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Abstract

We have witnessed the rising popularity of real-world applications of rein-

forcement learning (RL). However, most successful real-world applications of

RL rely on high-fidelity simulators that enable rapid iteration of prototypes,

hyperparameter selection and policy training. On the other hand, RL is not

wildly used in industrial control problems where simulators are too expen-

sive or complicated to build. In addition to the lack of simulators, industrial

control problems often face other challenges including high dimensionality of

the observation space, missing or noisy sensor values, and control happening

on multiple time scales. These challenges combined make industrial control a

unique area of research that has not been fully explored yet.

Water treatment plants (WTPs) are one of the most important infrastruc-

tures in today’s world. They not only deliver clean and accessible water to

households but are also responsible for wastewater treatment before returning

to the water cycle. Nowadays, accurate sensors and remove control function-

alities make it possible to have fully automated WTPs with minimal human

intervention. Such “smart” WTPs will be valuable for providing life-giving

water to areas where full-time WTP operators are inaccessible. Since the wa-

ter treatment process shares many characteristics with other industrial control

tasks, it is an excellent platform for developing novel algorithms that handle

challenges common in industrial control tasks.

The objective of this thesis is to formulate the water treatment process as

a collection of RL tasks. To achieve this, we develop the software stack for
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real-time monitoring, data collection, and control on a small-scale plant that

shares similarities to the main plant. We conduct a detailed survey on the

characteristic of installed sensors and their behaviour in di↵erent operating

modes. We determine sub-tasks that are suitable for RL. We then identify

the challenges we found while experimenting with the WTP. Based on these

findings, we present a case study on a sub-task: chemical dosing rate control in

water pretreatment, which utilizes the o✏ine logs and does not use a simulator.
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Chapter 1

Introduction

Reinforcement learning (RL) is a field under the broader domain of machine

learning. Unlike standard supervised learning that requires the true target

value directly provided to the learning model, RL is a general framework that

involves a learning agent and an environment, and the goal of the agent is

to learn an intelligent policy from trial and error while interacting with the

environment, without the need of an explicit teacher (Sutton & Barto, 2018).

Since we do not have to hand-craft the true target, many tasks can be formu-

lated with the RL framework naturally, including ones that are di�cult for

supervised learning. RL has gained a lot of attention recently due to many

successful applications, such as achieving human-level performance in Atari

games (Mnih et al., 2015) and Go (Silver et al., 2017). In addition to games,

we have also witnessed some successful RL applications in real-world tasks,

including controlling stratospheric balloons (Bellemare et al., 2020) and toka-

mak plasmas for nuclear fusion (Degrave et al., 2022). In this thesis, we focus

on another real-world application: water treatment. Water treatment plants

(WTPs) have many characteristics that make them suitable for RL. The most

important one is that their objective is clear: providing clean water. However,

we also recognize that there are some challenges in applying RL. Some chal-

lenges are common to many other industrial control tasks, while some others

are specific to WTPs.
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1.1 RL for WTPs

Water treatment plays a vital role in today’s world. As the population in-

creases, clean and accessible water becomes increasingly important; at the

same time, rapid industrialization and urbanization have increased the de-

mand for wastewater treatment. Having fully automated WTPs is not about

replacing people: operators or engineers are still needed to monitor the pro-

cess and intervene if necessary. Instead, it frees people from operating at low

time scales such as in minutes or hours and allows people to focus on high-

level tasks with larger time scales such as choosing the operation mode for

the next week, or deciding whether perform a filter replacement. Moreover,

according to World Health Organization, at least 2 billion people use contam-

inated drinking water sources (World Health Organization, 2022). Therefore,

fully automated and self-adaptive WTPs help deliver life-giving clean water

to regions where water treatment operators or engineers are not accessible

full-time.

A WTP is a suitable platform for RL. It is safe: they are usually equipped

with built-in safety layers to prevent dangerous actions, so premature ex-

ploratory actions from an RL agent will not put the WTP into dangerous

states. WTPs have clear goals: produce clean water while minimizing elec-

tricity cost, and chemical usage as well as extending the life of filters. It is

sensor-rich. Many WTPs already have sensors installed to provide human

operators with plant information, and it is also possible to install additional

sensors to make the internal state of the plant more observable. The plant

can operate in short intervals, so we can construct a continuous and dense

reward function for RL agents. Furthermore, decisions happen on multiple

time scales. For example, the decision on the chemical dose rate happens ev-

ery three seconds, but the decision of changing the current operating mode

happens hourly or daily. Therefore, a WTP is a good platform for testing RL

algorithms that allow operations on multiple time scales.

Despite these advantages, there are some challenges in applying RL to wa-

ter treatment tasks. Some challenges are general to many industrial control
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problems, while some are specific to WTPs. Like many other industrial appli-

cations, simulators are not available for WTPs, so an RL agent cannot leverage

a simulator to learn a good policy, or to do planning. Also, the input data

from the WTP is high-dimensional and multimodal. Some sensor readings are

noisy and sometimes inaccurate, adding more complexity to the task. Many

WTPs have multiple stages in their water treatment process, and depending

on the scale of the WTP and water flow rate, a change in the early stage may

take a while to be observed in later stages. There are di↵erent modes of oper-

ations; special care needs to be taken to deal with mode changes. Depending

on the operation time, we may have access to logs of sensory values, setpoints

and modes. E↵ective utilization of the o✏ine log may be an important factor

for the success of an RL agent. Possible methods include initializing a policy

from o✏ine logs using o✏ine RL algorithms such as Fitted Q Iteration (Ernst

et al., 2006), and Conservative Q-learning (Kumar et al., 2020), or construct

a low-granularity simulation of the environment from the o✏ine logs (Wang

et al., 2022).

1.2 Objective

The objective of this thesis is to formulate the WTP as a collection of RL

tasks. To achieve this, We investigate the characteristics of a pilot WTP

in detail, including understanding its operating cycles, analyzing observable

sensor values and internal states such as setpoints and valve status, and sub-

tasks that can be independently controlled. We also define open research

questions found during the exploration of the WTP. We also provide a case

study on the dosing rate task, one of the sub-tasks that can be independently

controlled by RL.

1.3 Contributions

The main contribution of this thesis includes:

1. We helped with the formalization of the water treatment process as a
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collection of RL tasks, identifying several novel research questions and

opportunities for algorithmic advances.

2. We contributed to the development of a software stack for real-time

monitoring, data collection, prediction and control of a real pilot WTP.

3. We provide a detailed case study on learning to control chemical dosing

on the pilot WTP.

1.4 Outline

This thesis has 6 chapters. In Chapter 2 we introduce background of RL and

other relevant concepts. In Chapter 3 we describe the water treatment process

and the pilot water treatment plant that we have access to in detail. Chapter 4

lists some challenges in applying RL in WTP and industrial control in general.

Chapter 5 formulates the WTP control as a collection of RL tasks. In Chapter

6 we provide a case study on the dosing rate task, show empirical results, and

discuss directions for future work. Finally, we conclude this thesis in Chapter

7.

1.5 Summary

In this chapter, we introduced the topics of this thesis: investigation and

formulation of the WTP control as a collection of RL tasks. We provided

the reasons why RL is suitable for WTP and some challenges. We listed the

contributions and closed with the outline of this thesis.
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Chapter 2

Background

This chapter covers the important concepts used in this thesis. We describe

the RL problem settings and general value functions (GVF).

2.1 Reinforcement learning

In the framework of RL, the interaction between the agent and the environment

is modelled as a Markov Decision Process (MDP).A MDP can be defined as

(S,A, R, P, �, µ) where S is the set of states, A is the set of actions, R :

S ⇥ A ! R is the reward function, P : S ⇥ A ! S defines the next state

distribution as a function of current state and action, � 2 [0, 1] is the discount

factor, and µ is the distribution of starting states (Sutton and Barto, 2018).

At step t, the RL agent observes a state st 2 S, and selects an action at 2 A
which is sampled from a policy ⇡(·|st). The environment then takes the action

at from the agent and return a new state st+1 2 S according to P (st, at) and a

reward rt+1 2 R that is computed from R. This interaction continues until a

terminal state is reached in episodic tasks. In continuing tasks, this interaction

runs forever.

In control tasks, the goal of an RL agent is to learn a policy that maximizes

the expected cumulative discounted reward, also called the expected return.

At step t, the return is defined as follows:

Gt
.
=

TX

k=t+1

�k�t�1Rk,
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Where T is the termination time step. For continuing tasks, T =1.

The value function of a given state s is defined as the expected return

following a given policy ⇡:

v⇡(s)
.
= E⇡ [Gt | St = s] ,

Similarly, the value function of state-action pairs, also called the action-

value function, is defined as:

q⇡(s, a)
.
= E⇡ [Gt | St = s, At = s] for all s 2 S, a 2 A.

Value functions provide an easy way to evaluate policies. We say a policy

⇡ is better than or equal to another policy policy ⇡
0
if v⇡(s)  v⇡0 (s) for all

s 2 S. The optimal value function is defined as

v⇤(s)
.
= max

⇡
v⇡(s),

for all s 2 S. And consequently, the optimal policies are the policies that

achieve the optimal value function:

⇡⇤ .
= argmax

⇡
v⇡(s).

Note that there could be multiple policies sharing the optimal value func-

tion. Similarly, the optimal action-value function is defined as

q⇤(s, a)
.
= max

⇡
q⇡(s, a) for all s 2 S, a 2 A.

2.2 Q-learning

Q-learning (Watkins, 1989) is an algorithm for approximating q⇤. The update

rule is defined by

Q (St, At) Q (St, At) + ↵
h
Rt+1 + �max

a
Q (St+1, a)�Q (St, At)

i
,
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where ↵ 2 (0, 1] is the step size, Rt+1 is the reward received at the current

time step after taking action At at state St. It uses Rt+1 + �maxa Q(St+1, a)

as the estimation of the return at time t.

2.3 Partial Observability

In many tasks, storing the value or action-values in a lookup table indexed

by states or (state, action) pairs is not feasible. After all, the “state” of most

real-world tasks is not accessible and is only partially observable to agents. We

call the values that are observable by the agent “observations”. For example,

in video games, an agent can only observe the pixels displayed on the screen

as well as the previous actions it took. It does not have access to underlying

game states stored in the computer memory. In a maze problem, a realistic

agent only has access to its surroundings, instead of the whole map. Therefore,

an agent needs to construct a representation of the underlying states from the

history of interactions Ht: St = f(Ht), where Ht = A0, O1, A1, O2, . . . , At�1, Ot

is the history of alternating sequence of observations and actions. For com-

putational reasons, we would like to incrementally compute the St using a

state-update function u:

St+1
.
= u (St, At, Ot+1) , for all t � 0.

The state-update function can be manually created with domain knowledge

or learned. Studies show that Recurrent Neural Networks can be used to

learn a representation for RL agents (Li et al., 2015, Chen et al., 2016 and

Hausknecht and Stone, 2017). As we will discuss in Section 2.5, General value

functions (Sutton et al., 2011) can also be used to construct representations

from observations.

