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ABSTRACT

Let (7 be a locally compact group and let V.N((7) be the von Neumann algebra
generated by the left regcular representation of (7 In this thesis, we shall investigate
the local structure of (7 at its unit clement and the set T1M () of topologically
invariant means on V.N(().

We denote by b((7) the smallest cardinality of an open basis at the unit element ¢
of a non-discrete locally compact group (7 and by g the first ordinal with [p]| = b)),

Let X = {ajo < u} and F(X) = {o € IM(X)

lofl = o(1) = 1 and o(f) - Ol
f e I®(X) and lim,ex f(@) = 0}. It is shown that F(X) is a big set, that is,
|F(X)] =22

The technique used by Chou of embedding a large set into TIM(C) is generalized
to the non-metrizable case. It is proved that if (7 is non-discrete, then there exists a
one-one map W : [%(X )" — 2VNE) guch that W(F(X)) C QT IMG) |y, particular,
the exact cardinaliiy of TIM((;') is obtained for any non-discrete locally compact
group G, in terms of the locally structural property of (- [T IM(C)| = 22"

In the attempt to achieve results on the cardinality and the structure of the set
TIAM((A:'), we find a very interesting property concerning the local structure of (4 at
e: if G is o-compact and non-metrizable, then there exists a decreasing net (N, )<,
of normal subgroups of (i, where g is the first ordinal satisfying || = b((7), such
that No = G, N, = {e} and b(N,) = b(G) for all < p; N, is compact if o0 > 0
Ny [Ngt1 is metrizable but Nypy # N, for a < p; and N, = ﬂ”<_r N, for cach limit

ordinal 4 < g. This improves a result obtained by Lau and Losert.
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CHAPTER 1

INTRODUCTION

The study of the cardinality of the set of invariant means on a group was initi-
ated by Day ([3]) and Granirer ([8]). In 1976, Chou ({1]) showed that for a discrete
infinite amenable group (7 the cardinality of the set LIM(G) of all left invariant
means on *(G) is 22, Later, Lau and Paterson ([20]) proved that if (i is a non-
compact amenable locally compact group, then the set T'LT M ((7) of all topologically
left invariant means on L*(G) has cardinality 22“ | where d((7) is the smallest
cardinality of a covering of (7 by compact sets. (it is casy to see that when (7 s
compact, TLIM(G) is the singleton containing only the normalized Haar measure
of G). Some results on the size of the set LIM(G)\ T LIM(() have been obtained
by Granirer ([9]), Rudin ([29]) and Rosenblatt ([26]). Sce also Yang ([32]) and Miao
([21]) for some recent developments in certain related aspects. More details on the
study of the size and the structure of the set of invariant means on groups and
semigroups can be found in the books hy Picr ([23]) and Paterson ([22])

Let G be a locally compact group, A((/) the Fourier algebra of ¢/, VN((/) the
von Neumann algebra defined by the left regular representation {p, L%((/)} and
TIM(G) the set of all topologically invariant means on VN((¥). The set. T'IM(()
was first studied by Dunkl and Ramirez for compact groups. They showed ([4])

TIM(C)| > 2. Renand (125, Theorem

that if G is an infinite compact group, then

1]) proved that there exists a unique topologically invariant mean on VN((/) when



[

(; is diserete. In ([10. Theorem 1]), Granirer showed the following: if G is non-
discrete and second countable (i.c., there ic a countable basis for open sets in &),
then ’I'IA1(C’) is not norm separable. A stronger result was obtained by Chou in
(|2, Theorem 3.3]): if (7 is non-discrete and metrizable, then there exists a linear
isometry of (£%)" into VN((/)” which embeds a “big subset” (having cardinality 2°)
of (™) into TIM(G). Sce also Granirer [13, P.172-173] for the discussion on the
set, 'I'IM,,((‘I) of topologically invariant means on A,(G)", where A,(G) is the Figa-
Talamanca-Herz space (1 < p < oc) and A,(G) = A(G) if p = 2. In particular,

'l'lM,,(()')I > 2¢ in case G is second countable and non-discrete.

he proved that
Recently, Lau and Losert showed, among many other results, that if VN(G) has
a unique topologically invariant mean, then G must be discrete (see [19, Theorem
1.10 and Corollary 4.11]). They actually remedied Renaud’s result by using a totally
different machinery (as noticed by a number of mathematicians, there is a gap in
the proof of [25, Proposition 8], see [19, P.21}).

The main purpose of this thesis is to investigate the cardinality and the structure
of the set TIM ((7) of topologically invariant means on the von Neumann algebra
VN(() of a non-discrete locally compact group G. It contains five chapters.

Chapter 2 consists of a summary of notations and preliminary results used
throughout this thesis.

In Chapter 3, we apply the set theory to obtain the cardinality of a set of means

which will be used to establish a one-one map into TIM(G). For an initial ordinal

ft. let X be the set of all ordinals less than g with its natural order. We introduce



a subset of [™(X)":

l
)

FX) = {oeX(X) ol =o(1) =1 and o(f) =0 il [ € co(X)}.

where ¢o(X) = {f € I™(X)ilimaex fla) = 0} and 1 is the constant function of
value one. This set with X = N was first considered by Chon {2]. We prove that
F(X) is a big set, that is, |F(X)| = 22"

Chapter 4 concerns itself with the local structuie of (7 at the unit clement e,
The main idea of this chapter was motivated by Lau-Losert [19, Lemma 18] Let
G be a o-compact non-metrizable locally compact group and let g he the initial
ordinal satisfying || = b6((7), where b((7) is the smallest cardinality of an open basis
at e. We show that there exists a decreasing family (N, ).<, of normal subgroups
of G such that Ng = G, N, = {¢} and b(N,) = b((7) for all o < p; N, is compact

if @ > 0; Npy/Naq1 is metrizable but Ny # N, for o < 5 and N, = ) N, for

<y
each limit ordinal v < g (Theorem 4.3.1). This interesting property concerning the
local structure of G at e plays a key role in our investigation on the set TIM(C)
and its proof constitutes the major technical part of this thesis.

Chapter 5 deals with the set TIM(G) of topologically invariant means on the
von Neumann algebra VN(G) of a non-discrete locally compact group ;. We will
mainly focus on determining the cardinality of 'I‘IM(@).

In Section 5.2, we generalize Chou’s result of embedding a large set into T'IM((7)

to the non-metrizable case. Let p be the initial ordinal with |u| = 0((/) and X =

{e; o < p}. In case G is o-compact and non-metrizable, we construct a family of



linear isometries (77),es of [*(X)" into VN(G). For each ¢ € I>(X), let
W, = { all w™cluster points of (7}8);es in VN(G)" }.

It is shown that {W,; ¢ € [*(X)"} is a family of pairwise disjoint non-empty subsets
of VN((/)" and W, C 7'IA4(C’) if ¢ € F(X) (Theorem 5.2.4). Consequently, if G
is non-discrete, then there exists a one-one map W : {®(X)* — 2YN(9"® guch that
W(F(X)) C 2TIM(G) (Theorem 5.2.5).

In Section 5.3, the equality |TIM(G)| = 229 {5 established for a non-discrete
locally compact group G (Theorem 5.3.3). If G is abelian and G is its dual group,
then A((G) can be identified with LY(G) and VN(G) with L®(G); it can be seen
that, in this case, m € VN(G)* belongs to TIM(G) if and only if the corresponding
mean in L®(G) is a topologically left invariant mean. Since b(G) = d(G) (see [17,
(24.48)]), our Theorem 5.3.3 coincides with Lau-Paterson’s result [20, Theorem 1]
for the abelian case.

In Section 5.4, we show that if G is non-discrete, then 71 M(G) contains a subset
I with the cardinality |E] = ITIM(C;’)I = 22%? syuch that |lm1 — mg|| = 2 for m,,
my € E and my # my. Let UC B(G) be the space of all uniformly continuous func-
tionals on A(G) and F(G) be the space of topological almost convergent elements
in VN(G). We prove that any norm dense subset of UCB(G)/F(G)NUCB(G)
has cardinality greater than b(G) when G is non-discrete; in particular, the space
ve B((:l)/ F (G)ﬂ >e B(G) is not norm separable. We also improve a result ob-

tained by Granirer.



CHAPTER 2

PRELIMINARIES AND NOTATIONS

2.i. Introduction.

This chapter is intended to be a reference for the definitions and notations used
throughout the thesis. Section 2.2 is an introduction to locally compact groups,
related Banach spaces (algebras) and invariant means, while Section 2.3 deals with

some notations and preliminary results on sets and Stone-Cech compactifications.

2.2. Locally Compact Groups, Some Related Banach Spaces and In-
variant Means.

Let C be the complex field. For a Banach space I over C, let £* denote the
Banach space of all bounded linear functionals on E. If ¢ € I*, then the value of ¢
at an element z in F will be written as ¢(z) or (¢, z).

