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Abstract

The objective of this thesis is the theoretical and computational study of non-
linear shear Alfvén waves and shear flow instabilities in the Earth’s magnetosphere.
We have developed a computer code to solve the nonlinear set of magnetohydrody-
namic (MHD) equations in curvilinear coordinates. This code has been used to sim-
ulate the excitation, growth, coupling of shear Alfvén waves and magneto-acoustic
modes, and nonlinear saturation of standing shear Alfvén waves in the dipolar mag-
netosphere. The computational results were verified by comparing them with a

nonlinear analytical model which was derived as part of this study.

Using computer simulations, we have shown that shear Alfvén waves in the
field line resonance region develop into an azimuthally stretched and radially con-
fined region of a large amplitude shear flow in the equatorial magnetosphere. This
shear flow may become unstable with respect to a shear flow instability with char-
acteristic e-folding time smaller than a half-period of the shear Alfvén wave. There-
fore, we have used the computer model to study shear flow and shear flow ballooning

instabilities which can arise in the association with field line resonance regions.

Initially, we used the MHD code to model the shear flow and ballooning
instabilities in the equatorial plane of the Earth’s magnetosphere. We have shown
that a shear flow vortex couples effectively with a ballooning mode and grows with a
characteristic time scale of tens of seconds extracting the potential energy from the
ambient magnetic configuration. Therefore, the instability results in the generation
and propagation of a large scale vortex structure which appears to be in agreement

with observed scales of the vortices seen in auroral arcs.

Finally, the study of shear flow and ballooning instabilities was accomplished

using a three-dimensional computer model. We discuss the structure of vortices,



magnetic field, and field-aligned currents obtained from the three-dimensional com-
puter simulations and conclude that these instabilities may lead to vortices associ-

ated with discrete auroral arcs.



Acknowledgements

I am grateful to my supervisors, Dr. John Samson and Dr. Robert Rankin
for their support and assistance during the course of this research. They provided
me with a unique opportunity to complete this project using sophisticated super-
computers which has given me great experience in both computational physics and
programming. The project they suggested to me lays in the most controversial
area of modern space physics which encouraged me to come up to speed on the
newest ideas of the topic. I would also like to thank Dr. Gordon Rostoker who has

supported my academic career.

I extend my thanks to all other committee members, Dr. Robert Fedosejevs,
Dr. Rick Sydora, and my external examiner, Dr. Larry Lyons for their detailed

examination of my thesis and useful comments.

All my friends and colleagues in the Space Physics Laboratory have made
the past 5 years both pleasant and productive. I am highly grateful to Susan
Skone, Francis Fenrich, Anna Belehaki, Christine Lesiak, Erena Friedrich, Sarah
Derr, Karen Apps, Beth Tooley, Eric Donovan, Martin Connors, Colin Waters, No-
zomu Nishitani, Przemek Frycz, Jean-Pierre DeVilliers, Sherwood Botsford, James
MacKinnon, Hamid Al Nashi, Rafal Dymarz, Peter Damiano, Terry Kolber, Barry
Harrold, William Liu, Sandy MacAuley, Vladimir Tikhonchuk, Jan Mann, James
Wanliss, and Henry Sikkema. I give my special thanks to Vladimir and Przemek
who challenged me to overcome my indolence with respect to analytics and to learn
some scholar methods of solving problems. I also give my special thanks to the lab
secretary, Sarah Derr and the graduate student secretary, Lynn Chandler for their
invaluable help with all things.

My life in Edmonton has been exceedingly enriched by the people from my



home country. Igor Kolodkin, Yuri Leontiev, Marina Blekher, Oleg Verevka, Vika
Lohvin, Yuri Novikov, Ilia Vodopianov, Valeria Dorokhova, and many others have
helped me a great deal to overcome the threshold of living in a different country.
I also would like to give my warmest thanks and wishes to my friends overseas:
Misha Goodkov, Kiril Orlov, Dima Drachev, and Olya Glazova for their never ending
friendship.

The completion of this work could hardly have been a success if I had not met
the people whom I would dare to call my teachers in science. I express my gratitude
to Dr. M. L. Pudovkin, Dr. N. A. Tsyganenko, Dr. V. A. Sergeev, Dr. A. M.
Lyatskaya, Dr. I. V. Golovchanskaya, Dr. B. M. Kuznetsov, Dr. A. V. Shirochkov,
and Dr. O. M. Troshichev. I give my special thanks to Dr. Oleg Troshichev who
encouraged me to attempt studying abroad. I also take this opportunity to express
my warmest thanks to all my colleagues from the Arctic and Antarctic Institute for

all the wonderful memories.

My mother Alexandra, my father Oleg, my brother Vova, and my aunts,
Tatyana and Natalia have always supported and encouraged me. I must particularly
thank my daughter, Olga whose questions like ‘have you got an idea why you had

this noise instead of a wave?’ have urged me to try again.

I acknowledge the University of Alberta and the Natural Sciences and Engi-

neering Research Council of Canada for providing my financial support.



Contents

Abstract

Acknowledgements

Contents

List of Figures

1 Introduction 1
1.1 Preamble . ... ... .. ... .. 1
1.2 HistoricalRemarks . . . . .. ... ... ... ..., . .. ...... 2
1.3 Essentials of Space Plasma Physics . . . ... ... ............ 5
1.3.1 Basicdefinitions . .. ... ... ... ... ... ......... 5
1.3.2 Magnetohydrodynamic Equations . . . . . ... ... ... .... 6
133 MHD Waves. . . . . . ... .. .. .. . . 10
1.3.4 MHD theory of Field Line Resonances . . ... .......... 14
1.3.5 Shear Flow and Ballooning Instabilities. . . . . ... .. .. ... 16
1.4 Magnetosphereofthe Earth . . . . . ... ... .. .. ... ....... 22
1.4.1 Main Regions of the Earth’s Magnetosphere . . . . . .. ... .. 22

14.2 Jomosphere. . . . . . ... ... ... ... ... 27



1.4.3 Large-Scale Field Aligned Currents . . . . .. ... ...... . . 30

1.4.4 Magnetospheric Substorms . . . . .. . ... ... .. ... .. .. 31
1.4.5 Field Line Resonances in the Earth’s Magnetosphere . . . . . . . 36
14.6 Auroral Arcs . .. .. .... . ... ... .. ... 39
1.5 Thesis OQutline . . ... ... ... ... ... .. ... ... .. .. .. 42

2 Alternative Direction Implicit (ADI) Method for MHD Equations 44
2.1 MHD Equations in Curvilinear Coordinates . . . ... ... ... ... . 44

2.2 Alternative Direction Implicit (ADI) Numerical Method for MHD Partial

Differential Equations. . . . .. .. ... ... ... .. ... ... .. 48
2.3 Boundary Conditions . . . . . . ... .. ... ... ... ... .. .. .. 52
24 Numerical Diffusion. . . . . ... .. .. ... ... .. ... .. ... .. 53
2.5 ADI Code in Parallel and Vector Computers . . . . . . ... ....... 54

3 Shear Alfvén Waves and Field Line Resonances in the Dipolar Mag-

netosphere 58
3.1 Preliminary Remarks . . . . ... ... ... .. ... ... .. .. .. .. 38
3.2 Dipolar Model of the Earth’s Magnetosphere . . . . . . ... ..... .. 61

3.2.1 Dipolar Coordinates . . .. .. ... .. .. .. ......... . 62

3.2.2 Representation of the Earth’s Dipolar Magnetic Field in the Dipo-

lar Coordinates . . . .. .. . .. .. .. ... ... ... .. . 64



3.3 Linear Shear Alfvén Waves in the Dipolar Magnetosphere. . . . . . . . . 67
3.3.1 Dispersion Relation for Linear SAWs . . .. ... ... ... ... 67

3.3.2 Eigenproblem for a Standing SAW in the Dipolar Magnetosphere 69

3.4 Nonlinear Model of Field Line Resonances in a Dipolar Field . . . . . . . 74
3.4.1 Nonlinear Modelof FLRs . . . ... .. .. ............ 74
3.4.2 Linear Growth of SAWs . . . . . . ... ... ... ... .. ... 75
3.4.3 Slow Magnetosonic Wave Response . . . .. ... ... ... ... 76
3.4.4 Numerical Solution and Analysis . . . ...... ... . ... . 79
3.5 Three Dimensional Evolutionof SAWs . . . . ... ... ... ... ... 85
3.6 Discussion . . . . ... ... 91

4 Shear Flow and Shear Flow Ballooning Instabilities in the Equato-

rial Plane of the Earth’s Magnetosphere 94
4.1 Preliminary Remarks . . . . ... . ... ... ... .. ... .. .. ... 94
4.2 Theoretical Model . . . . ... .. ... ... 97
42.1 BasicEquations. . ... ... ... ... .. ... .. .. ... 97
4.2.2 Qualitative Analysis of the Hybrid Mode Instability . . . . . . . . 100
4.2.3 Linear Theory of the Hybrid Instability . . . . ... ... ... .. 102
43 Numerical Results . ... ... .. ... ... ... .. ... .. .... 106



4.3.2 Wavelength Dependence . . . . ... .............. . . 116
4.3.3 Bi-directional (Antisymmetric) Flow . . ... ... ... .. .. . 117

4.4 Validity of the “Effective Gravity” Approach and Energy Balance in the

5 Three Dimensional Evolution of Shear Flow and Ballooning Vor-

tices 129
5.1 Introductory Remarks . . ... .. ... ... ... ... ... ... .. . 129
5.2 Shear Flow Instability in the Dipolar Magnetosphere . . . ... ... .. 132
5.3 3D Ballooning Instability in the Plasma Sheet . . . . . .. ... ... .. 148

9.3.1 The Ballooning Equilibrium Problem . . ... ... ... ... . . 148

5.3.2 Ballooning Instability . .. ... ... ... .. ...... .. .. 149
54 Summary . . ... ... 156
6 Conclusions 159

Bibliography 164



1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.1

2.2

2.3

24

List of Figures

The phase (a) and group (b) velocities of the Alfvén wave (solid line),
slow mode (dashed line), and fast mode (dotted line) as a function

between the ambient magnetic field and wave vectors. . . . . . . . . . 12
Shear Alfvén wave (a) and compressional mode (b). . . . ... ... ... 13
Radial (z) distribution of normalized E, component around the FLR point. 15

Dependance of the growth rate (solid line) and frequency (dashed line)

on the wave number for a Gaussian uni-directional flow. . . . . . . . . 18
Schematic of the ballooning instability. . . . . . ... .. .. . .. .. .. 20

Dependance of the growth rate of ballooning modes on k, for different
k labelled in the plot. . . . .. ... .. ... ... .. ... ... .. 21

‘The 3D diagram of the Earth’s magnetosphere from Eastman et al. [1985]. 25

Dependance of the Alfvén wave reflection on the ionospheric conductivity. 29
Schematic of FLRs in the Earth’s magnetosphere. . . . . . ... .. . .. 38
The schematic of a computational cell used in ADL. . . . ... ... ... 50
A schematic of the parallelization and vectorization of ADI. . . . . . . . 59
A diagram of the parallelization and vectorization in a FORTRAN ver-

sionof ADL. . . . ... ... ... ... 56

The normalized performance time as a function of the number of mesh

points in a parallel chunk. . . ... ... ... ... ... .. . .. . 57



3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Magnetic field in the equatorial midnight magnetotail as predicted by
the T96 model [Tsyganenko, 1996] (solid line) and dipolar magnetic

field of the Earth (dashed line). . . ... ... ... ... ... .. ..
Elements of the dipolartopology. . . . ... ......... ... ....

An L-shell of the Earth’s dipolar magnetic field. . . . ... ... .. ...

Variation of the dipolar magnetic field along the L = 10 magnetic shell
computed from By = M/h,. Here, Z is distance along magnetic field

lines from the southern ionosphere to the northern ionosphere

Distribution of (a) density and (b) Alfvén velocity along the L = 10

magneticfieldline. . . . ... ...

Distribution of (a) k3B, and (b) V,, fields of the first (solid line), second
(dashed line), and third (dotted line) SAW modes along the L = 10
magnetic field line. hyB, is normalized by the boundary value and

V4 is normalized by the V; in the equatorial point. . . . . . .. .. ..

L-shell dependance of w for the first (solid line), second (dashed line),

and third (dotted line) SAW modes. . . . . ... ... ... ......

The growth of the amplitude of the SAW as predicted by the analytical
model (solid line) and obtained numerically from the full set of MHD
equations using the ADI code (dashed line). 8 is 2.65-10~2 in the

equatorial plane. . . . . .. ... ... ...

The evolution of the SAW amplitude (a) and phase (b) for 8 = 2.65-10~*
(solid line); 2.65-10~2 (dashed line); 2.65-10~2 (dotted line) and 0.88

(dash-dotted line). . . .. .. ... ... ... .. ... ... .. ..

66



3.10 Normalized spectra of acoustic waves, generated by the FLR at time T
(solid line), 47" (dashed line), 10T (dotted line), and 20T (dash-dotted
line); # = 2.65-1072 in the equatorial plane. . . . . ... ... ....

3.11 Pressure perturbation distribution along the field line at ¢ = 307. B =
2.65-102 in the equatorial plane. The distance Z along the field line
is normalized by the Earth’sradius Rg. . . . . ... .. ... ... .

3.12 SAW amplitudes as a function of the frequency shift between the driver
and SAW at time 5T (solid line), 20T (dashed line), 35T (dotted
line). # = 2.65-1072 in the equatorial plane. . ... ... . ... ..

3.13 Radial distribution of the driver velocity in the equatorial plane. . . . . .

3.14 Radial distribution of the SAW velocity in the equatorial plane for dif-
ferent phasesof the SAW. . . . . . . .. ... ... ... .. ... ..

3.15 Dependance of the KH instability e-folding time on the time of FLR

evolution. . . . ... ... ..
3.16 Meridional profile of FACs at the ionospheric level. . ... ... ... ..

3.17 Poleward motion of FACs in the FLR region at the ionosphere level.

Here, r is the distance in the meridional direction at the ionospheric

3.18 Photometer data for the 6300 A emission associated with a. FLR.

4.1 Variations of the azimuthal velocity of a SAW in the equatorial plane for

oneperiod. . .. ... ...



4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

A schematic of the inner plasma sheet: a shear flow is embedded in a

region of pressure gradient and stretched magnetic field lines. . . . . .

A schematic showing the interaction of a shear flow vortex with a pressure

gradient cell. A Gaussian shaped shear flow is assumed. . . . . . . . .

Growth rate v = Im(w)é/V, of the hybrid mode (solid line), KH in-
stability (dashed line), and noninteractive ballooning mode (dotted
line) as a function of k6. The growth rates for the hybrid and nonin-

teractive modes are computed for W2(6/V4)2 = —0.01. . . . .. ...

A model of the interaction of a shear flow vortex with ballooning modes
of different radial scales: (a) k; ~ 1/L and (b) k. ~ 2/L. Arrows
show the direction of the plasma motion due to the KH vortex (solid

arrows) and ballooning cells (empty arrows) formation. . . . . . . . .

Growth of (a) amplitude of the radial velocity V; and (b) the integrated
kinetic energy of the hybrid mode (solid line), KH mode (dashed line)

and ballooning mode (dotted line), respectively. . . ... ... . ...

Time slices of the vorticity as obtained from the computer simulations

for (a) the hybrid mode and (b) the KH instability, for t/t, = 5, 7,

Contour plots of (a) V., (b) density and (c) plasma pressure for tft, =

6 and 7, respectively, illustrating the transformation of the hybrid

eigenmode from KH-like to ballooning-like. . . . . .. ... ... ...

105

108



4.10 The vorticity of the hybrid mode for ¢/, = 10, demonstrating the gen-
eration of secondary shear flows which elongate the vortices in the
direction opposite to the initial shear flow. Three wavelengths are

combined in order to show a whole vortex structure. . . . . . . . . . .

4.11 Radial distribution of the integrated radial kinetic energy (V.2), at time
t /t. = 8.8 (solid line), 9.8 (dashed line), 10.7 (dotted line), and
11.6 (dash-dotted line). . . . . ... ... ... .. ... . ..... .

4.12 The vorticity for (a) small (k = 1.8/6) and (b) large (k = 0.2/6) wave-
length perturbations. . . . . ... ... ... .. ... .. ... .. .

4.13 Time slices of the vorticity obtained from the computer simulations for
the hybrid mode driven by a bi-directional shear flow with (a) k = 1/6
(t/ta = 10.1,13.1), and (b) £ = 0.5/6 (t/t, = 14.1,18.2). . ... ...

4.14 Growth of amplitude of the radial velocity V. for two models: effective
gravity (solid line) and curvature (dashed line). . . ... ... .. ..

4.15 (a) Growth of the radial velocity amplitude of the hybrid mode (solid line)
and KH mode (dashed line), respectively. (b) Evolution of kinetic
energy (solid line), and potential energy due to the work done by the
plasma pressure (dashed line), magnetic pressure (dotted line), and

magnetic curvature (dash-dotted line) in the system with the hybrid

4.16 Spatial distribution of the kinetic energy and the velocity field associated
with the hybrid vortex at ¢/t, =14. . . . . . .. ... .. ... ... .

9.1 Distribution of the azimuthal shear flow velocity. . . .. ... ... ...

119



5.2 Time slices of vorticity in the equatorial plane for ¢t = 20, 40, 60, and 70
s obtained using (a) 3D and (b) 2D models. . ... .. ... .. ...

5.3 Growth of the V, amplitude at the equatorial plane as obtained from the
3D (solid line) and 2D (dashed line) models. . . . ... ... .. .. .

5.4 Radial (v) and azimuthal (¢) distribution of V, at (a) 3.1Rg, (b) 8.3Rg,
and (c) 13.5Rg along the field line and (d) a KH eigenmode predicted
bythe2D theory. . . . .. . . ... ... ... ... ... ...

9.5 Dependance of the growth rate (solid line) and frequency (dashed line)
on the coupling coefficient @. The growth rate and frequency are
normalized by 6/Vo. . . . . . . . ...

5.6 Field-aligned distribution of the phase velocity obtained from the 3D
simulations (solid lines) and as predicted by the 2D theory (dashed
lines). . . ... ... ..

5.7 Field-aligned (1) and azimuthal (¢) distribution of (a) V, and (b) Vi

perturbations (main harmonic)att=10s. . . . . ... ... ... ..

9.8 Velocity field distribution in (a) the ionosphere and (b) at ~ 3Rz above

the ionosphereat t =50s. . . . ... ... ... .. ... .. ... . .

5.9 Temporal evolution of the B, norm perturbation amplitude as predicted
by equation (5.9) for C;/C5 = 30 (solid line) and 10 (dashed line). . .

9.10 Growth of [B,]max at the ionosphere (solid line), 0.5Rz (dashed line),
and 1Rg (dotted line) along the field line. . . ... ... .. ... ..

95.11 Time slices of the field-aligned current distribution at the ionosphere

illustrating the formation and dissipation of the fold-like structure. .

137

141

143

. 145



0.12 Field-aligned distribution of the By amplitude at t=70 sec (solid line)
and the By eigenfunction of the main SAW harmonic (dashed line).

5.13 Temporal evolution of the shear flow in the equatorial plane as obtained

from (a) 2D and (b)3Dmodels. . . . . ... ...... ... ... . . .

5.14 Initial equilibrium conditions for the 3D simulations of the ballooning
instability: (a) Py, 4 and (b) B, in the equatorial plane, and (c) Ppg
and (d) B, in the u, v plane. Field-aligned coordinate y starts at S5REg
above the southern hemisphere and ends at 5Rg above the northern

hemisphere. Coordinate v covers the fraction from L = 8.5 till L =

. 146

11.5. ¢ is azimuthal corresponding to 2432 km in the equatorial plane.150

5.15 Growth of the initial perturbation V, at 7.8 R (solid line), 5.4 Rg (dashed
line), 2.8Rg (dotted line), and 0.7Rz (dash-dotted line) from the

boundary along field lines. 7.8 Rg corresponds to the equatorial plane. 151

9.16 Evolution of the ballooning cell in the equatorial plane. Time slices

correspond to the initial time (¢ = 0 s), linear stage (t = 75 s), and

nonlinear stage (t =100s).. . . .. ... . ... ... ... .. ....

5.17 Changes of the kinetic energy (dashed line) and the work produced by

the magnetic field line curvature force (solid line) in the equatorial

TEGION. . . . . . ...

©.18 Equatorial B, averaged over the azimuthal wavelength as a function of
the radial distance at ¢ = 0 s (solid line) and ¢ = 130 s (dashed line),

and dipolar magnetic field (dotted line). . ... ......... . ..

9.19 Field-aligned distribution of the amplitudes of the magnetic components

(a) B,and (b) Byat t=100s. . . ... ......... ... ... .

154



CHAPTER 1

Introduction

1.1 Preamble

In general, Solar-Terrestrial physics deals with processes which couple the solar
wind to the geospace environment. Plasma disturbances which originate in the Sun
travel with a plasma flow called the solar wind, penetrate the magnetic field of
the Earth (the Earth’s magnetosphere), and finally affect the near-Earth regions
- ionosphere and atmosphere. It is generally accepted that energy from the solar
wind can enter the magnetosphere via several major mechanisms - magnetic re-
connection, plasma viscous interaction of the solar wind with the magnetospheric
boundary, and excitation of magnetohydrodynamic (MHD) waves on the solar wind
- magnetosphere boundary. All these mechanisms can initiate large-scale magneto-

hydrodynamic waves which propagate inside the magnetosphere.

One major problem in Solar-Terrestrial physics is how energy propagates
within the magnetosphere and how it is subsequently stored and released into the
ionosphere. Observations show that this energy becomes stored in particular magne-
tospheric regions where strong electric currents and accelerated particles flow along
the Earth’s magnetic field lines. These field-aligned currents and particles produce

strong ionospheric currents and the luminosity which is seen as the aurora.




In this work, we concentrate on the theoretical study of some nonlinear pro-
cesses which can lead to the energy storage in the magnetosphere and its release
into the ionosphere through MHD wave processes, particularly ultra low frequency
shear Alfvén waves. One mechanism which allows for energy accumulation at ~8-10
Earth radii (Rg) and along magnetic field lines threading the auroral ionosphere,
is called a field line resonance (FLR). We study this mechanism in both linear
and nonlinear stages using analytical theory and computer simulations. Qur re-
sults indicate that FLRs produce large field-aligned currents and high amplitude
magneto-acoustic waves which may also accelerate particles. This provides the
magnetosphere-ionosphere coupling in the FLR region. We consider two distinct
nonlinear mechanisms in FLRs: ponderomotive forces and fluid instabilities. An
important feature of FLRs is that they initiate large amplitude shear flows which
can eventually excite shear flow instabilities. If the shear flow instability is initiated
in a region of a strong pressure gradient, it may couple with a ballooning mode.
The resulting hybrid mode can cause some of the large scale vortex structuring in

auroral arcs.

1.2 Historical Remarks

The physics of auroral phenomena originated more than two centuries ago when O.
Hiorter, a Swedish scientist-magnetometrist, discovered that perturbations of the
Earth’s magnetic field registered in the Uppsala observatory correlated with visual
auroral activity. His observations implied that auroras were more complex phenom-
ena than had been thought earlier. For example, some theories explained auroras
as a result of purely optical reflection of star light, particularly of the bright Milky

Way, from the polar ice. It was not until the late nineteenth century when the



Norwegian physicist Kristian Birkeland attempted to explain the phenomenon in
terms of strong electrical currents flowing along the Earth’s magnetic field lines.
Birkeland [1896] showed that these currents were able to produce magnetic pertur-
bations as well as visual luminosity similar to that observed in experiments with
vacuum tubes and cathode rays. Birkeland’s ideas were strongly supported by his
observations made during three polar expeditions and experiments with “terella”,
the coil system which produced a dipolar magnetic field. Birkeland showed that
electrons moved along the field lines and produced luminosity patterns similar to

some auroral forms.

In 1881, H. Fritz statistically studied the latitude dependance of auroral
activity. He showed that auroral activity has a maximum at approximately 23°
equatorward from the pole and decreases both equatorward and poleward from this
maximum [Fritz, 1881]. This region of enhanced auroral activity was called the Fritz

zone or auroral zone.