2.4 Function Approximation and Deep RL

We can use function approximation to learn a representation of the underlying

states from the observations and approximate the value functions. Specifically,
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we denote the value function to be v(s,w), where w 2 Rd is the weight of the

function approximator. Unlike tabular methods where the estimated value

function can be equal to the true value function exactly, the best e↵ort of

function approximation methods is to minimize the mean square value error

(VE) between the true value function v⇡(s) and the approximated value func-

tion v̂(s,w):

VE(w)
.
=
X

s2S

µ(s) [v⇡(s)� v̂(s,w)]2 ,

where µ(s) is the state-visitation distribution. A stochastic gradient descent

method to update this objective is as follows:

wt+1 = wt + ↵ [v⇡ (St)� v̂ (St,wt)]rv̂ (St,wt) ,

where ↵ 2 (0, 1] is the step size and rv̂ (St,wt) denotes the gradient vector of

v̂ (St,wt).

In linear function approximation methods, the value function is approxi-

mated linearly:

v̂(s,w)
.
= w>x(s)

.
=

dX

i=1

wixi(s),

where x(s) is a function that generates a representation of the state s. Each

item in x(s) can be treated as a basis function: xi : S ! R.
Deep RL, as the name suggests, uses artificial neural networks (ANNs) as

the function approximator. Deep Q Network (DQN) combining ANN with

Q-learning achieves human-level performance or above in many Atari games

(Mnih et al., 2015). In addition to the use of ANN, DQN uses two important

techniques: (1) it uses experience replay to store the most recent experiences

in the form of (st, at, rt, st+1) for time step t, and update the ANN by training

with the data in the replay bu↵er; (2) DQN uses a target network with weights

copied from the learning network every C steps, and hence it updates slower

than the learning network. The objective of DQN at iteration i can therefore

be expressed as:
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Li (✓i) = E(s,a,r,s0)⇠U(D)

⇣
r + �max

a0
Q
�
s0, a0; ✓�i

�
�Q (s, a; ✓i)

⌘2�
,

where U(D) denotes that samples are sampled uniformly from the ER, ✓i

and ✓�i are the weight of the learning network and the weight of the target

network at iteration i respectively.

2.5 General Value Functions and Nexting Pre-
diction

General value functions (GVFs, Sutton et al., 2011) extend the standard value

functions in two aspects: (1) unlike standard value functions that aim to

predict the expected discounted cumulative reward (Rt 2 R), GVFs predict

the expected discounted cumulative value of an arbitrary signal, which is called

cumulant Ct 2 R; (2) the discounted factor � is generalized to a discounted

function � : S ! [0, 1]. Formally GVF can be written as

v⇡,�,C(s)
.
= E

" 1X

k=t

 
kY

i=t+1

� (Si)

!
Ck+1 | St = s, At:1 ⇠ ⇡

#
.

GVF can be used to implement Nexting predictions (Modayil et al., 2012).

In Psychology, “Nexting” is used to describe the behaviour of many animals

that continually make short-term predictions about their input (Clark, 2013).

In RL, Nexting predictions can be used as predictive auxiliary tasks along

with the main RL task. The timescale of the prediction can be controlled

by selecting the discounted function � properly. A natural way to learn the

Nexting predictions is to use temporal-di↵erence methods (Sutton, 1988) like

TD(�). In the work by Modayil et al. (2012), TD(�) is adapted to update the

prediction with linear function approximation as follows:

✓it+1 = ✓it + ↵
�
C i

t+1 + �i�>
t+1✓

i
t � �>

t ✓
i
t

�
eit,

where ✓t 2 Rd is the weight vector, � 2 Rd is the representation vector

constructed from past observations or past actions (or both), ↵ 2 (0, 1] is the
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step size parameter, C is the cumulant, and e 2 Rd is the eligibility trace

vector, which is updated every step by the following update rule:

eit = �i�eit�1 + �t,

where � 2 [0, 1] is the trace decay. When � = 0, this algorithm becomes

TD(0). When � = 1, the algorithm minimizes the mean squared value error

v̂(s,w). An empirical experiment shows that it is possible to make a large

number of Nexting predictions in parallel using TD(�): a robot can learn 2160

predictions in four di↵erent timescales simultaneously (Modayil et al., 2012).

2.6 Summary

In this chapter, we introduced the formalization of reinforcement learning,

and the well-known control algorithm: Q-learning. We also discussed the

partial observability problem. Then we talked about function approximations

and deep RL. Finally, we introduced General Value Functions and Nexting

predictions.
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Chapter 3

Water Treatment Process

This chapter provides an overview of the water treatment process. Then we

introduce the software stack that enables data logging, control and monitoring

of the pilot WTP. Finally, we take a deeper look into the pilot water treatment

plant available for RL experiments.

3.1 Water Treatment Process

Depending on the characteristic of the water source and the purpose of the

e✏uent water, technologies used in water treatment plants can be vastly dif-

ferent. Most WTPs use both physical methods and chemical methods. Among

physical methods, filtration plays a dominant role (Cheremisino↵, 2002a).

Chemical methods use chemical interactions to separate contaminants from

water. Some wildly-used chemicals in water treatment include Aluminum-

based and iron-based chemicals for suspended solids removal, and chlorine

and iodine for disinfection.

A typical WTP has a multi-stage water treatment process: pretreatment,

filtration and storage. We will describe each stage in detail.

Pretreatment

Also called primary treatment, this is the first stage of treatment after feeding

the water from the water source. The main goal of this stage is to remove solids

from the water. The most common method is chemical pretreatment, which

involves adding chemicals such as coagulants into the flocculation tank to
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remove suspended solids and pH adjusters to remove dissolved contaminants.

The biggest cost factor of pretreatment is chemical usage.

Filtration

This is the stage that usually follows pretreatment immediately. Water is

pushed through one or more filters to remove solids and some bacteria. A

pump can be used to increase the water pressure. Usually, the filtration process

requires backwash (BW): a self-cleaning mode in which a small portion of

permeate water is pushed back through the filters in the reverse direction,

cleaning out the dust on the filters built-up during its operation. The output

of BW goes directly to the drain or goes back to the pretreatment stage. The

biggest cost factor of filtration is the electricity usage and filter change.

Storage

Depending on the purpose of the water treatment plant, this stage is optional

or stores the processed water in a tank or reservoir.

3.2 Pilot Water Treatment Plant

In this section, we describe the pilot water treatment plant (pilot) we have

access to that is used for our RL experiments.
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Figure 3.1: The “mini” pilot WTP. The red box shows the flocculation tank
in the pretreatment stage, and the yellow box shows the filters in the filtration
stage.

Located in Drayton Valley, Alberta, Canada, the pilot (Figure 3.1) is de-

signed and built by Suez Water Technologies & Solutions, and maintained by

ISL Engineering. The pilot is placed in the same building as the main pro-

duction plant, thus sharing the same influent water. Figure 3.2, 3.3 and 3.4

show the simplified design diagrams of the pilot in three stages: pretreatment,

process (filtration) and permeate (after filtration). The goal of the pilot is to

replicate the full-scale facility, so the pilot and the main plant use the same

water treatment technologies and the same water source. As an experiment

platform, the pilot plant pipes the processed water to the drain directly, so the

e✏uent water produced during experiments will not have any health risks. To

help RL agents make better decisions, the pilot is equipped with more sensors

than the main plant, including additional temperature, pH, pressure, turbidity,

flow speed, and flocculation tank level sensors. In addition to sensors, agents

have access to the internal states of the pilot via various setpoints, current

plant mode and alarm timers.
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Figure 3.2: Simplified design diagram of the pretreatment stage of the pilot.
Inlet water (top left) goes to the flocculation basin before being piped out of
this stage (middle right). During the process, multiple characteristics of the
water are measured, including temperature, pH, turbidity, conductivity, total
organic carbon (TOC), pressure and flow rate. Lines represent the process
lines and arrows show the flow direction. Bold lines show the major process
lines, and thin lines show the minor process lines. Circles represent installed
sensors. Some sensors are installed along the major process lines, while other
sensors require a minor process line so that the used water flows to the drain.
Figure 3.3 and 3.4 follows the same convention.
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Figure 3.3: Simplified design diagram of the filtration stage of the pilot. Inlet
water from the pretreatment stage is filtered in the membrane tank. The
filtered water is called permeate. Dashed lines mean water surface, and sensors
on the dashed lines take measurements on the surface of the water.
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Figure 3.4: Simplified design diagram after the filtration stage. In this stage,
pH, conductivity, and TOC are measured against the permeate.

3.3 Software Stack of Pilot WTP

In this section, we describe the software stack created for the pilot.
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The software follows the server-client architecture: a server running on a

computer physically connected to the pilot accepting incoming connections,

and a client program that can be run on any computer with an internet con-

nection and credentials to the server.

The software stack supports the following functionalities:

• Duplex communication between the pilot and the agent

• RL training loop

• Data visualization dashboard for real-time monitoring

• Data logging and backup

We will describe the high-level implementation details for each of them in

the following sections.

3.3.1 Bi-directional Communication Between the Pilot
and the Agent

In the RL framework, the agent and the environment interact at a fixed inter-

val. Therefore, our software needs to establish bi-directional communication

between the pilot and an agent. Our software stack uses the gRPC (Kumar

et al., 2016), a Remote Procedure Call framework, to establish and transmit

information between the client and the server. The transmission of the sensory

values, or observations in the perspective of the agent, is implemented as the

response-streaming RPC : when the client is ready for digesting new observa-

tions, a request is sent to the server, which then responds with a stream of

observations. The client does not need to re-send the request after the ini-

tial setup, therefore saving the bandwidth. The write actions sent from the

client to the server are implemented as a simple RPC call : the agent sends

the write request to the server, which then responds with a status code that

shows whether the operation is successful. If the write request fails, an error

message is also provided along with the status code to explain the source of

the error.
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The gRPC client is implemented in the Connection module, which serves

as the gateway of the client-side application, making other modules such as

the Environment and the Agent independent of any type of connection.

gRPC Serverpilot WTP
plc

gRPC Connection
gRPC

Figure 3.5: Block diagram of the connection to the pilot WTP. This imple-
mentation of Connection creates a secure duplex channel to the gRPC server,
which runs on a high-performance computer physically connected to the PLC
controller of the pilot WTP.

Calibration Simulator
ConnectionData Log Reader

offline raw data

Figure 3.6: Block diagram of the calibration model. The Data Log Reader
reads and processes the o✏ine dataset for the Calibration Simulator Connec-
tion to create a calibration model.

