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Abstract

A new family of model core potentials, based on the well-tempered basis
set expansion, was developed for the main group elements Li through Rn.
For alkali and alkaline-earth metal atoms the valence space includes the ns
valence shell and the outermost core (n-1)p shell. For the p-block elements,
the valence space comprises the valence ns and np shells together with the
(n-1)d shells. The Gaussian exponents are shared between the s- and p-type
functions, leading to basis sets with L-shell structure. Non-relativistic MCPs
were prepared for all atoms. Scalar-relativistic effects were incorporated in the
MCPs for all the atoms heavier than Ar using the relativistic elimination of
small components method in order to obtain the core and reference orbitals.
The new potentials were tested in molecular calculations at the RHF level
and the results were compared with the corresponding values given by the
all-electron calculations. Excellent agreement between the wtMCPs and AE
results was obtained. Molecular calculations that include electron correlation
were also done at the MP2 and DFT levels and results were compared with

experimental data. The wtMCP results agree well with experimental data.



Acknowledgements

[ would like to thank the persons who made this research project a very
successful one. Dr. Mariusz Klobukowski, my research supervisor, for his
excellent guidance and support, for providing me the opportunity to be part
of his research group as a budding computational chemist and for helping
me in solving problems ranging from simple computer to advance theoretical
problems. Dr. Pierre-Nicholas Roy and Dr. Gerda de Vries for spending their
precious time in reading and evaluating the thesis. Dr. Anna Jordan, my
Physical Chemistry Laboratory coordinator, for providing me a flexible time
schedule I needed during the writing of the thesis. Christopher Lovallo and
John Lo, my research co-workers for their support. Also, my family and friends
for their support when I need them.

I would also like to acknowledge the University of Alberta Department
of Chemistry for my TA scholarship and for the Linux workstations used in
the project, the National Science and Engineering Research Council (NSERC)
of Canada for the funding of workstations and; the U of A Computing &
Networking Systems (CNS) for the IBM RS6000 servers.



Contents

1 Introduction 1
1.1 Hartree-Fock Method . . . . . . .. . ... ... ... ..... 2
1.2 Post Hartree-Fock Methods . . . . . . ... ... ... .... 6
1.3 Density Functional Theory . . . . . . ... ... ... ..... 8
1.4 Pseudopotential Methods . . . . . . . ... ... ...... .. 10
1.4.1 Model Core Potential . . . . . ... ... ........ 11
1.4.2 Effective Core Potentials . . . ... ... ... ... .. 12
1.4.3 Comparison of MCP and ECP models . . . ... ... 13
1.4.4 Relativistic Pseudopotentials . . . . ... .. ... ... 13
1.5 BasisSets . .. ... ... ... ... ... ... 14
1.5.1 Slater and Gaussian Type Functions . . . .. .. ... 15
1.5.2 Well-tempered, MCP, and ECP Basis Sets . . . . . .. 16

2 The Development of the Well-tempered Model Core Poten-
tials 18
2.1 The Analytical Reference Functions . . . . .. .. .. ... .. 20
2.2 The wtMCP Valence Basis Sets . . . . . ... .. ....... 21
2.3 The Optimization Method . . . . . . . ... ... ....... 22
2.4 The Quality of the wtMCP . . . . . . .. ... .. ....... 24
3 The Applications of the wtMCPs in Molecular Calculations 32
3.1 Comparison of All-electron and wtMCP Results . . . . . . .. 33
3.1.1 Computational Method . . . . . . ... .. ... .... 33
3.1.2 Resultsand Discussion . . . ... ............ 35
3.2 Comparison of Experimental and wtMCP Results . . . . . . . 44
3.2.1 Computational Method . . . . . .. ... ... ..... 44
3.2.2 Resultsand Discussion . . . . .. ............ 46
4 Conclusions and Future Prospects 50
Bibliography 52
A Supplementary Tables for Chapter 3 60

B Supplementary Figures for Chapter 2 66



List of Figures

2.1

2.2
23

3.1

3.2

3.3

3.4

B.1
B.2
B.3

Non-relativistic Xe('S) 5s radial distribution function . . . . .
Non-relativistic Xe('S) 5p radial distribution function . . . . .
Non-relativistic Xe('S) 4d radial distribution function . . . . .

Comparison of calculated and experimental bond lengths for
diatomicmolecules . . .. . ... ... Lo
Comparison of calculated and experimental vibrational frequen-
cies for diatomic molecules . . . . . ... ... ... ... ...
Comparison of calculated and experimental bond lengths for
AH; and AH; molecules . . . ... ... .. ..........
Comparison of calculated and experimental bond angles for AH,
and AHz molecules . . .. .. ... ... ... ... ......

Scalar-relativistic Xe('S) 5s radial distribution function . . . .
Scalar-relativistic Xe('S) 5p radial distribution function . . . .
Scalar-relativistic Xe('S) 4d radial distribution function . . . .

46

47

48

67
68
69



List of Tables

2.1 Gaussian primitives of AE and wtMCP valence basis sets . . . 23
2.2 Radial expectation values for noble-gas atoms . . .. ... .. 28
2.3 Static dipole polarizability for the noble-gas atoms. . . . . . . 31
3.1 Contraction patterns of the AE and wtMCP basissets .. .. 34
3.2 Optimized geometries of homonuclear diatomic molecules . . . 35
3.3 Vibrational frequencies for diatomic molecules . . . . . . . . . 36
34 ResultsforAjions . .. ... ... ... ... ... . .... 37
3.5 Results for AFymolecules . . . .. ... ............ 38
3.6 Results for AFs molecules . . . . .. ... .. ... ...... 40
3.7 Results for AF; molecules . . . .. . ... ........... 41
3.8 Results for noble-gas fluorides . . . . ... ... ... ... .. 43
3.9 wtMCP basis set contractions used in correlation studies . . . 45

A.1 Bond lengths and vibrational frequencies for group 13 halides. 61
A.2 Bond lengths and vibrational frequencies for group 14 sulfides 62
A.3 Bond lengths and vibrational frequencies for diatomic interhalo-
gencompounds . .. .. ... .. ... ... ... ... ... 63
A.4 Bond lengths and bond angles for dihydrogen chalcogenides . . 64
A.5 Bond lengths and bond angles for trihydrogen pnictides . . . . 65



List of Abbreviations

AE

AO

ax
cGTF
DFT
ECP

eq

GTF
HF

KS
MCP
MP2
MP3
NR-wtMCP
pGTF
RESC
RHF
ROHF
SCF
SR-wtMCP
STF
WTBS
wtMCP
XC

all-electron

atomic orbital

axial

contracted Gaussian-type function
density functional theory

effective core potential

equatorial

Gaussian-type function

Hartree-Fock

Kohn-Sham

model core potential

second-order Moller-Plesset perturbation
third-order Moller-Plesset perturbation
non-relativistic model core potential
primitive Gaussian-type function
relativistic elimination of small components
restricted Hartree-Fock

restricted open-shell Hartree-Fock

self consistent field

scalar-relativistic well-tempered model core potential
Slater-type function

well-tempered basis set

well-tempered model core potential
exchange-correlation



Chapter 1

Introduction

Computational chemistry has become one of the most popular tools in mod-
ern chemistry. It uses theoretical models that have been developed over the
past three decades and exploits the number-crunching capabilities of modern
computers. With an increasing trend in performance-to-cost ratio of com-
puters, simulating experiments using computers has advantages - reduction
in operating expenses and increased safety in doing experiments by avoiding
expensive and toxic chemicals. By using computers, it is possible to simulate
experiments which may be very difficult or even impossible to do in even the
most sophisticated laboratory.

Today, computational chemistry has become a widely used tool and an
integral part of scientific investigation. It often works side by side with ex-
perimental chemistry to develop better theoretical models with more accurate
predicting power. It is used in explaining some puzzling experimental results.
In order to achieve such high accuracy, the development of new methods and/or
improving the capabilities of existing ones is necessary.

The quality of results from modern ab initio calculations relies heavily
both on the method used as well as on the quality of basis set used. There are
numerous existing basis sets that have been developed as can be seen later in
this chapter. In this thesis, a development of a new family of basis sets has
been done, and described in later chapters.

In this chapter, an introduction to the theories and methods relevant to
the development of the new basis set is discussed. First, a simple description
of Hartree-Fock theory and post Hartee-Fock methods is presented. It is then
followed by a brief discussion on pseudopotential theory. Finally, a discussion
of basis sets is presented. The detailed description and derivation of formulas
presented here can be found in many standard quantum chemical textbooks.
The major references used here include the books by Szabo and Ostlund(1],
Levine[2], Jensen[3] and McQuarrie[4].



1.1 Hartree-Fock Method

One of the major challenges for quantum chemists is finding an exact so-
lution to the non-relativistic time-independent Schrodinger equation

HY(R4, 1) = E¥(Ra,1)) (1.1)

which yields, upon solving, the wavefunctions ¥ and energies E. In Eq. (1.1),
H is the Hamiltonian operator for a system of nuclei and electrons described
by the position vectors R4 and r;, respectively, and is given in atomic units as

\ N M M ZAZB
A=-y vi-y vy Ausy iy 5 2
i=1 A=1 TiA =1 j>i Tl A=1B>A Rap

The first term in Eq. (1.2) is the operator for the kinetic energy of the
nuclei, TN. The second term is the operator for the kinetic energy of the
electrons, T,. The third term represents the Coulomb attraction between the
electrons and the nuclei, Vy., where r;4 is the distance between electron ¢
and nucleus 4. The fourth and fifth terms are V.., the potential energy of
repulsions between electrons i and j separated by a distance r;;, and VNN, the
potential energy of repulsions between nuclei A and B separated by a distance
R .p, respectively.

Eq. (1.1) is very difficult to solve and approximations must be made. The
key to simplifying the solution to Eq. (1.1) is to separate the electronic from
the nuclear degrees of freedom. This approximation, known as the Born-
Oppenheimer approzimation, says that the true molecular wavefunction can
be approximated as:

U(Ra, 1) = Va(r; RA)UN(RL). (1.3)

The electrons are much lighter and so they move much faster than the nuclei.
During the entire electronic motion, the nuclei move very slowly and the effects
of nuclear motion can be considered negligible. Hence, we can think of the
electrons in a molecule as moving in the field of fixed nuclei. Within the Born-
Oppenheimer approximation, Ty can be neglected and Vi can be considered
constant since the nuclear positions are fixed. Since Vyy is a constant, it does
not affect the electronic wavefunction; it only adds up to the energy eigenvalue.
Therefore, we can write the electronic Schrodinger equation as

(Het + Vn)¥o = Epy Vo (1.4)
where
N N 1 ) N M N N 1
H, = —ZEV ZZ +ZZ— (1.5)
i=1 i=1 A=1 T i=1j>i i)

M M ZA ZB

A=1B>A ‘'AB
Eiot = Eq+ Vnn. (1.7)



Omitting Vyn from Eq. (1.4), a purely electronic Schrédinger equation is
obtained, i.e.

-

Hel‘I’el = Eel“pel (18)

V¥, is the electronic wavefunction describing the motion of NV electrons in the
field of M point charges. Both ¥, and E.; depend parametrically on the
nuclear configuration:

Vo = Va({Ra}) (1.9)
Eq = Eq({R4}). (1.10)

This means that for different arrangements of the nuclei, there are different
values for ¥, and E,. Equations (1.9) and (1.10) make it possible to define
the potential energy surface of a molecule as a function of nuclear coordinates.

Although Eq. (1.5) is simplified, it still contains a many-body Hamiltonian
and is very difficult to solve. Analytic solutions exist only for systems having
one electron. The Hartree-Fock(HF) method offers a very popular approach to
solving the many-body eigenvalue problem. The method allows to transform
the full N-body equation into N single-body equations.