In an attempt to explain the occurrence of the Fritz zone, Stgrmer (1927]
constructed a quantitative model of auroras based on the calculations of particle
trajectories in a dipolar magnetic field. Stgrmer’s theory showed that electrons
entering the Earth’s dipolar magnetic field produce a circular precipitation zone
at 2 — 4° from the pole whereas helium ions and protons would enter the Earth’s

atmosphere at 16 — 19° and 4 — 6°, respectively.

Even though the theory by Birkeland and Stgrmer was in agreement with
some optical and magnetic observations and with laboratory experiments, it could
not explain several details of the aurora’s origin and was based on seemingly contra-
dictory assumptions. Therefore, it instigated numerous debates amongst physicists.

Some points of their arguments were:



1. Electrons entering the Earth’s magnetic field and initiating auroras were as-
sumed to be released by the Sun during solar flares. It was not clear how
an electron beam could hold together against electric repulsion and propagate

over these large distances.

2. In order to explain magnetic perturbations, Birkeland suggested that auroral
rays are excited by electrons. Stgrmer’s theory predicted a precipitating zone
2 — 4° from the pole whereas observations showed that the Fritz zone lies
23° from the pole. This disagreement could have been resolved if one had
assumed that the real Earth’s magnetic field diverges from a dipole. However,
it was not until the theoretical study by Chapman and Ferraro [1931] and after
further investigations of the Earth’s magnetic field structure [Gringauz, 1962;
Fairfield, 1968] which showed that the magnetic field lines at high latitudes

are strongly deviated from a dipolar topology.

3. Even though Birkeland proposed a system of field aligned currents which could
explain the observed magnetic variations, the origin of these currents was not
clear. Their existence was the subject of vigorous scientific battles up to
the seventies, when these currents were finally observed during the spacecraft

experiment Triad [Zmuda and Armstrong, 1974; Fijima and Potemra, 1978).

4. The theory by Birkeland and Stgrmer was extremely simplified and could not
explain the diversity of auroral forms, colors and scales, nor their dependance
on local time. These questions required further study of the structure of the
magnetic field, properties of the ionized gases (or plasmas), features of the
magnetosphere - upper atmosphere interactions, etc. Many of these problems

remain still unresolved.

Thus, auroral activity results from diverse physical processes in the chain



“Sun - solar wind - magnetosphere - ionosphere”. All these components of the
Solar-Terrestrial interaction manifest different properties, so let us begin with a
short description of each of them. Not aiming to cover all topics of Solar-Terrestrial
physics, we shall concentrate on the processes which lead to or have an influence on

auroral phenomena.

1.3 Essentials of Space Plasma Physics

1.3.1 Basic definitions

An ensemble of charged particles forms a plasma if it satisfies the requirement of
quasineutrality and demonstrates collective properties. In most cases, space plas-
mas consists of positive ions and electrons which are coupled by their mutual at-
traction. The electric field of this attraction oscillates with the plasma frequency
(4mne®/m.)'/2, where n is plasma number density, e and m, are the electron charge
and mass, respectively. The characteristic scale of this electric field is defined by the
Debye radius Ap = [KT,/ (47ne?)]/2, where K is the Boltzmann constant and T.
is electron temperature. Providing there is a sufficient number of particles within
a sphere of the radius Ap, the internal electric field which exists between electrons

and ions is shielded on scale lengths larger than Ap.

In the external magnetic field B, motion of charged particles is defined by the
Lorentz force F; = (¢/c)V x B which results in the cyclotron motion of the particle
with a gyrofrequency w,. = (¢B)/(mc). Here g s the particle charge and cis the speed
of light. The radius of the motion is called the Larmor radius R; = mV,c/(¢B)
where V) is a velocity component perpendicular to the magnetic field. An external

force F causes periodic acceleration and deceleration of the particle within one



gyroperiod. This results in a drift with the velocity V4 = [c/(¢B?)]F x B. This
means that for spatial scales larger than the Larmor radius, the motion of particles
can be described as the motion of a guiding centre with the velocity V; directed
perpendicular to B and F. For an ensemble of particles, this allows us to consider
plasma as a fluid of particles’ guiding centers and use the magnetohydrodynamic
(MHD) method to describe plasmas.

1.3.2 Magnetohydrodynamic Equations

Providing the characteristic scale is larger than the Larmor radius and Debye length,
and the characteristic evolution time is greater than the period of plasma and gyro

oscillations, the plasma density and velocity can be described by fluid equations:

% + V'(ni,evi,e) =0 y (11)
Wi,e — 1
pi,e? + pie(Vie - V)Vie = T Fi., (1.2)

where p = mn is density. Equations (1.1) and (1.2) should be self-consistent with

the plasma neutrality equation

V-(n.V,) = 7-(n:Vy). (1.3)

In most problems, electrons can be considered massless when compared to
the much heavier ions. In this case, the ion motion is described by (1.2) whereas
the electrons simply follow the motion of ions. Then the neutrality equation can be

reduced to n. = n; and plasma can be described by the one fluid (ion) equations.



If F in (1.2) includes a pressure gradient term, an additional equation of state
prescribing the pressure as a function of density p and temperature T is required. For
an ideal gas, an equation of state is: P = nK7T. For an adiabatic case, temperature
can be excluded and the equation of state becomes P/p” = C, where C is a constant
and 7 is a ratio of specific heat, also called the adiabatic constant. In space plasmas,
we typically consider particles with three degrees of freedom, so that v = 5/3. For
a nonadiabatic process, pressure can be obtained from the equation of state and the

energy continuity equation:

ow
?-FV'Q - A1 (1'4)

where W is total energy in the system, Q is an energy flux and A is an operator

describing internal gains and losses of energy.

If we neglect the thermoconductivity and viscosity tensors and assume that
resistivity 7 is uniformly distributed in the media, we can derive the following energy

equation [Landau and Lifshitz, 1984]:

oP 2
S T V-OPV) = (= 1) (V-vP+ m;’QvaBP) =0, (1)

In order to complete the MHD set of equations, an equation describing the
connection between the magnetic field and plasma flow should be added. This

equation can be obtained from Maxwell’s equations and Ohm'’s law.

i, 10E
VxB=—j+ P (1.6)
v B = 0: (1'7)



v xE = ~=% (1.8)

V -E = 4mp,, (1.9)

where B and E are magnetic and electric fields, respectively, j is the current density,
and p, = n; — n, is the charge density.

The current density can be found from the generalized Ohm'’s law as

) 1 1 1. me (0 .

= = —VP-—jxB-—=(2+yGV)|{,
J o (E+chB)+nevP meJxB — (&+V(JV))] (1.10)
where o is the electrical conductivity. If electrons can be assumed cold and massless,
the electron pressure ((1/ne) 7 P.) and electron inertia ((m,./ne2)(8j/8t) +v(V))
terms can be omitted. In some problems dealing with magnetospheric plasmas, the
Hall term in the right hand side of (1.10) can also be neglected. In this case, Ohm’s

law becomes:

nj = E+%VxB. (1.11)

where n = 0~ is resistivity.

When analysing processes in plasmas with small resistivity, we obtain the
ideal MHD equation E = —(1/c)V x B, also called the ideal Ohm’s law. For this
case, Alfvén derived an important equation which connects the motion of plasma

and magnetic field lines [Alfvén and Filthammar, 1963]:

dB B
E; = (_p_.v)v, (1.12)



Let us consider a line of fluid with plasma particles on it. If V is a speed
of the line at one point, it will be V + (dl- \7)V at the distance dl from this point
along the line. Therefore, the distance dl will change with time as dt(dl- v)V or

d
—dl = (1-7)V. (1.13)

As seen from (1.12) and (1.13), time evolution of vectors dl and B/p is
defined by the same equation. For example, if these vectors are initially parallel to
each other they will remain parallel and their lengths will change at the same rate.
Therefore, if two particles are initially on the same magnetic field line they will move
with this field line. This means that if plasma is nonresistive, magnetic field lines are
frozen to the plasma. In the case when the magnetic field is transverse and plasma
is uniform along the magnetic field lines, equation (1.12) becomes d(B/p)/dt = 0.
In some problems, this allows us to replace the motion of magnetic field lines by
the motion of plasma and consider a two-dimensional (2D) problem instead of a
three-dimensional (3D) one. The ratio of the magnetic force and density is called

the “effective gravity” in such problems.

We shall be considering non-relativistic velocities Vp = Lg [to < ¢, where V,
Lo, and g are the characteristic velocity, scale length, and time, respectively. In

this case, we can compare the term E /8t with ¢ 7 xB as follows:

|OE/8t]  VoBofte V&

c| v xB| ~ c2By/ Ly v (1.14)

where By and Ey are the characteristic values of the magnetic and electric fields,

respectively, and Ey = (1/¢)Vp B, from the ideal Ohm'’s law.

Therefore, the term OE/dt can be neglected in a nonrelativistic plasma which



results in

4mj = cvy xB. (1.15)

Combining this equation with (1.11) and B/8t = —c 7 XE, one arrives at:

10B (1
— —— — X —
C

o
o VxB 4vaB). (1.16)

The first term on the right-hand side of (1.16) represents the motion of the magnetic
field lines with the plasma, whereas the second term describes the diffusion of the
magnetic field through the plasma. However, this resistive diffusion should be small
in order to justify the assumptions we made to derive (1.15). In this study, we shall
consider only ideal MHD problems and use this small resistive diffusion in (1.16)
only for a numerical stability purpose.

Equations (1.1), (1.2), (1.5), and (1.16) form the entire set of one-fluid MHD
equations which allow us to describe numerous processes in the magnetospheric

plasma.

1.3.3 MHD Waves

The MHD equations allow for the existence and propagation of three basic wave
modes. These are the shear Alfvén wave (SAW), and compressional fast and slow
modes. In a homogeneous plasma, these modes are linearly decoupled from each
other. However, coupling between them occurs if we consider nonlinear processes or

if these waves propagate in a nonuniform media.

An equation describing the wave vector k as a function of a frequency w is

10



called a dispersion relation. In Cartesian geometry (z,y, z), a dispersion relation
for the shear Alfvén wave in the homogeneous ideal plasma can be derived using

equations (1.2) and (1.16):

BV PV
e = g (10)
where V; = B/(4mp)'/2 is the Alfvén speed and the z axis is chosen in the direction

of the ambient magnetic field B,.

If we assume a SAW in the form V = Vgexp[—i(wt — k - r)], where Vj is
the wave amplitude and r is a position vector, we obtain a dispersion relation of the

SAW:
= = V2cos®d, (1.18)
where ¥ is an angle between the ambient magnetic field By and the wave vector k.

The group velocity of a SAW which is defined as 8w/8k is collinear with
the direction of the ambient magnetic field. Therefore, these waves can transport

energy only along magnetic field lines.

The dispersion relation for the slow and fast modes is

w? 1/ 9 2 2 212 22 2.%
o = -2-(VA+CSi[(VA+CS) — 4V3Clcos?d] ) (L.19)

where Cs = (vKT/m;)'/? is the speed of sound in a plasma. In cold plasmas, Cg
is zero and the compressional fast mode is described by w?/k? = V2. This wave

transports energy isotropically with the group velocity equal to the Alfvén speed.
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Figure 1.1: The phase (a) and group (b) velocities of the Alfvén wave (solid line),
slow mode (dashed line), and fast mode (dotted line) as a function between the
ambient magnetic field and wave vectors.

The slow mode does not propagate in cold plasmas where C, = 0 and hence the

slow mode frequency is zero.

If the plasma temperature is nonzero, the fast and slow modes are driven by
both magnetic tension and thermal pressure. However, oscillations of the magnetic
field and plasma density occur in phase in the fast mode and out of phase in the

slow mode. This feature is often used to distinguish these modes in experiments.

A diagram of the MHD mode propagation and energy transport is presented
in Figure 1.1. In this example, Cs < V, which is typical for magnetospheric plas-
mas. As seen from the diagram, the fast mode propagates in all directions. The
fastest propagation occurs in the direction perpendicular to the ambient magnetic
field. This wave transports energy in all directions. The slow mode propagates and

transports energy mainly along the ambient magnetic field. The SAW has reciprocal
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Figure 1.2: Shear Alfvén wave (a) and compressional mode (b).

fronts. The energy transport occurs only along the ambient magnetic field lines with

the group velocity Vj4.

Vector diagrams for the shear Alfvén wave and compressional fast mode in
a cold plasma are shown in Figure 1.2. In this diagram, vectors B and V show the
direction of the magnetic field and velocity perturbations, respectively. For a SAW,
vectors B and V are parallel (or antiparallel) to each other and perpendicular to
the ambient magnetic field By. Vector k is perpendicular to V which means that
SAWs are incompressible. The magnetic perturbation of the fast mode lies in the
plane [Bg, V], however B - By # 0 and k- V # 0. This means that the fast mode

involves a compression of plasma and magnetic field.

In non-uniform dispersive media, the behavior of these modes becomes more
complex and the clear distinction between them disappears. Also, these modes
can couple to each other via resonances. One type of resonant interaction, namely
coupling of fast and SAW modes, is called the field line resonance (FLR). Below,
we introduce a brief theory of FLR while its applicability to the magnetospheric

processes and magnetosphere-ionosphere interaction will be discussed later in the

13



Introduction and in Chapter 3.

1.3.4 MHD theory of Field Line Resonances

The linear theory of field line resonances (FLR) was developed by Chen and Hasegawa
[1974] and Southwood [1974]. They studied coupling between the fast compressional
mode and the SAW in the presence of a radial gradient of the Alfvén velocity. A
brief outline of this theory is presented below.

Let us assume that the Alfvén velocity distribution is nonuniform in the z-
direction and that the electric field perturbation is in the form of a monochromatic
wave: B = E, , exp(—i(wt — k,y — k.z)). Then the linearized set of MHD equations

can be reduced to the wave equation

O%E, k2 d (w\20E,
0z [(w/Va)? — K2k Oz (V_A) Bz TR E =0 (1.20)

2
where k2 = &5 — k2 — k2,
VA v z

Equation (1.20) has two singularities. The first point corresponds to k2 =0
and was defined as the turning point where the compressional wave changes from
propagating to evanescent. The second singularity occurs when w?/V2 = k2. This

point relates to the resonant position where the wave equation can be approximated

by
PE, 1 OE,
0z2 +:z:—.1:0 oz +rEy =0,
and
_ —1iky,(0E,/0x)

E, (1.21)

w2 2 2’
IRk

where z, is the resonant point position.

14



IEx| 7 | ﬂ

0.8}

0.6}

0.4

0.2¢

Figure 1.3: Radial () distribution of normalized E, component around the FLR
point.

The solution to (1.21) goes to infinity at the resonant point. However, Chen
and Hasegawa [1974] and Southwood [1974] showed that the singularity can be
avoided if there is small amount of dissipation in the system. Then the solution

for E,; normalized by the E; maz is:

—[e +i(z — z0)]

ky[(z — z9)2 + €2’ (1.22)

E, =

where ¢ is a coefficient which depends on damping.

The form of solution for (1.21) is shown in Figure 1.3. As seen from this

figure, electric field has a strong peak around the resonant point where the SAW




is driven by the fast compressional mode. This suggests that SAWs can grow to
large amplitudes and accumulate energy at resonant points. Note that the solution
shown in Figure 1.3 presumes a monochromatic compressional wave driver. The
general existence of such waves in the Earth’s magnetosphere will be discussed later

in Chapter 1.

1.3.5 Shear Flow and Ballooning Instabilities

The theory of FLRs predicts that the velocity field of SAWs grows in the FLR re-
gion and is radially structured around the resonant point. The fundamental SAW
harmonic has nodes of the azimuthal velocity field in the ionosphere and antinodes
in the equatorial plane. This implies that SAWs in the equatorial magnetosphere
may eventually become unstable with respect to the shear flow instability. More-
over, equation (1.22) predicts a 180° SAW phase shift across the resonant region.
This shift may also result in strong shears of the velocity. Therefore, the FLR. the-
ory suggests that the FLR region may become unstable with respect to shear flow

instabilities.

In this project, we study the evolution of the shear flow instability and its
interaction with ballooning modes which can develop in the presence of pressure
gradients and stretched magnetic field lines. Therefore, let us briefly describe the

origin of these modes.

Shear Flow (Kelvin-Helmholtz, KH) Instability

The physical process responsible for driving the KH instability can be understood

as follows. Let us assume that plasma density is constant in the region where the
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shear in the flow exists. Suppose that a small perturbation of the perpendicular
component of the velocity appears in the shear flow. This involves motion of plasma
from a region of higher velocity to a region of lower velocity (perpendicular to the
ambient flow), and leads to a reduction of the velocity in the direction of the shear
flow. However, if the plasma is incompressible, this reduction of velocity should
be compensated by a gain in the perpendicular component in order to keep the
velocity field divergence free. Therefore, the flow deviates from its initial direction.
This initiates a shear flow vortex. The instability saturates when the kinetic energy

of the shear flow is transferred into the kinetic energy of the vortex.

‘The simplest case of a shear flow instability arises when a plane two-dimensional
perturbation is embedded into a shear flow which is perpendicular to the ambient
magnetic field, and the wave vector is parallel to the shear flow. Assuming the
ambient plasma density, pressure and magnetic field are uniform, the linear growth

is defined by the dispersion relation

v
"o 1.2 _ 0 s
VI =KV, [1 o —F0 k%)} , (1.23)

where Vj is the ambient shear flow velocity, V, is a velocity perturbation perpen-
dicular to Vj, k is the wave number, and w is the angular frequency. The second

derivative is taken with respect to the direction perpendicular to the shear flow.

A solution for the dispersion relation (1.23) provides us with the KH mode
eigenfrequencies and eigenfunctions (e.g., [Miura and Pritchett, 1982], see also Chap-
ter 4 of this thesis). If Imw is positive, the corresponding mode is unstable and grows
exponentially with the growth rate v = Imw. Figure 1.4 illustrates dependance of
the growth rate and frequency Rew on the wave number k for a Gaussian flow

V(z) = Vhexp(—z2/6%). Here § is a half-width of the shear. As seen from Figure
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Figure 1.4: Dependance of the growth rate (solid line) and frequency (dashed line)
on the wave number for a Gaussian uni-directional flow.

1.4, the most unstable modes correspond to the wavenumbers k ~ 1 /6.

When the ambient magnetic field has a component which is directed parallel
(or antiparallel) to the wave vector, the growth rate decreases and the magnetic
field can completely stabilize KH modes [Miura and Pritchett, 1982]. However, the
magnetic field can stabilize the instability even when it is totally transverse. It
happens in the presence of the magnetic shear or magnetic curvature [Miura and

Pritchett, 1982; Tajima et al., 1991].

In the three-dimensional (3D) case, the finite field-aligned wave length and
magnetic field line bending at the boundaries also stabilize the growth of the pertur-
bation [Miura and Pritchett, 1982; Miura and Kan, 1992; Galinsky and Sonnerup,
1994]. These effects will be discussed in chapter 5 where we study evolution of the
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KH instability on dipolar magnetic field lines.

Ballooning Instabilities

If a pressure gradient is in equilibrium with another force, this equilibrium can be
unstable with respect to plasma motion in the direction of the pressure gradient.
The physical scenario of the instability can be described as follows (Figure 1.5). Let
us consider a simple example in which plasma pressure is initially in equilibrium with
the gravitational force pg. An imposed initial velocity perturbation moves plasma
from the higher pressure region A to the lower pressure region B. Increased pressure
in region B moves plasma in the direction perpendicular to the initial pressure
gradient. As a result, plasma density in cell C grows. An increased gravitational
force pg in cell C causes plasma to move from cell C to cell D, contributing to the

initial perturbation. This instability is called ballooning.

If the length scale of the pressure gradient is much larger than the scale of
the initial perturbation, this initial perturbation can be assumed in the form Ve =
Vzo exp[—i(wt — kzz — kyy)]. Then the linear dispersion relation for the ballooning

instability has a simple form

k2
w? = k—;W2, (1.24)

where k? = k2 + k2, and W is called Brunt-Viiséla frequency:

w2 =_9 _ 9 (1.25)

Vf2 = C,2+V,%isthe square of the fast mode velocity in the direction perpendicular
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Figure 1.5: Schematic of the ballooning instability.
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Ky

Figure 1.6: Dependance of the growth rate of ballooning modes on k, for different
k. labelled in the plot.

to the ambient magnetic field, and /' is the density gradient in the z-direction.

If the plasma temperature is uniform, the dispersion relation (1.25) describes
the well known Rayleigh-Taylor instability, which is unstable if the gravity and
pressure gradients are antiparallel. However, the configuration shown in Figure 1.5
is stable with respect to the Rayleigh-Taylor instability. Therefore, the ballooning
mode can be destabilized only if there is a nonzero temperature gradient. The
marginal stability occurs when P’ = Vf?p' . In the particular case when density is
uniform, the configuration shown in Figure 1.5 is always unstable with respect to
the ballooning instability. Note that a ballooning unstable mode has the frequency

Rew equal zero.

The dependance of the growth rate on the wavenumber ky is shown in Figure
1.6 for different k.. As seen from the figure, the growth rate grows when k; de-

creases and k, increases. When k,/k, > 1, the growth rate becomes approximately
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independent of k,.

In this section, we have briefly described the basics of MHD waves, FLRs,
and KH and ballooning instabilities. These physical processes play an important
role in the dynamics of the magnetosphere as mechanisms which allow for energy
storage and release. Now, let us give a brief description of the Earth’s magnetosphere
and discuss the applicability of the above mentioned processes to magnetospheric

plasmas.

1.4 Magnetosphere of the Earth

1.4.1 Main Regions of the Earth’s Magnetosphere

The Earth’s magnetosphere is a result of the coupling of the solar wind with the
Earth’s magnetic field. The solar wind is in fact an extension of the upper atmo-
sphere of the Sun - the solar corona. This magnetized plasma outflow reaches the
position of the Earth at speeds of 300-700 km/sec depending on solar activity. The
typical parameters of the solar wind near the Earth’s orbit are: a plasma of mainly
protons and electrons with density ~10 cm™3; a proton temperature of the order
of 10°K with an electron temperature 2-3 times higher. The magnetic field of the
solar wind (or IMF - interplanetary magnetic field) is typically ~5-10 nT. The speed
of sound and Alfvén speed for these parameters are of the order of tens of km/s.

‘Therefore, the solar wind represents a supersonic and super Alfvénic flow.

Perhaps, the first idea that the solar wind is an expansion of the solar corona
belongs to Chapman who was inspired by the discovery of the very high temper-

ature regions in the solar corona. Following this idea, Parker [1958] suggested a
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quantitative theory of the plasma outflow and gave it the name solar wind. The
first satellite measurements confirmed Parker’s theory and experimentally proved
that the solar wind plays an essential part in transporting plasma energy from the

Sun to the near Earth space environment [Brandt, 1970].

In the vicinity of the Earth (at ~ 10Rg on the dayside), the dynamical
pressure of the solar wind is approximately equal to the pressure of the Earth’s
magnetic field, which causes solar wind to deviate and flow around the Earth. Be-
cause of the supersonic speed of the solar wind, a collisionless bow shock forms in
front of the Earth (see review by Russell and Hoppe [1983]). In turn, the solar wind
compresses the Earth’s magnetic field on the dayside and stretches magnetic field
lines on the nightside forming the magnetosphere of the Earth with the boundary
called the magnetopause. The current responsible for the magnetic field deforma-
tion was theoretically predicted by Chapman and Ferraro [1931] and called the DCF
(Disturbance of Corpuscular Flux) or CF (Chapman-Ferraro) current. The space
between the bow shock and the magnetopause is called the magnetosheath which

comprises the shocked and heated plasma from the solar wind.

Azford and Hines [1961] suggested that the viscous coupling of the solar
wind with the Earth’s magnetosphere may produce an electric field within the mag-
netosphere. They called this process “quasiviscosity”. Inside the magnetosphere,
this electric field is directed mainly from dawn to dusk which is in agreement with

observations of steady state magnetospheric convection.

Another way to transport energy from the solar wind into the Earth’s mag-
netosphere was proposed by Dungey [1961]. If the Earth’s magnetic field and the
IMF are oppositely directed, they may interact via merging. On the day side, the
Earth’s magnetic field is directed approximately northward and therefore can be
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merged with a southward component of the IMF. This process results in tearing
of the magnetopause, the outer surface of the magnetosphere, which may provide
a direct input of energy into the magnetosphere. The resulting global electric field
was found to be in the same direction as the “quasiviscous” electric field. Further
observations showed that this electric field can be much higher in amplitude than
the “quasiviscous” electric field and therefore, it may initiate plasma convection of

larger velocity [Reiff et al., 1981].