Figure 3.5 and 3.6 shows two examples of connections: connection to the

pilot and to the calibration simulator. Despite the vast di↵erence between the

data source and underlying connection technologies, the two connections follow

the same interface and therefore can be plugged into the same Environment

without any modification in the source code.
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3.3.2 RL Training Loop

Environment

Agent

Featurizers

Connection

action
observation 

reward 
done

Nexting Prediction

raw data

command

observation

processed observation

prediction on observation

observation

learning procedure

Figure 3.7: Block diagram of the client-side application.

Figure 3.7 shows the design diagram of the client application. The environ-

ment runs on the client-side, so we can implement the agent with a similar

interface as other popular RL frameworks such as RL-Glue (Tanner & White,

2009) and OpenAI Gym (Brockman et al., 2016), allowing us to port existing

algorithm implementations with no or only a few modifications. The Featuriz-

ers module handles observation processing, including data normalization and

missing value interpolation. The Nexting Prediction module provides Nexting

predictions (Clark, 2013 and Modayil et al., 2012) as extra inputs to the agent.

The Nexting predictor is pre-trained with o✏ine data and keeps learning on-

line with TD updates. With Nexting predictions as extra inputs, the agent

knows not only the current status via observations but also what is going to

happen next via Nexting predictions. As a result, we believe that Nexting

predictions help the agent learn a better representation of the environment.

The Environment module implements an environment under RL formu-

lation, including defining the observation and action spaces, reward function

and termination condition. The Environment module does not handle data
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acquisition, but instead delegates this task to the Connection module, which

provides an abstraction layer of any kind of connections, including connections

to the pilot, to a dummy data source that simply replays the o✏ine logs, or

to a data-based simulator (Wang et al., 2022).

We can define multiple RL environments on the pilot plant, as well as many

di↵erent RL algorithms. To avoid editing the source code manually when we

want to change the environment or the agent, we use a configuration file to

specify the name of the environment and the agent, as well as all the hy-

perparameters in the JSON format. The application loads the corresponding

components specified in the configuration file dynamically at runtime. This is

achieved using registries: at the start of the program, all the Environments,

Agents and Connections are registered in the registries with their human-

readable names. Then the program loads the corresponding components based

on the names specified in the configuration file. This approach makes sharing

experimentation setup easy: all the settings are fully specified in the configu-

ration file.

3.3.3 Data Visualization Dashboard for Real-time Mon-
itoring

It is useful to monitor the change of sensory values in the pilot during experi-

ments. For researchers, a dashboard that monitors the learning curve provides

real-time information about the performance of the agent. For water treatment

engineers and operators, a dashboard that displays various sensory readings

helps them determine if interventions of an experiment are necessary. We use

Grafana (Grafana Labs, 2014) to build dashboards. Figure 3.8 shows an ex-

emplary dashboard that displays useful information in real-time, including the

current operation mode, number of connected agents and sensory plots. Each

panel in the dashboard is individually configurable, and users can adjust the

refresh rate of the real-time data stream.
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Figure 3.8: The Grafana dashboard shows real-time information about the
pilot, including current operation mode, number of agents connected and im-
portant sensory readings.

3.3.4 Data Logging and Backup

The logged data serves two main purposes: (1) as the historical record of the

experiments for calculating metrics and plotting learning curves; (2) used by

an RL agent to learn an initial policy before interacting with the pilot. To

ensure the timeliness and accuracy of the records, the data logging service

runs on the server. A synchronization service runs once a day to upload logs

collected for the day to a cloud storage location.

3.4 Sensors

This section describes all the sensors installed on the pilot.

In this thesis, we overload the term “sensor” to describe both passive/active

sensors used for measuring a physical quantity, and internal states of the pilot

such as setpoint values provided by the plant system. As described in Section

3.1, water treatment consists of multiple stages. The pilot plant has a set of

sensors installed in each stage.

3.4.1 Sensor Types

The pilot provides observation of dimension 473, including numerical and cat-

egorical values. These sensors can be divided into the following categories:
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Pressure

Pressure sensors are installed on the inlet pipe, before the membrane, on the

drain-reject pipe, on the blower outlet and at the feed/waste pumps. In water

treatment, pumps are often required to increase the feed pressure, and hence

pressure sensors are helpful in both providing feedback to the pump controllers,

as well as monitoring the plant status for the operators.

Flowmeter

Flowmeters measure the flow rate of the fluid. which is defined as the product

of the velocity of the fluid and the cross-sectional area of the pipe.

pH

pH sensors measure the acidity and alkalinity of solutions.

Temperature

Temperature sensors measure the temperature of the water.

Turbidity

Turbidity sensors measure the turbidity of the water. The turbidity sensors

consist of two components: an emitter that emits lights into the water, and a

receiver that measures the amount of light scattered by suspended solids.

Total organic carbon (TOC)

In the context of water treatment, TOC is a measure of carbon compounds

contained in water. While carbon compounds may not be toxic, those contain-

ing nitrogen can react with chlorine, which is wildly used in municipal water

treatment for disinfection, resulting in less free chlorine and therefore reduced

disinfection performance (Cheremisino↵, 2002b). TOC sensors measure the

TOC in the water by using the fact that organic compounds absorb a portion

of the ultraviolet (UV) light. They have a similar setup to turbidity sensors,

however, one significant di↵erence is that TOC sensors emit UV light at 254
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nm wavelength and the receiving component measures the percentage of the

UV light passed through the water.

Setpoints

Setpoints and modes provide operators with control over the pilot. Operators

can write new values to setpoints, and the actuators of the plant will adjust the

quantity to the setpoint value using PID control. Some important setpoints

include the dosing rate, the mixer fan speed of the flocculation tank and plant

mode.

3.4.2 Pilot Operating Cycles

During operation, water treatment plants can enter multiple operation modes.

Some typical modes include:

• Production (PROD)

• Standby (STBY)

• Backwash (BW)

• Drain (DRAIN)

• Membrane integration test (MIT)

Due to the small factor of the pilot plant, modes are switched more fre-

quently than on the main plant. During its operation, the pilot loops through

the following modes: STBY (10 min) ! PROD (20 min) ! BW (1.5 min) !
DRAIN (5 min)! PROD (3 min)! STBY (10 min). This forms the normal

cycle of the pilot. MIT is scheduled at around 4:30 AM every day, interrupting

the normal operating cycle. The MIT mode usually takes 10 minutes. After

MIT, the pilot resumes the normal cycle. Since the pilot shares the same inlet

pipes with the main plant, its normal cycle may be overridden by the main

plant when operators change settings on the main plant manually. Figure 3.9

shows a state diagram of the mode changes of the pilot.
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Figure 3.9: State diagram of the pilot plant.

3.4.3 Sensor Patterns in Di↵erent Operating Modes

Sensor patterns can be vastly di↵erent when the pilot operates in di↵erent

modes. Figure 3.10 shows the sensor patterns in four di↵erent modes: STBY,

PROD, BW, and MIT. From the plots, it is clear that some sensors exhibit

mode-dependent behaviours, and the pattern and value range can be vastly

di↵erent. For example, during PRD, on average the permeate temperature

drops from 14 �C to 10 �C, whereas during BW we observe an increase from

10 �C to 14 �C.
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Figure 3.10: Patterns of six sensors for four di↵erent operating modes. In each
sub-plot, the x-axis shows the time stamp since the start of a mode, and the
y-axis shows the sensor value. Each transparent line represents one trajectory,
and hence darker region indicates more common patterns. Plots are generated
using data collected in 2021.

3.4.4 Temporal Patterns

Some sensory data is temporal-dependent. Among these sensory readings,

the inlet temperature is the most representative reading as it has interesting

intraday and seasonal patterns. Figure 3.11 illustrates the inlet temperature

across a year. The red line is the smoothed value of the raw sensory reading

(purple). The inlet temperature climbs up from April (3 �C) to July (24.2�C),

before starting to decrease until December. It then stays flat at around 3 �C

until early April of the next year. Note that the raw sensory reading contains

missing ranges (i.e. around April and around July), as well as abnormal values

(around October) due to system error, system maintenance or plant repairs.
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Figure 3.11: Yearly inlet temperature sensor values during 2021.

Figure 3.12 and 3.13 illustrate the di↵erence in daily patterns of the inlet

temperature in di↵erent seasons. On March 2, 2021, the inlet temperature

was mostly below 1.5 �C, with a few occasional peaks that reached between

3 �C and 5 �C. In contrast, on August 21, 2021, inlet temperature was in the

range between 16 �C and 18 �C, with a di↵erent intraday pattern than that

on March 2, 2021.

Figure 3.12: Intraday inlet temperature sensor values on March 2, 2021.
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Figure 3.13: Intraday inlet temperature sensor values on August 21, 2021.

3.5 Related Work in WTP Control

There are many optimizing opportunities in di↵erent stages of water treatment.

In this section, we briefly describe some related work in the control of WTP.

3.5.1 Control the Operating Modes

The main plant uses a fixed BW frequency, which is a common strategy for

many WTPs. While easy to implement, fixed BW frequency is ine�cient

in many cases. When the filter is in good condition or the influent is clear

(especially in winter time), frequent BW may lead to low productivity; in

other cases, when the filter is old or the influent is very dirty (during freshet

or rainy days), filters may degrade caused by BW not being carried out in

time. A more e�cient BW scheduler should take both the filter condition

and influent characteristics into account, and schedule BW accordingly which

maximizes the filter life and minimize the energy used during BW.

Dynamic programming (DP) has been used to find the optimal backwash

sequence that reduces membrane fouling and hence increases membrane per-

formance and durability (B. Zhang et al., 2020). In this research, a Markov

Decision Process (MDP) involving two free variables is first designed and esti-

mated using one year of logged data. With the MDP, the optimal policy is then

selected using DP, with a cost function that takes both build-up of membrane
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resistance and the cost of backwash into account. For online decision-making,

they deploy the fixed optimal policy to make BW decisions. They evaluated

the performance of their method against a fixed backwash interval strategy

that was deployed on a pilot WTP. They showed that their method resulted

in a lower long-term cost than the fixed backwash interval strategy.

3.5.2 Control in Pretreatment

There are many studies about optimizing or modelling the pretreatment stage.

One way to approach this task is to train an ANN to predict the e✏uent

turbidity using the chemical dose and water characteristics (Q. J. Zhang et

al., 2007). For control, the chemical dosing resulting in the lowest turbidity by

sweeping the chemical dose in a range is selected. Another approach by Han

et al. (1997) optimizes the coagulant dosing process by modelling the jar test.

They utilized the jar test data and trained two models: a fuzzy model and an

ANN model. Depending on the water characteristics, one of the models is used

to make predictions on the PAC dosing rate. To evaluate their method, they

conducted a field test with their methods on a WTP for one year, compared

the performance of their model against a conventional regression model, and

showed that their method obtained a better accuracy in predicting the PAC

dosing from the jar test. However, these approaches cannot adapt to changing

conditions in the influent, weather and WTP states that are not presented in

the training data.