For a closed-shell system involving fermions such as electrons, the ground-
state Hartree-Fock wavefunction is given by a single antisymmeterized func-
tion, the Slater determinant, of N spin-orbitals, ¥;(x;):

lm (x1) T/fl (x2) ... ¥i(xn)
Ty = \/% U?(:X1) w(:x'z) Uz(:xN) = 1 (x1)va(Xa) - - - ¥ (Xn))
Un(x1) ¥n(x2) ... ¥n(xp)

(1.11)
where the variable x corresponds to space, r, and spin coordinates, 0. The
spin-orbital, ¥;(x;), is a simple product of space and spin functions, o and 3:

a(oj)

Yi(x;) = ¢i(r;) x . 1.12
) = o) < { 50 (112
According to the variational principle, the best wavefunction ¥, is the one

that minimizes the ground state energy, Ej:

Eo = <‘I’0 lf{e[ ‘I’o> . (113)

Using the wavefunction in Eq. (1.11) in Eq. (1.13), the energy E, becomes a
functional of the spin-orbitals, ¥;(x;). Finding the best spin-orbitals which
minimize E, corresponds to finding the best possible approximation to the
ground state of the N-electron system described by H,;. Such an approxima-
tion, which reduces the problem of N-electron equations to a set of 1-electron
eigenvalue equations, is known as the Hartree-Fock equation:

F(x)vi(x1) = evi(x,), i=1,2,...,N. (1.14)

3



Furthermore, by exploiting the orthonormality of the spin-orbitals, the HF
equation can be written in terms of spatial orbitals:

F(1)¢:(1) = 0:(1), i=12,...,N (1.15)

where 1 represents the spatial coordinates of the electron under consideration,
here taken to be labeled by 1. In Eq. (1.15), F(1) is the effective one-electron
operator called the Fock (or Hartree-Fock) operator, ¢;(1) is the ith spatial
orbital and the eigenvalue ¢; is the orbital energy of spatial orbital ¢;. The

Fock operator can be expressed as
F(1) = k(1) + 377 (1). (1.16)

The term izc“e( 1), the core-Hamiltonian operator, describes the motion of a
single electron in the field of all other nuclei. It consists of the operator for the
kinetic energy of one electron, and potential-energy operators for the attraction
between one electron and the nuclei:

M Z\

A=1 714

heore(1) = —%vf - (1.17)

The term 977 (1), the Hartree- Fock potential operator, models electron-electron
interaction. For a closed-shell system, it is defined as:

N/2
#HF(1) = 2_: [2J;1) - K;(1)] (1.18)

where jj(l) and K (1) are the Coulomb and exchange operators, respectively.
The sum over j runs over the occupied spatial orbitals ¢; of the N-electron
molecule. The Coulomb and exchange operators are defined as:

oy ]2
swe = | [48] a0 (1.19)
K;(1)¢:(1) = [/%drz] ;(1). (1.20)

The Coulomb operator jj(l) represents the average repulsion experienced by
electron 1 due to the charge distribution associated with electron 2. The ex-
change operator K;(1) represents of the electrostatic interaction of two over-
lapping charge densities. It arises from the antisymmetry requirement imposed
on the total wavefunction ¥ with respect to electron interchange and has no
classical interpretation.

The HF equation is a differential equation in which the Fock operator,
F, depends on its own eigenfunction. Solving the HF equation requires the
knowledge of the wavefunction. However, the wavefunction is not known ini-
tially. In cases such as this, the problem must be solved iteratively. This is

4



usually done by using an initial guess to the wavefunction to calculate the new
wavefunction. Then, one takes the new wavefunction as the next guess. The
procedure is repeated until the old and the new wavefunctions do not differ.
This method is known as the self-consistent field (SCF) method. The problem
of solving the HF differential equation was made possible by expanding the
spatial orbitals ¢; as a linear combination of a known set of K one-electron
basis function xz [5]:

K
1) =3 xs(l)es:. (1.21)
B=1
Substituting Eq. (1.21) into the HF equation (1.15) gives
. K K
Fi(1) Y- xs(Desi =& Y xs(1)ea (1.22)
B=1 B=1

which, after multiplying from the left by a specific basis function, e.g., xa, and
integration, gives the Hartree-Fock-Roothaan-Hall (HFRH) equations[6]

Z as —€Sag)csi =0  a=1,2,...,K. (1.23)

Eq. (1.23) can be conveniently represented in matrix notation as:
FC = SCe. (1.24)

The F matrix contains the elements F,g
Fas = (xa(D)|F(1)|x5(1)) (1.25)
N/2 ) )
Xﬁ> +) [2 <Xa IJ.‘ Xﬂ> - <Xa IKi Xﬁ>] . (1.26)
=1
The S matrix contains the overlap of elements S,5 between basis function

Sag = (Xa(1) | x5(1)); (1.27)

Cis a K x K square matrix of the expansion coefficients cg;

ilcore

= (X

Gy G2 -+ ClK
€ €2 - Ok

c=| . T e (1.28)
Ck1 Ckr2 '+ CKK

and € is a diagonal matrix of the orbital energies ¢;

€1 0O --- 0
0 ¢ - 0

e=| . . . .| (1.29)
0 0 - ex



The solution to Eq. (1.24) requires finding the matrix C and ¢. In solving
the HFRH equation via the SCF procedure, an initial guess of the expansion
coefficients cg; is made to form the Fock matrix. The Fock matrix is then
diagonalized to obtain a new set of coefficients which is then used for forming
the new Fock matrix. The procedure is repeated until there are no more
changes between the old and the new set of coefficients within some given
threshold. The converged set of coefficients constitutes the SCF solution.

The generalized HF energy (or the total energy) of any closed shell system
using N-occupied orbitals is:

N/2 N/2 N/2 MM 7 78
Eur =23 hg™ + 3301 i) - @15+ . 3 =2 (130)
i=1 =1 j=1 A=1B>4 4B
where
hire = (ou(1) [Rere(1)] :(1)) (131)
Gl = (4o |—|ame @) =1, (1.32)
Gilin = (aWe@)|=|smeae) =K, (3

In a closed shell system, restricting each spatial orbitals to have two elec-
trons, one with a and one with £ spin, is known as the Restricted Hartree-Fock
(RHF) method. For open shell systems, it is known as the Restricted Open-
shell Hartree-Fock (ROHF) method.

1.2 Post Hartree-Fock Methods

The Hartree-Fock wavefunction is a good approximation to the many-body
wavefunction for solving the Schrédinger equation. Although the HF method
treats electron interaction in an average way, it is able to account for about
99% of the total energy of the system using a sufficiently large basis. In order
to improve the HF approximation, instantaneous electron-electron interaction,
t.e. electron correlation, must also be considered. The effect of the electrons
being correlated is often described by the electron correlation energy, E ..
Ecorr is defined as the difference between the exact nonrelativistic energy of
the system, (Eng) and the HF energy, (EyF), obtained by using a sufficiently

large basis set,
Ecorr = ENR - EHF (134)

A general method of improving the HF results is to consider more than one
Slater determinant, Eq. (1.11), for the exact wavefunction. Such determinants
may be constructed using the solutions of the HFRH equations. By solving
the Roothaan-Hall equation of a closed-shell N-electron system using K basis
functions, there are 2K spin-orbitals of which V are occupied and (2K — N)

6



are virtual spin-orbitals. From these 2K spin-orbitals, a large number of deter-
minants can be formed. Among these determinants, aside from the V lowest
energy spin orbitals, |®Pyr ) = |®g ), are singly, |$? ), doubly, <I>?}’ ), etc., up
to n-tuply excited determinants. These determinants can be used as a basis
to expand the exact wavefunction:

I\Il)—c0|d>o)+z:c |92 )+ Y (T )+ (1.35)
i<j; a<b
The determinants [®g ), |®¢? ), ..., are kept fixed, while the coefficients ¢; are

optimized. The best possible expansion coefficients c's are determined and the
way they are calculated varies from one method to another. If the coefficient
co is large i.e., close to 1, the HF wavefunction is a good representation of the
true wavefunction.

There are several techniques for calculating electron correlation that have
been reviewed|7, 8, 9]. Very commonly used among these methods are config-
uration interaction (CI), coupled-cluster (CC) and perturbation theory (PT).
Only the perturbation theory is discussed here since the other methods are
not used in this thesis. For a discussion of CI, see Ref. [1] and for a review of
the CC method, see Ref. [10].

Estimating the electron correlation energy based on perturbation theory
was one of the earliest post-HF procedures. The basic idea is that if there
are two Hamiltonian operators that are fairly close to each other, for one of
which the exact solution is known, then the difference between them is a small
perturbation to the solvable Hamiltonian operator.

The Mopller-Plesset perturbation theory (MPPT)[11] is commonly used in
approximating the electron correlation energy. Recalling from Eq. (1.5), the
true nonrelativistic electronic Hamiltonian (H,; = H) for an N-electron system

can be rewritten as: N
. N 1
=Y heme(i) + Z Z — (1.36)
i=1 i=1 j>i Tij
which takes into account all electron correlation. If the HF wavefunction
corresponds to the unperturbed Hamiltonian, H(,

N N
HO® = Z F(i Z [hcore HF(Z-)] (137)
=1 1=1
then electron correlation is seen merely as a perturbation
c e N N N N X
A =H—H()—er— > 3 [Inls) - Em(5)]. (1.38)
=1 3>t Jj=lm=1

The second-order Moller-Plesset perturbation theory (MP2) is widely used
in molecular calculations because it is relatively inexpensive and usually gives



a reasonable portion of the correlation energy. For the ground state of a
molecule, this energy is given as

28 &1 [(ij | ab) — (ij | ba)]?

Y = 3%

1<ja<b

(1.39)

€ +€ —€ — €

where the shorthand notation similar to Egs. (1.32) and (1.33) for the two elec-
tron integrals has been used. For third- and fourth-order MP energy correction
formulas, see derivation by Krishnan and Pople[12].

1.3 Density Functional Theory

Post-Hartree-Fock methods are very good in approximating the exact solu-
tion to the Schridinger equation. However, even for small molecular systems
calculations are very expensive and time consuming especially if a very large
basis set is used. This problem has been addressed by another popular and
powerful method called the density functional theory(DFT). In the DFT, the
svstem is described by the electron density p which depends only on three
variables z, y and z. No matter how large the system is, the problem is
always 3-dimensional and not 3N-dimensional as in the HF-based methods.
The description of a system from a wave functional approach to density func-
tional approach offers a tremendous reduction in computational effort needed
to understand electronic properties of molecular systems.

Hohenberg and Kohn([13] proved in 1964 that for N interacting electrons
moving in an external potential v(r;), there is a universal functional F{p(r)]
of the ground-state electron density p(r) that minimizes the energy functional

Elp(r)] = Flp(r)] + [ plr)u(r;)dr (1.40)

The minimum value of the functional E is Ej, the ground-state electronic
energy. The theory is exact only for a nondegenerate ground-state. For a
discussion on degenerate ground-states, see Parr and Yang[14].