A third possible mechanism for energy transport through the magnetopause
was proposed by Verzariu [1973]. MHD waves excited in the solar wind or in the
magnetosheath due to fluctuations in pressure and velocity can be partially trans-
mitted into the magnetosphere. It is important to note that this mechanism does
not require mass and momentum transport through the boundary and therefore

does not involve any boundary layer processes.

The velocity shear in the magnetosheath implies that the shear flow insta-
bility may develop on the magnetopause [Miura, 1984]. This mechanism involves
the momentum transport through the magnetopause and may initiate propagation
of MHD waves from the unstable region to the inner magnetosphere. Chen and
Hasegawa [1974] and Southwood [1974] suggested that this mechanism may lead to
the excitation of fast compressional modes which excite FLRs inside the magneto-

sphere.

A schematic of the Earth’s magnetosphere is presented in Figure 1.7. Let us

briefly describe the main regions shown in this figure.

The magnetic field due to the magnetopause CF currents is responsible for
the formation of the magnetotail in the night side of the magnetosphere. The CF

current consists of two current loops at the magnetopause. The sum of the Earth’s
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Figure 1.7: The 3D diagram of the Earth’s magnetosphere from FEastman et al.
[1985].

dipolar field and CF field forms two open regions in the dayside magnetosphere
called the dayside cusps. During perturbations in the solar wind, the cusps may
become azimuthally stretched (so called “clefts”) and maintain a direct intrusion
of the electric field from the solar wind into the magnetosphere. This results in
the spectacular dayside break-up - the fast azimuthal motion of auroral structures
[Sandholt and Egeland, 1989). Earthward of the magnetopause, there is a low lati-
tude boundary layer (LLBL) - a magnetosphere boundary transition layer filled with
plasmas from both the magnetosphere and magnetosheath. A region adjacent to the
cusp on the tailward side is the high latitude boundary layer or plasma mantle. This
region is also open for the solar wind. Inside the magnetosphere, there are regions of
stretched tailward magnetic tubes filled with cold and low-density plasmas. These
regions are called the tail lobes. The tail lobes map into the so-called polar caps
above the Earth - the areas extending equatorward to ~ 75 — 80° and expanding
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during geomagnetic disturbances. There is evidence that the tail lobes lie on open

magnetic field lines.

Typically, the polar caps have distinct boundaries formed by the poleward
edges of the auroral oval. In the magnetosphere, these boundaries map into the
plasma sheet boundary layer (PSBL) - the boundary between closed and open mag-
netic field lines. Inward from the PSBL, there is a region of hot plasmas called
the plasma sheet (PS). The plasma in the PS flows earthward and onto the day-
side from the magnetotail driven by the dawn-dusk electric field. This electric field
results from the solar wind - magnetosphere interaction, as discussed above. In
the neutral sheet, the central part of the magnetotail, stretched magnetic field lines
change direction from tailward to Earthward. In this region, the dawn-dusk electric
field accelerates protons in the dawn-dusk direction and electrons in the dusk-dawn

direction, which forms a part of the crosstail magnetotail current.

PS plasmas flow earthward until the dipolar magnetic field deviates them
from the sunward motion. PS electrons, which are normally cooler than protons,
tend to move closer to the Earth. However, this motion is limited by plasma
quasineutrality which causes electrons to escape along the magnetic field lines. This
mechanism forms the inner edge of the PS at distances of ~ 6— 10REg from the Earth
[Kavanegh et al., 1968]. The inner plasma sheet is of particular interest in this study
as a region where large amplitude FLRs are observed [Walker and Greenwald, 1981;
Tian et al., 1991; Potemra and Blomberg, 1996; Samson et al., 1996a,; 1998].

Earthward from the PS, there is the region of the westward ring current,
also called DR-current (Disturbance of Ring current), formed due to the drift of
particles in nonuniform magnetic field. This current may produce significant mag-

netic perturbations which are directed approximately along the Earth’s axis from
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the north to the south poles. This magnetic perturbation is a major mechanism
responsible for the magnetic storms. The region of the DR-currents consists of
high-temperature particles. These particles are trapped by the Earth’s magnetic
field [Smith and Hoffman, 1973]. Therefore, the region of the ring current is also
called the trapped radiation belts or Van Allen belts. Occasional electron precip-
itations from this region may cause a dim luminosity called subauroral red (SAR)

arcs.

The region of the magnetosphere closest to the Earth, the plasmasphere,
consists mainly of cold plasmas which escape from the ionosphere and rotates with
the Earth. Even though its shape can be slightly affected by the convection electric
field, the influence of the solar wind - magnetosphere interaction is rather minor in

this region.

1.4.2 Ionosphere

The interaction of the ultra-violet radiation and precipitating particles with atmo-
spheric gases causes the excitation and ionization of molecules. Ionized components
can live sufficiently long for them to manifest collective electric properties, i.e., to
behave as plasmas. This region of ionized atmosphere which extends from 80 to

1000 km is called the ionosphere.

The ionospheric E-region which is most important for this study extends from
100 to 180 km of altitude. This region represents a transition region between the
gas and plasma states of the ionized components. For electrons, the gyrofrequency
becomes larger than the collision frequency at ~ 90 km which means that in the
E-region, electrons are “frozen” into the magnetic field. For ions, this altitude is

higher (around 180 km). In the presence of an external electric field E, electrons
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drift in the E x B direction whereas the ion motion is defined by both gyrorotation
and collisions. On average, this results in the separate motion of electrons and ions
which manifests as a current system. This current system consists of an electron
Hall current in the —E x B direction and an ion Pedersen current in the E direction.
‘Therefore, the ionospheric E-region behaves as a conductive boundary for incident
magnetospheric waves. The typical height integrated conductivity of the ionosphere
is ~ 3 —10 Ohm™!.

Reflection of Alfvén waves from the ionosphere is defined by the reflection
coefficient R [Southwood and Hughes, 1983]. Assuming that Vj is uniform in the

ionosphere, this coefficient is:

_Xp—Z4

=224 1.26
ST (1.26)

where £, = ¢2/(47Vy) is the wave conductivity and Zp is the height integrated
Pedersen conductivity in the ionosphere. Dependance of reflection on the Peder-
sen conductivity is illustrated by Figure 1.8. If £p > & A, Which means that the
ionosphere is highly conductive, R ~ 1. This corresponds to the perfect reflection
of Alfvén waves from the ionosphere. In this case, incident and reflected electric
fields cancel each other providing nodes of the resulting electric field. Currents of
the incident and reflected waves add which means that the wave magnetic field has
antinodes in the ionosphere. Finite ionospheric conductivity £p > ¥4 results in
the partial absorption of the wave energy. The case ¥p = £ 4 corresponds to total
absorption. When £p < ¥4, currents due to the incident and reflected waves tend
to cancel each other whereas electric fields add. In this study, we shall consider an
extreme case when £p > ¥, (“super-conductive” ionosphere). However, the finite

ionospheric conductivity may significantly modify magnetospheric waves [Allan and
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Figure 1.8: Dependance of the Alfvén wave reflection on the ionospheric conductiv-

1ty.
Knoz, 1979; Miura, 1996]. We shall discuss these effects in chapters 3-5.

At higher altitudes (so called the ionospheric F-region), both electrons and
ions are “frozen” to the Earth’s magnetic field and therefore, the motion of plas-
mas is defined by the E x B drift. Observations of the velocity of this drift are
extremely important because they allow one to obtain the value of the electric field
at the ionospheric level and to map it to the magnetosphere along the magnetic field
lines. High latitude ionospheric electric fields due to the magnetosphere-ionosphere
interaction are typically of the order of 10 mV/m and can grow up to in excess of

100 mV/m during auroral disturbances.
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1.4.3 Large-Scale Field Aligned Currents

During intense magnetospheric disturbances, the total ionospheric current reaches
10% A and the total dissipated power may be as high as 108 kW. This power release
is provided by the magnetosphere - ionosphere coupling via field aligned currents
(FACs).

Traditionally, large-scale FACs are classified according to the spatial regions
where they are observed. Region 1 is generated by the interaction of the solar wind
with the Earth’s magnetosphere. The solar wind flow polarizes the magnetosphere
resulting in an electric field directed from dawn to dusk. This electric field is closed
through the polar ionosphere by two sheets of FACs flowing downwards in the morn-
ing side and upwards in the evening. The poleward border of these current sheets

corresponds to the boundary of the polar cap.

The origin of region 2 FACs is still the subject of study. These currents are
driven in the plasmasheet. They are projected into the ionosphere in the equatorial

portion of the auroral oval.

Here, we have only mentioned large-scale FACs and do not describe the
generation of FACs in the midnight sector, where the currents of region 1 and 2 seem
to overlap with one another. This region is also seen in the convection patterns as
a reversal of the plasma flow and called the Harang discontinuity [Baumjohann et
al., 1981; Robinson and Vondrak, 1990]. FACs in this region, as well as small-scale
FACs, play a significant role in auroral disturbances and we shall consider them

separately below.
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1.4.4 Magnetospheric Substorms

A magnetospheric substorm is a sudden release of energy derived from the solar wind
via the solar wind - magnetosphere interaction and stored in the nightside magne-
tosphere. According to Rostoker et al. [1980], “the term magnetospheric substorm
describes an interval of increased energy dissipation confined, for the most part,
to the region of the auroral oval. The onset of this process is signaled by explosive
increases in auroral luminosity in the midnight sector, and the entire process encom-
passes an interval during which the strength of the current in the auroral electrojets

increases from and returns to the background level from which the substorm arose.”

Akasofu [1977] proposed the separation of a substorm into three stages which
are characterized by different physical processes in the magnetosphere - ionosphere

system.

For most substorms, the first stage, called the growth phase, typically starts
after IMF becomes more southward. During this stage, which lasts for approxi-
mately 1 hour, a significant amount of energy becomes stored in the magnetotail.
As discussed in previous sections, a southward turning of the IMF leads to growth
of the cross-tail magnetospheric electric field. An increased cross-tail electric field
initiates particle energization within the neutral sheet. The protons are accelerated
across the magnetotail and move earthward. This generates an earthward pressure
gradient at the inner edge of the plasmasheet [Rouz, et al. 1991; Kistler et al., 1992].
Both the cross-tail particle acceleration and the pressure gradient in the inner plas-
masheet increase the cross-tail current in the equatorial plane of the magnetosphere.
As a result, the magnetic field lines gradually stretch tailward which leads to the
narrowing of the plasma sheet and equatorward motion of the auroral arcs. Such a

magnetic field topology appears to provide the main reservoir for the energy stored
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during the substorm growth phase.

Using simultaneous data from a ground based photometer array and DMSP
satellite particle detectors, Samson et al. [1992b] found intense precipitation of pro-
tons with an average energy around 30 keV at the beginning of the substorm growth
phase. The energy of the precipitating protons is higher than the average energy of
plasma sheet protons which is typically below 10 keV. The precipitation is structured
within a band of ~ 2° of latitude and creates proton aurora (Hf emissions) seen
by photometers at wavelengths of 5577 and 4861 A. Both satellite and photometer
data presented by Samson et al. [1992b] indicate that the maximum of the proton
precipitation appears ~ 1 — 2° equatorward of the boundary of the intense electron
precipitation. Samson et al. [1992b] and Lyons and Samson [1992] suggested that
this precipitation is the signature of a population of hot protons at the inner edge
of the plasmasheet, which in turn indicates a significant Earthward pressure gradi-
ent in the region. On the other hand, recent observations [Samson et al. 1996a]
indicate that large amplitude FLRs appear in this region during the growth phase.
This suggests that growing SAWs may be important in the destabilization of this

region.

The energy loading and topological changes which occur in the nightside
magnetosphere during the growth phase can bring the magnetosphere into an un-
stable state. This triggers the sudden release of energy called substorm expansive
phase onset. An onset can be determined using ground based magnetometers from
an abrupt decrease in the H-component of the Earth’s magnetic field and the growth
of magnetic pulsations in the frequency range 6-25 mHz (called Pi2 pulsations). At
the same time, discrete aurora intensifies and evolves in a large scale (of the order of
hundred kilometers) surge. This process occurs within a few minutes and is called

auroral breakup. The auroral surge is produced by energetic (~5-10 keV) electrons
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with maximum intensity at the front of the surge. These electrons feed an upward
FAC which is closed by an ionospheric current flowing in the westward direction
along the surge. The surge expands westward (so called the westward travelling
surge) and poleward. At the same time, ionospheric currents grow and form a large
scale westward electrojet (which is part of the substorm current wedge). The whole
process, from the substorm triggering to the motion of auroras and formation of the

intense westward electrojet, is called the substorm expansion phase.

Satellite observations in the vicinity of the substorm onset have revealed a
reduction in the cross tail current and further expansion of the reduced current region
westward and tailward [Jacquey et al., 1991, 1993; Ohtani et al., 1992]. The field
lines from the reduced current region have a footprint at the location of the active
auroras in the ionosphere. Therefore, the spacecraft observations are consistent with
the ground based observations of the westward and poleward motion of the substorm

current wedge.

During the expansion phase, the topology of the magnetic field in the mag-
netotail changes back to dipole-like. This corresponds to the global release of energy
which was previously stored in the stretched magnetic field lines. The dipolarization
of the magnetic field and decay of auroral activity brings the magnetosphere into
its initial state. Usually, this takes 1-2 hours and is called the recovery phase of the

substorm.

Several models have been proposed to explain substorm onset. Let us briefly
cite some of them. Detailed descriptions and comparisons of different substorm

models can be found, for example, in the recent review by Elphinstone et al. [1996]

‘There are models in which the substorm onset origin is placed at the PSBL
or in the LLBL/PS interface region. Rostoker and Eastman [1987] proposed that
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substorm onset is driven by the KH instability at the PSBL as a result of ions
streaming along the boundary. Recently, Rostoker [1996] developed a model in
which the KH instability occurs in the LLBL/PS interface region as a result of
inner PS disturbances. A similar boundary layer model was proposed by Maltsev
and Lyatsky [1984]. They suggested surface waves on the PSBL as a source for the
initial perturbation. This model suggests that substorm onset occurs due to the
growth of waves on the PSBL surface and their subsequent interaction with the

plasma sheet.

KH instability as a possible mechanism for substorm triggering was proposed
also by Luz et al. [1982]. Lui et al. [1982] suggested that the strong large scale
(~ 100 km) shear flows may be responsible for the undulations of the diffuse aurora
edge. These flows appear and grow during the substorm growth stage [Kelley, 1986].

Some other models propose reconnection in the distant magnetotail (~ 30 Rg)
as the origin of substorm onset. These models are motivated by observations of the
splitting of poleward arcs which were interpreted as signatures of the reconnection
[Hones et al., 1985; Atkinson et al., 1989]. These models suggest that the source is
situated far from the Earth and that the perturbation streams Earthward, carrying

magnetic field lines, ion fluxes, and field aligned currents.

Tonosphere - magnetosphere coupling models [Rothwell et al., 1984; Kan and
Sun, 1985; Lysak, 1991] suggest that enhanced convection and the intensification of
a pre-existing discrete arc are sufficient conditions for resonance between bouncing
Alfvén waves and convection perturbations imposed by the ionospheric electric field

in the vicinity of arcs.

The idea that onset is located at the inner edge of the plasmasheet has a long

history (see for example [Atkinson, 1967; Lui, 1991]) but the lack of information
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about the processes and plasma parameters in this region did not allow to construct
any quantitative models. However, the first spacecraft measurements at ~ 10 Rg
magnetotail [Rouz et al., 1991; Kistler et al., 1992; Sergeev et al., 1993] supported
by observations from geostationary orbits [Lopez and Lui, 1990; Lui et al., 1992]

revived these ideas and provoked the series of near-Earth onset substorm models.

Near-earth reconnection or tearing mode mechanisms were proposed to ex-
plain the dipolarization of the near-earth magnetotail and tailward ion fluxes [Shindler,
1974; Buchner and Zelenyi, 1987; Baker and McPherron, 1990]. These models as-
sume that a local plasma resistivity may initiate a local tearing mode which would
subsequently couple to a global mode (for example drift modes or SAWSs) and acti-
vate large scale reconnection [Jacquey et al., 1991; Ohtani et al., 1992; Baker et al.,
1993].

Another group of models propose an initial disruption of the cross-tail current
[Lut et al., 1988; Lui et al., 1992] as a necessary and sufficient condition of a substorm
onset. The reduction of the current or electric field may be caused by external factors
(for example, the turning of IMF to the north or sudden change in B, of IMF) as

well as due to the local turbulence or the waves discussed above.

Recently, Lyons [1995] showed that even a reduction in the large scale mag-
netotail electric field, caused for instance by a decrease in the B, component of
the IMF, may lead to a disruption of the magnetotail current and the initiation of
active auroras. Some other observations and theories also suggest that a reduction
of the southward IMF (or northward revers of the IMF B. component) can initiate
an onset [Forster et al., 1971; Kokubun et al., 1977; Rostoker, 1983; Sergeev et al.,
1986; Luz et al., 1991; Lyatsky, 1996].

Rouz et al. [1991] and Holter et al. [1995] interpreted the perturbations



observed by the geostationary satellite GEOS 2 as a ballooning mode which can
arise from the instability of the equilibrium between pressure gradient and magnetic
curvature. This idea launched various arguments as to whether the ballooning insta-
bility can develop in the inner plasma sheet despite the global stability of this region
with respect to pressure perturbations [Ohtani and Tamao, 1993] and whether the
pressure anisotropy is required for the instability to develop [Chan et al., 1994]. We

shall discuss these problems in more detail in chapters 4 and 5.

We should mention, that substorm onset is the subject of intense debates
among physicists. Therefore, none of the above cited models can be considered to

be generally accepted or rejected by the scientific community.

As seen from this brief review of different substorm onset models, some of
them suggest that SAWs, shear flow instabilities and modes which can grow due
to the stretched magnetic field line topology can play important role in substorm
onset triggering. Therefore, understanding of linear and nonlinear evolution of these
modes is relevant to the problem of substorm onset. Theoretical study of these

modes and their coupling is the subject of this work.

1.4.5 Field Line Resonances in the Earth’s Magnetosphere

As mentioned in section 1.3.4, FLRs can play an important role in energy storage
in the inner magnetosphere. The scenario of FLRs in the Earth’s magnetosphere
was proposed by Chen and Hasegawa [1974] and Southwood [1974]. They suggested
that initial perturbations in the form of surface waves driven by the KH instabil-

ity may appear on the magnetopause. If surface waves are monochromatic, they
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excite a monochromatic compressional fast mode which propagates inside the mag-
netosphere. Because of the Earthward gradient of Alfvén velocity, this wave be-
comes evanescent at the turning point and excites SAWs at the resonant point. The

schematic of the FLRs is shown in Figure 1.9.

Observations of SAWs in the resonant regions show that FLRs repeatedly
occur with the same discrete set of frequencies. These frequencies appear to be inde-
pendent on local time, solar and magnetospheric activity, etc. Resonances are most
commonly observed at 1.3, 1.9, 2.6, and 3.3 mHz which are called the “magic” fre-
quencies. Results of ground-based and satellite observation can be found in [ Walker
and Greenwald, 1981; Tian et al.,, 1991; Ruohoniemi et al., 1991; Samson et al.,
1992a; Fenrich et al., 1995; Potemra and Blomberg, 1996].

In order to explain the discrete set of FLR frequencies, Kivelson et al. [1984]
suggested a magnetospheric cavity model. In this model, fast compressional waves
propagate in a cavity bounded by the inner turning point and the magnetopause.
This model was further developed by Samson et al. [1992a] and Wright [1994] who
suggested a wave-guide mode with open azimuthal boundaries. This model takes

into account azimuthal propagation of fast modes.

Recently, Xu et al. [1993] and Samson et al. [1996a] discovered that the
discrete arc (see the next section) emissions are modulated with the same frequencies
as large amplitude SAW in the regions of FLRs. Indeed large amplitude Alfvén waves
have been observed above discrete arcs. These results suggest that discrete arcs
may result from Alfvén resonances. Samson et al. [1996a,b; 1998] proposed a model
which can lead to the generation and intensification of discrete auroral arcs in FLR
regions. The overall scenario of the energy transfer in the Earth’s magnetosphere

according to Samson et al. [1996a,b; 1998] is as follows: perturbations in the solar
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Figure 1.9: Schematic of FLRs in the Earth’s magnetosphere.
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wind pressure and magnetic field excite global quasi-monochromatic oscillations
corresponding to compressional wave eigenmodes trapped in the magnetospheric
waveguide. Because of very rare particle collisions, these waves may persist for
long time periods so that the main mechanism for their dissipation will involve
their resonant transformation into a SAW. The excited FLRs are localized near
particular magnetic L-shells at which there will appear a spatial concentration of
the SAW energy. The further structuring of the FLR region may occur due to the
electron inertia effect. Streltsov and Lotko [1996; 1997] showed that the electron
inertia leads to the appearance of narrow structures with the radial width of the

order of the electron skin depth which is comparable with the discrete arc thickness.

In this work, the model of FLRs was further developed to study the nonlinear
evolution of FLRs in the dipolar magnetosphere. The results of this study are

presented in chapter 3.

1.4.6 Auwuroral Arcs

An auroral arc is usually visible with the naked eye as an azimuthally extended
green band with a width of about a few kilometers. The brightest arcs are typically

observed in the evening and midnight sectors of the auroral oval.

Rocket experiments have shown that the luminosity is caused by electron
beams accelerated to 1-10 keV (e.g., [McIlwain, 1960; Evans, 1968; Frank and Ack-
erson, 1971; Arnoldy, 1974]). Many experiments suggest that the beams are pro-
duced by field-aligned potential drops above the ionosphere [Gurnett and Frank,
1973; Evans, 1974; Lyons et al., 1979], although the origin of these drops is not yet
established (see review by Lysak [1990]). In order to obtain the observed electron
spectra, the potential difference should be of the order of thousands of volts. Such
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potential drops have been observed above arcs [Gurnett and Frank, 1973; Evans et
al., 1977; Maynard et al., 1977]. Most experiments suggest that this accelerating
region takes place at ~ 1Rg above the ionosphere [e.g., Mozer et al., 1977). How-
ever, the similar electrostatic shocks were also observed at altitudes of 2 — 3R as
well as at ~ 1000 km above the ionosphere [Mozer, 1981; Heppner et al., 1981].
The meridional thickness of the potential drops (named inverted V structures) is
typically of the order of tens of kilometers.

Lysak and Carlson [1981] suggested that near the ionosphere, Alfvén velocity
decreases due to the significant growth of plasma density. This forms a cavity which
can play a role of an Alfvénic resonator for short Alfvén waves [ Trakhtengerts and
Feldstein, 1984, 1991; Lysak, 1988, 1991]. These waves are able to accelerate both
electrons and ions, however different mechanisms of wave-particle interactions in
this region have been suggested, and it is not yet clear which one dominates [Goertz
and Boswell, 1979; Tiwari and Rostoker, 1984; Trakhtengerts and Feldstein, 1991;
Lysak, 1991; Li and Temerin, 1993; Mishin and Forster, 1995; Knudsen, 1996].

Recent progress in the techniques for measuring arc thicknesses has demon-
strated that the most narrow auroral structure (small scale arc) has a width of only
about 100 m [Borovsky, 1993; Trondsen and Cogger, 1997; 1998; Trondsen et al.,
1997]. According to Borousky [1993], several narrow arcs can appear in a group to
form a system of arcs with a thickness of the order of kilometers. This group is typ-
ically embedded in an area of weaker emissions (> 10 km) which is a manifestation

of an electron accelerating region.

Electrodynamical features of large scale (several kilometers wide) arcs have
been studied in numerous rocket and ground based experiments and may be sum-

marized as follows. A region of auroral luminosity is associated with an upward
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FAC sheet. Part of this current is carried by accelerated electrons. Within the arc,
the electric field is extremely small. However this electric field can be significantly
increased at the edges of the arc where the upward FAC sheet is replaced by a down-
ward FAC [Lyons, 1981; Bruning and Goertz, 1986]. The structure of the FACs and
electric fields suggests that the upward and downward FACs form a current circuit
which is closed by Pedersen currents flowing across the arc. Since the conductiv-
ity is high in the region of the upward FAC the total ionospheric electric field is
reduced within the arc and enhanced in the region of the downward FAC. These
electric fields can modify convective flows and initiate shear flows along arcs. Such
shear flows of the thickness of tens of kilometers have been repeatedly observed in
association with discrete arcs [Carlson and Kelley, 1977; Bruning and Goertz, 1986;
Haerendel et al., 1996]. These flows can be unstable with respect to the KH insta-
bility which results in the vortex formation [Haerendel et al., 1996; Miura, 1996].
Such vortex streets (called curls, folds and spirals according to Hallinan [1976]) are
often seen in association with discrete arcs during the periods of enhanced auroral

activity [Hallinan and Davis, 1970; Hallinan, 1976; Haerendel et al., 1996].

