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<
ABSTRA(gT

We introduce and study the notions of upper and lower row,
column and projection estimates for tensbf’products of Banach spaces

»

with unconditional bases. We relate theS&Hnotipns to ?pperland lower
estimates satisfied by Banach lattices. In particular! we ‘have a
duality properfy,a renorming théqgem and a geohetrical property which
correspond to similar results from Banach lattice theory. We aiso
give a convergence theorem foy tensor‘pTQAucts-(concerning the Kadec-

! 14
Klee property). Finally, we shdw that if a Banach space , X has an

uncoﬁditional basis and gf (X @% 12) is finite thert +is isomorphic

to k. . . é.
+ . * v 'lri’
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INTRODUCT ION

The notions of upper and Tower estimates were introduced inde-
pendently by T. Shimogaki [18]) and T. Figiel and W.B. Johngoni[S].for
Banach lattices (or Banach spaces‘with unconditional bascs). Their
definitions were derived from conVexity and concavity conditions and
they playlan important‘role in studying the €onnection between type and
~convexity and bétween cotype and concavity., TFese notions depend
heavily on the structure of Banach lattices. In general, tensor prod-
ucts of‘Banach spaces lagk ﬁhe Rin “of structure necessary for similar
notions. However by restricting qurselves to certain special Banach
spaces we are able to make some progress. To be specific, we require
all ‘the Banach spaces involved to have unconditional bases. The major-
ity of the thesis is then concernediwith the definition 6} upper and
spwer row, column and projection estlmates (see Section Two for defini-
tions), and the properties of tensor producgs sat15fy1ng these esﬁlm;tes.
These notions are indeed analogous }n some ways to those of upper ﬁgd
lower estimates for Banach 1attiées. We also give a convergence theorem
(concerning the Kadec-Klee propertyjifor teﬁsor products satisfying
certain estimates. |

A tensor prdduct of two 'Banach spaces inherits a certain degree
of structure from those two spaces. It is natural‘to’tryAto determine
just how muych sgfucture'is inherited. S. Kwapiem and A. Pelczynski

+ : ey
showed in [9] that, in general, even the tensor product of two Ba;;ch

spaces with unconditional bases fails to have an unconditional basis.

The study of local unconditional structure is a natural consideration

-
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for tensor products. . Go ton and D.R. Lewis [4,5,10] dxd much work
| R

+

in this area, cspeelally For tensor produet% with thgkleast and greatest
| .

crossnorms  (see Section‘One for deflnytlons). C Gchutt ‘[17] showed
, N [
that for any tensor norm on a tetsor product ef finite dimensiongl
» : ;

Banach épaces, in.prder to sfudy unconditional structure it is enough

to consider a certain basis. G. Pisier {15] studied the problem of

tensor products of Banach spaces being isomorphic tp subspaces of ngach

e

spaces with unconditional bases.

In Section One we present definitions from the general theory of

1™ .
Banach spaces. Special attention is given to the notion of unconditional

basis, which we use throughput the thesis. We aIsdfgive definitions from

tensor product theory. There is no absolutely standard sg¢t of defini-

tions, the ones we give dre consistent “and sufficient for our purposes.

We introduce in Section Two the upper and 1ower;row column and
pTOJectlon estimates for tensor products of Banach Spaces with uncondl—
tional bases. These notlons are in eome ways analogous to upper and
lower estimates in Banach lattice theory, but they are certalnly weaker.
The majority of Section Two is devoted to & study of tensor products
satisfying these estimates. Our theory developed in this part of the
thesis follews a very eimilar course to the one taken by the theory of
upper and lower estimates for B&nach lattices. We end Section Two N
with examples of spaces satisfying upper and lower projection estimates.

We consider the Kadec-Klee property for tensor efoduets in Séc-
tion Three. Usipg a lemma from [19] adapted for tensor pfoducts we
éive a condition for a tensor product to have the Kadec-Klee propefty.
In particular, we show that for 1 < p, q <=, Qp C% lq has the

¢

property (where v 1s the greatest norm) .
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In Section Four we consider the local unconditional structure
of tensor products. More specifically we show that if a Banach space
X has an unconditional basis and QQ(X @% 12) is finite (sce
Vo

Section Four for the definition of the g? constantj, then” X 1is

isomorphic to 11. This gives a characterization of 2, among Banach

spaces with unconditional bases.

Finally, in Section Five, we present some ds yet unanswered prob-

lems which arise from the notions considered in this fhesis.

—



" SECTION ONE

STANDARD DEFINITIONS

»

. . ¥
In general our notation for the theory of Banach spaces is

. , ‘ o
standard [12]. One exception is that we denote the action of a

functioggl x* on elements X by <x,x*>. In most of the following

it does npf matter if the field of scalars is real or complex, we

~shall indicate whenever we restrict ourselves to the reals. We make

¥

some definition$ for general Banach spaces before going on to discuss
tenso® products and norms on tensor products.

For any two Banach spaces X and Y we denote the Banach-Mazur

.
'

distance- between X and Y by d(X,Y), that 1is,

d(X,Y)

infOITHT X i T:X > Y is an isomorphism},

d(X,h » if X and Y ar’»not isomorphirf.

A basi*fei} of a Banach space X 1is-called uneonditional

if there exists-a constant C such that for every X

i}
1
)
pie
(¢
m
~<

i
—
8o

1
M ]

' 1] e;a e lly < Clixly for every: e = +1 for i
1

The smellest such constant C 1is called the unconditional basis con-
stant of the basis {ei}n and is denoted unc({ei}j. The unconditional

basis constant of a Banach space X is defined as

unc (X) = inf{unc({ei}) :{ei} is a basis of X} .~

‘We put unc(X) =« if X has no unconditional basis. A basis {ei}

x
~



a : . : \’{‘

is called l-unconditioaal if unc({ei}) =

‘basis

{ei}.

,.\ ‘ | _ ' e

" a conpstant M

w5

fyv=‘§ﬁyiei

"defined by taking

. ’ i oA

=t =
R i-

]' Given an unconditional basis {e

‘ of the«integers,'ﬁe define the projection 'PE X > span[e ]1EE

-{ei}, then there exists.an equivalent norm i +il on X

. ;oo : ‘ .
is 1-unconditional with respect to

sup{||Z €1a161" £, =2

. for every x'= 2 a.e

1% If X has an unconditional

so that

sl . This renorming is
] OT \

2

. -,
1 for i=1,2,...}
. in “X.

1 .

i}i=l pf X and any subset’ E

by,

i’i N

- , [

These pro;ectlons are called the natural progectlons assoc1ated to- the

unCOnditional basis

eyl
unc({ei}).

‘r.‘ *
Given an. uncondlflonal basis

~are d15301nt1y supported if
1

Let 1 <p <_wl'

e. )7

ii=1 o

jointly shpported veétorslwe,have,g
n. \
| 3 x,
2 1

L 1=

§
¢
[N

i».and have'the property tpat
. C @ ’ N ‘

{ei}{ two vectors X =

such that for all finite sequences

sup HP H <
E

L x.e
i

X Y5 = 0 for each iK.agg

1

A Banach space w1th an uncond1t10na1 ba51s

is 'said to satisfy an upper or Zower p-estimate if there exists -

- *yn .
{Xi}i=1' of dis-

e
£

. 1/p R
’l < z Ix. "p> .., respectively,
X : -~ ,

1/p
Ix. up>



In either case the least such constant M 1is called thg estimaté con-

stant. For spaces satisfying such estimates.we have the following

* .

theorem [12], which we shall use later.

-

Theorem. For 1 < p <, X satisfiés an upper (respectively lower)
p-estimate if and. only if X* éatisfies a lower (respectiveiy upper)

.

p*-estimate, where 1/p + 1/p* = 1, with equal estimate constants.

s

We now define the tensor product of two Banach spaces and intro-

dube a variety of nmorms on it. Let X and Y be Banach spaces.

" Following Schatten [16] we introduce the symbols ® and +, and for

e ' n
finite sequences {x.}.