3.6 Summary

In this chapter, we introduced the water treatment process in general, ex-

plaining two major treatment stages: pretreatment and filtration. Then we

described the pilot WTP located in Drayton Valley, Alberta, Canada. We also

had an overview of the software stack that supports RL experiments, moni-

toring and data logging. After this, we discussed operating modes and sensors

installed on the pilot plant, and how their readings are a↵ected by operating

modes and time. We closed the chapter by introducing some related work
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about controlling WTPs.
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Chapter 4

WTP Challenges

Standard benchmarks have many benefits to the research community. We have

seen many advances in RL algorithms recently, and it is common that most

of the recent algorithms use standard benchmarks such as classic controls in

OpenAI Gym (Brockman et al., 2016), Atari (Bellemare et al., 2013) and Mu-

JoCo (Todorov et al., 2012) for evaluation. Those benchmark environments

make the comparison of algorithms easier: environments are standardized,

providing fair benchmarks to RL algorithms. Therefore, it is not surprising

that many new algorithms use these benchmarks to demonstrate their perfor-

mances, as well as many algorithmic advances inspired by some characteristics

in the simulator environments.1

However, real-world industrial control problems are much harder compared

to tasks in simulation. In this chapter, we will discuss some challenges of of

WTP tasks that make them di↵erent from simulated tasks in the benchmarks.

We divide the challenges into two groups: challenges that are general in in-

dustrial control problems, and challenges specific to WTPs.

1Although the environment suites provide a standard benchmark to evaluate RL agents,
environments may have hyper-parameters that can be tuned by the user. Some hyper-
parameters, such as the number of frames skipped in Atari (Bellemare et al., 2013) a↵ect
the performance dramatically (Braylan et al., 2015).
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4.1 General challenges for RL in industrial con-
trol

In this section, we discuss four challenges faced in industrial control problems:

lack of simulators, sensor noise, stable policy and actions at di↵erent time

scales.

4.1.1 Lack of Simulators

High-fidelity simulators are easy to obtain in games. With advances in compu-

tation power, an RL agent has the luxury of on-policy learning with millions

of trials in a simulator. For tasks with no simulators available, learning online

in the actual environment from scratch is usually restricted or impossible for

two reasons:

1. Unsafe actions are prohibited in safety-critical applications, including

robotics and healthcare.

2. Learning can take an unacceptably long time due to the control frequency

in industrial tasks. For example, the decision of changing the membrane

in a WTP happens once per year. Training an online RL agent that

controls such tasks from scratch is infeasible.

Therefore, most successful RL applications in industrial control use simu-

lators to overcome the two problems.

Unfortunately, even if we have a simulator that can be used to learn a

policy, it might still be challenging to deploy the learned policy in compli-

cated systems because of the reality gap (Boeing & Bräunl, 2012): di↵erences

between the simulator and the real-world task. There are many sources of

discrepancies, including unmodeled dynamics in the simulator, incorrect pa-

rameters and numerical errors (Tan et al., 2018). In addition, many simulators

are synchronous with the agent: the simulation program pauses and waits for

actions from an agent. We will discuss the asynchronous environment in more

detail in Section 4.1.5. Such di↵erences could potentially make the sim-to-
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real transfer impossible because the discrepancies are accumulated through-

out training, causing the agent learns in an environment that is significantly

di↵erent from the real-world counterpart. Although carefully validated sim-

ulators with proper noise modelling have been found to overcome the reality

gap (Jakobi et al., 1995), designing detailed and accurate simulators in large

industrial projects is often infeasible.

O✏ine RL, a paradigm that aims to learn a policy from data (Lange et

al., 2012), therefore is an important area of study as it can potentially solve

the problem of lack of simulator in real-world settings. However, o✏ine RL

is empirically harder than the online setting. In the work by Ostrovski et

al. (2021), three factors contribute to the di�culty of o✏ine RL: bootstrap-

ping, data distribution and function approximation. The three factors work

together to cause and amplify the problem: Insu�cient data coverage in the

o✏ine data causes incorrect generalization by function approximators, result-

ing in inaccurate value estimation at less-covered state-actions. The di�culty

is amplified by bootstrapping, which further carries the erroneous value es-

timations to state-actions that are well-covered by the data distribution. In

Q-learning methods like DQN, the values are usually over-estimated due to the

“max” operation when estimating the target value (Ostrovski et al., 2021).

Other than o✏ine RL, we can construct a data-based simulator extracted

from o✏ine data (Wang et al., 2022). The simulator is called a “calibra-

tion model”, because it works as a low-granularity environment for hyper-

parameter selection, and can thus “calibrate” the hyperparameters before de-

ployment. We can also use the policy learned in the calibration model as the

starting policy for online experiments. The idea is simple: given a list of tran-

sitions (s, a, r, s0), we define a distance measure d((s, a), (s0, a0)) . Given the

current state s and action a, we compute the distance between (s, a) and all

other state-action pairs in the dataset using d. If the distance to the closest

neighbour exceeds a threshold, terminate the episode with the default reward.

Otherwise, choose a neighbour (si, ai) according to an exponential distribu-

tion that puts more weights on closer state-action pairs. With (si, ai), we can

retrieve the transition (si, ai, ri, s0i) from the dataset. The calibration model
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returns the reward ri and next state s0i to the agent. This process is then

repeated until the termination state is reached. Intuitively, the calibration

model stitches trajectories that are close together in the dataset. In the im-

plementation, this process can be optimized by pre-computing the distance

and storing all (s, a) and the nearest neighbours within the distance threshold

into a hash map before the interaction starts.

4.1.2 Sensor Noise

Sensor noise is common in industrial applications. Some sources of noise in-

clude sensors operating in sub-optimal operating conditions, installation er-

rors, missing readings due to maintenance, or the limitation of the sensors

themselves.

Noise in Sensors Used to Construct Rewards

Unlike standard RL benchmarks that provide the reward as a separated signal

from observations, the reward is often constructed from one or a combination

of sensor readings in real-world tasks. Therefore, noise in the sensor readings

may be propagated to the reward signal if one or many components in the

reward are noisy. To illustrate, Figure 4.1 shows the reward noise and sensor

readings used to construct the reward in a PAC dosing control environment

on the pilot. It can be seen that noise in the TOC and permeate turbidity

sensors (bottom two plots) cause the noise in the reward signal (top plot).
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Figure 4.1: Reward and sensor readings used to construct the reward signal
in the PAC dosing environment.

In the on-policy setting, noise in rewards causes slow learning in model-free

algorithms, because agents need to unlearn the biased estimation with more

samples. This e↵ect is more prominent in Q-learning and its variants due to

the “max” operator in the update equation (see Section 2.2). The noisy reward

problem is even harder in the o↵-policy setting: the biased value estimate will

be eventually unlearned given su�cient samples in the on-policy setting, but

the biased value estimate may be kept and never unlearned in the o↵-policy

settings (Sutton & Barto, 2018).

Double learning is a method to avoid maximization bias in Q learning

algorithms (Hasselt, 2010). The idea is to separate the parameterized model

for estimating the maximum of the true values and producing greedy actions.

In double Q learning (van Hasselt et al., 2015), two Q networks parameterized

by ✓t and ✓0t are used to construct the target value Y DoubleQ
t :

Y DoubleQ
t ⌘ Rt+1 + �Q

✓
St+1, argmax

a
Q (St+1, a;✓t) ;✓

0
t

◆
.

Q(·, ·, ✓t) is used to infer greedy actions, and Q(·, ·, ✓0t) is used to estimate

the value of the greedy policy.

Another method that aims to address the noisy reward problem is to es-

timate the expected value of the reward directly (Romo↵ et al., 2018). This

work suggests that instead of using the reward signal from the environment
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which could be noisy or corrupted, we can learn estimation of the mean re-

ward, and use it in the calculation of TD error. The mean reward estimator

parameterized by ✓R̂ is trained by minimizing the Mean Square Error between

the true rewards rt and estimated rewards R̂ (st; ✓R̂):

L (✓R̂) = E
⇣

rt � R̂ (st; ✓R̂)
⌘2�

.

The authors demonstrated that this approach improves the performance

of PPO (Schulman, Wolski, et al., 2017) in a toy MDP problem, five Atari

games (Bellemare et al., 2013) and four MuJoCo tasks (Todorov et al., 2012)

with artificial stochastic noise in the reward function.

Noise in Observations

A reasonable degree of noise in the input to the model is not a big problem

in supervised learning. Studies show that artificially injecting noise into the

input can reduce overfitting of the model (Bishop, 1996 and Goodfellow et al.,

2016). On the other hand, noises may disturb the observations, causing the

agent to make incorrect value estimations. A simple example is a path-finding

robot in a maze with noisy localization sensors. The robot may incorrectly

locate itself in a position that is on the other side of a wall due to noise, thus

assigning values to incorrect states.

4.1.3 Stable Learning in Deployment

Many industrial control tasks require an agent to maintain a stable policy

over a long period while being able to adapt to changes in the environment.

Therefore, instead of simply deploying a fixed policy, an agent could continue

learning online, but the policy should not change drastically. In value-based

methods, the policy is inferred from the estimated action-values. While the

action-values are updated gradually, a small change may cause the order of

the action-value to be di↵erent. Since the agent selects the action with the

maximum action-value, a small change in action-values could result in a sudden

change in the inferred policy. Policy gradient methods, a group of methods that
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parameterize the policy directly, have the advantage that ensuring the policy

changes gradually (Sutton & Barto, 2018). Trust Region Policy Optimization,

or TRPO, is a policy gradient method that puts a constraint on the KL-

divergence between the updated policy and the old policy so that the policy

does not change dramatically during training, and therefore delivering robust

performance in many tasks (Schulman, Levine, et al., 2017).

Another issue that makes the never-ending problem hard with ANN is

catastrophic forgetting, a phenomenon that new learning catastrophically erases

previous learned information (McCloskey and Cohen, 1989 and French, 1999).

Catastrophic forgetting can happen during incremental learning, where tasks

are learned by an ANN sequentially. RL is a typical incremental learning task

because data arrives in chronological order. Five methods that could mitigate

catastrophic forgetting include 1) regularization, 2) ensembling, 3) rehearsal,

4) dual-memory models, and 5) sparsecoding (Kemker et al., 2018).

4.1.4 Handling Actions at Di↵erent Time Scales

To achieve human-level intelligence, the ability of decision-making on di↵erent

time scales is essential. People make decisions on di↵erent time scales natu-

rally: the decision of attending university happens at a much slower time scale

than the decision of what to eat for lunch. Moreover, decisions at di↵erent

time scales are common in many industrial tasks. In a WTP, the decision of

switching from production to backwash happens every hour, while the decision

of changing the fan speed in the flocculation tank happens every second.

