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Abstract

Recent advancements in large language models and program synthesis have enabled

the development of powerful programming assistance tools. These tools are designed

to help the programmer while writing a program in an online setting. In this thesis

we introduce a programming assistant that can optimize a compilable version of a

program with respect to a comparable objective.

We propose a local search approach for improving programs written by humans

using bottom-up search algorithms. We present Program Optimization with Locally

Improving Search (POLIS), which exploits the structure of a program, defined by its

lines, in order to split the optimization into small program synthesis tasks that can be

solved by the existing synthesis algorithms. POLIS iterates over lines of the program,

trying to improve a single line at a time, while keeping the other lines fixed. It

continues to iterate until it is unable to improve the objective value of the program

or runs out of time.

Our hypothesis is that humans are capable of thinking abstractly and at a high

level but they sometimes miss some details of their program. Computer agents, on

the other hand, can figure out the details of a program efficiently, whether it is to

optimize numerical values in a program or synthesize programs for programming

tasks that can be solved with short programs. We leverage this ability of program

synthesis algorithms and use them to optimize each line of a program iteratively.

Thus, we optimize the human-written program by optimizing each line of it.

We evaluated POLIS in a 27-person user study where the participants wrote pro-

grams for playing two single-agent games: Lunar Lander and Highway. In this study,
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participants were rewarded based on their programs’ score. Results demonstrate that

while human programmers may be capable of writing effective high-level program

structures, they often fail to optimize important details of the programs. POLIS sub-

stantially improved the quality of all programs evaluated while preserving the high-

level structure the programmers designed. These results show that this approach

could be used as a helpful programming assistant for problems with measurable and

comparable objectives.
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Chapter 1

Introduction

Powerful artificial intelligence assistants for computer programmers have been devel-

oped thanks to recent advancements in large language models and program synthesis.

These tools were designed to help both professional programmers and beginners in

an online setting during programming tasks. For example, if a programmer is un-

sure how to approach a specific problem, a programming assistant like Copilot [1]

can provide an initial solution to the programmer. Copilot can also speed up cod-

ing by auto-completing what programmers write, helping both beginner and expert

programmers [2] complete the programming tasks.

While programmers usually communicate with these tools during programming, in

this thesis, we propose a programming assistant that interacts with the programmer

only after a compilable version of the program is available. Furthermore, this assistant

attempts to modify a compilable program to optimize its behavior with respect to a

measurable and comparable objective function.

As an intelligent programming assistant, we propose Program Optimization with

Locally Improving Search (POLIS) for improving existing programs. POLIS considers

each line of the program as an independent program synthesis task where the existing

synthesizers are able to generate high-quality short programs. POLIS uses a novel local

search algorithm on programs that iterates over lines of the program and performs a

bottom-up search [3, 4] on each line’s synthesis task.
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In the program-line space, POLIS can be considered a hill-climbing algorithm be-

cause it always chooses the best solution found by the bottom-up search for each line.

Any measurable objective function that can be computed efficiently can be optimized

using POLIS since the function needs to be evaluated for candidate programs during

the synthesis.

To perform the synthesis tasks, we consider both the simple bottom-up search

algorithm and a variation of the bottom-up search algorithm that uses a simple prob-

abilistic context-free grammar to guide the search. Both algorithms do not need

pre-training and have a few parameters to learn. However, other assistants, such as

Copilot, rely on huge trained models with billions of parameters [5].

In this setting, we assume that programmers can implement compilable programs

to solve a defined problem, knowing that their programs may not be optimal solutions

nor optimal implementations. While Copilot and other existing assistant tools can

help both novice and expert programmers in a general setting, POLIS may not be

able to help beginner programmers who can not write compilable and syntax-free

programs.

In addition to the program written by programmers, we assume there is a defined,

measurable and comparable objective function for the optimization task, which might

not be available in some domains. Such a function for complex problems can be very

hard for humans to define or for computers to learn automatically. For example, in the

reinforcement learning (RL) [6] community, inverse reinforcement learning (IRL) [7]

approaches were proposed to infer reward functions automatically, usually by observ-

ing an expert’s behavior. However, IRL is still a hard and challenging problem [8].

For example, according to Finn et al.[9], different reward functions derived from an

expert’s demonstration of the task may show the same behavior, but only one is the

right reward function.

Though the assistant presented in this thesis, POLIS, is less general compared to

the other approaches, it can be applied to problems in which humans know high-level
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algorithmic solutions but are unsure about implementation details. While simple

program synthesis algorithms can efficiently synthesize short programs to optimize

an objective function in a reasonable short time, our system leverages this (often

overlooked) feature of synthesizers to optimize the low-level details of human-written

solutions.

To evaluate POLIS, we asked 27 programmers to write programs for playing two

single-agent games, Lunar Lander and Highway, commonly used to evaluate rein-

forcement learning algorithms. POLIS was able to improve the score of all programs

written by the participants, often by a large margin, while the simple synthesizer

used in POLIS was unable to generate good programs from scratch for playing these

games.

The modified programs are mostly similar to the original ones. This observation

indicates that while humans are great at designing high-level program structures, they

often fail to optimize important implementation details. In those cases, POLIS can be

a programmer assistant to handle the suboptimality caused by human programmers.

The two main contributions of this thesis are as follows:

• Defining a novel problem setting for intelligent programming assistants where

the assistant attempts to improve existing programs with respect to an objective

function.

• Introducing POLIS, a system that employs a novel local search algorithm that

leverages the ability of simple synthesizers to generate effective short programs.

We begin with Chapter 2, which discusses related work briefly. In Chapter 3, we

provide background information on the bottom-up program synthesis variations we

employ. The focus of Chapter 4 is on the proposed framework and the methodologies

used. This is followed by Chapter 5, which delves into the application of POLIS

in reinforcement learning, the user study, and the associated experimental results.

Finally, we conclude the thesis in Chapter 6 and discuss future work.
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Chapter 2

Related Work

In this chapter, we discuss related work to POLIS and the differences between POLIS

and related work.

2.1 Program Synthesis

Program synthesis is a long-standing problem. The goal of program synthesis is to

synthesize a program that satisfies a specification [10–13]. This problem has received

much attention recently [3, 4, 14–21].

Syntax-guided synthesis (SYGUS) [22] is a general framework for finding a pro-

gram that satisfies both semantic and syntactic specifications. The SYGUS has many

plausible advantages compared to the general program synthesis framework [22]. For

example, in the SYGUS framework, the size of the search space is reduced by the

syntactic specification that comes in the form of context-free grammar (i.e., it limits

the number of potential programs). Therefore, the synthesizer aims to find a pro-

gram in the limited space consistent with the input-output examples (i.e., semantic

specification) [20, 22].

Genetic programming [23] is a method for automatically generating a solution to

a problem given a high-level description of the problem. In genetic programming,

a population of computer programs is improved iteratively in a way comparable to

natural selection in order to find an optimal solution to a problem.
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POLIS is a framework that modifies an existing program by breaking it to small

independent program synthesis problems and attempts to solve them while optimizing

for an objective function.

2.2 Program Enhancement

Program refactoring and automated program repair are the two approaches that aim

to enhance software systems. These approaches result in increasing the readability

and maintainability of software systems and correcting the programmer’s mistakes

automatically.

The process of modifying the internal structure of a program in order to improve

its quality without affecting its external behavior is referred to as refactoring [24,

25]. By contrast, POLIS optimizes a program while possibly changing its external

behavior.

Automated program repair (APR) refers to the process of fault localization in

software and the development of patches using search-based software engineering and

logic rules [26–28]. According to Goues et al.[27], repair patch approaches can be

divided into two main approaches based on the patch type and the search strategy:

heuristic-based repair and semantic-based repair [26].

The heuristic-based APR creates a large population of repair candidates for a given

patch and chooses the one that passes all tests [26]. For example, Le Goues et al.[29]

use genetic programming to develop bug-fixing patches without affecting software

functionality.

The semantic-based technique (also known as the constraint-based approach) first

extracts repair constraints and then uses program synthesis to generate a patch that

satisfies those constraints [28].

Machine learning (ML) can sometimes improve the fault localization process and

patch development [27]. Leveraging ML in APR has led to the new approach named

learning-based repair that uses ML to build new patches based on previously created
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patches and problem fixes, assuming that similar bugs will require similar solutions

according to their features [26]. For example, Tufano et al.[30] train a NN model with

a large dataset of bug fixes extracted from GitHub to predict the fixed version of a

program.

