
End-to-end Game Design Using EPCG

by

Yazeed Mahmoud

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Yazeed Mahmoud, 2024

Abstract

Procedural content generation (PCG) algorithms have been utilized for automat-

ing the creation of game content such as levels, assets, and narratives. One specific

type, Exhaustive PCG (EPCG), systematically generates all possible variations

of content before selecting the best, embodying a form of exploratory creativity.

While EPCG has been applied to modifying or creating entire levels in games,

there has been no research into employing EPCG for generating games end-to-

end. This work explores the application of EPCG to game design, specifically

focusing on the tangram puzzle genre. The game design process involves col-

laboration between human designers and computational algorithms. Our aim is

to create a puzzle curriculum with multiple chapters, each introducing a new

combination of constraints. Through this work, we demonstrate the potential of

EPCG in driving end-to-end game design. Additionally, we introduce the con-

cept of differential entropy, which assists in teaching puzzle inference rules, and

utilize it to develop a puzzle curriculum that encourages players to understand

the puzzle more deeply.

ii

Through understanding of the proper way, our faith, our grace, is

increased.

This is for thee.

Mine abundance, my drop of dew.

Quench thy thirst, throughout thy frame.

Blossom and burgeon, time and again.

Grow larger, stronger.

Until the day cometh.

When thou canst share in my dream.

Just as still waters turn foul, stagnation leads to decay. Warriors

must remain ever drifting.

iii

Acknowledgements

I would like to express my gratitude, first and foremost, to my family, who have

stood by me unwaveringly since the inception of my academic journey. I am

profoundly thankful to my late parents, whose influence has played a pivotal role

in shaping my identity and character. Additionally, I am immensely grateful

to my siblings—Mohammed, Yaseen, Yazan, Razan, Rawan, and Remaz—for

their unwavering support and encouragement, which have been integral to my

accomplishments.

I extend my heartfelt appreciation to Nathan. His expertise, encouragement,

and constructive feedback have been invaluable in shaping the direction and out-

comes of this research endeavor. His mentorship has not only enhanced my

understanding of the subject matter but has also fostered my growth as a re-

searcher. I am indebted to him for his unwavering dedication and commitment

to my academic and professional development. I extend my gratitude to Matthew

for sparking my interest in PCG through his exceptional course. Additionally, I

am thankful to Rania for being the first professor to recognize my potential and

for providing unwavering support throughout my undergraduate studies.

Finally, I would like to thank the friends I have made in Edmonton, who

have transformed this city into a home for me. I am particularly grateful to

Wisam, Adeel, Paul, Isaac, Diego, Anna, Momen, Kevin, Cathrin, Chen, Fiona,

Akalanka, and Eve for their unwavering support and friendship. Additionally, I

am thankful to the members of the Moving AI lab for their constructive feedback

and encouragement throughout the project. And I am greatful to the Computing

Science department who made all of this possible.

This work is a re-implementation of the original exploration performed by

iv

Augustine Blanchonnet, who built a prototype curriculum for the same puzzle

using Unity and C#. The codebase was built on the initial software provided

by Professor Nathan Sturtevant and written in C++. Nathan also helped with

generating the 3D models and printing them as puzzle prototypes. ChatGPT

was utilized to assist with grammar and spell-checking.

v

Contents

Abstract ii

Acknowledgements iv

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 8

2.1 PCG . 8

2.2 EPCG . 9

2.3 Examples of EPCG . 11

2.3.1 Fling! . 11

2.3.2 The Witness . 12

2.3.3 Anhinga . 14

2.4 Puzzle Entropy . 15

3 Building the Puzzle 20

3.1 Defining Puzzle Framework . 20

vi

3.2 Generating All Solutions . 24

4 Constraint Analysis 32

4.1 Constraint Types . 32

4.2 Placement Constraints . 33

4.2.1 First Iteration . 35

4.2.2 Second Iteration . 36

4.2.3 Third Iteration . 38

4.2.4 Fourth Iteration . 40

4.2.5 Fifth Iteration . 43

4.2.6 Final Evaluation . 43

4.3 Adjacency Constraints . 45

5 Building the Curriculum 55

5.1 Finding Initial States . 55

5.2 Entropy Analysis . 59

5.3 Inference Rules . 60

5.3.1 Location can only fit a certain piece rule 60

5.3.2 Piece can only go in one place rule 61

5.3.3 Size of empty space rule 61

5.3.4 Piece that fits the space not available rule 62

5.3.5 Pieces are composed of trapezoids rule 64

5.4 Differential Entropy . 65

5.5 Design of the Curriculum . 67

6 Curriculum Evaluation 71

6.1 Curriculum Analysis . 71

vii

6.2 Playtesting Experiment . 76

7 Conclusions and Future Work 80

Bibliography 84

Appendix 90

7.1 Curriculum . 90

7.1.1 Chapter 1 . 91

7.1.2 Chapter 2 . 94

7.1.3 Chapter 3 . 97

7.1.4 Chapter 4 . 100

7.1.5 Chapter 5 . 103

7.1.6 Chapter 6 . 106

7.1.7 Chapter 7 . 109

7.1.8 Chapter 8 . 112

7.1.9 Chapter 9 . 115

7.1.10 Chapter 10 . 118

7.1.11 Chapter 11 . 121

7.1.12 Chapter 12 . 124

viii

List of Tables

3.1 Number of locations for each piece type. 27

3.2 Number of solutions found with each forbidden piece type. 31

5.1 Entropy statistics for the chapters. 66

ix

List of Figures

1.1 A tangram puzzle . 3

1.2 Puzzle curriculum . 4

1.3 Process diagram . 4

2.1 A Fling! board . 11

2.2 A Witness puzzle panel . 13

2.3 A Snakebird level . 14

2.4 Anhinga editor . 15

3.1 Steps covered in chapter 3 . 20

3.2 The Ostomachion . 21

3.3 Puzzle board . 22

3.4 The trapezoid piece . 22

3.5 Set of pieces . 23

3.6 Scanning the piece board locations 25

3.7 Piece rotation . 26

3.8 Rotationally-symmetric pieces . 26

3.9 Examples of flipping pieces . 26

3.10 Flip-symmetric pieces . 27

3.11 Duplicate solution states . 29

x

3.12 Depth-first search tree . 30

4.1 Constraint analysis section of the architecture 33

4.2 Two sides of a board . 34

4.3 Bumps and holes . 37

4.4 Board constraint patterns . 39

4.5 Flip-symmetric pruning . 41

4.6 Rotation-symmetric pruning . 42

4.7 Pattern distribution . 44

4.8 Types of adjacency . 46

4.9 Selected placement pattern . 53

4.10 Selected adjacency pattern . 54

5.1 Puzzle’s initial state and solution 56

5.2 Location can only fit a pertain piece rule 61

5.3 Piece can only go in one place rule 62

5.4 Size of empty space rule . 63

5.5 Piece that fits the space not available rule 64

5.6 Pieces are composed of trapezoids rule 65

5.7 Curriculum building step . 67

6.1 Curriculum evaluation step . 71

6.2 Instruction pages . 73

6.3 First page in introductory chapter 74

6.4 Solving the first puzzle . 75

6.5 Final puzzle in the curriculum . 78

xi

List of Algorithms

1 EPCG(Generator, Evaluator) . 10

2 MUSE(Sstart, σ) . 18

3 MinPathEntropy(s, σ) . 18

4 FindAllSolutions() . 29

5 PlacementConstraintSpaceSearch(solutions) 35

6 AdjacencyConstraintSpaceSearch(solutions) 50

7 FindInitialState(solution, otherSolutions) 57

xii

Chapter 1

Introduction

The field of procedural content generation (PCG) has emerged as a pivotal area

of research and development across various domains, ranging from video game

design to creative arts and beyond (Togelius et al., 2011). Procedural content

generation refers to the process of algorithmically creating content, such as levels,

landscapes, characters, and narratives, through automated means rather than

manual authoring (Smith, 2010). This approach holds promise for improving

content creation pipelines by enabling the generation of vast, diverse, and in

some cases even dynamically adaptive content spaces (Yannakakis & Togelius,

2015).