: n . » - n co
iti=1, < X, vyl f Y. ang-écalars {ai}iFl , wg

construct formal expressions o

N

ay (xi®yiv) : .
1 ’ . .

he~13
—_

2, 0,@7)) * 3,05,0,) + 5o+ a @y =

Rl

8
relation ~ subject to

&

¢

' . . e
On these expressions we introduce an equivalence

R 9

.
n - n i
1? izl xiGEyi %‘iZ1 x“(i)gaxﬂ(i) for al} permutatlong.'w
. ’ , n ~ n .,
: s [} 1" \ ; ‘v 1 \
i) )@y ¢ [ ox @y v K@y ¢ x@yy v 1 x; B,
‘ i=2 : ‘ i=2 -
11) & | o oyt C \ v ! "
i)t Xl‘@(y‘ﬂlfyl) + 1.2-2 xi@yif_x«. x,@y] + x,&¥] +'i§2 x; @y, /
’ o v '.’ ', : \L //
[ .n R : n “ /
Siii) izl (aixi)GEyiﬁm iZ1 xiQE(aiyi) N'izl ai(§i§5yi) for all’

’

- scalar .ai



»

Two expre551ons are sald to be equ1va1ent if one can be trans-

formed{ﬁnto the other by a f1n1te number*of succe551ve appllcatlons of

/

i), 11), ii)', and 111).
/

// We denote by X C)Y the linear space of all equ1va1ence classes
,‘/ LN . n

,/of-expre551ons of the form .z = .21 a, (x5 C)y ), ({x } X,

.‘ - v‘ N - l=
{yi}2=1 c Y, scalars {ai}2=1) with the natural operations of addition

and scalar multiplicatidn.

There is a natural identification of X® Y with the space of

finite rank operators from X* into Y, given in the following way: '

0 ‘ _ .
an expression - L ai(xiC)yi) represents the operator T defined by -

N o
,\ ' : B : ,
. N

T(x*) =
i

He~1s

Ca.<x.;x*>y. -for x* in X* .,
p i i

It ‘can be easily checked that if two expre%sions are equivalent then
the correspondlng operatcrs are’ equal “In particular, an expression?jf‘

~ "/_/

x(:)y for x e X and yeY represents the operator determlned by

r”a '(XC)y)x* =< X,X*Dy | for each x* in X*.

"pefinition [16]. A real-valued function o acting on X®Y wiil{be'f_?

d

. «
called a crossnorm if, N

Ij For every z ¢ X®Y, a(z) > 0; a(z) = 0 <=z = 0.
For every z € X® Y and for all scalars a, of(az)= lala(z).

For all y, z e X®Y, aly+2) f_d(f) + a(zj; : e

1I) For all x ¢ X, y € Y, e(xQQy) = HXHXHyHY




where the supremum is taken over all

.
o

. We denote by X @a'Y the completion of X®Y under the

‘crossnorm o .

associate norm a' on X* 6 Y* by, for every

j=1 j=1i=1

[ Y
Sues
—

for all z' in X®Y, clearly a (y) > 8'(y)

Let "4 be a member of X* & X,_u = Z

% . =1

a{,.,.;a;» are in ' X*, bl""’bn ‘are in X.

defined 'by‘.‘

W~

tr(u) =

j=1 - 2

,

Cal (Jrf x;@y;>= sup {l z z<x “x*><y ,y*>‘}

<b:,a*>.
J e

;Defiﬁition [16].. For a crossnorm a -On X®Y we define the

J_

S

N

' xi®yi in X® Y with

1 n . . . .

~.a‘(,21 "xi®yi) < 1. For two crossnorms o and B8 with a(z) < B(2)
AT < <

'for all vy e X* G Y*.

a* ® b where’

Then the trace of u

N

The 'trace_.ofA u does not depend on the choice of equivalent tensor

reprasentatlons of a. Trace is, a linear’ functlonal on X* @ X.

Observe that for every element z of X* @Y* there is a

PR

Since ]¢Z(u)| < ot(u).a"(z), e ®a Y)* and oI ia'(z).‘ This

¢;(u) = tr“(zu) =<u,z >.

4c'orresponding functlonal dz on X&®Y defined by

ol

correspondence.induce$ an isometric isomorphism between X* ® , Y*

(X ®oz Y)* if at least one of X. and Y 1is of finite dimension.

I3

'Zl x*@y in X* ® Y*,

is

and



Definition [16]. The l8ast crogsnorm A 1is defined for

n . ‘
2= I x.®y, e X®Y as,
=1 1 i

1]

A(z) = sup {I<z,x*@y*>1 1 x* ¢ X*, y* € Y*; Ix*l, Iy*l < 1},

[

n
_sup{l ) <x*,xi><y*,yi>|: x* e X*, y* e Y*; lIx*l, ly*l _<_1}
EETS T '

Then A(z)'/represents the'operator norm of the operator z :X* - Y

n
z X5 @)yi and X Q& Y 1is isometrically

determfned by the .expression )
1=

isomorphic to a closed subspace of the compact operators from X* to Y
(X Q& Y is'isometrically.isomonphic to the space of compact operators
from -X* to Y if and only if Y has the approximation property [121y.
Given a crossnorm o on X & Y, the associate norm a: is a
crossnorm on X* ® Y* if and only if a(zj :_A(z) for every z 1in
X Q}X. For, if there exists a z ‘in ‘X ® Y such that  §(£) < A(z),
then, by the definitions of the assdciate norm and the least crossnorm,
there exists x* ¢ X*, y* ¢ Y*v”with q(z)ﬂx*"ﬂy*ﬂ < I (x*®y*) (z) ] <.
o' (x*®@y*)a(z). Therefore, a! (x*®y*) > foHHy*H and «a' 'is‘not a
crossnorm on X* & Y*. Conversely, byvtheiggfinition of the associate
norm, we have a'(x*@y*) > lIx*lly*l for every x* e X*, y* e Y*. Now
n

suppose o > A, then o' < A'. For any -21 X C)yi € X(:)Y;
o - 1=

S

' n
X @yi> | < Ix*lly*1 x('izi xi®yi> :

1

| (x* @ y*) <

nes-1s
e

therefore we _have,

a' (x* @ y*) < AT (x* @ y*) < Ixxlly=*l



10

and so o' 1is a crossnorm on X* ® Y*.

Definition. The greatest crossnorm v 1is defined for z ¢ X ®Y as,

]

n

v(z) = mt{_z I, Iy by o
i=1 i

He 3
b
=
1]
N
-

1

If o is any crossnorm on X ®Y then a(z) < v(z) for all =z in
X ® Y. The associate of vy~ is 2 , i.e. X* @\), Y* = X* @)\ Y*, also
we have, (X@® V)* = X+ @ Y+ and (X ®, * = LO,X%)  for all
Banach spaces X and -Y.

| Given a tensor product X ® Y and two arbitrary Banach spaces
X1 and Yl’ for every S € L(X,;(l') , T € L(Y,Y,) there exilsts a unique
operator S®T:X®Y +X1®Yl defined for z = igl xi@yi e XY

by,

n r
(S@TI(z) = ] (Sx) & (Ty).
i=l

. i
Definition. A crossnorm o on X &®Y will be called a tensor norm if,

-

ITI) For any S e L(X), T ¢ L(Y) we have,
a((S®T)(2)) < 'I|Sl|a(z)HTll for every z ¢ X®Y.

IV) A(z) < a(z) < v(z) A for évery ze X@Y.-

Both ) and v are tensor norms and the associate of a tensor

norm on X ®Y is a tensor norm on X* & Y*.



11

Definition. A real-valued function é defiped on all pairs (X,Y)

of Banaéh spaces is called an ideal norm if it is a tensor norm on each
tensor ‘product X® Y and if for arbitrary Banach spaces X, and Y,
we have, for all S ¢ LX), T e L(Y,Y{)," :

(1((8 C)T)(z)) i;HSHa(z)uTH‘ for every =z in X C% Y.

Both A and v are ideal norms. .Other examples of ideal norms will

be given in later sections,



SECTION TWO

UPPER AND LOWER ESTIMATES IN TENSOR PRODUCTS

In this section we introduce the definitions of upper andvlower
p-row, column and projection estimates for tensor products of Banach
spaces with#unconditiénal bases. These notidns are very similar to
those of upper and lower p-estimates fér_Banach lattices [3]. We'pr6Ve
several results about tensor products satisfying-ihese estimates, fol-

lowing a similar course to the one taken by the tﬁeory of upper and

£

lower p-estimatks as presented in. [12]. More specifically, we have a
duality theorem, a renorming theorem and a theorem concerning the

. . . . n n .
existence of isomorphic copies of 21 or % on rows or columns which
oo

are. very similar to the corresponding theorems for Banach lattices.
[N

Regall (c.f. Section 1) that given an unconditional'baéis {ei}:;L

for some Banach space, for a subset E of the integers, we denote by

PE ‘the natural projection from the space onto span[ei]iEE . The
identity will be denoted by I.
) /
(o8] o __.,,A// .
In thé following {ei}i=1 and {fj}j=l will be normalized un-

conditional bases for X and Y respectively and .o will be a tensor

norm on X &Y.