Similar to APR methods, POLIS can also fix unintended programmer mistakes

using program synthesis algorithms. However, unlike APR approaches, POLIS can

change parts of the program that are not necessarily bugs but that contribute to

suboptimal execution performance. To modify the program, POLIS makes use of

inductive programme synthesis.

2.3 Intelligent Programming Assistant

Intelligent assistance for programmers is a widely explored area. For example, Fer-

dowsifard et al.[31] introduced a programming paradigm that allows the programmer

to use a system for synthesizing instructions by defining input-output examples in the

context of live programming. Blue-Pencil is another kind of assistant tool that does

not require task specifications (i.e., input-output examples); thus, it identifies repeti-

tive tasks that arise in programming and suggests transformations for such tasks [32].

Given a code transformation, reCode identifies other places of the code that would

require similar changes [33]. For the code completion, Raychev et al.[34] introduced

a statistical model and Guo et al.[35] introduced a model that leaves “holes” where

the model is uncertain about the possible suggestions.

POLIS differs from these works in how it assists the programmer. Instead of real-

time interactions during the program development, we consider the scenario where the

programmer provides a complete and compilable version of their program. This allows

us to leverage human-defined code structure and improve it with simple synthesizers

that can write short and effective programs.

Algorithmic debugging techniques were first introduced by Shapiro[36]. By com-

paring the anticipated program behaviour with actual computation, this type of de-
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bugger enables the user to concentrate on the program semantics [36][37]. It starts

by constructing a tree that reflects the computation’s logic, then interacts with an

external debugger which is usually the programmer and check the validity of the re-

sult of some nodes to find the buggy node [36][37]. When the debugger reports the

fragment of code associated with the buggy node to the programmer, the debugging

task ends [36][37].

POLIS tries to improve a program to avoid unintended behaviour by providing

suggestions for different parts of the program, but it does not need external oracle

to validate the computational result of each part of the program as it has access to

an objective function. This is in contrast with the algorithmic debugging technique

that needs a programmer in order to provide some information about the program

and also solve the bug.

2.4 Interpretable Reinforcement Learning

Encoding a policy using programs or decision trees is a way to make the policy more

amenable to interpretability. Neurally Directed Program Search (NDPS) [38] tries to

synthesize a program that closely imitates a neural oracle for reinforcement learning

domains. Viper also employs imitation learning to train decision tree encoding poli-

cies [39]. In order to provide better search guidance for synthesis, Propel trains neural

policies that are not “too different” from the synthesized program [40]. Sketch-SA

uses imitation learning to synthesize a sketch of a policy; the policy is synthesized

from the sketch by evaluating it directly in the environment [41]. Oracle-free program-

matically interpretable reinforcement learning (π-PRL) [42] leverages a differentiable

language and trains the model using policy gradient methods. After training such a

model, the model is mapped to a program as a policy.

All of these approaches encode policies learned by neural networks into the pro-

grams or decision trees by generating them from scratch. However, POLIS does not

synthesize a complete program as a policy from scratch. Instead, it is designed to
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modify and optimize an existing program while keeping its structure unchanged.
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Chapter 3

Background

POLIS is a programmer assistant that improves programs by considering each line of

the program as an independent program synthesis task. In this chapter, we explain

two simple program synthesis algorithms that can be integrated with POLIS to solve

such program synthesis problems.

In this chapter, we introduce an example of program synthesis problems and then

describe two variations of the bottom-up search for solving it. We also explore how

these variants reach the solution for that problem.

3.1 Problem Definition

Defining a program synthesis problem starts with a set of input-output examples that

is known as the semantic specifications of the task. The set of input-output examples

is defined in the form of T = {(i1, o1), (i2, o2), · · · , (in, on)}. The task is to synthesize a

program that satisfies the semantic specifications. A program is considered a solution

to the synthesis task if it correctly maps each input ij to its corresponding output

oj. For our example, we consider Equation (3.1) as the semantic specification of the

program we want to synthesize. The pairs in T show that the program has three

numerical inputs and outputs one numerical value.

T = {((1, 3, 2), 2), ((2, 2, 2), 2), ((3, 78, 0), 3), ((2, 7, 13), 4), ((3, 13, 5), 3)} (3.1)

Defining a Domain Specific Language (DSL) allows us to shape the search space
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of possible programs that a synthesizer must explore. A DSL is defined as a context-

free grammar (V,Σ, R, S). V is the set of non-terminals, Σ is the set of terminals,

and R is the set of relations that define the grammar’s production rules. S is the

grammar’s start symbol. Equation 3.2 shows an example of a DSL where V = {S},

Σ = {x1, x2, x3}, R are the relations (e.g., S → x1), and S is the start symbol. Σ is

the input of the program in this DSL.

S →
√
S | S + S | S − S | x1 | x2 | x3 (3.2)

This DSL allows programs with a sequence of operations like addition, subtraction

and square root on the input data.

The DSL in Equation (3.2) and input-output examples in Equation (3.1) define

our program synthesis problem. We then, in Section 3.2 and Section 3.3, describe

how to find the solution to this problem using Bottom-Up Search and Probabilistic

Guided-Bottom-Up Search.

3.2 Bottom-Up Search

Bottom-Up Search (BUS) is a dynamic-programming-based synthesis algorithm, first

introduced in [3, 4]. BUS works by keeping a bank of all synthesized programs

and builds new programs upon those previously generated programs. BUS starts

with a bank consisting of only terminals in the grammar. Then in each iteration, it

generates new programs by applying grammar rules to the programs retrieved from

the bank. Finally, it adds the new programs to the bank [3, 4, 20]. After generating

a new program based on a program retrieved from the bank, BUS evaluates it using

the input-output examples and returns the first program that meets all the input-

output examples as the solution to the synthesis problem. So whenever BUS finds

the solution, the algorithm ends right away.

BUS explores the programs based on their costs. The cost of a program can be

defined based on different features of the program; for example, the cost can be
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defined as the size of the program [20, 43, 44]. The size of a program can be defined

in different ways. However, a common metric to define the size of a program, which

we use in our implementation, is the number of nodes in the Abstract Syntax Tree

(AST) representing the programs. For example, the cost of terminals in the grammar

is 1 and the cost of x1 + x2 + x3 is 5. BUS starts with the terminals in the grammar,

then BUS synthesizes all programs whose AST has two nodes, and so on until a

solution is found. The solution that BUS finds is provably the smallest program that

can solve the problem because BUS explores all possible programs.

Cost # Programs Bank

1 3 {x1, x2, x3}

2 3 {√x1,
√
x2,
√
x3}

3 75 {
√︁√

x1,
√︁√

x2,
√︁√

x3, x1 + x1, · · · , x1 − x1, x1 − x2, · · · }

4 147 {
√︂√︁√

x1, · · · ,
√
x1 + x1, · · · ,

√
x1 − x1, · · · ,

√
x1 + x1, · · · ,

√
x1 − x1, · · · }

5 12K {· · · }

6 70K {· · · }

7 ... {· · · ,
√︁√

x1 + x2 + x3, · · · }

Table 3.1: Programs generated for Equation (3.1) from the grammar in Equation (3.2)
in the order of size. The size of a program is defined as the number of AST nodes of
the program. To simplify the computation, we do not consider any pruning strategies
to limit the search.

BUS, as a dynamic programming-based synthesis algorithm, at each iteration, syn-

thesizes complete programs and reuses them to generate new ones in the next itera-

tions. For example, given the simple DSL shown in Equation (3.2), Table 3.1 shows

how BUS synthesizes programs to find the solution for the program synthesis problem

at Equation (3.1). In Table 3.1, each row demonstrates the new programs of the bank

in BUS and the number of programs synthesized at a certain cost. Table 3.1 shows

that in the first iteration (cost = 1), BUS generates this set of programs {x1, x2, x3}.
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Then, in the next iteration (cost = 2), it generates the new programs based on the

programs from the previous iteration {√x1,
√
x2,
√
x3}, and so on. BUS iterates

until the solution to the problem is found. In our example, BUS finds the solution at

cost = 7, p =
√︁√

x1 + x2 + x3.

However, even for this very small DSL, the space of possible programs grows ex-

ponentially with the size of the programs. This growth has a direct impact on the

runtime of the algorithm. As shown in Table 3.1, the synthesizer must generate more

than 82K programs to find the solution. There are different techniques as pruning

strategies for BUS. For example, as a simple method for pruning the search space,

considering that all the programs generated by BUS are executable, Albarghouthi

et al.[3] and Udupa et al.[4] suggested eliminating one of the two programs that are

observationally equivalent during the synthesis. Two programs are observationally

equivalent if they produce the same outputs given the same inputs. However, obser-

vationally equivalent and even state-of-the-art pruning strategies are not enough to

prevent the BUS’s search space from growing exponentially [20].