PCG is notably prevalent in the video game industry, enhancing gameplay

experiences and facilitating the creation of expansive game worlds. Numerous

games across different genres have leveraged PCG to generate dynamic and di-

verse content. For instance, Minecraft utilizes PCG to procedurally generate its

“blocky” terrain (Smith et al., 2019), allowing players to explore and interact

with procedurally generated landscapes and structures. Spelunky employs PCG

to generate its levels, ensuring that each playthrough offers unique challenges and

1

surprises (Mossmouth, 2008). In Diablo and its sequels, PCG is used to generate

randomized dungeons, loot, and enemy encounters, contributing to the game’s re-

playability (Blizzard, 1996). Additionally, Rogue Legacy features PCG-generated

levels and character traits, providing a new experience with each playthrough

(Toy et al., 1980). These examples showcase the versatility of PCG in creating

dynamic and engaging gameplay experiences across various game genres.

One form of PCG is exhaustive procedural content generation (EPCG), a

methodical approach in which all possible variations of content within speci-

fied constraints are systematically generated (Sturtevant & Ota, 2018). Unlike

stochastic or random generation methods, which rely on probabilities and ran-

domization, EPCG aims to explore every possible combination or permutation

of content elements meeting defined criteria. This approach is particularly useful

in scenarios where the generated content must strictly adhere to predetermined

rules or constraints. EPCG systematically generates all possible variations which

ensures thorough exploration of the content space. It offers a comprehensive view

of potential content options available. This makes it an example of exploratory

creativity (Antonios et al., 2016). However, it is important to note that EPCG

can be computationally intensive and may not be feasible for generating large or

complex content spaces due to the sheer number of possible variations.

Some examples of EPCG include the construction of new levels for the game

The Witness (Sturtevant, 2019). Another instance is found in the game Anhinga

(a clone of the game Snakebird), where instead of exhaustively generating levels,

which is impractical due to the large number of permutations, researchers chose

to exhaustively generate neighbors of a state (a state refers to a configuration

of elements or pieces in a level). This approach allowed them to develop a tool

that assists designers in building levels incrementally (Sturtevant et al., 2020a).

However, no known research has attempted to use EPCG to generate games in

2

Figure 1.1: A tangram puzzle. Note that in this puzzle, pieces have different
colors, although color does not affect the puzzle shown here. This appears to
be unused design space, which is why we include color as one of the constraint
types we introduce. Image source: https://www.amazon.in/Yigo-Hexagon-

Tangram-Handmade-Educational/dp/B07JBVFRFK

an end-to-end manner—that is, starting from a basic idea of a game and arriving

at a complete product.

In this work, our thesis is that we can employ Exhaustive Procedural Content

Generation (EPCG) for end-to-end game design. The puzzle game we are basing

our work on is an instance of tangram puzzles, in which the player is given a set

of pieces and a board that may contain a few pieces initially. The player’s goal is

to place all the remaining pieces on the board. An example of a tangram puzzle

is shown in Figure 1.1. We attempt to explore an initially shallow puzzle that has

no set of levels or constraints and produce a curriculum that would allow players

to think about the puzzle computationally and aid them in understanding its

underlying mathematics (Aho, 2011; Blow & ten Bosch, 2011).

As shown in Figure 1.2, the curriculum we plan to build consists of a number

of chapters (N chapters in the figure). We generate all constraint combinations

and assign one to each chapter. Each constraint combination results in a list of

3

https://www.amazon.in/Yigo-Hexagon-Tangram-Handmade-Educational/dp/B07JBVFRFK
https://www.amazon.in/Yigo-Hexagon-Tangram-Handmade-Educational/dp/B07JBVFRFK

Figure 1.2: Puzzle curriculum.

candidate puzzles that satisfy the constraints. Then from the list of candidate

puzzles we choose a list of M selected puzzles per chapter, each puzzle consisting

of an initial state and a unique solution.

Figure 1.3 summarizes the major steps we follow in this work. In this process,

each step is either taken by the human designer or by the computer, denoted by

small icons at the top of each step’s block.

The process starts by defining the puzzle, which includes describing the shape

of the board and the shapes of the pieces in the set. This step is performed by

the designer. The next step involves formulating this puzzle description as a

search problem and running search in order to find all possible solutions for the

puzzle and compile them into a list. This step is handled by the computer. This

list of solutions is then passed to the subsequent step, where various constraints

Figure 1.3: Process diagram.

4

applicable to the puzzle are defined by the designer, as we will discuss momen-

tarily. After defining such constraints, the computer then generates all possible

combinations of the constraints and filters the puzzles with solutions that satisfy

each constraint.

The constraints we consider fall into two categories: constraints that restrict

the allowable locations for a piece on the board, and constraints that specify

interactions between two or more pieces. In the latter, we implement these con-

straints by assigning colors to pieces and then mandating that pieces of certain

colors must either touch or remain separate (either by edges or corners). We

discuss constraint types further in Chapter 4.

After generating all constraint combinations the next step involves the de-

signer’s selection of the best combination of constraints. Our aim is to build

a curriculum comprising chapters of puzzles with similar constraints. For each

chapter, we want a sizable pool of candidate puzzles to cover a wide range of

difficulty levels. Therefore, our criterion for choosing the best combination of

constraints specifies that each constraint must have a sufficiently large number of

solutions satisfying it. We repeat the process of defining the constraint space and

generating constraint combinations until a satisfactory constraint combination is

found.

After finalizing a satisfactory constraint combination, the next phase involves

constructing a curriculum based on the generated puzzles. This curriculum is

structured into chapters, each aimed at introducing either a new constraint or a

unique combination of constraints. The first chapter serves as an introduction to

the puzzle, comprising a series of easier levels along with ones specifically crafted

to teach particular skills to the player. We measure the difficulty of a puzzle

using entropy analysis, a method that also allows for the integration of expert

5

knowledge to refine difficulty estimations (Chen et al., 2023). This approach aids

in identifying puzzles that may be perceived as easy by experienced players but

pose a challenge for beginners. Such puzzles are employed in the first chapter

to help with the learning of essential skills by players. Subsequent chapters of

the curriculum feature puzzles arranged in ascending order of difficulty, thereby

giving a sense of progression.

The phase that follows building the curriculum is playtesting the puzzle using

the curriculum. This entails inviting individuals and guiding them through the

curriculum in specific ways to evaluate its effectiveness, collecting player feedback,

and attempting to model the players based on their learning. Based on the results

of the playtesting phase, further adjustments to the curriculum may be deemed

preferable, necessitating perhaps other playtesting and adjustment cycles.

In this work, we evaluate the thesis that it is possible to employ Exhaustive

Procedural Content Generation (EPCG) for driving game design from start to

finish. This involved creating a complete puzzle game integrated with different

constraint types into a final curriculum. Despite the automated nature of the

process, developer input was still necessary to ensure the puzzle met specific

aesthetic standards and remained intuitive for human players, highlighting the

ongoing role of human creativity in game design. Additionally, we introduce the

concept of differential entropy and implement an entropy analyzer for the puzzle

alongside a set of inference rules. Furthermore, we employ the entropy analyzer

we built to help devise a structured curriculum for the game that provides a

sense of progression to players. This curriculum, particularly in its introductory

chapter, leverages differential entropy to teach players various skills crucial for

navigating the puzzle game effectively.