The major problem with the above theory is that neither the functional
F[p(r)] is known nor the ways of finding p(r) without first finding the wavefunc-
tion. In 1965, Kohn and Sham[13] extended the applicability of the Hohenberg
and Kohn theorem by devising a practical method for finding p(r). This is
known as the Kohn-Sham (KS) equation, which is very similar to the Hartree-
Fock equation:

FRSoES(r) = f'S¢K5(r) (141)

where F'XS is the effective one-electron Kohn-Sham operator, ¢/5(r) are Kohn-
Sham orbitals and ¢; are Kohn-Sham orbital energies. The interpretation
of Kohn-Sham orbitals and orbital energies was discussed by Stowasser and
Hoffmann[16]. A comparison of HF and KS determinants as wave functions



was discussed by Bouf{17]. The Kohn-Sham orbitals, just like in the Hartree-
Fock model, can be expanded as a linear combination of a set of K basis
functions, xa
K
¢F5(r) = Y Xa(r)cas (1.42)
a=l
where the expansion coefficients {c,;} are found iteratively.
In the Kohn-Sham formalism, the electron density of the system is calcu-
lated as:

N/2
r)=2) |oir)". (1.43)
i=1
The Kohn-Sham operator, FX5(1), is defined as
. 1 M ZA N/2
FKS(1) = -§V’f > = - +2ZJ + Vye(r) (1.44)
A=1 =
where J; is the Coulomb repulsion term
or2) 4, (1.45)
T12

and Vxc(r) is the exchange-correlation potential term

dExc[p(r)]
op(r)

The ground-state energy functional in Eq. (1.40) can then be expressed as:

) - 3 [ 20

1A

Vie(r) = (1.46)

N/2

Eolp(r)] = 22<¢,<r )57

-+ 2 // P l‘[ dl‘ldl'z +E,\C[p l‘)] (147)

If the exact form of the exchange-correlation energy Exc[p(r)] is known, then
the exact ground-state energy and density cf the system can be calculated
readily. However, Exc[p(r)] is not known. Exc[p(r)] is usually approximated
by separating it into two parts, pure exchange and pure correlation functionals

Exclp(r)] = Ex[p(r)] + Ec[p(r)] (1.48)
and the approximation is done within the local density approximation (LDA),

generalised-gradient approximation (GGA) or a hybrid of the two.
In the local density approximation, Exc[p(r)] is expressed as

E52Ao(e)] = [ exclot)lp()dr (1.49)
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where € xc[p(r)] is the exchange-correlation energy per particle (or energy den-
sity) of a homogeneous electron gas of density p(r). The values of ¢ x¢[p(r)] are
based on Monte Carlo calculations by Ceperley and Alder[18] and interpolation
procedures provided by Vosko, Wilk and Nusair (VWN)[19]. The term LDA
in a more general case is called the local spin density approrimation (LSDA).
LSDA usually gives good results for systems with a fairly large homogeneous
charge density p(r). The main shortcoming of LSDA is when it is applied
to a system with large inhomogeneity; it tends to overestimate electron cor-
relation resulting in the over-binding of molecules, i.e., too short bond lengths.

In order to improve the LSDA approach, Exc[p(r)] must not only depend
on the electron density but also in its gradient, i.e.,

ESEp(r)] = / exclp(r)]p(r)dr + / Gxclp(r), Vp(r)|dr (1.50)

This non-local method is called the gradient corrected or generalised-gradient
approrimation (GGA). The functional G x¢ usually provides corrections to the
limitations of E'xc in LSDA. However, there is no universal formula for obtain-
ing Gxc. A large number of density functionals are available in the literature
including functionals due to Becke (B or B88[20], B95[21], B97[22]), Perdew
and Wang (P86(23], PW86[24], PW91) and Lee, Yang and Parr (LYP[25]) to
name a few.

Another method for formulating density functionals is by expressing the
exchange-correlation energy by a suitable combination of LSDA, exact ex-
change and gradient correction terms. The resulting functional is often called
a hybrid functional. An example is the Becke 3-parameter functional|26]:

ER% = EXEP? + a(EF* — EXPY) + bBAER + cAEZS! (1.51)

where a, b, and ¢ are semiempirical coefficients to be determined by an appro-
priate fit to experimental data, ES** is the exact exchange energy, AE% is
Becke’s correction to LSDA for exchange, and AESC* is the gradient correc-
tion for correlation. Commonly used hybrid functionals are the BSPW91 and
B3LYP.

1.4 Pseudopotential Methods

In the methods described in the previous sections, all the electrons are ex-
plicitly treated and each occupied molecular orbitals is described by basis set
with which the expansion coefficients have to be determined. The larger the
system, the larger the basis needed to describe the molecular orbitals and the
more expansion coefficients have to be found. From a computational point of
view, an increase in the size of a chemical system under investigation translates
into higher demands in computational resources, e.g., CPU time, memory, disk
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space. However, using the fundamental chemical fact that most of the chemi-
cal properties of molecular systems are described by the interaction of valence
electrons (while the low lying core electrons remain relatively chemically in-
ert), performing calculations only on the valence electrons and replacing the
interactions among the core electrons with some potential will lead to a large
reduction of the basis set size, and lesser demand for computational resources.
This basic idea was introduced by Hellman[27]. He proposed that the chemi-
cally inert electrons could be replaced by a suitable potential function called a
pseudopotential. A detailed discussion on pseudopotential theory can be found
in Ref. [28]

The aim of the pseudopotential method is to divide the total number of
electrons into N, core electrons and N, valence electrons by constructing po-
tentials which only depend on the coordinates of the XV, valence electrons and
take into account the influence of the chemicaly inert N, core electrons. In
the pseudopotential method, the electronic hamiltonian for the N, electrons
is written as:

H™ = Bvh(1,2,... N) =S k(i) + 33 —. (1.52)

i=1 =1 3>1
The one-electron hamiltonian operator A(:) is defined as:

h(i) = -%v? +VPE (1.53)
where the first term represents the kinetic energy of the valence electrons and
the second is the core potential operator. V.22 represents terms such as the
potential energy of the valence electron i interacting with an effective nuclear
charge (arising from the screening of the nucleus by N, core electrons), a non-
local term that models the Coulomb and exchange interactions between the
core and valence electrons, and a projection operator. There are two types of
pseudopotential methods in use, namely, the model core potential (MCP) and
the effective core potential (ECP). Both methods try to model VPP by using
local potentials and by utilizing Gaussian-type functions with some adjustable

parameters.

1.4.1 Model Core Potential

The model core potential method was proposed by Bonifacic and Huzi-
naga in mid-1970s[29, 30, 31, 32, 33] and was successfully tested in molec-
ular calculations[34, 35, 36]. The MCP method was recently reviewed by
Huzinaga[37, 38, 39]. In the MCP method, V.22 in Eq. (1.53) for each atomic
center a is replaced by a potential representing the effect of effective nuclear
charge z, = Z —~ N,, the Coulombic and exchange interaction between the core

and valence electrons, V;®, and a characteristic projection operator P2, which
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ensures orthogonality of the valence orbitals to all core orbitals ¢2, i.e.,

yMCcP _ Z_a + Ve 4 pe (1.54)

Tia

In the MCP formalism, the one-electron hamiltonian A(i) becomes[40, 41]

1 z . -
i) = =5V + (- 2= + Ve + ). (1.55)
2 Tia
V:-“ is the spherically-symmetric local potential approximating the exact
atomic non-local core potential,

Ve = =22 3 Apuriteetaria (1.56)
Tia
where 7, is 0 or 1 (see Ref. [42]) and the parameters {Aiq, (ra} are specific

for the atom a.
P? is the projection operator,

P =Y BXlo2)(s2l, (1.57)

which shifts the core orbitals into the virtual space making it possible for the
correct representation of the nodal structure of the valence orbitals. The shift
parameter B is defined as:

B® = —fee@ (1.58)

c c ¢

€z being the core orbital energies. A fixed value of f2 is usually chosen making
the MCP model depend only on Ag,, and (.. The parameters Ay, and (i, are
optimized by fitting the MCP orbital energies and shapes to reference atomic
Hartree-Fock calculations. The fitting is done by minimizing the following
function:

a:;[w;

where w; are weight factors, ¢; are orbital energies, and R; are radial functions
defined over a grid ry.

re re 2 -
€ f_ e;-"CP' + wJRZTE [RJ- Hrg) = Rj-"cp(rk)] ] (1.39)
k

1.4.2 Effective Core Potentials

The effective core potential method is another pseudopotential method
which is commonly used in computational studies. For reviews of the ECP
method, see Refs. (43, 44, 45] and for a formal analysis of the ECP method,
see the recent paper of Dyall[46]. In ECP, VPP is represented by a semilocal
pseudopotential

lmﬂz
VECP _ Utocal 4 Z [Ul _ Ulocal] P (160)
{
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where the /,,,,; is the maximum angular momentum of the core orbitals. VECP
is usually given in terms of Gaussian functions [47, 48] as:

VEP = -2 4 Y Aye R (1.61)
t [

core

where z, denotes the charge of the core on atom a, and A4 and (; are ad-
Justable parameters of the model. The P, represents the projection operator
onto the angular momentum [/ and is defined as:

Pi= 3 |Yim) (Yim| (1.62)

where Yi,,, is the usual spherical harmonic function. Using a semilocal represen-
tation eliminates the necessity for projection onto specific orbitals and allows
for the selection of the pseudopotential of the appropriate angular symmetry.

The parameters Ay and (i in the Gaussian expansion of the radial poten-
tial are determined by fitting to either atomic all-electron HF calculation or
excitation energies.

1.4.3 Comparison of MCP and ECP models

Pseudopotential methods offer large computational savings over their all-
electron counterparts due to the reduction of the number of electrons explicitly
treated in the calculations without compromising too much the accuracy of the
results(45]. In performing all-electron calculations, all radial nodal structures
of orbitals naturally arise. In the development of MCP, these radial nodal
structures are preserved via the projection operator. In the ECP approach,
however, the valence atomic orbitals are converted to nodeless psendo-orbitals.
This is accomplished by fitting to the radial function of the reference orbital
at a large distance from the nucleus. Although the valence region is well
represented, the region close to the nucleus is not.

The retention of the correct nodal structure in the MCP approach is an
advantage over their ECP counterpart. This was shown to be very important
in the study of properties that involve electrons near the nucleus, like spin-
orbit coupling constants calculations[49] and atomic correlation energies[50].
However, in terms of computational speed, particularly in the evaluation of
two-electron integrals, ECPs perform faster. This is because fewer basis func-
tions are needed to represent the nodeless radial function as compared to MCP.

1.4.4 Relativistic Pseudopotentials

Real chemical systems intrinsically incorporate relativistic effects. As the
electron moves at a significant speed comparable to the speed of light, its mass
increases. The resulting increase in the centrifugal force causes the s and p
orbitals to contract closer to the nucleus. This contraction creates an extra
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shielding of the nucleus causing the higher angular momentum orbitals d and
f to expand (indirect relativistic effect). The balance between the degree of
orbital contraction and expansion will dictate the appropriate bond lengths
in molecular systems. Another main effect caused by relativity is spin-orbit
interaction. Spin-orbit effects result in the splitting of states in an atom.

To computationally describe chemical systems accurately, especially those
which involve heavy atoms, relativistic effects must also be included in the
calculation. For lighter nuclei, relativistic effects can be considered negligible.
However, for heavier nuclei, relativistic effects become significantly important
and must not be neglected. For a review on the theory of relativistic effects
as applied to electronic structure calculations, see Ref. [51]

Some portion of the relativistic effects can be indirectly incorporated into
pseudopotential methods. In generating a relativistic pseudopotential, the
pseudopotential parameters are determined via the same fitting procedure de-
scribed above. However, instead of doing non-relativistic HF calculation to ob-
tain the reference atomic orbitals and orbital energies, a modified HF model to
include relativistic effects is often used. This approach is called quasirelativistic
Hartree-Fock. The Cowan-Griffin relativistic HF equation[52] is often used to
generate the reference quasirelativistic atomic orbitals and orbital energies[40]
which would then be incorporated in the MCP or ECP core potentials.