Let G be a locally compact group with unit element ¢ and a fixed left Haar
measure A. The left invariant Haar integral associated with A will be denoted by
Jo f(z)dX(z), or simply by Jo f(z)dz.

For 1 < p < oo, let (LP(G), ||+ ||,) be the usual Banach space associated with (/

and A. With the inner product
(r.9)= [ f@i@d, g€ lHG).

L*(G) becomes a Hilbert space.



An clement e € L™(G)7 is called a mean if
|lm|| =1 and m(f) >0 whenever f >0.
A mean m is said to be left invariant if
m{.f)=m(f), forze G and fe€ L*(G),

where . f is the left translation of f by z, i.e., (-f)(y) = f(zy), y € G. A mean m

is said to be topologically left invariant if

m(¢* f) = m(f),
for f € L*(G) and ¢ € LY () with ¢ > 0 and ||¢||, = 1, where

(4 /)(z) = /G SO e)dl, €.

Let LIM(G) (TLIM(G)) denote the set of (topologically) left invariant means on
L~ ((). When LIM(G) (or TLIM(G)) is nonempty, G is said to be amenable.
Let VN(G) be the von Neumann algebra defined by the left regular represen-
tation {p, L*(G)} of G, i.e., the closure of the linear span of {p(a) ; a € G} in the
weak operator topology on B(L?(G)), where B(L%(G)) is the Banach algebra of all
bounded linear operators on L%(G) and p(a)f(z) = f(a 'z), z € G, f € L*G).
The weak operator topology on B(L?(G)) is the topology generated by the family

{Prg: f,9 € L*(G)} of seminorms on B(L*(G)), where

Pro(T)=|Tf,g)|,  for T € B(L¥G)).



Let A(G) be the Fourier algebra of (7. consisting of all functions of the form
f * g, where f, g € L¥(G) and g(x) = g/ r-1).
If ¢ = fxg € A(G), then ¢ can be regarded as an ultraweakly continuous

functional on VN((') defined by
o(TYy=(Tf, g), for T'e VN(() .

The ultraweak topology on B(L%(G)) is the topology generated by the following
seminorms:
T |S TS ), for T € BUAGY,
i=1

where fi, f2, -+ - and g1, g2, - - - run through L*(¢) with 3777, ||f,'||'2 < oo and
T llgill® < oo

Furthermore, as shown by P. Eymard in [6, P.210 and P.218], cach ultrawcakly
continuous functional on VN(G) is of the form [ * g with f, g € L*(().

Therefore, A(G) is the predual of VN(G), i.e., A(G)* = VN((). In particu-
lar, the w™topology (i.e., the o(VN(G), A(G))-topology) and the weak operator
topology on V N(G) coincide.

Also, A(G) with pointwise multiplication and the norm ||¢|| = sup {|¢(1")]; T €
VN(G) and ||T|| £ 1} forms a commutative Banach algebra.

There is a natural action of A(G) on VN(G) given by
(u-T,v) = (T, uv), for u,ve A(G), T e VN(G) .

Under this action, VN(G) becomes a Banach A((G)-module. For more details on

the algebras VN(G) and A(G), see Eymard [6].
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Anm € VN(()" is called a topologically invariant mean on VN(G), if
(i) |lm|| = (m, I} =1, where I = p(e) denotes the identity operator,

(i2) (m,u-T) = (m,T) for T€VN(G) and u € A(G) with u(e) = 1.

Let TIM(G) be the set of all topologically invariant means on VN(G). It is
known that TIM(() is a non-empty w™-compact convex subset of VN(G)* (see
Renaud [25] for a further discussion).

Let (/(G) denote the Banach space of bounded continuous complex-valued func-
tions on ¢ with the supremum norm and Coo(G) denote all functions in C(G) with
compact support, where the support of a continuous function u on G is the closure
of the set {r € G ; u(x) # 0}.

The support of an clement f € L*(G) is defined by saying that = ¢ supp f
if and only if there exists a neighbourhood V of z such that (f,v) = 0 for all
v € Coo((7) with supp v C V. The support of an operator T € VN(G) is defined by
saying that x & supp T if and only if there exists a neighbourhood U of e such that
x @ supp (Tu) for all u € Coo(G) with supp u C U (see [15, P.117]). An equivalent
definition for supp T is that = € supp T if and only if u- T = 0 implies u(z) = 0 for
all u € A(G) (sce [6, Proposition 4.4] or [14, P.119]).

Let UC B(G) denote the norm closure of A(G)-VN(G). Then UCB(G) is a C™-
subalgebra and an A(G)-submodule of VN(G) (see [12]) which coincides with the
norm closure of {T" € VN(G) ; supp T is compact }. In case G is abelian, UCB(G)
is isometrically algebra isomorphic to the algebra of bounded uniformly continuous

functions on the dual group G of G. For this reason, operators in UC B(G) are called



uniformly continuous functionals on A((7) (see [11]). The (-algebra ("(‘B((..') and
its relationship with other C*-subalgebras of V' .N((7) have been studied by Granirer
in [11] and [12] and by Lau in [18]. By the definitions of TIM((3) and UCB((),
each element m in TIM(G) is determined by its value on U'C B((?).
Dunkl-Ramirez in {5] called {T € VN((); u — u - T is a weakly compact
operator of A(G) into VN(G)} the space of weakly almost periodic functionals
of A(G) and denoted it by W(G). It turns out that W((}) is a sell-adjoint closed
A(G)-submodule of V N(G) which coincides with the space of weakly almost, periodic

a

functions in L*(G) when G is abelian (see [5] for more details).

Chou [2] used F(G) to denote the space of all T € VN((!) such that (1)
equals a fixed constant d(T) as m runs through TIM(G) and called F(() the space
of topological almost convergent elementsin VN(G). We can casily check that 1(())
is a norm closed self-adjoint A(G)-submodule of VN(().

It is known that W(G’) has a unique topologically invariant mean (see [5] and
[11]). In particular, this gives that W(G) C F(G). The above inclusion was also
obtained by Chou using his results on characterizations of F((}). See Chou [2] for
more information on F(G).

Let ¢; and ¢2 be two positive definite functions in A(G). We say that ¢, is

orthogonal to ¢; if ||¢1 — é2|| = ||é1]| + ||¢2]| (see [30, P.31]).

A net (dq)aea in A(G) is said to be topologically convergent to invariance if

lim ||vga — ¢ol| =0, for v e A(G) with v(e)=1.
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Let b(¢/) be the smallest cardinality of an open basis at the unit element € of a
locally compact group . When (' is abelian and G is the dual group of G, Hewitt

and Stromberg showed that 5(G) = d(G), the smallest cardinality of a covering of

(i by compact sets (sce [16] and [17, (24.48))).

2.3. Sets and Stone-Cech Compactifications.

IFor any two sets A and B, A\ B denotes their difference, 14 denotes the char-
acteristic function of A as a subset of the underlying set or locally compact group,
24 is the set of all functions from A to {0,1}, and |A| is the cardinality of A. Then
[24] = 21 the cardinality of the set of all subsets of A. So we also use 24 to denote
the set of all subsets of A.

When a is an ordinal number, |a| means the cardinality of the set {8 ; 8 is an

ordinal and B < a}. An ordinal a is called an initial ordinal if |a| is infinite and

B < « implies 3] < | (see [27, P.271]).

Lemma 2.3.1. Let o be an initial ordinal. If B and v > 0 are ordinals such that

B+7y=a,then y=a.

Proof. Since v > 0, 8 < 8+ v = a (see [27, P.193]). Then |8| < |a| because a is
an initial ordinal. But |3]|+|y| = |e|. It follows that |y| = |a|. Also, y < B+7=«

(see [27, P.193]). Therefore, v = a.
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If X is a set, let [°°(X) be the Banach space of all bounded complex-valued
functions on X with the supremum norm. It is well-known that if ¢ € (X)", then
any two of the following three conditions implies the remaining one.

G) 16l = 1.

(i1) #(1) = 1.

(7i7) ¢ >0, that is, ¢(f) = 0 for all non-negative f € I*(.X).

Where 1 is the constant function of value one. When ¢ € [*(X)* has any two of
the above properties, we call ¢ a mean on [°°(X).

Let X be a directed set. We define a subsct of means on [*(X) as following:
F(X)={o€l®(X)"; |lgll=¢(1)=1 and &(f) =0 il f€co(X)},

where ¢,(X) = {f € [®(X); limaex f(a) = 0}. This set with X = N, the set of all
positive integers, was first considered by Chou when he introduced the technique to
embed a large set into TIM(G) (see [2]). Yang in [32] studied the case X = A(Y),
the set of all non-empty finite subsets of an infinite set Y directed by inclusion.