The rest of the thesis is organized as follows. In Chapter 2, we provide the

6

essential context required to understand EPCG and justify its use. Additionally,

we introduce the concept of entropy and its utilization for estimating difficulty

and discuss how it helps in building curricula. In Chapter 3, we outline the pro-

cess of defining the puzzle framework and then generating all the solutions using

EPCG. In Chapter 4, we discuss the process of exploring the constraint space

for the puzzle, explaining the loop of defining a constraint space, generating all

constraint combinations, and then evaluating the resulting puzzle set and looping

back to redefine the constraint space if the selected criteria are not satisfied. In

Chapter 5, we discuss the process of building the curriculum, starting with the

initial state finder function which converts solutions and constraints into puzzles,

then presenting the process of entropy analysis and the list of inference rules we

developed. After that, we discuss the notion of differential entropy and conclude

the chapter with a discussion of the process of using all the previous tools to

construct the final curriculum, also discussing the structure of the final curricu-

lum. In Chapter 6, we evaluate the curriculum we constructed, highlighting select

puzzles from the introductory chapter. Additionally, we discuss the playtesting

experiment conducted with participants from our laboratory. Finally, in Chapter

7, we summarize the contributions of this work and possible future work building

on top of it.

7

Chapter 2

Background

In this chapter, we aim to establish the foundational knowledge necessary to

understand and support the application of EPCG. We first introduce the concept

of PCG and demonstrate which family of PCG approaches EPCG belongs to,

before then delving into a more detailed explanation of EPCG specifically. After

that, we introduce the concept of entropy and highlight its role in estimating

difficulty, which is the property we use for evaluating the generated solutions.

2.1 PCG

Procedural Content Generation (PCG) is a technique used in computer science

and digital media to generate content algorithmically rather than through man-

ual authoring. PCG is applied across domains which include video game devel-

opment, virtual environments, digital art, and simulation training (Yannakakis

& Togelius, 2018). In games, PCG is employed to generate game elements, such

as levels, music, sound effects, characters, quests, and so on. One of the primary

advantages of PCG lies in its capacity to generate content that is unique and

8

dynamic, providing players or users with novel experiences with each interaction

(Hendrikx et al., 2013).

PCG can be categorized into four paradigms: constructive PCG, constraint-

based PCG, search-based PCG, and machine learning PCG (Summerville et al.,

2017). Constructive PCG relies on manually crafted rules and functions to con-

struct new content. Constraint-based PCG establishes criteria for defining a

“valid” piece of content using constraints and applies these constraints to gener-

ate new content. Machine learning PCG employs machine learning techniques to

create new content. Finally, search-based PCG defines the content space and uti-

lizes optimization procedures to identify high-quality content within that space.

Exhaustive PCG (EPCG) falls under the search-based family of PCG approaches.

2.2 EPCG

Exhaustive Procedural Content Generation (EPCG) describes approaches for

generating procedural content where all possible content is methodically gener-

ated and evaluated (Sturtevant & Ota, 2018). The content generated by EPCG

avoids repetition, which contrasts with randomized algorithms. In randomized

algorithms, generating a set of N items randomly may result in duplicates and

some items being missed entirely. Exhaustively generating the content saves time

and avoids this inefficiency if the goal is to choose the best possible content.

As shown in Algorithm 1, an EPCG procedure takes in two inputs: a gen-

erator and an evaluator (Generator and Evaluator in the example algorithm,

respectively). The generator takes in a problem description and produces states

according to a predetermined generation algorithm. Meanwhile, the evaluator

takes a state and provides a numerical score or “value” for that state, aiding

9

in the determination of which states deserve attention. The output of an EPCG

procedure is the highest-value content. Alternatively, it could be the lowest-value

or anything in between, depending on the designer’s criteria.

Algorithm 1 EPCG(Generator, Evaluator)

1: best← Generator.Unrank(0)
2: for i = 1 to Generator.MaxRank()− 1 do
3: state← Generator.Unrank(i)
4: if Evaluator(state) > Evaluator(best) then
5: best← state
6: return best

For the generator in EPCG to produce all potential content, we must provide

it with the size of the complete state space. This often entails a full combinatorial

analysis that determines all the ways in which content can be arranged. The use

of ranking and unranking functions is typically necessary in this case. A ranking

function (Myrvold & Ruskey, 2001) takes in a state and produces an integer value

(a hash), an unranking function on the other hand converts this integer value back

to a state. The rank can be seen as an index accessing an implicit database of

content produced by a given generator. This implicit content database is an array

of all possible content states that the generator iterates through using the rank.

In EPCG, a content generator (Generator in the example algorithm) is a set of

functions that includes two functions that we callMaxRank() and Unrank(rank).

The MaxRank() function returns the total number of states that can be gener-

ated. The Unrank(rank) function takes in a rank (in other words, an index) and

converts it into a state. This rank ranges between zero and MaxRank()− 1. An

additional optional function is the Rank(state) function which converts a state

back into a rank.

10

2.3 Examples of EPCG

2.3.1 Fling!

In the game Fling!, released in 2011 by Bevin Software OU, players aim to clear

all pieces from a 7x8 game board by flinging them into each other until none

remain. In the original game, a valid board possesses a single sequence of moves

(excluding the last move) leading to a solution. An example of a Fling! board is

shown in Figure 2.1. In previous work, EPCG was applied to create a system for

interactively designing and analyzing puzzles for this game (Sturtevant, 2021).

Assuming that a board for this game has k pieces and n positions to place

those pieces (10 and 56 in the example given in the figure, respectively), the total

number of ways in which the pieces can be placed on the board is
(︁
n
k

)︁
(which

also is the max rank). Subsequently, the board ranks that the generator iterates

Figure 2.1: A Fling! board. Image source: https://www.pocketgamer.com/

fling/fling-review/

11

https://www.pocketgamer.com/fling/fling-review/
https://www.pocketgamer.com/fling/fling-review/

through are from zero to
(︁
n
k

)︁
− 1, each representing a different configuration of

the k pieces on the board.

The evaluator takes in a board and compares the size of its brute-force search

tree with the size of its constrained tree that an expert would explore, selecting

the puzzles with the highest ratio. The brute-force search tree is the full search

tree when attempting to solve the puzzles with no expert knowledge, while the

constrained tree is one in which some parts are pruned since an expert can see that

they do not lead to the solution. This aids in selecting content that optimizes an

expert player’s ability to apply their specialized knowledge when solving puzzles.

2.3.2 The Witness

In the 2016 game The Witness by Jonathan Blow and Thekla, Inc., players

navigate a vast world filled with puzzle panels that they must solve to progress.

An example of a puzzle panel from this game is shown in Figure 2.2. To solve

a puzzle, the player starts from the lower-left corner of the panel and aims to

reach the goal at the upper right corner within a grid without crossing a vertex

more than once, and while adhering to specific puzzle constraints. For this game,

EPCG was used to exhaustively generate all content for a particular panel size

and constraint set (Sturtevant & Ota, 2018).

In The Witness puzzle, the arrangement of pieces follows a similar approach

to the game Fling!, but with the distinction that the order of piece placement

matters. For a Witness panel with k pieces and n positions to place those pieces,

the total number of ways the pieces can be arranged on the panel is kn. The total

number of locations is then the product of the number of locations for the pieces

and the arrangement of the piece types, and the total number of configurations

is then obtained by multiplying this number by the ways in which constraints

12

Figure 2.2: A Witness puzzle panel. The dark grey line shows the solution

can be defined. The generator iterates through ranks from zero to maxRank,

each corresponding to a different panel, with a specific selection of piece types,

locations for those pieces, and set of constraints.

