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Abstract

The requirement for more efficient heat transfer systems has stimulated interest in
methods to augment heat transfer. Among many techniques. ithe use of tube inserts
has been shown to be very effective. Typically, augmentation is achieved by increasing
the effectiveness of transport process through increased mixing (e.g. static-mixer

elements) or by creating rotating and/or secondary flow (e.g. twisted-tape inserts).

In the present study, the concept of convective eversion has been studied as an
alternative means of augmenting tubeside convective heat transfer in laminar flow
heat exchangers. It consists of interchanging the relatively hot (cool) fluid adjacent
to the tube wall with the relatively cool (hot) fluid nearer to the tube axis. This
process of turning the flow inside out creates higher temperature gradients at the
wall and higher near-wall velocities, resulting in an increase in heat transfer and

concomitant pressure drop.

No particular eversion device was analyzed. Instead, the eversion process was
idealized by three separate models to cover the likely behaviour of practical evertors:
ideal eversion, laminate eversion, and mixed eversiox. The analysis, using the
algorithm of Patankar, focused on the numerical solution of the governing equations
for steady, axisymmetric flow and heat transfer in a circular duct into which a variety
of hypothetical evertors were introduced. Initially, a tube containing a single evertor
of each type was studied as a thermal entrance problem. Large increases in the
local Nusselt number and friction factor were obtained in the first few diameters
downstream of the evertors. This led to the study of repeated eversion, with a
tube containing five regularly spaced evertors. The results showed that heat transfer

augmentation was encouragingly high without the frictional penalty being excessive.

v



A systematic survey of the effect of principal variables was also undertaken. Some
results were compared with data from a high performance augmentation device:
the twisted-tape. These indicated that eversion can produce very similar thermal

performance with a lower frictional penalty.
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A sensible heat; also used to denote the area of a control volume

face

a coefficient in the discretization equation

b  constant term in the discretization equation
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D tube diameter; also used to denote diffusion conductance

d  coefficient of the pressure-difference term
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h convective heat transfer coefficient
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k fluid thermal conductivity

xdii



Nu,

Nu,,
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Ar
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thermal entrance length

length of evertor

momentum

mass

peripheral average axially local Nusselt number
mean Nusselt number

number of radial nodal points

pressure; P is also used to denote cell Peclect number
pressure correction

Peclect number

Prandtl number

radial coordinate

hydraulic radius

Reynolds number based on diameter
r-direction width of a control voluzue

r-direction distance between two adjacent grid points
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pitch (distance between two evertors)

S/D

absolute temperature

axial velocity

average fluid velocity

axial velocity correction

axial velocity based on guessed pressure p*
radial velocity

axial coordinate
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axial coordinate for the hydrodynamic entrance region, X/D Re

axial coordinate for the thermal entrance region, X/D Pe

relaxation factor
mass density
fluid dynamic viscosity

fluid temperature
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Chapter 1

Introduction

1.1 General Background

A heat exchangeris a device which provides for transfer of thermal energy between
two or more fluids at different temperatures. Over the years, problems associated
with heat exchangers have been a challenge to many irvestigators. Thermo-hydraulic
fundamentals in many different flow regimes and design of heat exchangers have been
a classical subject of study. In recent years, interest in heat exchangers with more
compact surfaces has been increasing at an accelerated pace. As a result, smaller,
light-weight and lower-cost heat exchangers are being designed. Because of the smaller
flow passage hydraulic diameter, especially with gas flows, the heat exchanger design
range falls well within the laminar flow range (Re < 2300). In addition to compact
heat exchangers, laminar flow heat transfer in tubes occurs in other engineering
applications. The following examples can be cited: heating or cooling of viscous
liquids in the petroleum, chemical, and food industries; heating of the circulating

fluid in solar collectors; and other applications in the aerospace, nuclear, biomedical,



electronics and instrumentation fields.

Heat transfer coefficients for laminar flow in plain tubes are well described in
the literature (1, 2, 3]. They are generally low and therefore frequently represent
the dominant thermal resistance in tubular heat exchangers. This results in the
relatively large size and cost of these heat exchangers. In recent years there has
been considerable interest in improving the performance of such exchangers through
the augmentation of tubeside convective heat transfer. The study of improved heat
transfer performance is referred to as heat transfer augmentation, enhancement or
intensification. In general, this means an increase in heat transfer rate with a penalty
in the form of increased pressure loss or external emergy consumption. Often the
goal is to reduce the size of heat exchangers required for a specific heat duty, thereby
reducing capital cost and energy expended in manufacturing the equipment. It may
also be necessary to upgrade the heat transfer capability of an existing heat exchanger.
More effective heat transfer may be required to prevent excessive temperature or

system destruction in situations where heat generation is fixed.

Techniques to augment heat transfer inside tubes are generally classified as passive
or active. Passive techniques, which require no external energy to produce the
augmentation, include the use of extended surfaces, the use of artificially roughened
surfaces, the use of swirl low devices such as twisted tapes or inlet vortex generators,
the use of displaced promoters such as disks or static mixers, and the use of additives
such as gas bubbles or solid particles. Active techniques, which require external
energy to produce the augmentation, include mechanical agitation, vibration of the
surface or fluid, application of electrostatic fields, and injection or suction. Detailed
surveys of the many augmentative methods presently employed are given in references
[4, 5, 6, T]. A recent survey focused on laminar flow heat transfer augmentation in

tubes is given in reference [8].



The passive technique in the iorm of tube inserts has been of great interest for
augmenting forced convection heat transfer. Inserts can be categorized into two
groups according to Bergles {7): those that indirectly improve energy transport
through increased mixing such as metallic mesh, static mixer elements, rings, and
disks (i.e. displaced promoters); and those that enhance heat transfer by creating
rotating and/or secondary flow such as inlet vortex generators and twisted tapes
(i.e. swirl flow devices). These inserts generally are known to produce significant
heat transfer augmentation. But they are also known to introduce a large pressure
drop. Sununu [9] and Genetti and Priebe [10] used Kenics static mixers for heating of
viscous oil. The increase in heat transfer was about 150-200 percent but the increase
in friction factor was almost 900 percent. Van Der Meer and Hoogendoorn [11] used
Sulzer mixers for heating of silicon oil. About 400 percent increase in heat transter
was reported, but no friction factor data were reported. Based on the manufacturer’s
data, Bergles [8] reported that these mixers gave a pressure drop increase of about

1400 percent above smooth tube values.

A good heat transfer increase with a mild increase in pressure drop is reported
with twisted-tape inserts. Marner and Bergles [12] reported a set of heat transfer
and pressure drop data for laminar flow of a viscous liquid in circular tubes with
twisted-tape inserts and a uniform wall temperature boundary condition. Using
ethylene glycol as a working fluid, they observed up to a 70 percent increase in
Nusselt number and about 300 percent increase in friction factor over smooth tube
values. Subsequently, Marner and Bergles [13] published another set of heat transfer
and isothermal pressure drop data. Using Polybutene 20, a highly viscous liquid
(Prandtl number range: 1000-7000), they obtained heating and cooling data in the
deep laminar region (Reynolds number range: 15-575). The observed enhancement

in Nusselt numbers was about 50 to 125 percent, while the isothermal friction factor



increase was 238 percent. Numerous other studies on twisted-tape inserts, either

experimental or numerical, can be found in the literature [14, 15, 16, 17, 18].

1.2 The Concept of Eversion

In the present study, a different concept is considered as a means of convective heat
transfer augmentation. While heat transfer augmentation can be achieved indirectly
through improved transport processes, it can also be achieved directly through
artificially increased local temperature gradient created by deliberately interchanging
regions of hot fluid with regions of cold fluids. Specifically, if the heated (or cooled)
film adjacent to a duct wall is exchanged with the colder (or hotter) fluid further
away, the local temperature gradient near the wall will be greatly increased, thus
increasing the heat transfer rate. Such an exchange process, in which the flow system

is turned inside out, may be described as eversion.

Convective eversion in a heated duct is any process whereby the annulus of hotter
fluid near the wall is interchanged with the core of cooler fluid. An evertor is
any device which will achieve this. Figure 1.1 illustrates one possibility in which the
evertor divides the flow into two streams of a core and an annulus and then exchanges
the fluid in these regions. With a proper choice of the relative size of the core and the
annulus, eversion can also increase local near-wall velocities and further enhance heat
transfer. In this study, transport enhancement due to increased mixing is viewed as
a further improvement on that achieved through eversively-induced alterations in the

local velocity and temperature field.

Perhaps the simplest way to evert a duct flow is through secondary motion.
If this motion induces a single vortex as in twisted pipes [19, 20, the resulting

secondary motion runs roughly parallel to the duct wall and therefore produces no
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TUBE WALL

CoLp

Figure 1.1: Sketch of evertor in a tube.

eversion. With two or more vortices, the required eversion effect takes place with a
corresponding increase in heat transfer: the simplest situation is a vortex pair. The
twisted-tape produces two vortices separated by the tape. Obviously, variations on

this theme are possible [8].

A form of evertor, similar to the one shown in figure 1.1, was first used by Bayley
and Lock [21] when they studied the flow conditions at the junction of a closed
thermosyphon. Application of the device as a useful means of augmenting forced

convective heat transfer inside ducts was investigated by Maezawa and Lock [22].



They studied heat transfer and friction characteristics of turbulent flow inside a
circular duct containing a number of different turbulence prownoters, among which
were evertors of various geometry. For the heating of air with a constant wall
temperature boundary condition, they reported that a duct fitted with regularly
spaced evertors resulted in about 120- 200 percent increase in average heat transfer
coefficients while the concomitant increase in friction coefficients was about 400- 3000
percent depending on the geometry of evertors and their spacing. Tests of this device

were not conducted for laminar flow conditions.

In laminar low augmentation, a distinguishing feature is that the increase in heat
transfer coefficients for tube inserts are, in general, of the same order of magnitude as
the increase in friction factors. By contrast, increases in turbulent flow heat transfer
coefficients are accompanied by pressure drops which are several orders of magnitude
greater than the plain tube values [23]. This fact implies that evertors may prove very
promising devices for augmenting laminar flow heat transfer. This work attempts to
provide some answers to the above proposition. The purpose of this study is not to
present an analysis of any particular eversion device or process. Instead, an attempt
will be made to model eversion in general terms and thereby explore its prospects
and its limitations. To this end, the analysis will focus on the numerical solution of
the governing equations for steady, axisymmetric flow and heat transfer in a circular

duct into which a variety of hypothetical evertors are introduced.

1.3 Outline of Thesis

In chapter 2, the problem to be investigated and the solution strategy are
described. To facilitate the numerical calculations, three eversion models along with

necessary assumptions are introduced. Then, the governing differential equations and



the boundary conditions are described.

Chapter 3 deals with the numerical implementation of the problem. Finite
difference equations and the SIMPLE-C algorithm are briefly explained. The accuracy
of the developed computer program is tested by solving the combined hydrodynamic

and thermal entry length problem and by comparing the solutions with other known

solutions.

To explain how eversion produces heat transfer augmentation and the concomitant
pressure drop increase, a tube enhanced by a single evertor is studied in chapter 4.
The velocity and temperature profiles after eversion and their subsequent development

further downstream are used to explain the characteristics of pressure drop and heat
transfer of each eversion model.

Chapter 5 studies the use of repeated eversion by investigating a tube enhanced
by a train of five equally spaced evertors. A systematic study of the effects of the
principal variables on hydraulic and thermal performance is conducted. Some results

are compared with those of twisted-tape inserts.

Finally, conclusions and recommendations for further study are included in chapter



Chapter 2

Mathematical Formulation

2.1 Definition of the problem and assumptions

The study of enhanced heat transfer, theoretical or experimental, basically consists
of comparing heat transfer and friction characteristics of an enhanced heat transfer
tube to those of a reference (i.e. smooth) tube. The same scheme is followed in this

study.

Figure 2.1 is a schematic sketch of an enhanced tube to be investigated. The
problem concerns the prediction of steady, forced laminar flow and heat transfer in a
circular duct of diameter D and length L containing one or more evertors of length
. The fluid is idealized as liquid or low-speed gas (incompressible) with the fluid
properties p, y, ¢, and k constant (independent of temperature). Viscous dissipation

and compression work are assumed to be negligible in the energy equation.

The fluid enters the duct with a uniform inlet velocity Uy, or a fully developed
velocity profile and with a uniform temperature 7;. It is heated by the duct wall

which has a uniform temperature both axially and peripherally. When the fluid,

8
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Figure 2.1: Sketch of the problem to be investigated.

having a certain velocity and a temperature profile, passes through an evertor, it is
turned inside out and has a different velocity and a temperature profile. Accurate
calculation of the velocity and temperature profile at any cross-section of the solution
domain requires solution of the differential equations which describe the transport of
momentum and heat in the region. But the existence of the evertors makes boundary
conditions prohibitively difficult to describe. Therefore, a simplified approach will
be used. First, solutions will be obtained in the domain a to b. Then, the velocity
and temperature profiles obtained at b will be everted according to three different
eversion models that will be described in the next section. The everted profiles then
serve as the new inlet boundary conditions for the domain of b to c. This process is
continued until the whole solution domain is covered. Thus, each section is considered
as a developing entry length problem. An important assumption used here is that the
eversion process occurs instantaneously at b, even though, in reality, it occurs over

the length of the evertor [.

This approach of section-by-section solution is somewhat similar to a streamwise

marching solution [24, 25, 26] of parabolized Navier-Stokes equations in that both
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methods use the assumption that no influence from downstream can penetrate
upstream. Thus, it is assumed that the fluid does not know the existence of the
downstream evertor until it reaches the evertor. However, unlike the streamwise
marching solution, the complete Navier-Stokes equations are used here when each
section is solved. This is because more accurate calculations are desired in the
immediate vicinity of each entrance where very high local heat transfer and friction
coefficients are expected to occur. For each section, zero gradient of each dependent
variable is used as the exit boundary conditions needed to solve the elliptic equations.
This may not always be true, especially when the length of the tube section is short
and thus the flow is still developing at the exit boundary. But this is the closest
approximation at the exit boundary. Also the flow is assumed to be axisymmetric

although real evertors may make the flow three dimensional.

2.2 Eversion Models

For present purposes, eversion may be defined as the turning of a flow inside out.
This is the means by which, for any given micro or macro diffusion efficiency, the
gradient of potential, temperature in particular, may be artificially increased. The
precise mechanism of eversion is not important in this study, although it might be
noted that there are many possibilities ranging from swirl flow devices to displacement
promoters. Instead, eversion is modelled by three idealized processes. Since a flow
carries with it a variety of extensive properties, it is perhaps worthwhile limiting the
discussion to those quantities most appropriate to thermal convection: namely, mass

flow rate and energy flow rate.

The rate of mass flow » down a circular duct is given from the velocity distribution
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as

R, Rw
m:zwfo pURdR+27r/R pU RdR 2.1)

where R. is the radius at which the mass flow rate is divided into two generally
unequal parts; this radius thus serves to distinguish between the core (R < R.) and
the annulus (R > R.) which are to be interchanged. Similarly the thermal energy

flow rate (the advective flow rate) A is obtained from the velocity and temperature

-/0 -/R.
cp cp ( * )

Once again, the two contributions are not generally equal. If necessary, equation
(2.2) may be written in more general terms by adding the conductive flux and the
kinetic energy flux to give the complete energy flux, but these are ignored here for
simplicity. The idea of eversion modelling is that the above two quantities of fluid
immediately upstream of the evertor are conserved by the process of eversion and are

thus maintained in the corresponding fluid discharged from the evertor.