When X is a directed set, a tail in X is defined by
T.={B€X; B=a}, a€X.

Therefore, ¢ € F(X) if and only if ¢ is a mean on [*(X) and ¢(17,) = 1 for all
a € X.

If X is a set (with the discrete topology), X denotes the Stone-Cech compactifi-
cation of X. Then [*°(X) is isometrically isomorphic to C(3X ), the Banach space of

all bounded continuous complex-valued functions on X with the supremum norm.
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Thus AX can be identified with the spectrum of [*(X), i.e., the set of all nonzero
mualtiplicative linear functionals on [*°(X) with the Gelfand topology (see, say, {31,
Proposition 4.5, P.18]). In this way, each z € X is identified with the evaluation &
on I~(X) at z,i.e., (f) = f(zx) for f € 1*(X).

On the other hand, AX can also be obtained by “fixing” the free ultrafilters on
X, that is, AX = { all ultrafilters on X} with {Z*; Z C X} as a base for closed
subsets of BX, where 2™ = {¢p € BX ; Z € ¢} (see [7, P.86-87]). Now, every z € X
corresponds to the fixed ultrafilter ¢, on X containing {z},ie,¢,={EF; z€ EC
X}. Either way of the above embeddings will be used later.

When X = N, Chou in [2] pointed out that SN \ N C F(N). For the general

casc, we have

Lemma 2.3.2. Let X be a directed set. If $ € BX and ¢ contains {T, ; a € X},

then ¢ € F(X).

Proof. Let ¢ € 3X and ¢ contains {7, ; @ € X}. Since ¢ is in the spectrum of
I(X), ¢ is a mean on [®(X). It is known that £ € ¢ if and only if ¢(1g) = 1.

Now, for each a € X, T, € ¢ and hence ¢(17,) = 1. Therefore, ¢ € F(X).



CHAPTER 3

THE SUBSET F(X) OF MEANS ON [¥(X)

3.1. Introduction.

For a directed set X, let F(X) be the subsct of I°°(X)* defined as Section 2.3.
If X = N, then |F(N)| =2 =22 since AN\ N C F(N) (see Chou [2, P.208)),
where c is the cardinality of the continuum. When X = A(Y), the set of all non-
empty finite subsets of an infinite set Y directed by inclusion, Yang proved in [32,
Lemma 2.1] that |F(X)| = 22" if I°°(X) is the real Banach space.

To obtain an estimation on the cardinality of the set T'IM ((.5}'), we need to estab-
lish a one-one map from F(X) into TIM(G) for some directed sct X. Throughout
this chapter, ¢ will be an initial ordinal and X denote the set {3 ; A3 is an ordinal

and B < pu} with its natural order. We shall show that F(X) is a big sct in [%(X)*,

that is, |F(X)| = 22

3.2. The Cardinality of F(X).
To prove the equality |F(X)| = 22", we begin with a technical lemma which
provides us a family Y of functions in 2% such that |{Y| = 2/*! and any two functions

in Y are not cofinal.

Lemma 3.2.1. There ezists a family {f; ; i € I} C 2% such that |I| = 21X! and

filta # filra, Jori,jel withi#j,a€X,

13
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where |4 is the restriction of function f to the set A.

Proof. Casc (i). Assume that 21°l < 2IX! for all o € X.

For cach pair f, g € 2%, we define f ~ g if there exists an element a € X such

= ¢ |7,. Then “~” is an equivalent relation on 2X. Let f € 2X. We put

Ty =

that f

[f] = {g € 2¥ ; 9 ~ [}, the equivalent class containing f. Let I be the set of all

such equivalent classes. Then 2% = J{[f]; [fl € I}.
Fix an f € 2%. We have that [f] = U,ex Fa, Where F, = {g € 2X s gl =

[ l.}. Since |Fo| = 2 then |[f]] € ¥, cx 2!*l. This is true for every f € 2%.

ilence,

241 = 12X = Y

[flel
< Y Qo2 = 11 ()] 2
[f]el aeX «€X
= maz (||, Z 2lel),
a€X

By Konig-Zermelo’s inequality (see [27, P.313]), we have
22"" < H?'xl = (2XNHIXI = olXI, (3.2.1)
a€X a€X
Obviously, |I| < 21X1. Consequently,
28 < maz (1], ) 2 < 2, (3.2.2)
a€X
Now (3.2.1) and (3.2.2) combined give |I| = 2/Xl. For each equivalent class

i € I, we choose an f; € i. Then the family {f;; ¢ € I} satisfies the requirement.
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Case (7). Assume that 21l = 2% for some o € X.

Let ap = min {3 ; 3 € X and 208 = 2]‘“}. Then ag i1s a limit ordinal. By
the generalized division algorithm (see [24, P.177]). there exists a unique pair of
ordinals 7 and € such that g = a,n + ¢ and ¢ < a,. Note that ¢ < o, < g and
ao(¢ + 1) = as( + a, for any ordinal ¢. By Lemma 2.3.1, ¢ = 0 and » has to be a
limit ordinal.

Let w be the initial ordinal satisfying |w| = 21Xl, Let I = {i; ¢ is an ordinal and
i < w}. Then |I| = |w| = 281, In the following we inductively construct a family

(X:)i<w of subsets of X such that
Xi(To # Xi[To» fori,j<wwithi#j,aeX. (3.2.3)

Let 7, < w. Assume that we have chosen a family (X;)ic;, of subsets of X
satisfying (3.2.3). Recall that g = aon. For every £ < 9, let S¢ be the segment of

ordinals between a,¢ and ao(€ + 1), i.e.,
Se = {a; acé Sa<a(é+1)}.

Since o1 < aofy if and only if £ < & (see [27, P.200]), then {S¢; € < n} is
pairwise disjoint.

Furthermore, X = UE<" Se and, for every a € X, there exists a £ < 5 such that
S¢ C Ta. Now, |Se| = |ao] and hence 215 = 2loel = 2IX1 for all ¢ < 5. But we have
that |{X:()Se; i < io}| < |io] < 2! for ¢ < 5. Consequently, for each ¢ < 7,

there exists a set Bg C S¢ such that Be & {X:(S5¢; ¢ <o} Let Xy, = U, Be-



16

Then Xi (S # XS if i <o and £ < 5. Hence X;, Ta # Xi(Ts for all
i <i, and a € X.

Therefore, the family {X;; ¢ < i,} has property (3.2.3). By transfinite induc-
tion, we obtain a family (X;)ic, of subsets of X satisfying (3.2.3).

Finally, for each 7 € I,let f; : X — {0,1} be the characteristic function of

X;. Then {f;; i € I} has the required property.

Remark 3.2.2. Under the generalized continuum hypothesis (GCH, for short),
a < b implies that 2* < 2, where a and b are any two cardinal numbers. In the
above Lemma 3.2.1, |a| < |u| = |X| for all @ € X, since g is an initial ordinal.
Thus, if the GCH is assumed, we always have that 2!% < 21X! for all a € X, this is
just the case (2) in the above proof. To avoid using the GCH, we have to consider

case (27) in our proof as well.
Now we are ready to show that F(X) is big set in {®(X)*.
Proposition 3.2.3. |F(X)| = 22",

Proof. Obviously, |F(X)| < [{®(X)*] = 22X!, By Lemma 2.3.2, it suffices to show
that there are 22*' many ultrafilters on X containing {Ta ; a € X }. We now follow
an argument of Rudin [28, Theorem 1.3] (see also the proof of [32, Lemma 2.1]).

Let A = A(X) be the set of all non-empty finite subsets of X. In the following,



v
we shall construct a family {A; : 7 € A} of subsets of X satisfving
(i) |A.| =22
(i2) if T # 7', then A, (AL =0;
(171) if @ € A;, then a 2 max(t), where max(7) = max{3; 3¢ 1},

Since |A| =

X| = |p|, we can write A = {r;; i < pu}. Let iy < p. Assume that
we have defined a family {A, ; i < i} of subsets of X satisfying (¢) — (¢17). Let
B =i, Ar- Then |B| < |u|, since each A, is finite and [is] < |p]. Let o be the
unique ordinal satisfying max(7;,) + @ = g (see [27, P.194]). Since a #0, a = p,
by Lemma 2.3.1. In particular, || = |g| > |B|. But |u| is infinite. So, we can
choose a finite set A, C {8; maz(7,) < B < p}\B with |A, | = alne!, Clearly,
the family {A., ; ¢ < i} has properties (¢) — (¢i2). By transfinite induction, we
have constructed a family {A, ; i < p} = {A;; 7 € A} of subsets of X satislying

For each 7 € A, label the elements of A, by ordered 2!7-tuples (i, s, -, Lylel)
with z; € {0, 1}. Let E; be the subset of A, consisting of the 2I7l-tuples which
have z; = 0. If we let E? = E; and E}! = A, \ E;, then ﬂf:,' E* s not empty
for any choice of ¢; € {0, 1}, since (€1, €, « -, €g1r1) € ﬂ?: 7t . Denote the sets
E;, i=1,2, ---, 2" by E(h), where h is a map from 7 to {0, 1}.