1.5 Basis Sets

The solution to the wave functional and density functional method requires
the use of spatial orbitals ¢; expanded as a linear combination of a set of one-
electron basis functions,

¢i(r) = Z Xa(r - Ra)cax'-

The use of a complete set of basis functions results in an exact solution. In
practice, however, this is not possible because of the limitation in computer
resources available. Instead, a finite set of basis functions is used. Basis sets
must be properly chosen if accurate molecular results are desired. In choosing
basis functions, one has to consider two basic requirements: first, the function
must correctly describe the qualitative description of the orbitals, i.e., it must
exhibit correct asymptotic behaviour as r — 0 and must not decay too rapidly
at r — oo and second, it should be relatively easy to evaluate computation-
ally. There are two types of basis functions currently employed in molecular
calculations, namely, Slater-type functions (STF) and Gaussian-type functions
(GTF). The former satisfies the first requirement while the latter satisfies the
second as we shall see later. This section discusses a brief introduction to
basis functions and some of the terms and notation associated with them. For
a more detailed and thorough reviews on basis sets, see Refs. [53, 54, 55).

14



1.5.1 Slater and Gaussian Type Functions

The basis function x is normally expressed in spherical coordinates as

x(¢,n, l,m;1,0,0) = Ruy(C;7)Yim(6, 9) (1.63)

where R, (r) is the radial distribution function and Y, (6, #) is the spherical
harmonic function describing the shape of the orbital. The labels n, [ and
m are the principal, angular momentum and magnetic quantum numbers,
respectively.

The Slater-type functions were initially used in atomic and molecular cal-
culations due to their similarity to the atomic orbitals of the hydrogen atom.
They are described in spherical coordinates as[53]:

x(¢,n,l,m;r,0,6) = Nr"le Yin,(0,¢) (1.64)
N = (20)**z[(2n)!]? (1.65)

where N is the normalization constant and ¢ is the exponent that determines
the extent of the radial function. Although STF has the correct behavior at
r — 0 and at r — oo, the function is not good enough for fast evaluation of
the two-electron integrals. GTFs offer a solution. GTFs are described in two
different forms - in spherical and in Cartesian coordinates[53]. The spherical
Gaussian form is expressed as

X(Cnl,m;7,8.6) = Nr*“le Y (6, ¢) (1.66)
N = 2%(2n — )N]"2(2r) "5 ¢ 5
n = I+1,1+3,l+5,... (1.67)

The GTF in Cartesian Gaussian form, on the other hand, is

(¢, lm,n; z,y,2) = Ne™¢zly™zn (1.68)
1 [l+m+n i}
N = @2m)i[(2l — )NEm - )N2n — )R (1.69)

where N is the normalization constant, z, y and z are Cartesian coordinates,
and [, m and n are just integer exponents not to be mistaken for quantum
numbers. Normally, the sum of [, m and n is defined as L, (i.e., L = z+y+2)
and is associated with the shape of the orbitals. L = 0 corresponds to s-type
function, L = 1 to p-type functions, L = 2 to d-type functions, and so on[55].
In both forms of the GTF, ( represents the orbital exponents. Although a
GTF exhibits a zero slope instead of a cusp as r — 0 and decays too fast
as v — oo, evaluation of the two-electron integrals is rather fast and easy to
implement computationally. Though a single GTF does not properly describe
the orbital as the STF does, by combining a reasonable number of GTFs with
different exponents and coeficients, an approximation to the shape of STF
can be obtained. However, combining a large number of GTFs also increases
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computational demands. The solution is to form linear combination of GTF
(from now on refered to as primitive GTFs) with coefficients that are not
allowed to cl::nge during the SCF procedure[l, 53|:

XTF = Z LT  (Gir) (1.70)

where x<GTF are called contracted GTFs (cGTFs), d%; are refered to as con-
traction coefficients and L refers to the type of "orbital shapes” described
above. x‘GTF determines the number of basis function that is used in molec-
ular calculations. ‘

There are two schemes for making contracted basis sets, namely, segmented
and general. However, it is not the intent of this thesis to discuss in great de-
tail the different terms and numerous notations found in the literature. Only
a general discussion is presented. In the segmented contraction scheme, a
given set of pGTFs is grouped into smaller sets of functions in which the
number of primitives and contractions are explicitly specified and is given in
the order of increasing angular momentum quantum number. For example,
(742111,5311,11) or (742111/5311/11) means that there are 6 s-type basis
functions consisting of 7, 4, 2, 1, 1, and 1 primitives, respectively; 4 p-type
basis functions consisting of 5, 3, 1 and 1 primitives, respectively; and the d-
type basis function has 2 uncontracted primitives, respectively. In the general
contraction scheme, the same Gaussian primitives of a given angular momen-
tum appear in all the contracted functions having the angular momentum,
but with different contraction coefficient. This form has been introduced by
Raffenetti in 1973[56].

There are several ways of obtaining the best expansion x57F. One ap-
proach is by varying dﬁ'i and the exponents (; until the lowest total HF energy
of the atom is attained. Sometimes the exponents are functionally related to
each other: an example of this is the well-tempered basis set.

1.5.2 Well-tempered, MCP, and ECP Basis Sets

The well-tempered gaussian basis set (WTBS) was introduced by Huzinaga,
Klobukowski, and Tatewaki[57]. In the WTBS expansion, the N total number
of exponents ¢ are generated by the following formula

CO = a, Cl =aﬂ
k )
G = Ck—lﬂ [1 +7(N) } ) k= 2,...,N (171)

where the parameters a, 8, v and 4, common for the radial functions of all
angular symmetries, were optimized by minimizing the ground-state energy
of an atom. The Gaussian primitives of the WTBS share exponents between
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s—, p—, d—, and f—type orbital functions. The WTBS is a large basis set
designed for accurate all-electron calculation.

Due to tremendous savings in computational cost offered by pseudopoten-
tial methods, various pseudopotential basis sets were also developed. Large-
and small-core pseudopotentials as well as quasirelativistic pseudopotential
basis sets have been published. For the atoms from the main-group, a large-
core pseudopotential comprise the outermost ns and np shells and a small-core
pseudopotential also includes the (n-1)d shell in the valence space.

In the MCP model, the basis set is often tabulated as parameters of the
expression given in Eq. (1.56) for optimized sets of { Axq, (ka}, and Eq. (1.57)
for the shift parameter B, and core orbitals. MCP non-relativistic and quasi-
relativistic parameters are available for most of the elements of the periodic
table[58, 59, 60] and were calibrated and benchmarked for use in molecular
calculations[61, 62]. The MCP parameters and valence basis sets have been
incorporated in the CADPAC[63] suite of programs and the developmental
version of the GAMESS-US[64, 65] program.

In the ECP model, the basis sets are usually tabulated as parameters of
the Gaussian expression:

M
U’ECP(T) = z ‘Airﬂ.‘e-ﬁr'z (172)
i=1

where r is the distance from the nucleus raised to power n;, and A; and (; are
sets of optimized ECP parameters. There are different ECP basis sets available
in the literature. Among these ECPs were due to Hay and Wadt[66, 67, 68] and
Stevens, Basch, Krauss, Jasien and Cundari(SBKJC)[69, 70, 71], also known as
the compact effective core potentials. These two ECPs are part of the official
release of Gaussian[72] and GAMESS-US programs. ECPs due to Ermler,
Ross and Christiansen(73, 74, 75, 76, 77, 78, 79] have been published for all
the elements of the periodic table. ECPs due to Dolg, Stoll and Preuss[80, 81,
82, 83, 84, 85, 86, 87, 88, 89] have been successfully tested and incorporated
in TURBOMOLE[90] and Molpro[91] suite of quantum chemistry programs.
Otbher relativistic ECP (RECP) parameters[92, 93, 94, 95] have been published
and successfully used in molecular calculations.
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Chapter 2

The Development of the
Well-tempered Model Core
Potentials

The model core potential is a valence ab initio method that can be used for
the prediction and rationalization of experimental results without resorting to
expensive all-electron calculations and without the need for empirical adjust-
ment, characteristic of semi-empirical approaches. The model is capable of
fully representing the correct nodal structures of valence orbitals. The MCP
valence basis sets and associated parameters that have been published[58, 59,
60] were developed by using a small number of pGTFs in which the expo-
nents are optimized via a fitting procedure using the solution to the numerical
atomic Hartree-Fock equations as the reference function[40]. The number of
nodes included to represent the valence orbitals depended on the number of
pGTF used for their analytical representation.

The analytic form of the Hartree-Fock model is a system of integrodiffer-
ential equations, i.e,

14 l(l+1) Z .
{—ggr—g‘*u*?‘*‘vﬂp(r)}ﬁnl(r)

2r?

= enllzﬂl(r) + z z 6nl,n'anl,n'l(r) (21)
n !

where §fiF(r) is the usual nonlocal HF potential introduced in Eq. (1.18)
consisting of the Coulomb and exchange integrals. The numerical HF method
is based on the finite difference approximation where the radial function Ry(r)
in Eq. (2.1) is approximated at a discrete set of grid points r;. The differential
and integral operators involved in the analytic HF equations are replaced by
their finite difference counterparts.
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One of the most successful implementations of the nonrelativistic numerical
HF method for the atoms was incorporated in the multiconfiguration Hartree-
Fock (MCHF) program developed by Froese Fischer(96, 97, 98]. The MCHF
represents the wavefunction as a linear combination of configurational state
functions(CSFs) ®(vyLS):

m
YMEHE(yLS) = Y e ®(wLS), (2.2)

i=1
as the truncated form of Eq. (1.35). In Eq. (2.2), both the expansion coeffi-
cients ¢; and the CSF &; are optimized. The approximation using this linear
combination of determinants is done in order to recover the electron correla-
tion absent in the pure HF method. For the details on the numerical MCHF
procedures and results, see Ref. [98].

Relativistic effects are incorporated in the MCPs via the Cowan-Griffin[52]
relativistic modification of the HF equations given by Eq. (2.1). This is accom-
plished by adding to Eq. (2.1) the mass-velocity, X" (r) and Darwin, 55(r)
potential operators[40]:

{_lf_ L+ _f. S (r) + 5MV () fz,?,(r)} RY(r)

2dr? 2r?
+ZZGZ“RZ§M r (2.3)

where
BV (r) = -5 [0 = u(r)] (2.4)

and

D o?/4 dim(r) (d 1
O(r) = 6‘01 +a? (el — ou(r)] /2 dr (dr 'r) (2:3)

The operator 9,(r) is Cowan’s local approximation to the non-local Hartree-
Fock potential 4" and a is the fine structure constant. Numerically solving
Eq. (2.3) and using its solutions (%] - the orbital energies and R7(r) - the
radial functions ) as reference for determining the MCP parameters leads to
quasirelativistic MCPs.

In this thesis, a new family of MCPs were developed in a different approach.
Instead of using numerical reference functions, the development proceeded by
using analytical reference functions expanded in terms of a very large all-
electron basis set. The well-tempered basis set(WTBS)[57, 99] was chosen for
this thesis. The WTBS is an all-electron basis set designed to give results that
are extremely close to the Hartree-Fock limit. Since WTBS can provide high
quality results, by developing MCP valence basis sets based on the WTBS,
the same quality of results is expected in the resulting new MCPs. These
new MCPs have been called the well-tempered model core potentials (wtMCP)
to emphasize their well-tempered origin. The details of the development of
wtMCPs and some atomic results obtained from using the wtMCPs are the
subjects of the rest of this chapter.

19



2.1 The Analytical Reference Functions

The nonrelativistic analytical reference functions are generated by solving
the system of HF equations described in the previous chapter. The relativis-
tic analytical reference functions, on the other hand, are usually made by
using the analytic solution to the Dirac-Hartree-Fock(DHF) equation and its
approximations.