The evaluator in this case determines the number of solutions for each puzzle,

selecting puzzles with the fewest solutions, and among these, prioritizing the ones

with the longest solution lengths. It was found that running this evaluation is

time consuming since the search trees for finding solutions can be exceedingly

large, for which reason the panels are broken down into smaller sub panels and

each solved individually but jointly (i.e. the final solution when all the sub-panels

are connected must form a valid connected line). One benefit realized with this

approach is that if the evaluation of part of the panel yields a lower value than

that of a previously evaluated complete panel, then the new panel being generated

can be disregarded. This principle is implemented using the branch and bound

search algorithm (Land & Doig, 1960).

13

Figure 2.3: A Snakebird level. The player must navigate the green snakebird
to eat both the pear and the lemon while avoiding the spikes, before exiting
through the rainbow disc in the top left corner. Also, note the two portals shown
as green circles, which can be used to teleport the snakebird. Image source:
https://store.steampowered.com/app/357300/Snakebird/

2.3.3 Anhinga

The game Snakebird, released in 2015 by Noumenon Games, tasks players with

guiding one or more snakebirds to consume all the fruit in a level before exiting,

while avoiding obstacles in the process. An example of a level is shown in Figure

2.3. EPCG was utilized to generate and evaluate all levels for this game. It was

also used for developing a level editor for a clone of the game titled Anhinga

(Sturtevant et al., 2020b).

The generator in the level editor’s EPCG procedure produces all possible

single-tile changes in a level, with each tile being either sky, ground, or spikes.

To calculate how many such changes there are, assuming we have k piece types

that we can place into n locations in the level, the total number of possible

changes is k multiplied by n. This means that the generator iterates through

ranks from zero to k ∗ n− 1.

14

https://store.steampowered.com/app/357300/Snakebird/

Figure 2.4: Anhinga editor. The panel adjacent to the level view enables the
manipulation of gameplay elements or the application of EPCG analysis. Image
source: Sturtevant et al. (2020b)

The evaluator employs a breadth-first search to determine the shortest solu-

tion to each level considering all potential modifications suggested by the genera-

tor. Subsequently, the option is given to select the change that either maximizes

or minimizes the optimal solution length. Opting to maximize the solution length

typically results in a more challenging level, while minimizing the solution length

tends to make levels easier. Figure 2.4 shows the level editor that was built for

the game.

2.4 Puzzle Entropy

As described in Section 2.2, an EPCG procedure requires defining both a gen-

erator and an evaluator. As seen from the examples provided in Section 2.3,

the evaluator has generally been game-specific, implying that the same evaluator

cannot be used across multiple games without altering its implementation to suit

the rules of each game. This raises the question: Is there a way to define a more

general form of an evaluator that can be applied across different games?

15

A standardized measure of difficulty not only assists in evaluating levels but

also can be used to predict whether puzzles will be interesting to players of

different skill levels, identify specific skills influencing puzzle difficulty, and aid

in organizing and generating puzzles within game frameworks (Nielsen & Smith,

2018). Furthermore, a difficulty metric can facilitate the construction of a puzzle

curriculum that requires players to acquire knowledge to advance (Lee et al.,

2019). Such a universal measure of difficulty can extend to educational games or

broader learning contexts, where the central objective revolves around enhancing

student knowledge (Valls et al., 2017). By adjusting the difficulty of problems, one

can affect levels of enjoyment and confidence, ultimately leading to heightened

engagement and facilitating enhanced learning outcomes (Zhang et al., 2019).

The evaluator in an EPCG procedure takes in a state and returns a value for

that state. In the examples above, the property used for evaluating levels tended

to correlate, in some way or another, with the difficulty of completing those levels.

For the first two examples, Fling! and The Witness, levels that have the highest

perceived difficulty difference between a beginner and an expert were considered

the best. In Anhinga, the two options for changes given to the user both relate

to solution length, one maximizing it and the other minimizing it, and solution

length typically reflects the difficulty of a level.

While basic puzzle metrics like solution quantity or solution length provide

insights into puzzle difficulty, they are insufficient representations of puzzle com-

plexity. Various methods, such as search and strategic depth scores or constraint

satisfaction solvers, have been proposed to measure puzzle difficulty effectively

(Shaker et al., 2016).

Information entropy, defined as the measure of uncertainty in random variable

outcomes, has been studied in relation to game complexity and player learning.

16

In previous work, researchers have explored the correlations between entropy and

game complexity, as well as its role in facilitating continuous, long-term learning

among players (Holmg̊ard et al., 2017).

Entropy quantifies the uncertainty of a random variable Z, which can take k

possible outcomes {z1,, zk} (Shannon, 1948). When the probability of an out-

come z is represented by a probability function P (z), the formula for information

entropy is as follows:

H(Z)
.
=

k∑︂
n=1

P (zn)log2
1

P (zn)
(2.1)

For instance, consider a biased double-sided coin that always lands on heads.

In this case, there’s no uncertainty about the outcome. If we define the ran-

dom variable Zunfair = zheads, ztails, then the probabilities are P (zheads) = 1 and

P (ztails) = 0. Consequently, its entropy is H(Zunfair) = (1 log2
1
1
)+ (0 log2

1
0
) = 0

bits. A fair coin, where heads or tails are equally likely outcomes has probabil-

ities P (zheads) = 0.5 and P (ztails) = 0.5, resulting in an entropy of H(Zfair) =

(0.5 log2
1
0.5

) + (0.5 log2
1
0.5

) = 1 bit. In simple terms, it would take 1 bit of

information to describe the outcomes of a fair coin flip.

In prior work, general techniques were introduced for measuring the uncer-

tainty involved in puzzle-solving (Chen et al., 2023). This uncertainty measure

can be regarded as the amount of information required by an oracle, who knows

the puzzle’s solution, to guide a player fully through each step of puzzle-solving.

Information entropy has been employed to represent the uncertainty present at

each puzzle state, much like how uncertainty is represented in coin or dice out-

comes.

The encountered entropy at a state s can be determined by considering the

17

number of legal actions available in the puzzle at that state, denoted as |A(s)|. A

special case is one in which only one legal action is available, which means that

there is no uncertainty about the action to take, thus the entropy is 0. Another

special case is when there are no possible actions, or |A(s)| = 0, it is impossible

to encode the solution path from state s in any number of bits, as there are no

future outcomes or successor states. In such cases,∞ is the entropy value. Based

on this, a method for evaluating single-player, turn-based puzzles was introduced,

which is called Minimum Uniform Solution Entropy (MUSE). MUSE quantifies

uncertainty in puzzle-solving by computing the entropy of the solution with the

least uncertainty. This method represents the puzzle’s uncertainty experienced by

a simulated player consistently at each state. Algorithm 2 shows simple pseudo

code for this algorithm.

Algorithm 2 MUSE(Sstart, σ)

1: entropies← []
2: for each sstart ∈ Sstart do
3: entropies.Append(MinPathEntropy(sstart, σ))

4: return min(entropies)

Algorithm 3 MinPathEntropy(s, σ)

1: if σ(s).count == 1 then
2: return 0
3: if σ(s).count == 0 then
4: return ∞
5: childEntropies← []
6: for each succ ∈ σ(s) do
7: successorEntropies.Append(MinPathEntropy(s, σ))

8: localEntropy ← H(Z|σ(s)|)
9: return min(successorEntropies) + localEntropy

The process begins by calculating the entropy for all possible start states to

determine the minimum among them. The entropy measured is the minimum

18

path entropy, representing the entropy value of the solution path for a state with

the least entropy. To compute this value, a recursive function is utilized, as

depicted in Algorithm 3. This function takes a state and a successor function

(denoted as σ) as input and yields the minimum path entropy. Initially, the

function evaluates the number of successors for the input state. If there is only

one successor, the entropy for that state is zero; if the state has no successors, its

entropy is infinity, as discussed earlier.