Another source for the shear flow instability in the auroral region was sug-
gested by Rankin et al. [1993a] and Samson et al. [1996a]. Samson et al. [1996a]
showed that some discrete auroral arcs are modulated with frequencies correspond-
ing to field line resonances (FLRs). This implies that large amplitude shear Alfvén
waves which grow in the FLR regions may be responsible for arc formation. On the
other hand, FLRs evolve into a narrow channel which may eventually become un-
stable with respect to the shear flow mode. In this case, vortices should periodically
change the direction of rotation. Such vortices have been recently observed in the

midnight sector in association with high-m FLRs [Fenrich, 1997).
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Optical observations of the auroral curls have revealed that the motion of op-
tical images does not agree with the E x B plasma drift in the ionosphere [Haerendel
et al., 1993, 1996; Frey et al., 1996]. According to the idea by Dawis (1978], the mo-
tion of the auroral images may reflect a plasma motion above the ionosphere at the
altitude of the electron acceleration region. However this difference between the

convection patterns at different altitudes has not yet been explained.

The mechanism responsible for the generation of discrete arcs is still not
known. A comparative review of different theories can be found in Borousky [1993].
The key problem in the study of discrete arcs is to determine what source of energy
drives the process. The most intriguing fact is that arcs do not appear to be the foot-
prints of any well defined magnetospheric boundaries or discontinuities. This means
that the energy must be extracted from ambient plasmas and then concentrated in

the narrow region.

1.5 Thesis Outline

In this study, we shall develop the theory of nonlinear evolution and coupling of
MHD waves and modes associated with discrete arcs. A computer code has been
developed which allowed us to solve the entire set of one-fluid MHD equations in
dipolar coordinates. Governing equations, the numerical method, and essentials of
the computer program are described in chapter 2. The computer code was used to
study the nonlinear evolution of SAWs in FLR regions. We show that FLRs provide
high energy concentration in a radially narrow region. Also, we have found that
FLRs on dipolar magnetic field lines lead to nonlinear coupling of SAW and slow
magnetosonic modes. In the nonlinear stage, this coupling is responsible for the

FLR saturation. Owing to the nonuniform field-aligned distribution of the plasma
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density and magnetic field, nonlinear SAWs excite a wide spectrum of slow magne-
tosonic modes which can be proposed as a candidate mechanism for plasma heating.
All these results are described in chapter 3. FLRs and field-aligned currents associ-
ated with discrete arcs lead to appearance of shear flows which have been repeatedly
observed. Therefore, we have considered the evolution of the KH mode as an origin
of vortices seen in auroral arc structures. As a possible source of additional poten-
tial energy, we propose the coupling of shear flows with ballooning modes. These
problems are the subject of chapters 4 and 5. Chapter 6 gives a summary of the

thesis.
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CHAPTER 2

Alternative Direction Implicit (ADI) Method for
MHD Equations

2.1 MHD Equations in Curvilinear Coordinates

In magnetospheric plasmas, there are two major forces acting on ions: thermody-
namic pressure — \7 P and the Lorentz force (1/c)j x B. Providing (4mfc)j =7y xB
is valid in the low frequency approximation, a set of one fluid MHD equations can

be derived in the form:

%%B+vx(—%VxB+gVXB) = 0, (2.1)
p%-i—vP—%r(va)xB = 0, (2.2)

P+ 9V =0, (23)

%P +vV-(rPV)=-(v-1) (V-VP + lc;:zlv X BF) = 0. (2.4)

As discussed in chapter 1, for these equations, we used Ohm’s law in the form

N = E+(1/c)V x B neglecting Hall term, electron pressure and electron inertia.
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In numerical procedures, it is more convenient to solve a momentum flux
equation instead of the equation of motion (2.2). A flux equation is obtained if we

combine the equation of motion (2.2) and the continuity equation (2.3), leading to:

%+v-(pV/\V)= —vP+£;(va)xB, (2.5)

where A is a dyadic product.

In order to normalize the set of MHD equations (2.1), (2.3)-(2.5), let us

introduce nondimensional variables:

r t B v p p i
r=—t=—B =" V=c—ggd="P=":y=21
a ta By Vao' ¥ Po P "

where a is a characteristic size of the system, By is a characteristic ambient magnetic
field, po is a characteristic ambient density, Vg = [B2/(47po)]M2 is the characteristic
Alfvén speed, t, = a/Vyq is the Alfvén transit time, Py = B2/(8x), and 7 is an

ambient resistivity.

In nondimensional variables, the set of MHD equations becomes

0B n _
W+VX(—VXB+§VXB) =0, (2.6)
\%
-a%t—+v(pVAV)+%vP+Bx(va) = 0, (2.7)
2 PR
% TV (pV) =0, (2.8)



F PV -a-1(Vor+ DoxBE) =0, (29)

where ® = 4maV, /(c?n) is the magnetic Reynolds number. Here, the prime symbols

are omitted for simplicity.

In the curvilinear orthogonal coordinates (z1,%2,23), an element of a line is
di2 = ¥, h2(dz,)?, where hy, ho, k3 are the scale factors or metric. They can be
found using the relations between the curvilinear (z,) and cartesian (X,,) coordi-

nates:

0Xnm

RZ = Z(az,, )2. (2.10)

m

In the curvilinear orthogonal coordinate system, the MHD equations can be

written as follows:

5t ' haha (ax2 {h3 [311/2 — Vi - (axz(hIBI) - 8_:1:1(h232)>]}

9 n 1 (2 9 -
+% {hz [Blvs - B3 - R ik ('a—ag(fuBl) - b?I(h;;Bg))J }) = 0; (2.11)

8B, 1 9 n 1 ) )
5t | hihg (6:1:1 {h3 [BM —BiVa - R hihy (axl(hﬁ?) - axz(h‘Bl))]}

9 n 1 (9 8 N
+a—x; {h1 [Bzvzi — B3V, — R hohs (6—:1:3(h2B2) ~ 92, (h3B3))] }) = 0; (2.12)

833 1 o n 1 o )
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o 1 0 d
ax {hl [Bng — ByV3 — ﬁm (a(hsBs) - B_x;(h232))] }) = 0; (2.13)

dpV; 1 oh
2y (h2h3pV1 )+ —(hlhsl’VlV2) + —(hlthVle) + h3pViVa—
8t h1h2h3 a Zo
Ahy ,0hy »0h3 1 9P
+h2pV1‘/3 E - (h3 ‘/2 a— -+ hg V a + 2h1 321

Bz d B3 a — N-
+ {h1h2 [axl (h2Bg) 63:2 (h]_B]_)] + h1h3 [ 63:3 (hlBI) + 31.'1 (h333)] } = 01
(2.14)

0pVa 1 oh
gt2+h1h2h3 {3 (hah3pV1V2) + —(h1h3pV22) + —(hlhng2V3) + h,apVIV26 f
6h2 6’11 23’23 1 aP
eV e (h" L A g S T
33 B 3 .
+ {h2h3 [ (h3B3) — —(h2B2)J hifa [—’ax—l(thz) + ar—;(hlBl)}} = 0;
(2.15)
dpVs 1 3 9
gt3+h1h2h3 {a (hahapViV3) + _(h1h3PV2V8) + —(h1hopV3 ) + thvlv?,(9 3

ah3 2ah1 23h2 1 9P
+h1pVaV3 a7, - (hz Vi 3 + h1pV; a T 2h3 3:1:3

Bl 0 a B2 — 0-
-+ {h1h3 [31'3 (hlBl) - a_xl'(h;;Bg)] + h2h3 [—6_1.207'333) + 8:1:3 (h2B2)] } = 01
(2.16)

3 1

0 o b}
5 + P {-az(hzhgfpvﬂ + %;(hlhspvz) + E(hlth%)} = 0; (2.17)
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P 1
dt  hihohs

a a 0

2
(r-1) ( (Ao  VaOP | Vs 0P |+2 { 7 B - (B +

7021 hy 0z T h3dz3| T R | (haha)? | B2
1 [a ) 2 1 8 8 2
AL -a—zs(h1B1) - E(hsBa)] + (hiha)? [a—a:l(h232)— a—_r?(hlBOJ }) = 0.

(2.18)

2.2 Alternative Direction Implicit (ADI) Numer-
ical Method for MHD Partial Differential

Equations

The Alternative Direction Implicit (ADI) method is a finite difference numerical
algorithm for two and three dimensional problems. The main idea of this method
is to solve equations consecutively in each coordinate direction and to approach the

solution using an iteration procedure.

In order to compute a solution using the ADI method, all terms involving
spatial derivatives are sorted into three groups (F, G, H ) according to the direction
of their leading derivatives. This allows us to divide a 3D spatial problem into a set
of one-dimensional problems with the dependance between directions accounted for

via an iterative procedure.

The evolution of the solution vector in time is computed using the Douglas-
Gunn method [Douglas and Gunn, 1964; Finan and Killeen, 1981]. The time ad-

vance from time-step n to time-step n + 1 can be achieved using two intermediate
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temporal points n* and n** defined according to the following equations:

U - yn + F(u™) + F(u)
At 2

+G(u*) + Hu™) = 0; (2.19)

Un-- _ Un- + G(un“) + G(un) _

I~ 5 0; (2.20)

yurtl _ yr + H(u**!) + H(u") _

2
o 5 0, (2.21)

where u = {B, V,p, P} is a vector of dependant variables; U = {B,pV,p, P}; At
is the time step; and F, G, and H include all terms with leading spatial derivatives
in z1, T3, and z3 directions, respectively. These derivatives are approximated using
spatial finite differences which depend on the specific form of the terms. Such terms
as OaF [0z, are called “flux” terms which can be approximated as daF/dz|; =
(Cip1/2Fiv1y2 — @iy 12Fic172)[(Tigrye — T;i_1/2), where all values at midpoints are
defined as Fiy /9 = (Fiy1 + F;)/2 and Fi_1/2 = (Fi-1 + F;)/2. Terms which appear
in the form adF/dz are called “force” terms. For them, the following approximation
is applied: adF/dz|; = (@iz1/26Fipr1y2 + @i—1/26F;_12)/2, where §F; /0 = (Fiy) —
F)/(ziy1 — ;) and 6F;_1/2 = (F; — Fi_1)/(z: — zi-;) as illustrated by Figure 2.1.

Nonlinear terms in (2.11)-(2.18) can be calculated using a Taylor expansion
(the so called Newton-Raphson method). If f = f (u) is a nonlinear term, its value at
the I +1 iteration can be computed using the value of f from the previous iteration

! and its Jacobians:

fl+1 - fl+_a_f

50 (u'*! — uh). (2.22)

u!
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R
computational cell

Figure 2.1: The schematic of a computational cell used in ADL.
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Using the finite differences and the Newton-Raphson method (2.22) for non-
linear terms and substituting F, G, and H into (2.19), one can arrive at the set of

equations in block-tridiagonal form:

D; = Aibu;_; + Bibu; + Cibuy, g, (2.23)

where §u; is an advance of uf at [ + 1 iteration: u; = u! + 6u;. The 8 x 8 matrices

in (2.23) are formed from Jacobians as:

At OF™
A= - B (2.24)
AtgF™ 9U
B; = ?—au: + —au:, (2.25)
At OF™

Vector D can be found from:

D; = U(w) - U(u}) - %[F"‘(uf-) +2F¢(u}) + F™(w;)] — At[G(u;) + H(w;)], (2.27)

where m and e indexes stand for implicit and explicit parts, respectively. In order
to compute Jacobians for equations (2.11)-(2.18), we have developed a Mathematica
routine that computes the 8 X 8 A, B, C matrices and generates output in Fortran

form.

Equations (2.23) should be supplemented with boundary conditions. Then,

they can be solved using a block-tridiagonal solver routine.
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2.3 Boundary Conditions

In order to complete the matrix of coefficients A, B, C' and the vector D, these coef-
ficients must be defined at the boundary points. Below, we present three examples

of the boundary conditions most often used in the ADI method.

1. Zero gradient of u leads to the following equation at the boundary: B;éu; +
Ajbup = 0 and 6u; = du,. Hence, B, =1, A; = —1, D; = 0. The boundary

condition for the last mesh point “n” is B, = 1, C, = -1, D, = 0.

2. Zero value condition at the boundary gives: Bjéu; + A;6us = 0 with du; =
—6uy. This requires: By =1,A;=1,D;=0and B, =1, C, = 1, D, =0.

3. Periodic boundary conditions are: §u; = o,y

In the ADI code, usually we use a combination of different boundary condi-
tions. For example, if a boundary is formed by a superconductive wall, it requires a
zero value condition for the velocity and zero gradient condition for the tangential
component of the magnetic field [Southwood and Hughes, 1983]. For non-conductive
boundaries, the tangential magnetic field is zero at the boundary and the tangential
components of velocity are defined by the zero gradient boundary conditions. Nor-
mal components of the magnetic field perturbation and velocity are zero at bound-
aries. In the azimuthal direction ¢, we assume the periodic boundary conditions for

all problems considered in this thesis.
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2.4 Numerical Diffusion

Even though the ADI method provides stability for the numerical linear solution, it
may become unstable with respect to high frequency nonlinear modes. The stability
of the nonlinear solution can be achieved if we add a small numerical viscosity
term (also called numerical diffusion or advection) into the governing equations.
The stability of the magnetic field terms can be ensured by using a small value of
the resistivity exactly as it appears in (2.1). Numerical viscosity is added to the
continuity, momentum, and energy equations. For example, a second order diffusion

in the z;-direction can be introduced as follows:

‘Zt—“ +7-[F(0) = Catn- VA1 = 0, (2.28)

where A is a dyadic product for the momentum equations or a simple multiplication
for the continuity and energy equations, and C,4, is a diffusion coefficient. This

advection term is a “flux” term for the finite difference approximation.

When numerical diffusion coefficients and resistivity are chosen larger than
is necessary to achieve stability, they can affect not only nonlinear but also linear
solutions. In order to avoid this influence, the linear solutions can be tested using
zero advection. In addition, test of energy conservation and estimates of the ratio
of the advection terms to other terms are essential steps in order to obtain accurate

solutions.
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2.5 ADI Code in Parallel and Vector Computers

The ADI method applied to the MHD equations has the advantage that when the
equations are being solved in one direction, say z1, the solution depends on the z2
and z3 coordinates only explicitly. This means that the equations may be solved
simultaneously for several or all 2 and =3 mesh points. This allows us to use

parallel and vector computers quite efficiently for the ADI code.

The results presented in this thesis were obtained using the ADI code imple-
mented on two machine architectures: the parallel-vector Stardent 3000 computer
and the parallel Silicon Graphics, Inc. (SGI) Power CHALLENGE 10000 computer.

The parallelization and vectorization of the ADI code on the Stardent com-
puter are illustrated in Figure 2.2. In this example, the equations are solved as a
set of 1D problems in the z1 direction. Mesh points in the z2 and z3 directions
are arranged into several groups (called “chunks”) for parallel performance on dif-
ferent processors. Within each chunk, all mesh points are divided into subgroups
called vector arrays. The number of mesh points supported by a vector array is 32
in the Stardent 3000 computer. The entire vector array is supplied for continuous

performance.

The entire procedure can be further illustrated by Figure 2.3. In the example
shown in this figure, the equations are solved in the rl-direction whereas the total
number of mesh points supplied for the parallel task is nj X nk. Here nj and nk
are the numbers of points in z2 and z3 directions, respectively. The entire mesh
is divided into ncpu groups which are assigned to different processors for parallel
performance. During calculations, every processor specifies lower and upper mesh

points of the entire task and divides it into vectoral units (nvect). Then, every
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vector unit

Figure 2.2: A schematic of the parallelization and vectorization of ADL

routine uses these groups to compute them as continuous series (or in “pipelines” ),

which significantly increases performance.

‘The number of chunks should be chosen optimally for the criteria of achieving
high performance and moderate memory consumption. This is illustrated in Figure
2.4 where the net processor time required for program completion is presented as
a function of the number of points in a chunk. This test was completed using 4
processors in the Stardent 3000 computer. As seen from Figure 2.4, an increase of the
number of mesh points in a chunk from 1 to 8 significantly improves the performance
because it allows us to reduce the wall time by a factor of 5-6. The further increase
of a chunk size is not justified because it barely reduces the performance time but

raises the memory consumption.

There are no vector units in the SGI computer, so that the ADI code is
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*

* The size of a chunk:

* nj*nk is the total number of mesh points in x2 and x3

* directions;

* ncpu is a number of chunks specified by a user

*

C$DOIT PPROC soivex
isize = (nj*nk+ncpu-1)/ncpu

*

* Parallel task for all CPUs to run all chunks:

*

do k=1, ncpu
call solvex((k-1)*isize,min(isize,nj*nk-(k-1)*isize))
enddo

* Number of the element in the whole nj*nk sequence:
* note that “low" is the lower index of a chunk (0, isize, 2*isize, etc.)
* whereas "num" is the length of a chunk (either isize or "the remainder®)
dom=1, num

inx(m) = m + low
enddo

* Call a subroutine for a vector performance:
* nvect is a vectoral length.
do Im =1, m, nvect
Ing = min(nvect,m-im+1)
call AAAAA(Ing,inx(Im))

end do

Figure 2.3: A diagram of the parallelization and vectorization in a FORTRAN
version of ADL
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Figure 2.4: The normalized performance time as a function of the number of mesh
points in a parallel chunk.

implemented only for parallel performance using the same parallel techniques as for

the Stardent computer.
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CHAPTER 3

Shear Alfvén Waves and Field Line Resonances

in the Dipolar Magnetosphere

3.1 Preliminary Remarks

As discussed in chapter 1, standing SAWs play an important role in magnetospheric
dynamics and provide a mechanism for energy transport from the magnetosphere
to the ionosphere. These waves lead to a variety of geophysical phenomena. In
particular, they are responsible for magnetic pulsations in the frequency range 0.5-5
mHz, called Pc5 pulsations [ Walker and Greenwald, 1981; Tian et al., 1991; Potemra
and Blomberg, 1996]. Also, large amplitude SAWs are observed in association with

discrete auroral arcs and substorm onsets [Samson et al., 1996a; 1998].

Standing SAWs can be excited on closed magnetic field lines by localized
velocity shear in the magnetosphere (as for example at the dayside LLBL), by iono-
spheric current perturbations, or due to field line resonances (FLRs) which couple
SAW and fast modes. Standing SAWs involve oscillations of the entire magnetic
field line and appear as fundamental modes of magnetic shells. If a SAW is ex-
cited by a fast mode driver with a frequency close to the SAW eigenfrequency on a
particular L-shell, the growth of the SAW amplitude is referred to as an FLR.

As mentioned in chapter 1, the idea of FLRs was proposed by [Southwood
1974; Chen and Hasegawa 1974] who realized that FLRs can play an important
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role in energy storage near a particular resonant magnetic L-shell in the Earth’s
magnetosphere. The interaction of the solar wind with the magnetopause initiates
compressional fast modes, also called compressional Alfvén waves (CAWSs), which
Propagate antisunward in a magnetospheric cavity. This cavity is produced by the
reflecting magnetopause and turning points on dipole field lines close to the Earth
[Samson et al., 1992a]. CAWs couple to SAWs on dipole magnetic field lines just
Earthward of the turning point. In the equatorial plane, these SAWs have nodes
of the magnetic field perturbation and antinodes of the velocity and electric fields.
Owing to large radial gradients in the Earth’s magnetic field, SAWs are concentrated
within an azimuthally stretched channel near the resonant point. This allows for

energy accumulation in particular regions of the inner magnetosphere.

A particular class of large amplitude oscillations in the corresponding fre-
quency range is often observed by satellites and by ground-based magnetometers
and radars [Walker and Greenwald, 1981; Mitchell et al., 1990; Tian et al., 1991;
Fenrich et al., 1995; Potemra and Blomberyg, 1996]. For example, velocities as large
as 150-200 km/s were registered by satellites in the equatorial magnetosphere in
association with large amplitude SAWs [Mitchell et al., 1990).

A nonlinear FLR model has been proposed recently by Rankin et al. (1994,
1995]. In this model, the ponderomotive force in standing SAWs results in a redis-
tribution of the background plasma density along the geomagnetic field line [Allan
et al., 1991; Allan, 1992, 1993a, b; Rankin et al., 1994, 1995; Tikhonchuk et al.,
1995; Guglielmi, 1997; Voronkov et al., 1997b]. This plasma density redistribution
changes the SAW eigenfrequency, detunes the resonance, and periodically decouples
the SAW from the CAW driver. The density perturbations along the magnetic field
line can be considered as radially localized slow magnetosonic waves (SMWs) that

are driven by the ponderomotive force. Therefore, the FLR saturation is a result
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of the nonlinear coupling between SAWs, CAWs and SMWs. As demonstrated by
Rankin et al. [1995], the SAW nonlinear frequency shift also results in latitudinal

motion and narrowing of the FLR.

The nonlinear FLR model was originally developed using the geometry of
straight magnetic field lines (box model) [Rankin et al., 1994, 1995]. However, this
model neglects the effects of plasma parallel inhomogeneity (and hence variations
in plasma ) and magnetic field line curvature, both of which might be expected to
produce significant modifications to the FLR dynamics [Allan, 1993a].

In this chapter, we study the structure of SAWs and FLRs in the dipolar
magnetosphere. A dipolar model of the Earth’s magnetosphere with nonuniform
density distribution is introduced in section 3.2. Structure of linear SAWSs in the
dipolar topology is described in section 3.3. We have developed a routine to find
eigenfunctions and eigenfrequencies of linear SAW harmonics. These linear harmon-
ics were used to test the ADI code with respect to steady oscillations. Further, the
linear analysis of SAWs allowed us to study nonlinear effects of SAWs and their
nonlinear evolution in FLR regions. The theory and numerical simulation results
for the nonlinear evolution of FLRs in dipolar coordinates are presented in section
3.4. Our model describes the nonlinear coupling between driven SAW and SMW
modes and accounts for several features that are not included in the previous box
models: (1) We define the region of the most efficient coupling between the CAW
and SAW and derive an analytical expression for the FLR amplitude which de-
pends on the driver strength and shift between the driver oscillation frequency and
SAW eigenfrequency. (2) In the box model, the field-aligned structure of SAW and
SMW modes is identical. Therefore, the SAW couples only to the second spatial

SMW harmonic. Conversely, in the dipolar model, the ponderomotive force drives
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a wide spectrum of SMW eigenmodes which change the dynamics of the FLR sat-
uration. (3) The dipolar model predicts such measurable quantities as spatial FLR
structure, the period of pulsations, and the location and magnitude of the density
perturbations. These results can be proposed as a guideline for experimental data,
analysis. The radial distribution of the velocity and field-aligned currents in the
FLR region obtained using the ADI code is described in section 3.5. We show that
in the equatorial plane, SAWs become radially structured within a narrow channel
which allows for exciting of the KH instability with e-folding time smaller than a
half period of SAWs. The radial distribution of the field-aligned currents above the
lonosphere is compared with optical photometer data. The similarity in theoretical
and observational patterns suggests that FLRs may be responsible for the excitation

and poleward motion of discrete arcs.

3.2 Dipolar Model of the Earth’s Magnetosphere

The dipolar magnetic field component is the main part of the total magnetic field
of the Earth at distances less than approximately 8 Rg, as illustrated by Figure
3.1. In this figure, the dipolar magnetic field is compared with the model magnetic
field in the equatorial midnight magnetotail predicted by the T96 model [Tsyga-
nenko, 1996] for low magnetic activity. At distances larger than 8-10 Rg from the
Earth, the dipolar magnetic field becomes comparable with the magnetic field due to
magnetospheric currents. However, for a large class of problems in magnetospheric

physics, the dipolar topology remains a good approximation of the real topology.

In this section, we shall describe the dipolar model of the Earth’s magneto-
sphere constructed on the basis of the ADI code and designated to solve the one

fluid MHD equations in curvilinear dipolar coordinates.
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Figure 3.1: Magnetic field in the equatorial midnight magnetotail as predicted by
the T96 model [Tsyganenko, 1996] (solid line) and dipolar magnetic field of the
Earth (dashed line).