2.2.1 Ideal Eversion Model

Under ideal circumstances, the hottest fluid would be exchanged with the coldest
fluid. Suppose this is to be achieved by an array of (n — 1) rings which collect fluid
in a series of thin annuli and, through the use of suitable plumbing, re-distribute it
through the second set of (n — 1) rings. Figure 2.2 shows n radial nodal locations
from R = 0 to R = R, and division of flow into (n — 1) rings. The ideal eversion
model assumes the exchange of fluid between the first ring and the (n —1)th ring, and
between the second ring and the (n — 2)th ring, and so on, as is shown schematically

in figure 2.3 using 6 rings. The flnid in each numbered ring before eversion is assumed
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Figure 2.2: Flow division in a circular tube.

to be redirected to the corresponding ring after eversion. With the known velocity
and temperature profile in the pre-eversion state, it is then possible to calculate the
velocity and temperature profile in the post-eversion state. For example, consider
the exchange between the first ring and the (n — 1)tk ring. If the ring thicknesses
are much less than the tube radius, and the velocities are linearly interpolated, the

continuity requires that
U;+U; Un+ Upn-
A (B0 am - By = s (B2 0 - L) 9)

where the prime denotes the post-eversion state quantities. This describes the everted
mean velocity (U] + U;)/2 in the first ring resulting from the mass collected from the
(n — 1)th ring of a prescribed velocity profile. In general, the exchange takes place
between the (j)th ring and the (n — j)th ring. Thus

Y +U’ Un—' +Un—'
(G D) - = s () - ) 0

in which j=1,2,3,: -+ (n — 1). Since density is assumed to be constant, equation (2.4)

can be written as

J+1 + U’ Rn—J+l erl—J Un—js1 + Un-; 2.5
o) = (Becp . (2.5)

7
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Figure 2.3: Ring exchanges in ideal eversion model.

When the everted mean velocities are obtained for all (n —1) rings, they are converted
back into nodal velocities by linear interpolation utilizing the no-slip condition at

R =R,.

The everted temperature profile is similarly obtained through the requirement of

the energy conservation. Thus

L+ U T . +T
p.,ic'p,' ( .1+12 J) ( J+12 J) W(R?_H "R?) —_

Un-' +Un—' Tn—' +Tn—'
ey (BTt ) (Dot PN s B2 ) (26)

where j=1,2,3,:- - (n — 1). However, when equation (2.5) is substituted, it reduces to

(TJ{H + TJ') - (Tn—j+1 + T,._,-) 2.7)

2 2

Equation (2.7) shows that temperature plays a passive role in eversion. That is, the
mean fluid temperature in a ring immediately upstream of the evertor is unchanged
by the process of eversion and thus is preserved in the corresponding ring of fluid

discharged from the evertor.
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Figure 2.4: Ring exchanges in laminate eversion model.

2.2.2 Laminate Eversion Model

The ideal eversion model described above may be more of a conceptual model
rather than a practical one, and therefore it might be difficult to achieve in practice.
A more realistic model would be the exchange of fluid on both sides of R. in bulk.
The laminate eversion model assumes that the fluid is exchanged in bulk and that the
laminate structure of the fluid is preserved during eversion, considering the flow field
is laminate (though not necessarily laminar) before eversion. That is, the exchange
takes place, referring to figure 2.2, between the first ring and the (k)th ring, and
between the second ring and (k + 1)th, and so on: k is the half-way point (i.e.
k = n/2+1) in an even number of rings. The schematic diagram of this eversion

model is shown in figure 2.4 again using 6 rings. The conservation of mass in this

model gives
Ubmjir + Ut _ (Rijir — B2 (Un-m + U,,_,-) (2.8)
2 R - RE; 2
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in which j=1,2,3 -+ (k — 1). And the conservation of energy gives
(Tl:—j-i-l + le—j) - (Tn—j+1 + Tn—j) (2.9)

2 2
showing that temperature, again, plays a passive role in eversion. The equations (2.8)
and (2.9) explicitly give the velocity and temperature field, respectively, from R = R,
to R = Ry, after laminate eversion in terms of the pre-eversion field. The expressions
are inverted when k is replaced by » and n by k to give the velocity and temperature

field from R = Ry to R = R,,.

2.2.3 Mixed Eversion Model

This model is similar to laminate eversion model in that it also assumes the bulk
exchange of fluid. But unlike the laminate eversion model, it does not assume that
the laminate structure is preserved during the process of eversion. Instead, it assumes
that each of the two streams discharged from the evertor is completely mixed and

emerges with a constant mean velocity. Then, the everted core velocity formed from

the annulus is given by

—_— 2 rRa
Ul = k_s/a. URdR (2.10)
and the everted annulus velocity formed from the core is given by
— 2 Re
-
iz Rg—szo URdR (2.11)
Similarly, the everted core temperature formed from the annulus is given by
—_ 2 Rn R,
 — - .
= [, UTR4R /R TdR (2.12)

and the everted annulus temperature formed from the core is given by

_ R.
77 = /o TdR (2.13)
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Once again temperature is shown to play a passive role in eversion.

Several comments can be made concerning eversion modelling:

o Both ideal eversion model and laminate eversion model use the ring interchange
about R.. The choice of R. is a variable. With a given R., the same number
of rings in both core and annulus must be used. The choice of ring thickness,
however, is arbitrary. The chosen thicknesses follow the hypothetical plumbing
arrangements. Two obvious choices are: rings of equal area and rings of equal
thickness. The latter will be used here, but with the core and annulus ring
thicknesses being different.

e In practice, secondary conduction between adjacent streams of fluid may
occur as they cross through the evertor. As mentioned before, any transport
enhancement caused by the molecular intermixing is viewed as a further

improvement.

¢ Momentum has not been considered in the above equations even though the area
changes in the ring exchange undoubtedly create changes in the fluid velocity
profile. It is thus expec_ted that the momentum flux of the annulus prior to
eversion would not be the same as that of the core following eversion; a similar
statement applies to the upstream core and downstream annulus. There is,
in general, a change in total momentum flux resulting from eversion. Such a
change implies a force which is manifest here as a change in pressure across the
evertor. Different types of eversion therefore carry with them different pressure
characteristics. The pressure changes thus incurred have been incorporated in

the calculation of the friction factors, as will be discussed in chapter 4.
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2.3 Governing Equations and Boundary

Conditions

The problem described in section 2.1 can now be expressed as that of solving
the governing partial differential equations. The conservation equations for mass,
momentum and energy in a circular tube are well known. For steady, laminar,

axisymmetric, constant property conditions in cylindrical coordinate systems they

are:

Mass conservation:

ou 190
X Rﬁ(RV) 0 (2.14)
Axial momentum:
aUu oU oP 190 ou o
. (Ua_.? + Vﬁ) ="ax T "R 3R (Rﬁ) Fax: (2.15)
Radial momentum:
ov ov oP 190 ov |4 v
p (U ax "572) = 3R+ FR9E (Rﬁ> “rmtiexe (219
Energy conservation:
oT aT 190 oT 8T
(Ua‘ + VaR) kRaR (Rﬁ) + k_aYE (2.17)

The above equations are subject to the following initial and boundary conditions:
Inlet(X = 0):

U=2Un[l- (%)2], V=0, T=Tp forall R (2.18)
Outlet(X = L):
for all R (2.19)

|

I
®
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Wall boundaries(R = R,):
U=0, V=0, T=T,= constant for all X (2.20)

Axis of symmetry(R = 0):

aU T
ZE=0 V=0 ==

R 0 for all X (2.21)

The initial conditions at the inlet given in equation (2.18) represent hydrodynamically
developed flow entry. For a developing flow the uniform flow entry (U = Un and
V = 0) or the irrotational flow entry (U = Un and dV/0X = 0) can be used. These
boundary conditions indicate that it is only necessary to consider half of the tube due

to the symmetry about the center of the tube.

2.4 Non-dimensionalization

It is common practice to non-dimensionalize the governing equations before
performing a numerical analysis. The advantages of non- dimensionalization are
various: parameters are combined into familiar dimensionless groups; solutions
obtained are more easily applied to different situations; debugging of computer
program is easier since relative orders of magnitude become predictable. The following

dimensionless parameters were introduced.

X
T = —E (222)
r = -;;w (2.23)
v = Ui (2.24)
I (2.25)

[
|
P anne N
)
S [~
N’ |
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_ T-T

¢ = T =T (2.26)
_ P-p

p = iz (2.27)

Substitution of the above parameters into equations (2.14) to (2.17) yields the

following non-dimensionalized equations.

212 (m)=0 (2.28)
et Rt Ew ) e (E) e
S (a) s (s) e

where

Re = &”2 is the Reynolds number based on diameter;
Pr = 2£ s the 2randtl number;

Pe = Re Pr is the Peclet number;

H= % is the length/diameter ratio.

The initial and boundary conditions are also expressed in non- dimensionalized form

as
Inlet(z = 0): v =2(1 —r?), v =0, and ¢ = 0.

Outlet(z = 1): §* =0,v =0, and 2 = 0.



Wall boundaries(r =1): u =0, v =0, and ¢ = 1.

Axis of symmetry(r = 0): % =0,v=0, and %‘ré = 0.

20



Chapter 3

Numerical Implementation

3.1 Introduction

The governing equations (2.28) to (2.31) form a set of non-linear partial differential
equations. They cannot be solved analytically in a closed form and hence must
be solved numerically. In this problem, where the properties are assumed to be
independent of temperature, the major calculation step is the solution of the Navier-
Stokes equations which govern the fluid velocity field. Once the velocity field is

obtained, the solution of the energy equation is relatively simple.

The difficulty in the solution of the Navier-Stokes equations lies in the unknown
pressure field. Each equation contains a pressure gradient term. Yet, there is
no explicit equation for obtaining pressure. The pressure field is rather indirectly
specified via the continuity equation. This is realized from the fact that when
the correct pressure field is substituted into the momentum equation, the resulting
velocity field satisfies the continuity equation. Thus, a method of utilizing the

continuity equation to obtain the pressure field is required.

21
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In early simulation methods, this was often done by cross- differentiating the
momentum equations to eliminate the pressure terms at the cost of increasing the
order of the equations and the number of variables. This approach may lead to
the stream function/vorticity method with the dependent variables becoming stream
function and vorticity. The method enjoys the major advantages of avoiding the
explicit appearance of the pressure and not having to solve the continuity equation
directly. The method, however, suffers some major shortcomings. The values of
vorticity at the boundaries, especially at the solid walls, are not known ¢ priori.
Instead, approximate vorticity boundary values are arrived at during the course of
the solution by extrapolating to the boundary using the latest available field variables.
These extrapolation techniques are generally not consistent with the overall numerical
scheme and often cause trouble in obtaining a converged solution [27]. Another major
disadvantage of the method is that it cannot easily be extended to three- dimensional

situations, for which a stream function does not exist.

A more recent approach for treating the velocity-pressure coupling is to transform
the continuity equation into an equation for obtaining the pressure, with the
understanding that the pressureis only an agent to enforce the continuity requirement.
This approach has led to the development of the SIMPLE (Semi-Implicit Method for
the Pressure Linked Equations) algorithm. The method uses the so-called primitive
variables, namely the velocity components and pressure. Developed in 1972 by
Patankar and Spalding [24], the SIMPLE algorithm has been extensively used over
the last two decades in resolving the pressure-velocity coupling in incompressible flow
problems. Over the years, a number of modifications to the SIMPLE algorithm have
been proposed and shown to have better convergence properties. The SIMPLE-
R (SIMPLE Revised) algorithm of Patankar [27, 28] and SIMPLE-C (SIMPLE
Consistent) algorithm of Van Doormaal and Raithby [11] are examples of such
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modifications. The SIMPLE-C algorithm, in particular, has been shown to possess

the property of good convergence and improved economy, and thus is used in this

study.

3.2 Finite Difference Equations

3.2.1 Grid Definition and Control Volumes

The finite difference grid consists of orthogonal, intersecting grid lines, dispersed
over the computational domain along directions parallel to the x- and r- coordinate
directions. The spacing between grid lines is, in principle, arbitrary but is normally
chosen to minimize the total number of nodes while representing the steep gradients

with a greater density of nodes.

In this study, a M x N unequally spaced grid is employed, where the numbers M
and N are to be decided later. The grid is staggered so that the velocities are located
at the cell faces, where they are required for mass flow rate calculations, and the scalar
variables are located at the nodal points. The advantages of using the staggered grid
are described by many researchers [27, 30, 31] and will not be repeated here. The
typical control volume of each variable on the staggered grid and the conventional

notation of Patankar surrounding a control volume are shown in figure 3.1.

3.2.2 Some Details of Discretization

The finite difference equations are derived by volume integration of the governing
equations (2.28) to (2.31) over the cells defined in figure 3.1. Although the full details

of derivation are described in references [27, 28], illustration of some major steps as
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Figure 3.1: Control volume and notation in the staggered grid.
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well as comments on the choice of discretization scheme seem appropriate. For these

purposes, consider the axial momentum equation. The equation (2.29) can be written

as

107, 135, _ 0

rdz 'ror Oz (3:1)
where J; and J, are the total (convective plus diffusion) fluxes given by
1 Ju
Jr = ruu — (ReH) U (3.2)
and
4H\ Ou
Jr =rvu — (-E;) = (3.3)

The integration of the equation (3.1) over a control volume and using the notation

shown in figure 3.1 gives

JeAr — JuAr + LAz — J,Az = (p, — pe)rAr (3.4)

The evaluation of flux terms at the control volume faces require an interpolation
scheme. The usual second order accurate central difference approximation, using a
piecewise-linear profile, presents no particular problem in approximating the diffusion
terms. However, convection (e.g. ruu and rvu), which is by its nature a non-
symmetrical process, may lead to oscillatory solutions or non-convergent solutions for
most practical cell Peclet numbers (P > 2), when the central difference schemeis used.
A well known treatment for the above difficulty is the first order accurate upwind
difference scheme [32, 33]. This scheme guarantees a converged solution; however, at
a sacrifice in the solution accuracy by inducing a false diffusion, especially for small
cell Peclet numbers. Thus, a compromise must be made between the accuracy and
the numerical stability for a successful scheme. Such schemes include: the hybrid
difference scheme (33, 34, the quadratic upstream difference scheme [35, 36, the
locally exact difference scheme [37] and the power difference scheme [27]. In this
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study, the power difference scheme recommended by Patankar is used, because it is
unconditionally stable and solutions are accurate if they are grid independent [35).
The scheme switches from one expression to another depending on the cell Peclet
number. That is, for a cell Peclet number greater than 10 in magnitude, the power
difference scheme reverts to the upwind scheme; otherwise an approximation of the

locally exact profile is obtained using a fifth power curve.