An important point to note here is that the list of successors need not be

exhaustive; that is, it does not need to include all possible successors to a state.

This is because if any form of player modeling is involved, we have to assume

that players may not examine all successors. Based on their skill level, they

may consider some states unnecessary to explore because they would not lead to

the solution. This concept is implemented through inference rules, which aim to

reduce the uncertainty encountered in logic puzzles. Inference rules are utilized to

model the uncertainty experienced by skilled players while solving puzzles. In the

provided pseudo code, inference rules are implemented as part of the successor

function and are used to remove some of the successors. Inference rules will be

discussed in more detail in Chapter 5.

The resulting entropy of a state s comprises the sum of the local entropy,

determined by the number of actions |A(s)|, and the entropy associated with the

successor state having the lowest entropy.

19

Chapter 3

Building the Puzzle

In this chapter, we introduce the problem domain and define the puzzle game

framework that we will be working with for the remainder of the study. Af-

terwards, we discuss the process of generating all solutions to the puzzle game.

Figure 3.1 highlights the steps of the process covered in this chapter.

3.1 Defining Puzzle Framework

The first step in the process involves defining the puzzle framework. In this study,

we focus on a specific type of puzzle, which belongs to the category known as

tangram puzzles. The tangram is a puzzle that comprises multiple flat polygon

Figure 3.1: Steps covered in chapter 3.

20

Figure 3.2: The Ostomachion, an old instance of tangram puzzles (source:
https://en.wikipedia.org/wiki/Ostomachion). Notice the variety of shapes
and sizes among the pieces.

pieces assembled to create various shapes. Players aim to replicate a given pat-

tern, often provided as an outline with some or no initial pieces placed, using all

pieces without overlap. The example shown in Figure 3.2 is an instance of this

puzzle called The Ostomachion, which was developed by the Greek mathemati-

cian Archimedes more than two thousand years ago and found in the Archimedes

Palimpsest (Morelle, 2007). Popularized in China in the early 1800s, tangram

puzzles gained popularity in America and Europe through trading ships shortly

thereafter (Slocum, 2003). Renowned worldwide, the tangram serves multiple

purposes, including entertainment, artistic expression, and as an educational tool

(Forbush, 1914; Slocum, 2001; Campillo-Robles et al., 2022).

The first step in designing the instance of the tangram puzzle we will be

working with is selecting the shape of the board (the outline) and the pieces. For

this, we build on previous work that explored a tangram puzzle with a hexagon-

shaped board (Blanchonnet, 2021). The building blocks of the board are triangles,

as can be seen inside the board shown in Figure 3.3. The board contains 54

triangles in total.

21

https://en.wikipedia.org/wiki/Ostomachion

Figure 3.3: Puzzle board. Notice the small triangles composing it. Some triangles
are shaded to improve visibility.

Given that the board units are triangles, it follows that the units comprising

the pieces must also be triangles. At this point, we face a decision: either conduct

the analysis for all potential piece shapes and combinations, an endeavor deemed

prohibitively costly, or opt for a subset of shapes sharing a particular attribute.

Following the previous work that investigated this puzzle, we choose the latter

option. The attribute chosen to be enforced was that all pieces must consist of

“Trapezoids.” A trapezoid comprises three adjacent triangles, as illustrated in

Figure 3.4.

Using the trapezoid as the foundation for the pieces ensures the validity of

all potential piece shapes. Since a trapezoid is a valid shape that can fit onto

the board, any pieces constructed from trapezoids must also be valid, unless they

Figure 3.4: The trapezoid piece.

22

Figure 3.5: The selected set of pieces and the names assigned to them (excluding
the “Trapezoid” piece). Notice how they are all composed of two trapezoids in
some configuration.

exceed the board’s capacity. This yields a total of 10 different possible piece

shapes, inclusive of the trapezoid itself, each comprising either one trapezoid or

two adjacent ones. Figure 3.5 shows the nine pieces composed of two trapezoids

each. We opted against any pieces larger than that, as they would occupy exces-

sive space on the board, resulting in fewer potential board configurations, as we

will explore later in Section 3.2.

At this point, we have a board of size 54 and pieces consist of trapezoid pieces

with a size of 3 triangles and two-trapezoid pieces with a size of 6 triangles. With

this setup, we infer that the board can accommodate a maximum of 54 / 3 = 18

pieces (if all are trapezoids) or a minimum of 54 / 6 = 9 pieces (if all are larger

pieces).

We now need to determine the types of pieces and how many instances of each

23

to provide to the player. Following the previous work, we opted for a piece set

comprising all nine larger pieces and two of the small trapezoid pieces, resulting

in a total of 11 pieces. However, this results in having 9 * 6 + 2 * 3 = 60

triangles, which exceeds our board’s size by six triangles. This means that in

each solution, either one of the nine larger pieces or both trapezoids have to be

marked as “Forbidden”, meaning they must not be included in the solution.

3.2 Generating All Solutions

Now that both the board and piece descriptions are complete, we move to the

next step in the process. This step involves generating all solutions to the puzzle,

which entails generating all possible configurations of pieces that form a complete

board without any excess (i.e., pieces extending beyond the board’s boundaries,

which would not occur if the board is filled).

At this stage, we can conduct an EPCG analysis to generate all the solutions

to the puzzle. To do this, we must define both the generator and the evaluator. As

discussed in Section 2.2, in EPCG, for the generator we define both the maximum

rank and the unranking function. In this puzzle, the maximum rank represents

the total number of configurations for all the pieces in the set on the board.

As previously mentioned, using all 11 pieces in a solution would exceed the

board’s size of 54. Instead, we must always exclude one piece from the solution

(or both trapezoid pieces). Following that, there are 10 distinct sets of solutions,

each set excluding one of the piece types.

In order to determine the maximum rank, we first need to obtain all possible

locations for each piece. To achieve this, we execute a search that systematically

scans the board using the piece, from left to right and top to bottom, incrementing

24

either the horizontal or vertical position by one at each step. Figure 3.6 illustrates

piece movements.

It is important to note that each piece can also rotate, as illustrated in Figure

3.7. This rotation property expands the potential locations for pieces further, as

for each piece we must now consider all six possible angles of rotation: 0, 60, 120,

180, 240, and 300 degrees.

It is worth noting that certain pieces appear identical when rotated by 0 or

180 degrees. We refer to these pieces as “rotationally-symmetric” pieces, which

are depicted in Figure 3.8.

We also observe another interesting property of the pieces that was mentioned

in the previous study: their ability to be flipped (Blanchonnet, 2021). This aligns

with our intention to create a physical version of the puzzle, where the pieces can

be physically flipped and positioned on the board with their reverse side. The

illustration in Figure 3.9 demonstrates how pieces appear when flipped.

Figure 3.6: Scanning the piece board locations.

25

Figure 3.7: Different angles of rotation for a piece.

Figure 3.8: Rotationally-symmetric pieces.

Similar to the case with rotation, we observe that certain pieces appear iden-

tical when flipped. These pieces are termed “flip-symmetric” pieces, depicted in

Figure 3.10.

After outlining all the possible movements for a piece, we proceed to list

all the potential locations for each piece. Using this information, we obtain

the maximum rank for each set of pieces by simply multiplying the number of

locations of each piece in the set. Table 3.1 shows the number of locations for

Figure 3.9: Examples of flipping pieces.

26

Figure 3.10: Flip-symmetric pieces.