One way to reduce BUS’s running time and prevent it from growing rapidly is to

define the program’s cost efficiently so that BUS can find the solution program sooner

in the search. Barke et al.[20] present an algorithm named Probe that guides BUS

by learning a probabilistic model to guide the search.

3.3 Probabilistic Guided-Bottom-Up Search (Probe)

Probe is a guided bottom-up search algorithm for synthesizing programs according

to a DSL. Probe redefines the cost function for the BUS algorithm. The main idea

behind Probe is to explore programs in the order of decreasing likelihood instead of

increasing size [20]. Probe learns a probabilistic context-free grammar (PCFG) to

define the likelihood of a program as a guiding paradigm for BUS.

A PCFG defines a probability value for each production rule of the grammar. Probe

starts by assigning a uniform distribution to the PCFG and updates the probability
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of each rule during the search. Previous works [45, 46] observed that often there are

considerable syntactic similarities between partial solutions (i.e., those that partially

fulfill the semantic specification) and the final solution. For updating the PCFG,

Probe takes advantage of this observation and updates the grammar based on the

generated partial solutions during the search [20]. During the search, Probe encoun-

ters these partial solutions and modifies the PCFG by increasing the probability of

the syntactic elements in the partial solutions [20].

Probe learns a PCFG by leveraging the set of input-output examples T = {(i1, o1),

(i2, o2), · · · , (in, on)}. During search, given a set of programs P that Probe has syn-

thesized so far, the probability of a production rule r, denoted pr(r), is updated

according to the following equation pr(r) = z · pru(r)1−ϕ(P,T,r). Here, pru(r) is the

probability of r according to the uniform distribution. Function ϕ(P, T, r) returns the

largest proportion of input-output examples (ij, oj) that are satisfied by any program

in P that uses rule r. Finally, in order to have a valid probability distribution, z is

used as a normalizing factor. Intuitively, pr(r) will receive a large probability value

if a program that uses r correctly maps most of the inputs to their corresponding

outputs. A large value of pr(r) means the programs that use r should have a lower

cost in search compared to the other programs in order to be explored sooner in the

search. Therefore, Probe defines the cost of a program p as the negative sum of the

log probabilities of each grammar rule in that program as in Equation (3.3).

cost(p) =
∑︂
r∈p

⌊− log(pr(r))⌋ (3.3)

Since Probe introduces a paradigm to guide BUS in order to explore the space of

programs more efficiently, it synthesizes programs in the order of increased likelihood

of a program being the solution. Therefore, Probe may find the solution sooner

than the BUS as Probe uses a PCFG to guide the search. Starting with a uniform

distribution for the PCFG, Probe learns the probability distribution for the grammar
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rules using synthesized programs during the synthesis process. For example, in the

DSL shown in Equation (3.2), Probe starts with pru(S → x1) =
1
6
= 0.16 for each rule.

Then it eventually learns the probability values 0.28, 0.28, 0.02, 0.14, 0.14, 0.14 as a

valid probability distribution for
√
S, S+S, S−S, x1, x2, x3, respectively. Probe’s cost

function definition is motivated by the idea that programs derived from production

rules of the PCFG with higher probability values will have a lower cost and will be

considered earlier in the search. In our example, the program
√
x1 + x2 is obtained

from the initial symbol S by applying production rules S →
√
S, S → S+S, S → x1,

and S → x2. According to the probability distribution above, the cost of the program

is ⌊− log(0.28)⌋+ ⌊− log(0.28)⌋+ ⌊− log(0.14)⌋+ ⌊− log(0.14)⌋ = 6.

Table 3.2 shows the state of Probe’s bank at each iteration to find the solution

for Equation (3.1) using Equation (3.2) with the cost of the rules 1, 1, 5, 2, 2, 2, for
√
S, S + S, S − S, x1, x2, x3, respectively. Probe starts with the terminals in the

grammar. The cost of each terminal based on the PCFG is 2. At each iteration, Probe

builds new programs based on the programs in the bank and the grammar rules based

on their costs. It finally finds the solution at cost = 10, which is p =
√︁√

x1 + x2 + x3.

The most significant difference between Probe and the original BUS is the number of

explored programs. To find the solution using BUS (Table 3.1), the synthesizer must

explore more than 82K programs, and Probe (Table 3.2) only generates around 3K.

On the one hand, since POLIS considers each line as an independent synthesis

problem, learning a PCFG for each problem may be beneficial to speed up the search.

On the other hand, if the grammar and the synthesis problem are generally simple

enough, Probe may not be efficient because it needs to learn the PCFG’s values and

restart the search over and over, which may take more time than the original BUS. In

our experiments, we use the original BUS and Probe to perform the synthesis tasks

in POLIS.
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Cost # Programs Bank

2 3 {x1, x2, x3}

3 3 { √x1,
√
x2,
√
x3 }

4 3 {
√︁√

x1,
√︁√

x2,
√︁√

x3 }

5 12 {
√︂√︁√

x1, · · · , x1 + x1, x1 + x2, x1 + x3, · · · }

6 48 {
√︂√︁√

x1, · · · ,
√
x1 + x2, · · · , x1 +

√
x1, · · · ,

√
x1 + x1}

7 93 {· · · }

8 354 {· · · }

9 3200 {· · · }

10 ... {· · · ,
√︁√

x1 + x2 + x3, · · · }

Table 3.2: Programs generated for Equation (3.1) from the probabilistic context-
free grammar in Equation (3.2) in order of cost defined by Probe. To simplify the
computation, we do not consider any pruning strategies to limit the search.
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Chapter 4

Program Optimization with
Locally Improving Search (POLIS)

In this chapter, we define a program as the input of POLIS. Then, we describe how

to optimize a program with POLIS.

4.1 Program Definition

A program is a string of production rules of a grammar that used to define a DSL. It

is a deterministic function written/synthesized that outputs the program’s behavior

given the input. Let D be a DSL and JDK be the (possibly infinite) set of programs

that can be written based on D. Each program p ∈ JDK is defined by a pair {T, L},

where T is a multi-set of terminal symbols, and L defines a partition of symbols from

T into the program lines. L defines how a programmer organizes the symbols in T

in a text editor. Note that two programs that have identical functionality could have

different partitions L.

4.2 POLIS: a Programming Assistant

POLIS is a programming assistant that takes an objective function F that maps a

program to a real value and a program p ∈ JDK as inputs. It outputs a program p′ ∈

JDK that is at least as good as p and approximates a solution for argmaxp∈JDK F (p).
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4.2.1 Local Search

POLIS is local search that uses bottom-up synthesis algorithms to improve the be-

havior of an existing program. The key idea behind POLIS is to consider each line

of the program as an independent program synthesis task. It tries to synthesize a

better program for each line in the context of the whole program without changing

the other lines and their orders. A better program for a given line of code results in

a better evaluation score compared to the original program of that line. Algorithm 1

shows the body of the local search algorithm employed by POLIS. Algorithm 1 can

be considered a type of hill-climbing algorithm that traverses the optimization land-

scape defined by a program and a set of input-output pairs and a DSL to optimize

the program.

The algorithm takes an existing program p and two-time limits, t and tl, as inputs.

t limits the overall running time of the search, and tl is the maximum running time

allowed to spend optimizing each line of code. The search returns a new program, p′,

that is at least as good as p.

While there is time available to improve the input program, the search iterates

through each line (the for loop in line 3), and it attempts to synthesize a program

that replaces the code in the i-th line of p such that the objective function F is

improved. This is achieved with a call to the synthesizer (line 4). The synthesizer

can call any program synthesis algorithm that returns a better program that improves

the objective function F . In our experiment, we evaluate both BUS and Probe [20]

with some modifications as the synthesizer.

4.2.2 BUS for Optimization Problems

The original BUS algorithm uses the inductive program synthesis framework, which

takes the synthesis problem and input-output examples. Then it returns a program

that meets the input-output examples. In order to use BUS for an optimization

problem with respect to an objective function, we modify the original algorithm
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Algorithm 1: POLIS
Data: Initial program p, overall time limit t, time limit per line tl,

input-output examples ε, G
Result: Improved program p′

1 while Not-Timeout(t) do
2 p′ ← p
3 for i← 1 to Number-of-Lines(p) do
4 p← Synthesizer(p, i, tl, ε,G)

5 if F(p) = F(p′) then
6 return p′

to evaluate the programs using an objective function as well as the input-output

examples to guide the search. We refer to the new algorithm as BUS*. POLIS calls

BUS* in line 4 of Algorithm 1 as the synthesizer.