Definivion. Let 1 <p < «. The tensor product X C% Y is éaid to
satiéfy, respectively

i) a lower p-row estimate,

ii) a lower p-column estimate,

iii) a lower p-projection estimate,



if there exists a constant Mr’ Mc or M such that for all

z € X(ZL Y and for all finite partitions of the integers {Ei}?=l

and {Fj}? ‘‘we have, respectively,

(,
!
’

Similarly for 1 < p < = 'we say that the tensgr product X @ Y

v

=17

v

1/p
a((p, ® I)m)p) |
. |

no~s

i) Mra(z) .

w~3

ii) Mca(z)

v

1/p
a((1® Py )(z))p>
1 j

m 1/p
I ol ®PF_)(z))p> :
1 J

1ii) Ma(z)
' 1 j=1

| v

1o~

»

_satisfies, repsectively,

i)' an upper p-row estimate,
ii)' an uﬁ%er p-column estimate,

iii)' an upper p-projection estimate, -
pper p-proj

c

if there exists 4 constant Mr, M or M such . that for all =z ¢ X C% Y

m
} we

nd {F.}. .,
¢ ji=1

s e . n
and all finite partitions of the integers {Ei}i-l
.“‘ *‘_] : ,

% have, respectively,

A Rt
"'.q}‘:’)

I ~13

1

1/p
i)' a(z) < Mr< a((P; @-I)m)p)
i _

1
m 1/p

ii)" a(z) 1MC< o((1® Py )(Z))p>
j=1 )

m- ’ : 1/p
I ol ®Pp )-(z))p> .
! i

ne-—.3

111)" a(z) < M <

i



g |
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In each case thqj;mallest possible constant is called the
estimate constant. . ﬁ

Note that satisfying an upper p-projection estimate is equivalent
to satisfying both an upper. p-row estihate and an upper p-column esti-
mate with M < M°M" and M > max(M®,M"). Similarly igl the case of
the lower p-projection estimate,

We consider a duality property similar to the one for upper and
lower p-estimates satisfied by a Banach space X with unconditionﬁl%

f f

The problem arises that the sequence {e;}?=1 of

L. ©
basis ' {e,}._, . , .
i‘i=1 L s

~ ¥ 3
. . - oo . 3

coordinate functionals associated with {ei}i-l is a basis of X*.

and only if {ei}oc is a shrinking basis [12]. However it is alwil& .

i=1 , th
an unconditional basis of X' = span[e;]i=l:' By restricting X* tg?‘
; ' {},;5) '

X' we ensure that all the natural projections are adjoints

f @h %
2
L \'y Z‘ K

natural projections associated to the unconditional basis g~5f‘.

have the following proposition.

Proposition 1. Let 1 <p <o, X C% Y satisfies an upper, respective-.
‘ : ' y T

ly lower, p-row, column or projection estimate if and only if

X! CL,’Y' satisfies a lower, respectively upper, p*-row, column or

projection estimate (l/p + I/p* = 1). Moreover, the estimate con-

stants are equal.

Proof. Suppose that X C% Y satisfies a lower p-column estimate. For
any u € X @& Y, v e X @L, Y' and for any finite partition of the

m
integers {F.}._ .,
& jii=1



‘ : m .
I<u,v>1 = [ <u, § (1600, )(v)>]
m - .
< L I<a®r @, e W) >]
j=1 j ip

1 J J

: m ] ) .
' < ) ela®rg e ((T@P Y]
. J=1 j \ ]

so by Holder's inequality and the lower p-column estimate,

m - \1/p; m . l/p*
I<u,v >l 5(' boal(r ®pg )(u))P> ( oo ((1 @R, )P >
B j=1 i j=1 j
T ' L/
< M) < L oar(r®@e, yw))P ) .
=L

Therefore, by the definition of the associate norm o',

’

S/ m o L\1/p*
o' (v) iMc< ] a(a®e, )P > :
C T \=1 j

Thus if X CL Y satisfies a lower p-column estimate with estimate

constant 'Mc then X' C%, Y' satisfies an uppér p*-column estimate

with estimate constant less than or equal to MC

: ,
"Now suppose that X CL Y satisfies an upper.p-column estimate.

Let {Fj}?=1 be any finite partition of 'the -integers and for
m
we X'"® , Y fix ., j =1,...,m such that, gP = 1 and
¢ R j=1 i

*

« 1/p
' (1 &P, ) @)F } -
J : )

ne~13

{

o' (I ® PFj)(w))Ej.

1 1

TN =

,.g?’

i



ehet uj € X(gk Y be such that,
{

(1(uj) = {,J Zlnd <uj’(l (?D ij)(ﬂ)))': ('1'C(I (Xj I)I;J)((U)){,J

for j =1,...,m.  Since,

: N
a((1® ") (e (1@ P @) 2 <A )W), @ P )w)>

J

we have,
Q
£ f_aC(I@)PFj)(uj)) ia(u‘j) so,

((1®P )( )) =&, = )

a FJ) uJ - E_] - (I(UJ .
. \

Put u = ? (I C)PF )(u;). Then, \

m l/p
a(ul < M Z = M
~ Thus,

m * 1/p*
(_Z a'((I®PF,)(m))p>
J J

1]
i~3

ot (1 @Pij))aj

j=1

i

gl <u , (I ® PFJ)(w)>

m
, <u, [ (I®P)(w>
F j=1 j



s < a(u)a’ (w)

7

W

< M a' (w)
e -
¥ ) )

.

w h . . « .
Therefore if X(QA Y satisfies an upper p-column gstimate with

’
~

. C . .
estimate constant M then X’(ia, Y' satisfies a lower p*-column
. ( : .

estimate with estimate conj}ant less than or equal to M7, ,

‘ 7 Lo - o :
Since X" C%” Y'F x06 Y, if X'ix, Y' satisfies an upper
. Q a

1

p*-column estimate then /X @% Y satisfies a lower p-column ‘estimate,

with estimate constant less than or equal to that of X'(i&, Y'. To-
gether with the firsthpart of the proof this shows fhat the estimate
constants must be equal. ‘ . u-

The case of X 6& Y satisfying ah upper or lower p-row estimate
is similar, the case of X @% Y satisfying an upper or lower p-

projection estimate follows from the respective p-row and column esti-

mates.

}

Let o be a crossnorm on X & Y., We say that the tensor product

Xl(gé Y, is equivalent to X CL Y if,

1) X1 and Y1 are renormings of X and Y respectively.

L)
2) B 1is a crossnorm on X1 QY1 such that there exist

constants a4 and b with,

aa(z) i.BC(Idl C)Idz)(z)) < ba(z) for every z ¢ X x Y,

[y N
1

where Idl: X - Xl’ Id2 Y +IYI are the formal identities induced by

the renormings.
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: [ /
. Proposition 2, Let o be a tensor hoym. If X @L Y satisfies an upper
v ‘

or lower p-row or column estimate then there exists an equivalent ten-

> s
sor product (in»the sense Qefincd above), Xl(é% Yl’ which sat?sf}cs the
sahe estimate with estimate constant equal to one. .
) >
™ Proof. We show the case of X(gg Y satisfying a lower p-column esti-
mate, the other case; are similar.

If X QL Y satisfies a lower p-column estimate then for every

y « Y and for all finite partitions of the integers, {Fi}?=1’ we have,

\\y"

Ip.,-
1 F.l Y

p }1/p

o~

e Iyl 3_{'
1

where MC is the lower p-column estimate constant of X CL Y.

Let Y1 represent Y renormed with the norm Il-ll, where, for

all y e Y,

|

’ n 1/p ,
Myl = sup {C E HPF pr] : {F.}?_l is a finite partition}.
i1 i L | ’

Then “yHY i}HyHIj_MCHyHY for all y € Y and also, llylle >
n ) l/p ,Q N .

(. . Py ylIt5) for a1l finite partitions of the integers {Fi} and
i= i

all y e Y.

Let 1Id: Y1 + Y be the formal identity induced by the renorming.