Piece Locations
Mountains 192

Hook 192
Triangle 156
Trapezoid 156
Snake 84
Wrench 78
Elbow 78
Line 72

Butterfly 42
Hexagon 19

Table 3.1: Number of locations for each piece type.

each of the ten piece types. With this data, the maximum rank for the puzzle

ranges between 1.372×1017 and 1.386×1018, depending on which pieces are in the

set. The numbers within this range are prohibitively large, making exhaustively

generating all states in this way infeasible. That is why we chose to formulate

the generator as a depth-first search algorithm. This also means it is unnecessary

to explicitly write an unranking function since we will not be iterating through

the ranks in the usual manner.

The next step involves defining the evaluator that we will be using. In this

case, the evaluator will check whether each state constitutes a valid solution. If

so, it is added to our list of generated solutions. A valid solution state is one in

which all pieces in the set are placed on the board without overlap, filling up the

27

entire board.

With both the generator and the evaluator in hand, we can begin the EPCG

process to systematically generate all the solutions. However, it is important to

note that each solution will omit one of the piece types. Therefore, we execute 10

different searches, each with a piece set that disregards a different piece type. As

mentioned earlier, we perform a depth-first search to iterate through all content

in a more efficient manner.

At the start of each depth-first search, we select one of the pieces (excluding

the forbidden one) and identify all possible locations where the piece can be

positioned. Subsequently, for each location of the first piece, we find all valid

locations for the second piece (without displacing the first). This process is

repeated for all pieces until either a solution is reached (all pieces are successfully

placed) or a state is encountered where none of the remaining pieces can be placed

without making the state invalid (due to overlapping or out-of-bounds pieces).

Formulating this as a depth-first search offers the advantage that, at least

for this specific puzzle, we can evaluate partial states to determine whether they

would lead to a valid solution. In other words, a fully exhaustive generator would

generate all states regardless of their validity, but when using a depth-first search,

invalid states are pruned immediately. This is because during the search, when

placing pieces, we make sure not to place them in locations where they would

overlap with other pieces. The pseudo code in Algorithm 16 shows a simplified

version of the algorithm.

28

Figure 3.11: Duplicate solution states. Notice how from each of the shown solu-
tions one can get to any of the others by rotating and/flipping the solution one
or more times.

Algorithm 4 FindAllSolutions()

1: solutions← []
2: depth← 0
3: board← CreateEmptyBoard()
4: actions[0]← board.GetActions()
5: while depth > 0 or actions[depth].count > 0 do
6: if actions[depth].count > 0 then
7: board.apply(actions[depth].last)
8: depth← depth+ 1
9: actions[depth].Add(board.GetActions())
10: else
11: depth← depth− 1
12: board.UndoAction(actions[depth].last)
13: actions[depth].Pop()

14: if SolutionV alid(board) and ¬solutions.Contains(board) then
15: solutions.Add(board)

16: return solutions

In the search algorithm for finding the solutions, as seen in Figure 3.12, we

begin by creating an empty board and then finding all the possible actions for

that board. The list of actions contains all the possible single-piece configurations

of the board for all piece types in the piece set. After that, we take an action

from the list, apply that action, and then generate the list of all possible actions

succeeding it and put them at a higher depth index in the list. Note that the

29

Figure 3.12: Depth-first search tree.

succeeding actions contain the piece from the first action. We repeat the process

and propagate deeper into the tree until we reach a point where no other pieces

can be placed. At this point, we check whether the board constitutes a valid

solution, and if so, whether we already have that solution in our solutions list.

The inclusion test also considers all the possible rotations of the solution and

attempts to flip it and rotate it as well to ensure that we do not have duplicate

solutions in our list (Figure 3.11 illustrates duplicate solutions). In either case,

whether the board constitutes a valid solution or not, if no more pieces can be

placed, we undo the last action performed and iterate through the rest of the

actions at the previous depth index. Once we reach the root, which is the empty

board, with no more actions left to apply, the search ends, and we return the list

of solutions.

After running this for all the possible piece sets, we end up with the number

of solutions shown in Table 3.2.

The search procedure was implemented in C++ and compiled using Xcode.

Executing the complete search takes approximately 9 minutes and 40 seconds

on an Apple M1 MacBook Air 2020 with 8 GB of RAM. The total number of

30

Forbidden piece Solutions
Hexagon 673
Butterfly 352
Wrench 321
Snake 307

Mountains 265
Hook 179

Triangle 176
Elbow 129
Line 97

Trapezoid 9
Total 2508

Table 3.2: Number of solutions found with each forbidden piece type.

expansions is 392, 326, 063, which constitutes 0.283 × 10−8% of the number of

expansions that would have been necessary in the naive exhaustive case.

We note that we ran an experiment here after the study was complete, in

which we utilized the inference rules that will be discussed in Chapter 5 to reduce

the number of successors from each state. This resulted in an 86.52% speedup,

meaning that the complete search now takes only approximately one minute and

18 seconds when run on the same setup as earlier. With the total number of

expansions being 2, 595, 601 in this case.

31

Chapter 4

Constraint Analysis

In this chapter, we begin by introducing the two types of constraints chosen for

the puzzle. Then, for each of the two constraint types, we discuss the process of

defining the constraint type, generating all relevant constraint combinations, and

evaluating the set of puzzles resulting from those combinations. The constraints

generated in this stage are used later to construct the chapters in the curriculum.

4.1 Constraint Types

Following the generation of all solutions, we now have 2508 solutions in total. The

next step involves defining constraints that could diversify the chapters within

our curriculum, as highlighted in Figure 4.1.

Regarding the constraints, we define two general types. Firstly, there are

constraints that pertain to the relationship between the piece and the board.

These constraints restrict the number of locations on the board where a piece

can be placed. For instance, specifying that a particular piece cannot be flipped,

or that it can only be placed on the lower half of the board and not the upper.

32

Figure 4.1: Constraint analysis section of the architecture.

We call this type of constraints “Placement constraints”.

The second type of constraint involves the interplay between the pieces them-

selves. These constraints dictate the locations a piece can occupy based on the

placement of another piece on the board. For instance, one constraint might

require that a piece be adjacent to another piece, while another might specify

that they cannot be adjacent for the solution to be valid. We call this type of

constraints “Adjacency constraints”.

Given that these two constraint types are independent of each other, we ex-

ecute the loop depicted in Figure 4.1, which involves defining the constraint

space, generating all constraint combinations, evaluating the resulting puzzles,

and making adjustments. We repeat this process twice, once for each of the two

constraint types. However, it’s worth noting that this is an iterative process.

Adjustments to the constraint definitions may be necessary. This is to address

aesthetic concerns and/or to further limit the size of the constraint space.

4.2 Placement Constraints

As previously mentioned, the board we intend to use is physical, which enables us

to establish distinct functions for each side, as shown in Figure 4.2. Consequently,

in this study, we apply placement constraints to one side of the board and not

the other.

33

Figure 4.2: The two sides of a physical board.

We start by defining a constraint pattern, which is a configuration of individ-

ual piece constraints. A piece constraint restricts which locations on the board

a piece can occupy. This can be achieved by altering the design of pieces and

certain locations on the board to limit the possible placements for a specific piece,

as will be discussed shortly. An example of a constraint pattern is one that allows

the “Hexagon” piece to be placed anywhere while restricting all other pieces to

one or two specific locations. Bearing this in mind, we proceed to conduct a

comprehensive analysis of all such patterns and determine the number of valid

solutions for each.

To execute EPCG and exhaustively generate and evaluate all the possible

constraint patterns, we must define both the generator and the evaluator. For

the generator, we need to devise an unranking function and establish a maxRank

to apply with that function. In this case, maxRank corresponds to the number

of constraint patterns, which we will discuss momentarily. As for the unranking

function, it is used to extract the constraint configuration for each piece from

the integer index, for which we use modulo operations. As for the evaluator, it

checks how many of our total of 2508 solutions satisfy each constraint pattern.