3.2.1 Dipolar Coordinates

Let us consider an equation for a dipolar field line:

T = rocos), (3.1)

where r is the distance from the centre of the Earth to the field line, rq is the distance
to the field line in the equatorial plane, and X is latitude. The main elements of the

dipolar topology are shown in Figure 3.2.

The length of the field line element dl is

di? = dr? + r2d)2. (3.2)
Integration gives a useful dependance for the field line length ! as a function
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Figure 3.2: Elements of the dipolar topology.

of rg:

I = (2+

\/§Sin1;_l(\/§))7'o ~ 2.761‘0. (33)

Now let us introduce a coordinate system (i, v, ¢) where z; = pu is the field-
aligned coordinate, z, = v numerates magnetic shells in the direction perpendicular
to the field line, and z3 = ¢ is azimuthal. These coordinates can be described using
relations between the dipolar topology and spherical (r,8,9¢) or cartesian (z,y, z)

coordinates:

-~
r

— 2 _
© = cosf/r* = \/(x2+y2+22)3’ (3.4)
2
v = sin?f/r = Zty , (3.5)
\/(:52 + 92 + 22)3
¢ = ta.n‘l% (3.6)
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The corresponding scale factors (metric) describe the transition between the

dipolar and spherical or cartesian coordinate systems:

r3 2 + 2 + 22)2
h“ —_ T — ( y2 )l, (3.7)
(1 + 3cos?9)2 (2 + y2 + 422)2
2 2 212
r _ (=2 + y? + 22) (3.8)

h, = = ;
sind(1 + 3cos?6)? (22 + 1) (22 + y2 + 422)5

hy = rsind = /22 + 32 (3.9)

3.2.2 Representation of the Earth’s Dipolar Magnetic Field

in the Dipolar Coordinates

The scale factor h, allows a convenient representation of the dipolar magnetic field
in the form B = M /h,, where M is the magnetic dipole moment of the Earth which

magnitude is 8.02 - 1025 G - cm3.

When dealing with the dipolar geometry of the Earth’s magnetic field, it
is more convenient to express all lengths normalized by the Earth’s radius. The
value L = ro/Rg is called Mcllwain parameter which characterizes a shell of iden-
tical dipolar field lines called an L-shell. A graphical presentation of an L-shell is
illustrated in Figure 3.3.

The total magnetic field can be represented in dipolar coordinates as B =
M/h, - e, + B’, where e, is a unit vector of x and B’ is the deviation of the
magnetic field from a purely dipolar one. In this work, we deal with cases for which

B' is oscillatory (as for the case of the Shear Alfvén Wave considered later in this

64



Figure 3.3: An L-shell of the Earth’s dipolar magnetic field.
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Figure 3.4: Variation of the dipolar magnetic field along the L = 10 magnetic shell
computed from By = M/h,. Here, Z is distance along magnetic field lines from the
southern ionosphere to the northern ionosphere

chapter) and stationary (for example, the stretched topology of the total magnetic
field modelled in chapter 5).

The value of the Earth’s dipolar magnetic field varies as 1/L3 in the equa-
torial plane, increasing Earthward. Also, it changes significantly along field lines.
Variations of B along the magnetic field line at the L = 10 shell are shown in Figure
34

3.2.3 Equilibrium of the Dipolar Magnetosphere

An equilibrium requires dV /dt = 0 in the momentum equation. As can be seen

from (2.5), the equilibrium condition is
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—vP+4i7r(v xB)yxB =0 (3.10)

For a dipolar magnetic field B = B,e,, B,h, = M is constant which means
that 7 x B = 0. Then, from (3.10), equilibrium is defined as 7P = 0. Physically,
this means that in the dipolar magnetic field, the magnetic pressure and curvature of
the magnetic field lines are in balance, and hence plasma pressure must be uniform
for equilibrium. If the magnetic field is nondipolar (as in the case for stretched
magnetic field lines), the initial equilibrium pressure distribution changes according
to (3.10). In this case, the equilibrium may be unstable with respect to ballooning
and Alfvén ballooning modes. We shall consider this problem in Chapters 4 and 5.

3.3 Linear Shear Alfvén Waves in the Dipolar

Magnetosphere

3.3.1 Dispersion Relation for Linear SAWs

Below, we shall consider the structure of standing SAWSs which results from solutions
to the SAW dispersion relation. We assume that waves are toroidal which means
that oscillations occur in the azimuthal direction. We shall consider only the low-m
(large wavelength) case for which we can neglect azimuthal dispersion and coupling
with the poloidal components B, and V,. Discussion of these effects will be given
at the end of this chapter.

Let us assume that there is an initial perturbation comprising of an azimuthal
velocity component V; and an azimuthal magnetic field Bj. Linearizing (2.1)-(2.4)

and assuming that the resistivity and viscosity terms are negligible, one can obtain
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linear equations describing a toroidal SAW:

OhyB 1 8
gt ¢ _ - 2%(h,,V¢Bo) =0, (3.11)

dVs B, 0OhsBs

ot 4mph,hy Ou (3.12)

Combining them, we can derive a linear SAW equation for the magnetic field

perturbation:

PhyB, 1 9 V3 0
- Z M, B ,
57 hZop 2 opePe =0 (3.13)

where V3, = B} /4mpg is the square of the background Alfvén speed and [ varies
from the lower, p_, to the upper, u., end of the magnetic field line.

Equation 3.13 has a fundamental set of eigenmodes

heBy = bye NSy (u), (3.14)

where by, wy and Sy(u) are the mode’s amplitude, eigenfrequency and eigenfunc-
tion, respectively. Substitution of (3.14) in (3.13) and integration by parts result in
the orthonormality equation for the eigenfunctions:

Mt 5 _
[ duk2SuSn = 8, (3.15)
In

where 7, is the Kronecker delta function.
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If the background magnetic field and density distributions are defined and
boundary conditions for hyB, are prescribed, equations (3.13)-(3.15) allow us to
find the set of SAW eigenfrequencies and eigenfunctions.

3.3.2 Eigenproblem for a Standing SAW in the Dipolar
Magnetosphere

Standing SAWs appear as global oscillations of the entire magnetic field line. There-
fore, the boundary conditions for these waves may be applied in the highly con-
ductive ionospheric E-region. The conductivity across magnetic field lines in the
ionosphere is much higher than in the magnetosphere. For simplicity, we assume
that the magnetospheric plasma conductivity is zero across field lines and that the
ionospheric boundaries are superconducting. In this case, the ionospheric electric
field £, = [V4By]u,_ = 0 which requires [V4],, _ = 0. The condition [dVy/dt],,. =0
requires [d/du (hyBy)],,_ = 0. These boundary conditions signify that the velocity

field has nodes whereas the magnetic field has antinodes at the ionosphere.

Below, we shall present the results of the numerical solution for the eigen-
problem described by (3.13)-(3.15) with the boundary conditions prescribed above.

A background density distribution was chosen as

PO = Peg(1 — cos 6%)77, (3.16)

With peg = 1.044-107>* g/cm? and ¢ = 4. The distribution of py along the magnetic
field line and the corresponding field-aligned distribution of the Alfvén speed at

L =10 are shown in Figures 3.5 a and b, respectively.
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Figure 3.5: Distribution of (a) density and (b) Alfvén velocity along the L = 10
magnetic field line.
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Equation (3.16) prescribes a simplified large-scale model of the density dis-
tribution along the field line. Near the ionosphere, the plasma density grows signif-
icantly. This causes an abrupt decrease of the Alfvén velocity which leads to the
formation of an ionospheric cavity [Lysak and Carlson, 1981). This cavity plays a
role of an Alfvénic resonator for short wavelength Alfvén waves [ Trakhtengerts and
Feldstein, 1984, 1991; Lysak, 1988, 1991]. However, the length of this resonator is
approximately ~ 10* km which is much smaller than needed for SAW harmonics.
Therefore, we shall neglect this inhomogeneity and assume the density and Alfvén

velocity distribution as shown in Figure 3.5.

After substitution of (3.14), (3.13) becomes:

1 0VZ2a
2 il A = 17
wySn + h O hg B#SN 0. (3.17)

The spatial derivatives in (3.17) can be approximated using finite differences
and the eigenmode equation (3.17) can then be solved numerically through inversion

of a tridiagonal matrix.

Figure 3.6 presents the field aligned distribution of hsBy (a) and Vj (b) for
the first three harmonics of SAW at L = 10. The magnetic field is normalized by the
boundary value of hyBy, whereas velocities are divided by the Ve value at the mid-
line point. Variations of the SAW eigenfrequencies with L-shells for the same three
SAW harmonics are shown in Figure 3.7. As expected, SAW frequencies change
significantly with L-shell. This suggests that if a SAW is excited by an external
monochromatic driver, the growth of SAWs would occur only in the vicinity of the
particular L-shell where the driver frequency matches the local SAW frequency. This
may result in the radial structuring of the large amplitude SAW regions. We shall

consider this problem in the next section.
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Figure 3.6: Distribution of (a) hsB; and (b) V fields of the first (solid line), second
(dashed line), and third (dotted line) SAW modes along the L = 10 magnetic field
line. hyBy is normalized by the boundary value and Vj is normalized by the Vs in
the equatorial point.
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Figure 3.7: L-shell dependance of w for the first (solid line), second (dashed line),
and third (dotted line) SAW modes.

The set of eigenfunctions and eigenfrequencies is a convenient tool to initial-
ize numerous problems using the ADI code as well as to test the code. For example,
if a SAW is excited by an initial perturbation of velocity which has a field aligned
distribution prescribed by an eigenfunction, the code should reproduce the mag-
netic perturbation and SAW frequency predicted by the linear problem. On the
other hand, if a SAW is excited by an arbitrary perturbation, it should generate a
multi-harmonic SAW which can be compared with the linear spectrum. In order to
test the nonlinear part of the ADI code and to describe the nonlinear evolution of
SAWs in FLRs, we have developed a nonlinear analytical model which includes the
linear growth of the SAW, the generation of acoustic modes due to the nonlinear
ponderomotive force within a SAW, and the nonlinear saturation of the FLR am-
plitudes as a result of a nonlinear frequency detuning between the driver and the

SAW. The next section is devoted to this problem.
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3.4 Nonlinear Model of Field Line Resonances

in a Dipolar Field

(A version of this section has been published: [Voronkov et al., 19971)).

3.4.1 Nonlinear Model of FLRs

The equation for driven toroidal SAWs follows from (2.1)-(2.4):

OhyB, 1 0
s 25, (P VeBo) =0, (3.18)

Ve By 0OhyB,
ot dmwph,hy Ou

+D, (3.19)

where the term D = wVp sin(wt) models the effect of a CAW driver with frequency
w and velocity amplitude Vp which can be taken as having an arbitrary dependence
on p. We assume that Vp is independent of v. These equations also involve the
dipolar magnetic field By(y, ) and the plasma density, p = po + op, where ép is the

density perturbation due to the ponderomotive force.

It has been shown by Rankin et al. [1994; 1995] that the density perturbation
6p is the main nonlinearity in the SAW equation (3.19). According to the continuity
equation (2.3), this density perturbation couples to the parallel plasma velocity

perturbation V, and hence to the plasma pressure perturbation:

1
hahyhg

Op a _
3¢ T gz(huhquVL) =0, (3.20)
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av, + ] 18P _ V}? 8hy B, 0hyB,

P8 T haop  Phuhs 0u  dnh.he Op

Fom. (3.22)

The set (3.20)-(3.22) describes the coupling between the excited SAW and
SMW modes as a result of the ponderomotive force F,,. As compared to the box
model, the ponderomotive force in the dipolar geometry has an additional term

which is dependant on the magnetic field line curvature.

3.4.2 Linear Growth of SAWs

Assuming that the driver amplitude is small and that its frequency is close to the
SAW eigenmode, Aw = wy —w < w, we can introduce the envelope approximation
for the SAW: hyBy = Re[bye™*!'Sy(u)]. The equation for B, follows from (3.18)

and (3.19) in the linear approximation (p = po):

2 1 V2 .
%@5@ - '7ai (A’ aa ——hyBs + h,,B,‘wVDRe[z'e"“"]) =0. (3.23)

Multiplying this equation by h2S), and integrating it along the field line one
finds a linear envelope equation for the SAW mode amplitude:

ob . w
WN = —ilwby + SR, (3.24)

where
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1 e+ dSy
R=- /” A (3.25)

is an effective driver amplitude. The solution to (3.23) is

wRSy

hyBy = cos(wt)sin( %t). (3.26)

w

Equation (3.26) describes the linear evolution of the driven SAW and predicts
that the central resonant peak of the FLR grows linearly with time and that the

width of the resonance narrows with time.

3.4.3 Slow Magnetosonic Wave Response

From (3.22), the growth of the amplitude of the SAW results in a corresponding
increase in the magnitude of the ponderomotive force Fom. This causes motion of
plasma toward the equatorial plane along geomagnetic field lines which results in a
redistribution of the plasma density and pressure. In magnetospheric plasmas, the
SMW frequency is much smaller than CAW and SAW frequencies. Therefore we
can neglect variations of F, within the period of the SAW and consider only the
time-averaged (over a SAW period) part of Fpm in the equations for parallel plasma

motion, (3.20)-(3.22):

b2 [ V2  0Ohy (asN)2 135,%]_ (3.27)

Fp) = .t
(Fom) 8wh,h3 | wn?h2hy Op \ Ou 2 Ou

Then, (3.20)-(3.22) may be reduced to an equation for the pressure variation

0P =P — Py
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570F ~ 755, 5, 0F ~ hulFm) =0, (3.28)

where C%(1) = vPo/po is the square of the acoustic wave velocity at the initial

moment of time.

The case Fp,, = 0 provides an equation for free SMW eigenmodes with eigen-
frequencies 2,, and eigenfunctions U,, which are defined as C26p = CputmUn. It
follows from (3.28) that SMW eigenfunctions satisfy the orthonormality condition

2

(728 ke,
/ A1t Unm, Uy = bpayms- (3.29)
H— S0

Integrating (3.28) over u with the weight Umh2/C%, one can then find an equation
for the amplitude of the SMW:

(7N 3 fm
M = — / U gt Fom) = T2y, (3.30)
[T

gz T m
where n,, = Re [ngme~*"!]. The driving force in (3.30) is proportional to the local
SAW intensity, and the projection f,, of the ponderomotive force on the mth SMW

is

2 .
P /’“’d 1 aUmaSN[ Vio 0hs0Sy _ SN:'- (3.31)
7.

#47rh§ Op Op |wy2h2hy Op Op

In the case of linearly driven SAWs, the solution to (3.30) provides the fol-
lowing prescription for the amplitude of the driven SMW density perturbations:

fm w2 R2
402 Aw?

[ 0 _1 A? (Aw?cosQut — Q2 cosAwt) + 1] . (3.32)

Nm =
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The fact that the SAW can excite many SMW harmonics is the result of
differences between the mode structure of SAW and SMW eigenfunctions due to
the field aligned spatial inhomogeneity of the system. In the model of homogeneous
plasma [Rankin et al., 1994, 1995], the ponderomotive force can only couple directly
to the fundamental mode SMW harmonic, and this coupling ultimately defines the
nonlinear dynamics of the FLR.

In order to make the interaction between SAWs and SMWs self-consistent,
it is necessary to account for the effect of the SMW density perturbations on the
evolution of the driven SAW. It was mentioned above that according to Rankin et

[1994; 1995], the most important nonlinear process affecting the SAW arises
from the density perturbations in (3.19), which can be written as

a% Bo ( 6p) 6h¢B¢
= l—-—|—/—=+D. 3.33
ot 4dmwpoh,hy Po ou ( )

Here, we have assumed that the density perturbation is small: op < p.

Substituting into (3.33) the eigenmode expansion of the density perturba-
tions C%0p = X,.nmUn, where n,, can be found from (3.30), and repeating
the derivation of the envelope equation for the SAW amplitude, one finds that the

density perturbation contributes an additional term to (3.24):

Sy
55 = i(Awn = Aw)by + %R, (3.34)

where the nonlinear shift of the frequency of the SAW is defined by

V2 Un

! oS
AWnl an/ 2whgp C2 ( X

)2 (3.35)
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Equations (3.30) and (3.34) describe the nonlinear evolution of externally
driven and coupled SAW and SMW modes. In the particular case where only one
SMW mode is excited, equations (3.30) and (3.34) coincide exactly with the rectan-
gular box model derived by Rankin et al. [1994; 1995]. The difference here is that
field-aligned plasma inhomogeneity and magnetic field curvature result in multimode
SMW excitation and a more complicated dynamics for the nonlinear evolution of the
FLR. However, the general analysis of equations developed by Rankin et al. [1994]
also holds for the dipolar model.

3.4.4 Numerical Solution and Analysis

In this part, we consider the nonlinear evolution of SAWs initiated by an external
driver using one-dimensional full MHD simulations and the analytical model de-
scribed above. We consider an example where the driver frequency resonates with
the local SAW at L shell 10. The background density distribution is chosen in the
form po = pey(1 — cos6?)79, with p., = 1.044 - 1072 g/cm3 and ¢ = 4. For these
parameters, the period T of the first fundamental SAW mode equals 254 s. The
background plasma pressure is uniform along the field lines in equilibrium. We con-
sider cases corresponding to different plasma temperatures in the equatorial region
of the magnetosphere. The CAW driver is modeled by a Gaussian distribution of
the velocity along the geomagnetic field line: Vp(u) = V;exp(—22/62) with Vy =
1.6 km/s and § = 2Rg. Here Z is the distance along the magnetic field line from

the equatorial plane.

The temporal evolution of the SAW amplitude b;, as predicted by (3.34) and
obtained numerically using the complete set of MHD equations, is shown in Figure

3.8. In this figure and later in this section, all values of the magnetic field are given
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Figure 3.8: The growth of the amplitude of the SAW as predicted by the analytical
model (solid line) and obtained numerically from the full set of MHD equations
using the ADI code (dashed line). #is 2.65-1072 in the equatorial plane.

in G. Time is normalized by the driver period T = 27 /w. In this example, the driver
frequency w is set equal to the eigenfrequency of the SAW fundamental mode. The
ambient plasma pressure P, is 10~'% dyn/cm® which corresponds to 8 = 87 P, /B2 =
2.65- 1072 in the equatorial plane and 8 = 7.2 - 10~ near to the ionosphere. From
Figure 3.8, it can be seen that the analytical model gives a good prediction of the
SAW amplitude evolution during both the linear and nonlinear stages. Similar tests
were done for different values of 8. The analytical and numerical results were in

close agreement.

Now let us consider the influence of the temperature of the plasma in the
equatorial plane on the growth and nonlinear saturation of the SAW. Figure 3.9
shows the time evolution of the SAW amplitude and phase for different equatorial
values of §: 2.65-10%, 2.65-1073, 2.65- 1072, and 0.88, respectively. It can be seen
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that nonlinear saturation due to the ponderomotive phase shift of the SAW occurs
in all cases, but as expected, lower plasma temperatures lead to faster saturation,
so that one could expect to observe higher amplitude SAWs on field lines which
project into hot plasma regions of the equatorial magnetosphere. In fact, very large
amplitude FLRs which may produce active auroral arcs are seen in the evening
sector on field lines threading the high 3 region of the plasma sheet [Samson et al.,
1996a]. In our simulations for the hot plasma case with the driver defined above, the
amplitude of the SAW velocity reaches a value of 80 km/s in the equatorial plane.
Comparing Figure 3.9a with Figure 3.9b, we see that in all cases, the amplitude
saturation coincides with a nonlinear temporal phase shift of 7/2. This is consistent

with the results of Rankin et al. [1995).

An important feature in the theory of nonlinear dipole FLRs is the coupling
of the excited SAW with a spectrum of SMW modes. The temporal evolution
of the amplitudes in the SMW spectrum are shown in Figure 3.10 for the case
B = 2.65-10"2. Amplitudes have been normalized by the maximum amplitude in
the SMW spectrum at the moment of time for which each spectrum is computed.
One can see that during the initial stage, a wide spectrum of SMW modes is excited.
Later, the spectrum becomes sharply peaked at the second spatial harmonic, which
is eventually responsible for the nonlinear SAW saturation. Note that it is the
second harmonic SMW that has been accounted for in the box model of Rankin
et al. [1994] which implies that the box model also reasonably predicts the FLR
saturation although it falls short in describing the FLR. dynamics.

Figure 3.11 shows the field-aligned distribution of the pressure perturbation
at the moment of FLR saturation (t = 30T). At this time, the SMW perturbation
mainly corresponds to the second harmonic with an amplitude 6 P/Py ~ 0.4 in the

equatorial plane. Higher SMW harmonics have smaller amplitudes of the order
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Figure 3.9: The evolution of the SAW amplitude (a) and phase (b) for 8 = 2.65-10~4
(solid line); 2.65- 10~% (dashed line); 2.65 - 10~2 (dotted line) and 0.88 (dash-dotted
line).
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Figure 3.10: Normalized spectra of acoustic waves, generated by the FLR at time
T (solid line), 4T (dashed line), 10T (dotted line), and 20T (dash-dotted line)
B = 2.65-102 in the equatorial plane.

)
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Figure 3.11: Pressure perturbation distribution along the field line at t = 307.
B = 265-1072 in the equatorial plane. The distance Z along the field line is
normalized by the Earth’s radius Rg.

of a few percent of the ambient pressure. However, it is interesting to note that
because of the field aligned dispersion, these waves are concentrated at distances of
~ 1 -2 Rg from the ionosphere and therefore they might have a significant impact
on particle heating and acceleration. Higher-frequency SMW harmonics interact
intensively with ions with the rate InQ/ReQ ~ 1.167/4exp(—£2), where € = T./T;

is the ratio of electron and ion temperatures [Chen, 1984].

Another result that is of interest within this model is the growth and sat-
uration of SAWs in the case when the driver frequency is detuned with respect
to the SAW eigenfrequency. The amplitude of the SAW is presented in Figure
3.12 as a function of the frequency shift between the SAW and driver for the case
B = 2.65-10~2 and for different moments of time. Since the SAW frequency depends
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Figure 3.12: SAW amplitudes as a function of the frequency shift between the
driver and SAW at time 5T (solid line), 20T (dashed line), 35T (dotted line).

B = 2.65-1072 in the equatorial plane.

on latitude, Figure 3.12 can be considered as the latitude dependance of the FLR
amplitude. Initially, the FLR spreads over a wide range of latitudes. Later, the
amplitude is peaked around the eigenfrequency of the resonant magnetic shell, and

its maximum shifts toward lower frequency shells.

3.5 Three Dimensional Evolution of SAWs

An important feature of the FLR predicted by the theory above is the fact that SAWs
evolve into a narrow channel around the resonant L-shell. In order to estimate the

thickness of the FLR region, let us consider the three-dimensional evolution of FLRs

obtained using the ADI code.
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Figure 3.13: Radial distribution of the driver velocity in the equatorial plane.

Here we still neglect azimuthal dispersion effects assuming large wavelengths
in the ¢-direction. A FLR was simulated within L-shells 8-12. The driver frequency
corresponds to the SAW eigenfrequency at L=10 shell as in the previous section.
The spatial distribution of the driver amplitude as a function of radial distances in
the equatorial plane is shown in Figure 3.13. In this figure, velocities are normalized
by the initial Alfvén velocity Vo in the equatorial plane at L=10, which is 1384
km/s in this model.

The radial distribution of the SAW velocity at the equatorial plane is pre-
sented in Figure 3.14 for t = 10T. The velocity profiles are plotted for two different
phases during one period: when the SAW is seen as a unidirectional plasma flow
and when it produces an antisymmetric azimuthal flow. As seen from this figure,

the resulting FLR flow channel has the thickness of the order of 0.5Rg with a shear
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Figure 3.14: Radial distribution of the SAW velocity in the equatorial plane for
different phases of the SAW.

~ 0.2Rg in the equatorial plane. For the shear flow amplitude of the order of ~ 100
km/s which is in agreement with observations of FLRs in the Earth's magneto-
sphere, this shear flow channel may become unstable with respect to the shear flow

(KH) instability.