Let Y ={f;; j € I} C2% be the same family of functions as in Lemma 3.2.1.

For each f € ), we define

B(f) = |J{E(fI.); T € A},
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where f |, is the restriction of f to the set 7.

Suppose that fy, -+, fa, fas1, -+, fm are distinct functions in J and a € X.
Sinee filr., ooy fu 11y Jag1 |Tas =++s fm |T. are different (by Lemma 3.2.1), there
exists an element 7 € A such that 7 C 7T, and fi |7, «+, falrs Jatr ey ooy fo |r

are different. Hence the above argument gives

EGl) ) ) EGa 1) (VAN EGa 1) () (V(Ar\ E(fm |7) # 0

By 7 C 7., and property (¢2), A, C T,. Therefore,

=

D) NEG 1D AN EGnrn 1)) (A \ E(fm 1)) Tt #

Note that {A;; r € A} is pairwise disjoint. It follows that

BU) )+ [ BUD) (VENBUar)) [+ [VEXNBUER) [ Ta # 0.

Hlence for any map F' : Y — {0, 1}, the collection

{B(f)FU) i feY) U {To; ¢ € X},

where B(f)° = B(f) and B(f)! = X'\ B(f), generates a filter base. Consequently,
we have 2P = 22 different ultrafilters on X containing {T, ; o € X}. This

completes the proof of the proposition.



CHAPTER 4

o-COMPACT NON-METRIZABLE GROUPS

4.1. Introduction.

Let G be a locally compact group with unit element ¢ and 8((7) be the smallest
cardinality of an open basis at e defined as in Section 2.2. In this chapter, we shall
present an important property of a o-compact non-metrizable locally compact group
G concerning its local structure at e: if G is o-compact and non-metrizable, then
there exists & decreasing net (N“)aSu of normal subgroups of (i, where g is the first
ordinal satisfying || = b(G), such that Ny = G, N, = {e} and b(N,) = b((/) for all
a < p; Ny is compact if & > 0; No/Noyi is metrizable but N,y # N, for o <y
and (iv) N, = (), Na for every limit ordinal v < p. This property is very crucial
for our investigation on the set TIM(QG) and is interesting in itself.

We begin the chapter with two results about closed subgroups. The first one is
a simple application of the Kakutani-Kodaira Theorem, while the second one deals
with the relation betweea b(N) and b(G), where N is a closed subgroup »f (/.

This chapter is motivated by Lau-Losert [19, Lemma 4.8].

4.2. Closed Subgroups.
In this section, we shall show some facts about closed subgroups which will be

used to prove the main result of this chapter.

19
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Lemma 4.2.1. Let G be a o-compact locally compact group. Let N be a closed
normal subgroup of ¢ and U an open neighborhood of ¢. Then there exists a compact

normal subgroup M of (i such that M C N(U and N/M is metrizable.

Proof. By the Kakutani-Kodaira Theorem (see [17, (8.7)]), there exists a compact
normal subgroup K of & such that G/K is metrizable and K C U. Let M =
K\ N. Then M is a compact normal subgroup of G and M € N(\U. Note that

N/M = NK/K C G/K. Therefore, N/M is metrizable.

Lemma 4.2.2. Let G be a locally compact group and N be a closed subgroup of G.

Let X be a cardinal number. If N is an inlersection of no more than R open subsets

of (7, then b(G) < Rb(N).

Proof. Choose a set I with |I| = R. Since G is a normal topological space (i.e.,
any two disjoint closed subsets of G' can be separated by two disjoint open subsets
of (), by the assumption, we can write N = [, A;, where each 4; is a closed
subset of G and N Q‘Z; (the interior of A; in G).

Also we choose a set J with |J| = b(N) such that {B;(\N ; j € J} is a
neighborhood basis at ¢ in N, where each B; is a compact neighborhood of e in G.
We can assume that B; C K for j € J, where K is a fixed compact subset of G.

Let A(I) (resp. A(J)) be the set of all non-empty finite subsets of I (resp. J).

For any £ € A(])} and 7 € A(J), denote A; = MNiee Ai and B, = ﬂie" B;. Then



A¢ and B, are neighborhoods of ¢ in (.

We claim that {A:(\ By : € € A(1). n € A(J)} is a neighborhood basis at ¢ in
G. Assume that there exists a neighborhood U/ of ¢ in (¢ such that A;(\B, € U
for all £ € A(J) and n € A(J). Choose an element &g, € (A 13,)\ U for ecach
pair (&, n) € A(J) x A(J).

We direct A(7) and A(J) by counter inclusion (i.e., {; < (, if and ounly i (» C
(1), and direct A(I) x A(J) by (&, m) < (&, n2) il and only if & < & and
m < n2. Then, the net (J:g‘,,)(t.‘,,)eA(,)xA(J) in A has a cluster point, say, + € K.
By the direction on A(J) x A(J) and the compactness of Ag () 13,, we have that

z € A¢() B, for all (&, n) € A(J) x A(J). Consequently,

ze [ (AB) = [ WB) = N(N(1B) = {c},

(&, n)EA(T)XA(J) n€A(J) Jj€d

i.e., z = e. But U is a neighborhood of e in ¢ and z¢, , & U for all (£, ) € A(I)x
A(J). This contradicts the fact that z = ¢ is a cluster point of (%¢,4) (¢, eacxaw) -
It follows that {A¢() B, ; £ € A(I), n € A(J)} is a neighborhood basis at ¢ in (/.

Since |J| = b(N), |J| = 1 or |J| is infinite. In any case, we have that |A(J)| =

17| = b(N). So,
5(G) < A1) x A(J)} = [AUDIAI)] = [A(T)]b(N) .

If X is infinite, then |A(I)| = |I| = ® and hence b(G) < Rb(N) by the above
inequality. If R is finite, then N is an open subgroup of G and now b(N) = b((J).

Therefore, we always have that &(G) < Rb(N).
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4.3. The Local Structure of o-Compact Non-Metrizable Groups.

The main result of this chapter is contained in the following theorem.

Theorem 4.3.1. Lel (G be a o-compact non-metrizable locally compact group with
unil element ¢. Then there exisls a limit ordinal  and a decreasing family (Na)agu
of normal subgroups of G (i.e., a < B implies N, 2 Ng) such that
() No=G and N, = {e};
(i) N, is compact for each o > 0;
(112) No/Nay1 is melrizable bul Noyy # No for all a < p;
(iv) Ny = (Nacy Na for cvery limit ordinal v < p;
(v) b(Ny) = b(G) for all a < p.
Furthermore, g is minimal among all such families and p is the initial ordinal

satisfying |i| = b(G).

Proof. Let d be the initial ordinal satisfying |d| = b(G). Then d is a limit ordinal.
Let {O,: a < d} be an open basis at e in G.

Let Ny = G. By Lemma 4.2.1, there exists a compact normal subgroup N; of G
such that N; € No(1 0o and Ny/N, is metrizable.

Let do < d. Assume that we have chosen a decreasing family (Na),,, of normal
subgroups of G such that N, is compact for each 0 < a < do, Noy1 © No[) 00
and N,/N,y1 is metrizable if a +1 < ds, and N, = ﬂa« N, for every limit

ordinal v < d,. If do is a limit ordinal, then we put Ny, =, 4 No-If do = B +1
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(such 8 is unique), then, by Lemma 1.2.1, we choose Vy, to be the compact normal
subgroup of G such that Ny, € Ng[Os and Ng/Ny, is metrizable. By transfinite
induction, we get a decreasing family (N.),, of normal subgroups of GG such that
No = G, N, is compact for all 0 < o < d, Noyy C No[O, and N /N 4y is
metrizable for a < d, and N, =)

acy Vo for every limit ordinal 4 < d.

Now

$0, [Naca Vo = {e}. Let Ny = {c}. Then Ny={), ., Na.

We claim that for each 0 < a < d, N, is an intersection of no more than ||y
open subsets of G, where ¥q is the first infinite cardinal number. This is true for
a = 1 because N; is a Gs-set in G (i.e., Ny is an intersection of countably many
open subsets of G, since G/N; is metrizable). Let d, < d. Assume that the above
statement is true for all 0 < a < do. If d; is a limit ordinal, then Ny, =, ., N
and hence, by the inductive assumption, Ny, is an intersection of no more than
|do|*®Ro = |do|Ro open subsets of G. If do = # + 1 for some f# < d, then Ny,
is a Gs-set in Ng, since Ng/Ny, is metrizable. By the assumption that Nj is an
intersection of no more than |5|Ry open subsets of G, Ny, is an intersection of no
more than |3[R2 = |B|No = |do|Re open subsets of G. By transfinite induction, our

assertion follows.