Unlike BUS, BUS* does not return a program that meets all the input-output

examples. Instead, it returns the program with the best evaluation score among others

with respect to the objective function. In this section, we highlight the difference

between BUS and BUS*.

Algorithm 2 shows BUS* algorithm and the highlighted lines indicate the difference

between BUS and BUS* algorithms. BUS* receives the program p, the line number

i indicating the synthesizer should synthesize a program for it, and the grammar G

defining a DSL along with the input-output examples ε and parameter k. BUS* also

takes a value tl as an input which limits the running time of the algorithm. It starts

by initializing the bank with an empty set and best l with the initial program of the

i-th line (line 1 to 3 of Algorithm 2). The synthesizer attempts to replace the i-th

line with another line that optimizes the objective function. When the synthesizer’s

search time is up, it delivers a version of the original program p in which the i-th line

has been replaced with the best program it found during the synthesis process. If the

i-th line of the program already produces the best F -value, or if the synthesizer runs

out of time before discovering a better line, the synthesizer may return the program

unaltered.
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To replace the i-th line, BUS* starts with c = 1. Then after generating all the

programs with cost = c, c is incremented by 1 for the next iteration and so on (line 14).

Since the metric F , which we attempt to optimize, may be computationally ex-

pensive, BUS* leverages multi-level evaluation methods. BUS* uses the set of input-

output examples to reduce the computational cost of evaluating programs as we ex-

plain next. Instead of computing the metric F for all programs generated in search,

we keep a list of the current k-best programs with respect to an output-agreement

metric. The output-agreement metric accounts for the number of inputs each program

correctly maps to the output paired with each input in T . The output-agreement met-

ric we use is computed as
∑︁

o∈T 1[p(ij)=oj ]

|T | , where T is the set of input-output examples,

1[·] is the indicator function, p(ij) and oj are the output returned by the program p

and example output in T , respectively, for input ij. At line 8, the output-agreement

score of the new program is computed based on the formula above. BUS* evaluates

the metric F only for the programs in the k-best set (line 11). Therefore, the number

of evaluating F reduces significantly.

Once BUS* runs out of time, it returns the best program in the set of k best with

respect to the F score, not with respect to the output-agreement metric.

4.2.3 Probe for Optimization Problems

Since the Probe algorithm is based on the BUS algorithm [20], we develop Probe*

based on BUS* shown in Algorithm 3. The input and output of Probe* are the

same as BUS*; however, G in Probe* is a probabilistic context-free grammar. Probe*

is a program synthesis algorithm so POLIS calls it in line 4 of Algorithm 1 as the

synthesizer.

Probe* starts with initializing the bank B and the update list UList that is used

to update the grammar G, with empty lists and parameter j with k at lines 1 and 2.

It initializes other parameters as BUS* (lines 3 and 4). Although the original Probe

algorithm begins with a uniform G, Probe* updates the G with the initial program
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Algorithm 2: Synthesizer - BUS*

Data: Program p, line i, time limit tl, input output examples ε, grammar G,
parameter k

Result: Optimized program popt
/* Initialize the state of bank B */

1 B ← {}
2 linit ← GetLine(i)
3 best l← linit
4 for c from 1 to 100 do

/* Iterate over all programs whose cost = c and are not observationally
equivalent to another program in B */

5 for l in New-Programs(B,c,G) do
6 if Not-Timeout(tl) then
7 pnew ← ModifyLine(p, i, l)
8 score← [ ⟨in, [[pnew]](in)⟩|⟨in, o⟩ ∈ ε] ∩ ε

9 if score is in among the best k programs’ score then
10 if Eval(p,l,i) > Eval(p,best l,i) then
11 best l← l

12 else
13 popt ← ModifyLine(p, i, best l)
14 return popt

15 popt ← ModifyLine(p, i, best l)
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of the i-th line before beginning synthesis (line 5). This inductive bias directs the

synthesizer to initially explore programs structurally similar to the one it was given.

This enables us to include human insight in the synthesis.

While there is time for synthesis, Probe* synthesizes programs with cost = c at

each iteration, given G and previously generated programs in the bank B. It then

computes its score based on output-agreement method at line 11. If the program is

among the best k best programs based on their scores, Probe* compares the evalu-

ation of l and best l in the context of p and updates the best program for i-th line

best l (line 20). Probe* also adds l to the updated list UList if l is one of the best

k programs. Like BUS*, Probe* also leverages the set of input-output examples to

reduce the computational cost of evaluating programs using output-agreement met-

rics and evaluates a program l in the game environment only if it is among k best

programs.

We use the programs in the set of k best programs to update the probability

distribution of the PCFG Probe* learning. In our implementation at line 18 at

Algorithm 3, Probe* first updates its PCFG once it adds k programs to the set of

best k programs. The second update is performed when j = k− 1 new programs are

added to the set since the first update; the third update happens after adding j = k−2

programs since the second update, and so on. The value of j stops decrementing once

it reaches 1. At the beginning of the search, when Probe* quickly finds programs

with better output-agreement values, the PCFG is updated less often. However, later

in the search, when it is hard to find programs with better output-agreement values

than those already explored in the search, Probe* updates the PCFG as soon as a

program enters the set of k best programs (j = 1). Like the original Probe algorithm,

the search is restarted once the PCFG G is updated. Probe* finally returns the

modified programs with the optimized i-th line.

Once Probe* runs out of time, the i-th line of p is replaced with a program with

the best game score best l.
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Algorithm 3: Synthesizer - Probe*

Data: Program p, line i, time limit tl, input output examples ε, PCFG G,
parameter k

Result: Optimized program popt
/* Initialize the state of bank B and update list UList */

1 B,UList← {}, {}
2 j ← k

3 linit ← GetLine(i)
4 best l← linit

5 G ←Update({linit}, ε)
6 while Not-Timeout(tl) do
7 for c from 1 to 100 do

/* Iterate over all programs whose cost = c and are not
observationally equivalent to another program in B */

8 for l in New-Programs(B,c,G) do
9 if Not-Timeout(tl) then

10 pnew ← ModifyLine(p, i, l)
11 score← [ ⟨in, [[pnew]](in)⟩|⟨in, o⟩ ∈ ε] ∩ ε

12 if score is in among the best k programs’ score then
13 if Eval(p,l,i) > Eval(p,best l,i) then
14 best l← l

15 UList = UList ∪ {l}
16 if number of programs in UList = j then
17 G ←Update(UList, ε)
18 j ← max(j − 1, 1)
19 UList← {}
20 break

21 else
22 popt ← ModifyLine(p, i, best l)
23 return popt

24 popt ← ModifyLine(p, i, best l)
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Chapter 5

Experiments

In this chapter, we describe the games used as problem domains in our user study,

the experimental details of POLIS in the context of writing programs for playing such

games, and the experimental design used in our study.

5.1 Problem Domains

We evaluate POLIS on two games in our study: Lunar Lander and Highway (Fig-

ure 5.1). These games were chosen to reduce possible biases participants could have

toward existing solutions to the problems. Solutions to traditional programming tasks

might be easily found online, or participants could already know the solution to the

problems. In contrast, these two games are used as benchmark problems for rein-

forcement learning algorithms and not as programming assignments. Additionally,

both domains have a clear metric: the game score.

5.1.1 Lunar Lander

In the Lunar Lander game, a player needs to control three (Boolean) thrusters of

a spaceship trying to land on the moon. Eight features describe the Lunar Lander

state at each environment step, as shown in Figure 5.2. At each step, the spacecraft

(lander) can fire its left, right, or main (bottom) thrusters, or it can take no action.

After every step of the game, the player gets a reward and the total reward of an
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Figure 5.1: Lunar lander (top) and Highway (bottom)

episode is the sum of the rewards for all steps in that episode. The game score is

maximized if the player does not use the thrusters unnecessarily and gently reaches

the landing pad. Figure 5.3 demonstrate how to calculate game score at each step.

The game is considered solved if the player can collect 200 points or more. We use

the LunarLander-v2 implementation from Open AI Gym [47].

5.1.2 Highway

In the Highway game, a player controls a green car on a three-lane highway. The game

score is higher when the player drives fast, avoids collisions, and spends more time in

the right lane. Each car is represented by four features, as shown in Figure 5.5. The

player can change lanes or increase or reduce speed. In this version of the Highway

environment, the agent can see its car features as well as the other two nearest cars, so

the total features describing the state for the agent add up to 12 (see Equation (5.5)).