The results of these simulations allow us to estimate the growth rate of the
KH instability due to radial FLR structuring in the equatorial plane. Assuming
Gaussian distribution of velocity in the SAW channel, the growth rate can be found
from (1.23) as a function of time. The amplitude and thickness of the flow was
evaluated using simulations described in this section. Dependance of the KH insta-
bility e-folding time (y~!) on the FLR. evolution time is presented in Figure 3.15.
As seen from this figure, e-folding time eventually becomes smaller than the SAW
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Figure 3.15: Dependance of the KH instability e-folding time on the time of FLR
evolution.

half-period. This suggests that the KH-instability may develop in the FLR region
forming vortical structures. Such vortices have been observed in association with

large amplitude SAWs [Rankin et al., 1993a; Fenrich, 1997].

At the ionospheric level, SAWs initiate field-aligned currents (FACs) which
provide a magnetosphere-ionosphere interaction within a FLR. The profile of the
FACs is presented in Figure 3.16. This figure shows that the FLR produces a pair of
FACs (downward and upward) with the longitudinal thickness of the order of tens
of kilometers. This appears to be in agreement with the estimated observational
thickness of FLRs [Fenrich et al., 1995] and FLR modulated auroras [Xu et al.,
1993; Samson et al., 1998] in the ionosphere.
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Figure 3.16: Meridional profile of FACs at the ionospheric level.

Because of the earthward gradient of the Alfvén velocity in the equatorial
plane, the maximum of the SAW moves anti-earthward during one period. This
results in the poleward motion of the FAC sheets. This motion is illustrated by
Figure 3.17 where the FAC intensity is shown as a function of latitude and time. If
regions of upward FACs correspond to the electron precipitation area, this motion
is expected to be observed in the auroral luminosity motion. An example of such
a motion is presented in Figure 3.18 [Samson et al., 1998|, where the intensity of
the 6300 A luminosity band observed by Gillam and Rankin photometers during
the FLR event on January 20, 1996 is plotted in similar coordinates (latitude versus
time) as in Figure 3.17 (one degree of latitude corresponds to ~ 113 km at the

ionospheric level).
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Figure 3.17: Poleward motion of FACs in the FLR region at the ionosphere level.
Here, r is the distance in the meridional direction at the ionospheric level.
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Figure 3.18: Photometer data for the 6300 A emission associated with a FLR.

3.6 Discussion

In this chapter, we described the SAW structure and evolution in FLR regions. We
have developed a numerical routine which allowed us to compute SAW eigenmodes
and eigenvectors in nonuniform plasmas on curvilinear magnetic field lines. There-
fore, SAW fields were found independently of the ADI code and were used to test
the ADI code.

SAW evolution in FLR regions was studied using the analytical theory and
computer simulations. The theory of FLRs presented above is an advance from the
previous box model [Rankin et al., 1994, 1995] toward a more realistic description

of nonlinear FLRs. We have taken into account the dipolar geometry of resonant
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magnetic shells and the nonuniform distribution of plasma density along geomag-
netic field lines. The analytical theory and numerical simulations confirm the main
results obtained using the box model. It is shown that the SAW grows because of
a resonant coupling with a CAW. In turn, the SAW initiates a ponderomotive force
which leads to plasma density redistribution and nonlinear saturation of the FLR
due to frequency detuning of the resonant magnetic shell. Compared to the box
model, this ponderomotive force consists of three parts: magnetic pressure, mag-
netic curvature, and particle inertia. We have shown that the density redistribution
can be described using an equation for driven SMWs. Owing to the geometry and
density inhomogeneity, the coupling between a SAW and nonlinear density per-
turbations results in the excitation of a wide spectrum of SMWs which gradually
form a narrow peak in the vicinity of the second harmonic SMW. The second har-
monic SMW is responsible for SAW detuning and FLR. saturation. However, the
smaller SMW modes may still reach significant amplitudes and might play an im-
portant role in particle heating and acceleration at altitudes of 1-2 Rg above the
ionosphere. This heating, in conjunction with such mechanisms as two-fluid pon-
deromotive force acceleration [Li and Temerin, 1993], can play an important part

in the auroral magnetosphere-ionosphere interaction.

Another result predicted by the dipolar FLR theory is that higher temper-
atures in the equatorial magnetosphere increase the timescale for ponderomotive
FLR saturation, in which case the FLR SAW can grow to large amplitude. This
result appears to be in agreement with an observed latitudinal distribution of Pc5
pulsations which have a maximum in the region corresponding to the hot plasmas
of the ring current belts [Walker and Greenwald, 1981; Tian et al., 1991; Potemra
and Blomberg, 1996] and of the evening sector of the inner plasma sheet [Samson et

al., 1996a).
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Using the theory and numerical simulations, we have found that the FLR
should evolve into a narrow channel near a resonant shell which can eventually
lead to Kelvin-Helmholtz shear flow instabilities [Rankin et al., 1993a]. However
in this model, we neglect dispersive effects due to the finite electron skin depth
causing electron inertia effect [Streltsov and Lotko 1996; 1997]. Electron inertia
results in the radial energy outflows from the resonance region which can lead to
the FLR saturation. The quantitative comparison of nonlinear saturation due to
the ponderomotive force and electron inertia effects can be suggested as a logical

step for further study of FLR structure.

In this study, we assumed that ionospheric conductivity is infinitely high.
Low conductivity may cause energy dissipation from the Pedersen currents and the
interaction of the toroidal and poloidal modes because of the Hall current [Allan
and Knoz, 1979]. Another dispersive mechanism which can affect the nonlinear
evolution of FLRs is azimuthal gradients of high-amplitude SAWs. This effect can
be significant for large-m (small azimuthal wavelength) SAWSs [Klimushkin et al.,
1995]. These waves have been observed in the midnight sector of the magnetosphere,
whereas small-m FLRs appear in the dawn and dusk sectors [Fenrich et al., 1995;
Fenrich, 1997]. The detailed modeling of these effects can be addressed in future

investigation.
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CHAPTER 4

Shear Flow and Shear Flow Ballooning
Instabilities in the Equatorial Plane of the

Earth’s Magnetosphere

(A version of this chapter has been published: [Voronkov et al., 1997a])

4.1 Preliminary Remarks

In the previous chapter we showed that FLRs may evolve into narrow channels
with high amplitude shear flows in the equatorial magnetosphere. These shear flows
vary from uni-directional to bi-directional (cf. Figure 3.14). The three-dimensional
distribution of the azimuthal velocity is presented in Figure 4.1. If an azimuthal
wave length of a KH mode is smaller than an azimuthal wave length of a SAW, we
can examine the evolution of the KH instability within FLR fields and consider two

types of radial flow profiles.

As discussed in chapter 1, many observations of auroral arcs have shown that
they are typically associated with shear flow and vortex structures [Steen and Collis,
1988; Elphinstone et al., 1995; Samson et al., 1996a]. The evening and premidnight
sector seems to be the most active region [Kidd and Rostoker, 1991; Murphree and
Johnson, 1996; Samson et al., 1996a,b; 1998]. Some authors have suggested that

vortex formation in auroral arcs might be caused by shear flows or Kelvin-Helmholtz
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Figure 4.1: Variations of the azimuthal velocity of a SAW in the equatorial plane
for one period.
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(KH) instabilities in the auroral arc [Steen and Collis, 1988; Kidd and Rostoker,
1991; Rankin et al., 1993a]. Nevertheless, we should note that KH instabilities
alone do not lead to increased kinetic energy in the plasma flow and cannot explain
the very large and active auroral vortices that are sometimes seen. A mechanism
is needed which will allow extraction of the potential energy stored in regions of
the magnetosphere, for example the growth phase magnetosphere, in order to allow
the explosive (tens of seconds) growth of the kinetic energy associated with plasma
flows. A clue to what this mechanism is might be found in the fact that these active
electron arcs are often seen within regions of strong Hf emissions and energetic
proton (10s of keV) precipitation at the equatorward edge of the evening sector
auroral region [Samson et al., 1992b; Samson et al., 1996a]. These HB emissions
occur on field lines which thread the inner edge of the plasmasheet in regions where
there are strong Earthward pressure gradients [Rouz et al., 1991; Kistler et al., 1992],
particularly during substorm growth phases. Due to the energetic ion trajectories,
the strongest pressure gradients are found in the evening sector and before local

midnight [Lyons and Samson, 1992; Lyons, 1995].

Observations of strong Earthward pressure gradients suggest that ballooning
or Rayleigh-Taylor modes might play a role in the extraction of the potential energy
stored in the near Earth magnetotail. Nevertheless, most analyses have shown
that this region is ballooning stable or only slightly unstable [Lee and Wolf, 1992;
Ohtani and Tamao, 1993]. Furthermore, a simple ballooning instability can not be
initiated by “white noise” because the ballooning modes of the scales of interest have
virtually the same growth rate (cf. Figure 1.6). The presence of both shear flow
in the auroral arc and strong pressure gradients in the equatorial magnetosphere
suggests that a coupling of shear flow instabilities with a ballooning mode might be

a possible mechanism for the formation of large scale vortices.
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It is well known that shear flows can stabilize ballooning modes with large
wave numbers [Virias and Madden, 1986; Tajima et al., 1991}, in our case - large
azimuthal wave numbers. Nevertheless, the evolution of lower wavenumber modes
might allow substantial growth of vortex structures and a rapid enhancement of
the plasma kinetic energy. While it is not obvious that KH modes have flows and
structures which allow the driving of hybrid shear flow ballooning modes, we will
show the results of linear analysis and nonlinear computer simulations which indicate
that this coupling can occur. In the linear stage, the system develops a KH-like
mode which generates a vortex. In the nonlinear stage, this vortex drives radial
flows which disturb the initial equilibrium pressure. The pressure perturbations are
unstable with respect to the ballooning instability and initiate cell-like flows which
constructively add to the initial vortex. This nonlinear interaction results in the
growth of a hybrid mode, which starts from large amplitude with a spatial scale
that is defined by the nonlinear KH-like vortex. It will be shown that the hybrid
instability can grow very rapidly in the equatorial magnetosphere, with e-folding

times of the order of tens of seconds.

4.2 Theoretical Model

4.2.1 Basic Equations

We adopt a one fluid ideal magnetohydrodynamic (MHD) set (2.1)-(2.4) that will
be used to model plasma in the equatorial region of the inner edge of the plasma

sheet.

We neglect the effect of magnetic field line tying in the ionosphere, and

concentrate on a local analysis of the instability in the equatorial region of the
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Figure 4.2: A schematic of the inner plasma sheet: a shear flow is embedded in a
region of pressure gradient and stretched magnetic field lines.

plasma sheet. We shall develop a model which assumes that magnetic field lines
are stretched slightly tailward, and consider the case where the radius of meridional
magnetic field line curvature is much smaller than the radius of azimuthal curvature.
In this study, we choose a fluid treatment of the problem, neglecting kinetic or finite

Larmor radius effects and have assumed that resistivity is negligible.

In the equatorial plane there are two forces produced by magnetic field line
curvature that act on plasma in the radial direction: the particle inertial force pVZ/R
directed tailward and the magnetic curvature force —B,2 /47 R acting Earthward,
where z is the direction of the ambient magnetic field and R is the radius of the
magnetic field line curvature in the meridional plane. For simplicity, in this study we
assume that the difference between these two forces produces an effective centripetal
acceleration (or “effective gravity”) g in the Earthward direction, which is considered
to be constant in the interaction region. This assumption allows us to develop a
simple analytical model using a Cartesian geometry, in which the z-axis is directed

Earthward, the y-axis is in the dawn-dusk direction, and the z-axis is in the ambient
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magnetic field direction. This geometry is illustrated in Figure 4.2. We suppose that
the shear flow is directed in the azimuthal direction, Vy = V(z). In equilibrium,
the plasma density, pressure, magnetic field and shear flow velocity are considered
to be functions of z only. These assumptions are similar to those made in other
papers devoted to a local analysis of shear flow processes [ Miura and Pritchett,
1982; Virias and Madden, 1986]. The dynamics of the shear flow in a plasma with
a pressure gradient can then be described using the two-dimensional form of MHD
equations (2.1)-(2.4) with (2.2) replaced by:

v B?
Par + A(V-7. )V + v, (P + 8—11') - pg =0, (4.1)

where 7, stands for the gradient in the equatorial plane.

Our equilibrium is defined as the balance between the effective acceleration

and pressure force,

o B
pog = %(Po + '8_15) . (4.2)

We consider the stability of this equilibrium with respect to a small perturbation
e'®¥=8) " Assuming that the half width of the shear flow § is much smaller than
the pressure gradient spatial scale L, one can reduce the system of MHD equations

above to an equation for the radial component of the flow velocity V,

Vél W2
Fo - %) ~ (@ = e

V" = KV (1 - (4.3)

where,
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w? = _9_[/;’01' ~ % (4.4)
is the analog of the Brunt-Vaiséld frequency [Pedlosky, 1987], w — kVp(z) is the
Doppler shifted wave frequency, Vf2 = C,2+V,2is the square of the fast mode ve-
locity, Vo(z) is the shear flow velocity, and the dash symbol stands for the derivative

with respect to z.

4.2.2 Qualitative Analysis of the Hybrid Mode Instability

Equation (4.3) describes velocity perturbations that arise due to a pressure gradient
(W) and a shear flow (V;). Depending on the sign of W2, the system may be
ballooning stable (W2 > 0) or unstable (W2 < 0). In the case where the thermal
pressure is a function of the radial distance, whereas the density and magnetic
field are uniform in the equilibrium state, W? is always negative and therefore the
ballooning growth rate 7sa is positive: Yoar ~ (=W) ~ V;/L for k > 1 /L, where L
is the scale of the pressure gradient. The KH instability also has a positive growth
rate, yxkg ~ Vy/é, for wavenumbers k ~ 1/§. Now we demonstrate that these
two processes interact in a constructive way, thereby increasing the growth rates
of both instabilities and generating a new hybrid mode. This hybrid mode has
both ballooning cell and vortical (KH) components and allows for energy exchange

between them.

The physical processes responsible for the coupling can be described as follows
(Figure 4.3). Let us assume that pg(z) and g(z) are constant and that the gradient
of plasma pressure is caused by a temperature gradient in the region where the
shear flow exists. We also assume that V} /6 > V§/L, so that the KH instability has
the faster growth rate. This means that the instability is initiated as a pure KH
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Figure 4.3: A schematic showing the interaction of a shear flow vortex with a pres-
sure gradient cell. A Gaussian shaped shear flow is assumed.

instability which generates a vortex as follows. Suppose that a small perturbation of
the radial component of the velocity appears in the shear flow. This involves motion
of plasma which causes the flow to deviate from its initial direction and initiates a

shear flow vortex shown in the centre of Figure 4.3.

Now let us assume that this KH vortex evolves in a plasma with a tempera-
ture gradient, and therefore involves a transfer of plasma energy along stream lines.
Let us consider the evolution of the plasma pressure and effective gravity in associ-
ation with plasma motion along flow streamlines. In Figure 4.3, the radial flux into
cell A, initiated by the flow from region Vi1 to region Vs, is opposite the plasma

pressure gradient and involves motion of plasma from a hotter region to a colder
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region. The colder region allows the hotter region to expand, so that the plasma
pressure grows in cell A. The increased pressure in cell A initiates a plasma flow in
the y-direction which contributes to the vortex component and is associated with
plasma motion into cell B, providing for a growth of the density in the cell B. As
a result, the radial component of the effective force pg — P deviates from its
equilibrium value and is directed out of cell B along the KH vortex streamlines.
The resulting acceleration provides additional growth of the KH vortex. Therefore,
the ballooning mode accelerates the shear flow vortex and provides a constructive

interaction between these two modes.

4.2.3 Linear Theory of the Hybrid Instability

The solution to (4.3) was found numerically using a spectral method which can be
described as follows. Let us expand the solution of (4.3) into a series of orthogonal

functions

N
¥ = Z CnSny (4-5)
n=—N

where S, = e(""**/L) and C, are coefficients. Multiplying (4.5) by a complex con-
jugate value S7, and integrating over the region [—L, L], we end up with a set of

linear algebraic equations for C, in the form of an eigenvalue problem:

N n2n? 1 N
2 (—fzbem + 57(55,0%5))C0 = K Y Cabum,  (46)
n=-N n=—-N

where
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Vi'k W2k? itz(n — m

))d:z: (4.7)

L
2 _
(Sm,@?Sq) = —L(w—kVo +(w—kV0)2)exP( T

is an operator defined by the physical parameters of the problem.

Equation (4.6) is homogeneous and has a nontrivia] solution if the determi-
nant of its coefficients equals zero. This equation is solved for the eigenvalues w,

and then the eigenfunctions can be computed for every given eigenvalue w.

The growth rate for pure Kelvin-Helmholtz, hybrid (KH+ballooning) and
noninteractive ballooning modes is shown in Figure 4.4. A Gaussian profile for the
shear flow in the radial z-direction was chosen in the form: V(z)/V, = exp(—(z —
z9)2/6%). The Brunt-Viisdla frequency for this case corresponds to W262/V32 =

—0.01.

The hybrid mode shown in Figure 4.4 is a result of the coupling of the main
ballooning and KH modes. This mode behaves as a pure ballooning mode when k
approaches 0. When £ is extremely small, v goes rapidly to O (not shown in the
Figure). Figure 4.4 also shows that the hybrid mode is suppressed for & > 2/6.
The KH vortex may develop only for k < 2/6, and the hybrid vortex spectra is also
limited to these wavenumbers. At the same time, the linear analysis reveals the
existence of noninteractive ballooning modes which develop independently in the
system. As demonstrated in Figure 4.4, only noninteractive ballooning modes may

develop in the system for k 2 2/6, whereas the hybrid mode is suppressed.

The formation of both interacting and noninteracting modes is further ex-
plained in Figure 4.5. In this figure, the solid arrows show the direction of plasma,
motion due to the KH vortex whereas the empty arrows indicate plasma flow within

ballooning cells. An initial perturbation, which develops into a vortex, is in phase
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Figure 4.4: Growth rate v = Im(w)§/Vy of the hybrid mode (solid line), KH
instability (dashed line), and noninteractive ballooning mode (dotted line) as a
function of k6. The growth rates for the hybrid and noninteractive modes are
computed for W2(§/V5)? = —0.01.
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Figure 4.5: A model of the interaction of a shear flow vortex with ballooning modes
of different radial scales: (a) k; ~ 1/L and (b) k. ~ 2/L. Arrows show the direction
of the plasma motion due to the KH vortex (solid arrows) and ballooning cells
(empty arrows) formation.

with a large scale (k; ~ 1/L) ballooning cell in Figure 4.5a. In this case the bal-
looning mode interacts with the vortex and coupling occurs. The growth rate of this
mode corresponds to the solid line in Figure 4.4. Now let us consider the ballooning
mode with the radial wavenumber k., ~ 2/L. This ballooning mode is shown in
Figure 4.5b and consists of two ballooning cells in the radial direction. It equally
enhances (in the bottom part) and suppresses (in the top part) the shear flow vortex,

providing a net contribution of zero.
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4.3 Numerical Results

‘The results of the linear analysis of the hybrid instability have been compared with
numerical solutions to the full set of MHD equations. The 2D simulations use the

Alternating Direction Implicit (ADI) code described in chapter 2.

4.3.1 Vortex Evolution

In order to test the excitation and evolution of a hybrid vortex mode, a shear flow
which is unstable to the KH instability was initiated in a plasma with a pressure
gradient. The shear flow was chosen uniform in the y-direction, with a Gaussian
profile in the z-direction of the form V,(z) = V; exp(—(z — z)?/62), where V, = 100
km/s, § = 0.0425Rg and zp is at the center of the simulation box in the radial
direction. The length of our simulation box is 1.5Rg in the radial direction and
27 [k (one wavelength) in the azimuthal direction. The mesh consists of 100 points
in the azimuthal direction distributed uniformly, and 120 points in the z-direction.
The resolution in the z-direction varies from 0.009Rg in the center of the box to
0.017Rg at the boundaries. The initial plasma density and magnetic field were set as
p =4.06-10"%* g/ cm3, and By =0.0004 G, respectively, with a uniform distribution
in both the z and y-directions. The Alfvén speed corresponds to V; =560 km/s, and
the pressure corresponds to P = 4.35 x 10~ dyn/cm? at zo and increases linearly

along r (Earthward in our model) with 8P/8z = 5.7 x 10~° dyn/cm?/Rg.

First of all, we study the growth of a hybrid mode with £k = 0.7/6. For
wavelengths k ~ 1/8, the growth rate of the ballooning instability is small com-
pared to the growth rate of the KH instability in our model, which means that the

extraction of potential energy from the ambient plasma, and the formation of the

106



ballooning cells, is slow. However, as predicted by the linear theory, the combi-
nation of a shear flow and a pressure gradient is expected to increase the growth
of the vortex through the formation of a hybrid mode. The growth rate increase
depends on the pressure gradient and it is about 10% for the chosen parameters of
the slightly unstable ballooning mode. The growth of the initial perturbation of the
radial component of velocity is shown in Figure 4.6a for hybrid, KH and ballooning
modes, respectively. The velocity is normalized by V,, whereas time is normalized
by the Alfvén transit time ¢, = L/V; = 17.1 s. Figure 4.6b shows the growth of the
kinetic energy normalized by the initial total kinetic energy of the shear flow:

2
pe = LIPV dzdy (4.8)

IS pVeldzdy

Let us consider the evolution of the hybrid mode in more detail. The growth
of the instability shown in Figure 4.6 implies that there are two different stages of
evolution with different physical processes involved. We can distinguish the following
stages: the linear growth and saturation of the KH-like vortex and the nonlinear
growth and saturation of the hybrid vortex. Snapshots of the z-component of the
vorticity (L/Va)(v xV),, for t/t, = 5, 7 and 10, respectively, which correspond to

these stages of the instability evolution, are shown in Figure 4.7.

As seen in Figures 4.6 and 4.7, the first stage of the evolution, t/t, < 6, cor-
responds to the linear formation of a KH-like vortex. For our choice of parameters,
kg is almost 2 times larger than +sy. Hence, the formation of a hybrid vortex is
initially similar to the formation of a shear flow vortex with no pressure gradient in
the plasma. However, the growth rate of the hybrid mode is slightly greater than for
the KH mode because of the positive interaction of the KH instability with a large
scale ballooning cell. At this stage of the vortex formation, the kinetic energy of
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Figure 4.6: Growth of (a) amplitude of the radial velocity V; and (b) the integrated
kinetic energy of the hybrid mode (solid line), KH mode (dashed line) and ballooning

mode (dotted line), respectively.
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Figure 4.7: Time slices of the vorticity as obtained from the computer simulations
for (a) the hybrid mode and (b) the KH instability, for ¢/¢t, = 5, 7, and 10.
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the initial shear flow is transformed into vortex kinetic energy, but the total kinetic
energy does not increase, which corresponds to Ae ~ 0 (cf. Figure 4.6b). The
insignificant trend downwards from zero is caused by the small numerical viscous

damping which is required to stabilize the numerical scheme.

The linear growth rate was compared with predictions of the linear theory.
The linear growth of V, obtained from the simulations and predicted by (4.3) is
shown in Figure 4.8 to prove that the results of computer simulations and analytical
theory are in close agreement. Slightly spiky behavior of the numerical solution in
Figure 4.8 is the result of adjustment of the initial perturbation to the KH eigen-
function.

The first linear stage of the evolution is complete by the time ¢/t, ~ 6.
The KH instability is then nonlinearly saturated due to the shear flow expansion in
the radial direction (cf. Figure 4.7). At this stage, the hybrid vortex experiences a
transition from KH-like to azimuthally moving ballooning-like mode. This transition
is evident on comparing the contour panels of Figure 4.7, where it can be seen that

billows are starting to form in the hybrid mode evolution.

Figure 4.9 demonstrates this transition stage for the main plasma param-
eters characterizing the instability: the radial component of the velocity, density,
and plasma pressure. The significant changes observed in the density and pressure
indicate the beginning of the nonlinear KH-ballooning interaction. The KH vortex
defines the spatial shape of the cell and sets up a large perturbation from which
further growth of the ballooning-like instability within the cell can occur. This
provides a constructive interaction between the KH and ballooning modes and also
explains why this transition stage is comparatively short, At/¢, ~ 1. As seen in

Figure 4.9, a new ballooning cell is formed within the shear flow which has a radial
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Figure 4.8: Linear growth of V. obtained from the ADI code simulations
(solid line) and as predicted by the linear theory (dashed line).
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scale comparable to the width of the shear flow. The growth rate of the ballooning
instability of this cell is smaller than the growth rate of the large scale cell which

was associated with the linear stage of the evolution.