The DHF method uses the four-component Dirac wavefunction[100, 101]

(@
w~(x) (2.6)

where ¢ and y represent the large- and small-components of the wavefunction,
respectively. The Dirac equations is written as two coupled equations in ¢ and

X

(V-E)p+c(@-p)x = 0
c(G-pp)+(V —E -2mc®)x = 0. (2.7)

where V' is the scalar potential, & represents the Pauli spin matrices, p is the
momentum operator, and c is the speed of light. These coupled equations can
be solved in terms of the large-component ¢ to give

c2

=g P ¢ = Ee. (28

[V+ (&'-ﬁ‘)2m

The presence of the potential V' and energy E in the denominator of Eq. (2.8)
makes it extremely difficult to solve. Several schemes have been proposed
to simplify Eq. (2.8) by introducing approximations. Among these are the
zeroth-order regular approzimation (ZORA)[102, 103] method, the Douglas-
Kroll(DK)[104] method developed by Hess[105, 106, 107], the relativistic ap-
proximation method developed by Dyall[108] and the relativistic elimination
of small components (RESC)[109, 110] method developed by Nakajima and
Hirao. In this thesis the RESC method is used to generate reference atomic
orbitals. The RESC formulas presented here were described in full detail in
the paper by Nakajima and Hirao[109).

In their development of the RESC scheme, Nakajima and Hirao proposed
to replace the (£ — V') term in the denominator by the classical relativistic

kinetic energy, T
T = \/m2c* + p2c? — mc? (2.9)

The resulting RESC Hamiltonian, HRESC is expressed as

HRESC =T + OQpvFQO!
+ 2mcOQ'?VQY20! +i0Qa(pV)pQO™"  (2.10)
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where the operators O and Q are defined as

N 1 pch 1/2
= 2.11
© E; + mc? [1 N (Ep + mc2)2] (211)
and ) c
Q= E, +md (2.12)

with the energy of the electron given as

E, = \/m2c + pc? (2.13)

The RESC method with analytic gradients{110] has been recently implemented
in the GAMESS-US[64, 65] computer program and is utilized in generating
analytical reference functions in this thesis.

The nonrelativistic and scalar-relativistic analytical reference functions were
prepared for each of the main-group atoms from Li to Rn by using fully un-
contracted WTBS within the GAMESS-US program. Calculations were done
for the lowest state of the ground-state electronic configuration of each atom.
These provided both the analytical core functions for the projection operator
of Eq. (1.57) as well as the analytical valence reference functions necessary for
the optimization of MCP parameters via fitting procedure.

2.2 The wtMCP Valence Basis Sets

In preparing the wtMCP valence basis sets for optimization, the following
procedure was followed. For the s—block elements, the original WTBS prim-
itive Gaussian functions were used for the s and p valence orbitals. For the
p—block elements, the original WTBS primitive Gaussian functions were used
for the p and d valence orbitals while for the s orbitals, the Gaussian functions
with the largest exponents were dropped. The omission of the largest expo-
nents in the s space leads to identical number of Gaussian primitives used for
both the s and p spaces. In both cases, the original WTBS primitive Gaussian
functions were uncontracted at their free atom values.

The well-tempered basis functions share Gaussian exponents between the
s— and p—type functions. Such a selection of basis functions for the MCP va-
lence basis set is an advantage - due to computational savings in the molecular
integral evaluation provided that the integral code is able to utilize the shell
structure of the sp basis functions. Although the wtMCP valence basis sets
possess large Gaussian expansions, it affects only the one- and two-electron in-
tegral evaluation steps and no additional computational cost is incurred during
the post-HF steps.

The wtMCP valence basis sets and the corresponding pseudopotentials
were developed for the main-group elements. Nonrelativistic wtMCPs were
developed for elements from Li to Rn while scalar-relativistic wtMCPs were
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developed for elements K to Rn. Table 2.1 shows the comparison of pGTF
between AE and wtMCP valence basis sets for the main-group elements.

2.3 The Optimization Method

Function minimization is one of the most common problems encountered
in computational research and is generally classified into two major classes -
gradient and non-gradient techniques. Gradient techniques, in general, are
efficient methods of locating the minimum of a function f but require the
knowledge of at least the first derivative of the function with respect to all
variables, ;. However, when the first derivative of the function is very difficult
to solve or even unknown (which is often the case), function minimization often
resorts to non-gradient techniques.

Non-gradient methods minimize the function f along a set of directions.
Although non-gradient methods are not as efficient as gradient methods, they
may be designed to possess quadratic convergence, i.e., to quickly converge
to the minimum of the quadratic function. Such methods include that of
Powell(111], which was later modified by Brent[112].

The basic idea of the Powell's method is to continuously update a set
of linearly independent direction vectors d,,ds,...,d,, by starting with an
initial approximation to the minimum, xg, until all the directions are mutually
conjugate after n iterations. The following outlines one iteration of Powell’s
basic algorithm[111, 112]:

1. Fori=1,2,...,n, calculate ); to minimize the function f = f(x;_, + Ad;),
and then set x; = x;_, + A\;d;

o

Fori=1,2,....n-1, set d; =d;;,;
3. Set d, = x, — Xo

4. Calculate A to minimize the function f = f(xo + Ad,), and then set
Xg = Xg + /\dn

Powell's method works very well as long as A; # 0. If, however, one of
the A\; = 0, the corresponding direction vector d; will vanish. This results
in the directions d;,d,...,d, becoming linearly dependent and the correct
minimum of the function may never be found since the direction set no longer
span the entire parameter space. This problem of linear dependency was
fixed by Brent by modifying Powell’s algorithm such that the direction matrix
D =[d,,d,,...,d,] was replaced by principal axes of the quadratic function,
i.e., an orthogonal matrix Q = [q;,qs,...,qxs], where q;,q,,..., Q. are the
principal vectors. Other modifications made by Brent were the inclusion of an
option for automatic scaling of the independent variables, and incorporating
random step procedures to avoid premature termination in the computation of
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Table 2.1: Comparison of pGTF between AE and wtMCP valence basis sets.

At AE wtMCP
oms Aocore onalem:e PGTF onalence PGTF

Li - Be s 2s 20s 2s 20s
Na - Mg Is 2s 3s 23s 3s 23s
2p 13p 2p 13p
K-Ca Is2s 3s 4s 26s 4s 26s
2p 3p 16p 3p 16p
Rb - Sr 1s2s 3s 4s  3s 285 5s 28s
2p3p 4p 20p 4p 20p

3d 14d
Cs-Ba 1s2s3s4s3s 6s 30s 6s 28s
2p3pdp OSp 20p op 23p

3d 4d 17d
B - Ne s 2s 20s 2s 13s
2p 13p 2p 13p
Al - Ar Is2s 3s 23s 3s 16s
2p 3p 16p 3p 16p
Ga - Kr 1s2s 3s ds 26s 4s 20s
2p3p 4p 20p 4p 20p
3d 14d 3d 14d
In - Xe 1s2s 3s 4s  3s 28s 5s 23s
2p3p4p Op 23p op 23p
3d 4d 17d 4d 17d
Ti-Rn 1s2s3s4s5s 6s 28s 6s 24s
2p3p4p 5p 6p 24p 6p 24p
3d4d ad 184 5d 18d

4f
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the function f. These modifications are discussed in great detail in the book
by Brent[112]. In this work, the Brent’s modification of the Powell algorithm
was used for optimizing the wtMCP parameters.

For a closed-shell system, the MCP-HF equation is given by:

FMCP (i) 19;(i) ) = €5 85(3) ) - (2.14)
The MCP-HF operator FMCP(j) is defined as
FMP) = h(i) + Y (2J(¢;] - K[45)) (2.15)
J

where il(i) is the one-electron Hamiltonian operator given by Eq. (1.55). Since
FMCP(4) depends on h(i), the solutions of the MCP-HF equations that give rise
to MCP radial functions R}M“F and MCP orbital energies €}/“” will naturally
depend on the parameters Ay, {x (Eq. (1.56)) and B. (Eq. (1.57)), i.e.,

R}P = RYP({A} {G} {B:}) (2.16)
e} = e}"°P({Ae} {Ge}. {B:})- (2.17)

In order to reduce the number of MCP parameters to be optimized, the shift
parameter B, was fixed to twice the value of the reference core orbital energies
€., t.e.,

B, = -2e.. (2.18)

This leads R}/“" and €¥C” to depend only on the parameters A4, and ;.

Using the Brent’s optimization program, the optimized values 4, and (;
are determined via fitting procedure by minimizing the function given by
Eq. (1.59):

6=;[w;

The optimized wtMCP parameters and the corresponding basis sets for the
main-group elements have been tabulated[113, 114].

2
c;ef - ej-”cpl + wf Y r? [R;ef(rk) - Rf"cp(rk)] ]
k

2.4 The Quality of the wtMCP

The newly developed wtMCP valence basis sets and the corresponding
pseudopotentials are tested in atomic calculations in order to assess their qual-
ity. In the optimization and fitting procedure described above, the fits of the
wtMCP radial functions against the reference radial functions are excellent.
Figures 2.1-2.3 show the radial distribution functions for Xe(!S) comparing
the 55—, 5p— and 4d—type functions between the nonrelativistic wtMCP and
the Hartree-Fock reference orbitals. Similar quality of fits is also obtained
between the scalar-relativistic wtMCP and the RESC reference functions as
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shown in Figures B.1-B.3. Excellent agreement is also obtained between the
reference and wtMCP orbital energies with energy differences smaller than 1

l‘Eh-
The expectation values <r"> defined as

() = (). 219

which are important in describing atomic and molecular properties such as
dipole moment, quadrupole moments, etc., are also compared between the ref-
erence and wtMCP basis sets. Table 2.2 compares the values of <r"> between
the reference and wtMCP for the noble-gas atoms. Typically, the difference in
<r"> are less than 1%. However, larger deviations are seen for the (r~2) values
for the s—type orbitals due to the absence of the highest exponents in the s
basis set.

Table 2.2: Radial expectation values for noble-gas atoms.