However, the number of cars presented on the highway may be more than three at a
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state =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0: horizontal coordinate of the lander,

1: vertical coordinate of the lander,

2: horizontal velocity,

3: vertical velocity,

4: orientation of the lander in the space,

5: angular velocity,

6: if left leg touches the ground 1, otherwise 0,

7: if right leg touches the ground 1, otherwise 0

(5.1)

action =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0: do nothing,

1: fire left orientation engine,

2: fire main engine,

3: fire right orientation engine

(5.2)

Figure 5.2: In the Lunar Lander game, the state of the spaceship is determined based
on eight features at each step as in Equation (5.1). There are four actions available
for the player as shown in Equation (5.2)

reward =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

is increased/decreased the closer/further the lander is to the landing pad,

increased/decreased the slower/faster the lander is moving,

decreased the more the lander is tilted (angle not horizontal),

increased by 10 points for each leg that touches the ground,

decreased by 0.03 points if a side engine is firing,

decreased by 0.3 points if the main engine is firing

(5.3)

Figure 5.3: According to the Open AI Gym [47] documentation, the reward after each
step of the game is calculated based on these rules. The player at the end of each
episode receives an additional reward of -100 or +100 points for crashing or landing
safely respectively.
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car =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

horizontal coordinate of the car,

vertical coordinate of the car,

horizontal velocity,

vertical velocity

(5.4)

state =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[0:3]: player’s car,

[4:7]: the first nearest car,

[8:11]: the second nearest car

(5.5)

action =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0: go to the left lane,

1: do nothing,

2: go to the right lane,

3: go faster,

4: go slower

(5.6)

Figure 5.4: In the Highway game, each car is represented by four features as seen
in Equation (5.4). At each step of the game, the player can see the green car’s and
the two nearest car’s features as shown in Equation (5.5). Equation (5.6) indicates
five actions available at each step at Highway.

time. After every step, the player gets a reward and the total reward of an episode

is the sum of the rewards for all steps withing that episode. Figure 5.7 indicates the

reward function in Highway. If there is a collision between player’s car and other cars,

the episode terminates and the player gets -1 for the last step. The maximum reward

for Highway is 50. We use the implementation of Leurent[48].

5.2 Experimental Details

To optimize programmatic policies written for the two games mentioned above with

POLIS, we first explain the Domain Specific Language used for writing programmatic

policies for those games in Section 5.2.1. Then, we describe how to collect input-

output examples in such a problem in Section 5.2.2 and Section 5.2.3. Finally, we

describe how to deal with local optimum solutions found by POLIS in Section 5.2.4.
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reward =

⎧⎨⎩-1: if the car collides with a vehicle,

(v−15)
(30−15)

∗ 0.4 + 0.6 (for driving on the right most lane)
(5.7)

Figure 5.5: At each step of Highway, the reward is calculated as Equation (5.7) where
v is the speed of the car and [15, 30] is the speed range. For v less than 15, the speed
reward is 0 and for v more than 30, the reward speed is 0.4 (maximum speed reward).
Then, it normalizes the reward value to a number in [0, 1]

5.2.1 POLIS Domain Specific Language

A general-purpose language like Python defines a very large program space. How-

ever, in this work, we consider a domain-specific language (DSL) to define a much

smaller space of programs for solving a given programming task. We define a python-

like programming language as our DSL to make it simple for humans to write and

understand programs since many programmers know Python. Our DSL allows an

arbitrary number of (un)nested if-then-else structures and arbitrarily large chains of

commands. As shown in Figure 5.6, our DSL consists of helper functions (e.g., addi-

tion, subtraction,· · · ), action primitives specific for each environment, variables, and

control flows (i.e., if-else statements and Boolean/logical operators).

Since our DSL is based on Python programming language, we define the structure

of a program as a list of independent statements and each statement considered as

a line in that program. A program based on our DSL can contain (un)nested if-else

and assignment statements. Moreover, POLIS tries to improve the conditions of if-else

statements and the expression statements of assignment statements.

5.2.2 Input-Output Examples

BUS* and Probe* use input-output examples for evaluating each program during

the synthesis. Probe* also learns a PCFG for each program synthesis task using

input-output examples. In the regular program synthesis tasks, these would be given

by a set of test cases. Previous approaches [38–40] suggested using deep neural

networks (DNN) as an oracle to guide the synthesis of policies encoded as computer
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P ::= def heuristic(o): S return action

S ::= SS | if(C): S else: S | if(C): S elif(C): S else: S

| Vdef | Aassign

C ::= C B C | E
E ::= oi | Vname | n | E M E | pow(E, E) | sqrt(E)

| log(E) | -(E) | abs(E)
Vdef ::= Vname = E

Aassign ::= action = ai

B ::= and | or | < | <= | ! = | == | >= | >

M ::= + | − | ∗ | /

Figure 5.6: CFG defining our DSL; ai and oi refer to one of the actions and observa-
tions of the game and n to a real number

programs. They employed imitation learning [49] to generate programs for playing

games. We use the approach Verma et al.[49] introduced to learning programmatic

policies. Specifically, they train a neural policy that generates a set of input-output

pairs: for a set of observations o (input), we store the neural policy’s chosen action a

(output). We use DQN [50] to train a neural policy π for 2000 episodes. We then let

the agent follow π in the environment for 2000 steps and collect all the observation-

action pairs along with their Q-values.

5.2.3 Highlights

We further optimize the computational cost of our evaluation function by using a small

number of input-output examples. Instead of collecting a large number of observation-

action pairs uniformly at random, we collect a small set of observations based on the

Highlights ranking of importance [51]. Highlights ranks a set of observations according

to the most considerable difference in Q-values for different actions available at a given

observation. Highlights calculates the importance of an observation-action pair based

on Equation (5.8).

I(s) = max
a

Qπ
(s,a) −min

a
Qπ

(s,a) (5.8)
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We run policy π in each game and collect the top 400 observation-action samples

according to their I-values in our experiments, chosen from a set of 2000 observation-

action samples. The number of observation-action samples has a direct impact on

the running time of POLIS. We tried 1000 and 400 input-output examples and the

bigger number increased the running time of the algorithm significantly. Therefore,

we selected 400 Highlight observation-action examples for our experiments.

5.2.4 Restarts

POLIS’s hill-climbing algorithm traverses the optimization landscape defined by the

initial program and the set of input-output pairs. POLIS’s greedy approach to opti-

mization could lead the algorithm to become stuck in locally optimal solutions. An

effective strategy for dealing with local optimum solutions is to restart the search

from a different starting location in the optimization landscape once the search stops

in a local optimum [52]. Every time we restart the search, we train a different DQN

agent to generate a new set of input-output examples. This enables us to restart the

search while allowing for a potentially different initial starting location within the

optimization landscape.

5.2.5 Bayesian Optimization

The real numbers n in our DSL (see Figure 5.6) are set using Bayesian optimiza-

tion [53]. The BUS* and Probe* enumeration procedure generate programs with the

symbol n, then run the Bayesian optimizer to replace them with real values. The

optimizer chooses the real values to replace n while attempting to optimize for the

output-agreement metric. In Algorithms 2 and 3, after generating new programs,

their numerical values are optimized by calling BayesOpt function. BayesOpt opti-

mizes the newly synthesized program l for line i of program p using input-output

examples ε.
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5.3 User Study Design

We conducted a user study to collect different programs that optimize the game score

of Lunar Lander and Highway, which we introduced in Section 5.1. In this section,

we describe our user study in detail. We developed a web-based system to conduct

our user study based on HippoGym [54] and advertised the study on mailing lists of

graduate and undergraduate Computing Science students at University of Alberta.

The ethics ID number for this study is Pro00113586.

In the beginning, we had all participants digitally sign a consent form. In the form,

we indicate that they would be asked to write a program for playing a computer game.

We also explained that the amount of money they would get would be proportional to

their final program’s game score; higher game scores would result in higher monetary

values. In other words, the more points their program got in the game, the more

money they would get. The minimum compensation was 15 CAD. We used the

following formulae to compute the compensation of each participant: 15 + (100 +

x) × (1/30) and 15 + x × (1/5) for Lunar Lander and Highway, respectively. x is

the participants’ average game score over 100 and 25 episodes of Lunar Lander and

Highway, respectively (an episode is completed when the player finishes landing the

spaceship in Lunar Lander and when the player crashes the car or a time limit is

reached in the Highway). The participants received a maximum of 25 CAD, even if

the formula results in a value >25.