34

Algorithm 5 PlacementConstraintSpaceSearch(solutions)

1: mostPatternSolutions← 0
2: for pattern = 0 to numPatterns− 1 do
3: patternSolutions← 0
4: for i = 0 to solutions.size()− 1 do
5: if SolutionValid(solutions[i], pattern) then
6: patternSolutions++

7: if patternSolutions > mostPatternSolutions then
8: mostPatternSolutions = patternSolutions
9: bestPattern = pattern

10: return bestPattern

As illustrated in Algorithm 5, the complete loop operates as follows: for each

constraint pattern, and then for each of our 2508 solutions, we check whether that

solution is valid given the placement-constraint pattern. During the execution of

the procedure and within the top-level loop (which iterates over the patterns), we

keep track of the number of valid solutions for each specific pattern. Our criteria

involve selecting the pattern that yields the greatest number of solutions. We

then use the evaluator to satisfy this criterion.

4.2.1 First Iteration

To determine the number of ways to define the placement constraint patterns

for all pieces, we first need to understand how many constraints can be applied

to each individual piece. For a piece P with NP distinct locations on the board

(accounting for all rotations and flipping the piece), there is
(︁
NP

0

)︁
= 1 way to

constrain the piece to none of its possible locations. Similarly, for constraining

the piece to one location, there are
(︁
NP

1

)︁
= NP ways. Then, for two locations,

there are NP × (NP −1) ways, or
(︁
NP

2

)︁
. For three locations, it is

(︁
NP

3

)︁
, continuing

until we reach
(︁
NP

NP

)︁
for all NP locations, which evaluates to one. This yields the

35

total number of possible placement constraints CP for piece P as follows:

CP =

(︃
NP

0

)︃
+

(︃
NP

1

)︃
+

(︃
NP

2

)︃
+ ...+

(︃
NP

NP

)︃
= 2NP (4.1)

Combining this with all the other M − 1 pieces in the set we end up with:

C = CP1 × CP2 × ...× CPM = 2NP1 × 2NP2 × ...× 2NPM (4.2)

This expression evaluates to 104.13×1016 when evaluated for the set of pieces

that does not contain the “Hexagon” piece, a number far greater than the number

of atoms in the observable universe (estimated to be 1082 based on recent esti-

mates (Planck Collaboration et al., 2016)). Evaluating each pattern individually

to see how many solutions satisfy it is infeasible given this magnitude. However,

we observed that such an approach might not be necessary, as many of these

patterns appear to be somewhat arbitrary.

4.2.2 Second Iteration

One of our primary considerations in designing placement constraints is the prac-

ticality of implementing them on a physical puzzle. One straightforward approach

involves incorporating physical bumps onto the board’s triangles, allowing only

pieces with corresponding holes of the same shape to fit. An example of this is

shown in Figure 4.3. This method can accommodate various bump shapes and

sizes, and can even permit bumps to accept multiple hole shapes, and vice versa.

To simplify the process, we opted for a single size and shape for both the

bumps and holes. We chose a hemisphere as the shape because we believed it

would facilitate the fitting of bumps into holes in the physical puzzle. With this

36

Figure 4.3: Bumps and holes. Notice how the piece on the left would fit onto
the board because the bump can fit inside the hole, while the flat piece on the
right would not. Note, however, that in the physical puzzle, no triangles are
actually flat; flat piece triangles have bumps on them, and flat board triangles
have holes on them. This design helps make the pieces more stable on the board
when placed and does not affect the analysis.

decision, we can now calculate the number of ways to place bumps on the board

using the following equation:

Patternsbumps = 2boardTriangles = 254 (4.3)

Where boardTriangles corresponds to the number of triangles on the board.

This equation is derived from the fact that for each triangle, there is a binary

decision: whether to place a bump or not. When considering all triangles simul-

taneously, the result is two to the power of the number of triangles.

Likewise, considering the pieces, each piece either has 12 (for the nine larger

pieces) or 6 triangles (for the two trapezoid pieces) when both its sides are taken

into account. Consequently, we arrive at the following number of ways to assign

holes to a piece’s triangles for a piece P1:

holesP1 = 2T1 (4.4)

Where T1 is the number of triangles in piece P1. Which yields the following

37

as the total number of patterns for the pieces:

Patternsholes = holesP1 × holesP2 × ...× holesPM = 212×9 × 26×2 = 2120 (4.5)

Combining the two leads to the following as the total number of patterns:

Patternstotal = Patternsbumps × Patternsholes = 254 × 2120 = 2174 ≃ 2.39× 1052

(4.6)

4.2.3 Third Iteration

While this figure is significantly smaller than what we had before, it remains too

large to explore exhaustively, necessitating further restrictions on the patterns.

To address this, we opted to implement a checker board pattern for bumps on the

board. Figure 4.4 illustrates the two possible patterns we derive for the board,

which are equivalent when one of them is rotated by 60 degrees - resulting in

Patternsbumps being reduced to just one.

Regarding the pieces, in addition to alternating hole configurations, and to

broaden the range of patterns to explore and select from, we allow each of the

two sides of a piece to have one of the following configurations: “full” (holes on

all triangles), “even” (alternating holes, starting from a hole in the bottom left

triangle), “odd” (alternating holes, starting from a flat triangle in the bottom

left), or “none” (no holes in any of the triangles). As each side can have a

configuration independent of the other side, we end up with 16 possible overall

configurations for each piece. This yields the following number of patterns for

38

Figure 4.4: Board constraint patterns. The bumps are shown as circles and the
triangles containing them are shaded for visibility.

holes:

Patternsholes = ConfigsM = 1611 = 244 (4.7)

Prior to computing the total, it is essential to acknowledge that one of the six-

teen possible configurations for each piece involves having no holes on either side.

Applying such a configuration renders the piece unable to fit anywhere on the

constrained side of the board. Consequently, any pattern containing this configu-

ration will not yield valid solutions, considering the distribution of bumps on the

board as illustrated earlier. This is why we opted to exclude this configuration.

Therefore, Patternsholes is effectively reduced from 1611 to 1511.

We now calculate the total number of patterns as follows:

Patternstotal = Patternsbumps × Patternsholes = 1× 1511 = 1511 ≃ 8.511× 1012

(4.8)

39

This number is more manageable than what we had earlier, so we attempted to

generate and evaluate all the constraint combinations of this type. The estimated

execution time for this procedure is around 20 hours in our implementation.

However, we first tested it on a smaller portion of the state space for debugging

purposes. During this test, we noticed that there were still some symmetries that,

if detected and discarded, would make the state space much smaller. Therefore,

we looped back to the step of defining the constraint space.

4.2.4 Fourth Iteration

As previously mentioned, certain pieces exhibit forms of symmetry that become

apparent when specific transformations are applied to them. For instance, the

“Hexagon”, “Butterfly”, “Elbow”, and “Trapezoid” pieces appear identical when

flipped (rotated 180 degrees around the x-axis), while the “Hexagon”, “But-

terfly”, “Snake”, and “Parallelogram” pieces maintain their appearance when

rotated 180 degrees.

Now, we can leverage these identified symmetries to further shrink our pattern

space. Consider the “Elbow” and “Trapezoid” pieces from the “flip-symmetric”

category for now (the “Hexagon” and the “Butterfly” present special cases, which

will be addressed later). For these two pieces, we observe that both sides are

equivalent; the player can simply flip the piece and use the less restrictive side or

the one that facilitates placement on the board in that particular location. This

concept is clarified further with a graph, as illustrated in Figure 4.5.

This leads to the conclusion that it would suffice to require those pieces to

have the same hole configuration on both sides, effectively limiting their number

of configurations to 3. Note that it is not 4 because having no holes on either

side is not a considered configuration because it disallows the piece from being

40

placed anywhere on the constrained side of the board.