When the transition stage is over, the developed hybrid vortex continues to
grow, as can be seen from an inspection of Figures 4.6 and 4.7 for tfte > 7. At
this stage, the growth is slower than for the first stage and is comparable to the
ballooning instability growth rate of a cell which has the radial scale of the shear
flow. This growth is accompanied by an extraction of the ambient potential energy
and its transformation into the kinetic energy of the vortex. The total kinetic energy
of the vortex grows far beyond the value of kinetic energy of the initial shear flow.
For this example, the energy of the hybrid vortex is approximately 3 times larger
than the energy of the initial shear flow by the time t/ta ~ 11. In contrast, the
KH instability simulations indicate that a KH vortex with k6 ~ 1 can only extract
about one half of the total shear flow kinetic energy.

At this nonlinear stage, the instability modifies significantly the spatial dis-
tribution of the shear flow and pressure. By the time t/ta ~ 10, further growth of
the radial component of the velocity is restricted by the boundaries of the expanded
flow. Thus, a portion of the vortex flow is then directed along the outer bound-
aries of the shear flow in order to provide momentum conservation. This initiates
secondary flows in the direction opposite to the initial shear flow, and leads to the
azimuthally stretched and radially compressed flow structures shown in Figure 4.10.
Figure 4.10 also displays a radial asymmetry, which is due to the radial gradient of
the fast mode velocity V;.

Saturation of the nonlinear hybrid vortex occurs when the vortex size in the

radial z direction becomes comparable to the width of the zeroth order expanded
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Figure 4.9: Contour plots of (a) V;, (b) density and (c) plasma. pressure for t/te =
6 and 7, respectively, illustrating the transformation of the hybrid eigenmode from
KH-like to ballooning-like.
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Figure 4.10: The vorticity of the hybrid mode for t/t, = 10, demonstrating the
generation of secondary shear flows which elongate the vortices in the direction
opposite to the initial shear flow. Three wavelengths are combined in order to show
a whole vortex structure.
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Figure 4.11: Radial distribution of the integrated radial kinetic energy (V;2), at time
t [ ta = 8.8 (solid line), 9.8 (dashed line), 10.7 (dotted line), and 11.6 (dash-dotted
line).
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shear flow, which is then stable with respect to the KH instability. Nevertheless,
new large amplitude perturbations of the radial component of the velocity appear in
the secondary reversed flows discussed above. The resulting vortices can be clearly
seen at the boundaries of the shear flow in Figure 4.10. These vortices provide for
a further interaction with ballooning cells. Figure 4.11 demonstrates the radial dis-
tribution and time evolution of the radial kinetic energy (V.2) = k/(27) LTV 2dy.
‘The growth of the radial component of the velocity within the shear flow terminates
at the time £/, ~ 10, whereas the perturbations which appear at the edge of the
shear flow then start growing. This growth provides a further extraction of the
potential energy and a corresponding growth of the kinetic energy of the newly gen-
erated vortex structures. This stage is seen in Figure 4.6b as kinetic energy growth
which starts at ¢/t, ~ 11. The latest nonlinear stage is similar to the edge effects of
the ballooning-KH interaction described in the fusion literature [Drake et al., 1992;
Finn et al., 1992; Finn, 1993].

4.3.2 Wavelength Dependence

The azimuthal size of the vortex is a parameter in our model and is defined by the
wavenumber k of the initial perturbation. If the perturbation has a short wavelength
(k > 2/6), the hybrid mode is stable (cf. Figure 4.4) and only ballooning modes
with larger wavenumbers in the radial direction (see Figure 4.5b) are unstable. The
results of simulations for the mode k6§ = 1.8 are presented in F igure 4.12a. In
this case, the shear flow, which is stable with respect to the KH instability, divides
the pressure gradient area into two parts, and the noninteractive ballooning mode
predicted by the theory to be unstable (see Figure 4.5b) grows above and below the

shear flow and stabilizes in the vicinity of the flow.
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Figure 4.12: The vorticity for (a) small (k = 1.8/6) and (b) large (k = 0.2/6)
wavelength perturbations.

In the other extreme case of large wavelengths, the hybrid mode is predicted
to be unstable, but the ballooning component dominates. Thus the evolution of the
hybrid vortex is defined by the ballooning instability, which evolves slower but leads
to a strong deformation of the shear flow within the cell. The hybrid vortex takes

the shape of a large scale fold, as shown in Figure 4.12b for k& = 0.2/6.

4.3.3 Bi-directional (Antisymmetric) Flow

In the previous sections we considered a unidirectional Gaussian shear flow. We
found that the hybrid mode extracts potential energy from the ambient plasma, but

the extension of the vortex in the radial direction is restricted by the boundaries
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of the initial shear flow. This restriction of the radial vortex expansion originates
from the azimuthal motion of vortices and ballooning cells. Qutside the region of
the shear flow, ballooning cells no longer move in the azimuthal y-direction and
the original hybrid vortex slides past the ballooning cells without interaction. This
process may be illustrated using Figure 4.3 if we imagine that a vortex moves with
the shear flow in the y direction. Then it provides a constructive interaction with a
ballooning cell for a half period, when it is in between sections A and B, whereas the
interaction is destructive when the vortex moves further to the right side of section
A. Therefore, the motion of the hybrid vortex may turn off its interaction with a
larger scale ballooning cell. This interaction may be restored if the vortex does not
move with respect to the ambient plasma. These types of vortices are produced by
the KH instability of a bi-directional (antisymmetric in the radial direction) shear

flow.

We shall consider the evolution of a hybrid vortex for a shear flow defined
by Vy(z) = 2.5Vstanh((z — z0)/6)/cosh®((z — z,)/6) with Vp = 50 km/s and 6 =
0.0425Rg. Other parameters remain the same as in previous examples. The time
slices of the vorticity of the hybrid mode are shown in Figure 4.13 for (a) k=1/6
and (b) £ = 0.5/6.

The growth of the k = 0.5/ mode is slower during the initial linear stage,
but in the nonlinear stage it grows faster and reaches a greater amplitude than
for the mode with k = 1/6. Also, for the k¥ = 0.5/6 mode, the vortex expands
into the broad area beyond the shear flow, whereas shorter wavelength modes are
still bounded by the shear flow radial extent. These two cases may be explained
by the difference that exists between the saturated state of the KH vortices. The
mode with the shorter wavelength is immersed in the shear flow. It can interact

only with moving ballooning cells and therefore cannot leave the region of the shear
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Figure 4.13: Time slices of the vorticity obtained from the computer simulations for
the hybrid mode driven by a bi-directional shear flow with (a) k = 1/6 (t/t. = 10.1,
13.1), and (b) k = 0.5/6 (t/t, = 14.1, 18.2).
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flow. Finally this mode saturates at the edges of the shear flow. This saturation is
similar to the saturation of the hybrid mode which develops from the unidirectional
flow as discussed in section 4.3.1. On the other hand, if larger scale perturbations
develop in the bi-directional flow, they evolve into vortical structures that have two
characteristic lengths: one scale involves small vortical structures within the flow
and the second scale involves a larger distortion of the shear flow itself. This large
scale distortion can easily interact with a large scale ballooning cell in the plasma
gradient region. The resulting hybrid vortex expands in the radial direction finally
destroying the initial shear flow and significantly extending the scale of the immersed

vortical structures.

4.4 Validity of the “Effective Gravity” Approach
and Energy Balance in the System

An important result of the model considered above is that the vortex galns kinetic
energy due to the work done by the “effective gravity force” pg = (—pV2/R +
B.?/47R)e,. As discussed in chapter 1, this effective force can be used to describe
the linear evolution of a 3D system using a 2D model. However, we showed above
that an energy exchange in the system begins at the later nonlinear stage of hybrid
mode evolution. At this stage, a nonlinear shear flow vortex interacts with a linear
ballooning cell. Also, this vortex evolution can be affected by the boundaries of
the shear flow. In this case, additional flows may appear which initiate secondary
vortices. Therefore, at this stage of the instability we must exercise some caution
before attempting to describe the process by a purely linear approximation of the

effective force. Generally, 3D modeling is required to solve this problem exactly.
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However, we can test the predictions of the 2D model using a different approach to

the magnetic curvature force description.

Let us assume that the centripetal force pV2/R is negligible and that the
pressure gradient is in equilibrium with the magnetic curvature force B,?/47R. In
order to keep the approach two dimensional, we still need to assume that the radius
of curvature does not change in time. However, this model appears to be an advance
of the previous “effective gravity” model because it includes the nonlinear term B2
which can be important at the second and third stages of the evolution. Let us
consider the results of simulations which include the curvature force B,?/4rR, and

compare them with the results obtained for the “effective gravity” model.

‘The linear evolution of a hybrid vortex is described by the same dispersion

relation (4.3) with

_ BBy 2B4
2rRpy  (4mRpoVy)?

w2 = (4.9)

As discussed above, if the initial density and ambient magnetic field are
uniform, the linear solution to (4.3) does not depend on the form of W. Therefore

the spectra presented in Figure 4.4 remain valid for this model as well.

Figure 4.14 shows the growth of the radial velocity V; obtained using the ADI
code for two dimensional MHD simulations with the curvature force modelled as an
“effective gravity” (solid line) and as B,2/4w R (dotted line). For this example, the
initial Gaussian shear flow and pressure gradient have the same radial distribution as
defined in section (4.3.1), and the wavenumber k = 1/6. As seen from Figure 4.14,
both models result in approximately the same growth of the instability at linear

and transition stages whereas at the later nonlinear stage, the evolution may differ.
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Figure 4.14: Growth of amplitude of the radial velocity V, for two models: effective
gravity (solid line) and curvature (dashed line).
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However, an analysis of the interaction of vortices with ballooning cells revealed
that the basic principles of the mode coupling obtained for the gravity model hold

for the “magnetic curvature” model as well.

Let us consider the evolution of energy in the system. In the example be-
low, we used an antisymmetric shear flow described in section (4.3.3) and a radial
perturbation of velocity with k¥ = 0.5/6. The growth of V, for the shear flow bal-
looning (hybrid) mode (solid line) and the KH mode (dashed line) is presented in
Figure 4.15a. The dynamics of energy in the system with the shear flow ballooning
mode is shown in figure 4.15b. As seen from this figure, the total kinetic energy
(solid line) is growing due to the work produced by the magnetic curvature force
(dash-dotted line). The total energy stored in the plasma pressure gradient (dashed
line) decreases and the energy of the magnetic pressure (dotted line) increases at
the same rate. Therefore, the total pressure in the system does not change whereas
the growth of the total kinetic energy occurs due to the work done by the magnetic
curvature force. This result strongly suggests that the hybrid vortex extracts po-
tential energy stored in the stretched magnetic field lines. The spatial distribution
of the total kinetic energy at t/t, = 14 is shown in Figure 4.16. As seen from this

figure, the main portion of kinetic energy is stored in the vortex.

4.5 Discussion

Our computer simulation of the interaction of the KH and ballooning instabilities
has revealed a multi-stage evolution of the vortex structure. Initially, the vortex
evolution is qualitatively similar to the pure KH instability. Quantitatively, the vor-
tex develops faster in the presence of the pressure gradient due to the constructive

interaction of a shear flow vortex with a large scale ballooning cell in the radial
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Figure 4.15: (a) Growth of the radial velocity amplitude of the hybrid mode (solid
line) and KH mode (dashed line), respectively. (b) Evolution of kinetic energy (solid
line), and potential energy due to the work done by the plasma pressure (dashed
line), magnetic pressure (dotted line), and magnetic curvature (dash-dotted line) in
the system with the hybrid vortex.
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distribution of the kinetic energy and the velocity field associ-
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Figure 4.16

ated with the hybrid vortex at t/t, = 14.
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direction. Later in time, the hybrid vortex extracts potential energy from the am-
bient plasma, providing for further growth of the kinetic energy of the vortex. This
scenario suggests an explanation for observations indicating that only vortices in the
late evening and midnight sectors, where the pressure gradient is large, may develop
in association with vigorous surges, whereas vortices in the earlier evening sector

appear and vanish without further evolution.

It follows from the simulations that perturbations with wavelengths k ~ 0.5 /6
imposed on a bi-directional flow can evolve into large amplitude surge-like structures
which can destroy the original shear flow and expand over a wide region during a
characteristic time of tens of seconds. Similar behavior was seen experimentally by

Steen and Collis [1988] during observations of a westward travelling surge.

The theory and numerical results presented above are a simplified model of
some of complicated processes in the inner plasma sheet. In this region, both radial
and azimuthal pressure gradients may develop during the growth stage. A primary
goal of our model was to consider a situation in which an unstable shear flow could
interact with a background pressure gradient which is initially in equilibrium with
the magnetic curvature force of stretched field lines. This force acts on the plasma
in the Earthward direction and was assumed to be in the simple form p - g, where
g stands for a centripetal acceleration of the particles as a result of both magnetic
curvature and particle inertia. Generally, magnetic curvature may vary in time
as a result of the temporal evolution of magnetotail currents or through currents
produced by the instability itself. Particle inertia may also change in time due to an
acceleration along magnetic field lines and/or growth or decay of the parallel energy

of the particles. In this model we have neglected these effects.

In this study, we have adopted a fluid model that neglects kinetic or finite
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Larmor radius effects. This means that our model is valid for describing the evolution
of structures with a spatial scale larger than the Larmor radius. For the sample shear
flow and chosen density, the ion Larmor radius is smaller than the scale size of the
vortices. However, if the initial shear flow is thinner, or if vortex fine structure
is to be studied, ultimately kinetic effects should be taken into account. Kinetic
and fluid-kinetic hybrid treatments have been presented by Ganguli et al. [1988];
Thomas and Winske [1993]; Huba [1996]. These studies revealed the importance of
small scale effects and their influence on the growth rate and frequency of the shear
flow instability. Also, the kinetic effects may be responsible for an asymmetry in
the instability with respect to the centre of the flow [Thomas, 1995; Huba, 1996].
All of these small scale effects may be important for the auroral arc fine structure

dynamics.

The other problem to be addressed is the importance of non-ideal MHD terms
which violate the frozen field condition. The importance of the Hall term for the KH
instability evolution was described by Huba [1994] for spatial scales on the order of
the Larmor radius. We neglected this effect by assuming that the width of the flow
is larger than the Larmor radius. Similarly, localized resistivity can initiate a large
scale tearing mode [Hesse and Birn, 1994]. This mode can be driven by magnetic
curvature [Sundaram and Fairfield, 1995; 1997], which implies that in a resistive
plasma, additional hybrid modes are expected. The interaction of the shear flow
and vortices with these modes seems to be a significant problem which might be

addressed in future investigations.

The model presented in this chapter is also significantly simplified because
we have neglected field aligned gradients of plasma parameters and have reduced
our consideration to a 2D model of the equatorial plane of a symmetric magnetotail.

Even though such an approach is limited in its ability to describe the full dynamics
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of auroral arc intensifications, it has allowed us to obtain a simple solution to the
problem which reveals some of the physical mechanisms that involve an acceleration

and subsequent radial expansion of the vortex structure.
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CHAPTER 5

Three Dimensional Evolution of Shear Flow and

Ballooning Vortices

5.1 Introductory Remarks

As discussed in chapter 3, the small-m SAWs in FLR regions may evolve into az-
imuthaly extended and radially narrow channels which can eventually become unsta-
ble with respect to the KH instability. Evolution of this instability in the equatorial
plane of the magnetosphere was studied in chapter 4. We showed that in the lin-
ear stage, the KH instability forms a vortex which grows with a characteristic time
smaller than the fundamental SAW period typically observed in association with
FLRs. In the presence of pressure gradients, this growth is even faster due to the
interaction of the KH vortex with ballooning modes. However, in the model de-
scribed in chapter 4, we assumed k, >> k) and therefore, we neglected all effects
associated with the finite length of magnetic field lines and with the nonuniform
field-aligned distribution of plasma parameters. Therefore, this model was further
developed into the 3D dipolar model.

In this chapter, we consider shear flow and ballooning instabilities using 3D
modeling which allows us to obtain a more realistic scenario for vortex formation
and evolution. Since we expect that the growth rate of vortices will vary along the
field line, these shear flow instabilities should excite field-aligned currents (FACs)
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due to field-aligned velocity gradients. This process is similar to the FAC excitation
due to field-aligned velocity gradients in SAWs (cf., equation 3.11). The FACs are
of particular interest because they map the instability patterns into the ionosphere,

and hence they permit a comparison with observations of auroral structures.

According to Miura [1996], an “auroral vortex street (curl) often seen in
association with discrete auroral arcs is visible evidence of the K-H instability driven
by the shear of the ExB drift velocity”. Miura [1996] emphasized that the stabilizing
effect of ionospheric line-tying can not be neglected whenever the KH instability e-
folding time is comparable to or larger than the Alfvén wave transit time between the
ionospheric boundaries. The influence of the ionospheric line-tying effect was studied
by Miura and Kan [1992], Galinsky and Sonnerup [1994], and Miura [1996]. Galinsky
and Sonnerup [1994] showed that for a sufficiently large ionospheric conductivity,
the line-tying effect saturates the instability. Miura [1996] found a critical value of
Pedersen conductivity X, ~ 1/(47V,) above which the KH instability is completely
stable. However, some observations show that the characteristic time for the auroral
vortex formation is of the order of tens of seconds for folds (length-scale of the order
of 10 km) and of the order of seconds for curls (length-scale of the order of 1 km)
[Hallinan and Davis, 1970; Davis and Hallinan , 1976; Hallinan, 1976; Haerendel et
al., 1996; Trondsen and Cogger, 1997; 1998]. This time-scale is much smaller than
the field-aligned Alfvén transit time and therefore, the effect of line-tying might be
small. These observations are in agreement with the shear flow instability e-folding
time obtained in our simulations described in chapter 4. Also, as shown in chapter
3, the FLR may lead to a shear flow which is unstable with respect to the KH
instability with an e-folding time smaller than the half-period of the fundamental
SAW excited in the resonant region (see also Rankin et al. [1993a]). Therefore, one
can expect that initially the KH instability in the Earth’s magnetosphere should
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develop linearly in a similar fashion to that described in chapter 4. However, the
effects associated with finite field line length may be extremely important in the

nonlinear stage.

We use the ADI code to investigate the evolution of shear flow vortices in the
course of the development of the shear flow instability in the dipolar magnetosphere.
Our primary goal is to test the applicability of the 2D linear theory for this 3D
curvilinear topology and to find mechanisms responsible for the generation of field-
aligned currents and for the nonlinear saturation of the instability. The results are

presented in section 5.2.

In section 5.3 we present preliminary results of the 3D ballooning mode anal-
ysis. For this study, we have developed a computer model in which magnetic field

lines are stretched tailward from the dipolar topology.

As discussed in chapters 1 and 4, the inner plasma sheet configuration is fa-
vorable for the excitation of the ballooning instability [Rouz et al., 1991; Kistler et
al., 1992; Holter et al., 1995]. These observations stimulated an extensive study of
the ballooning instability. However, most theoretical works on the ballooning insta-
bility have dealt with the problem of ballooning and Alfvén mode coupling [Miura
et al., 1989; Hameiri et al., 1991; Lee and Wolf, 1992; Ohtani and Tamao, 1993;
Chan et al., 1994; Vetoulis and Chen, 1994]. Since this coupling occurs due to the
finite field-aligned wavelength of the ballooning mode, these earlier works have typ-
ically considered a time frame of several SAW periods, and have used models for the
global magnetospheric equilibrium (e.g., Kan [1973]). In some papers, these modes
are called the “ballooning modes” despite the diversity of the involved physical
mechanisms. Chan et al. [1994] referred to these hybrid waves as Alfvén-ballooning

modes which precisely reflects the origin of these modes.

131




Lee and Wolf [1992], Ohtani and Tamao [1993], and Chan et al. [1994] found
that if the plasma pressure is isotropic, the interaction of “even” SAW harmon-
ics with ballooning modes does not lead to instability. By “even” we mean those
SAW harmonics for which the field-aligned distribution of the radial electric field is
syminetric with respect to the equator. Stability of these Alfvén-ballooning modes
suggests that they are unlikely to be a valid mechanism for auroral activations or

substorm onset triggering [Ohtani and Tamao, 1993].

In this study, we deal with the ballooning mode dynamics within time frames
which are smaller than the Alfvén wave transit time. As shown in Chapter 4, for
typical magnetospheric parameters, ballooning cells can grow with the characteris-
tic time of tens of seconds. During this time, this mode can allow the release of
substantial energy from the ballooning unstable configuration. Our objective is to
test this conclusion using the 3D ADI curvilinear model. We also assume that the
ballooning unstable region is localized in the near-equatorial region of the plasma
sheet. Compared to some other works dealing with the ballooning instability [Miura
et al., 1989; Lee and Wolf, 1992; Chtani and Tamao, 1993; Chan et al., 1994; Ve-
toulis and Chen, 1994], our analysis may be considered as “local” because of the

smaller spatial and temporal scales of the processes considered.

5.2 Shear Flow Instability in the Dipolar Mag-
netosphere
Let us consider a fraction of the dipolar magnetosphere with an embedded azimuthal

shear flow. Our simulations extend from L=9.25 to L=10.75 across the field lines

(v-direction) and from the southern to the northern Earth’s ionosphere along the
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field lines (p-direction). The azimuthal extent corresponds to one wavelength of the
KH mode.

We shall consider evolution of a vortex which develops from the initial shear

flow

Voo = Voexp{—[(req — TO.eq)/‘s]z}[};:VB;Bo(])eqa (5.1)

where the subscript “eq” stands for the equatorial plane, Teq is the radial distance
in the equatorial plane, ro., = 10Rg, § = 0.057TRg is the half width of the flow in
the equatorial plane, Vj = 150 km/s is the maximum of the shear flow velocity in

the equatorial plane, and By is the ambient magnetic field.

The distribution of the shear flow velocity Vg in the (i, ) coordinate plane
is shown in Figure 5.1. This flow represents a stationary shear flow in the dipolar
coordinates. The field-aligned distribution of the initial shear flow defined by (5.1)
allows us to separate the growth of the KH mode from background oscillations
associated with standing SAWs. However, our results are valid for shear flows that
support KH instabilities initiated by SAWs if the e-folding time of the KH instability
is much smaller than the SAW period. The shear flow instability in this study was
initiated by imposing an initial velocity perturbation V, = 0.02 x Vsosin(ky¢) with

an azimuthal wavelength A\, = 274.

Using the fact that the width of the shear flow is much smaller than the
length of the field line, we can assume that initially, the instability evolves similar
to the 2D KH instability studied in chapter 4. If this assumption is valid, it allows us
to develop a simplified theory of the instability which assumes that the evolution of

vortices and their field-aligned interaction occur in different time scales. Therefore,
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Figure 5.1: Distribution of the azimuthal shear flow velocity.

let us begin with comparisons of the results of 3D simulations with the predictions

of the 2D theory and simulations.

Figure 5.2a shows the evolution of the vorticity (77 x V), in the equatorial
plane during the linear (¢ = 20 and 40 s) and nonlinear (¢ = 60 and 70 s) stages.
Vortex dynamics obtained from the 2D modeling is shown in Figure 5.2b. Comparing
Figures 5.2a and 5.2b, we can see that the linear vortex evolution (¢ = 20 and 40 s)
is similar in the 2D and 3D models. In the nonlinear stage, 2D vortex evolves into

a larger structure.

In Figure 5.3, the growth of the 3D KH instability in the equatorial plane is
compared with the results of 2D simulations. As seen from this figure, the growth
rate of the 3D KH instability is smaller than the growth rate in the 2D case. How-

ever, the characteristic time scales of the linear growth and nonlinear saturation
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Figure 5.2: Time slices of vorticity in the equatorial

plane for ¢ = 20, 40, 60, and
70 s obtained using (a) 3D and (b) 2D models.
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Figure 5.3: Growth of the V, amplitude at the equatorial plane as obtained from
the 3D (solid line) and 2D (dashed line) models.

are similar in both models. It is necessary to mention that artificial viscosity and
resistivity required to stabilize the code with respect to small numerically unstable
harmonics is smaller (~ 2 times) in 3D simulations than in 2D. In 3D simulations,
these numerically unstable harmonics can escape along the field lines from the region

where they originate. This provides higher numerical stability of 3D simulations.

