 2, . . . , n,
i 	= k.

(6.24)

Interchanging indices i and k, we obtain:

Dkai +
n∑

j=1

DT
k Dj

∂aj
∂Di

+ λf
′′
(ak)

∂ak
∂Di

= 0,

⎧⎨
⎩

i = 1, 2, . . . , n,
k = 1, 2, . . . , n,
i 	= k.

(6.25)

Combining (6.23) and (6.25), we obtain:

∂ai
∂Di

[
DTD + λdiag

(
f

′′)]
=

[−D1ai −D2ai . . . x−Da−Diai . . . −Dnai
]

(6.26)

Here
∂ai
∂Di

is defined as:

(
∂a

∂Di

)
m×n

=

[
∂a1
∂Di

∂a2
∂Di

. . .
∂an
∂Di

]
m×n

(6.27)

So,

∂ai
∂Di

=
[−D1ai −D2ai . . . x−Da−Diai . . . −Dnai

] [
DTD + λdiag

(
f

′′)]−1

(6.28)

Now using the chain rule, we get:

δDi ≡ �Di (loss) =

(
∂ai
∂Di

)
m×n

δan×1

=
[−D1ai −D2ai . . . x−Da−Diai . . . −Dnai

] [
DTD + λdiag

(
f

′′)]−1
δa (6.29)

where i = 1, 2, . . . , n and δa ≡ �a (loss).

Collecting these n equations in a matrix

δD = (x−Da) δaT
[
DTD + λdiag

(
f

′′)]−1 −D
[
DTD + λdiag

(
f

′′)]−1
δaaT (6.30)

using previous notations, we arrive at:

δD = (x−Da) δa (p)T
[
DTD (p, p)

]−1 −D(:, p)
[
DTD (p, p)

]−1
δa (p) a (p)T (6.31)
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