The application of this scheme to equation (3.4) leads to the final discretized

equation in the following form:
apup = agug + awuw + ayuy + asus + b (3.5)

or more simply
apup = Zanbunb +b (3.6)

where the summation is over the appropriate neighbour points. The coefficients are

given as
ag = D.A(|P.])+MAX(~F.,0) (3.7)
aw = DyA(|Ps])+ MAX(F,,0) (3.8)
any = DnA(|Pa]) + MAX(-F,,0) (3.9)
as = D,A(|P)+ MAX(F,,0) (3.10)
ap = ag+aw +an+as (3.11)
b = (pw—pe)rAr (3.12)

The cell flow rates are given as

F, = ur.Ar (3.13)
F, = uur,Ar (3.14)
F, = vrnAz (3.15)
F, = v,r,Az (3.16)
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The cell conductances are given as

TeAT
Dc = m (3.17)

WAV o
D, = BeF (62 H(6z)a (3.18)
4H r, Az
Re(ér)n
4H r,Az
Re(67),

(3.19)

(3.20)

The cell Peclet number P is taken as the ratio of F' and D; thus, P, = F,/D, and so

on. The function A(|P]) is given as
A(|P|) = MAX[0, (1-0.1|P|)%] (3.21)

The function MAX chooses the larger of the two arguments in the bracket.

The radial momentum equation and the energy equation are similarly discretized,
resulting in the same form as equation (3.5) except with minor differences in the

coefficients: for the radial momentum equation,

4H (1
ap = ag+aw +ay+as+ e (;ATA:L') (3.22)
b = 4H*(p, — p,)rAz (3.23)

and for the energy equation, the Reynolds number Re is replaced by the Peclet
number Pe in equatioas (3.17) to (3.20), and b = 0. The indices, of course, should
be appropriately interpreted for each equation since each equation uses a different

control volume on the staggered grid.

The coefficients in equations such as equation (3.5) depend on the solution for
other dependent variables (e.g. v). To handle the resulting inter-equation linkages
and nonlinearities, an iterative solution procedure is required. At the beginning of

each iteration cycle, the coefficients are evaluated using u, v values obtained in the
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previous cycle. With cycle-by-cycle change in coefficients, the resulting change in the
u, v values can be quite large, and this may cause slow convergence or even divergence.
To moderate the changes in consecutive solutions, under-relaxation is introduced to

momentum equations through « as

ap -

1
Z“P = Zanbunb + rAr(pu, —Ppe) +
= D anstns + Ap(pu — Pe) + bp (3.24)

apu}

where u} is the value of up from the previous cycle, Ap (= rAr) is the area of the

face of the control volume at P, and bp is the 1:=2apu}

3.3 The Algorithm

As mentioned before, the continuity equation is converted into a pressure
correction equation. Using the staggered grid shown in figure 3, the finite-volume
equations for u and v, respectively, have the form of equation (3.24). Rewriting the

u- momentum equation for the control volume centered at e, one gets
Gelle = Y Quplins + Ae(PP — PE) + be (3.25)
where a. is now ¥ a,5/a. For a guessed pressure field p*, the velocity u* satisfies
aeuy = Y anstiny + Ae(Pp — PE) + be (3.26)

If equation (3.26) is subtracted from equation (3.25), the fully implicit velocity

correction equation for u is obtained as

e, = Y Gnbtin, +A(Pp — PE) (3.27)
L —



29

where

u = u'+u* (3.28)
p = p+p (3.29)
In the SIMPLE algorithm, the marked term in equation (3.27) is neglected for

economic calculation. In the SIMPLE-C algorithm, however, the velocity correction

equations are obtained by subtracting the marked term from both sides of the

equation. This yields
(ae — Z @)U = Z Gnbling — Ue +Ae(Pp — PE) (3.30)
R —

The marked term is now neglected, resulting in

Ue = g + de(pP' - pig) (3.31)
where
A
i (3.32)

To obtain the pressure correction equation, equations like equation (3.31) for u

and v are substituted into the discretized continuity equation for the control volume

around the main grid point. i.e.,

UeTe AT — uy Ty Ar + Va1 Az ~ 0,7, Az =0 (3.33)
The resulting pressure correction equation has the foliowing form.

appp = agPg + awpw + anpy + asps + b (3.34)

where

A, (3.35)

ag



aw = Aupdy (3.36)
ay = 4H?*A.d, (3.37)
as = 4H®A,, (3.38)
ap = ag+aw+an+as (3.39)

b = Ayuy — Acu; + A,v; — Apv), (3.40)

The SIMPLE-C algorithm uses the TDMA (Tri-Diagonal Matrix Algorithm)
procedure to solve for the dependent variables. Each algebraic equation along a

constant line (e.g. in the r-direction) can be written as

apdp = angn +asps + S (3.41)

where the other neighbouring (e.g. east and west) terms are incorporated in S and are
assumed temporarily as known. It is this formulation (3.41) which allows a line-by-line
iteration method. A briet description of the solution procedure is presented below.

Details that are omitted here may be found in the original references [11, 27, 28].

1. Guess the pressure field p*.

2. Solve the momentum equations such as equation (3.26) for u and v using the
line-by-line iterations based on TDMA procedure. The obtained velocities u*

and v* do not, in general, satisfy continuity.
3. Solve the pressure correction equation (3.34) for p'.

4. Apply the pressure corrections to correct pressure using equation (3.26) and
velocities using equation (3.31). This eliminates the continuity errors in the

current iteration cycle.

5. Using the p found in step 4 as the new p*, return to step 2. Repeat this iteration

cycle until the convergence has been reached to a specified tolerance.
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6. Solve the energy equation.

3.4 Convergence Criteria and  Accuracy

Considerations

This algorithm has been embodied in a computer program using FORTRAN-
77 language. Application of the velocity and temperature boundary conditions is
straightforward since functions or their gradients are specified at the boundaries.
The boundary conditions for the pressure correction equation are not so obvious. The
procedure recommended in reference [11] is used to implicitly assure the appropriate
boundary treatment of p’ depending on the velocity boundary conditions: when the
velocity normal to the boundary is specified, dp’/dn becomes the boundary condition;
when the pressure is specified, one should set p = p* and p’ = 0 at the boundary.
Because of the relative nature of pressure, p = 0 can be set as a reference value at any
suitable grid point. For the outflow boundary conditions of du/0z = 0 and v = 0, as

in the present problem, p = 0 is set along the boundary at z = 1.

When solving each algebraic equation for a dependent variable, the TDMA solver
is applied in alternating directions of z and r. The double sweep is terminated when
the residual is smaller than a certain small number or when the number of double
sweeps exceeds 10. Usually one double sweep is enough except for the first few cycles
of iteration. The overall iteration is terminated when the grid average change in u
for two successive iterations is smaller than 0.5 x 10~ percent, together with the
requirement that the grid average continuity error be less than 0.5 x 10~ percent. In

general, the former requirement is satisfied before the latter. The complete code is

listed in Appendix A.



32

3.5 Test of Computer Program

The validity of the computer program was tested by solving a problem of laminar
forced convection heat transfer in a smooth circular duct. This problem has been
thoroughly studied and well documented. Among many different cases, the combined
hydrodynamic and thermal entry length (or simultaneously developing flow) problem

is considered here.

The irrotational inlet initial conditica (i.e. u = 1, dv/0z = 0) and the constant
wall temperature thermal boundary condition were used for the purpose of comparison
with existing results. The solutions were obtained on the Amdahl 5870 mainframe
computer using a 22 :: 15 unequally spaced grid system, with the fine grid size near
the entrance region and near the wall, and a coarser grid as the fully developed region
is approached. With the optimum under-relaxation factor of 0.75, a convergence was
obtained after 45 iterations requiring about 32 seconds of CPU time. For an indication
of the accuracy of the numerical solutions, some calculations were carried out using
a 44 x 30 grid. The largst disagreement of the local friction factors and local Nusselt

numbers was smaller than one percent.

Figure 3.2 shows the development of the axial velocity profile for Re = 100.
The small Reynolds number was deliberately chosen to show the so- called velocity
overshoots or axial velocity inflections [1, 25]: the velocity profiles have a local
minimum at the tube centerline and symmetrically located maxima on either side
of the centerline near the tube wall. The velocity overshoots have also been observed
by other investigators [25, 38, 39]. These peculiar velocity profiles occur near the
entrance region (z+ < 0.005) for Re < 400, when the effects of axial diffusion of
momentum and radial pressure gradient are included iu the analysis (i.e. when the

full Navier-Stokes equations are solved). The detailed explanation of this phenomenon
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34

is given in reference [1].

The hydrodynamic entrance length Ly, is defined, following Shah and London
[1], as the duct length required to achieve a maximum velocity of 99 percent of the
corresponding fully developed magnitude when the entering flow is uniform. For the

circular tube, its commonly accepted value is given as

%ﬁ = 0.59 + 0.056Re (3.42)

The present study produces Ly, values within 2 percent of the equation (3.42).

Figure 3.3 compares the calculated friction coefficient data, expressed as f,p,Re
as a function of z*, with those of other researchers. In the literature, fupp is called
an apparent Fanning friction factor, defined as
(}%’,’I) _4p

CE

fapp = (3.43)

Thus, fapp is based on the total pressure drop from z = 0 to z. It takes into account
both the skin friction and the change in momentum rate due to change in the shape
of the velocity profile in the hydrodynamic entrance region. For convenience, the
subscript will be dropped and f will have the same meaning as f,;, from now on.
Due to the presence of the transverse pressure gradient in the entrance region, Ap
is calculated by po — Pz, where 77 is the area integral average pressure at a specified
axial location (this is calculated using the numerical spline integration method), and
po is the centerline pressure at the tube entrance. As shown in the figure, f,,,Re
values of the present study are very close to those of Schmidt [40] at Re = 500
except for low values of z+. For z+ < 0.002, Schmidt’s results are said to be
questionable according to Shah and London [1]. Liu’s solutions involve the boundary
layer approximations (they are independent of Re or the inlet block profiles) and

therefore they are considered to be less accurate, especially near the inlet region.
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Figure 3.4 shows the comparison of the local Nusselt number obtained from this
woik with results of other studies. The local Nusselt number is given by

.’_1_12_. Dg—ﬁ'lw _ 2%?'1:1

Nuz': k —Tw—Tm_ 1—¢m

(3.44)

where @, is the fluid bulk mean temperature at an arbitrary cross section r defined

as

b =2/01u¢rdr (3.45)

and is again evaluated using the spline integration method. The figure shows that the
calculated Nusselt numbers closely follow those of Schmidt. Away from the immediate
inlet, the boundary layer type solutions of Manohar [42] and Hwang and Shew [43]
also agree quite well. The Nu, asymptotically approaches the exact value of 3.66.
The thermal entrance length L, is defined as the length required to achieve a value
of local Nu, equal to 1.05 Nu, for fully developed flow. For simultaneously developing
flow and Pr = 0.7, its value, according to references [40] and [41], is given as

L
D Pe

= 0.037 (3.46)

The value produced by the present study is 0.038, about 3 percent higher than the

above value.

The results discussed so far indicate that the computer program is running with
sufficient accuracy, and therefore the next step of eversion modelling study can be

taken.



40.0
rah

0 This work

37

g T T T T UL LB BL L S ! UL LA I
10°* 10° 100 10
z-

Figure 3.4: Comparison of local Nusselt number for simultaneously developing
laminar flow in a circular duct with uniform wall temperature.



Chapter 4

Single Eversion

4.1 Introduction

In this chapter, enhancement by a single evertor is studied. The problem
considered here is sketched in figure 4.1. The flow is everted at the inlet of the
tube according to the three eversion models and the effect of each eversion on the
pressure ¢ rop and heat transfer is investigated. A single evertorinserted in a long tube
may not produce significant changes in the pressure drop or heat transfer. However,
the study of single eversion can be useful to explain how eversion brings about such

changes by examining the fluid velocity and temperature profiles after the process of

eversion.

The fluid enters the tube with a fully-developed velocity profile and a block
temperature profile (¢ = 0). The fluid is being heated by the wall which maintains
a constant temperature (¢ = 1). The parameters involved are Re, Pr, r. and
H. As an initial study, the parameters are conveniently chosen to be as follows:

Re=1000, Pr=0.71, r.=0.707 and H=50. The effects of varying these parameters on

38
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Figure 4.1: Sketch of single eversion problem.

the pressure drop and heat transfer will be studied in the next chapter.

4.2 Velocity and Friction Results

Solutions to the differential equations have been obtained with a 24x19 non-
uniform mesh, first for the smooth tube and then for the tube containing a
hypothetical evertor of three different kinds. Axially, the grid is designed to emphasize
the region immediately downstream of the evertor where the effect of eversion is
expected to be most significant, and progressively less as the outlet is approached.
Radially, 10 equally spaced nodal points are placed from r = 0 to r = r, and another
10 from r = r. tor = ry,. This radial grid is chosen to accommodate the ring exchange
in the eversion models, specifically the ideal eversion model and the laminate eversion

model.

Figure 4.2 shows the effect of ideal eversion on a fully developed (parabolic) input
velocity profile. The everted profile, calculated from the equation 2.5, is shown as

a dotted line. It has rather a strange shape: the velocity near the wall is seen
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to increase significantly while compensation takes place in the central region. The
independence of the everted profile shape on the number of radial nodal points was
tested by doubling the number of radial nodal points: maximum change in the local
velocity was less than one percent. The conservation of mass flow was also tested by
comparing mass flow calculated from the velocity profile before and after eversion:
agreement was within one percent. The small discrepancy may be attributed to
the averaging process involved in the model and the round-off error in numerical
spline integration. The subsequent development of the everted profile is also shown
in the figure. Re-establishment of fully-developed profile occurs after about 50 tube

diameters.

Figure 4.3 shows laminate eversion under the same condition. The everted profile
is enormously different from the fully developed form, creating a very high wall
shear stress immediately downstream of the evertor and a surge in core velocity.
Not surprisingly, the length required to restore the parabolic velocity profile is much
greater. Figure 4.4 shows the corresponding profiles for mixed eversion. The everted
profile is shown by the two block profiles separated at r.. To avoid computational
singularity at r., an average value was taken at that nodal point. The subsequent
development of the two block profiles to a fully- developed profile is seen to occur
relatively quickly. All of the above three figures show that eversion creates a velocity
profile that is radically different from the parabolic profile and that its effect is
maintained over a considerable distance from the entrance. This effect, specifically
the increase in velocity near the wall, will contribute to the increase of heat transfer

coefficients, as will be discussed in the next section.

Pressure changes during eversion are the result of two superimposed effects: the

skin friction and the change in momentum flux (due to change in the shape of the
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velocity profile). The skin (or drag) friction effect may be represented by

dP
AP; = — .
v =Cl ( 7 X)O (4.1)
where (55)0 is the pressure gradient in the bare tube and C is a coefficient chosen to

reflect the geometry of the evertor: notably the surface and cross-sectional areas to
which the fluid is exposed. Values of C = 2 and C = 3 were tried and the difference
was found to be minor, as will be shown later. However, in order to be conservative, a
value of C' = 3 has been used throughout. The length of evertor, [, was assumed to be
2D. The change in momentum flux during the process of eversion may be translated
into a pressure change by the expression

_4(M - M)

AF. nD?

(4.2)

where M is the momentum flux immediately upstream of the evertor and is calculated

as

Ry
M=2rp /0 U? RdR (4.3)

M’ is the momentum flux immediately downstream of the evertor and is similarly

calculated.