Renorm X C% Y with the norm 8, such that for all z ¢ X C% Y,
“? - () |

n 1/p n .
8,(z) = Sup{( Y a((;(j pFi)(z))P> : {Fi}izlA}is a finite parcition},

i=1
)
// ) \\
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. N I ' { ' . ‘ ) .
.Theti a(z) < By (z) < M a(z) for all 2 g(X@a Y thoéugh By is not

~ 'negessamly a crossnorm On X @ Y.

¢

: Now con51der the real valued functlon B on X® Y, defined by,

B(Z) "= Bi((f@ Id) (Z)) for all =z elynX’@ Y‘l

.y
e e o
We clalm that _{B Ais & crossnorm on X ® Y, such that X ®, Y,
' ‘is"equw,alent ,Q( @ y ' R N |
’ -- N . " »\..'.. . . i /
SN e | | o g

‘1) 'Cl;éariy L 1) - B(z) >0 forall 'z e x‘@Ylv, B(z) = 0 <= z = 0.

| ‘,é.‘.‘ SRS TS .vB(az) = lalp(z) for all z e X@‘Yl and
T T - R A‘ ) . 'A B S
‘ ~all scalars a.

“zF‘o'rf"fy‘ and z in X®Y, put,

I £=(I'®I1d) () and ¢ = (I1&I1d)(2).
‘Then by the (t\rig‘mgle ineﬁuality for o and the’ Zp-norm, .

P

N .

1]

B(y +2) B, (& R z)

i

R S | . 1/p
R R G L I
> ) i=

Ia

[ A

swp { [ (2(@ @2 0) +a((X @ P, ) ()P
i=1 i -l

.

| A

: l/p .
s L L a(a@r P}
‘- ) - l’:l n _ 1/
| Cswp {1 (1@ 7 )P
S R v
= B, (£) + By(2) = 8(y) * g(z). Hence (iii).

-~
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1D Lgt xeX, ye Yl' 'Thenj i
Bx @ y) = 8, (X ® 1dy)-
., n | 1/p
= sup{ z ‘aCx @PF (Idy))p}
i=1 i m
n o 1/p )
‘ P P
| =‘-,sup{ xIBIP. (1dy) }
= sup {.Z,f”PF;(IdY)mY}"H"xnx"
. i=] 1 = o

Axlyliyll

 Thﬁs"Bv is a crossnorm on X.OY1 and by\tﬁéﬁdefinitioﬁ:of B

X'C% Y, is équiviléﬁt'tonﬁx CL‘Y, We now show;that'_X.C% Y, satisfies

17

the lower p-column estimate with éﬁtimaf% cohstaht?equal-tvone.
. ‘ . o "t . I .  . ‘ " e 4', 1.
Given' € > 0, for any finite partition of the.intégers {Fi}i=1'
and any z € X.C% Yi, for each 1 =1,...,n there exists a finite
. . - et L : o

n. : S
partition {F, } 1. of F. so that

ik k=1 _
. i ST .
: - st L ST |
3, (1@p Y@ <] ala®p, J@IP+em, -
K , - - ik R

where ¢ = (I'® Id)z.

Then we have,
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-

) |
I s(a®@p, )y@))P
1

i=1

n
I o~13

i=1

- B ' . ) ‘ p
B, (1 ®ppi)(c))‘ |

n

i |
X p + _€_ ’
{kzl aC(,I OApFik)'(C))A n } |

1

I A
iho~13

1
n,
i

I «fa®@p, )@))P
: ik

i

™

+
Ho~133

i=1 k=1

A

et By (o)F

e+ 8(2)F .

Since € > 0 is arbitrary, X.C% Y1 satisfies the upper p-column
estimate with estimdte constant equal to one. : IR

. N i D
Remark. In the definition of the upper and lower estimates for X & Y,
—_— x a
we“quuire @ to be a tensor.norm so that the projections

{PE//@)PF }?=l ?=1 are uniform%yvbounded. We were unable to prove that -
i j :

the crossnorm B in the above proposition. is infact a tensor norm.
However the projéctiqns in&olved ;ill be ﬁniformly bounded because of
thgigquivalence of the tensor products X C& Y and X; @% Yo w?ere o
is a tensor norm. We were also unable to ?rove a similar bropositibn
for a tensor praduce 'X_C% Y satisfying an upper or a lower projection
estimate.

Foi/)l.j_p < =, a Banach lattice which is both p;éonvex and

p-concave is isomorphic to ‘Lp(u) [12]. We have the following propo-

sition.

Ptroposition 3. For 1 < p < =, if X CL‘Y satisfies both an upper and




22

’/

a. lower -p-projection estimate with estimate constants M; and M2

respectively,- then d(X(:E Y,zp) i;Mle'

Proof. Let {uk}- be the unit vector‘basis of gp‘; Let {wk} be the
sequence of elements of X(:& Y defined by w, = ej_C) fj where for

k=m +5s, (s= 1,...,2m#—l; m = 0,1,...)J we put

m+1l for 1 <'s im -

1\-{ ’ |
' s-m for m+1 %_s<_2m+1

s for 1 <s<m

J={
m+1 for m+1 _<_552m+1

Then {w is a basis for X(:L Y [9].

k}
Define A : 2’p > X®a Y by A(uk) =W,
For a finite sequence {Zk}2=1 , by the ubper p-projection

estimate,
& _
(] neo)=m (11 )Pt T s
a [ACY z,u)) <M < |z > =M Z,u .
kzl kk’/)—"1 kzl I kl 1 Kol k 'k zp

-

By the lower p-projection estimate,

1 ] eI, (1 |z'klp>l/p <wya( Lo

k=1 p = k=1

" Therefore if z = {zk}ne zp is a finite sequence, then,

1

(1) ozl iq(ZZw)<M Izl .

Cd

Pty
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.
e
So if lzll, = (T Iz lp)l/p < o then I z,w,  converges
° P k
in X'CL Y and, o(Az) < Mluzﬂz
B p '
If a=Iaw “is in X & Y then it follows from (1) that the
sequence {ak} is Cauchy'in Qp . Thus, .
+
Lol <a). p
M L=

Therefore d(X @ Y,1 ) < IAIIA™ I = M M

Johnson showed in [7] that a Banach space - X with an unconditional

_ basis satisfies a non-trivial upper or lower estimate if and only if X

does'nof contaih uniformly isomorphic copies of 2?, respectively 2:
The same resuit is true for Banach laftices [12,18). We prove a similar
result for tensor producfs of Banach spaces with 1-unconditional bases,
ugz;g thé argument given in [12]. We show that X-@% Y sétisfies non-
trivial upper énd lower roOwW estimates if and only if X C% Y does not.

have uniformly isomorphic copies of 2? , respectively Qz , on blocks

of Tows, with a similar result for upper and lower column- estimates.
>

Theorem 1. Let X and 'Y have l-unconditiohél bases.

i) There does mot exist a p < = SO that X CL Y satisfies
a lower p-row, respectively column estimate if and only if for every
e > 0 and all integers n there exists a z in X Cé Y together

. . . . n
with a finite partition of the integers {Ei}i-f such that

® I)(z)) < (1 +~E) max la. |l
i | N 1<i<n !

°
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respectively,

ai(I C)PEi)(z)) :_(I-Fg) max lail,

1<i<n

ne~-13

max lail < a (
1<i<n i=1

LT

for every choice of scalars {ai}2=l' 4& .

ii) There does not exist a p > 1 so that X @% Y satisfies
“an upper p-row, respectively column, estimate\if and only if for every
e >0 and all integers n there exists a 2z ¢ X(:L Y together with

: . . )
a finite partition of the integers {Ei}lil_1 such that,

A
n~—1s
®

' n n o
(1-¢) ) la,l f_a( Y a.(PE @I)(z))
i=1 i=1 v i -

> n -A‘
(1-¢€) .Z la, | <« <Z a(1®p (z)><_
1=

= i

iHe~13

la.l
i

7«

. ' n
for every choice of scalars f{a.}._ ..
: ~ i“1=1

Proof. By a duélity argument i) ‘implies ii). We show i) for the
case of a lower p- column estlmiﬁé

Assume that X C) Y satisfies no lower p-column estimate for
P < wl' For any f1n1te partition of the 1ntegers {Fi}?=1 and for
ng@aY put zi—(I®P Y(z), i =1,...,n. Then for all

be the smallest constant such that for all such

sequences {z.}
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. SN
inf a(zi) < BN ( Z z.) .