Let 0 < a < d. By the above claim and Lemma 4.2.2, we have

b(G) < (lafRo)b(No). (4.3.1)
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Since d is the initial ordinal satisfying |d| = b(G) > N, then |a| < b(G) and hence
|a|Rg = maz (a|, Re) < b(G). (4.3.2)

Now (4.3.1) and (4.3.2) combined give

b(G) < (jeRo)b(Na)

= maz (le|Ro, B(Na)) = b(N,),

i.e., b(() < b(N,). Conversely, b(Ny) < b(G), since N, is a subgroup of G. There-
fore, b(N,) = b((7) for all a < d.

We conclude that (Na),, is a decreasing family of normal subgroups of G

satisflying
(1) No=G and Ny = {c};

(i7) N, is compact for each a > 0;

(#97)" No/Nas1 is metrizable for all a < d;

(i) Ny ={)4e, Na for every limit ordinal v < d;

(v) b(Ny) = b(G) for all a < d.

Let g be the minimal ordinal among all such families. We see that g has to be a
limit ordinal. In fact, assume that ¢ = v+1 (v is infinite, since G is non-metrizable).
Then N, = N, /N, is metrizable, contradicting the fact that &(N,) = b(G) > Ro.
It follows that u is a limit ordinal. By passing to an appropriate subfamily, we
can achieve that N,y # N, for all a. The ordinal type of this subfamily will be
still . by minimality. Note that (z) — (v) implies (i), (é¢), (sit)', (fv) and (v).

Consequently, g is minimal among all families satisfying (z) — (v).
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By the same procedure as above, we can prove that for cach 0 < a < g, N, is an

intersection of no more than |a|Rg open subsets of (7. Since ﬂﬂq N, =N, = {c},
{e} is an intersection of no more than |u|*Rg = || open subsets of (7. Applying
Lemma 4.2.2 to N = {e}, we get that b((7) < |p]b(N) = |g|. Bui p < d. by the
minimality of g, and |d| = b(G). Therefore, |p| = (/) and hence p=d, e, pis
the initial ordinal satisfying |u| = b(G). This completes the proof of the proposition.

O

Remark 4.3.2. The basic idea used in constructing (N,)a<, is essentially the
same as that used in Lau-Losert [19, Lemma 4.8]. The net (N, )a<y there possesses
property () — (iv). Here, for our purpose, we begin with showing the existence of
the family of subgroups of G satisfying (7) — (v). Hence the result is strengthened
in the following two related aspects, which are important in the sequel.

(1) The limit ordinal g is totally determined by the local structure of the o-
compact non-metrizable group G (¢ is actually the first ordinal satisfying |p| =
b(G)).

(2) b(N,) = b(G) for all @ < p (this property reflects, in some sense, that cach
compact normal subgroup N, in this net has the same “non-metrizability” as ¢

does).



CHAPTER 5

THE SET OF INVARIANT MEANS ON VN(G)

5.1. Introduction.

Chou showed in [2, Theorem 3.2] the existence of a mutually orthogonal sequence
in A(G') which is topologically convergent to invariance for a non-discrete metrizable
locally compact group ;. By making use of such a sequence, he proved that if &
is non-discrete and metrizable, then there exists a linear isometry of (I®)* into
VN(()* which embeds the large set F(N) into TIM(G) ([2, Theorem 3.3)).

We begin this chapter with showing the existence of a net (u) in A(G), where
(i is a o-compact and non-metrizable locally compact group, such that (ul) is topo-
logically convergent to invariance and (u? ), is mutually orthogonal for each fixed
J. Then we construct a family of linear isometries of [*(X)* into VN(X)~, where
X = {a;a < g} and p is the first ordinal satisfying |u| = 8(G). This family of
linear isometries can be used to set up some correspondence between F(X) and
TIM(G).

Finally, we prove that if (G is a non-discrete locally compact group, then there
exists a one-one map W @ 1°(X)* —s 2VN(G) such that W(F(X)) C 2TIM(G) | and

TIM(G)| = 22" is established for a non-discrete group G.

the equality
Also, some structural results on the set TIM(G) and some related subspaces of

V N(G) are obtained in terms of the local structural property of G.



5.2. The Generalization of Chou’s Theorems to the Non-Metrizable Case.

Let G be a g-compact non-metrizable locally compact group. Let (N, )ag, be the
decreasing family of normal subgroups of GG as in Theorem 4.3.1. By the properties
of (Na)a<u, We can define a family (P )a<, of projections in VN((7) as in the proof
of Lau-Losert [19, Theorem 4.10]. Let Py = 0 € VN((). For 0 < o < g, let
P, € VN(G) be the central projection defined by convolution with the normalized
Haar measure A\, of N,. More explicitly, P, : L}(G) — L*(G/N,) (C L3(())) is

given by
(Puf)(z) = [ f(t7'z)dAa(), feLX@), 0<a<p,
Na

where L2(G/N,) is the subspace of L*(() consisting of all functions in L3((7) which
are constant on the cosets of N, (see [6, (3.23)]).
Now (Py)a<y is an increasing net of projections in VN((G), i.e., P, Py = PP, =

P, for ¢ < B < p. Define
Qo = Por1 — Fo, a < .

Then (Qa)a<, is an orthogonal net of projections in VN((), that is,

Qo if o = 3,

0 il # .

QolQp =

We begin this section with a technical lemma.

Lemma 5.2.1. Let G be a o-compact and non-metrizable locally compact group and

(Na)a<u be the decreasing family of normal subgroups of (i as in Theorem 4.3.1. Let
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(Qu)acu be the orthogonal nel of projections in VN(G) defined as above. IfU is a

neighborhood of the unit clement ¢ of G and a < y, then there ezists an f € L*(G)

such that || f|l, =1, supp f S UNy, and Qof = f.

Proof. Since N4 g N,, there exists an @, € N, such that zoNg41 [ Nag1 = 0.

By the compactness of N,4;, there exists a neighborhood V of e in G such that
2oNas1V [} NaaV = 0. (5.2.1)

We can assume that V C U and V is compact.

Let g = In,,,v. Then g € L*(G), suppg © VNot1 € UNyqa, and g is constant
on the cosets of Ny, ice., g € L2(G[Ngy1). If @ =0, then Qog = P,g = g, since
g € L*(G/Ny). Now g/||g|l, satisfies the requirements. In the following we assume
that a > 0 and we shall show that g &€ L%(G/N.,).

Assume that g € L*(G/N,). Then there exists an h € L% G) such that A
is constant on the cosets of N, and g = h ae.. Now g =1 on N,V and
g =0 on N,V \ Nyu1V. Hence, there exist measurable subsets Wy C N,V and

Wy € N,V \ No1V such that
A(Wl) == /\(NQ.HV), (522)
AWs) = A(NaV \ Napn V), (5.2.3)

and h =1 on Wy, h =0 on W,. Therefore, h =1 on N,W; and h =0 on N, W,
since h is constant on the cosets of N,. It follows that N,W; (| N,W, = 0. On

the other hand, we have
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MaoWi (Y W2) = A(@eNapaV [ W) (by (5.2.2))
= AzoNar1V [ (VaV \ Napa V) (by (5.2.3))
= A(.roN(,HV) (b_\" (52'))

= A(NapiV) = A(V) > 0.

In particular, zoW; (| W2 # @ and hence N,W; (| N.W2 # 0, a contradiction.
We conclude that g & L*3(G/N,).
Let f = Qag (= (Pat1 — Pa)g = g — Pag, since g € L*((//N,41)). Then

feL¥G) and f#0 in L*G). Now
Qof = Qazg =Quy = [,

ie.,, Qof = f. Also,

il

(Pag)(z) /N g(t™' z) dAa (1)
- / g v (£ 2) dA (1)
Na
= da(Na [ 2(Newa V)™, x€ (.

Then (Pag)(z) =0 if 2 & NoNonV = N, V. This gives supp(F,g) C N,V. But

suppg C No41V C N, V. Consequently,
supp f = supp(g — Fog) € N,V = VN, C UN,.

Replacing f by f/||fll,, we complete the proof of the lemma.
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Let (4, (Ny)a<u and (Qa)ocu be the same as in Lemma 5.2.1. Let J be a set with
|/ = b((7), where b(G) is the smallest cardinality of an open basis at e € G defined
as in Section 2.2, Let {{/;; j € J} be an open basis at e. For each j € J, we choose
a symmetric neighborhood V; of ¢ such that V;2 C U;. If @ < p and j € J, then,
by Lemma 5.2.1, there exists an fi € L*(G) such that || fi||, = 1, supp fi C V;N,,
and Qo f? = fI. Let

wl, = fixfi, a<u,jelJ
Then it is casy to see that ul € A(G), |lui|| = ul(e) = 1, and

supp u{, C (V;’Na)(‘/jNa)_l = VjN(,.Na'IVj"1 = ijNo, CU;jN,,

i.e., suppul, € U;N,.