In figure 4.5, the bare tube pressure profile is described by the curve ABE which
would be altered to ABE' if velocity profile development alone were considered with
eversion taking place at B. If the drag and momentum pressure changes are assumed
to be localized at the plane of eversion, the pressure would follow the full line ABC D:
the segment CD is simply BE’ lowered by the amount BC. This composite pressure
profile has been used to determine the friction factors discussed below. In reality, the
pressure profile through the evertor may look more like the chain dotted curve, but

this fact would not change the conclusions given later.



plane of eversion

Figure 4.5: Composite pressure profile after eversion.
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Figure 4.6 shows the pressure profile for each type of eversion. For each of the
three eversion curves, the discontinuity at X/D = 0 (the initial pressure difference
from the value of the smooth tube) represents the localized sudden pressure drop
during the process of eversion. For the given conditions, Ap. is calculated to 0.184,
0.877 and -0.113, for ideal, laminate and mixed eversion, respectively. Apq is found to
be 0.091 in each case. The pressure drop downstream of the evertor depends on the
everted velocity as it tends towards establishment of the fully-developed form further
downstream. As figure 4.3 shows, the flow field after laminate eversion is slowest
to recover and hence the pressure drop due to momentum change is the smallest,

resulting in the smallest total pressure drop. The opposite is true for mixed eversion.

The corresponding apparent Fanning friction factors are shown in figure 4.7.
Results from using both C = 2 and C = 3 are shown for each eversion to show
that the resulting difference in friction factor is minor. The smooth tube data are in
excellent agreement with the well-known analytical solution of f = 16/ Re. Compared
to this data, all of these curves show a significant increase in friction factor, as would
be expected from the alterations in the velocity profile produced by eversion. For
laminate eversion, the initial large Ap. during the eversion process results in the
highest friction factors over the first 20 tube diameters, but further downstream the
friction factors become lowest due to the slow development of the velocity profile,
as figure 4.6 suggests. On the other hand, the lowest initial disadvantage in mixed
eversion is not maintained. Instead, mixed eversion ends up with the highest friction

factors after 20 tube diameters.
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4.3 Temperature and Heat Transfer Results

It was noted in chapter 2 that temperature plays a passive role during eversion and
that the advective flux, unlike the momentum flux, is preserved across the evertor.
Viscous dissipation has been neglected throughout, and the possibility that heat may
be transferred between streams crossing each other has been ignored. In other words,
it has been assumed that the rate of heat conduction between the tube wall and the
fluid immediately adjacent to it changes discontinuously across the plane of eversion

solely as the result of plumbing arrangements which exchange hotter and colder fluid.

If eversion is not considered, the thermal entrance problem with a parabolic inlet
velocity profile is an extended Graetz problem with axial heat conduction when
the tube is maintained at a constant and uniform temperature different from the
uniform temperature of the fluid at the entrance. It has long been known that,
except for the immediate neighbourhood of z* = 0, axial heat conduction within the
fluid is negligible for Pe > 50 [1]. Therefore, the solution o the classical Graetz
problem essentially forms the basis for comparison with the results of eversion. The
Graetz problem is one of the fundamental problems for internal flow convection heat
transfer. In addition to its great practical importance, it has induced many applied
mathematicians to apply and test different mathematical methods and approaches,
since a closed-form solution exists for this problem. In figure 4.9, the comparison of
the Graetz problem solution with the present solution for the case of Pe = 710 is

shown. Agreement is seen to be excellent for a smooth tube.

With an evertor at the inlet, however, the problem becomes another kind of
extended Graetz problem with non-uniform inlet temperature and/or non-parabolic
velocity profiles. The Graetz problem with non-uniform inlet temperature was

investigated by Hicken [from 1]. He considered five different one-period sinusoidal
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fluid temperature profiles at z* = 0. For the case of heat transfer from the fluid
to the wall, he found the following results. For the case of sinusoidal variations in
the inlet fluid temperature with the minimum temperature at the center of the pipe,
the Nusselt numbers were higher than those for the uniform inlet temperature case.
Decreasing this temperature at the pipe center increased the magnitude of the Nusselt
number in the thermal entrance region. For the fluid temperature having a maximum

value at the pipe center, the reverse effect on Nusselt number was found.

To investigate the effect of the non-parabolic inlet velocity profile, Barrow and
Humphreys [from 1] analyzed the Graetz problem with slug, inverted conical, and
inverted parabolic velocity profile for the thermal entrance region. They presented
Nu, as a functior. of z* for different velocity profiles. Their results showed that for a
given flow rate, the increase in velocities near the wall resulted in a shortening of the

thermal entry length and an increase in the heat transfer coefficients, as expected.

It is thus expected that eversion, in general, would bring the combined results of
the two effects discussed above, since eversion artificially forces the higher temperature

gradients near the wall as well as increasing the velocities there.

The development of the everted temperature profile is shown in figure 4.8 for
each type of eversica. In the present case, where the block temperature profile is
used as an ini:iz] iaiet condition, it is to be expected from the equations (2.7), (2.9),
(2.12) and (2.13), that eversion would produce no immediate change in the everted
temperature profile. As the figure indicates, the pre-eversion and post-eversion
profiles are identical. The subsequent development of the temperature profile differs
from the smooth tube development solely because the velocity field has been everted.
As expected, all curves of eversion show an initial increase in temperatuic gradients
at the wall over the smooth tube curves. The figure shows that ideal eversion creates

the greatest initial steepening in the temperature profil: adjacent to the wall, the
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H =50, and r. = 0.707: single eversion.
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effect being smaller for mixed eversion and smaller again for laminate eversion.

The effect of advection may be seen more clearly in figure 4.9 which shows the
local Nnsselt number for each type of eversion. It shows a significant increase in
local Nusselt number in the first two dianuters downstream of the evertor. Much
further downstream, e.g., beyond 7 diameters, only a small increase in heat transfer
coefficients is produced by ideal and mixed eversion. Laminate eversion even produces
Nusselt numbers smaller than those for a bare tube for distances greater than about 6
diameters, under these conditions. The effect of eversion on advection, thus, generally

extends over many tube diameters and is not necessarily uniform. The precise details
follow from the solution of the energy equation.
The fact that the effectiveness of eversion on heat transfer is particularly high

during the first few diametr s downstream of an evertor suggests the use of repeated

eversion in order to get maximum heat transfer augmentation. This problem will be

dealt in the next chapter.



Chapter 5

Repeated Eversion

5.1 Introduction

In chapter 4, the idea of eversion to enhance heat transfer rates was studied in a
very simple manner by examining a tube with a single evertor. Each of the involved
parameters was given a fixed value. The results showed that an evertor produced
very high local heat transfer augmentation for the first few diameters downstream.
and its effectiveness was quickly reduced further downstream. From this result one
can expect that a series of evertors placed a few diameters apart would produce the
repeated effect of single eversion, resulting in a very high average heat transfer rate.
This repeated eversion, along with the study of the effects of varying parameters, will

be investigated in the present chapter.

The study of repeated eversion is carried out in a tube with five equally spaced
evertors, the first evertor being at the tube inlet. The boundary conditions are
unchanged. In numerical computations, the whole domain was divided into five

sections, the first section being from the inlet to the next evertor, and so on. A
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12 x 19 non-uniform mesh was }aid out in the first section. Solutions were obtained
in that section treating it as a separate single eversion problem. The solutions were
stored. The same grid was then laid out in the next section which was considered
as another single eversion problem. The velocity and temperature profiles at the
exit from first section were treated as inlet conditions to the second. After the whole
domain was covered, the section-by-section solutions were combined to form an overall

solution.

The following range of the independent variables was used in the repeated eversion.

Reynolds number: 100 < Re < 2000
Prandtl number: 0.71 < Pr < 1000
Spacing: 3 < s < 12
r.: 0.38 < r, < 0.88

Reynolds number was limited to 2000 since we are only concerned with the laminar
flow range. Prandti number smaller than 0.71 was not included here. Different spacing
can be set either by varying the number of evertors with a fixed tube length or by
varying the length of tube with a fixed number of evertors. The former requires an
excessive computational effort and cost, and therefore the latter was adopted using
five evertors. A tube with a length of H = 25 would, thus, give s = 5. Since the
length of each evertor is assumed to be 2D, s must be greater than 2. Th: “standard”
values of each parameter Re = 1000, Pr = 10, s = 8, and r. = 0.707 were arbitrarily

chosen for ¢he purpose of presenting results: they are considered to be representative.



5.2 Results and Discussion

The pressure drop data and corresponding friction factor data for the “standard”
parameter values are shown in figure 5.1 and 5.2, respectively. In generating
these results it has been assumed that each evertor does not affect its neighbour
upstream, but the pressure drop incurred inside the evertor influences the pressure
level downstream. Instead of presenting the friction factor data on logarithmic axes,
which is usually done, the abscissa is given in linear form for ease of interpretation.
The sudden pressure change followed by a small pressure recovery is shown at, and
immediately downstream of, the location of each evertor. Unlike the single eversion
results, laminate eversion is seen to produce the highest friction factors here. In single
eversior the long tube after the process of eversion allowed the flow to develop almost
fully, and the slow development of velocity profiles for laminate eversion resulted
in the smallest friction factor despite the large initial AP.. In repeated eversion.
however, the fluid does not have much chance to develop due to the short tube length
between evertors, and the large & P, at the locations : ./ evertors dominates the total
pressure drop. For ideal eversion, a small initial AP, and the fast development of
velocity profiles result in the smallest friction factor. Mixed eversion has a negative
AP, at the locations of evertors (for evertors having r. less than about 0.7), but
the development of velocity profiles is fastest resulting in the secoad highest friction

factor.

Turning to the heat transfer results, the local Nusselt number plotted against
distance from the tube inlet is shown in figure 5.3. The improvement over the smooth
tube values for the first eight diameters is seen to be rather small. This is because the
region is well within the thermal entry length having already high heat transfer rates.

The most striking imprevement is that resulting from each subsequent eversion. A
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substantial increase in the local Nusselt numbers occurs for the entire region of eight
diameters downstream of each evertor. Even at this high Peclet number of 10%,
where the thermal entry length is very long according to the equation (3.4), the
local Nusselt numbers for the smooth tube after about 15 tube diameters are not
significantly different from the asymptotic value of 3.66. Therefore, each subsequent

evertive improvement is a significant gain.

5.3 Effects of Reynolds Number Variation

The variations of friction factor and mean Nusselt number with Reynolds number
are shown in figure 5.4 and figure 5.5, respectively, for Pr = 10, r. = 0.707, and
s = 8. These figures clearly show the effectiveness of evertors in augmenting heat
transfer rates. All three eversion models show a significant increase in mean Nusselt
number with a comparable increase in friction factor at each Reynolds number. They
also show that the increase depends on Reynolds number: in general, the higher the
Reynolds number the higher increase in both heat transfer and pressure drop due to
the inertial effect. At Re = 100, the friction factor is about 1.6 times that of the
smooth tube, while the Nusselt number is about 1.8 times that of the smooth tube
for all three eversion models. At Re =: 2000, the friction factor is 4.3 times that
of the smooth tube for laminate eversion, while the mean Nusselt number is 2.75
times that of the plain tube. Both laminate eversion and mixed eversion are seen
to possess very similar heat transfer characteristics, but laminate eversion produces
a greater pressure drop, especially at higher Reynolds numbers. The effectiveness of
ideal eversion in augmenting heat transfer drops off significantly for Reynolds numbers
greater than 200, producing the smallest increase in Nusselt number. Thus, mixed

eversion seems to have the best combined characteristics of heat transfer and pressure
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drop. This is an encouraging result because, in practice, exact ring exchanges in ideal
eversion or laminate eversion may be difficult to achieve and with evertors of simple
geometry, such as the one shown in figure 1.1, mixed eversion is most likely to occur.
At Re = 200, the mean Nusselt number is 2.52 times and the friction factor is 2.79

times the value of smooth tube for mixed eversion.

5.4 Effects of Prandtl Number Variation

Figure 5.6 shows the variation of mean Nusselt number with Prandt] number for
Re = 1000, s = 8, and r, = 0.707. It shows a very similar trend to figure 5.5. The
increase of mean Nusselt number over the smooth tube value is seen to be almost
constant at all Prandtl numbers (about 2.2 times for laminate eversion and mixed
evesion, and about 1.7 times for ideal eversion). Thus, a power law relationship
seewns to exist just as in the case of twisted-tape inserts [15, 16]. It may be noted
that the variation of fluid properties with temperature was not considered in the
numerical calculations and hence the natural convection contribution, which might
be significant in some cases, was not considered. Therefore, the actual numbers could
be higher than the ones shown in the figure. Ideal eversion, again, is seen to produce
the smallest heat transfer augmentation for all Prandtl numbers greater than about 1.

The friction factor, of course, does not change with the variation of Prandtl number.

5.5 Effects of Spacing Variation

From figure 5.3, it is easy to see that greater heat transfer augmentation would
result with smaller spacing between the evertors. This suggests a tight packing

arrangement provided that the corresponding increase in pressure drop is a:ceptable.
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The spacing, of course, must be greater than about 2 for practical applications. Figure
3.7 and figure 5.8 show the effect of varying evertor spacing on friction factor and
mean Nusselt number, respectively. Both figures exhibits a similar trend: both heat
transfer rate and frictioral loss increase as the spacing decreases. Riit the magnitude
of the increase is different. For examgle, in the case of laminate eversion. with a large
spacing of s = 12 the increases in Nusselt number and friction factor over - he smootk
tube are mild at 2.29 and 2.33, respectively. With a very tight spacing of s = 3.
however, the ivcrease in Nusselt number is 2.96 while the increase in friction factor is
6.01. Therefore, a very tight packing arrangement may be disadvantageous for some
applications. The same argument applies to other eversion models to a less degree.

At a spacing value around s = 6, a good heat transfer enhancement with a relatively

mild pressure drop increase seems to occur.

5.6 Effects of r, Variation

All of the results discussed up to now have been based on evertors of one geometry,
namely r. = 0.707 and ! = 2D. If r. changss, and ';hus the relative size of core and
annulus changes, the velocity and temnerature profiles after the process of eversion
will change. Accordingly, changes will occur in the magnitude of prossure drop and
heat transfer. When r, is increased, an increased portion of fluid mass goes through
the core region of an evertor. The resulting velocity and temperature profiles after
the process of eversion will have sharper gradients at the wall. Thus, one would
intuitively expect that the higher the value of r, the higher the increase in pressure
drop and heat transfer. Figure 5.9 and figure 5.10 show the effects of varying r. values
on friction factor and mean Nusselt number, respectively, for Re = 1000, Pr = 10,

and s = 8. Two r, values are worth nuting: r, = 0.54 divides the fluid mass flow
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into two equal parts when the fluid entering the evertor has a fully developed velocity
profile; r. = 0.707 divides the flow area into two enwal varts. The figures show that
both pressure dr p and heat transfer greatly depend un r. and the designer must

carefully choose an r. value appropriate to the application.

In figure 5.9, the friction factor is seen to have a minimum, contrary to the above
expectation, at r. ranging from about .45 to 0.7 depending on the eversion model.
Let’s denote this value of 7. as T'u min. Above r. min, friction factor increases sharply as
r. increases for each eversion model. However, below 7, min, friction factor increases
again as r. decreases. It has been found that the above happens because as r.
decreases below T min, total pressure drop increases due to a greater increase in AP,

at the locations of evertors than the decrease in pressire drop in the tube.

It is interesting to see that, from figure 5.10, the variaticn of mean Nusselt number
does not have a minimum value. The mean Nusselt number increases monotonically
as r. increases. For small 7. vi.ues, the increase in Nusselt number is minor, and

even a decrease is seen at r. = 0.38 for ideal eversion.