1<i<N i=1 *
S 'Y ‘
Clearly, 1 = By > - > 0. '
et {z. .1, 'M be a double sequence of the above form.
. 71,3 7i=1,]=1
. Then, ' <
N
inf a(z, .) < B o ( Z, z. .) for every j =1,...,M
iy - TN s
and,
N NOM
. inf (1("2 z, .) < B a( z b E z, .>.
OEREEIS 1,37 =M\ g1
. \‘wv”:‘:
' So,
N M
inf q(z; ;) < BB a< ) z..>.
1ien T TN g
. ,
Thus BMN E-BMBN . .

A;sume that By < 1 for some integer k > 1 and put
Y % - fog Bk/ﬁog k.
Let ﬁ be an arbitrary integer and choése j so that
kj <n f_kj+1.
Then,

o Y j Y, Y
Bniskji(sk) =1/k'7 < k'/n'.

2
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Thus there exists a constant k < = and a vy > 0 such that
Bn_ik/nY for every n,
Choose p < » such that p' > 1. For a finite partition of the
integers {F }n }
g iti=1
((I ® PF )(z)} such that
i .

and for z ¢ X(:L Y, let {zk} be a permutation of

u(zl) 3_....3_a(zn). sy Ty,

Then, for every 1 < j <n, :

i /
it

- _ o on- :
az) = inf w(z) <gjal | z) <Kl [ 2707
l<i<) i=1 _ i=1 :

Consequently,

n l/p n o
: . 1
(Zva(Z.)p> < k'al } zj)(,i 1/iPVy /P
=1 =1 7 3=l

This shows that X C% Y satisfies a lower p-column estimate, contrary
to our assumption. Hence BN = 1 for evety N. Then for every e > 0,

for all}positive integers n, there exists a z ¢ X(Zé Y together with

-a finite partition of the integers {Fi}2=l such that,
1 < inf a((I@PF)(Z))ia<Z (I@PF)(2)> <1l+e.
- l<i<n ‘ i Ai=1 1 ‘

Then for any choice of scalars {ai}2= we have,



n o~

max la.l < a (

1<i<n oY=l

n
ai(I®PFi)(Z)> < max |ai|a<12 (1 @)Pﬁ.i)(z)>

1<i<n i=1
< (1+¢) max la,l.
— . i
1§}§p

The converse is trivial.

For 1l <p<2 and q> 2 a Banach space X is of type p or

cotype q if there exists a constant k so that for every finite

sequence {xi}2=1 c X,
1 n n 1[ D 1/p
(A) roe)x. | dr< k ) Ix )
: fo izl S R = T
respectively, #
: 1y n - n 1/q
. : -1 q
(B) / § T (t)x | dt 3 k BN ,
olizn * 0 Mix .1 X >

e

W

where {ri}?;

., 1is the sequence of Rademacher functions,

4

Ti(t) = sign sin 21it, for t e [0,1].

The smallest conétant k satisfying (A) or (B) .is called
the type p constant of X (denoted Tp(X)), respectively the cotype
q constant of X (denoted Cq(X)?. A | |

If for 1 < p < 2 <q a Banach lattice satisfies an upper' P
anﬁ a‘i§§ér q-estiméte then it is of type p and of cotype q [12,3].
Thése are lattices which satisfy a lower 2-estimate without being.bf

cotype 2. We were uhable to prove 5imilar results for tensor products.



llowever a Banach lattice of type p and cotype q satisfies an
upper p-estimate and a lower q-estimate, [12] and we have a similar

proposition for tensor products.

Proposition 4. i) If X(:é Y has type p then X @% Y satisfies an
upper p—projectidn estimate,
ii) If X @L Y has cotype q then X(EL Y satisfies a lower

q-projection estimate,

;>Proof. 1) By the definition of type p, for any finite partition of

the integers {Ei}rin=1 and for any z ¢ X(gg Y we have,

ne-13

m : 1
a( Z (PE Q)I)(z)) < unc (X) f <1<
i=1 5 | i

. ri(t)(PE. () 1)(z)> dt

1 C1

1/p
a(P @I)(z)).p> ,
i=1 ﬁi

where Tp(X C% Y) 1is the type p constant of X C& Y. Thus X(:g Y

f;uné(X)Tp(X(:L Y)<

f o313

satisfies an upper p-row estimate with estimate constant less than or
equal- to unc(X)Tp(X @h Y). By a-similar argument, X(Zg Y satisfies
an upper p-colu&n estimate with estimate constant less than or.equal
to unc(Y)Tp(X(:& Y). Théré%ore X @L Y sgtisfies,an upper p-projection
estimate with estimate constant less than of equal to
unc(X)unc(Y)[Tp(X CL Y)]Z.

»

i1) By the definition of cotype q, for any finite partition of

the integers {Ei}?=1 and for any z ¢ X C% Y, we have,

-
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A

0 i=1 i

-m : ) 1/q 1 m 7
( ) (1C(Y’F S 1“)(1))‘> [ a< ¥ r () (P, I)(z))(: (X Y)
j 1 .1 ~ - 1 o ({ [

P A

m .
unc (X)C (X ®) Y)q<§ (P, & -I)(‘z)> .
q a L E.
i=1 i
Thus X @% Y satisfies a lower g-row estimate with estimate constant
less than or equal to unc(X)Cq(X @L Y). By‘a similar argument to the
one used in 1), we can show that X @A Y satisfies a lower -
projection estimate with estimate constant less than or equal to
' 2
unc(X)unc(Y)[Cq(X(gg Y]“©.
We now give examples of spaces which satisfy either an upper
p-projection estimate or a lower q-projection estimate. We also deter-
mine the projection estimates satisf{¢d by Qp @% Qq and ¢ & %

P q
for 1 <p, q <.

Example. 1) If X satisfies an upper p-estimate with estimate

constant MX and - Y satisfies an upper g-estimate with estimate

constant MY’ then X(:& Y satisfies an upper r-projection estimate

with estimate constant M, where r = min(p,q), M i-MXMY'
<y

2) If X satisfies 'a lower p-estimate with estimate constant
MX and Y satisfies a lower q-estimate with estimate constant MY’

then X C% Y satisfies a lower s-projection estimate with estimate

constant M, where s = max(p,q), M i-MXMY'

Proof. If both X and Y satisfy upper estimates then neither con-

tain n-dimensional subspaces uniformly isomorphic to QT'S [7]. Then
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the unconditional bases of X and Y are shrinking [6], i.e. in
the notation of Proposition 2, X* = X', Y* = Y'. Therefore by
Proposition 2, 1) => 2). We show 1).

Let a e X*, fal,, <1 and let z e X(J Y. For all finite

L, . n m
partitions of t?f integers {Ei}i=1’ {Fj}j=1’
ri '
o
fags
m q 1/q
I (a @ D) ()0 < M, <J_Zl | (a ® ij) (z)||Y>

1/q

w7 (] | (a I, )
<M (aPp & Po ) (2) >
- Y{Jél(izl | Ey 7 By }

n . q 1/q
< I Ipgal r(pg ®rg )(z))> }
1\i i X* i J

=]. i

“+ < MY { g

]

Since X satisfies an upper p-estimate, X* satisfies a lower p*-

. .. . . S |
estimate, so for any finite partition of the integers {Ei}._1 we have,

-1, n px 1/P*
Lz laly, > MO0 | PEiallx*} :

So by Holder's inequality,

<

Ie~-13

m a/pyl/q .
I (a x) I)(Z)IIY <_MYMX{ ) ( A((PE @PF )(Z))P> }
' j=l1 i J

1

i
Thus,

n 1/r

m
« r .
A (2) 5M{i§1 J_ZIAC(PEi@PFj)(z)) }

where 1 = min(p,q), M f-MXMy' .
QO

Corollary. 1) Rp C& lq satisfies an upper r-projection estimate with



r = min(p,q), ¢stimate constant equal to onec.

2) Rp C% iq satisfies a lower s-projection estimate with

w
I

= max(p,q), estimate constant equal to one.

Remark: For any tensor norm «a, Qp(:g ﬁq does not satisfy an upper
r-projection estimate or a iower s-projectiﬁn estimate where

r > min(ggq) and % < max(p,q). For if it were to satisfy an upper
r-projeé;ion estimate with r > min(p,q) then, by the definition of a
tensor norm, qu and Qq would both hate to satisfy upper r-estimates.