Atom nl (rk> HF NR-wtMCP RESC SR-wtMCP

Ne 2s  (r')  0.8921 0.8918
(r?) 0.9671 0.9662

r-1)  1.6326 1.6214

(r=2) 11.0713 10.5389

2  (r')  0.9653 0.9649

(r?)  1.2284 1.2277

(r-1)  1.4354 1.4364

(r?)  3.0588 3.0669

At 3s () 14229 1.4183
(r?) 2.3504 2.3392

(r=1)  0.9620 0.9636

(r-2) 54144 5.2397

3p  (r')  1.6629 1.6582

12 3.3103 3.2046

(r-y  0.8141 0.8173

(r=2)  1.4736 1.4899

continued on nezxt page
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Table 2.2: continued

Atom nl (r*) HF NR-wtMCP RESC SR-wtMCP
Kr 45 (r!')  1.6294 1.6252  1.6004 1.5963
(r?)  3.0404 3.0246  2.9352 2.9208

(r-!)  0.8042 0.8046  0.8247 0.8231

(r?)  4.6037 4.4874  6.1517 4.9039

dp (Y 19515 1.9461  1.9441 1.9392

(r?)  4.4542 44305 44242 4.4034

(r-!)  0.6692 0.6704  0.6735 0.6742

(r-2)  1.2388 1.2596  1.2843 1.2784

3d (')  0.5509 0.5506  0.5528 0.5511

(r?)  0.3715 0.3702  0.3745 0.3711

(r-ly  2.2769 22761  2.2726 2.2744

(r?)  6.7083 6.7169  6.6959 6.7074

Xe 55 (r})  1.9810 1.9806  1.9054 1.9018
(r?)  4.4401 14322 41135 1.0959

(r=!)  0.6479 0.6478  0.6826 0.6878

(r?)  3.5068 11210  6.6436 5.6358

5p (r')  2.3380 2.3363 2.3145 2.3094

(r})  6.2767 6.2601  6.1616 6.1323

(r-1y  0.5472 0.5427  0.5556 0.5536

(r=2)  0.9707 0.9447  1.0688 1.0958

4d (r')  0.8704 0.8673  0.8762 0.8750

(r?)  0.8808 0.8731  0.8941 0.8891

(r-1)  1.5087 1.5107  1.5035 1.4965

(r?)  4.0991 4.0787  4.1092 4.0136

29
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Table 2.2: continued

HF NR-wtMCP

RESC SR-wtMCP

Rn  6s (r!) 2.1566

(r3)  5.2327
(1) 0.5855
(r-?)  3.2008

6p (r!)  2.5434

(r?)  7.3698
(r~1)  0.4953
(r-?)  0.8882

5d (r')  1.0605

(r?)  1.2813
-1y 1.2261
(r-2)  3.3633

2.1507
5.2036
0.5852
2.9740

2.5364
7.3288
0.4944
0.8558

1.0514
1.2579
1.2341
3.3743

1.9405
4.2502
0.6701
15.6259

2.4598
6.9232
0.5187
1.2150

1.0751
1.3222
1.2179
3.4337

1.9342
2.2240
0.6677
6.2336

2.4528
6.8844
0.5174
1.0864

1.0650
1.2959
1.2264
3.4973

The static dipole polarizability a, which describes the variation of the
dipole moment with respect to an applied external field, was evaluated for
the noble gas atoms using fully uncontracted basis sets for both WTBS and
wtMCP. Table 2.3 shows a comparison of a between all-electron and wtMCP
calculations. The wtMCP results differ by less than 1% from their all electron

counterparts.

It is seen that the new wtMCPs show excellent agreement with the reference
values. In order to establish the ability of the wtMCPs to reproduce the same
quality of molecular results as seen in the atomic calculations, the wtMCPs
must be tested in molecular environment. This subject is discussed in the next

chapter.
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Table 2.3: Static dipole polarizability (in aj) for the noble-gas atoms.

Method
Atom AE-NR NR-wiMCP  AE-RESC SR-wtMCP
Ne 0.663 0.662
Ar 2.473 2.463
Kr 13.797 13.750 13.801 13.764
Xe 18.602 18.634 18.600 18.583
Rn 22.779 22731 92.439 92,369
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Chapter 3

The Applications of the
wtMCPs in Molecular
Calculations

In the MCP formalism, a molecule can be viewed as an assembly of M non-
overlapping atomic cores, with each atomic center contributing N, , valence
electrons, where the MCP molecular hamiltonian is given by[40]

N, N, M
- e, | Za — Noc)(Zg — Njze
H(1,2,...,Nv)=Zh(z)+2—+2( <)(Zs ) (3.1)
i=1 i>j i a>B Ras
with
. 1 . Mo .
h(i) = —5Vi+ 3 [Vie + By (3.2)
a=1
and
M
N, = Z Nay- (3.3)

a=]

The terms in square brackets of Eq. (3.2) are the analogues of the correspond-
ing terms given in Eq. (1.55).

The wtMCP uses a large valence basis set designed for the MCP method.
It has been seen from the previous chapter that the wtMCPs can excellently
reproduce atomic properties. Prior to using the wtMCPs for predicting molec-
ular properties of real systems, the ability of the wtMCP to reproduce the
results of the all-electron molecular calculations must be established. With
this in mind, testing and calibration of the new wtMCP proceeded in two
steps. First, the wtMCP were tested against all-electron calculations with the
same basis set that were used in the preparation of the wtMCP parameters.!
Second, the wtMCPs were tested for real systems by comparing the calculated
results against known experimental values.

! The results from the first step of testing and calibration have been recently published
by Mane and Klobukowski[41].
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3.1 Comparison of All-electron and wtMCP
Results

3.1.1 Computational Method

Molecular calculations were performed at the RHF level for homonuclear
diatomic molecules of several p-block elements; linear trihalogen ions A3 (A =
F, Cl, Br, and I); several families of fluorinated halogen AF; (Cy,). AF5 (Cyy),
and AF; (Ds), where A = F, Cl, Br, and I); and fluorides of noble gases:
ArF,, KrF,, XeF;, XeF,, and XeFs. The NR-wtMCP were compared with
non-relativistic all-electron(AE) HF results. For the diatomic and triatomic
ions containing halogen atoms, all-electron RESC were obtained for compar-
ison with SR-wtMCP. For all-electron calculations, the GAMESS-US[64, 63]
program was used. For the MCP calculations, the locally modified GAMESS-
US and CADPAC[63] programs were used. The CADPAC program allows
for the evaluation of analytical gradients as well as analytical and numeri-
cal hessians. The modified GAMESS-US program, into which the MCP code
was integrated, allows at present only for evaluation of energy, i.e., analytical
gradients and hessians are not yet available. However, even with this limita-
tion, equilibrium geometries can still be obtained by using the modified Powell
method of searches along conjugate directions. The modified GAMESS-US
program was used for the diatomic molecules, while the CADPAC[63] pro-
gram was used for the triatomic ions, fluorinated halogens and fluorides of
noble gases.

For the diatomic molecules, uncontracted basis functions were used. The
structures of the MCP basis functions used for all other molecules are shown
in Table 3.1, where the number of contracted functions in each symmetry
species is followed by detailed specification of the contraction pattern. The
WTBS[57, 99], contracted using the general scheme of Raffenetti[56], were
used in the all-electron calculations. No polarization functions were used in
any of the calculations. This was done in order to assess the reproducibility
of the all-electron molecular results using parameters derived solely in atomic
calculations. Due to limitations of the CADPAC molecular integral code,
the d—type basis function with the largest exponent was uncontracted in the
wtMCP calculations for molecules containing I and Xe.
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Table 3.1: Contraction patterns of the AE and wtMCP
basis sets (the notation 6s (8,1,1,1,1,1) denotes 6s—type
basis functions, the first of which is an 8-term contracted
function and the remaining five are uncontracted).

Atom

Basis Set

AE

wtMCP

Cl

Br

Xe

7s (20,20,1,1,1,1,1)
6p (13,1,1,1,1,1)

8s (23,23,23,1,1,1,1,1)

7p (16,16,1,1,1,1,1)

9s (26,26,26,26,1,1,1.1,1)
8p (20,20,20,1,1,1,1.1)

1d (14)

9s (28,28,28,28,28,1,1,1,1)
8p (23,23,23.23,1,1,1,1)

ad (17,17)

8s (23,23,23,1,1,1,1,1)

7p (16 16,1,1,1,1,1)

9s (26,26,26,26,1,1,1,1,1)
8p (20,20,20,1,1,1,1,1)

1d (14)

9s (28,28,28,28,28,1,1,1,1)
8p (23,23,23,23,1,1,1,1)

2d (17,17)

6s (8,171911131)
6p (83131?11171)

6s (11.1,1,1,1,1)
6p (11,1.1,1,1,1)

7s (12,3,1,1,1,1.1)
7p (12,3,1,1,1,1,1)
1d (14)

6s (13,5,1,1,1,1)
6p (13,5,1,1,1,1)
2d (1,16)

6s (11,1,1,1,1,1)
6p (11,1,1,1,1,1)

7s (12,3,1,1,1,1,1)
7p (12,3,1,1,1.1.1)
1d (14)

6s (13,5,1,1,1,1)
6p (13,5,1,1,1,1)
2d (1,16)
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3.1.2 Results and Discussion
Diatomic Molecules

The primitive Gaussian type functions given in Table 2.1 were fully un-
contracted and used as basis functions for wtMCP calculations. The obtained
results were compared with the uncontracted all-electron WTBS results. Equi-
librium geometries r, were obtained via the modified Powell method. Har-
monic vibrational frequencies @, were obtained by fitting the total energy
curve at several points bracketing the equilibrium. Tables 3.2 and 3.3 show
the comparison of optimized geometries and vibrational frequencies, respec-
tively, obtained in AE and wtMCP calculations.

Table 3.2: Optimized geometries (in A) of homonuclear
diatomic molecules.

Mol 1 Method
olecule “IE'NR NR-wtMCP AE.RESC SR-wtMCP

C, 1.2567 1.2561
Siy 2.1334 2.1326
Ge, 2.1849 2.1800 2.1738 2.1692
Sn, 2.5757 2.5681 2.5483 2.5419
Pb, 2.7507 2.7432 2.6559 2.6497
N, 1.0835 1.0824
P, 1.9376 1.9351
As, 2.0649 2.0572 2.0573 2.0493
Sb, 2.4690 2.4584 2.4456 2.4353
Bi, 2.6601 2.6310 2.5759 2.5679
O, 1.1945 1.1942
S, 2.0041 2.0028
Se, 2.1445 2.1387 2.1399 2.1333
Te, 2.5564 2.5449 2.5405 2.5305
Po, 2.7626 2.7541 2.6954 2.6901
Fs 1.3786 1.3787
Cl, 2.1315 2.1294
Br; 2.2912 2.2873 2.2878 2.2825
I 2.7045 2.6940 2.6915 2.6803
At 2.9216 2.9143 2.8616 2.8547

35



Table 3.3: Vibrational frequencies @, (in cm~!) for di-
atomic molecules.

Method
Molecule —mrE—XRWiIMCP AE-RESC SR-wiMCP
G, 1812.7 1808.7
Si 552.6 551.0
Ge, 345.7 344.8 344.0 343.6
Sn, 2973 226.6 995.7 295.1
N, 2563 4 9560.5
P, 797.1 795.7
As, 507.9 508.1 506.4 506.6
Sb, 326.6 326.5 325.8 325.8
Bi, 226.9 9973 929.6 231.0
0, 1829.0 1825.2
S, 699.5 699.6
Se, 136.9 1371 135.4 135.3
Te, 283.0 983.87 281.3 281.6
Po, 203.3 203.6 204.5 204.5
F, 1189.2 1188.5
Cl, 550.1 550.2
Br, 3405 349.3 348.7 348.6
I, 231.9 232.3 931.3 2315
At 165.5 165.9 166.2 166.8

The mean error in the equilibrium internuclear distance is small - 0.0052 A
at the non-relativistic level and 0.0057 A at the scalar-relativistic level. For the
harmonic vibrational frequencies, the mean errors are 1.0 cm~! and 0.7 cm™!
for the non-relativistic and scalar-relativistic levels, respectively.

The mean error was determined by the following general formula:

r rcalc rref
Nl i - ‘\i

i=1

where X is the property of interest (in this case, . and @.) and N is the
number of molecules studied.

Triatomic Halide Ions

Table 3.4 shows the results for triatomic halide anions. The bond length er-
rors are similar to the ones found in diatomic halides (Tables 3.2 and 3.3), while
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the vibrational frequencies agree less well, with the maximum error reaching
4% for the I1, mode of F;. The F; ion demonstrates how faithfully the
wtMCP method reproduces the results of the AE calculations: at the RHF
level the linear D, structure is a saddle point with the imaginary frequency
corresponding to the asymmetric stretch }[115]. It may be noted here that
both the old MCPs[60] and the popular CEPs[69] fail to reproduce the charac-
ter of the accurate RHF potential energy surface. The relativistic shortening
of the bonds is more pronounced than that seen in the diatomics, reaching
0.041 A for I7. The all-electron RESC values of the bond lengths were again
obtained via interpolation of total energies calculated at points bracketing the
equilibrium internuclear distance and assuming linear structure of the ion. The
differences between the RESC and SR-wtMCP bond lengths are of the same
magnitude as those found at the non-relativistic level, with the largest found
again for I. The relativistic bond contraction at the wtMCP level is similar
to that found at the all-electron level with the exception of Cl3, where the
wtMCP contraction is too large.