Consicering both figures 5.9 and 5.10 at the same time, it is clear that r. values
smaller thag about 0.5 are not desirable. For r, values greater than about 0.75, the
increase in friction factor is much greater than the increase in mean Nusselt number,
which is again not very desirable. Therefore, an r. value near 0.7 appears to offer a

reasonable compromise between gains in heat ‘ransfer and pumping power.

5.7 Comparison with Twisted-Tape Data

The pressure drop and heat transfer data presented so far already indicate that

eversion is a good technique in augmenting laminar flow heat transfer rates inside
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Figure 5.9: Effect of r, on friction factor for Re = 1000, Pr = 10, and s = 8.
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circular tubes. In order to determine the net improvement of a tube enhanced by
eversion over the smooth tube, one of the performance evaluation criteria suggested
by Webb [45] and Bergles [46] can be used: increase of heat transfer at fixed geometry
and fixed pumping power, or reduction of pumping power at fixed geometry and fixed
heat duty. These require correlations for friction factor and Nusselt number in terms
of independent variables. The Nusselt number for eversicn has been shown to depend
on Re, Fr, s, and r., and the friction factor on Re, s, and r.. Because the present
study is not to evaluate any specific evertor of fixed geometry, correlations seem
to have little meaning. Therefore, the effectiveness of eversion has been assessed
by comparing the friction factor and Nusselt number data with those of another

‘e, e.g. twisted-tape inserts, cn common axes. Twisted-tapes, either full or

ngth. are probably the most comprehensively studied devices, and they are

. ., considered to have a high performance level.

Figures 5.11 and 5.12 show the comparison of f and Nu,, data with those of
twisted-tape inserts at vaiious Reynolds numbers. The twisted-tape data are from
the references [16, 18] for full length twisted-tapes at a Prandtl number of 5. The
eversion data were obtained using Pr = 5, s = 6, and r. = 0.707. Thus, favourabl:
values for both s and r. were used. Figure 5.11 shows that all eversion modeis
produce a friction factor much less than twisted-tapes for the laminar flow region.
Only laminate eversion produces f values close to twisted-tape data at high Reynolds
numbers. Figure 5.12 shows that both laminate eversion and mixed eversion produce
Nu,, very close to the twisted-tape data with twist ratio of 5. Ideal eversion, again,
is seen to perform poorly at higher Reynolds numbers. From these two figures, it is

evident that, in theory, properly designed evertors could perform better than twisted-

tapes, depending upon the application.
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Chapter 6

Conclusions and

Recommendations

The objective of this study was to analzix eversion as # means of augmenting the
surface heat transfer coefficient within tubses : i t:bulas heat exchangers under laminar
flow conditions. Numerical analysis has been performed in a straight horizontal
circular tube containing a hypothetical evertor, or . .eries of five regularly spaced
evertors, with a thermal boundary condition of uniform wall tempez=iure Tuows
evertors were assumed to divide the fluid flow into two parts, a core and an annulus,
which were then interchanged. Thus, the relatively cooler fluid in the core is directed
into an annulus adjacent to the wall while the relatively hotter fluid in the annulus

is directed into a central core. This eversion process is the basis of the heat transfer

augmentation.

No particular eversion device has been considered in this study. Instead, the
eversion process has been idesiized by three separate models: ideal eversion model,

in which the innermost regions of the core are exchanged with the outermost regions
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of the annulus; laminate eversion, in which the core and annulus are exchanged in
bulk with both streams maintaining the laminate structure; and mixed eversion,
in which the bulk exchange is accompanied by complete mixing. The models have
been formulated by imposing the requirements of conservation of mass and (sensible
heat; energy. Conservation of momentum during eversion has been satisfied by

incorporating a pressure change corresponding to the change in momentum flux

produced.

The analysis of eversion has been performed by comparing the keat transfer and
pressure drop characteristics with those of a smooth tube. First, an air-filled tube
containing a single evertor of each type was studied as a thermal enirv length problem
with a tube Reynolds number of 1000. A finite difference methad using 5IMPLE-
C algorithm was used to solve the problem numerically. Soluticns have been used
to show the development of velocity and :..aperature profiles. /it r. = 0.737,
the velocity profiles of all eversion models reveal a significant su:ie near the wall
immediately downstream of the evertor and begin to develop towards the fully
developed form further downstream. This, together with the everted temperature
profile and its subsequent development, results in increases in friction ' r and

local Nusselt number. These increases are most noticeable in the first 7 diameters

downstream of the evertor and only minor increases occur further downstream.

Next, a tube containing five regu’xrly spaced evertors was studied. The results
show marked repetitions of single eversion effects, producing a very high increase in
mean Nusselt number and friction factor. The heat transfer results indicate that the
Nusselt number is a functirn of Re, Pr, s, and r,, while the pressure drop results
indicate that friction factor is function of Re, s, and r,. Correlations of the data
have not been attempted because the present study is not an anzlysis of a specific

eversion device. Good heat transfer augmentation with a relatively mild increase in
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friction factor was found to occur with . = 0.707 and s = 6. With these conditions
and Pr = 5, the mean Nusselt number at Re = 1000 is 1.9, 2.6 and 2.5 times
that for a plain tube for ideal, laminate, and mixed eversion, respectively, while the
ratios for friction factor are 2.1, 3.5, and 2.7, respectively. These numbers indicate a
better overall performance than full length twisted-tape inserts, which have a Nusselt
number ratio of 2.4 and friction factor ratio of 4.4 for the given conditions and a twist

ratio of 5.

The numerical results, of course, must be validated by experimental data. To
this end, an experimental eversion rig has been built in the department. A series of
carefully controlled experiments should be conducted using various real evertors. The
designer of evertors should be particularly aware of the fa:t that both heat transfer
and pressure drop results are very sensitive to the ratio of core to tube radius of

evertors.
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C This program solves a fluid flow and heat transfer
C problem in a circular duct containing five equally
C spaced evertors.

PROGRAM EVERT

IMPLICIT REAL(A-H,0-2)
PARAMETER(1D=24,JD=24)
COMMON /VEL/ U(1D,dD),V(1D,dJD),P(ID,dD),T(ID,JD)
COMMON /XINDEX/ X(ID),XU(ID),XDIF(ID),XCV(ID)
COMMON /RINDEX/ R(dJD),RV(JD),RDIF(d4D),RCV(JD)
COMMON /BL/ ULB(JD),TLB(JD) }
DIMENSION AP(ID,JD),AE(ID,uD),AW(ID,dD),AN(ID,dJD)
DIMENSION AS(ID,JD),S(ID,dD),DU(ID,dD),DV(ID,dJD)
DIMENSION PC(ID,JD),USTAR(ID,dD),VSTAR(ID,dD)
DIMENSION R1(dD).U1(dD).Q(ID).0LDX(ID)
DIMENSION UU(99),RR(99),TT(99),SUMN(99),QX(99)
DIMENSION XxX(98),YY(89),B(99),C(99),D(99),HH(99)
DIMENSION F(ID),PM(ID),RNU(ID),RNUX{S9),RNUM(99)
DIMENSION RNU12(6),XXX(99),FFF(99),PPP(99)
LOGICAL FLAG
C Read in and write out the input data.
READ(5,*) M,N,RENOL,PR,EK,H
READ(5,*) MODEL,RSTAR,PF,CON,NDIV,NDCON
READ(5,=*) UTOL,VTOL,PTOL,TTOL,TOL
READ(5,*) NPAS,NPPAS,NITER,RELAX
READ(5,*) (X(I),I=t, M)
WRITE(S x) !
WRITE(6,*) 'DATA USED IN THIS RUN ARE : '
WRITE(S,*) ‘M=’ ,M,’ N= ‘' ,/N,” REYNOLDS NUM=' ,RENOL,
& * PRANDTL NUM=',PR,’ ECKERT NUM=' ,EK
WRITE(6,*) 'H=',H,’ EVERSION MODEL=' ,MODEL,’ R*='
& RSTAR,’ INLET VELOCITY PROFILE=',PF
WRITE(6,*) 'PRESSURE CONSTANT=',CON,’ NDIV=' ,NDIV,
& " END CONDITION IN SPLINE=" ,NDCON
WRITE(6,*) ‘UTOL=',UTOL,' VTIOL=',VTOL,’ PTOL=',PTOL
& ./ TTOL=',TTOL," TOL=',TOL
WRITE(6,*) 'NPAS=' ,NPAS,’ NPPAS=', NPPAS,
& * NITER=' ,NITER,’ RELAX=',RELAX
WRITE(6,*) ' !

C Initialize variables.

OLDH=H
DO 10 I
DO 1

Ao ll

1,M
J=1,N
[,d)=1.0
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10 CONTIN

0 (for block velocity entry)
(PF+1.0)/PF)*{(1.0-R{J)**(PF+1.0))
0

12 CONTINUE

C Calculate staggered grid point locations.

C Axially, uneven grid points are read in from
C data file. Radially, ten even nodal points

C are calculated from r=0 to r=r* and another
C ten points from r=r* to r=1. In this program,
C the case of r*=0.707 is written.

RV(2)=0.0
DR=0.689/8.0
DO 15 d=3,10
RV(J)=RV{dJ-1)+DR
15  CONTINUE
RV(11)=0.725
DR=(1.0-0.725)/8.0
DO 17 J=12,N
RV(J)=RV(J-1)+DR
17  CONTINUE

N-1
5% (RV(J)+RV(U+1))
19 CONTIN

n

R(J)-R(y-1)
21 CONTIN

2,N-1
)=RV{J+1)-RV{J)
25  CONTINUE

ISWTCH=1
NEVT=1
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888 CONTINUE

Xu(2)=0.

DO 27 I=
XU(1)

27  CONTINUE

DO 28 I=2,M
XDIF(I)=X{I)-X(I-1)
28  CONTINUE

DO 30 I=2,M-1
XCV(I)=XU(I+1)-XU(I)
30 CONTINUE.

0
3,M
=X(I-1)+X{I-1)-XU(I-1)

DO 32 I=1,M
DO 32 J=1,N
P(1,d)=0.0
32  CONTINUE
WRITE(6,*) "H=',H,” M=' M’ =',N
WRITE(6,*) 'AXIAL GRID POINT LOCATIONS:’
WRITE(6,*) ‘X(I)
WRITE(B,1) (X(I),I=1,M)
WRITE(6,*) ' X(I)*H/RENOL'
WRITE(6,1) (X(I)*H/RENOL,I=1,M)
WRITE(6,*) ' X(I)*H/PE’
WRITE(6,1) (X(I)*H/(RENOL*PR),I=1,M)
WRITE(6,*) ‘RADIAL GRID POINT LOCATIONS:'
WRITE(B,1) (R(J),d=1,N)

Iteration begins here.

Using the guessed pressure field P*, solve the
momentum equations to get U* and V*. Since they are
are non-linear equations, solution requires iterative
procedure. Begin with guessed fields and keep updating
u and v ultil the changes in u velocity or in mass
source (continuity unbalance) for two successive
jterations is sufficiently small.

HH4=4 . 0*H*H
ITER=0
555 CONTINUE

ITER=ITER+1
WRITE(7,*) ' !
WRITE(7,*) ' ITERATION NUMBER = ' ,ITER
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C Specify boundary conditiions for u equation.
C Boundary indices are (2, M, 1, N).
DO 50 J = 2, N-1

C Left boundary condition(value specified).

AP(2,d) = 1.0
AE(2,d) = 0.0
S(2,d)=ULB(J)

C Right boundary condition{Du/Dx = 0.0).

AP(M,J) = 1.0
AW(M,J) = 1.0
S(M,J) = 0.0

50 CONTINUE
DO B2 I = 3, M-1
C Bottom boundary condition (Du/Dr = 0.0).

AP(I,1) = 1.0
AN(I,1) = 1.0
s(I,1) = 0.0
C Top boundary ccondition (value known, no slip).
AP(I,N) = 1.0
AS(I,N) = 0.0
S(I,N) = 0.0

52  CONTINUE
CALL COEFFU(M,N,RENOL,H,RELAX,DU,AP,AE,AW,AN,AS,S)

CALL TDMA(AP,AE,AW,AN,AS,S,2,M,1,N,
& N, .FALSE.,NPAS,UTOL,USTAR,RESIDU)

C Specify boundary conditions for v equation.
C Boundary indices are (1, M, 2, N).

DO 54 J = 3, N-1
C Left boundary condition (value=0, or Dv/Dx=0).

AP(1,d) = 1.0
AE(1,4) 1.0



0.0 (for V=0 condition)

~—
"

C Right coundary condition (value=0).

AP(M,J) = 1.0
AW{i,J) = 0.0
S(M,J} = 0.0

54  CONTINUE
DO 56 I = 2, M-i

C Bottom boundary condition (value=0).

AP(I,2) = 1.0
AN(I,2) = 0.0
s(1,2) = 0.0

C Top boundary condition (value=0).

AP(I,N) = 1.0
AS(I,N) = 0.0
S(I,N}) = 0.0

56  CONTINUE

CALL COEFFV(M,N,RENCL,H,RELAX,DV,AP,AE,AW,AN,AS,S)
CALL TDMA(AP,AE,AW,AN,AS,S,1,M,2,N,
& N, .FALSE.,NPAS,VTOL,VSTAR,RESIDU)

C Using this new velocity field, solve the pressure
C correction equation.

DO 60 I=2,M-1
DO 60 d=2,N
PC(I,J)=0
60  CONTINUE



IF(J.EQ.2) RS=0.5*R(2)

IF(J.EQ.2) DELR=RCV(2)-0.5%R(2)

IF(I.NE.M-1) AE(I,J)=DU(I+1,J)*RE*DELR

IF(1.EQ.M-1) AE(I1,J)=0.0

IF(I.NE.2) AW(I,J)=DU(I,J)*RW*DELR

IF(1.EQ.2) AW(I,J)=0.0

IF(J.NE.N-1) AN(I,J)=HH4%DV(I,J+1)*RN*DELX

IF(J.EQ.N-1) AN(I,J)=0.0

IF(J.NE.2) AS(I,d)=HH4*DV(I,J)*RS*DELX

IF{J.EQ.2) AS(I,J)=0.0

IF(I1.EQ.M-1) AW(I,J)=0.0

AP(I,J)=AE(I,J)+AW(I,J)+AN(I,d)+AS(1,d)

S(I1,J)=(USTAR(I,J)-USTAR(I+1,d))*RE*DELR
& +(VSTAR(I,dJ)*RS-VSTAR(I,J+1)*RN)*DELX

SOURCE=SOURCE+S(1,d)

62  CONTINUE

C specify pressure at points across exit boundary.

DO 64 J=2,N-

P M-dvd)

~CCCCCC C —

M o——— — —
OO
OO0 —

o nnn

.0
64  CONTINUE

CALL TDMA(AP,AE,AW,AN,AS,S,1,M,1,N,
& N,.TRUE.,NPPAS,PTOL,PC,RESIDU)

C WRITE(7,*) 'PRESSURE CORRECTION IN CURRENT ITER’
C WRITE(7,4) ((PC(I'd)yI=2'M-1),d=N-1,2,-1)

C Correct the pressure fields and velocity fields.

J+DU(TI,J)=*

J
J)+HH4*DV (I, y)=*

66  CONTIN

8.0*USTAR(1,2)-1.0/8.0%USTAR(I,3)

WWw 1 1t
[ K e
N

8.0*%USTAR(M-1,4)-1.0/8.0*USTAR(M-2,J)
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~3
N

OOOOOO0OO0

NSO WN —
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CONTINUE

CALL CRIT(U,USTAR,3,M

CALL CRIT(V,VSTAR,2,M
W E

-1
-1
WRITE(7,*) "ERRU= ', ERR

J)=USTAR
,UJ)=VSTAR

— e,
—
[y =i
~— —

ED PRESSURE’
=2,M-1),J=N-1,2,-1)
ELD’

Jd=N,1,-1)

Jd=N,2,-1)

C One iteration is now completed. Using updated values,
C go to the beginning of the iteration.