This is impossible since for any x e lp and any finite partition of

HxHQ = ( % HPE X”E )l/p . Similarly for the
p i=1 i p

lower s-projection estimate.

. n
the integers {Ei}i=1’



SECTION THREE , Q’

N CONVERGENCE IN TENSOR PRODUCTS. THE KADEC-KLEE PROPERTY

ot
A Banach space (X,l-l) is said to have the Kadec-Klee proper-
ty (also known as the Radon-Riesz property or property (H)) if:

For any sequence {xn} in X with x in X so that x - X

weakly and Han -+ lIxll, then Hxn-xﬂ + 0.

All locally uniformly convex spaces have this property [13].

&

In' this section we give a condition for a tensor product X(ZL Y
to satisfy the Kadec-Klee property. The method we use is based on
ideas from [19] and [1].

} [
Theorem. L4t X(:g Y satisfy a lower p-projection estimate with esti-

mate constant equal to one, for some p, 1 <p <f:‘ Then X(EL Y has

the Kadec-Klee property. ' y ’
For any Banach space with an unconditional basis let Pn be the

;o
projection of the space onto the subspace spanned by the first n
gasic vectors. Put. Qn =1- Pn. f
Lemma 1. Let aj be a tensor norh on X ® Y. If {zn} < X(:L Y ang’
z e X Q& Y so that 2,2 weakly, then there exists an increasing
sequence of finite rank projections {Sk}" with the identity as the

strong limit and;‘

a((sk x Sk)(zk)fz) +Q as k > o .

-



N

/ t -
Proof. Fiﬁ_‘{zn} in X@ Y and.‘z %n X(:L Y so that z_ >z o
“wéakly: Let- j be a positive integer. ‘There exist {xi}4 in X and

'{yi}‘ in 'Y such that"z = I xi(:)yi; choose Nj'~so that for
\ i~ o

2 . igi:giwj vy e have,
a(z-2") ié.-(j#l)v/@ + an.({ai}) unc({fjj)) :
Then; ‘} . f .
'aC(P ®P_ )(z) —z) | | o | o “~N "

<aC(P ®P_ )(z-z ))wcz-z )+aC(P ®P)(z") -z )

<HP @Plh(z—z)+a(z—z)+acw Cp)(z)-z')

» A N. - | ’ oy ' :
iy d . N |
2‘(Jf1) +'21 a((P &P ) (x; ®y;) - ®y,) - T
. i= S ' '

N !.

- ‘2‘(3*1) + z a((qﬂcp ) (x; ®y ) + (P @Qn) (3 Cy )+ (QnCQn)(x CYD

< 3N. max {a((Qn@P )(x @y )) a((P @Qn) (x Gy ))s aC(QnCQﬂ) (%, Cy ))}

+1<i<N.
=]
-(j+l)
AN
= 3Ny 1rzi><<NJ { l!‘an I HP Y HY, HP x| l!Qny IIY, I x; il HQnY H
LG r
l,Since each permv(éXcept | —(j+1)) tehdstto'zefo as 'n"tends to |

infinity,, there exists ' ny 3y such that,
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Py

e

~In particular,

§

5

(x*@y*)[(?nl(j) Pnlcj))“n'z)]:Cpﬁ-l(jg(X*)®Pﬁlcj)(¥*)3('zn‘%3 >0

for all x* in X*, y* in’ Y*.

Write,

n () n ()

(pnl(j)®li“1(j))(zn,) : 121 kzl Z“(i_’k)ei®.fk’
; mG) () .

(Pﬁl(j) ()‘pnl(j))(Z)'zz izl kzl 208 §B e

&
, \ » .
By considering the functionals e;(] fﬁ i, k = 1,...,n1(j), the

weak:convergence of Z, to z gives Zn(i’k)'+ z(i,k) for‘each‘
i, k = 1,..,,n1(j). So-there exists nz(j) i_nl(j) such that for

each i, k = L,...,n,(j), we have

|2 (1,60 - 2(3,k) | < (ol ()2*h 7 for n > n,(j),

where M = max ale; C)fk). Additionally we may assume that
, 1<i,k<n, (3) : ' R
for $j = 1,2,..., we have nz(j) > nz(j4 Then we have,

L
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‘. n, () -
a((pnl(j) @Pnl(j))(z -2)) < ) a((znl(i,k) -z(i,k))ei®§k)

\“. T i,k=1

(2) |
<1/22*' for n>n,0).
Put _Sk = P1 for 1 <k < nz(ljtland
S = Py For M) <k <n,(G+) G =12,

Then by (1) and (2) for j =1,2,... and k Z_“Z(j) we have,
a((8) @ 5z, - z) < 2/2’J L
This.concluaes the proof. :
: ‘ , 0

Proof of Theorem. Let {z e X & C> Y ‘and let z € X @% Y be such that

z

a(zn) + a(z) and z >z weakly By fhe lemma there.exists an

increasing sequence of finite rank projecfions {Sk};=1’ such that

(3) \ a((sk ®5)(z)-2) 0 as k=,

e
e : ‘ ' ‘
~ Put Tk =1 - Sk for k =1,2,.... By the lower p-projection esti-
mate for X C% Y we have, for every Jk =1,2,...,

\\.}
a(zk) > a((S O8] (zk)) * aC(S ®T )(zk)) * a((T ©Ss, ) (z ))
* a((T @Tk)(zk))

> o((S Osk)(zk)) + {a((8, @T ) (z)) + aC(T (&S (z))

a1, (z)) 1 /35"

i
& e, .
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So, , . -

Sp'l_{a(zk)? - aC(Sk@Sk)(zk))p}”p > aC(Sk@)Tk)(zk)) + a((Tk®sk)(zk))

+ (1, ®T) (2,)) -
Then,

'og‘(zk'- 2) < a((s,®5))(z) -2) + «((5, ©T)) _(Zk)3 + o((1, @S (z,))
+ a((r, ®T1)) ()

< a((5, @8 () - 2) + 3 el - al(5,©5)) ),

t

for every k =1,2,.... By (33,

a((sk ® sk),(,zk) -z) > o  as k + o7

We also have,

a((Sk(:)Sk)(zk)]‘+ a(z) as [F > ®,

By our assumptions,'a(zk)‘+ d(z), SO

{a(zk)P - a((s, @ Sk)(zk?gp}l/p 0. '

'Y%Qf

Hence, a(z, - z) >0 as k»«. \ ~ '

k D
n ' n=1

oo w1
Corollary. For 1 <p, q <<=, {z_} S lp C%'Rq apd z € Qp C% 2q3

with,

7
7



i) v(iﬁ) - v(ij‘

ii) z > z weakly,

we have . v(zn-z) -~ 0 as n > >,

In'[l] Arazy showed that Sl = 22 C% 25 satisfies the Kadec-

Klee property. This corollary generalizes that result.

37



) SECTION FOUR {

THE g2-CONSTANT OF X C% 2,

For this- section the space of scalars will be the real numbers.

In their péper{9], Kwapign and Pelczynski showed that for
1<p,q<= and 1/p +1/q > 1, none of the spaces zp(ia‘zq,
Rp* C%,Qq* is isomorphic to a subspace of a-Banach space ‘with an
unconditional basis. They also showed-thatvi {en} is a complete
orthonormal system in R ana a 1is a tensor norm on QZ‘C)gZ then
{e, @)ei} is an upconditional.basis of 12, C% 2, if and only if .a
is equivalent to the Hilbert-Schmidt norm.

A notion naturally related to the existence of an unconditional

basis is that of local unconditional structure.

: Definitién [5,2]. Wg say that a Banach space X has local unconditional
structure if there is a éonstant k such that for each fiwite dimen-
sional subspace E ¢ X the%e is a finite dimensional Banach space F
andIOperators S € L(E,E), T ¢ L(F,X) with TSIE the identity on E
such that HTU“SH unc(Fj < k. We put lust(X) = inf k.

We noﬁﬁintroduce‘two Banach spaces of operators, the operators
that factor through LpA spaces and the p~absolute1y summing operafors;'
[8,14]. These play'anyzmportant r6le in the study of local unconditiop—’

"al structure. |

Let 1 <p <. For an opefator u from X to Y, we say that

u is Lp-factorable (u e,Tp(X,Y)) ifgand only if there is a measure H

38
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and operators v--from X to Lp(z) ‘and w from Lp(u) to Y**
¢ :
such that iu = wv where i 1is the canonical embedding of Y 1into

Y**, Then we put

Yp(u) = inf{lvllwll : w is such a factorization}.