The distribution of V, in (v,¢) planes (perpendicular to the field line) is
shown in Figure 5.4 for different altitudes along the field line. An eigenfunction of
V. predicted by the 2D theory for parameters corresponding to the equatorial plane
Is also shown in this figure (Figure 5.4d). This figure also suggests that the 2D
theory of the KH instability provides us with appropriate predictions for the linear
KH mode evolution in the dipolar 3D model.

All these results show that for the chosen parameters, the linear 3D and
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Figure 5.4: Radial (v) and azimuthal (¢) distribution of V, at (a) 3.1Rg, (b) 8.3Rg,
and (c) 13.5Rg along the field line and (d) a KH eigenmode predicted by the 2D
theory.

0 21to

2D KH instabilities evolve similarly. However, in the 3D case, there is a weak field-
aligned interaction (or energy exchange) between vortices at different altitude levels.
This interaction should be accounted for in order to obtain accurate growth rates
of the 3D instability. Below, we develop a simplified linear analytical model of the
KH instability in the dipolar coordinates which can explain the field-aligned vortex
coupling in terms of currents produced by the instability.

The linearized MHD equations in dipolar coordinates can be reduced to

—QgrpV, = —hl—”g—f + %]}»Bo, (5.2)

- QuapaVy = —poyt 2 "= 3g * civBo (5.3)
—iQxgp+po V-V = 0, (5.4)

— iQxgP + peC:7 -V = 0, (5.5)

where Qxpg = w — kVy/hy is the Doppler shifted frequency in the dipolar coor-

dinates, po is the ambient density, and k is the azimuthal wave number. These
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equations give the dispersion relation for the instability as:

K2 _hsBok_

h2
A e o hQrgk w0) + ool

s (V- ), (56)

where V' = d?V, /dv? and (V - ), is current divergence perpendicular to field lines.

The influence of the term %((v -j)1) can be understood as follows.
Using ¥/ - j = 0, this term can be written in the form %‘ﬁ%%(h”jp), where £(u) is
a coefficient which depends only on the p coordinate. The field-aligned current j,
is driven by the field-aligned gradient of the vorticity. Hence, let us assume that
Ju~ V- (V x V) ~ 7kV,. Then the field-aligned coupling term in (5.6) can be
evaluated as a(p)k?/Qkg| Vi Vo|, where the coupling coefficient a(y) varies in the
range ~ [—0.2;0.2] in the problem. The sign of o depends on the sign of vﬁV,,. The
dependance of the instability growth rate and frequency on « is shown in Figure 5.5
for the Ay = 276 KH mode. As seen in this figure, the field-aligned vortex coupling
tends to diminish the field-aligned variations of vortex amplitudes. Whenever vﬁVy

is negative, « is negative which reduces the growth rate and frequency, and vice

versa.

The field-aligned distribution of the phase velocity is presented in Figure 5.6
as obtained from the 3D simulations and as predicted by the 2D theory. As seen
from this figure, field-aligned dispersion causes a nonuniform field-aligned distribu-
tion of the KH mode phase velocity. The phase velocity variation leads to a phase
shift between the vortices at different altitudes. This shift causes the excitation of
oblique Alfvén waves as shown in Figure 5.7. It is interesting to note that the phase
shift of vortices at different altitudes above the ionosphere can reach ~ 7 before
the KH instability saturates. The convection patterns in the ionosphere and at

~ 3Rg above the ionosphere are shown in Figure 5.8 for ¢ = 50 5. As seen from the
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Figure 5.5: Dependance of the growth rate (solid line) and frequency (dashed line)

on the coupling coefficient a. The growth rate and frequency are normalized by
6/ Vq.
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Figure 5.6: Field-aligned distribution of the phase velocity obtained from the 3D
simulations (solid lines) and as predicted by the 2D theory (dashed lines).

figure, plasma flow wraps anticlockwise in the ionosphere and clockwise at ~ 3Rz
poleward from the initial shear flow. Equatorward from the flow, the rotation is
clockwise at the ionosphere and anticlockwise at 3Rz above. Therefore, this phase
shift can be proposed as a candidate mechanism responsible for the opposite rotation
of jonospheric convective cells and luminosity patterns which reflect plasma vortical
motion at ~ 2 — 3Rg above the ionosphere where the electron acceleration oceurs.
As discussed in Chapter 1, this effect is often observed in association with discrete
arcs [Davis, 1978; Haerendel et al., 1993, 1996; Frey et al., 1996]. However, qualita-
tive comparisons of the simulation results with observations require further model
development including inhomogeneous distribution of the ionospheric conductivity

which can significantly modify ionospheric convection patterns.

The nonuniform distribution of the velocity perturbation due to field-aligned
variations in the growth rate, frequency, and phase velocity initiates perturbations
in the magnetic field. These magnetic field perturbations define the field-aligned

current structure above the ionosphere which may be of particular interest with
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respect to comparisons with observations. Therefore, let us consider the problem of
how the KH instability modifies the magnetic field in the vicinity of the ionospheric

boundaries.

Linearized equations for the magnetic field components B, and B, which are

responsible for the field-aligned current formation are:

B, 1 [d 9 _

9t + hths (%h“VwB,, - a—ﬂ-hqsv:,Bo) = 0, (57)
B, 1 [0 _
5 + e (—a#h,,v;Bo> = 0, (5.8)

where By is the ambient magnetic field. In equation (5.8), we have assumed that
near the ionosphere, 0B, /8t = 0. Magnetic field components can be presented as
B, = Re[b, 4(t) exp(—i(wt — k¢))]. As seen from Figure 5.5, vortex eigenfunctions
can be assumed independent of y. This allows us to separate variables for V, and
Vo: Voo = Vigo(12)6,6(v) exp(—i(wt — k@), where V, 4(p) are the initial amplitudes

and &, 4(v) are the eigenfunctions. Then, the solutions for b, and by are:

b, = Ci(e%%H! _ 1) + Cut, (5.9)

b¢ = C3(ei‘"t - 1) + C4t, (510)

where the coefficients C) 5 3 4 are:

_ ZBO ‘/,,0 aw 6 ‘/yo . QC_
Cy = ho (h,, P QKHau h ZQKHVuo¢au ’
Co = BoVio Ow
2= h”QKH 6,u’
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Figure 5.9: Temporal evolution of the B, norm perturbation amplitude as predicted
by equation (5.9) for C/C» = 30 (solid line) and 10 (dashed line).

Cy = = -3,

hyw? \h3wOu ~ dp hy
B()V¢o Oow
Cy=—"F—.
4 hu,w Opn

Equations (5.9)-(5.10) show that the magnetic field perturbations B, and
By grow linearly for t < 4™, and exponentially for t > y~!. Also, their growth
is modulated with frequencies Qg and w, respectively. Note, that in our case

Qig ~ w at the ionosphere and w > v everywhere.

The growth of the amplitude of B, is presented in Figure 5.9 as predicted by
(5.9) for C1/Cs = 30 (solid line) and C,; /Ca = 10 (dashed line). At the ionosphere,
V. is small because of the small growth rate and hence C; is much greater than Cs.
This provides well defined modulation with the period T = 2nQyy, linear growth
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Figure 5.10: Growth of [B,]srax at the ionosphere (solid line), 0.5Rz (dashed line),
and 1Rg (dotted line) along the field line.

for t < 7%, and exponential growth for ¢ > y~1. At higher altitudes where C, is
increased, the modulation becomes less noticeable. The similar evolution of the B,

component was obtained using the ADI code as presented in Figure 5.10.

The spatial distribution of field-aligned currents is shown in Figure 5.11 for
the linear (¢ = 10 and 30 s) and nonlinear (¢ = 70 s) stages of the instability. As
seen from the figure, initially field-aligned currents form into a fold-like structure

which dissipates later in the nonlinear stage.

Further nonlinear evolution of the KH instability is in fact a gradual trans-
formation of the KH mode into the fundamental SAW harmonic. Figure 5.12 shows
the field aligned distribution of the B, component obtained from 3D simulations
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Figure 5.11: Time slices of the field-aligned current distribution at the ionosphere
illustrating the formation and dissipation of the fold-like structure.

of the nonlinear KH mode and the fundamental harmonic SAW eigenfunction com-
puted using (3.13). The comparison of these two functions confirms that the main
SAW harmonic is the major mode which develops in the system during the nonlinear

stage.

The transition from the KH mode to the SAW mode leads to the broadening
and dissipation of the shear flow. Figure 5.13 shows time evolution of the radial
distribution of the value foz"V¢ d¢ which characterizes an average mass transport by
the flow. This result is similar to the result found by Rankin et al. [1997] using
the box model. The broadening and dissipation of the flow is principally a 3D KH
effect. In the 2D case, the flow periodically widens and narrows with a period equal

to the KH instability growth time.
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Figure 5.13: Temporal evolution of the shear flow in the equatorial plane as obtained
from (a) 2D and (b) 3D models.
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5.3 3D Ballooning Instability in the Plasma Sheet

5.3.1 The Ballooning Equilibrium Problem

The equilibrium of the plasma pressure and magnetic forces in the magnetosphere
was originally studied by Kan [1973]. In this work, Kan [1973] assumed that the
plasma was isothermal everywhere in the magnetotail, and that the density was uni-
form along the magnetic field lines. These assumptions allowed Kan [1973] to obtain
an infinite set of partial solutions to the Grad-Shafranov equation [Freidberg, 1982]
which describes the magnetospheric equilibrium. Further interest in this problem
has raised recently after Miura et al. [1989] suggested that Kan’s model could be
unstable with respect to the fundamental harmonic of the Alfvén ballooning mode.
This result was argued by Lee and Wolf [1992], Ohtani and Tamao [1993], and Chan
et al. [1994] who showed that in this global model, symmetric Alfvén modes are sta-
ble with respect to the ballooning. On the other hand, Chan et al. [1994] discovered
that anisotropic pressure provides more opportunities for the ballooning instability
to be operative. Furthermore, the solution to the isotropic Grad-Shafranov equation
requires the assumption of uniform pressure distribution along the field lines [Frei-
dberg, 1982; Chan et al., 1994] which is unlikely to be applicable to active auroral

processes.

In this study, we consider the ballooning instability in the central plasma
sheet and assume that plasma pressure is anisotropic with respect to the dipolar
coordinates 1 and v. In this case, we are free to choose an arbitrary magnetic
field distribution providing 7 - B = 0. Then we can find the equilibrium pressure
distribution from the momentum equations for V,, = V,, = 0 and 8V, /8t = oV, /ot =

0. We have assumed that the enhanced pressure is localized around the equatorial
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plane and that it diminishes outwards along the field lines.

Figure 5.14 shows the equilibrium distribution of Py, 4 and B, in the equato-
rial plane and field-aligned (plane [v, y]) distribution of P,¢ and B, which we used
in the simulations described below. This distribution models the pre-substorm ion
pressure distribution observed by Kistler et al. [1992] in the equatorial plane. These
observations show a strong Earthward pressure gradient at 7-9Rg with minimum ~
0.2 nPa at 9Rg. Then the ion pressure grows tailward reaching ~1 nPa at 11-12Rg.
Estimates made using (4.4) and (4.9) for the plasma pressure distribution found by
Kistler et al. [1992] revealed that the region at 8-10Rj is unstable with respect to
ballooning. Therefore, we shall consider the evolution of the ballooning instabil-
ity which develops from the equilibrium which is consistent with the pre-substorm

pressure distribution observed by Kistler et al. [1992].

5.3.2 Ballooning Instability

In order to model the evolution of the ballooning instability in the equatorial region
of the plasmasheet, we set boundaries at 6Rg above the ionosphere and at L = 8.5
and L = 11.5 in the v direction. Plasma parameters were chosen as discussed in

section 5.3.1 and demonstrated in Figure 5.14.

Growth of the initial perturbation V, is shown in Figure 5.15 for different
positions along the field line. As seen from this figure, the instability develops faster
at the equatorial plane and then gradually propagates out along the field lines. It
is interesting to note that eventually, the ballooning mode starts growing at the
positions very close to boundaries even though these regions were initially stable

with respect to ballooning.
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Figure 5.14: Initial equilibrium conditions for the 3D simulations of the ballooning
instability: (a) Py¢ and (b) By, in the equatorial plane, and (c) By and (d) B,
in the u,v plane. Field-aligned coordinate y starts at 5Rg above the southern
hemisphere and ends at 5Rz above the northern hemisphere. Coordinate v covers
the fraction from L = 8.5 till L = 11.5. ¢ is azimuthal corresponding to 2432 km in

the equatorial plane.
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Figure 5.15: Growth of the initial perturbation V, at 7.8Rg (solid line), 5.4Rg
(dashed line), 2.8 R (dotted line), and 0.7Rg (dash-dotted line) from the boundary
along field lines. 7.8 Rg corresponds to the equatorial plane.
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In the equatorial plane, the dynamics of the instability are very close to
those predicted by the 2D theory (Chapter 4). Figure 5.16 presents time slices of
the radial component of velocity V,, the pressure, and the transient magnetic field
B, in the equatorial plane for three phases of the instability evolution: the initial
distribution (¢ = 0 s), linear growth of the ballooning cell (¢ = 75 s), and nonlinear
saturation at the boundaries of the ballooning unstable region (¢t = 100 s). Figure
5.17 shows the energy changes in the system. As seen from this figure, the kinetic
energy grows due to the work done by the magnetic curvature force as in the results
of the 2D simulations described in chapter 4. During the nonlinear stage, this results
in significant changes of the magnetic field topology in the unstable region. This
process is illustrated by Figure 5.18. For this figure, the equatorial magnetic field
B, was averaged in the azimuthal direction and is shown as a function of the radial
direction for ¢ = 0 s and ¢ = 130 s. The dipolar magnetic field profile is also shown
in this figure.

The nonuniform field-aligned distribution of the ballooning vortices results in
the excitation of SAWs similar to those excited by the KH instability. If ballooning
cells do not propagate in the azimuthal direction, the SAWs which are excited in
the system are mainly defined by the velocity amplitude variations along the field
line. The resulting perturbations in the magnetic field B, and By components is
shown in Figure 5.19. These waves have large amplitudes and may affect the further
evolution of the system. However, this process involves multi-scale interactions of
SAWs and ballooning cells and would require more sophisticated simulations using
faster computer techniques. It would be interesting to address this problem in
further work.
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Figure 5.16: Evolution of the ballooning cell in the equatorial plane. Time slices
correspond to the initial time (¢t = 0 s), linear stage (¢t = 75 s), and nonlinear stage
(t =100 s).
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Figure 5.17: Changes of the kinetic energy (dashed line) and the work produced by
the magnetic field line curvature force (solid line) in the equatorial region.
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magnetic field (dotted line).

Figure 5.19: Field-aligned distribution of the amplitudes of the magnetic compo-
nents (a) B, and (b) By at t = 100 s.
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5.4 Summary

In this chapter, we have presented a complete three dimensional nonlinear model of
the shear flow and ballooning instabilities which may occur in the plasma sheet and
cause auroral disturbances. This model was constructed using a dipolar coordinate
system. The model takes into account the curvilinear magnetic field in the mag-
netosphere and allows for dispersion along field lines and across magnetic L-shells.

The results of modeling can be summarized as follows.

In the linear stage, the 3D KH instability evolves in a similar fashion to the
2D KH instability. Quantitatively, the 3D KH instability has lower (~ 20%) growth
rate and a lower frequency at the equator than the 2D instability. This difference
occurs because of the weak field-aligned coupling (or energy exchange) which exists
between vortices at different points along the field line. We have developed an
analytical model which allowed us to describe this coupling in terms of the field-
aligned currents excited by the instability.

We have shown that the KH mode velocity distribution has approximately
the same structure at different levels along the field line. However, these modes
have different azimuthal phase velocities at different altitudes. This results in a
field-aligned phase shift between vortices and can initiate the oscillations of oblique
Alfvén waves during the linear stage of the instability. Also, due to the phase shift
between vortices at different altitudes, the spatial distribution of convection patterns
in the ionosphere and of the vortical structures at ~ 2 — 3Rz above the ionosphere,
i.e. in the region where the auroral electron acceleration most probably occurs, can
be out of phase. This spatial shift can be proposed as a candidate mechanism which
might explain the displacement and opposite rotation of the ionospheric convection

and luminosity patterns.
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We have derived a linear expression for the amplitudes of the magnetic per-
turbation due to the KH instability. This expression predicts that the magnetic
perturbations, which are responsible for the field-aligned current formation above
the ionosphere, grow and are modulated with the frequency Qxg. This linear theory
prediction occurs in agreement with the numerical solution of the nonlinear MHD

equations.

As follows from the simulations, nonlinear evolution of the 3D and 2D KH
instabilities differ. Analysis of the nonlinear stage of the 3D KH instability has
shown that this stage is, in fact, the gradual transition of the KH mode into the
main SAW harmonic. This process is accompanied by a broadening of the shear

flow and a dissipation of the KH vortices.

In order to study the evolution of the ballooning mode, we have imposed
the pressure gradient and the curvilinear topology of the magnetic field lines in the
equatorial region. This study has confirmed the prediction of the 2D analytical
model that the ballooning mode is unstable in a system with an Earthward pressure
gradient. The total kinetic energy in the system grows due to the work done by
the magnetic field line curvature force. This instability may produce localized re-
gions of magnetic field lines which are even more stretched, than they were initially.
Simulations showed that in the linear stage, the ballooning instability initiates sym-
metric ballooning cells which expand radially. The nonlinear saturation occurs when
these cells reach the boundaries of the unstable region. In the nonlinear stage, the
ballooning mode initiates large amplitude SAWs. However, the further interaction
of the ballooning modes and SAWs, as well as the coupling of the shear flow and
ballooning instabilities involves spatial and temporal multi-scale mode interaction
which can be resolved using more advanced computer techniques. This problem

can be proposed as a further application of the three-dimensional computer model
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described above.
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CHAPTER 6

Conclusions

In this work, we have developed the code which solves the system of ideal
nonlinear MHD equations in curvilinear coordinates. The code can be easily adapted
to run on different kinds of new parallel and vector computers. A new fast tech-
nique was developed, tested, and effectively implemented on the Stardent and SGI

computers.

We used this code to develop models and a suitable theory of nonlinear
FLRs and SAWs in the dipolar magnetosphere. The models and theory are an
advance from the previous box model [Rankin et al., 1993b; 1994: 1995] giving a
more realistic description of nonlinear SAWs and FLRs. We have taken into account
the dipolar geometry of resonant magnetic shells and the nonuniform distribution of
plasma density along geomagnetic field lines. The analytical theory and numerical
simulations have confirmed the main results obtained using the box model. We
have shown that the SAW can linearly grow in resonance regions and initiate the
nonlinear ponderomotive force. This ponderomotive force leads to plasma density
redistribution and nonlinear saturation of the FLR due to frequency detuning of
the resonant magnetic shell. Compared to the box model, this ponderomotive force
consists of three parts: magnetic pressure, magnetic curvature, and particle inertia.
We have shown that the density redistribution can be described using an equation
for driven slow magnetosonic waves (SMWs). Due to the geometry and density

inhomogeneity, in the dipolar case the coupling between the SAW and the nonlinear
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density perturbations results in the excitation of a wide spectrum of SMWs which
gradually form a narrow peak in the vicinity of the second harmonic SMW. As in the
box model, the second harmonic SMW is responsible for the SAW detuning which
results in FLR saturation. However, the smaller SMW modes (which are not excited
in the box model) may still reach significant amplitudes and might play an important
role in particle heating at altitudes of 1-2 Rg above the ionosphere. This heating,
in conjunction with such mechanisms as two-fluid ponderomotive force acceleration
[Li and Temerin, 1993], may play an important role in auroral magnetosphere-

ionosphere interactions.

Another result predicted by the dipolar FLR theory is that higher temper-
atures in the equatorial magnetosphere increase the time scale for ponderomotive
FLR saturation, in which case the FLR SAW can grow to large amplitude. This
result appears to be in agreement with the observed latitudinal distribution of Pc5
pulsations which has a maximum in the region corresponding to the hot plasmas of
the ring current belts [ Walker and Greenwald, 1981; Tian et al., 1991: Potemra and
Blomberg, 1996] and in the evening sector of the inner plasma sheet [Samson et al.,

1996a].

Because of the nonuniform radial distribution of SAW frequencies, the phase
velocity of SAWs is directed anti-Earthward. The corresponding temporal dynamics
of the field-aligned currents at the footprints of the magnetic field lines is in close
agreement with results of photometer observations which show poleward motion of

discrete auroral arcs.

Neglecting plasma wave dispersion across magnetic L shells, which can occur
due to electron inertia [Streltsov and Lotko, 1996; 1997], we have found that the

FLR should evolve into a narrow channel near the resonant shell. This structuring
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can eventually lead to the excitation of Kelvin-Helmholtz shear flow instabilities

with characteristic e-folding time smaller than the SAW half period.

Two-dimensional theory and numerical simulations of the evolution of a shear
flow embedded in a pressure gradient region in the equatorial plane have revealed
a comstructive interaction between the unstable shear flow mode (KH mode) and
the ballooning mode. In the linear stage of the instability, the KH vortex interacts
with the main ballooning harmonic, which enhances the growth rate of the hybrid
mode. When the KH-like vortex saturates, it experiences a short transition stage
when the vortex evolution changes from KH-like to ballooning-like. At the end of
the transition stage, the hybrid vortex becomes a large amplitude perturbation for

the ballooning instability and experiences further growth.

In the nonlinear stage, the hybrid vortex defines the radial size of the in-
teracting ballooning cell. This stage is characterized by an extraction of potential
energy from the pressure gradient and its transformation into kinetic energy of the
hybrid vortex. During this nonlinear stage, the vortex evolution depends on the
azimuthal wave number as well as on the shape of the flow. A uni-directional flow
generates vortices which move with respect to the ambient plasma, providing a con-
structive interaction of vortices and ballooning cells which move with the flow. The
optimal wavenumber for this interaction corresponds to k ~ 1/8, where § is a half
width of the shear flow. The radial expansion of the vortex is restricted by the
interaction of the vortex with the boundaries of the flow. This interaction satu-
rates the hybrid vortex, but at the same time, it modifies the flow and generates
large scale perturbations of the boundaries. This leads to a further interaction with
a large scale ballooning cell and a further extraction of potential energy from the

ballooning unstable region.
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A different evolution was obtained for a bi-directional shear flow with an
instability wavenumber k ~ 0.5/5. In this case, the hybrid vortex takes the form
of a radially stretched fold which does not move in the azimuthal direction. In the
nonlinear stage, this vortex interacts with a large-scale ballooning cell, and leads to

the fast growth and radial expansion of the vortex.

The model of the shear flow instabilities was further developed into a three-
dimensional model which allowed us to study the field-aligned propagation of per-
turbations. This model has confirmed the main results obtained using the 2D theory
and simulations. In the case of the unstable shear flow, we have found that the linear
vortex evolution at every altitude along the field lines is similar to that predicted
by the 2D theory. However, field-aligned variations of the phase velocity cause a
different spatial shift of the vortices at different altitudes. This shift leads to the
propagation of oblique Alfvén waves and modifies the field-aligned current dynam-
ics. We proposed that this field-aligned dispersion could be a mechanism which
generate a spatial phase displacement between convection and luminosity patterns
at the ionospheric level. The further nonlinear evolution of the KH instability is
a gradual transition of the KH mode into the fundamental SAW harmonic. This

process leads to the broadening and dissipation of the initial shear flow and vortices.

The existence of a radial pressure gradient on the stretched magnetic field
lines in the equatorial plasma sheet can lead to a ballooning instability. The sce-
nario of this instability predicted by the 2D model was further developed using 3D
simulations. We have shown that the ballooning instability initiates ballooning cells.
The kinetic energy accumulated in these cells grows due to the work done by the
stretched magnetic field lines. The ballooning cells expand radially with a charac-
teristic time of tens of seconds for the chosen instability parameters. Saturation

occurs when these cells reach boundaries of the unstable region. In the nonlinear
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stage, the ballooning instability initiates large a.niplitude SAWSs. This suggests that
the ballooning mode can constructively interact with SAWs. However, features of
this coupling as well as of the interaction of the ballooning and shear flow modes
requires more sophisticated study using faster computer techniques. We would like
to address this problem in a further study

Summarizing these results, we conclude that interaction between such MHD
waves as SAWs, shear flow modes, and ballooning modes which has been considered
in this work appears to be a valid candidate mechanism for generating auroral
vortices. This processes may lead to the formation of large amplitude folds and

curls which are repeatedly observed in association with active auroral arcs.
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