Hierarchical Reinforcement Learning (HRL) is a framework that decom-

poses an RL task into sub-tasks that can be individually learned. The top-

level agent can invoke policies learned in sub-tasks as if they are raw actions

(Hengst, 2010). One approach to HRL is options (Sutton et al., 1999). An op-

tion is defined as a policy and a termination function: ! = h⇡!, �!i, where ⇡!

is the policy of the option, and �! is the termination function that determines

termination of the option (Sutton & Barto, 2018). Options are the generaliza-

tion of actions: a primitive action is a one-step option with a policy of selecting

that action and termination at the next step immediately. Unlike a normal
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RL agent that selects primitive actions at each step, an agent using options

selects one of the options available at the current state, and once an option

is selected, subsequent actions are drawn from the policy At ⇠ ⇡!(·, St), with

termination possibility of 1 � �!(St). Therefore, options enable hierarchical

learning at di↵erent time scales.

4.1.5 Asynchronous Operations

There are two sources of asynchronization in WTP tasks: asynchronous ob-

servations and asynchronous interactions. We will discuss each of them in

detail.

Asynchronous Observations

Sensors installed on the WTP have di↵erent sampling frequencies. On the

pilot, sensors for temperature, pressure and flow rate take measurements every

second, while sensors for pH, TOC and turbidity take measurements every five

minutes.

One straightforward way to handle the frequency mismatch is to select a

control frequency that is the greatest common multiple of sampling frequencies

of all the sensors. However, sometimes we need to control the pilot at a higher

frequency so that an agent can react to sudden changes in the environment.

Therefore, we need to handle delayed observations for sensors with a lower

sampling frequency than the control frequency. To overcome this, we can save

the last values of low-frequency sensors, and use the saved values for steps

before new values are available. For sensors with a higher sampling frequency

than the control frequency, we discard intermediate values between two RL

steps and only use the most recent values in constructing the observations.

Asynchronous Interactions

Many RL simulation programs are synchronous, meaning that the state of an

environment locks until an action is taken by an agent. While this setting

is acceptable in games like Chess, Go and Poker, many real-world environ-

ments proceed while the agents are learning or making decisions. Moreover,
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an action may take time to be realized. As a result, the asynchronous nature

of real-world tasks could cause the agent to make decisions based on delayed

information about the environment. One approach to overcome the asynchro-

nization is to parallelize the environment interaction, batch sampling and the

gradient update such that the learning process does not block the interaction

with the environment, and therefore minimize the delay (Yuan & Mahmood,

2022).

4.2 Challenges for RL in WTP

In this section, we discuss some challenges specific to WTP that might not

common in other industrial tasks.

4.2.1 Delayed Action E↵ect

One important control task on the pilot WTP is the control of the PAC dosing

rate. The agent is allowed to operate at intervals as short as three seconds.

However, the e↵ect of the change in PAC dosing rate on the permeate water

can only be observed at least 30 minutes later. If an agent controls with an

interval of 3s, the e↵ect of an action can only be observed 600 steps after the

action is executed. Moreover, excess PAC due to the high dosing rate causes

clogs on the membrane, but it could take days to be observed. Such long

delayed e↵ect of actions makes learning di�cult, as it is hard for the agent to

assign credit for a change in the quality of permeate water to actions 600 steps

ago, not to mention assigning credit for the long-term impact of membrane

degradation.

The most straightforward method is to increase the operation interval to

30 minutes. The agent is only allowed to send an action to the pilot every 30

minutes, and the dosing rate is kept the same between two actions. By doing

this, an agent can observe the impact of the action in the next step immedi-

ately. However, increasing the operation interval inversely reduces the number

of updates during training. In o✏ine learning with data logs, Increasing the

interval results in less data being available. We need to find the balance be-
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tween the delayed action e↵ect and training e�ciency when looking for the

optimal operation interval.

Another approach is that we can re-design the reward function so that it

incorporates the delay. However, this can be di�cult as it requires an extensive

amount of domain knowledge, and reward function designing is known to be

di�cult and critical to the success of RL applications (Sutton & Barto, 2018).

Alternatively, we build a better representation that contains the informa-

tion about the delayed e↵ect. One approach is to provide an RL agent with

Nexting predictions (Clark, 2013 and Modayil et al., 2012) about the signals

used in reward construction. Using the Nexting prediction as an additional

input, the agent could map actions to the expected future, thus assigning ap-

propriate credit to its actions. However, all of this depends on the assumption

that the Nexting predictions are accurate. Research has shown that an agent

can make thousands of Nexting predictions in parallel on a desktop computer

when following a fixed behaviour policy (Modayil et al., 2012). However,

learning accurate Nexting predictions while learning a good policy is more

challenging.

Other techniques that could help with the delayed action e↵ect include:

experience replay (Lin, 1992) with a bu↵er large enough to cover the whole

period of the delay, n-step methods (Sutton & Barto, 2018) longer than or

equal to the delay steps, add history to the observation of the agent, or pro-

viding a proxy for the delayed outcome (Mann et al., 2019).

4.2.2 Multi-dimensional Action Space

In some control tasks, two or more quantities need to be controlled together

to achieve optimal performance. One practical task that illustrates this is the

PAC dosing rate control at pretreatment of a WTP. There are two knobs:

(1) the PAC dosing pump that controls the dosing rate, which consequently

determines the PAC concentration in the flocculation tank, and (2) the mixer

fan speed of the flocculation tank, which plays an important role in the e↵ec-

tiveness of the flocculation: if the fan speed is too slow, PAC and the inlet

water are not evenly mixed. On the other hand, high fan speed could break
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apart flocculation just formed. Therefore, an agent needs to choose a proper

combination of PAC dosing rate and mixer fan speed to deliver optimal coag-

ulation.

For value-based methods, if the actions are discrete in all dimensions, a

simple method is to create a set of new actions that is the cross-product of all

dimensions. For example, given a two-dimensional discrete action space, where

two actions are available at each dimension [(A0, A1), (B0, B1)], we can create

a new one-dimensional action space with [C0 : (A0, B0), C1 : (A0, B1), C2 :

(A1, B0), C3 : (A1, B1)]. The disadvantage of this approach is the curse of

dimensionality (Bellman, 1957): the size of the new 1D action space grows

exponentially with the number of dimensions of the original action space and

the number of allowed actions in each dimension. Moreover, this approach

only works if all dimensions are discrete.

If all dimensions of the action space are continuous, then policy gradient

methods (Sutton & Barto, 2018) may be more suitable for such tasks. Unlike

value-based methods that parameterize the value functions, policy-gradient

methods parameterize the policy directly. Therefore, the parameterized policy

function approximator can output a vector of actions (Lillicrap et al., 2019),

or a vector of distribution parameters so that the vector of actions can be

sampled from the outputted distribution (Haarnoja et al., 2018). Moreover,

an advantage of continuous action spaces is that an agent can generalize over

actions. Closer action values in a continuous action space are usually similar,

and therefore an agent can not only generalize over the states but also the

action space.

Alternatively, we can approach the multi-dimension action space problem

using multi-agent RL (MARL). For a task with n dimensions in the action

space, we can control each dimension of the action space with one agent, and

solve the n-dimension action space task by the cooperation of n RL agents.

MARL tasks can be divided into at least three categories: (1) fully cooperative,

(2) fully competitive, and mixed. (K. Zhang et al., 2021). The PAC dosing task

falls under the fully cooperative case: the agent controlling the PAC dosing

rate works together with the agent controlling the mixer speed to maximize
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e✏uent water quality. Both agents share the same reward signal. Team Q-

learning (Littman, 2001), a representative MARL algorithm, can be used to

solve such cooperative tasks.

4.3 Other Challenges

Other than the challenges that we have identified during our interactions with

the pilot WTP, Dulac-Arnold et al. (2021) mentioned some other challenges in

industrial control tasks, including following system constraints, partial observ-

ability, multi-objective reward functions, and explainable policies. In addition,

they provided a suite of RL task software with intentional perturbations that

simulate the aforementioned challenges. We believe that such software could

help us iterate on new techniques for overcoming the challenges of real-world

RL e�ciently before deploying them to the pilot WTP.

4.4 Summary

In this chapter, we outlined some general challenges of RL in industrial tasks

and specific challenges in WTP. For each challenge, we explain why it could

occur, and some solution methods in the literature that we think could help

overcome it.
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Chapter 5

WTP as a Collection of RL
Tasks

In this chapter, we introduce some tasks in the WTP that can be formulated

into RL problems. For each task, we identify the objective, the observation

and action spaces, as well as the reward function. By decoupling the water

treatment process into independent RL tasks that can be solved individually,

We believe that it is the starting point toward a fully RL-controlled WTP.

5.1 Controlling the PAC Dosing Rate

This task aims to control the PAC dosing rate in the pretreatment stage of the

water treatment process. PAC is a wildly-used coagulant in the pretreatment

stage. The addition of PAC increases the rate at which small floating par-

ticles coagulate together to form larger particles, resulting in faster settling.

Moreover, PAC helps the disinfection indirectly by removing organic matter.

Although some organic materials may not be harmful to humans, their am-

monium ions and amino acids will react with chlorine, reducing free chlorine

available for disinfection (Cheremisino↵, 2002c), which is regulated in many

cities.

A study of U.S. WTPs revealed that chemical usage accounts for 16% of

the operation and maintenance cost, the third-largest factor after labour and

electricity (Roberts et al., 2009). As a result, an intelligent agent that uses

fewer chemicals while maintaining quality e✏uent water has a big financial
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impact. Moreover, excessive chemicals in the pretreatment stage flowing to

the filtration can cause chemical build-up on the membranes, reducing the

membrane lifespan. Currently, the PAC dosing rate on the pilot is selected

via jar tests: the influent water is sampled and applied with di↵erent chemical

doses, and the dose that results in the lowest turbidity is then selected and

applied to the main plant. In practice, WTP operators tend to add more

PAC on top of the selected dose as an additional bu↵er to ensure the e✏uent

water meets the regulatory standards. This human-involved process is time-

consuming and cannot respond to changes in the influent water rapidly. We

want to automate this process by using a self-learning agent to select the

proper dosing rate dynamically and online.

5.1.1 Environment Specification

In this section, we define the dosing rate environment for RL.

Observation Space

To provide su�cient observability about the pilot’s current state, we analyze

how human operators estimate the proper dosing rate as well as the metrics

used for measuring e✏uent water quality. Table 5.1 shows the sensor readings

used as the observations of this environment.
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Name Tag Name Unit Range

PAC Dosing Rate PX730 mL/min 0.0 - 10.0
Inlet temperature TIT101 �C -50.0 - 50.0
Inlet flow rate FIT101 L/s 0.0 - 2.0

Permeate flow rate FIT301 L/s 0.0 - 1.0
Blower outlet flow rate FIT801 L/s 0.0 - 20.0

Influent turbidity TUIT101 NTU 0.0 - 10.0
Feed turbidity TUIT220 NTU 0.0 - 1.0

Permeate turbidity TUIT310 NTU 0.0 - 1.0
Influent total organic carbon (TOC) TCIT101 cm�1 0.0 - 100.0

Post-flocculation TOC TCIT102 cm�1 0.0 - 100.0
Permeate TOC TCIT510 cm�1 0.0 - 100.0
Current mode CTRL P - {1, · · · , 12}

Table 5.1: Observation ranges of the PAC dosing environment. “Current
mode” is a categorical variable that takes 12 distinct values.NTU stands for
Nephelometric turbidity unit.