It may be shown that the Lp—factorable operators from X to Y to-
gether with the norm Yp form a Banach space [8].

Let 1 < p < «. For an operator u from X to Y, we say
that u 1is p-absolutely swmming (u € ﬁp(X,Y)) if and only if there
exists a constant k such that for any finite sequence {xi}?;l in
X~ we have, /

n ’ ' n ‘
. ) “u(x.)np)l/p< k sup ( 2 I <x.,x*> ”))1/p.
. i’y — . i’ »
i=1 X*ex* i=l
hx*l<1
The p-absolutely summing norm of u, ﬂp(u) is the infimum of-all such
k, and it -is easily shown ﬁhét LHP(X,Y),WP) is a Banach space.

Both Hp and Yp are ideal norms. The norms’ ™ and Y

are in trace duality, for an operator u from X to Y,

(1) nl(ﬁ) = sﬁp{!tr(vu)[ DV :YV+ X, ym(v)%_l} :

In [S] Gordon and Lewis proved that for an operator u from. X
FO Ly

(2) Yl(u) E_lust(X)ﬂl(u).
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They then used (2) tb show that for 1 < p, q < = neither Qp C% &q

nor % C& £ , nor their duals, biduals etc. have local unconditional
p q :

structure. Lewis also proved in [10] that 22 C% 12 has local uncon-

ditional structure only .if o is equivalent- to the Hilbert-Schmidt norm.

It has been shown [5,16] that if max(p,r,2) < s oT max (p*,s,2) < T

then Hp(lr,ls) does not have local unconditional structure. However
for 1 <p<s<2<r < p*, Hp(zr,ls) does have local unconditional

structure.
Formula (2) leads to the following definitions of the g-constant
of a Banach space: ' S

The gl-constant of a Banach space X 1is defined as,

ge(X) = sup{yl(u)r u € ﬂl(X,l ) nl(u) i,i}.

By (2), g&(X) j_luﬁt(x). The gf-constant has been a most useful means

of proving that gcertain spaces do not have local unconditional structure.
| In [4] Gordon showed that for Banach spaces X and Y, ’

gz(xk C& Yk) + o for all increasing sequences {in:=1 and {Yk}:;l

of finite dimensional subspaces of X and Y respectively, if and only

if X and Y do not contain subspaces uniformly isomorphic to ,2:‘5

for n=1,2,....: Then gQ(X(:A Ye) is‘finife (for infinite dimensionall

Banach spaces‘ X and Y) if and only if at least oﬁe of X and Y -

contains subspaces uniformly isomorphic to 22'5.‘ It follows that

gz(X C% Y), i; finite if and only if at 1east one of X agd Y‘ contains

subspaces uniformly isomorphic to Q?'s. We give an elemeﬁtary proof

that if X is a Banach space with an unconditional basis such that

gr (X @% 22) is finite, then X is isomorphic to 2 -



Theorem. If X 1is a Banach space with an unconditional basis such

-

that .go(X C% 22) is finite then X is isomorphic to Ql and

]3, (where k is

d(x @, 1,,1) < 16kg g2 (X&), Qé)]z[unc(X): .

“Grothendieck's constant).
We use four lemmas.

¢

Let X be an infinite dimensional Banach space with the un-

conditional basis {ei}?zl. Let {¢i}?:r be the standard unit vector
basis of 2,. An operator T in L(X,%,) 1s called diagonal if for

I . . . whe l, - I .
. F e ¢ ’ Tre

=1 is some sequence of scalars.

Our first lemma is a version of Theorem 4.2 in [11], where it
was shown that if there exists a k so that nl(T) < kiITl  for all

operators T in L(X,Y) then X is isomorphic to 21 and Y 1is

‘isomorphic to &, .
Lemma 1. Let X be an infinite dimensional Banach space with the un-

conditional basis {e ¥

n .
iYie1- Put X = spaq}ei]. . If there exists

r i=1

a constant k so that for every n and every diagonal operator T in

L(Xn,zn) ‘'we have,

(3) | (M) < KITH,

then X is isomorphic to 2, and d(X,2,) f_kz(unc{ei})s.

proof. Let n be any integer and let {u. 3" be a sequence of

i‘i=1
n
positive numbers such that 'Zl u§'= 1. Define T: Xn -+ 2; by
n : n
5 Tx = _E “iai¢i for x = ‘X a e in X.
i=1 i=1



(S o]

Let p be the unconditional basis constant of the basis {ei}i-l'

Then, for i =1,2,...,

1
ai‘ = 72““

e S .

i"“ 1oagely

n ' ' n n
1
Z a.e. + Z (_a_])e_] + alelnx < 2 ["lzl aieinx+p “121 aieiux]

i=1
ilence,
r] R ’ . . ’
. . L -
n n ’
- 2% 2.%
ITxly = C L lagug " < 1 owpT osup lagl < plxly,
1=1 i=1 l<i<n

for all x in X_ .

Consequently ITIl < p and by (3) ﬂl(T) < pk .

Wms

. b n
Since | I «e.a.e

L st i“X-i pHxHX for every x =

a.e. ¢ X and
i1

i=1

2

for every choice of e, = +1, i = 1,...,n, we get by the definition of

nl(T) that,

‘N : n .
U la.lu, =-) lTa.e.l, <7 (T) sup ( Y ola.ll<e, ,x*>1).
. 171 (=1 17172 -1 xe X*  i=1 1 1
x*ll<1

n

7. (T) sup ( z g.a.<e.,x*>),

L rexr, 421 20
llx*l<1

where eiai<ei,x*> = Iai<ei,x*>|, i=1,...,n. Thus,

| 4
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n

z la, 1y, <« 7 (T) sup < 2 g.a.e. ,X*>

o bl x*ex* i=1 - 't
x*<1

. .
- nl(T)ltizl eiaieiux < n (Molxly .

&

n n 2 n
_ Now choose {u.}. such that ¥ u® =1 and £t la lu, =
’ i“i=1 . 1 s
, 1=1 1=1
n 2 %
(L la,!™)*. Then,
i=1

. n
Define the diagonal operator S: Xn -+ 2; by Sx = Zl a.oh.

. n
for x = Lt a.e. € X . Then,
i=1 11 n

N

n
ﬁSx"2 =( ) la.|2)%

2%l
. 1 =P kilx X
i=1

2 )
and hence nl(S) i_pzk". Consequently, by the definition of ﬂl(S),

n
T (S) . sup || e.a.e.H
1% €i=tl izl i1 71X

| A

©~1
o
.
I
n
o

J!Saieiuz

“) ' .

| A

™ S ixl
wl(S)p xly <o kKol

Therefore by the triangle inequaliiy for the norm of X and by (@),

n : :
T a.e. € X_ we have,
i=1 11 n

for each n and for every x

3,2
lail < p’k ”x“x.

he~13

HxHX :

i=1
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3

This proves that X is isomorphic to 21 and d(X,Ql) < pskz.

0
Lemma 2. Let {ei}Tzl’ {fj}?:1 be unconditional bases for X and
Y respectiVely. Then for any ideal norm a ,
. : o (Z 3; % C)fi)_:;ca (.z' 35 5 @)fj)

i i,j
/

for any sequence of scalars {ai,j}i,j=l’ where ¢ = unc({ei})unc({fj}).

Proof. Let X, and Y, represent X and Y renormed so that {ei}

and {fj} are l-unconditional. Let Id, :X > X; and Id,:Y > Y,
be the formal identities induced by these renormings. Since o 1is an

ideal norm, for any £ € Xl @% Yl’ we have
‘ -1 -1
a(z) < a(g) < ca(z) where z = (Id;" & 1d,")(E)

and ¢ 1is the product of the unconditional jconstants of the bases N
{ei} and {fj} in X and Y respectively. Thus we need only show

the lemma for 1l-unconditional bases {ei} and {fj}.