After agreeing to the terms of the study and signing the consent form, each par-

ticipant was given a random assignment to one of the two games. Then, they read a

tutorial on the game that had been assigned to them. In the tutorial, we explained

the features in each observation passed as the program’s input parameters and the

actions available to the player. In addition, our tutorial had a few examples with

screenshots of the game showing situations where different actions were applied to

different game observations. The final step of the tutorial was a multiple-choice ques-
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tion about the game; immediate feedback was provided to the participant showing

whether they chose the correct or wrong answer. If an answer was incorrect, the

participant would have as many attempts as needed to answer it correctly.

Following the game tutorial, each participant read a tutorial about our DSL. The

tutorial presented the CFG shown in Figure 5.6 and explained the Boolean and alge-

braic functions and the programming structures supported by our DSL. Similarly to

the game tutorial, we provided several examples of programs that can be written in

our DSL. The tutorial finished with a multiple-choice question where the participant

had to select, among four options, the program that was accepted in our DSL; the

participant had as many attempts as needed to answer the question correctly.

Before writing a program for playing the game, the participant had the opportunity

to play the game using their keyboard for 10 minutes. The observation values and the

game score each participant obtained for each game run were displayed in real-time

on our graphical user interface. The participant had the option to stop playing at

any moment (within the 10 minutes allowed by our system) and start writing their

program. Our goal with this step of the study was to provide the participant with

the opportunity to develop a strategy for playing the game, which they could then

attempt to encode into their programs.

We provided the participants with a Python-like editor, where the keywords of the

DSL are highlighted. The editor also had an example of a simple program for playing

the game. For example, for Highway, we provided the program shown in Figure 5.7.

This program moves the car to the right lane if the car is not already there; the car

does nothing otherwise.

Additionally, the game they were writing code for was shown on our interface so

the participants could run their programs and observe how those programs perform

in the game. Similarly to the interface used when the participant played the game,

we displayed the observation values and the game score the program obtained in real-

time. If the participant wanted to inspect the values of the observations, they could
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1 def heuristic(o):
2 action = 0
3 if o[1] < 8:
4 action = 2
5 else:
6 action = 1
7 return action

Figure 5.7: Example program we provided to the participants for the Highway domain

pause the simulation at any time. Additionally, our interface allowed the participants

to go back to the tutorials while playing the game or writing their program.

We made sure to store all compilable and syntactically correct programs the par-

ticipants evaluated so that we could use them as input for our evaluation. The

experiment duration, which included both playing the game and writing a program,

was 60 minutes, maximum 10 minutes for playing the game and 50 minutes for writing

a program. Within the 50-minute time limit, the participant could submit the final

version of their program at any time. We calculated the participant’s monetary com-

pensation based on their final program submission. The participant then answered

demographic questions before finishing the experiment.

5.4 Results

In this section, we report the demographic data of the participants in our user study.

We abbreviate standard deviation as SD and interquartile range as IQR to describe

the demographic information. We then report the computational results of applying

POLIS on participants’ programs. The results emphasize the significance of POLIS’s

performance on optimizing those programs. Finally, we conclude this chapter by

analyzing an example program before and after applying POLIS on it to find out how

POLIS optimize such a program.
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5.4.1 Demographics

In our user study, 40 people consented to participate, and 26 completed the survey.

The average age was 20.96 (SD of 4.13), with ages ranging from 18 to 40; 20 partici-

pants identified themselves as male, 5 as female, and 1 withheld gender information.

Most (20) had received or were pursuing undergraduate education, 4 had completed

high school, and 2 were pursuing post-secondary training. Most participants (25) had

not done any form of game artificial intelligence (AI) research, and about half had not

taken any AI courses. More than one-third of the participants (10) rarely or never

played computer games, and others occasionally or often played computer games.

We asked about the participants’ programming experience: 22 had more than one

year of experience, and 4 had less than a year. We also asked about their knowledge

of Python, how hard it was to write a program in our DSL, and how hard it was to

write a program for solving the game. We used a 5-point, Likert-like scale: 1 being

“novice” in Python and “very easy” for writing programs, to 5 being “expert” in

Python and “very hard” for writing programs. The median response to these three

questions were: 3 (IQR = 1), 2.5 (IQR = 2), and 4 (IQR = 1), respectively. On

average, the participants had some experience in Python and found it easy to use our

DSL, but found it hard to write a program to play the game. To evaluate POLIS, we

considered the data from those who submitted at least one working program (different

from the example program we provided), resulting in 27 participants (one of them

did not complete the survey).

5.4.2 Computational Results

During the 50 minute time limit for writing programs, participants wrote different

programs and submitted what they thought to be the best one. We stored every

program the participants evaluated in this process. Tables 5.1 and 5.2 show how

participants performed in our study. For each participant, we report the number of

programs they wrote and evaluated, the average of their programs’ scores and the
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ID Attempts Count Avg. Score SD Min Max Last Time

1 29 -169.63 121.08 -545.41 -93.15 -106.07 00:25:02

2 37 -167.34 173.41 -557.24 44.33 44.33 00:47:24

3 29 -252.20 282.12 -1022.52 -68.21 -68.21 00:42:57

4 2 -125.12 0.00 -125.12 -125.12 -125.12 00:06:50

5 3 -125.12 0.00 -125.12 -125.12 -125.12 00:02:30

6 14 -349.34 226.60 -813.57 -118.65 -118.65 00:46:50

7 14 -159.05 91.20 -430.96 -110.72 -110.72 00:39:33

8 35 -174.53 132.33 -544.51 -32.60 -473.64 00:47:15

9 73 -163.85 150.07 -797.12 -34.21 -89.09 00:50:02

10 13 -79.67 26.60 -156.53 -45.10 -45.10 00:10:20

11 42 -249.98 324.51 -1260.72 11.45 11.45 00:48:47

12 48 -32.20 56.81 -160.53 52.84 43.73 00:48:07

Table 5.1: A summary of Participant’s performance for Lunar Lander

standard deviation, minimum and maximum scores, as well as their last program’s

score. The total time they spent writing programs is shown in both tables as time in

the format of hh:mm:ss.

As shown on Table 5.1 and 5.2, participants evaluated more programs for Lu-

nar Lander compared to Highway (see column “Attempts Count”). This may sug-

gests that participants had to see the performance of their programs even after small

changes for Lunar Lander, while for Highway, once they understood the logic of the

game, they were able to write good programs without having to evaluate them too

often. One reason could be that controlling a car in a highway is more intuitive than

controlling a lander in the space. Interestingly, 9 participants did not submit their

best programs (“Max” is larger than “Last”): see participants 1, 2, 5, 8, 9, 10, 11,

12, and 15 in Table 5.2. By contrast, only 4 participants did not submit their best

programs in Lunar Lander.

We ran POLIS 10 times and use 5 restarts in each run. We report the average game
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ID Attempts Count Avg. Score SD Min Max Last Time

1 8 6.24 2.09 5.06 11.23 5.40 00:47:34

2 6 7.05 1.87 6.21 11.23 6.21 00:14:14

3 12 16.03 5.77 5.70 24.28 24.28 00:46:47

4 5 7.25 0.00 7.25 7.25 7.25 00:10:01

5 3 6.81 0.78 6.21 7.91 6.31 00:01:28

6 12 14.66 7.38 7.87 25.14 25.05 00:24:16

7 21 12.68 7.31 7.47 30.25 30.25 00:48:04

8 14 11.78 2.14 9.42 17.21 11.23 00:47:00

9 5 11.39 0.73 10.51 12.74 11.23 00:11:51

10 13 14.84 7.19 8.90 31.19 11.55 00:42:26

11 7 11.77 6.92 5.06 27.39 7.55 00:15:51

12 11 12.95 6.60 6.83 30.25 6.83 00:44:19

13 8 23.04 8.59 8.37 28.98 28.98 00:30:09

14 9 18.09 8.68 8.86 31.95 31.95 00:31:41

15 10 23.47 7.62 8.08 35.71 12.44 00:11:02

Table 5.2: A summary of Participant’s performance for Highway

score of a POLIS’s improved program as the average of 10 runs. Figure 5.8 summarizes

the POLIS results for Lunar Lander (left) and Highway (right). Each point (x, y) in

the plots represents a program a participant evaluated successfully in our study. The

x-value of each point is the average game score a program obtained in 100 and 25

episodes of Lunar Lander and Highway respectively. The y-value of each point is

the average game score of a program that POLIS improves obtained in 100 and 25

episodes of the games. We consider both BUS* and Probe* to the synthesis task in

POLIS for both games. Thus, the blue points represent POLIS’s result using Probe*

and green points represent POLIS’s result using BUS*.