Action Space

Three actions are available to the agent during PROD: decrease the dosing

rate, increase the dosing rate or no operation. We choose delta actions over

absolute action (i.e. the action is the value of the dosing rate) because we

want to have a smoother rate change due to the physical limitation of the PAC

dosing pump. The allowed dosing rate range is between 0 and 10 mL/min,

and the agent can change 0.5 mL/min per step.

Reward Function

The reward function implicitly defines the behaviour of the RL agents. There

are three goals of this task: (1) reducing permeate turbidity to acceptable

levels; (2) maintaining enough free chlorine in the permeate water specified by

regulation; (3) reducing chemical usage. The reward function needs to take all

of the three goals into account. The metrics for goal (1) and goal (3) are easy

to obtain as the pilot has sensors that directly measure the turbidity and PAC

dosing rate. However, the pilot is not equipped with sensors for permeate free

chlorine, and therefore we use the readings of permeate TOC as the proxy to

permeate free chlorine in the reward function. Permeate TOC measures the
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total organic carbon in the permeate water, which has an inverse relationship

with the concentration of free chlorine. The reward function is defined as

follows:

R = A(permeate turbidity) + B(permeate TOC) + C(PAC dosing rate),

where

A(x) =

(
�111.11(x� 0.1)� 5, if x � 0.1

0, otherwise

B(x) =

(
50(x� 0.9)� 5, if x  0.9

0, otherwise

C(x) = �0.1x.
The function of the three components is shown in Figure 5.1. We set

the value to zero for the component of TOC and turbidity if they satisfy the

permeate regulation requirements. We call it the “safe zone”. The reward

decreases linearly as the TOC or turbidity deviates away from the safe zone.

Note that we explicitly add “gaps” at the edge of the safe zone so that agents

are given an extra penalty when sensor values deviate from the safe zone.

The maximum value of the reward function is zero when TOC is above 90%,

turbidity is below 0.1 NTU and PAC dosing rate at 0 mL/min.

Figure 5.1: Plot of the three components of the reward function of PAC dosing
environment. Note that the scale of the y-axis is di↵erent in the three plots.

5.2 Controlling Mixer Speed of the Pretreat-
ment Tank

The fan installed at the bottom of the pretreatment tank is used to mix the

inlet water with PAC. The speed of the fan is an important factor in the
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e↵ectiveness of coagulation. We want a higher fan speed to more e�ciently

mix the PAC and inlet water. However, high fan speed could harm coagulation,

as it may break up the flocculation that has formed. Therefore, an agent needs

to find a mixer fan speed that results in optimal coagulation.

5.2.1 Environment Specification

In this section, we define the flocculation mixer speed environment for RL.

Observation Space

The observation space of the mixer speed environment is the same as the

observation space of the dosing rate environment, except that the current

mixer speed is also included. The mixer speed can take any value within the

range [0, 7].

Action Space

There are three choices of action space for the mixer speed environment. We

can follow a similar design as the dosing rate environment, i.e. the action

space contains three discrete actions: decrease, increase, and no operation.

Each step can change the mixer speed by one. Also, we could use absolute

actions: create seven actions, each of which represents the desired mix speed.

Such a design is possible thanks to the short response time of the mixer fan.

Alternatively, we could make the action space continuous by allowing the mixer

speed to be any value within [0, 7].

Reward Function

The mixer speed task has three goals that are similar to the dosing rate en-

vironment: (1) reduce permeate turbidity to acceptable levels; (2) maintain

enough free chlorine in the permeate water specified regulation; (3) reduce

electricity usage of the mixer fan. The first two objectives are the same as the

dosing rate environment and therefore share the same equations. Although

we do not have a direct measure of the electricity usage of the mixer fan, the
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energy consumption is proportional to the fan speed. Specifically, the reward

function of the mixer speed environment is as follows:

R = A(permeate turbidity) + B(permeate TOC) + C(mixer fan speed),

where

A(x) =

(
�111.11(x� 0.1)� 5, if x � 0.1

0, otherwise

B(x) =

(
50(x� 0.9)� 5, if x  0.9

0, otherwise

C(x) = �0.05x.

5.3 Backwash Scheduling

The purpose of BW is to flush out fouls formed during production by pushing a

portion of the permeate water through the membranes in the reverse direction.

The amount of foul accumulated on the membranes is a↵ected by multiple

factors, including the inlet water quality, e↵ectiveness of coagulation during

pretreatment, and wear and tear of the membranes.

Many WTPs perform BW at a fixed interval. However, this method cannot

react to sudden changes in water quality. Over the lifespan of the membrane,

constant manual adjustments may be required to apply the proper BW interval

based on the membrane status. Moreover, the duration and frequency of BW

vary between WTPs, which suggests that the optimal configuration of BW

is not found yet, or the optimal configuration is case-specific (Jepsen et al.,

2018). Such a finding motivates the use of RL in BW scheduling: instead of

fine-tuning the configuration of di↵erent WTPs manually, we can deploy the

same generic RL algorithm that learns a di↵erent configuration for each WTP.

In addition, an RL agent can learn an adaptive BW schedule that dynamically

changes the BW frequency and duration based on the characteristic of the inlet

water.
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5.3.1 Environment Specification

In this section, we define the BW scheduling task for RL.

Observation Space

Since there are many factors to be considered in determining the best BW

schedule, we provide a rich list of sensory readings from all stages. Table 5.2

shows the types of sensor readings used for the observation. The first section

of the table shows the set of sensors that are used in each stage: pretreatment,

filtration and permeate. The second section shows the unique sensors or states

of the pilot.

Name Tag Name Unit Range

Temperature TIT �C -50.0 - 50.0
Flow rate FIT L/s 0.0 - 2.0
Turbidity TUIT NTU 0.0 - 10.0
TOC TCIT cm�1 0.0 - 100.0

Pressure PIT psi -100.0 - 100.0
pH PHIT 0 - 14

PAC Dosing Rate PX730 mL/min 0.0 - 10.0
Current mode CTRL P - {1, · · · , 12}

Table 5.2: Observation ranges of the BW scheduling environment. The first
section shows the type of sensors that are read in all stages of the pilot. The
PAC dosing rate and the current mode are unique to the pilot. Negative
readings of pressure sensors indicate that the water flows from the reverse
direction, which could happen during BW.

Action Space

At step t, the agent can take an action at 2 {0, 1}, where at = 1 indicates

the start of BW, and at = 0 indicates switching back to PROD. If the agent

tries to switch to the mode that the pilot is currently in, i.e at = 1 when the

current mode is BW, this action results in no change in the current mode.

Reward Function

The reward function follows the design of B. Zhang et al. (2020). The reward

function consists of two components: filtration cost and backwash cost. The
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filtration cost uses the trans-membrane pressure and filtration flow rate to es-

timate the membrane resistance, which can be used as a measure of the fouling

status of the membrane. The backwash cost is the cost involved during BW.

Similar to filtration cost, it is estimated with the trans-membrane pressure

and filtration flow rate during BW. In addition, the backwash cost also takes

the permeate water used to refill the BW module into account. The reward

function is defined as follows:

R = Wf + aWb

Wf = TMPf · FLOWf

Wb = TMPb · FLOWb + Pre · FLOWre,

Where Wf is the filtration power consumption, Wb is the BW power con-

sumption. a 2 {0, 1} is the action defined in Section 5.3.1. The component

of backwash power consumption only contributes to the total reward when

the pilot is in the BW mode (a = 1). TMPf is the transmembrane pres-

sure, FLOWf is the filtration flow rate, TMPb is the transmembrane pressure

during BW, FLOWb is the filtration flow rate during BW, Pre is refilling pres-

sure of the permeate water used during BW, and FLOWre is the refilling flow

rate. Among these variables, TMPf , FLOWf , TMPb and FLOWb can be

read directly from the observation, and Pre and FLOWre can be found on the

specification documents of the pilot.

5.4 Summary

This chapter formulates some WTP control tasks into RL environments: PAC

dosing rate control, flocculation mixer fan speed control and backwash schedul-

ing. Each RL environment is specified with a clear observation space, action

space, and reward function.
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Chapter 6

Case Study: PAC Dosing Rate
Control with RL

In this chapter, we present a case study on one of the tasks we defined in

Chapter 5: poly-aluminum chloride (PAC) dosing rate control. We can control

the rate of PAC added to the fluctuation tank, which causes big particles to

coagulate so they can be removed in the filtration stage.

Traditionally, PAC dose is determined by jar tests: taking samples of the

current inlet water, applying di↵erent PAC doses to each sample, and the

one that results in the lowest turbidity is selected. Operators then convert the

selected PAC concentration into the PAC dosing rate using software that takes

the flow rate and the volume of the flocculation tank into account. Operators

tend to add excessive PAC to ensure the quality of e✏uent water. We have

reasons to believe that the current PAC rate policy is not optimal due to two

reasons. First, jar tests are performed infrequently so the dose rate may not

be able to handle a sudden change in the inlet turbidity. An RL agent could

make decisions in a much shorter time interval, thus reacting to changes in

the inlet water quality in time. Second, The excess dose on top of the result

of jar tests added by operators is used as a bu↵er to handle sudden changes

in the inlet water quality. With an RL agent that e↵ectively handles sudden

changes, the excess dose can be saved and therefore has an economic benefit.

This chapter is written in chronological order. In Section 6.1, we go through

our first attempt at the PAC dosing rate control, present the empirical results,

and discuss the result and aspects it fails to model in this problem setting.
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In Section 6.2, we present an improved yet more complicated PAC dosing

environment that takes defects in the first attempt into account, as well as the

current results in this much harder environment.

6.1 Successful Learning on a Simpler Setting

Our first attempt toward the PAC dosing rate control problem only considered

the PAC dosing rate and permeate turbidity in the reward function due to the

lack of understanding of the TOC sensors and their e↵ect. In this simpler

setting, the reward function has two components:

R = A(permeate turbidity) + C(PAC dosing rate),

where

A(x) =

(
�114.3(x� 0.3), if x � 0.3

0, otherwise

C(x) = �x.

Note that this is our first reward function, which is di↵erent from the

reward function specified in Section 5.1.1. The penalty due to high permeate

turbidity only contributes to the reward function when the permeate turbidity

is larger than 0.3, which is the maximum allowed turbidity according to the

operators and engineers.

6.1.1 Observation Processing

In this section, we describe the processing pipeline to handle the raw observa-

tions to be suitable as the input to RL algorithms.