Fix j € J. We have that ||uf, — uJﬁH < i)l + |]u},|| = 2 for @, B < p. Note

that (Q,)y<, is an orthogonal net of projections in VN(G), u! = fi* f and

Q.13 = fi-
It follows that

_ , . 1 if a =8,
W (Qs) = (Qufl, fi) = (5.2.4)
0 if a # 8.

But ||Qu —Qsll=11if @, B < p and a 7 B, since (Qu)a<, is orthogonal. So we

get
o, = Al 2 1 = (@ — Qo) = e (Qu — Q) — w(Qa — Qo) = 2.
Consequent}y, [[ul — u’QH = |lui|| + [|ul]| = 2 for all @, 8 < pu with a # 8, that is,

(41)a<yu is a mutually orthogonal net in A(G).
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Let X = {a; a is an ordinal and a < u} directed by its natural order. Direct J

by i < jifand only if U; C U, and J X X by (/, a) < (j. 3) il and only if i < j and
a < B. A few of properties of the net (1) a)jesxx i summarized in the following

theorem.

Theorem 5.2.2. Under the same assumptions as above, the net (w!)(, myeaxy has
the following properties.

(2) ul € A(G), ||ul]l = ui(e) =1 and suppul, CU,N, forall (j, o) € JxX.

(ii) For each fixed j € J, (ul)aex is @ mutually orthogonal net in A((Y), that
18,

l|ud — uf,“ = ||ud || + ||uf3|| =2, forall o, <p with o # /3.

(133) (ul)(j,o)edxx is lopologically convergent lo invariance, thal is, if v € A((7)

and v(e) =1, then

lim “vu’ _— 2N =
(fha)edxX

Proof. By the above argument, we only need to show that the net (wf).)esxx
possesses property (i7¢). Our proof follows Renaud [25, Proposition 3].

Let ¢ >0 and K be a compact neighborhood of ¢ in (/. Then there exists a
u € A(G) such that u =1 on K. Now, (v — u)(¢) = 0. Since points are synthesis
for A(G) (see [6, (4.11) Corollary 2]), there exists a w € A((7) [} Cool(7) such that
|[(v — u) = w|| < e and w =0 on some neighborhood U of e.

Note that suppul C U;N,. If U;N, CUNK, then uwl = u! and wul = 0.



Henee for such w? , we have

I(v = v~ w)ul]

low, — w ]
= |lv—u—wllu]]
= |lv-u—-w| < ¢.

Therefore, by the direction on J x X, we only have to show that there exists an
clement (jo, o) € J x X such that U;,N,, € U[) K. Choose a neighborhood V of
¢ such that V? C /(K. Since (Na)oco<y is a decreasing net of compact subgroups
of (7 and Nyenep No = {¢}, thercexists an a, < p such that N,, C V. Let j, € J

be such that 7;, € V. Then U;,N,, CVECUNK..

Remark 5.2.3. Recall that if N is a compact normal subgroup of a locally com-
pact group (, then A(G/N) embeds into A(G) (corresponding to the subspace of
all N- periodic functions in A((), see [6, Proposition (3.25)]). In our case, now
Uncac, AG/Na) is norm dense in A(G) (since Uocacu L*(G/No) is norm dense in
L*(()). For a fixed 0 < o < g, (ul)jes may not be topologically convergent to
invariance. However, since N, is synthesis for A(G) (see [15, p.94]), we still can

show that (u}),es is topologically convergent to invariance “for A(G/N,)”, that is,
lim|lewl —ul|] = 0
i oud, — ui |

for all v € A(G) with v = 1 on N,. But this fact will not be needed in the sequel.
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For a directed set X, let F(X) be the subset of means on (X)) defined as

in Section 2.3. Chou in [2] showed that if i is a non-discrete metrizable locally
compact group, then there exists a mutually orthogonal sequence in A(G) which
is topologically convergent to invariance. Using such a sequence, he constructed
a linear isometry of ({®)™ into VN((G)® which embeds the large set F(N) into
TIM(G) (see [2, Theorem 3.3]). Recall that the net (u)(;,ajcsxx in Theorem 5.2.2
is topologically convergent to invariance and (u/)aex is mutually orthogonal for
each fixed j € J. Thus in case G is non-metrizable, although we can not set up
one linear isometry embedding a big set into ’1'1M((3'), we still have the following

weaker version of Chou’s results obtained by modifying his technique.

Theorem 5.2.4. Let G be a o-compact non-metrizable locally compact group and
(Na .. < be the decreasing family of normal subgroups of (i as in Theorem 4.3.1. Lel
X = {a; a < p} with its natural order and (ul)(; ayesxx be the same netl in A((V)

as in Theorem 5.2.2. For every j in J, define m; : VN(G) — I™(X) by
m(T) (@) = (T, ul), T e VN(G), a € X.

Then
(a) for each j € J, 7; is a positive linear mapping of VN(() onlo I™(X) with

|mill =1 and the conjugate 7} is a linear isometry of I*(X)* into VN((/)*;

(b) for each ¢ € [*(X)", if we let

Wy = {all w™cluster points of (n¢);es in VN(G)"},
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then Wy # 0, W, C 7IM(G) if ¢ € F(X), and the family {Wy; ¢ € I°(X)"} is

patrwise disjoint.

Proof. (a) Fix j € J. Clearly, 7; is linear, 7;(I) is the constant function of
value one, and 7;(T) 20 if T2 0. If T € VN(G) and a € X, then |7;(T)(a)| =
W1, wi)| < ITlwi]l = ||T|| Therefore, jjm;]] = 1. To see that =; is onto and

7} is an isomelry, we only have to show that for each f € I°(X), there exists a

T € VN(G) such that =;(T) = f and ||IT}| = | f|l...
Let A = A(X) be the set of all non-empty finite subsets of X directed by

inclusion. Let [ € {®(X). Foreach - € A, let S; =3 .. f(a)Qa. Since (Qa)acy

is an orthogonal net of projections in VN(G) and f € *°(X), then

I15:11 < [l 1leos forall 7 € A,

and the net (S;);ea is convergent in the weak operator topology to an operator
T € VN(G) with ||IT|| < |Ifll
Recall that on VN(G) the o(VN(G), A(G))-topology coincides the weak oper-

ator topology. Consequently, by ul € A(G) and formula (5.2.4), we get

(Te) = (T, ) = Hm(S, , u)

TE

— i J
= lrlerrg;e;f (Qs» ul)

= fla), forall a € X,

e, m,(T) = f. In particular, ||fl|l, < I%|IIT|| = |T||, and hence ||T|| = || ||,



This completes the proof of (a).
An interesting fact here is that the above operator T' is independent of the choice

of j in J, that is, given f € {®°(X), there exists a *common” T € VN(() such that
Tl = |Ifll,, and 7;(T) = [, forall jeJ.

We need this fact later.

(b) Let ¢ € [(X)*. Since |[7;¢|| = ||¢|| for all j € J and the unit ball in
VN(G)* is w*-compact, then the net (7r;¢)je,, must have a w*- cluster point in
VN(G). So, W, # 0.

Let ¢ € F(X) and F € W;. Then there exists a subnet (75¢); of (77d) es

such that 73,¢ — F in the o(VN(G)", VN(G))-topology. Now,

IFIl < liminflzs gl = [lg] =

and
(F,I) = lijrln(7r;,¢, Iy = lijrln(q&, (1)) = ¢(1) = 1,
where 1 is the constant function of value one. Therefore, |F||= (F, ) =1. Let

T € VN(G) and v € A(G) with v(e) = 1. Then

(F,v-T—=T) = lim(t}¢,v-T=T) = lim(¢, 7p(v-T=T)).  (5.2.5)

.7

By Theorem 5.2.2, lim;r , |[vul — ud || = 0. Thus, we get

11m7rJ (v T-Tie) = llm(v T-T,ul)

ihe Mo

= lim(T,vel —ul) = 0.

4
Jho
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So, given ¢ > 0, there exists j; and oo such that
|mj(v-T = T)a)| < e, for all (5, @) > (Ji, ao). (5.2.6)
Since ¢ € F(X), then (5.2.6) implies that
(6, mp(0-T—T) < ¢, forall /> 7. (5.2.7)
Consequently, (5.2.5) and (5.2.7) combined give
(F,v-T-T) = lijr,n(¢, mi(v-T—=T)) =0,

ie, (F,v.T) = (F,T) forall T € VN(G), v € A(G) with v(e) = 1. We conclude
that W, C TIM(G) for all ¢ € F(X).