~ oo o
For any sequence of scalars {a, .}. ._,, let {e }.., Dbe the
i,j'i,)=1 '171=1
sequence such that € = -1 and e, = 1 for 1 = 2,5,.... Then,

“@ﬁ,fﬂ3f1+ Y aijeﬁjfj)=a(;. aﬂjeﬁjfj+izjC'Eﬂ}jeﬁjfﬂ/z

i,j>2 i3 v
1 .
1 e ®F. Y e.c.a. e ®F.
=3 {a(izj ai,Jel® 3) +d(izj 518331,1?1@1:3)}
= . .e.f.
Cl(i%j 1,5

In a similar way, for ahy k we have
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k-1
<a( ) a, .e f + Yy ooa, e ®f.).
- o BT Sy i,j 177

Thus we get by induction, -

a(f 2y 30, 0F) <ol
i i,j

a. .e, f)
1,171
as required.

bl

For 1 <p, q <« and any n we denote by idp q formal

identities from Zg to 22. We often write id for id2

foud

o e

y &

Lemma 3. Let X be an n-dimensional Banach space, with a 1~

unconditional basjis {ei}?_l . Let u:X =~ 22 be a diagonal operator,
f =

then,
™, () < sup|tr(uv id, I

' . . n
where the supremum is. taken over all diagonal operators v :% -~ X

with lvl < k. (k is Grothendieck's constant).

GG

n n . n
Proof. Let {¢i}i=l and {wi}iil be the unit vector bases for £,
and 2? respectively. It follows from (1) that, for an operator

u from X to Qg , we have by trace duality,

nl(u) = sup{[tr(uw)| : w :2; - X, y (W) < 1}.
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Now since u is diagonal and since y_ 1is an ideal norm, by
Lemma 2 for every operator w from Qg to X there is a diagonal

operator . w' from 22 to X such that |tr(uw)| = |tr(uw')| and

Yo (W) > v (w'). Therefore in the formula fér ﬂl(u) we need only

consider diagonal operators W from Q; to X. Now y_(w) = yl(w*),

so factor w* _as,
M §

; w* o X* > Ll(u) - 22
s © T
for some measure u . By Grothendieck's theorem [11], nl(T) i_kGHTH,

thus we have

nl(w*) = ﬁl(TS) f_HSHﬁl(Tlsi_kGHSHNTH.

Taking the infimum over all factorizations w* = TS it follows that,

F : I n
For y = i1 = = wiyi¢1 in 22.
Factor w* as,
w*:X*-*Qn'————rSLn
st oid 2
1,2
n . ..n
where A(y) = izl wiyiwi in 21
We want to show that lall < k.y (w). Now for y = 1 y.e¥ -
_ — G'= j=1 i1,

in X* we have
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. . ’ n
(5) Iyll,, = &up’ | Y Ng.y.e?“
_ X | Ei=*1 PR A X*

n .
sup  sup lz <giyie*.1*,x>|

¢ , . €57 1 xeX i=1 ' ’ .
o \\i:> Ixli<l R o
‘ S Q s ) . ‘

= sup ] |< yie;,x >|.

- xeX i=1 ‘
txli<l
Set Xy ='yié§ for 1 = 1,..{ln{ By the definition of the 1 -summing
"norm and (5) we have
.n 1 - o . .

layl = 7 twyyl = T e o

% i=1] S di=r . ~ ‘

1 ;

<m 1 (W*) I yH X *

< Ker, (0 Iyly,
g

- and the estimate for lal follows.
S e . ) n o
SQ for every dlagonal Qperator w from 22 ‘to X~ with ,\&b§¥
Yw(w)'i.l there exists a diagohal'operatpr v = a* from 1: to X a

with vl i-kG such that tr(uw) = tr(uv id2 oo) for any diagondl'.

~operator u from X to 22 . Then,

"ﬂl(u) < supltr(uv 1d2;?)l

where the supremum is taken over all diagonal operators V from 2:

to X with Ivil < kG.' , » N SN
= | ‘ | ¥
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Our next lemma is Theorem 2.2 from [5]. T
| . | R
Lemma 4. The inclusion map of 2?(2& 2? into HS(Q?) has nllnorm

" into HS(lg) has

at most 2. The inclusion map of. lg'C% %,

ﬁl-norm at most 2v/n .
In [5] Theorem 2.2 the Khintchine' constant Y3 is used (rathe
than v2Z) . We use the best Khintchine constant, Y2 , due to

Szarek [20].

33

>

Proof of the Theorem. Since X -has an unconditionél basis, X 1is

isomorphic to a space X, with a l-unconditional basis and d(X,X )_i
unc(X);‘ In this case we have g!L(X.1 @% 22) inpnc(x)gl(x @b‘lz) and

=

$0 we prove the theorem for unc(X) = 1.
. S oroan w .
For any integer n let X = span[ei]i=l , where {ei}i=l is
a®]-unconditional basis. Then the subspace Xn(g% 22‘ of X(:% %,

”

is complémented_by a norm one projection, .and therefore gIL(Xn C% zg).i

gL(X & %,).
Let w = uv id2 - Where u is a diagonal operétor from Xn
to 2; and v and id2 ., are as in Lemma 3, so that
’ A :

.

N~ . (u) < sup Vltr(uv id2 -

1 - )
HvﬂjﬁG |
Then we have,
) n vo'n ;t
' Wil —— % > X > 2.
: 2. o n 2
1d2 w vV u

:Considér the followipg factorization of w® id,.



H
e

’ &

HS (25) 0 &) 2L X ®, L — DR, 2 —— HS (27)
‘ id, ®id, v@id_ , ~u®id idx@id

3 )w

[N

* where HS(QS) is the space of Hilbert-Schmidt operators on 2

Now it can be shown that ' .
(6) . Ctr(w® id) = tr(w)tr(id) = n tr(w).

Put T= (v@id ,)(id, & idé’ )5 S = (id® id) (u ® id).

'Then-xy G id = ST. By the trace duality of the T aﬁd Y, norms, -

by (6) and by ym(T) = Yl(T*) -we héve,
n tr(w) < v (T)n, (S)

< vy (T¥)lullidim, (id ® id).

+

From Lemma 4, w,(id ®.id) < 2/h, so,

R tr(w) <y (T9) 2 Iul .

Factor T* as,

O

o ® 2 S HS(D) .
v*@id 1 1 j4. . ®id 2
2.1 1,291 2

%8

n - - - o > . '
Now Yl(T*) :,gz(x;(g& lz)ﬂl(T*) f_gl(X(S% 22)HV*HHl%z;lﬂﬂl(édl’ZC)ldl’zl

Erom Lemma 4, “1(ld1,2 C)ldl’zzgf‘ 2, so

N

v (T < 248 IVige (X @ £,).



{

/n tr(w).§_4/ﬁ‘ﬂuﬂg2(x C% szﬂvﬂ , So,

™ (w) chllullgl(x ®\) 22) .

| A

, Therefore by Lemma 1, X is isomorphic to 21 -and

v ‘ | d(x,2.) f_lﬁ[kG gh(X ®\) 52,2)]2-\~

50



SECTION FIVE

2

PROBLEMS

¢
" . i

In.SeCtion Two we mentioned the connection between type and
upper estimates and between cotype and léwé%iéstimates for Banach.
lattices. A Banach 1at£ice of type vp or cotype q satisfies an
upper p, respectively lower q—estimafe, and we proved a similar re-
sult for tensor products. Howevértfor Banach lattices there,areksome

results in the opposite direction, are there similar results for

tensor products? To be specific:

Problem 1. Let 1 < p < 2 < q and suppose that the tensor prodﬁét
X(:L Y satisfies an upper p-projection estiméte and a lower Q-

projection estimate. Then is X(:L Y of type p and cotype q°?

Let T be a compact operator acting in %5 and let
s(T) = (sj(T)} be the sequence of eigenvalues of |&| = (T*T)%.

Suppose that E 1is a symmetric sequence space with norm 1., then

the corresponding unitary ideal S¢ is defined by

E
»‘{ T

Sg = {T ‘compact”: s(T) e E}_lb

&

‘and for T in S HTHE = |s(T)I.. Now every com@%%t operator ac;ing

E 3
in 2 U#

2 has a tensor representation; SO:

Problem 2. Does the space SE satisfy an upper p Or & lower g-

projection estimate if and only if the correspoﬁdihg symmetric se-

. quence space E satisfies an upper p—estimaie, respectively a lower

q-estimaté? (Assuming 1 < p € 2, 2 £ g < ®) .
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[Since SE contains a subspace isomorphic to E one direction

is trivial.] = We conjecture that problem 2 is true.

Our last problem is a generalization of the theorem given in

Section Four. -

T

Problem 3. Let X ‘and .Y be Banach spacés with unconditional bases
and let gR(X(:% Y) be finite; Then is at least one of X and Y

isomorphic to 21 ?.
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