Data Normalization

As shown in Table 5.1, value ranges of sensors are widely di↵erent. We used

linear scaling to normalize sensor values into [0, 1]: given a sensor value x,

and the corresponding minimum and maximum values xmin, xmax, compute

the normalized value x0 = (x � xmin)/(xmax � xmin). Some minimum and

50



maximum sensor values can be found in the documents of the pilot. For other

values, we used the empirical maximum and minimum values found in years

of logged data.

For categorical values including the current mode and the previous action

taken by the agent, we applied one-hot encoding. Specifically, a categorical

variable with k categories is converted into a binary vector of size k, in which

only the corresponding index of the category is 1.

Time is an important input as it has a strong correlation to some prop-

erties of the inlet water such as the temperature. If we directly normalize

the date-time values with linear scaling, the normalized value does not have a

smooth transition across days: the normalized value starts from 0 at mid-night

and goes to 1 near 23:59 of the day, and suddenly drops back to 0 at 00:00.

However, the water characteristics at 23:59 may not di↵er much from 00:00.

We solved this problem by encoding the date time s into [tsin(s), tcos(s)] using

the following equations:

tsin(s) = sin(2⇡s/S)

tcos(s) = cos(2⇡s/S),

where s is the second of the day, S = 86400 is a constant representing the

total seconds in a day. Note that we did not encode the date of the year due

to the scope of this case study.

Missing Sensor Values

We used zero-imputation to handle missing sensory values for three reasons:

(1) zero-imputation is a wildly used technique in industrial machine learning

problems; (2) zero is within the range of our normalization scheme; (3) it

works better with our software implementation: we use Protocol Bu↵er v3

(Google, 2022) to serialize the data for client-server communication. To save

bandwidth, our software stack by design does not serialize and transmit values

equal to the default values. Moreover, when a sensor is not available, the

corresponding field in the Protocol Bu↵er is left unset. When the received
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Protocol Bu↵er structure contains an unset field, the client software cannot

di↵erentiate between zero or missing values. Therefore, it is a natural choice

to use zero-imputation for this case study.

6.1.2 Experiment Setup

The task was designed to be episodic. An episode starts when the pilot enters

PROD and terminates when the pilot changes from PROD to other modes.

The agent only operates in PROD mode. The control interval was set to three

seconds instead of the minimum control interval of one second because we

discovered that the PAC pump needs more than one second to change the

dose rate to the desired value. The discounted rate � was 0.99.

6.1.3 Agent

In this experiment, we used Expected Sarsa(0) (van Seijen et al., 2009) with

a linear function approximator. the processed observation produced by the

procedure described in Section 6.1.1 was directly input to the linear function

approximator without extra feature constructions, e.g. polynomials or tile

coding (Sutton & Barto, 2018). One weight vector was initialized for each

action-value, resulting in three weight vectors to be learned. Stochastic gra-

dient descent was used to perform the gradient update on the weights with

a fixed learning rate ↵ = 0.01. We used ✏-greedy policy with a non-decaying

✏ = 0.05. In this experiment, calibration model (Wang et al., 2022) was not

used for hyperparameter selection since we have observed that the Expected

Sarsa(0) agent converged quickly when running on the pilot due to the sim-

plicity of the task, allowing us to do hyperparameter selection online.

6.1.4 Results

We conducted this experiment during the winter of 2021, a special period

when the inlet water was clean because the ice and snow blocked contaminated

materials from entering the water source. As a result, the permeate turbidity

was always below the regulation standard. Therefore, the optimal strategy was
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to never dose PAC at the pretreatment stage. Figure 6.1 shows the average

learning curve of the Expected SARSA(0) agent averaged over five runs with

the gray area indicating the standard error.

Figure 6.1: Top: learning curve of the Expected Sarsa(0) agent in our first
version of the PAC dosing environment. The line represents the mean of
exponential average reward over the five runs, and the shadow area shows
the standard error. Bottom: The averaged dosing rate set by the Expected
Sarsa(0) agent, averaged over five runs. The Shadow area shows the standard
error. In five runs the agent e↵ectively learned to decrease the dosing rate to
zero, which is the optimal state during the winter time.

6.1.5 Defects of the First Attempt

Although the agent learned the optimal policy in all five runs, this environment

failed to capture some important characteristics of the pilot.

Defect 1: not capturing permeate free chlorine in the reward

function. In this attempt, we only considered the permeate turbidity and

PAC dosing usage in our reward function. After gaining more understanding

of the WTP through discussions with water treatment engineers and opera-

tors, we discovered that free chlorine is an important metric that is strictly

regulated. Therefore, we should incorporate free chlorine into the reward func-

tion.

Defect 2: Information in other modes was discarded. The task in

this attempt was designed to be episodic since it seemed like a natural choice
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as the PAC should only be applied during PROD. However, the pilot has

a small flocculation tank and membrane size, therefore the PROD duration

is only around 20 minutes (Figure 3.9), whereas other modes in total take

around 28 minutes. Ignoring non-PROD modes halves the data for training.

In addition, data during non-PROD modes provides meaningful information

about the transition dynamics, so it could be beneficial for the agent to train

with non-PROD data. Moreover, the episodic setting limits us to select a

shorter control interval as longer interval results in fewer data points during

an episode. For example, if we set the control interval to be three minutes,

a 20-minute episode only contains 6 samples. Learning a meaningful policy

from such little data in each episode is nearly infeasible.

Defect 3: Incorrect setpoint being written. There was a bug in this

version of the environment. In the pilot system, sensors and setpoints are

categorized by sensor types, and each sensor type can have multiple sensor

readings and setpoints. There are two setpoints that can be used to control

the PAC dosing pump: “DOXMAX” (the maximum dosing permitted) and

“AUTO SP” (the actual applied dosing). We incorrectly wrote values to the

“DOSMAX” tag on the pilot plant to change the dosing rate. However, the

purpose of this tag is to specify the dosage rate’s maximum threshold. While

we can indeed control the dosing rate indirectly through this tag, it results in

a less-straightforward control scheme.

6.2 The Current Environment

The current version of the PAC dosing rate environment overcomes the afore-

mentioned defects in our first attempt.

We fixed the Defect 1 by adding a component related to the permeate free

chlorine concentration to the reward function. Since we do not have a sen-

sor that directly measures the free chlorine concentration, we use the permeate

TOC value as a proxy to the measure of free chlorine as a higher concentration

of permeate TOC results in lower free chlorine (see Section 3.4.1). Although

permeate TOC is a rough proxy to the free chlorine, it is the best sensor signal
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available on the pilot to infer the concentration of free chlorine. However, the

introduction of the TOC component in the reward function makes it a much

harder problem to solve due to the delayed action e↵ect on TOC (Section

4.2.1). The new reward function now has three components: permeate turbid-

ity, PAC dosing rate and permeate TOC. We also reduced the safe region of

the turbidity from [0, 0.3] to [0, 0.1]. This change resembles the practice of the

operators. In addition, we added an extra penalty to the non-zero region of

the TOC and turbidity component in the reward function. This extra penalty

could help the agent learn to stay within the safe region (TOC and turbidity

reward components are zero) to avoid the sudden big negative reward when

leaving that region. The new reward function is shown in Section 5.1.1.

To overcome Defect 2, we switched to the continuing setting. Now the

agent does not terminate when the pilot switches out of PROD, but instead

continues to interact with the pilot with only one possible action: no-operation.

This change allows us to utilize more data from non-PROD modes and select

longer control intervals.

The bug described in Defect 3 is fixed by changing the tag “AUTO SP”

to be writable and using it to control the PAC dosing rate. Figure 6.2 shows

the e↵ect on the actual dosing rate due to writing to DOSMAX (left) and

AUTO SP (right).

Figure 6.2: Relationship between the actual dosing rate and values written
to two tags: DOSMAX (left) and AUTO SP (right). On the pilot, the ac-
tual dosing rate is determined using the following procedure: first, compare
DOSMAX and AUTO SP. If DOSMAX is smaller than AUTO SP, then the
maximum dosing rate (10 mL/min) is applied. Otherwise, the actual dosing
rate is 10 ⇥ AUTO SP / DOSMAX mL/min.
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6.2.1 Observation Processing

In addition to the procedure described in Section 6.1.1, we added three addi-

tional steps to match the increased di�culty introduced in the new problem

setting.

Memory Traces on Observations

Since the PAC dosing rate task is only partially observable, i.e. the agent

does not have access to the internal dynamics of the system, but only sensory

readings, we use memory traces on the normalized observations to provide a

compact representation of the history. At time t, the trace et, a vector of

the same dimension as the normalized observation vectors x0
t, is updated as

follows:

e1 = 0

et = ⌧et�1 + (1� ⌧)x0
t,

where e1 is the initial trace set to be a vector of zeros. ⌧ is a hyperparameter

that determines the decay rate. The traces are updated in all modes.

Action Encoding and Traces

We want to provide the history of actions executed by the RL agent as addi-

tional information in the observation, as it increases observability and could

potentially help the RL agent build a better representation of the states. In-

stead of providing the history of actions directly, we design a compact rep-

resentation of the history of actions. First, we encode the numerical action

number into a one-hot vector. Then we apply the same procedure described

in Section 6.2.1 to calculate the trace of the encoding of actions. Similar to

memory traces on observations, the action traces are updated across all modes.

Binning

After obtaining the traces of the observations and actions, we digitize them

using binning with the procedure described in Algorithm 1. Intuitively, the
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binning behaves like 1D tile coding (Sutton & Barto, 2018) along each trace,

allowing generalization in closer trace values. In this experiment, these bins

are used: [0.14, 0.28, 0.42, 0.56, 0.7, 0.84, 0.98].

Algorithm 1 Binning

Input: bins: a list of bins of length K
Input: traces: a list of traces of observations and action encoding
Output: output: a list of binned traces

output []
for each value e in traces do

o zero vector of length K + 1 . o holds the binned output of e
if e < bins[0] then . e falls below the smallest bin

o[0] 1
else if e � bins[K � 1] then . e falls above the largest bin

o[K] 1
else . e falls between the smallest and the largest

for i 2 {1, ..., K � 1} do
if bins[i� 1]  e < bins[i] then . Found the bin for e

o[i] 1
break

end if
end for

end if
output.append(o)

end for

Mode Countdown Encoding

The current mode is one of the most important signals as it a↵ects the internal

dynamic of the pilot, which determines the pattern of sensory values such as

permeate temperature, trans-membrane pressure and many others (Section

3.4.3). Therefore, being able to know when the mode is about to change

gives the agent an advantage in the decision-making. We use thermometer

encoding as the countdown timer to provide such information to the agent.