Let ¢y, ¢2 € 1°(X)* be two different elements. Assume that F' € Wy, (| Wy,.
Let f € [*°(X). By the fact mentioned at the end of the proof of (a), there exists

a “common” T' € VN(G) such that
7i(T) = f, forall jeJ.

Then (¢, f) = (¢, 7;(T)) = (71, T) for all j € J. Similarly, we have that
(2, f) = (7}¢2, T) for all j € J. By taking limits on subnets, we thus get that
(61, f) = (F,T) and (82, f) = (F,T),ie, (61, f) = (¢2, f). This is true
for all f € I®°(X). It follows that ¢; = ¢, contradicting the fact that ¢; # ¢..
Therefore, Wy, (\Wy, = 0 for all ¢, @2 € I®°(X)* with ¢; # ¢o. This completes

the proof of the theorem.
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Recall that if A is a set, then 2% denotes the set of all subsets of A. The above

theorem together with the embedding results for V N(G)* will yield the following

Theorem 5.2.5. Let G be a non-discrete locally compact group. Let yu be the initial
ordinal satisfying |p| = b(G) and X = {a; a < u} with its natural order. Then
there exists a one-one map W : [°(X)* — 2VNG)" sych that

(z) W(@)#£ 0 for all ¢ € I°(X)*;

(22) W)W (d2) =0 if ¢1, ¢2 € [°(X)" and ¢, # ¢2;

(1) W(ag) = aW(8) and W(d1 + 62) C W(gi) + W(ds) for all ¢, ¢,
¢2 € [®°(X)* and a € C;

(iv) W(¢) STIM(G) if ¢ € F(X).

Proof. When G is metrizable, this corollary is a consequence of Chou [2, Theorem
3.3]. In the following we assume that G is non-metrizable.

If G is o-compact, let W : I®°(X)* — 2VN(©)" be defined by W(g) = W,,
where Wy C VN(G)* is the same as in Theorem 5.2.4 (b). Then W satisfies (i),
(i) and (2v). It is easy to check that W also satisfies (iiz).

In the general case (G not necessarily o-compact), let G, be a compactly gener-
ated open subgroup of G. Let ¢ : A(G,) — A(G) be the extension map defined by
tv = 13, where ¥ = v on G, and 0 outside G,. Then, by Granirer {10, Theorem 3],
t** is a linear isometry of VN(G,)" into VN(G)" and (=*(T'IM(G,)) = TIM(().

Note that now G, is o-compact and non-metrizable and b(G,) = b(G). We let
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W, : I*(X)~ — 2VN(G)" be the map given in the previous paragraph. Define
W = ["* o W,, where [*= : 2VN(Ge)' _, 9VN(G)® s the map generated by t**, i.e.,

() = {1*"F; F € £} for all £ C VN(G,)". Then W : [®°(X)" — 2VN(G)* has

properties (¢) — (iv).

Corollary 5.2.6. Let GG be a non-discrete locally compact group. Then

ITIM(G)| > 227

Proof. Let g be the initial ordinal with |g| = b(G) and X = {a; a < p}. Let

W @ [®°(X)* — 2VN(G)" be the one-one map in Theorem 5.2.5. Then, by the

properties (7), (¢2) and (:v) and Proposition 3.2.3, we have

ITIM(G)| > |F(X)| = 227 = 229,

5.3. The Cardinality of TIM(@).

To obtain the exact cardinality of T1M(G), we need two more technical lemmas.

Lemma 5.3.1. Let G be a non-discrete locally compact group and K be a compact

subset of G. Let

Cr(G) ={f; f € Coo(G) and suppf C K}.
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Then there exists a subset £ of L*(G) such that |£] < b(G) and L is || - ||,-dense in

Cx(G).

Proof. Choose a set J with |J| = b(G). Let {U;;j € J} be an open basis at
the unit element e of G. Since K is compact, for cach fixed j € J, there exist
zl, :v-,’;J € K such that K C i, ziU;.

Let &, be the set of all such sets .T{,Uj NK,jeJ and k=1, -, n; Then

|Eo] < |J| = b(G) (since b(G) is infinite), and &, is a basis for open sets in A (with

the relative topology). Let

£ = {E; E=J Hi forsome Hy, - --, H, € &}.

k=1
Then we still have |E| < b(G).
Define

L= {ZaklEk;akEQm Ekeg, k=l,---,n},

k=1

where Q. = {a +ib € Cj; a, b are rationales}. Then £ C L*((/) and |L] < b((Y),
since Q. is countable and |€] < b(G) (with 6(G) infinite).

We claim that £ is || - ||,-dense in Cx(G). We can assume that A(K) > 0.
Let f € Ck(G) with ||f|l,, > 0 and let € > 0. Then there exists a partition

{F¢; k=1,---,n} of supp f (C K) such that each Fj is measurable and
[f(z) = f(y)| < &1, for z,y€ Fi, k=1,---,mn,

where 8; = ¢ (4\(K)/?)~1. By the density of Q. in C, for each k, we can choose an
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ax € Q. such that
lak] < |Ifll.. and |f(z) —ax] < 26, for z € Fp. (5.3.1)

I'ix 1 < k < n. By the regularity of the left Haar measure ) of G, there exist an

open set O and a compact set My such that M C Fi. € Ok and
MO\ M) < &2, (5.3.2)

where 6, = ¢2(2n]|f]|,,)"% Note that & is a basis for open sets in K, Ox[} K
is open in K and My is compact. Then there exist HF, ..., HX € &, such that
M C UL, ”,k CONK. Let Ex = U;’;l Hlk Then Er € €. Now M) C E;, C O,

and M, C Fj, C O. Hence (5.3.2) implies
MEAF) < MO\ M) < 62, (5.3.3)
where K AF) is the symmetric difference of E; and Fj. Let

n
g = ZaklEk'
k=1

Then g € L. Recall that f=3",_, flr,. Hence,

=gl = 1D (fln —alg)l < D Iflp —alg,|
k=1 k=1
= Zlf‘"ad lenEe + Zlfl lp\E, + Z |ak| 1E,\F,
k=1 k=1 k=1
< 26 1505 + Ifle ) lRas (by (5:3.1))
k=1 k=1
< 261k + l|f||°°ZleAEk-

k=1



Consequently, we have

If=gll, < 26:0l1kll, + 1flle Y Nrasll;
k=1

n

= 200K + Ml D MEFRAE)?
k=1
€ -1/2 By
< 5+ Mllond’ (by (5.3.3))
_ € € _
=~ 3tz =&

ie, ||f = gll; < e It follows that L is || - ||,-dense in Cx(G).

]

Lemma 5.3.2. Let G be a non-discrele locally compact group and V be a compact

subset of G. Let
Ay(G) = {v; v € A(G) and suppv C V}.

Then there exists a subset S of A(G) such that |S| < b(G) and S is || - || y(;)-dense

in Av(G).

Proof. Choose a compact neighbourhood A of ¢ such that V C K. Define
Ay = span{f*§, f, g € Coo(G), supp f C K, suppg C K},

where span E means the linear span of F£.
Assume that there exists a v € Ay(G) such that v € A; (the norm closure of A,

in A(G)). Then by the Hahn-Banach Theorem, there existsa T € VN((J) = A(()"
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such that (T',v) # 0 but (', f+g) = (Tf,g) = 0 for all f, g € Coo(G)
with suppf C K and suppg € K. By the definition of supp T, we have that
K C G \suppT,ie., suppT C€CG \ K CG \V. Note that v € Ay(G) and hence
suppv C V. It follows that suppwv () suppT = 0. By [6, Proposition (4.6) and
(1.8)], v-T = 0. We choose a u € A(G) such that u =1 on V. Then vu = v, and
hence

0= (v-T,u) = (T,vu) = (T,v),
contradicting the fact that (T, v) # 0. We conclude that Ay(G) C 4;.
Let
Cr(G) = {f; f € Coo(G) and supp f C K}.
By Lemma 5.3.1, there exists an £ C L*(G) such that |£} < §(G) and Lis || - ||,-
dense in Cr(G).

Define

S = {Zaifi*ﬁi;a;EQc, fiog€l, i=1,---,n},

=1

where Q. is the same dense subset of C as in the proof of Lemma 5.3.1. Then

|S| < (@), since Q. is countable and |£| < b(G). Since L is || - ||,-dense in Cx(G)

and Q. is dense in C, by the definition of A(G), S is || - || ;5)-dense in A;. Recall
that Ay (G) C A;. Therefore, S is || - | 4¢g)-dense in Av(G).