777

QOO OOO0

WRITE(7,*) ‘MASS SOURCE= ', SOURCE

SOURCE=ABS (SOURCE )

IF(ITER.GT.NITER) THEN
WRITE(7,*) ‘NOT CONVERGED AFTER 100 ITERATIONS'
WRITE(6,*) 'NOT CONVERGED AFTER 100 ITERATIONS'

GOTO 777
ENDIF
IF(ERRU.GT.0.00005.0R.SOURCE.GT.TOL) GOTO 555
CONTINUE
u(2,1)=u(2,2)
WRITE(6,*) 'NUMBER OF ITERATIONS=',ITER
WRITE(6,*) ’'MASS SOURCE AFTER FINAL ITER=',SOURCE
WRITE(€,*) ' PRESSURE CORRECTION FIELD'
WRITE(6,1) ((PC(I,d),I=2,M-1),d=N-1,2,-1)
WRITE(6,*) ' CORRECTED PRESSURE FIELD’
WRITE(6,1) ((P(I,Jd),I=2,M-1),d=N-1,2,-1)
WRITE(6,*) " CORRECTED U-FIELD’
WRITE(6,1) ((U(I,d),I=2,M-1),d=N,1,-1)



C
C

WRITE(6,*) 'CORRECTED V-FIELD’
WRITE(6,1) ((V(I,J),I=1,M),J=N,2,-1)

C Evaluate friction factor.
C First calculate area integral mean pressure at each

C axial location.

77

75

79

80

81

WRITE(6,*) 'MEAN PRESSURE DISTRIBUTION’
DO 75 I=2,M-1
DO 77 J=2,N-1
XX(d-1)=R(J)
YY(J-1)=P(1,J)*R(J)
CONTIMUE
CALL SPLINE(N-2,N CON XX,YY,SUMN,VAL,1,B8,C,D,HH)
PM(I)=2.0%VAL/ (R(N-1)**x2-R(2)**2)
CONTINUE
IF(NEVT.EQ.1) THEN
X2=X(2)
P2=PM(2)
PIN=PM(2)/0LDH=*CON
DO 79 I=3,M-1
F(I)=RENOL*(PM(2)-PM(1))/(2.0*0LDH*(X(I1)-X(2))})
CONTINUE
WRITE(8,*) 'FILE 8
WRITE(8,*) 'Smooth Pipe$-Mean Pressure PM(x)’
WRITE(8,1) (X(I)*H,1=2,M-1)
WRITE(8,1) (PM(I),I=2,M-1)
WRITE(10,*) 'FILE 10’
WRITE(10,*) 'Smooth Pipe$ - fx*Re’
WRITE(10,1) (X(I)*H/RENOL I1=3,M-1)
WRITE(10,1) (F(I1),I=3,M- 1)
ENDIF

IF(NEVT.EQ.2) THEN
PDIFF=PM(2)~-P2
DO 80 I=3,M-1
PM(I)=PM(I)-PFLUX-PIN-PDIFF
F(I)=RENOL*(P2-PM(I))/(2.0*0LDH*(X(I)-X(2)))
CONTINUE

— g g -
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ENDIF
IF(NEVT.EQ.3) THEN

84

85

88

89

80

g1

PDIFF=PM(2)-P12

DO 84 1=2,M-1
PM(I)=PM(I)-PFLUX-"IN-PDIFF
XX(1)=0.2+0.8*X(1)
OLDX(1)=XX(I)
F(I)=RENOL*{(P2-PM(I))/(2.0%0OLDH*(XX(1)-X2))
CONTINUE

DO 85 1=13,23
XXX(I)=XX(I-11)
FFF(I)=F(I-11)
PPP(I)=PM(I-11)

CONTINUE

P12=PM(12)

ENDIF

THEN
-P12

)

M
)-PFLUX-PIN-PDIFF
0.6%X(I)
(1)

*

12



94

ENDIF

X(I)

94 CONTIN
DO 95
XXX(1)
FFF(I)=
PPP(I)=P

95 CONTINUE
P12=PM(12)

ENDIF

IF(NEVT.EQ.6) THEN
WRITE(10,*) ’'Repeated Eversion$-f*Re’

WRITE(10,1) (XXX(I)*OLDH/RENOL,I=3,55)
WRITE(10,1) (FFF(I),I=3,55)
WRITE(8,*) ’'Repeated Eversion$-p’
WRITE(8,1) {(XXX(I1)*OLDH,I=2,55)
WRITE(8,1) (PPP(1),I=2,55)
ENDIF
WRITE(6,*) 'THE FRICTION FACTOR DISTRIBUTION’
WRITE(6,*) ‘OLDH*X(I)/RENOL, F(I))!

DO 170 I=3,M-1

IF(NEVT.LE.2) WRITE(6,6) OLDH*X(I)/RE

IF(NEVT.GE.3) WRITE(6,6) OLDH*OLDX(I)
170 CONTINUE

NOL,F(I)
/RENOL,F (1)

C Interpolate u values at the T nodal points to
C calculate Nusselt number later on.

176 CONTINUE
CALL SPLINE
DO 178 I=1,
USTAR(I+1,
& +C(1)*0.5*H
178 CONTINUE
174 CONTINUE

2,NDCON, XX,YY,SUMN, VAL,0,B,C,D,HH)

U§I+1,d)+B(I)*0.5*HH(I)
*

M
J)=
(I)%*2+D(])*0.5%HH()**3

3
)
H



85

C Now, solve the energy equation for temperature field.

WRITE(7,*) 'Now solve energy equation’
WRITE(6,*) 'Now solve energy equation’

C Specify boundary conditions for energy equation.
C Boundary indices are ( 1, M, 1, N ).

DO 186 J = 2, N

C Left boundary

condition (T=T(R)=const)

AP(1,J) = 1.0
AE(1,J) = 0.0
S(1,d) = TLB(J)

C Right boundary condition (DT/DX = 0)
AP(M,J) = 1.0
AW(M,J) = 1.0
S(M,d) = 0.0

186 CONTINUE
DO 188 I = 2, M-1

C Bottom boundary condition (DT/DR = 0)
AP(I,1) = 1.0
AN(I,1) = 1.0
s(I,1) = 0.0

C Top boundary condition (T = const)
AP(I,N) = 1.0
AS(I,N)=0.0
S(I,N)=1.0

188 CONTINUE



96

CALL COEFFT(M,N,RENOL,PR,EK,H,AP,AE,AW,AN,AS,S)
CALL TDMA(AP,AE,AW,AN,AS,S,1,M,1,N,
& N, .FALSE. ,NPPAS,TTOL,T,RESIDU)

WRITE(6,*) 'WHEN SOLVING FOR T, RESIDU = ' ,RESIDU

T(1,1)=T(1,2)

T(M,1)=T(M-1,1)

T(1,N)=T(2,N)

T(M,N)=T(M-1,N)

IF(NEVT.EQ.1) THEN

WRITE(6,*) ‘THE CONVERGED TEMPERATURE FIELD’
gRITE(6,1) ((T(I,d),1=1,M),J=N,1,-1)

NDI

C Calculate Nusselt Number by first calculating
C the mixing cup temperature.

DO 190 I=2,M
DO 192 dJ=1,N
XX(J)=R(J)
YY(J)=R(J)*USTAR(I,d)*T(I,J)
192 CONTINUE
CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
TMEAN=2.0*VAL
RNU(I)=(T(I,N)-T(I,N-1))/RDIF(N)
Q(I)=RNU(I)
RNU(1)=2,0*RNU(I)/(1.0-TMEAN)
PM(I)=TMEAN
190 CONTINUE
IF(NEVT.EQ.1) THEN
WRITE(9,*) 'FILE 9’
WRITE(S9,*) 'Smooth pipe$-Heat Transfer dT/dr’
WRITE(9,1) (X(I)=OLDH,I=2,M)
WRITE(9,1) (Q(I),I=2,m)
WRITE(11,*) 'FILE 11’
WRITE(11,*) ' Smooth pipe$ - Local Nu’
WRITE(11,1) (X(I)*OLDH,I=2,M)
WRITE(11,1) (RNU(I),I=2,M)
ENDIF
IF(NEVT.EQ.2) THEN
DO 230 1=2,12
RNUX(I)=RNU(I)
QX(1)=Q(1I)
230 CONTINUE



ELSEIF(NEVT.E
DO 232 I=1
RNUX (1)
QX(1)=Q
232 CONTINUE
ELSEIF(NEVT.EQ.4) THEN
DO 234 I1=24,34
RNUX(1)=RNU{I-22)
QX(I)=Q(I-22)
234 CONTINUE
ELSEIF{NEVT.EQ.5) THEN
DO 236 I=35,45
RNUX(I)=RNU{I-33)
QX(1)=Q(I-33)
236 CONTINUE
ELSEIF(NEVT.EQ.8) THEN
DO 238 I=46,56
RNUX(1)=RNU(I-44)

THEN

Q.3)
3,23
=RNU(1-11)
(I-11)

QX(I)=Q(1-44)

238 CONTINUE
WRITE(11,*) 'Repeated Eversion$-Local Nu’
WRITE(11,1) (XXX(I)*OLDH,I1=2,55)
WRITE(11,1) (RNUX(I),I1=2,55)
WRITE(9,*) ‘Repeated Eversion$-Dt/Dr’
WRITE(9,1) (XXX(I)*OLDH,I=2,55)
WRITE(9,1) (QX(I),I=2,55)

C Calculate overall mean Nusselt Number.

DO 240 I1=2,55,3
J=(I1+1)/3
RR(dJ)=XXX(I)
UU(dJ)=RNUX(I)
240 CONTINUE
CALL SPLINE(18,NDCON,RR,UU,SUMN,VAL,1,B,C,D,HH)
DO 242 1=2,18
J=3*I-1
RNUM(1)=SUMN(I-1)/(XXX(J)-XXX(2))
XX(1)=XXX(J)
242 CONTINUE
WRITE(11,*) ‘'Re
WRITE(11,1) (XX
WRITE(11,1) (RN
ENDIF

DO 19?
(

eated Eversion$-Mean Nu’
1)*0LDH,1=2,18)
M(I),I=2,18)

p
(
U



195 CONTINUE

98

CALL SPLINE(M-1,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
DO 186 I=1,M-2
RNUM(I+2)=SUMN(I)/(X(I+2)-X(2))

196 CONTINUE

RNUM(2)=0.0
RNU12(NEVT)=RNUM(12)
RNUH=RNUM (M- 1)
IF(NEVT.EQ.1) RNUONE=RNUH

WRITE(6,*
WRITE(G,*
DO 200 I=

) !
) !
2,M

NUSSELT NUMBER(CONST WALL TEMPERATURE)’
HX/PE, TMEAN, RNU(I), RNUM(T)’

IF(NEVT.LE.2) WRITE(6,7) H*X(I)/RENOL/PR,PM(I),RNU(I)

&

 RNUM(T)

IF(NEVT.GE.3) WRITE(6,7) OLDH+OLDX(I)/RENOL/PR,PM(I)

&
200 CONTINUE

RNU(I),RNUM(I)

WRITE(6,*) ‘NU12(NEVT)=' ,RNU12(NEVT),’ MEAN NU=',RNUH
IF(NEVT.EQ.B6) THEN
RNU12M=(RNU12(2)}+RNU12{3)+RNU12(4)+RNU12(5) 1
& +RNU12(6))/5.0

WRITE(6,*) 'Overall Mean Nu=’, RNU1I2M

WRITE(6,*) 'Mean Nu for Smooth Tube=’,RNUONE,

&
ENDIF

C Store U and T

300 CONTIN

310 CONTI

"Ratio of Increase=’,RNU12M/RNUONE

values at the locations of eversion.

)
)*USTAR(1,d)*USTAR(1,J)

314 CONTINUE
CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)

FLUX=2,

O*VAL

WRITE(6,*) 'MOMENTUM FLUX=',FLUX



IF(MODEL.EQ.1) CALL EVERT1{(N,KK,RR,UU,TT,NDIV)
IF(MODEL.EQ.2) CALL EVERT2(N,KK,RR,UU,TT,NDIV)
IF(MODEL.EQ.3) CALL EVERT3(N,KK,RR,UU,TT,NDIV)
DO 316 J=1,N
XX(J)=R(J)
YY(J)=R(J)*ULB(J)*ULB(J)
316 CONTINUE
CALL SPLINE{N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
PFLUX=2.0*VAL-FLUX
WRITE(6,*)' MOMENTUM FLUX=',2.0%VAL,’' PFLUX=" ,PFLUX
DO 317 dJ=1,N
XX{(J)=R(dJ)
YY(J)=R(J)*ULB(J)
317 CONTINUE
CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
WRITE(6,*) 'MASS FLOW AFTER EVERSION = ',2.0=VAL
DO 318 J=1,N
XX(dJ)=R(d)
YY(J)=R(dJ)*TLB(J)*ULB(J)
318 CONTINUE

CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
WRITE(6,*) 'MEAN TEMP AFTER EVERSION=',2.0*VAL
NEVT=NEVT+1
GOTO 888

ENDIF

THEN
' EVERSION @ L/D=0.2H’

)
AR(12,4)
N

d

)
320 CONTINUE

C ,XX,YY,NDCON,NDIV,KK,RR,UU)

J

)

)
2,4)
330 CONTINUE
CALL INC N,XX,YY,NDCON,NDIV,KK,RR,TT)
DO 331
XX{J)
YY(J)=R(J)*USTAR(12,J)*USTAR(12,J)
331 CONTINUE
CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
FLUX=2.0=*VAL
WRITE(6,*) ‘MOMENTUM FLUX BEFORE=',FLUX
IF(MODEL.EQ.1) CALL EVERT1(N,KK,RR,UU,TT,NDIV)
IF(MODEL.EQ.2) CALL EVERT2(N,KK,RR,UU,TT,NDIV)
IF(MODEL.EQ.3) CALL EVERT3(N,KK,RR,UU,TT,NDIV)

1 n



332

334

337

338

340

342

343

100

NDCON, XX, YY, SUMN, VAL, 1,B,C,

D,HH)
SS FLOW AFTER EVERSION y2.0%

VAL

==
-

*ULB(J)*ULB(J)

NDCON, XX, YY, SUMN, VAL, 1.B,C,D,HH)
-FLUX
MENTUM FLUX=',62.0%VAL,’PFLUX=',PFLUX

CALL SPL
PFLUX=2,
WRITE(6

o=

)
}*TLB(J)*ULB(J)

NDCON, XX, YY, SUMN, VAL, 1,B,C,D,HH)
EAN TEMP AFTER EVERSION=',2.0*VAL

CONTINUE

CALL SPLINE(

WRITE(6,*) '

NEVT=NEVT+1

M=21

DO 338 I=1,M
X(I)=X(I)/X(M)

CONTINUE

H=0.8*H

GOTO 888

==

ENDIF
IF(NEVT.E

. THEN
‘ EVERSION @ L/D=0.4H’
DO 340
XX (
YY(
CONTINU
CALL INCRS
DO 342 y=1
YY(dJ)=T
CONTINUE
CALL INCRS
1
R

Q
WRITE(B
J
J

3)
*)
=1,N
=R(J)
=USTAR(12,4)
N,XX,YY,NDCON,NDIV,KK,RR,UU)
2,J)
N,XX,YY,NDCON,NDIV,KK,RR,TT)

(
N
J)
J)

J
)
)
E

(
s
E(
N
(1

DO 343 4=
XX{(dJ)=
YY(J)=R(J)*USTAR(12,J)*USTAR(12,J)

CONTINUE

CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)

FLUX=2.0%VAL

WRITE(6,*) ‘MOMENTUM FLUX=', FLUX

IF(MODEL.EQ.1) CALL EVERT1(N,KK,RR,UU,TT,NDIV)

IF(MODEL.EQ.2) CALL EVERT2(N,KK,RR,UU,TT,NDIV)

E
i
{



344

346

348

349

350

352

354

101

.EQ.3) CALL EVERT3(N,KK,RR,UU,TT,NDIV)
i
(

— —

*ULB(J)*ULB(J)

.EESON,XX.YY,SUMN,VAL,1.B.C,D,HH)
-FLUX
MENTUM FLUX=',2.0*VAL,’' PFLUX=' ,PFLUX

CALL SPLI
PFLUX=2.0
%*

or2

*ULB(J)

,NDCON, XX,YY,SUMN,VAL,1,B,C,D,
ASS FLOW AFTER EVERSION = ',2.