The procedure of the thermometer encoding is described in Algorithm 2.
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Algorithm 2 Mode countdown timer with thermometer encoding

Parameters: n: encoding length, d: a mapping from mode to maximum
duration of the mode
Output: encoding: the encoding

m the current mode
counter  0 . Counts the steps of the current mode
encoding  zero vector of length n . The encoding vector
interval  dd[m]/ne
while not terminating do

if mode changed then . Reset variables when mode changed
m the current mode
counter  0
encoding  zero vector of size n
interval  dd[m]/ne

end if
counter  counter + 1
if counter%interval == 0 then . Set the next 1 every interval steps

Set the next 0 to 1 in encoding
end if

end while

Sensor Smoothing

As shown in Figure 4.1, The TOC and turbidity signals are noisy. To reduce

the noise in the reward signal, we smooth the TOC and turbidity signals

using exponential moving average, and trim o↵ values that are two standard

deviations away from the exponential average. The smoothing process is shown

in Algorithm 3. For the TOC signal, the decay factor ⌧ is set to 0.9 and std

is set to 0.062. For the turbidity signal, the decay factor ⌧ is set to 0.8 and

std is set to 0.027. The decay factor of the TOC signal is larger than that

of the turbidity signal because we would like to apply more smoothing to the

TOC signal as it is noisier than the turbidity signal. The std of both TOC

and turbidity are calculated from o✏ine logs.
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Algorithm 3 Sensor Smoothing

Parameter: ⌧ : the decay parameter of the exponential average
Input: std: the standard deviation calculated from o✏ine logs
Output: v̄: the exponential moving average

v̄  None
for value v of the sensor signal do

if v̄ is None then
v̄  v . Initialize v̄

else if |v � v̄|  2std then . Check whether value is noise
v̄  ⌧ v̄ + (1� ⌧)v . Exponential moving average

end if
end for

6.2.2 Agent

We used Double DQN (van Hasselt et al., 2015) as the RL algorithm in the

updated PAC dosing task. The reason why this algorithm was selected is that

Double DQN is known to reduce the maximization bias, which is prominent in

environments with noisy rewards (see Section 4.1.2), plus the team members

are familiar with DQN (Mnih et al., 2015) and its variants.

The Double DQN agent utilizes a fully-connected network of two hidden

layers; each hidden layer has 64 nodes. All the layers are separated by ReLU

activation functions. The output layer maps to the Q values of the three

actions allowed during PROD. It does not learn the action-value for the no-

operation action in non-PROD modes. Adam optimizer (Kingma & Ba, 2017)

with �1 = 0.9 and �2 = 0.999 is used for adaptive gradient update. Updates

are performed at every step of the interaction with the environment. We use

a replay bu↵er of size 256. On every step, all the data in the experience bu↵er

is used for the gradient update, i.e. minibatch size of 256, because we want

to have more gradient updates between actions to make the most use of the

computation power in the online setting. The learning rate is selected from

the sweep of {0.1, 0.03, 0.01, 0.003, 0.001, 0.0001, 0.00001} using a calibration

model (Wang et al., 2022) made from a full year of logged data to select the

best learning rate before deployment (for more details about the calibration

model, see Section 4.1.1). The selected learning rate ↵ = 0.0001 is used during
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deployment in the real-world environment.

6.2.3 Current Progress

In this section, we describe the current progress of the PAC dosing task. We

first present the result of the experiment with a control interval of three sec-

onds. Then we present the result with a three-minute control interval.

We first applied the Double DQN agent with the aforementioned obser-

vation processing procedure on a 3-second control interval. Due to time con-

straints, we could only collect results from one run of the experiment. Figure

6.3 shows the average reward, PAC dosing rate, TOC and turbidity over this

run. As shown in the first figure of the plot, no improvement can be found in

over 12k steps, which is equivalent to 10 hours of online training.

Figure 6.3: Averaged reward curve of the Double DQN agent in the new PAC
dosing task (top) and the three sensor readings used to construct the reward
function.

We argue that there are two reasons for the unsatisfactory performance:

delayed action e↵ect and no pre-training.

Delayed Action E↵ect on Permeate TOC

The e↵ect of a change in the dosing rate could take a while to be fully observed

on the permeate TOC concentration. To demonstrate this, we conducted an

experiment that set the PAC dosing rate to a fixed value and observed the

change of permeate TOC. Figure 6.4 shows the sensor reading of the PAC

dosing rate and the permeate TOC during the experiment. It can be seen that
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the full e↵ect of the PAC dosing rate could be fully observed after 3 hours on

the permeate TOC, where the curve starts to flatten out. However, the initial

change in the permeate TOC can be observed as early as 30 minutes after the

change of PAC dosing rate.

Figure 6.4: Response of permeate TOC to a change of PAC dosing from 0
to 10 mL/min. The red dashed line indicates the time when the PAC dosing
rate changes. The orange dashed line shows the time that a rise of permeate
TOC can be observed around 30 minutes after the dosing rate change. The
green line shows the time when the rise of permeate TOC flattens out, which
happens around three hours after the dosing rate change.

When controlling at the three-second interval, the e↵ect of an action is

delayed for 30 ⇥ 60 / 3 = 600 steps. Such a big delay makes the credit

assignment di�cult.

No Pre-training

Although we use the o✏ine logs to construct calibration models for hyperpa-

rameter selection, we did not use them to help with the learning. Currently,

the Double DQN agent is trained from scratch on the pilot directly with ran-

dom weight initialization, and the replay bu↵er is initialized empty. Since

the data collected during online learning is limited due to time constraints,

it is possible that the agent simply required more data to learn a good pol-

icy. Pre-training with o✏ine logs may help overcome the limitation of online

learning.

Result with Longer Control Interval

To investigate the first hypothesis: the delayed action e↵ect on permeate TOC,

we experimented with a three-minute interval. In this setting, the earliest sign
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of action e↵ect can be observed after 30 / 3 = 10 steps, which is a reasonable

delay for RL. However, the downside of this change is fewer data available for

learning. Therefore, we decrease the minibatch size from 256 down to 128 so

that the agent can start doing gradient updates earlier. The first subplot of

Figure 6.5 shows the learning curve of the Double DQN agent running with

a three-minute control interval. Although data available for training is much

less than that with three-second intervals, we see improved performance from

the learning curve. However, we have to take it with a grain of salt: the agent

may be lucky on this run due to the limited running time of the experiment,

or the reward increase may be driven by external factors, e.g. the inlet TOC

improves due to less rainy days. Longer experiments are required to verify

the behaviour of the agent in the future. Allowing an RL agent to distinguish

the source of reward between its actions and external factors requires more

research.

Figure 6.5: The top plot shows the exponential average reward of the Double
DQN agent with a control interval of three minutes. The bottom three plots
show the sensor values used for constructing the reward function.

6.3 Future Work

We have found some interesting future directions beyond the scope of this case

study.

First, we can explore various pre-training methods that make use of the

o✏ine logs to obtain an initial policy, or at least make online learning easier

by providing a better representation. Here we list two possible pre-training
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directions to be explored in the future:

O✏ine RL. Train a policy o✏ine with the logged data using o✏ine RL

algorithms such as Constrained Q learning (Kalweit et al., 2020).

Nexting predictions. Train a network for Nexting predictions from the

o✏ine logs. We can either use the second-to-last layer’s output as a represen-

tation of the observations that are inputted to the action-value network, or we

can concatenate the raw observations with Nexting predictions.

Second, we can explore techniques that help with delays of the reward

function. We have experimented with longer control intervals to overcome the

delay e↵ect at the cost of data e�ciency. Methods that can handle the delay

e↵ect without sacrificing data e�ciency will be beneficial in solving this task

more e�ciently.

Finally, we should conduct more experiments to verify the result of the

three-minute interval experiment. We should run longer experiments or more

runs to ensure that the performance is not due to luck. We should also design

some baseline policies. Comparing the result three-minute interval experiment

with baseline results could help us get a better understanding of the perfor-

mance. We have proposed two approaches for constructing baselines: (1)

consulting operators and creating a procedure that mimics their behaviours;

(2) cloning the operations on the main plant controlled by operators to the

pilot. We should also find methods to separate average reward gains due to

improvements in the agent’s policy from the average reward gains due to ex-

ternal factors such as improved inlet water quality. After we can distinguish

the source of rewards, we should design algorithms that improve the policy in

the presence of external factors that could change the rewards.

6.4 Summary

In this Chapter, we present a case study on one of the RL problems listed

in Chapter 5: PAC dosing rate control. We first showed our approach to

our initial version of the PAC dosing environment. Although we observed

learning, the environment missed some important characteristics that have
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to be considered. We then iterated based on these defects and present the

current version of the environment, as well as the current progress. For each

version, we described the design decisions in both the task specification and

the solution methods. Finally, we described some future research directions

based on the result of the case study.
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Chapter 7

Conclusion

In this thesis, we formulated the water treatment plant control as a collection of

RL tasks. We first conducted a deep dive into a pilot WTP that we have access

to, describing its operation modes, sensor value patterns and the software

architecture that enables duplex communication between the pilot and client

programs. We then identified challenges that could make the application of RL

on the WTP di�cult, including the lack of simulators, sensor noise, actions in

di↵erent time scales, the stable learning in deployment, delayed action e↵ect

and multi-dimensional action space. With the understanding of the pilot WTP

and the potential challenges, we decoupled the the whole water treatment

process of the pilot into multiple RL tasks that can be solved independently,

including controlling the PAC dosing rate, flocculation mixer fan speed, and

backwash. For each RL task, we provided the goal, the observation and action

spaces and the reward function.

We closed this document with a case study on one of the identified tasks:

PAC dosing rate control during pretreatment. We described our progress in-

crementally. First, we demonstrated a learning agent that e↵ectively solved

our first but limited environment. After gaining more insights about the PAC

dosing process and its e↵ects on the permeate water, we enriched our environ-

ment to overcome the defects, and changed to a more powerful RL algorithm

and applied traces on observations and actions to provide a compact represen-

tation of the history to the agent. We changed from the episodic setting to the

continuing setting to make use of data collected during non-production mode.
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We also switched the control interval from three seconds to three minutes to

mitigate the delayed action e↵ect.

Finally we pointed out some directions of future development: (1) make

use of the o✏ine logs to initialize a policy, or learn a better representation

to make online learning easier; (2) explore methods that deal with delayed

reward without impairing data e�ciency; (3) discover ways to distinguish the

sources of reward: improved policy and external factors, and design algorithms

that improve the policy in the presence of external factors that may alter the

rewards.

66



References

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado, M. C.,
Moitra, S., Ponda, S. S., & Wang, Z. (2020). Autonomous navigation of
stratospheric balloons using reinforcement learning. Nature, 588 (7836),
77–82. https://doi.org/10.1038/s41586-020-2939-8. 1

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The Arcade
Learning Environment: An Evaluation Platform for General Agents
[arXiv:1207.4708 [cs]]. Journal of Artificial Intelligence Research, 47,
253–279. https://doi.org/10.1613/jair.3912. 29, 34

Bellman, R. (1957). Dynamic Programming. Princeton University Press. Re-
trieved July 22, 2022, from https : / / press . princeton . edu / books /
paperback/9780691146683/dynamic-programming. 39

Bishop, C. M. (1996). Neural Networks for Pattern Recognition (1st edition).
Oxford University Press, USA. 34
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