Table 3.4: Results for A] ions (A = F, Cl, Br, I; bond
lengths r. in A, vibrational frequencies @, in cm~! defined
by the symmetry of the normal modes).

Molecule Property Method
AE-NR NR-wtMCP AE-RESC SR-wtMCP
F3 Te 1.6621 1.6617 1.6617 1.6609
£ 405.51 330.3i 404.9 342.5i
I1, 334.5 348.4 334.5 353.6
2; 291.7 554.6 952.2 553.5
Cly Te 2.4161 2.4136 2.4131 2.4116
I1, 153.7 160.5 153.7 160.4
S; 215.8 220.7 218.0 223.2
v 266.9 268.1 267.2 268.3
Bry Te 2.6775 2.6704 2.6607 2.6573
IT, 88.4 93.8 87.7 93.7
oy 158.2 158.6 162.9 161.7
)ong 160.7 160.8 167.6 163.0

continued on nezt page
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Table 3.4: continued

Molecule Property Method
AE-NR NR-wtMCP AE-RESC SR-wtMCP
Iy Te 3.0960 3.0918 3.0594 3.0511
I, 56.8 57.3 56.9
T 108.2 108.0 110.6
E; 117.4 120.3 130.8

Fluorinated Halogens

The planar T-shape structure with symmetry C,, was assumed for CIFj,
BrF;, and IF;. The results in Table 3.5 show that the wtMCP equilibrium
structures agree very well with the AE ones, the largest error seen for the axial
bond in IF3 that is too short by 0.003 A. The wtMCP values of the dipole
moment closely follow the all-electron values, with the largest error less than
1%. The error in the vibrational frequencies is the largest for the dihedral
bend B, (about 15 cm™! too large for CIF3 and BrF3). The relativistic bond
contraction is virtually absent; in fact, the equatorial bonds are longer in the
scalar-relativistic calculations. Similar lengthening of bonds was found in the
studies of XeFg and related systems[116].

Table 3.5: Results for AF; molecules (A = Cl, Br, I; bond
lengths r, in A, the angle ¢ = Faz-A-F, in degrees, dipole
moments u in Debye, vibrational frequencies @, in cm™!
defined by the symmetry of the normal modes).

Method
Molecule Property — e xp—NRWwiMCP SR-wiMCP
CIF, r. (ax) 1.6787 1.6793 1.6789
ro (eq) 1.8043 1.8050 1.8050
é 85.15 85.15 85.26
i 1.206 1.196 1.188

continued on nezt page
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Table 3.5: continued

Method
Molecule Property —5Xr—NR-wiMCP SR-wiMCP
B, 200.9 305.4 302.3
A 303.9 311.0 311.1
B, 395.9 103.5 101.6
A 539.4 545.6 545.3
B, 650.6 652.8 652.7
A 708.1 801.2 801.2
BrF, r. (ax) 1.7671 1.7646 1.7640
re (€q) 1.8723 1.8696 1.8714
é 83.88 $4.00 84.60
i 2.989 9.298 2978
B, 242.9 957.4 251.3
A 256.6 261.0 257.3
B, 356.9 362.5 353.4
A, 550.9 556.0 558.0
B, 575.8 578.1 578.6
A 707.0 710.2 7135
IF, re (ax) 1.9081 1.9048 1.9042
ro (eq) 1.9859 1.9843 1.9896
é 81.06 81.25 83.15
i 3.668 3.681 3.760
B, 205.3 205.6 198.3
A, 224.2 999 4 207.1
B, 319.3 318.9 295.6
A 556.0 556.0 557.2
B, 569.8 567.9 562.9
A, 674.8 673.5 670.3

In the calculations for the AF5s molecules the C,, symmetry of the nuclear
framework was assumed. The results in Table 3.6 show that the agreement
between the geometries of the AFs molecules from the AE and wtMCP calcu-
lations is excellent, the largest error being seen for the axial bond in IF; (too
short by 0.004 A). The wtMCP values of the dipole moment are again within
1% of the all-electron values. Vibrational frequencies are less well reproduced,
with the errors reaching 34 cm™! (the B, mode in CIFs). As in the case of
AF; molecules, the equatorial bonds are longer at the scalar-relativistic level.
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Table 3.6: Results for AFs molecules (A = Cl, Br, I; bond
lengths 1. in A, the angle ¢ = F az-A-Fq in degrees, dipole

moments u in Debye, vibrational frequencies @, in cm~
defined by the symmetry of the normal modes).

l

Molecule Property

Method

AE NR-wtMCP SR-wtMCP

CIF;

BI’Fs

Te (ax)
re (eq)

1.7287
1.7659
84.03
1.507
234.8
239.2
266.9
379.2
448.7
471.7
514.7
664.1
749.1

1.7600
1.8206
83.05
2.622
210.2
216.6
229.0
349.8
384.6
346.8
349.6
641.1
657.1

1.7315
1.7668
84.01
1.494
254.4
250.0
295.6
401.7
466.0
468.8
521.9
668.5
754.1

1.7562

1.8178
83.15
2.627
225.7
233.7
241.0
364.0
397.5
549.4
552.3
642.3
661.9

1.7286
1.7676
84.09
1.461
253.9
248.5
294.9
401.4
465.8
469.6
520.6
668.4
753.1

1.7534
1.8224
83.57
2.545
2228
226.9
2424
358.5
380.2
351.5
558.7
642.6
664.7
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Table 3.6: continued

Method
Molecule Property ——m—RR-iVGP  SR-weMCP
IFs ro (ax)  1.8694 1.8653 1.8620
r.(eq)  1.9234 1.9213 1.9307
& 80.73 $0.89 81.99
4 1.287 4.987 1.342
B, 147.7 151.4 165.2
E 172.7 174.3 160.2
B, 206.7 206.6 188.1
E 321.0 3213 308.7
Al 343.2 339.8 304.3
B, 585.6 587.6 581.7
A 586.6 580.7 593.3
E 640.9 639.4 627.3
Al 689.2 689.7 687.7

Very good results are obtained also for the AF; molecules (Table 3.7) -
with the largest error of 0.003 A for the axial bond in BrF; and 16 cm™! for
the first 4] mode. The SR-wtMCP calculations show bond lengthening for
all systems. As expected, the imaginary frequency @,(E,) indicates that the
assumed Ds, symmetry does not correspond to the minimum on the potential
energy surface.

Table 3.7: Results for AF; molecules (A = Cl, Br, [;
bond lengths r. in A, vibrational frequencies @, in cm™"
defined by the symmetry of the normal modes).

Molecule Property Method
AE-NR NR-wtMCP SR-wtMCP
CIF, Te (ax) 1.7066 1.7083 1.7090
Te (€q) 1.8493 1.8509 1.8517
E, 61.8i 59.5i 57.8i
E, 229.3 228.4 228.0
E| 239.2 242.3 242.3
E, 332.7 334.7 332.3
A, 338.3 337.8 335.6
E| 472.3 470.6 468.3
Al 493.2 494.4 492.8
E, 552.3 550.3 548.0

continued on nezt page
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Table 3.7: continued

Molecule Property

Method

AE NR-wtMCP SR-wtMCP

B['F7

IF,

A} 568.2
E, 595.2
A, 844.5
re (ax) 1.7546
re (€q) 1.8537
E, 118.6i
E| 171.6
E| 210.0
A, 309.0
E, 417.5
E; 447.6
Al 537.1
E, 579.2
E 579.3
A} 609.4
Ay 727.0
re (ax) 1.8547
re (eq) 1.9091
E, 158.0i
E, 29.1
E| 138.8
A; 246.6
E, 398.2
E, 492.4
E, 554.4
Al 623.0
E, 664.8
A 670.1
A, 748.1

972.1
596.0
845.3

1.7516
1.8529
119.7i
179.6
214.1
307.7
416.9
453.3
533.5
578.5
579.2
610.6
726.6

1.8520
1.9077
156.01
31.2
138.4
251.1
400.5
494.1
356.0
628.5
663.7
671.8
747.0

569.0
391.8
842.4

1.7594
1.8592
113.6i
187.8
214.7
305.8
416.8
447.9
546.3
368.1
568.8
606.9
717.0

1.8636
1.9201
144.21
85.8
143.7
248.0
390.4
481.1
341.9
602.2
633.6
653.1
716.9

Noble-Gas Fluorides

42

In order to test the performance of the wtMCPs prepared for the noble
gas atoms, calculations were carried out for several noble-gas fluorides. The
triatomic systems were studied in Dy, symmetry, XeF4 - in Dy, and XeFg -
in O, symmetry. Again, excellent agreement between the AE and NR-wtMCP



results may be seen for these molecules (Table 3.8). The bond lengths differ
by a maximum of 0.0025 A and vibrational frequencies by less than 10 cm~".
As found in other calculations[116, 117], the octahedral structure of XeFg is
not a minimum on the potential energy surface with the first 7}, mode leading
to a structure with lower symmetry and lower total energy.

Table 3.8: Results for noble-gas fluorides (bond lengths
re in A, vibrational frequencies @, in cm~! defined by the
symmetry of the normal modes).

Method
Molecule Property — e —NRwiMCP  SR-wiMCP
ArF, r. 1.8602 1.8600 _
I, 263.1 972.7 -
oh 504.1 506.0 -
£+ 626.9 629.1 -
KrF, r, 1.9280 1.9267 1.9223
m, 237.7 241.7 240.7
5 529.6 534.0 537.3
o+ 558.8 562.1 566.4
XeF, e 2.0425 9.0414 2.0344
I, 219.4 219.4 214.1
s+ 515.8 517.1 532.5
s+ 522.9 524.6 536.7
XeF, re 20115 2.0104 1.9980
E, 89.6 94.8 125.7
B,, 166.8 166.9 163.5
By, 199.7 203.3 213.0
Ap 276.7 976.3 266.7
B,, 518.3 519.9 539.0
A, 535.4 540.0 556.9
E, 543.9 545.1 571.3

continued on nezxt page
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Table 3.8: continued

Method
Molecule Property — = o—NR wiMCP SR-wiMCP
XeF - 2.0037 2.0012 1.9798
T, 246.3i 938.9i 155.7i
. 65.1 65.5 82.9
T, 67.0 68.2 105.0
E, 192.4 1975 525.8
T, 534.5 536.9 583.7
Ay 547.2 5505 583.9

The present results clearly show that the model core potential method de-
veloped in atomic calculations carries the excellent agreement from the atomic
to molecular environment without the need for any adjustment. The method
is fully able to reproduce geometries and vibrational frequencies of the refer-
ence all-electron calculations despite the use of the local potential, provided
that the valence basis sets are sufficiently large. The comparison was done at
the RHF level; as discussed in Chapter 1, electron correlation may be required
for comparison with the experimental data. The question whether the new
wtMCPs may be safely used in the post-Hartree-Fock calculations is discussed
in the next section.

3.2 Comparison of Experimental and wtMCP
Results

In the previous section, promising results were obtained using the wtMCPs
at the RHF level. If wtMCPs are to be used in predicting molecular proper-
ties of real systems, as an alternative to the expensive all-electron ab initio
calculations, it is necessary to know how well the wtMCPs can reproduce the
experimental results.

In this section, results of preliminary tests are reported. However, the
intention is not to fully discuss every result obtained but to show a general
idea how good and effective the wtMCPs are in providing close approximation
to the experimental results.