CALL SP HH )
O=VaAL
*TLB(J)*ULB(J)

NDCON, XX, YY, SUMN, VAL, 1,B,C,D,H
AN TEMP AFTER EVERSION=',b2.0=

CONTINUE

CALL SPLI

WRITE(B,*

NEVT=NEVT+1

M=19

DO 349 I=1,M
X(I)=X(1)/X(M)

CONTINUE

H=0.6/0.8*H

GOTO 888

HH)
AL

=22
m-

ENDIF
IF(NEVT.E

THEN
‘ EVERSION @ L/D=0.6H’
DO 350

Q.
WRITE(6
XX (d

N
J)
TAR(12,4)
N,XX,YY,NDCON,NDIV,KK,RR,UU)
2,J)
N,XX,YY,NDCON,NDIV,KK,RR,TT)

(
N
J)
J)

)

)

1

R

YY(J)=U
CONTINUE

CALL INCRS

DO 352 uy=1

YY(J)=T

CONTINUE

CALL INCRS

=1

=R

i
s
E(
N
(1

DO 354 J
XX{J)
YY(J)=R(J)*USTAR(12,J)*USTAR(12,J)

CONTINUE

CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)

FLUX=2.0=VAL

WRITE(6,*) ‘MOMENTUM FLUX=' , FLUX

IF (MODEL.EQ.1) CALL EVERT1(N KK,RR,UU,TT,NDIV)

E
i
(



355

356

358

359

360

362

364

102

IF(MODEL.EQ.2) CALL EVERT2(N,KK,RR,UU,TT,NDIV)
IF(MODEL.EQ.3) CALL EVERT3(N,KK,RR,UU,TT,NDIV)
DO 355 y=1,N

XX(J)=R(d)

YY(J)=R{J)*ULB(J)*ULB(J)
CONTINUE
CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
PFLUX=2.0*VAL-FLUX
WRITE(6,*)' MOMENTUM FLUX=',2.0%VAL,'PFLUX=' ,PFLUX
DO 356 d=1,N

XX(J)=R(J)

YY(J)=R(dJ)*ULB(J)
CONTINUE
CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
WRITE(6,*) 'MASS FLOW AFTER EVERSION = ’.2.0*VAL
DO 358 d=1,N

XX{J)=R(dJ)

YY(J)=R(J)*TLB{J)})*ULB(U)
CONTINUE

CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
WRITE(G,*) "MEAN TEMP AFTER EVERSIDN".2 0*VAL
NEVT=NEVT+1
M=16
DO 359 I=1,M
X(I)=X(I)/X(M)
CONTINUE
H=0.4/0.6*H
GOTO 888

ENDIF

E
EVERSION @ L/D=0.8H’

AR(12,4)

N, XX,YY,NDCON,NDIV,KK,RR,UU)
2,4J)
N,XX,YY,NDCON,NDIV,KK,RR,TT)

CALL INCR

DO 362 J=
YY(d)=

CONTINUE

CALL INC

DO 364 4
XX(d)
YY(J)=R(J)*USTAR(12,d)*USTAR(12,J)

CONTINUE

CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)

FLUX=2.0=VAL

WRITE(6,*) ‘MOMENTUM FLUX=’, FLUX

lll w 20



IF(MODEL.EQ.1) CALL EVERT1(N,KK,RR,UU,TT,NDIV)
IF{MODEL.EQ.2) CALL EVERT2(N,KK,RR,UU,TT,NDIV)
IF(MODEL.EQ.3) CALL EVERT3(N,KK,RR,UU,TT,NDIV)
DO 365 d=1,N
XX(J)=R(dJ)
YY(J)=R{J)*ULB(J)=*ULB(J)
365 CONTINUE
CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
PFLUX=2.0*VAL-FLUX
WRITE(6,*)' MOMENTUM FLUX=',2.*VAL,’' PFLUX=', PFLUX
DO 366 dJ=1,N
XX{d)=R(J) ,
YY(J)=R{dJ)*ULB(J)
366 CONTINUE
CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
WRITE(6,*) 'MASS FLOW AFTER EVERSION = ' ,2.0*VAL
DO 368 J=1,N
XX(J)=R(d)
YY(J)=R(J)*TLB(J)*ULB(d)
368 CONTINUE
CALL SPLINE(N,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
WRITE(6,=) 'MEAN TEMP AFTER EVERSION=',b2.0*VAL
NEVT=NEVT+1
M=12
DO 369 I=1,M
X(1)=X(I}/X(M)
369 CONTINUE
H=0.2/0.4*H
GOTO 888
ENDIF
STOF
END

C This subroutine solves the following type of
C descretized equation using TDMA algorithm.

C

C AP(I,J)*X(I,d) = AE(I,J)*X(I+1,d) + AW(I,J)*X(I-1,J)
C + AN(I,J)*X(I,J+1) + AS(I,J)=*=X(I,d-1) + S{I,J)
C Inputs:

c IL - index of the left boundary

C IR - index of the right boundary

C JB - index of the bottom boundary

C JT - index of the top boundary

C NPASS - number of sweeps to be made

C

AP - coefficient vector of X(I,J) in the equation.

103



104

in the equation.

coefficient vector of X )
; in the equation.
)

(I,
coefficient vector of X(I,
coefficient vector of X(I+
coefficient vector of X(I-

AN
AS
AE
AW

in the equation.

in the equation,

C
C
C
C
C It requires values of the above vectors for I=IL+1 to
C I=IR-1 and J=JdB+1 to J=dT-1.

C It also requires the following vectors which specifiey
C boundary conditions.

C

C

C

C

C

C

JB+1 TO JT-1
JB+1 TO JT-1
IL+1 T0 IR-1
IL+1 TO IR-1

AP(IL,J)  AE(IL,J)
AP(IR,J)  AW(IR,J)
AP(1,JB)  AN(I,JB)
AP(I,dT)  AS(I,JT)

——C C_

Output:
X(I,J) : solution vector

SUBROUTINE TDMA(AP,AE,AW,AN,AS,S,IL, IR, UB,dT,
& NF,FLAG,NPASS, TOLER, X,RELERR)

IMPLICIT REAL(A-H,0-2Z)

PARAMETER(1D=24,JD=24)

DIMENSION AP(ID,JD),AE(ID,uD),AW(ID,uD),AN(ID,dD)
& AS(ID,uJD),S(ID,JD),X(ID,dD)
DIMENSION A(uD),B(JD),C(UD),D(4D),Q(dD),P(JD)

LOGICAL FLAG

NPOINT = ( IR-IL-1)*(NF-JB-1)
IF(FLAG.EQV..TRUE.) NPOINT=(IR-IL-3)*(NF-JB-3)

C Make double sweep NPASS times, or until RELERR
C becomes small.

ISWICH = 0

DO 333 1ITER = 1, NPASS
DO 444 ILOOP = 1,2

C Set the sweep direction.

IF (ISWICH .EQ. 0) THEN

I1 = IL+1
IINC = 1
12 = IR-1
J1 = JB+1
JINC = 1
J2 = JT-1

ISWICH = 1



ELSE
I1 = IR-1
IINC = -1
12 = IL+1
J1 = JT-1
JINC = -1
J2 = JB+1
ISWICH = 0

ENDIF

C Sweep from left to right boundaries beginning from
C J=bottom or from J=top.

DO 100 J = dJt, J2, JINC

C Set up the tri-diagonal matrix as required by TDMA.

10

(I,U)+AN(I,Jd)*X(I,d+1)+AS(I,d)*X(1,d-1)

IL=IL+1

C Left boundary conditions.

AP(IL,J)
AE(IL,J)
S(IL,J)

— —
n an

AP(IR,d)
AW(IR,J)
S(IR,J)

A
B
D
t boundary conditions.
A
C
D

)
)
)

C Now calculate P(I) and Q(I).

15

P(IL)
Q(IL)

B(IL) / A(IL)
D(IL) / A(IL)

105



20

106

DO 20 I = IL+t,IR

DENOM = A(I) - C(I) = P(I-1)

P(I) = B(I) / DENOM

Q(I) = ( D(I) + C(I) = Q(I-1) ) / DENOM
CONTINUE

C Obtain solution by back substitution.

30

100

DO 30 I=IR-1
X(1,J)
CONTINUE
IF(FLAG.EQV..TRUE.) THEN
IL=IL-1
IR=IR+1
ENDIF
CONTINUE

X(IR,dJ)=Q(IR
-1,IL, -1
= P(I) * X{I+1,J) + Q(1)

C Now sweep from bottom to top boundaries beginning from
C I=left or from I=right.

C Set

40

DO 200 I = I1, I2, IINC
up the tri-diagonal matrix as required by TDMA.

JB+1, NF-1

AP(I,J)

AN(I,d)

AS(I,J)

(I, J)+AE(T,Jd)*X(I+1,J)+AW(I,d)}*X(1-1,V)

LAG.EQV..TRUE.) THEN
JB=JB+1
JdT=dT-1
GOTO 45

ENDIF

C(dJB)
B(JT)

v nn

A
B
C
D
T
F

0
0

C Bottom boundary conditions.

A(UB) = AP(I,uJB)
B(UB) = AN(I,uB)
D(JB) = S(I,UB)

C Top boundary conditions.
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(
(
(

o0OrXr
Z22=Z
mmm

)
)
)

C Now calculate

45 P(JB)
Q(JB)
DO 50
* P(J-1)

) = Q{J-1) ) / DENOM
50 CONTINUE

C Obtain solution by back substitution.

X(1,dT) = Q(JT)
DO 60 J = JT-1, JB, -1
X(I,d) = P(J) * X(I,d+1) + Q(J)
60  CONTINUE
IF(FLAG.EQV..TRUE.) THEN
JB=JB-1
JT=JT+1
ENDIF

200 CONTINUE
444 CONTINUE

C The double sweep has been completed.
C Now test for convergence.

RELERR=0.0
DO 123 I = IL+1, IR-1
DO 123 J = JB+1, NF-1

T=AP{I,d)*X(I,d)-AE(I,d)*X(I+1,d)-AW(]I,J}*=X(I-1,d)
& =AN(I,J)*X(1,Jd+1)-AS(I,J)*X(I,J-1)-S(I,J)
RELERR=RELERR+ABS(T)
123 CONTINUE
RELERR=RELERR/NPOINT
IF (RELERR.LT.TOLER) GOTO 999
333 CONTINUE
C WRITE(6,*) 'NOT CONVERGED IN SUB TDMA’
989 CONTINUE
WRITE(7,*) ‘NO OF DOUBLE SWEEP IN SUB TDMA= ', ITER
WRITE(7,*) 'RESIDU IN SUB TDMA = ', RELERR
RETURN
END



SUBROUTINE COEFFU(
&

IMPLICIT REAL(A-
PARAMETER(ID=24,
COMMON /VEL/ U(I
&DIMENSION AP(ID,

COMMON /XINDEX/
COMMON /RINDEX/

M,
AE,
H,0-Z
D=24
JD)
), A
(ID
ID)
JD)

DXxXpc Oc

D),
S{I
(ID
(JD

cC
=
n
c
—
. C

.5
.5
(

FN=VN*RN*DELX
FS=VS*RS*DELX
FE=UE=RE*DELR
FW=UW*RW=DELR

DN=4,0*H*RN*DELX/(RENOL*DELRN)
DS=4.0*H*RS*DELX/ (RENOL*DELRS)
DE=RE*DELR/ (RENOL*H*DELXE )
DW=RW*DELR/ (RENOL *H*DEL XW)

CALL POWER(FN,DN, ACOF)
AN(I,J)=ACOF+AMAX1(0.0,-FN)
CALL POWER(FS,DS,ACOF)
AS(I,J)=ACOF+AMAX1(0.0,FS)
CALL POWER(FE,DE,ACOF)
AE(1,J)=ACOF+AMAX1(0.0,-FE)
CALL POWER(FW,DW,ACOF)

I),V(I-1,d+1},
(I),Vv(I-1,4),V(I,d),VS)

108
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AW(I,J)=ACOF+AMAX1(0.0,FW)

USUM=AE(I,J)+AW(I,J)+AN(I,d)+AS(1,J)
AP(I,d)=(1.0/RELAX)*USUM

S(I,J)=AP(I,d)*(1.0-RELAX)*U(I,J)
S(I,d)=S(I,d)+(P(1-1,d)-P(1,d))*RE*DELR
DU(I,J)=(RW*DELR)/(AP(I,J)~USUM)
DU(I,J)=(RW=DELR)/AP(I,d) ,for SIMPLE Algorithm.
CONTINUE
RETURN
END
SUBROUTINE COEFFV(M,N,RENOL,H,RELAX,DV,AP
AE,AW,AN,AS,S)
IMPLICIT REAL(A-H,0-Z)
PARAMETER(1D=24,4D=24)
COMMON /VEL/ U(ID,yD),V(ID,JD),P(ID,JD),T(ID,JD)
DIMENSION AP(ID,JD),AE(ID,dD),AW(ID,JD),AN(ID,dD),
& AS(1D,dD),S(1D,dD),DV(ID,dD)
COMMON /XINDEX/ X(ID),XU(ID),XDIF(ID),XCV(ID)
COMMON /RINDEX/ R(JD),RV{(JD),RDIF(JD),RCV(JD)
DO 10 I=2,M-1
DO 10 d=3,N-1
RE=RV(J)
RW=RE
RN=R(J)
RS=R(J-1)
DELX=XCV(I)
DELR=RDIF (J)

VOL=DELX*DELR
DELXE=XDIF(I+1
DELXW=XDIF(I)
DELRN=RCV (J)

DELRS=RCV(J-1)

CALL AINTP(RCV(d-1),RCV(Y), U(I+1,d-1),
U(i+1,d),UE)
CALL AINTP(RCV(d-1), RCV(d) ulr,d-1),U(1,d),uw)
V= (V(I,d)+VI(I, J+1))*0.5
VS=(V(I,J)+V(I,d-1))*0.5