All points in both plots are above the diagonal y = x line, which means that POLIS

was able to improve the performance of all programs that participants wrote, for
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Figure 5.8: Results of applying POLIS on the collected programs in our user study.

both domains, regardless of which synthesis algorithm was used. In Lunar Lander we

observe a trend in the data points where better human-written programs allowed for

better POLIS-improved programs.

To compare Probe* and BUS* better, Figure 5.9 summarizes the POLIS results

with BUS* and Probe* for Lunar Lander (left) and Highway (right). Each point

(x, y) in the plots represents a program a participant evaluated successfully in our

study. We apply both BUS* and Probe* to optimize each program. The x-value

of each point is the average game score the optimized version of the program using

BUS* obtained in 100 and 25 episodes of Lunar Lander and Highway, respectively.

The y-value of each point is the average game score of the optimized version of the

program that POLIS improves by applying Probe*.

Most of the points in the left plot in Figure 5.9 (Lunar Lander) are under the

diagonal y = x line, which means that POLIS, in combination with BUS*, was able

to improve the performance of most of the participants’ programs more than Probe*.

However, this is the other way around for the right plot in Figure 5.9 (Highway),

where almost all the points are above the diagonal y = x line. This observation

suggests that POLIS with Probe* improved the performance of almost all programs

considerably more than BUS*. Thus, in our experiment, for Lunar Lander, BUS*,

and for Highway, Probe* does the synthesis tasks.

36



Figure 5.9: Comparing BUS* and Probe* for doing the synthesis task in POLIS on
Lunar Lander (left) and Highway (right) game. Each point is a program a participant
evaluated successfully using our system. These plots indicate that BUS* and Probe*
perform better in Lunar Lander and Highway, respectively.

POLIS’s average score is higher for all programs written in our study. A Wilcoxon

signed-rank test indicated that the difference between the original programs’ perfor-

mance and the average of the improved programs’ performance was significant and

also pointed to large effect size for the average results of both domains: 0.624 for

Lunar Lander (p < 4.9× 10−4) and 0.621 for Highway (p < 3.1× 10−5).

Tables 5.3 and 5.4 show the results for Lunar Lander and Highway, respectively.

Here, each participant is represented by an ID which is the same as Tables 5.1 and 5.2.

The game score of both the participants’ and POLIS’s programs is an average of the

score of the program obtained in 100 of Lunar Lander in Table 5.3 and 25 episodes

of Highway in Table 5.4. The game score shown for POLIS is the average over 10

independent runs of the system. Each run of POLIS can result in different game

scores due to the random initialization of the DQN’s neural network policy π used to

generate input-output pairs. We also present the standard deviation and minimum

and maximum game scores across these 10 independent runs. We applied POLIS

on all programs written by participants and for each participant selected the best

improved program p′, based on the program’s average score and its original program

p. The original program score in both tables refers to the score of p. The program

the participants submit as their final programs are not necessarily the programs with
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ID
Original Program POLIS Program

Score LoC Score SD Min Max
Edited
LoC

Time

1 -449.72 8 -22.17 9.18 -35.03 -7.95 11.40 01:36:43

2 -196.33 14 68.85 37.46 -22.09 105.62 13.90 03:13:38

3 -125.12 9 -123.96 3.45 -125.12 -113.61 1.10 00:17:25

4 -125.12 14 -122.68 7.30 -125.12 -100.79 1.10 00:28:14

5 -118.65 24 101.11 49.32 -4.07 173.94 27.50 09:49:21

6 -110.72 29 0.44 35.71 -34.20 90.06 9.80 04:44:42

7 -89.09 24 82.63 39.95 7.91 165.62 23.40 06:21:02

8 -87.42 16 56.19 21.45 23.15 96.78 17.70 03:56:36

9 -70.13 10 65.05 17.06 38.68 101.32 5.90 01:37:13

10 -21.50 52 252.90 6.60 240.77 260.86 30.50 13:50:26

11 40.26 24 143.57 16.33 112.17 164.82 20.90 08:16:07

12 52.84 13 74.45 7.99 63.84 89.30 5.30 01:55:21

Table 5.3: Game score improvements for Lunar Lander

the highest score compared to their previously submitted programs, as shown in

Tables 5.1 and 5.2. The number of lines of code (LoC) indicates how many lines the

original program has. In both tables, we sort the rows according to the participant’s

program game score, from lowest (top) to highest (bottom). The number of edited

lines (Edited LoC) refers to the average number of lines that POLIS modifies during

optimization. The total time of the process for a program, including collecting the

input-output examples and optimizing the program, is shown in both tables as time

in the format of hh:mm:ss. We also present the average number of car collisions in

Highway (Hits) in Table 5.4.

For Lunar Lander, POLIS provided significant improvements to most of the par-

ticipants’ scores (e.g., IDs 2 and 10), but there are a few participants that POLIS

was not able to improve their scores notably. For example, considering that we run
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ID
Original Program POLIS Program

Score LoC Hits Score SD Min Max
Edited
LoC

Hits Time

1 5.09 40 25 38.88 1.25 35.38 40.27 12.40 0.80 13:57:40

2 6.21 6 25 35.45 1.17 33.16 38.12 6.90 2.30 03:37:54

3 6.97 12 25 37.35 0.87 35.82 38.32 10.20 2.50 08:55:50

4 7.25 24 25 36.73 1.63 34.25 40.03 7.60 3.10 13:10:12

5 7.91 8 25 35.21 1.77 31.11 36.95 7.00 2.70 03:56:36

6 9.61 12 25 38.24 2.15 34.64 41.19 9.40 1.90 06:34:02

7 10.80 6 24 37.71 1.20 35.31 39.45 7.60 2.70 04:23:16

8 11.23 20 24 39.38 0.77 37.99 40.42 16.40 0.60 13:11:27

9 11.23 10 24 38.03 0.68 37.15 39.02 9.50 1.20 06:53:34

10 11.55 14 21 36.69 0.83 35.36 38.16 10.00 2.40 08:54:34

11 14.23 16 23 38.80 0.53 37.79 39.45 8.80 1.20 06:54:39

12 15.33 9 22 36.80 0.00 36.80 36.80 7.00 4.00 04:41:14

13 24.23 12 14 39.20 0.83 37.79 40.61 5.50 1.90 05:44:09

14 31.95 20 2 42.50 0.06 42.40 42.55 7.00 0.00 11:35:32

15 35.71 13 2 37.89 0.24 37.53 38.16 3.40 1.20 06:29:17

Table 5.4: Game score improvements for Highway

POLIS ten times on each program, for IDs 3 and 4, POLIS was unable to improve their

scores at some runs. In addition, the total time and the number of edited lines for

the programs of participants 3 and 4 are much smaller than for the other programs.

This indicates that POLIS quickly stopped at a local minimum for these programs.

It is interesting to note that regardless of how well the participant’s programs per-

formed in Highway, POLIS enhanced the performance of all programs so that they

could achieve a game score between 30 to 45 (Table 5.4 and Figure 5.8). We hy-

pothesize that the participants identified the program’s structure necessary to play

Highway well. This makes the programs for that game more receptive to POLIS’s

enhancements because POLIS does not alter the program’s general structure and only
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makes local improvements. A possible explanation for the discrepancy between the

Lunar Lander and Highway outcomes is that the latter problem (how to drive a car)

is more intuitive than the former (how to land a spaceship). The Lunar Lander re-

sults point to a limitation of POLIS, which is its inability to improve programs that

need simultaneous changes to several parts of the code. Finally, POLIS substantially

reduced the number of car collisions in the Highway domain, in some cases, from

more than 20 to approximately 1 collision.