O

We are now ready to find out the precise cardinality of TIM(G) for any non-

discrete locally compact group G.
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Theorem 5.3.3. Let G be a non-discrete locally compact group. Let b(G7) be the

smallest cardinality of an open basis at the unit element ¢ of ;. Then

ITIM(G) = 27,

oyl

Proof. By Corollary 5.2.6, we only have to show that |T1TM(()] < 2*
Let U and V be two compact neighbourhoods of ¢ in (7 such that U ,.,Ce V.

We choose two functions u, and v, in A(G) such that we(e) =1, vo = | on U,

suppu, C U and suppv, C V. Then u, = uovo. Let
B = {u-T;TeVNG))}.

Then B is a subspace of VN(G), and each m € 'I’IAI(C’) is determined by its value

on B, by the definition of T/M(G). Hence we have
ITIM(G)| < P, (5.3.1)

where ¢ is the cardinality of the continuum.
In the following we shall prove that |B] < &), Let T € VN((/) and v € A(().
Then

(u - T,v) = (T, uv) = (T, o) = (uo -1, vov). (5.3.

-t
()
abe §
S—

Now v,v € A(G) with support contained in V. Define
Ay(G) = {v € A(G); suppv C V}.

Then, by (5.3.5), each u,-T € B is determined by its value on Ay((/). By Lemma

5.3.2, there exists an § C A(G) such that |S| < b((F) and S is || - || y(;y-dense in
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Av((i). Hence cach u, - T € B is determined by its value on S. Consequently,
B] < ¥l < M9, (5.3.6)
Finally, (5.3.4) and (5.3.6) combined give
ITIM(G)| < Bl < P = 9219

since b(() is infinite.

Remark 5.3.4. Lau and Paterson showed that if G is a non-compact amenable
locally compact group, then [TLIM(G)| = 2" where TLIM(G) is the set of all
topologically left invariant means on L*°(G) and d(G) is the smallest cardinality of
a covering of G by compact sets (see [20, Theorem 1]). When G is abelian and G
is the dual group of G, A(G) can be identified with L!(G) (by Fourier transform)
and VN(G) with L*(G); each f € L>(G) can be regarded as a multiplication
operator on L2(G) which is isomorphic to L*(G) by Plancherel’s theorem. Un-
der these identifications, the module action of L!(G) on L*(G) is just the usual
convolution. Consequently, m € VN(G)* belongs to TIM(G) if and only if the
corresponding mean on L°°(G) is a topologically left invariant mean. In particular,
|TIM(G)| = |TLIM(G)|. Now HG) = d(G) (see (17, (24.48)]). Therefore, when

(i is abelian, our Theorem 5.3.3 coincides with Lau-Paterson’s result.



5.4. Some Results on Structures.
For a locally compact group G. let b(() be the smallest cardinality of an open
basis at the unit element € of GG defined as before. The format of the following two

theorems is due to Chou [2]. He discussed the case when (¢ is metrizable.

Theorem 5.4.1. If G is a non-discrete locally compacet group, then TIM(CY) con-
tains a subset E such that |E| = |[TIM(G)| = 227 and if m\, my € E and

my # mg, then ||m; — mq|| = 2. In particular, TIM(G) is nol norm separable.

Proof. When G is metrizable, this is shown by Chou (see [2, Corollary 3.5]).

In the following we assume that G is non-metrizable. By Granirer [10, Theorem
3], we may assume that G is o-compact. Let g be the limit ordinal associated with
G as in Theorem 4.3.1, X = {a; a < p} with its natural order and F(X) the

subset of {*°(X)* defined as in Section 2.3. Let
A = {$€BX; ¢ contains {T,; a€ X}}, -

where 8X is the Stone-Cech compactification of the discrete set X and 7., is a tail
in X as in Section 2.3. Then, by Lemma 2.3.2 and the proof of Proposition 3.2.3,
ACF(X) and |A| = 22 = 229,

Let ¢1, ¢ € A with ¢; # ¢2. Then || — &2|l = 2, since ¢y, ¢2 € SX. Let
%, € Wy, and s € Wy, , where W, is the non-empty subset of T'1M(C) defined
for each ¢ € F(X) as in Theorem 5.2.4. Then, there exist subnets (7 )5 and

(73)iz of (77)jes, where (7});es, is the net of lincar maps associated with (4 as in



‘Theorem 5.2.4, such that
w6 — b1 and w5 do —
in the a(VN((/)", VN((7))-topology. Since ||[o1] = ||zl =1, ||t — vl < 2.
On the other hand, if f e *(X) with ||f]|,, =1, then, by the fact mentioned
in the proof of Theorem 5.2.4, there exists a “common” T € VN(G) such that
7)) =|Ifll, =1 and 7(T') = f forall j € J.

Hence, we get
ln = el 2 [(¥r — %2, T)|

= lim{(x} ¢1 — 7,62, T)'

J1sJ2

= lim(¢1, 7;,(T)) — (2, (T

J1.J2

= ér. [) = {(o1. f)]

= l((pl _¢2a f)la
that is,
e —wll 2 (61— o2, f)], forall fel®(X) with ||l =1.

It follows that |[gy — ¢2f| = ||o1 — @2f| = 2. Consequently, |[¢)1 — 3| = 2 for
vy € Wy, and v € W,
For cach o € A. choose a ¢ € W;. Let E be the set of all such ¥. Then

|| = |A] = 27 and [|m;, — myl| = 2 for all my, my € E with my # ms.
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Recall that F(G) is the space of all T’ € VNG such that m(T') equals a fixed
constant 4(T") as m runs through T[.'\I((?). Also, each m € 'I'I.\I((:‘) is determined

by its value on UCB(G) and I'V(é) C I((?) Thus Theorem 5.3.3 will vield the

following

Theorem 5.4.2. Let G be a non-discrete locally compact group. If B is a norm
dense subset of the quotient space VN(G)/F(G) [or U(?B((:‘)/F((:‘)ﬂll(?'lf((l)].
then
|B| > b(G).
In particular, the quotient spaces VN(G)/F(G), UCB(CH/I(CYNUCB(G)

and UCB(G)/W(G)YNUCB(G) are not norm scparable.

Proof. Assume that B is norm dense in VN(G)/F’((;'). Then there exists a subset

D of VN(G) such that |D| = |B| and the set
E={T+S8;Te€D and S e F(()}

is norm dense in VN(G). Thus each m € ’I"IM((;’) is determined by its value on
g

Fix an m, € TIM(G’). We have
m(T + S) = m(T)+ m(S) = m(T) + m.(5),

for all m € TIM(G), T € D and § € F(G). Therefore, each m € TIM((!) is



48
determined by its value on D. Consequently, we have
ITIM(G)] < Pl = (Bl = glBl (5.4.1)

where ¢ is the cardinality of the continuum and ¥g is the first infinite cardinal

number.

On the other hand, by Theorem 5.3.3,
ITIM(G)| = 229 > 2¢@) (5.4.2)
Now (5.4.1) and (5.4.2) combined give
No|B| > b(G).

But b(G) > Ry, since G is non-discrete. Therefore, |B| > b(Q).
Similarly, we can prove the UCB(G)/F(G)UCB(G) case, since each m €

TIM(G) is determined by its value on UC B(G), by the definitions of TIM(G) and

UCB(G).

If u € A(G) with u(e) =1, let
ut = {Te VN(G);u-T =0}.

7T € ut and m € TIM(G), then m(T) = m(u-T) = m(0) = 0. Hence, u* C F(().
Note that W (C;‘) CF (G) By the same procedure as in the proof of Theorem 5.4.2,

we can also prove the following
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Theorem 5.4.3. Let G be a non-discrete locally compact group. Let u € A(()
with u(e) = 1 and X be a subspace of VN(G) such that UCB(G) is contained in
the norm closure of W(G) + ut + X. If X, is a norm dense subset of X, then
| Xo| > b(G) .

In particular, X is not norm separable.

Proof. Let m € TIM(QG). Since m(T) = 0 for all T € u* and m is determined

a

by its value on UCB(G), by the assumptions, m is determined by its value on

W(G) + X. Fix an m, € TIM(G). Then we have
m(T + §) = m(T) +m(S5) = mo(T) + M(5),

for all T € W(G) and S € X.
Therefor, each m € TIM(G) is determined by its value on X and hence by its

value on X,. Thus we have

ITIM(G)| < cXel = pMolXel
On the other hand,

ITIM(G)| = 227 > 24(©)

by Theorem 5.3.3. Thus,

Ro| Xo| > b(G) > Ny

It follows that | X,| > b(G).
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Remark 5.4.4. (a) Theorem 5.4.3 actually improves Granirer {11, Theorem 12].
Under the same assumptions, he showed only that X is not separable.

(b) If the generalized continuum hypothesis is assumed, then the conclusions in

Theorem 5.4.2 and Theorem 5.4.3 can be strengthened as |B| > 2%G) and |X,| >

28G) | respectively.
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