3.2.1 Computational Method

Molecular calculations that include electron correlation were done at the
MP2 and DFT (using the B3P91 functional) levels for several molecular sys-
tems to determine how well the new wtMCP potentials reproduce experimen-
tal values. The molecular systems studied were group 13 halides (BF, AICI,
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GaBr, Inl), group 14 sulfides AS (A = C, Si, Ge, Sn) and interhalogen di-
atomic compounds; several families of trihydrogen pnictides AH3 (A = N, P,
As, Sb) and dihydrogen chalcogenides AH, (A = O, S, Se, Te). RHF calcu-
lations were also performed to serve as reference in the absence of electron
correlation. The locally modified version of CADPAC[63] computer package
was used for all calculations. Analytical gradients were used in the geome-
try optimization. The harmonic vibrational frequencies were evaluated using
numerically determined hessians.

The structure of the wtMCP basis functions used for all calculations are
shown in Table 3.9, in which the number of contracted functions in each sym-
metry is followed by detailed specification of the contraction pattern. A set
of double d— type polarization functions taken from Sadlej medium-sized po-
larized basis sets[118, 119], were used for the members of the first two rows
of the periodic table. For compounds containing hydrogen, Sadlej polarized
basis set was used for the lightest atom[118].

Table 3.9: wtMCP basis set contractions for atoms used
in correlation studies (the notation 4s (8,2,1,2) denotes
4s—type basis functions, the first of which is an 8-term
contracted function, followed by a 2-term contracted
function, an uncontracted function and the last being
a 2-term contracted function).

Atom Basis set

B-F 4s (8,2,1,2)
4p (8,2,1,2)

Al-Cl 5s (8,3,2,1,2)
ap (8,3,2,1,2)

Ga - Br 5s (12,3,2,1,2)
5p (12,3,2,1,2)
3d (10,2,2)

In-1 3s (13,5,2,1,2)
5p (13,5,2,1,2)
3d (11,4,2)

H 3s (4,1,1)
2p (2,2)
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Figure 3.1: Comparison of calculated and experimental bond lengths (in A)
for diatomic molecules.

3.2.2 Results and Discussion

The complete listing of results comparing both NR-wtMCPs and SR-wtMCPs
to experimental data can be found in Tables A.1 - A.5 in the Appendix A.
The experimental data used were taken from the compilation of Huber and
Herzberg[120].

In order to give some idea on how good the wtMCPs are, NR-wtMCP(for
light atoms) and SR-wtMCP (for heavy atoms) results for selected diatomic
and polyatomic hydrogen molecules were presented. Figures 3.1 and 3.2 present
graphical comparisons of the performance of wtMCP results, both at HF and
post-HF levels, and the experimentally determined bond lengths and harmonic
vibrational frequencies. Excellent agreement was found between the experi-
mental and the wtMCP results for the diatomic molecules.

At the RHF level alone, the calculated bond lengths are often close to the
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Figure 3.2: Comparison of calculated and experimental vibrational frequencies
(in cm™!) for diatomic molecules.

experimental values. However, the RHF vibrational frequencies are usually
too large (with the exception of AICI, GaBr and Inl), reflecting the fact that
the RHF wavefunction usually does not dissociate to correct atomic states
and thus leads to potential energy curves that are too steep near the mini-
mum. A noticeable improvement is seen when correlated methods are used
in which DFT results appear to give better agreement with experiment than
MP2 results.

Similar calculations were performed for trihydrogen pnictides and dihy-
drogen chalcogenides (TablesA.4 and A.5) to determine how well the wtMCPs
compare with experimental structural data for polyatomic systems. Figures 3.3
and 3.4 compare the calculated wtMCP and experimentally determined bond
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Figure 3.3: Comparison of calculated and experimental bond lengths (in A)
for AH, and AH; (A = O, S, Se, Te, N, P, As, Sb) molecules.

lengths and bond angles, respectively. Experimental bond lengths are already
well reproduced even at the RHF level. However, the RHF bond angles over-
shoot experimental values indicating that a pure HF treatment alone is insuf-
ficient to describe the correct geometry and that correlation is necessary. At
the MP2 and DFT levels, the calculated structural parameters are very close
to the experimental values. Again, DFT performs better than MP2.
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49



Chapter 4

Conclusions and Future
Prospects

A new family of MCP pseudopotentials, based on the well-tempered basis
set expansion, has been developed for the main-group elements from Li to Rn
of the periodic table. They have been tested in atomic and molecular calcu-
lations at both the Hartree-Fock and post-Hartree Fock levels. The present
development of the well-tempered model core potentials shows promising re-
sults in reproducing the computationally expensive all-electron results. The
wtMCPs are capable of reproducing geometries and vibrational frequencies
accurately even though only local potentials are being used to represent the
valence-core interactions.

The wtMCPs were developed via fitting to a fully analytical all-electron HF
or RESC reference functions. The new wtMCPs are designed to have a very
flexible valence basis set in which the levels of contraction can be tailored to
the requirements of the computation for specific problems or applications. No
matter how they are contracted, calculations are only affected by the relatively
inexpensive integral evaluations.

The wtMCP expansions of the valence orbitals are large. However, wtMCP
basis sets may be conveniently folded into a contracted L-shell basis set made
possible by the shared exponents available in the well-tempered basis set. Sig-
nificant computational savings can be attained by reducing the integral eval-
uation time, provided that the integral code in the computer program uses
L-shell structure. The reduction in computing time with respect to the all-
electron calculations is important if fast but accurate results are necessary and
if computing resources are limited. In fact, the reduction in computing time
achieved in going from all-electron WTBS to using wtMCP is about 50-100
times, while retaining the same accuracy of results.

The new wtMCP basis sets are slower compared to their ECP competitors.
However, this obstacle to the use of the wtMCPs in very accurate pseudopo-
tential calculations will be surely removed since computers are becoming both
more powerful and affordable.
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The preliminary results presented in this thesis are encouraging. There are
several issues that must still be resolved in future developments. In particular,
the new wtMCPs must be tested for their effectiveness in reproducing molecu-
lar properties other than the structural parameters and harmonic vibrational
frequencies studied in the present work.

Another interesting future work is to study the performance of the MCP
model itself using the wtMCP basis sets in evaluating valence-electron correla-
tion energies in atoms and molecules. In the MCP model, the core orbitals are
shifted into the virtual orbital space by the projection operators which might
result in overestimation of the electron correlation energies.

An interesting feature of the new wtMCPs is the retention of the full nodal
structure of the valence reference orbitals. The accurate nodal structure allows
for an accurate description of the region close to the nucleus. With the de-
velopment of the SR-wtMCP based on the RESC method, these new wtMCP
pseudopotentials can be ideal tools for spin-orbit studies without the need for
scaling[49].
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Table A.1: Comparison of wtMCP and experimental
bond lengths and vibrational frequencies for group 13
halides (NR and SR represent NR-wtMCP and SR-

wtMCP, respectively).

Te/A We/cm™!
Molecule Method NR SR NR SR
BF RHF 1.2460 1491.69
MP2 1.2666 1400.97
DFT 1.2661 1346.83
EXP 1.2626 1402.13
AlCI RHF 2.1639 467.49
MP2 2.1646 469.64
DFT 2.1538 449.15
EXP 2.1301 481.30
GaBr RHF 2.3945 2.3936 255.77 253.42
MP2 2.3490 2.3459 272.14 270.73
DFT 2.3590 2.3586 260.92 259.15
EXP 2.3525 263.00
Inl RHF 2.8458 2.8305 163.30 161.70
MP2 2.7757 2.7556 176.20 176.32
DFT 2.7895 2.7740 171.48 170.72
EXP 2.7337 177.1
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Table A.2: Comparison of wtMCP and experimental
bond lengths and vibrational frequencies for group 14 sul-
fides (NR and SR represent NR-wtMCP and SR-wtMCP,

respectively).
re/A Te/cm™!

Molecule Method NR SR NR SR

CS RHF 1.5251 1406.91
MP2 1.5586 1264.10
DFT 1.5432 1294.93
EXP 1.5349 1285.08

SiS RHF 1.9360 797.9
MP2 1.9780 717.86
DFT 1.9490 744.08
EXP 1.9293 749.64

GeS RHF 2.0020 1.9972 627.46 625.81
MP2 2.0325 2.0276 570.51 569.23
DFT 2.0101 2.0057 584.99 583.60
EXP 2.0121 375.8

SnS RHF 2.2032 2.1951 338.95 535.02
MP2 2.2357 2.2278 491.29 487.95
DFT 2.2104 2.2039 500.23 496.44
EXP 2.209 487.26

62



Table A.3: Comparison of wtMCP and experimental
bond lengths and vibrational frequencies for diatomic
interhalogen compounds (NR and SR represent NR-

wtMCP and SR-wtMCP, respectively).

Molecule Method re/A :
NR SR NR SR

CIF RHF 1.6145 905.27
MP2 1.6741 769.16
DFT 1.6570 797.89
EXP 1.6283 786.15

BrF RHF 1.7286 1.7285 764.27 762.00
MP2 1.7827 1.7824 662.85 662.00
DFT 1.7681 1.7680 678.67 678.15
EXP 1.7589 670.75

BrCl RHF 2.1460 2.1442 482.51 481.73
MP2 2.1667 2.1648 449.19 448.74
DFT 2.1513 2.1503 449.07 448.43
EXP 2.1361 444 .28

IF RHF 1.8820 1.8857 694.88 687.56
MP2 1.9271 1.9305 617.71 612.62
DFT 1.9190 1.9223 617.33 612.70
EXP 1.9098 610.24

ICI RHF 2.3304 2.3284 416.10 414.32
MP2 2.3453 2.3434 391.95 390.59
DFT 2.3351 2.3337 386.01 384.86
EXP 2.3209 384.29

IBr RHF 2.4846 2.4767 288.63 287.95
MP2 2.4909 2.4831 272.10 271.93
DFT 2.4848 2.4786 267.01 268.06
EXP 2.469 268.64
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Table A.4: Comparison of wtMCP and experimental
bond lengths and bond angles for dihydrogen chalco-
genides (NR and SR represent NR-wtMCP and SR-

wtMCP, respectively).

Te/A #(H-A-H)/degrees
Molecule Method NR SR NR SR
OH, RHF 0.9440 105.88
MP2 0.9675 103.83
DFT 0.9634 103.94
EXP 0.9578 104.48
SH, RHF 1.3421 93.93
MP2 1.3560 92.07
DFT 1.3528 92.02
EXP 1.3356 92.11
SeH» RHF 1.4545 1.4516 93.06 92.77
MP2 1.4584 1.4558 90.97 90.63
DFT 1.4614 1.4596 90.86 90.56
EXP 1.460 90.57
TeH, RHF 1.6523 1.6451 92.72 92.18
MP2 1.6480 1.6419 90.84 90.21
DFT 1.6577 1.6524 90.62 90.14
EXP 1.658 90.25
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Table A.5: Comparison of wtMCP and experimental
bond lengths and bond angles for trihydrogen pnictides
(NR and SR represent NR-wtMCP and SR-wtMCP, re-

spectively).
re/A ¢(H-A-H)/degrees
Molecule Method NR SR NR SR
NH; RHF 1.0014 107.27
MP2 1.0187 106.02
DFT 1.0164 105.35
EXP 1.0016 106.68
PH; RHF 1.4183 95.25
MP2 1.4294 93.37
DFT 1.4278 92.82
EXP 1.413 93.46
AsH, RHF 1.5080 1.5051 94.44 94.09
MP2 1.5085 1.5057 92.33 91.94
DFT 1.5141 1.5122 91.74 91.40
EXP 1.513 92.09
SbH;3 RHF 1.7059 1.6971 94.26 93.56
MP2 1.7004 1.6921 92.51 91.70
DFT 1.7096 1.7032 91.85 91.59
EXP 1.7039 91.6
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