FN=VN*RN*DELX
FS=VS*RS*DELX
FE=UE*RE*DELR
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FW=UW*RW*DELR

DN=(4.0%H*RN*DELX)/ (RENOL*DELRN)
DS=(4.0*H*RS*DELX)/(RENOL*DELRS)
DE=(RE*DELR)/(RENOL*H*DELXE)
DW= (RW*DELR)/(RENOL*H*DELXW)

CALL POWER(FN,DN,ACOF)
AN(I,d)=ACOF+AMAX1(0.0,-FN)
CALL POWER(FS,DS,ACOF)
AS(I,J)=ACOF+AMAX1(0.0,FS)
CALL POWER(FE,DE,ACOF)
AE(I,J)=ACOF+AMAX1(0.0,-FE)
CALL POWER(FW,DW, ACOF)
AW(I,d)= ACOF+AMAX1(O 0,FW)

VSUM=AE (I, J)+AW(I,J)+AN(I,J)+AS(I,0)

AP(I,d)=(1. 0/RELAX)*(VSUM+4.0*H*VOL/(RENOL*RE))
S(I,J)=(1.0-RELAX)*AP(I,d)*V(I,V)
S(I.d)=S(I J)+4.0*H*H*(P(I,d-1)-P(I,J))*RE*DELX
DV(I,d)=(RE*DELX)/(AP(I J)-VSUM)
DV(I,J)=(RE*DELX)/AP(1,d), for SIMPLE Algorithm.
CONTINUE
RETURN

END

SUBROUTINE COEFFT(M,N,RENOL,PR,EK,H,AP,AE,AW,AN,AS,S)
IMPLICIT REAL(A-H,0-Z)

PARAMETER(ID=24, JD

COMMON /VEL/ U(1
DIMENSION AP(ID,

(
D
COMMON /XINDEX/
COMMON /RINDEX/

DO 10 I=2,M-1
2,N-1
J)

4
)
A
& D
)
)

o w = Mie

JD=
D,J
JD),
AS(I
X(ID
R(dD

DELX=XCV (1)

DELR=RCV(J)

DELXE=XDIF(I+1)
IF(
IF(

1)

DELXW=XD

I+
1)
DELRN=RD J+
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DELRS=RDIF(J)
VOL=R(J)*DELX/DELR

UE=U(I+1,4)

Uw=u(I,d)

VN=V(I,J+1)

vs=v(I,J)

IF(J.EQ.2) THEN
UD=0.5*%(U(I,d-1)+U(I+1,d-1))

ELSE
UD1=0.5%(U(I,d-1)+U(I+1,d-1))
uUD2=0.5*(U(I,J)+U(I+1,4))
CALL AINTP(RCV(Y-1),RCV(dJ),UD1,UD2,UD)

ENDIF

IF(J.EQ.N-1) THEN
UP=0.5*(U(I,J+1)+U(I+1,d+1))

ELSE

UP1=0.5%(U(I,d)+U(I+1,4))

UP2=0.5%(U(1,d+1)+U(I+1,d+1))

CéLL AINTP(RCV(dJ),RCV(J+1),UP1,UP2,UP)
ENDI

FN=VN*RN=DELX
FS=VS*RS*DELX
FE=UE*RE=DELR
FW=UW*RW=DELR

DN=(4.0*H*RN*DELX)/ (RENOL*PR*DELRN)
DS=(4.0*H*RS*DELX)/(RENOL*PR=*DELRS)
DE=(RE*DELR)/(RENOL*PR*H*DELXE )
DW= (RW*DELR)/(RENOL*PR*H*DELXW)

CALL POWER(FN,DN,ACOF)
AN(I,J)=ACOF+AMAX1(0.0,-FN)
CALL POWERI(FS,DS,ACOF)
AS(I,J)=ACOF+AMAX1(0.0,FS)
CALL POWER(FE,DE,ACOF)
AE(1,J)=ACOF+AMAX1(0.0,-FE)
CALL POWER({FW,DW,ACOF)
AW(1,d)=ACOF+AMAX1(0.0,FW)

AP(1,d)=AE(I,Jd)+AW(I,J)+AN(I,J)+AS(I,J)
S(I,J)=(4.0*H*EK/RENOL )*VOL*(UP-UD)**2

CONTINUE
RETURN
END

IRR
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SUBROUTINE POWER(F,D,ACOF)
IMPLICIT REAL(A-H,0-2Z)
ACOF=D

IF(F.EQ.0.0) RETURN
TEMPO=D-ABS(F)*0. 1
ACOF=0.0

IF(TEMPO.LE.0.0) RETURN
TEMPO=TEMPQ/D
ACOF=D*TEMPO*TEMPO*TEMPO*TEMPO*TEMPO
RETURN

END

SUBROUTINE AINTP(DB,DF,VB,VF,VALUE)
VALUE=(DB*VF+DF*VB)/(DB+DF)

RETURN

END

SUBROUTINE CRIT(G,GSTAR,IL,IR,JB,JT,RELERR)
PARAMETER(ID=24, JD=24)
DIMENSION G(ID,JD),GSTAR(ID,dJD)
NPOINT=(IR-IL+1)*(JT-UB+1)
RELERR=0.0
DO 10 I=IL,IR
DO 10 J=JB,dT
DIFF=GSTAR(I,J)
DIFF=(DIFF*DIFF
RELERR=RELERR+D
10  CONTINUE
RELERR=SQRT (RELERR)
RELERR=RELERR/NPOINT
RETURN
END

C This subroutine calculates post-eversion velocity and
C temperature profiles based on ideal eversion model.

SUBROUTINE EVERT1(N,KK,RR,UU,TT,NDIV)
PARAMETER(1D=24,JD=24)

REAL RR(99),UU(99),TT(99),UuM(99)
COMMON /BL/ ULB(dJD),TLB(JD)

C First calculate the everted mean element velocities.

DO 10 J=1,KK-1
ARATIO=(RR(J+1)**2-RR(J)**2)/(RR{KK-J+1)*=2
& -RR{KK-J) **2)
UUM(KK=-J)=0.5%(UU{J+1)+UU(J))*ARATIO
10 CONTINUE

-G(I,J)
%ééGSTAR(I.d)*GSTAR(I.d))



C Now translate the mean element velocities into
C nodal velocities (for B.C. of const wall temp only).

JU=KK/2+1

12 CONT
yJU-1

14 CONTINU
TT(1)=TT (KK

15 CONTINU

20 CONTINU
WRITE(6,*) 'EVERTED U AND T PRIFILE (IDEAL)’
DO 25 J=N,1,-i

WRITE(6,1) ULB(J),TLB(J)
25  CONTINUE
1 FORMAT(2F15.5)

RETURN
END

C This subroutine calculates post-eversion velocity and
C temperature profiles based on laminate eversion model.

SUBROUTINE EVERT2(N,KK,RR,UU,TT,NDIV)
PARAMETER(1D=24,JD=24)

REAL RR(99),UU(99),TT(99),UUM(99)
COMMON /BL/ ULB(dJD),TLB(JD)

C Evert using RR radial index system.
C First calculate everted mean element velocities.

JuzKK/2+1



10

20

114

DO 10 dJ=1,4dd-1

K=dd-d

L=KK-d

ARATIO= (RR(K+1)%*2-RR(K)**2)/(RR(L+1)**2-RR(L)**2)
UUM(L)=0.5*(UU(K+1)+UU(K))*ARATIO

CONTINUE

DO 20 dJ=1,dd-1

K=dd-d

L=KK-d
ARATIO=(RR(L+1)**2-RR(L)**2)/(RR(K+1)**2-RR(K)**2)
UUM(K)=0.5%«(UU(L+1)+UU(L) )*ARATIO

CONTINUE

C Then translate the mean element velocities into
C nodal velocities.

22

25

C Now
C ie.

30

UU(KK)=0.0
DO 22 J=1,KK-2
L=KK-d
UU(L)=0.5*=(UUM(L)+UUM(L-1))
CONTINUE
UU(1)=2.0*UUM(1)-UU(2)
TT(KK)=1.0
DO 25 J=1,dd-1
L=KK-J
SAVE=TT(L)
TT(L)=TT(Ju-d)
TT(JJ-J)=SAVE
CONTINUE

go back to the original index system.
from RR system to R system.

WRITE(6,*) 'EVERTED U AND T PROFILE (LAMINATE)’
DO 32 I=N,1,-1
WRITE(6,1) ULB(I),TLB(I)
CONTINUE
FORMAT(2F 15.5)
RETURN
END
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C This subroutine calculates post-eversion velocity and
C temperature profiles based on mixed eversion model.

SUBROUTINE EVERT3(N,KK,RR,UU,TT,NDIV)
PARAMETER(1D=24,JD=24)
REAL RR(99),UU(98),TT(99),SUMN(99),B(99),C(99),
& D(99),HH(99),XX(99),YY(99)
COMMON /BL/ ULB(dJD),TLB(uD)

C Mean core and annulus velocities are calculated
C and everted.

JU=KK/2+1
DO 10 dJd=1,KK
XX(J)=RR{J)
YY(J)=RR({J)*UU(Y)
10 CONTINUE

CALL SPLINE(KK,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
UAMEAN=2.0*SUMN(Jd-1)/(RR(KK)**2-RR (JJ)**2)
UCMEAN=2.0*(VAL-SUMN(JJ-1))/RR{JJ) *=*2
DO 20 d=1,KK

XX{dJ)=RR(J)

YY(J)=RR(J)*UU(J)*TT(J)
20  CONTINUE
CALL SPLINE(KK,NDCON,XX,YY,SUMN,VAL,1,B,C,D,HH)
TAMEAN=2.,0*SUMN(JJ=1)/(RR(KK)#**2-RR(JJ)**2) /UAMEAN
TCMEAN=2.0*{VAL-SUMN(JJ-1))/RR(Jd)**2/UCMEAN

L={JJ+NDIV-1)/NDIV

DO 25 J=1,L-1
ULB(dJ)=UCMEAN
TLB(J)=TCMEAN

25  CONTINUE

DO 30 J=L+1,N-1
ULB(J)=UAMEAN
TLB(J)=TAMEAN

30 CONTINUE
ULB(L)=0.5*(UAMEAN+UCMEAN)
TLB(L)=0.5*( TAMEAN+TCMEAN)
ULB(N)=0.0
TLB(N)=1.0
WRITE(6,*) ‘EVERTED U AND T PROFILE (MIXED)’
DO 35 I=N,1,-1
WRITE(6,1) ULB(I),TLB(I)
35  CONTINUE
1 FORMAT(2F15.5)

RETURN



10

20

30

40

50

60

70

&

END

SUBROUTINE SPLINE(N.ENDCOT.XX,YY,SUMN.VAL.IER,
,C,D,H

INTEGER ENDCON

REAL XX(89),YY(99),B(99),C(99),D(99),H(98)

B

REAL SUMN(99),SAVEXX(99)

DO 5 I=1,N
SAVEXX(I)=XX(I)
CONTINUE
DO 10 I=1,N-1
HII)=XX{I+1)-XX(I)
CONTINUE
IF(ENDCON.EQ. 1) GOTO 20
IF(ENDCON.EQ.2) GOTO 30
IF(ENDCON.EQ.3) GOTO 40

C1=2.0%(H(1)+H(2))
C2=H(2)
C3=H(N-2)
C4=2.0*(H(N-2)+H(N-1})
GOTO 50

C1=3.0*H(1)+2.0%H(2)
C2=H(2)
C3=H(N-2)
C4=2.0%H(N-2)+3.0*H(N-1)
GOTO 50

C1

OO
W
nuwaan

C4
DO

60

B(I-1)
CONTINUE

T —~—T
—_—Z N -~
N Z | ~—

I

6
/

man un u~~

x

INNO

- .

—

COr -

H(2))*(H 1)+2.0*H(2)) }/H(2)

2-H(1)**2 }/H(2)
**x2-H(N-1)**2 )/H(N-2)

J+H(N-2)) * (H(N-1)+2.0%H(N-2)) )/H(N-2)

+ *

~ L
~ —~

(I+1)=YY(I))/H(I)-(YY(I)-YY(I-1))

Oc

 +

~ T

(J+1))-H(J)*D(d-1)
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C(N-2)=C4-C3*D(N-3)
XX(1)=B(1)/C(1)
DO 80 I=2,LL
XX{(I)=( B(I)-H(I)*XX({I-1) )/C(I)
80  CONTINUE
XX(II)=( B(II)-C3*XX(II-1) )/C(II)
C(II)=XX(II)

C Solve for the second derivatives using
C Thomas Algorithm.

DO 80 I=t1,LL
K=LL+1-1
C(K)=XX(K)-C(K+1)*D(K)
90  CONTINUE

DO 100 I=1,11
XX(I+1)=C(I)
100 CONTINUE
IF(ENDCON.EQ.1) GOTO 110
IF(ENDCON.EQ.2) GOTC 120
IF(ENDCON.EQ.3) GOTO 130
110 XX(1)=0.0
XX{N)=0.0
GOTO 140
120 XX{(1)=XX(2)
XX{N)=XX(N-1)
GOTO 140
130 XX{(1)=((H(1)+H(2))*XX(2)-H(1)*H(3))/H(2)
XX(N)=((H(N-2)+H(N-1))*XX(N-1)-H(N-1)*XX(N-2))
& /H(N-2)
140 DO 150 I=1,N-1
B(I)=(YY(I+1)-YY(I))/H(I)=(2.0%H(1)=XX(I)+H(I)
& *XX{I+1))/6.0
C(I)=xx(1)/2.0
D(I)=(XX(I+1)=-XX{I)) / (6.0%H(I))
150 CONTINUE
IF(IER.EQ.1) THEN
VAL=0.0
DO 160 J=1,N-1
AA=YY(J)*H(J)
BB=0.5*B(J)*H(J)**2
CC=(1.0/3.0)*C(J)*H(J)*=*3
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BD=0.25*D(J)*H(J)**4
EACH=AA+BB+CC+DD
SUMN(J)=VAL+EACH
VAL=VAL+EACH
160 CONTINUE
ENDIF

DO 170 I=1,N
XX(I)=SAVEXX(I)
170 CONTINUE
RETURN
END

C This subroutine increases the number of radial
C nodal points and interpolate U-velocities for

C the new nodal points using cubic spline. Call

C this radial indexing system RR(J).

SUBROUTINE INCRSE(N,R1,U1,NDCON,NDIV,KK,RR,UU)

PARAMETER(1D=24,JD=24)

REAL R1(99),U1(99),RR(99),UU(99),B(99),C(99),
& D(99),H{99),SAVER1(98)

DO 5 J=1,N
SAVER1(J)=R1(J)
5 CONTINUE
CALL SPLINE(N,NDCON,R1,U1,SUMN,VAL,0,B,C,D,H)
RR(1)=SAVER1(1)

Uu(1)=ut(1)
K=0
DO 10 J=1,N-1
DEB=(SAVER1(J+1)‘SAVER1(J))/NDIV
I=
11 IF(I.LT.NDIV) THEN
I=1+1
K=K+1

RR(K+1)=RR(K)+DEL
DELL=FLOAT(I)=*DEL
UU(K+1)=U1(J)+B(J)*DELL+C(J)*DELL**2+D(y)

& *DELL**3
GOTO 11
ENDIF
10 CONTINUE
KK=K+1
DO 12 I=1,KK
13 FORMAT(2F11.5)

12 CONTINUE
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DO 20 J=1,N
R1(J)=SAVER1(J)

CONTINUE

RETURN

END
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