5.4.3 Representative Program

The program shown in Figure 5.10 is representative of a program written by one of

the participants of our study for the Highway domain based on our DSL 3.2. As

shown in Figure 5.6, our DSL is a subset of Python Language, and it ensures that all

programs define a function called “heuristic” that receives the player’s observation

of the game o and returns an action to be performed. We refer to the program in

Figure 5.10 as p in this section. This program obtains an average game score of

6.8 over 25 episodes. Figure 5.11 shows POLIS’s improved program for p, which we

will refer to as p′. We lightly edited p′ for readability. The original p′ can be found

in Appendix B. POLIS’s p′ obtains an average game score of 39.0 over 25 episodes, a

major improvement over the original program. The participant who wrote p made a

mistake while writing the first “if” statement of p in line 3. In line 3 of p, there are two

Boolean conditions connected with an “or” operation. For example, the left Boolean

condition checks whether o[5] is equal to o[1] and if o[5] − o[1] > 200. However, the

two parts of the expression cannot be simultaneously true, as once o[5] is equal to

o[1], we have that o[5] − o[1] is zero and can not be > 200. The same conclusion

can be drawn for the Boolean expression on the right side of “or.” As a result, the

player never slows down (action 4). While the participant’s intention with this “if”

statement was likely to slow the car down if the player’s car was in the same lane as

the nearest car on the road (condition o[5] is equal to o[1] returns true if the cars are
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1 def heuristic(o):
2 action = 0
3 if (o[5] == o[1] and o[5]-o[1] > 200) or (o[9] == o[1] and o

[9]-o[1] > 200):
4 action = 4
5 elif (o[5] == o[1] and o[5]-o[1] <= 200) or (o[9] == o[1]

and o[9]-o[1] <= 200):
6 if o[1] == 4:
7 if o[9] < 4:
8 action = 2
9 else:
10 action = 0
11 else:
12 action = 0
13 else:
14 action = 3
15 return action

Figure 5.10: Example of a program one of the participants of our study wrote for the
Highway domain.

on the same lane).

POLIS not only fixed the problem with the Boolean condition in the participant’s

program but also changed the player’s strategy. Instead of slowing down if another

car is in the same lane, p′ only slows down when changing lanes; o[3] is the car’s

velocity on the y-axis, which is not zero when the car is changing lanes. Since the car

is changing lanes, o[1] cannot be zero, as o[1] equals zero, constantly representing the

car being on the leftmost lane. In contrast with p, p′ changes lanes when another car

is in the same lane. This strategy is encoded in the “elif” structure of the program,

which can be translated as: if the nearest car is in the same lane (o[5] is equal to

o[1]), then move to the right lane (action 2), if the car is not already in the rightmost

lane (lines 7 and 8); move to the left lane if already in the rightmost lane.

POLIS’s improved program p′ prefers to drive on the rightmost lane if the car

driving on the same lane is not the nearest one (i.e., there is still time to change

lanes). The program maximizes its score by driving in the rightmost lane. Finally,
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1 def heuristic(o):
2 action = 0
3 if o[1] and o[3]:
4 action = 4
5 elif o[5] == o[1] or o[9] == o[1]:
6 if o[1] == o[5]:
7 if o[1] < 7.9317:
8 action = 2
9 else:
10 action = 0
11 else:
12 action = 2
13 else:
14 action = 1
15 return action

Figure 5.11: POLIS’s improved program for the program written by a participant of
our study, which is shown in Figure 5.10

POLIS’s program does nothing (action 1) if it is not changing lanes and there is no car

in front of it. POLIS’s strategy is a cautious one as the car slows down as it changes

lanes, but it never speeds up. This cautious strategy achieves a much higher game

score than the participant’s program.

Hence, we argue that the person who wrote p can easily understand p′ and its

strategy. Additionally, we hypothesize that the POLIS’s optimized program p′ is un-

derstandable for someone who at least knows the input and output of the “heuristic”

function. Thus, debugging and verifying POLIS’s programs and extending them to

add more details to their strategies are straightforward and simple for humans.
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Chapter 6

Conclusion and Future Work

In this thesis, we presented a system, Program Optimization with Locally Improving

Search (POLIS), that is able to improve existing programs with respect to a mea-

surable, real-valued metric. POLIS leverages an often overlooked strength of simple

synthesizers: the ability to generate short and effective programs. POLIS divides the

problem of improving an existing implementation into smaller subproblems by consid-

ering each line of the program as an independent program synthesis task. This way,

POLIS employs two variations of bottom-up search synthesizer: the original bottom-

up search implementation and Probe that learns a probabilistic context-free grammar

for each subproblem. The synthesizer attempts to replace a single line of the original

program at a given time while all the other lines remain unchanged. We conducted a

user study with 27 participants who wrote programs for playing two games. POLIS was

able to improve the performance of the programs of all participants, often by a large

margin. Since POLIS performs local changes with bottom-up search synthesizers, its

modified program shares the same structure as the original program. The similarity

of the programs allowed us to understand how POLIS improved the performance of a

representative program from our study. The results of our experiments suggest that

POLIS can be used as an effective programming assistant in scenarios where one is in-

terested in improving an existing program with respect to a measurable, comparable

metric.
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As a direction for the future work, we can analyze the relations of (a) the number

of input-output examples, and (b) evaluating any program during the search with

function F , with POLIS’s performance and running time. Also, it would be interesting

to compare Highlights and random approaches for selecting the observation-action

pairs in games and explore their impact on the POLIS’s performance. Moreover, it

would be interesting to see whether the participant’s background in programming has

any impact on POLIS’s performance.

One of the limitations of POLIS is regarding the DSL introduced in Figure 5.6. For

example, the control flow of our DSL only includes conditional statements (i.e., if-else

statements). Moreover, our DSL supports some predefined mathematical functions

and does not accept imported libraries and other helper functions. An interesting ex-

tension of POLIS could consider the setting that the DSL accepts iterative statements

(i.e., for and while loops). The programmers could benefit from defining their helper

functions and a large library of predefined functions by DSL. Therefore, it would be

interesting to discover whether POLIS can optimize the programs written in such a

more general-purpose DSL.

Another limitation of our work is that our experimental domains are two single-

agent games: Lunar Lander and Highway, used to evaluate reinforcement learning

algorithms. Using POLIS in commercial software and programming tasks could be an

essential next step as it shows the general usage of POLIS.

An important feature of POLIS’s optimized programs is that they are human-

understandable, as highlighted by the discussion in Section 5.4.3. Compared to the

original programs written by our participants, POLIS’s modified program retains the

majority of the original program’s structure. This observation draws attention to

an important advantage of POLIS. As an interesting direction for future research is

to do a user study to see whether programmers can understand POLIS’s optimized

programs. If the programmer who wrote the original code is able to understand

POLIS’s improved version and can learn from its solution, POLIS can be used as a
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teaching tool to highlight students’ mistakes and also provide a working solution for

each mistake. This tool will help students analyze their mistakes and reform them as

an opportunity to learn more about programming and problem-solving skills.
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Appendix A: Graphical User
Interface

Figures A.1 to A.5 show screenshots of the graphical user interface of our experiment.

51



Figure A.1: Describing the dynamics of the game, Highway.
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Figure A.2: Describing our DSL.

53



Figure A.3: Playing Highway for at most 10 minutes before start coding. At each step
of the game, the system shows observations at that step and time remaining. The
Help button refers to a page that contains game and language description details.
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Figure A.4: Writing a program to play Highway with maximum reward. Participants
can evaluate their programs on the game and see the observation at each step and
the action their programmatic policies take, along with a timer that shows how much
time remains. The Help button refers to a page that contains game and language
description details. Participants can pause whenever they want and analyze the
current observation and action. Also, they can stop the evaluation process at any
time, providing an opportunity for a quick debug.
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Figure A.5: Survey and demographics questions.
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Appendix B: Original
Representative Program

We show a representative program written by a participants of our study for Highway

and refer to it as p, in Chapter 5. Figure 5.11 shows the original version of POLIS’s

improved program for p.

1 def heuristic(o):
2 action = 0
3 if o[1] and o[3]:
4 action = 4
5 elif (o[5] == o[1] and o[5] - o[1] <= 200) or (o[9] == o[1]

and o[9] - o[1] <= 200):
6 if o[1] == o[5]:
7 if o[1] < 7.9317:
8 action = 2
9 else:
10 action = 0
11 else:
12 action = 2
13 else:
14 action = 1
15 return action

Figure B.1: Original POLIS’s improved program for the program written by a partic-
ipant of our study, which is shown in the main paper.
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Appendix C: DQN
Hyperparameters

We trained an agent with a two layers neural network, each includes 64 neurons, using

vanilla DQN algorithm for 2000 episodes with a decaying epsilon policy and batch

size = 64. Other hyperparameters are: starting ϵ = 1.0, and ϵ-decay rate = 0.99, and

ϵ-min = 0.01, and γ = 0.99. The learning rate is 0.0005 and the optimizer is ADAM.

We trained 50 agents with different random initialization to do the restart approach

explained in section 5.2.4.
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