Regarding rotation-symmetric pieces, we can observe that rotating a piece by

180 degrees results in the piece retaining the same shape. However, this rotation

also causes its hole configuration to switch between odd and even if the original

configuration was either odd or even. Figure 4.6 illustrates this.

With this consideration, pieces exhibiting such symmetry do not gain any

distinction from having odd or even hole configurations on either of their sides.

In other words, assigning either side an odd or even configuration would effectively

result in a “full” configuration. This holds true due to the specific arrangement

of bumps on the board; if the board had a different bump pattern, the resulting

configuration might not equate to a “full” configuration. However, in our case,

we can exploit this to eliminate both even and odd configurations from both sides

of the corresponding pieces. This reduces the total configurations for those pieces

from 15 to 3.

Now focusing on the two pieces possessing both types of symmetry, namely

the “Hexagon” and the “Butterfly”, we first consider flip symmetry. It follows

that these pieces must have the same hole configuration on both sides: odd, even,

or full. Additionally, considering their rotational symmetry, we can discard both

Figure 4.5: Flip-symmetric pruning. The piece has an “odd” hole pattern on one
side and an “even” one on the other side. The resulting pattern effectively is
shown to the right.

41

Figure 4.6: Rotation-symmetric pruning. The piece has an “odd” hole pattern
on one of its two sides. The first graph shows the pattern on the piece at zero
degrees of rotation, the second one shows the pattern when we rotate the piece
by 180 degrees. The graph on the right shows the resulting pattern, effectively.

odd and even configurations as they effectively result in a “full” configuration.

Therefore, for these two pieces specifically, the number of valid configurations is

reduced to only one.

After taking this analysis into consideration, we end up with the following

final estimate for the true number of patterns:

Patternstotal = 1 · 1 · 3 · 3 · 3 · 3 · 15 · 15 · 15 · 15 = 4, 100, 625 (4.9)

We again attempted to test the generation on a subset of the state space

and evaluated a few constraint patterns. When evaluating the those patterns,

we observed that it was possible to limit those patterns to ones that were more

intuitive and would better connect with the symmetry types we discussed earlier.

Our plan was to break down the piece types into five groups based on the types of

symmetries they exhibit. We have two pieces that are symmetric in both ways,

two that are solely rotationally symmetric, two that are solely flip-symmetric,

and four that lack any type of symmetry.

42

4.2.5 Fifth Iteration

For the four non-symmetric pieces, we opted to divide them into two groups,

each containing two pieces. Following this division, we decided to constrain the

hole configurations for the first group to one of four possibilities: odd and none,

even and none, none and odd, or none and even (for their respective sides). This

means that one side will have either an odd or an even hole configuration, while

the other side will have no holes at all. This restriction reduces the number of

possible configurations for a piece in this group to just four. As for the other

group, we restrict them to have one of the following configurations: odd and even,

odd and odd, even and odd, or even and even (for their respective sides). Here,

we limit each side to have either an odd or an even hole configuration, resulting

in each piece in this group to also have only four configurations.

With the newly added stipulations to the pieces with no symmetry, the total

number of patterns reduces to the following:

Patternstotal = 1 · 1 · 3 · 3 · 3 · 3 · 4 · 4 · 4 · 4 = 20, 736 (4.10)

It is crucial to note that there are now 12 ways to select which of the four

pieces are assigned to each of the two-piece groups. This factor must be considered

during the exhaustive analysis. Consequently, the number of patterns effectively

increases to 248, 832.

4.2.6 Final Evaluation

After executing the EPCG procedure to generate and evaluate all constraint

patterns, we arrive at the results shown in Figure 4.7. The figure illustrates

43

Figure 4.7: Distribution of patterns in relation to the number of valid solutions
they have. The x-axis represents the number of solutions, while the y-axis denotes
the number of patterns leading to each respective number of solutions.

the distribution of patterns based on the number of valid solutions each pattern

yields. We observe that over 40% of the patterns have no valid solutions. Subse-

quently, the frequency of patterns decreases exponentially for each increment in

the number of solutions until only 16 patterns are observed, with the maximum

solution count of 164.

Running the complete analysis takes about 35 minutes in XCode on an 8-

threaded Apple M1 MacBook Air 2020 with 8 GB of RAM.

Upon conducting this analysis, we found that the pattern that has the highest

number of solutions has 164 distinct solutions in total. In essence, when applied

44

physically to the pieces, this pattern allows reaching exactly 164 out of the total

2508 solutions.

4.3 Adjacency Constraints

We now shift our focus to constraints that govern the interaction between the

pieces themselves. Bear in mind that this is another iteration of the three steps

shown in Figure 4.1 pertaining to constraint analysis. Here, we consider the

different ways in which one piece may influence the viability of placing another

piece in various locations on the board. Exhaustively analyzing this proves to

be tedious, as it could entail situations where a piece’s impact on others varies

based on the placement of specific pieces on the board. We observe that such

complexity would result in an arbitrary array of constraint definitions that would

be difficult to communicate to the player.

To tackle this challenge, we revert to one of our core criteria: crafting a

puzzle that introduces its constraints in a user-friendly manner, particularly for

beginners. To achieve this, our definitions for these constraints must be clear and

straightforward. Hence, we opt to implement piece-to-piece constraints based on

adjacency because we deem that to be simple enough for users to understand.

Now, to define adjacency, we must delineate what constitutes two pieces be-

ing adjacent. To address this, we define two types of adjacency. Firstly, edge

adjacency denotes two pieces sharing at least one edge, or more precisely, sharing

a minimum of two vertices. The other type of adjacency we introduce is where

two pieces are connected at their corners, or more precisely, they share exactly

one vertex. Figure 4.8 aids in visualizing the two adjacency types.

With these two types of adjacency defined, we now require a method to convey

45

Figure 4.8: Types of adjacency.

46

them to the player effectively. One approach is to assign a unique color to each

piece and then specify, for instance, that a red piece must not share an edge with

any green piece. Furthermore, we can allow multiple pieces to share the same

color. With this setup, we can start exploring this new constraint pattern space.

Now, concerning the constraints themselves, we have up to four constraint

types resulting from the two types of adjacency: pieces of colors A and B must

share an edge, pieces of colors A and B must not share an edge (but can share a

corner), pieces of colors A and B must share a corner (but cannot share an edge),

and pieces of colors A and B must not share a corner (nor an edge, for that

matter). It is worth noting that the second constraint type effectively combines

the third and fourth. However, we opt to retain it. This decision is to have more

chapters in the curriculum, providing greater breadth. We discuss this further

in Chapter 5. Therefore, we have five distinct constraint types between colors,

either with no constraints between them or with one of the aforementioned four.

Considering that we have five distinct constraint types that can be applied

between any of these colors (even within the same color group, as we will discuss

shortly), we arrive at the total number of patterns, which also represents the

number of possible constraint rules for puzzles in a chapter, as follows:

Patternsadjacency = Permscolors × (Permscolors − 1)× 5 (4.11)

The term Permscolors denotes the number of ways we can assign colors to

pieces, as we will see shortly.

Now, we proceed to calculate the total number of patterns in this color ad-

jacency constraint space. We begin by determining the number of ways we can

assign colors to pieces, as given by the following equation.

47

Permscolors = Perms1color + Perms2colors + ...+ Perms11colors (4.12)

For one color, this evaluates to 1 permutation. For two colors, the number of

permutations is given by:

Perms2colors =

(︃
N

1

)︃
+

(︃
N

2

)︃
+ ...+

(︃
N

N − 1

)︃
= 2N − 2 (4.13)

Where N is the number of pieces (eleven in our case). For three colors:

Perms3colors = (N−1)×(2N−1−2)+(N−2)×(2N−2−2)+...+(N−(N−1))×(2N−(N−1)−2)

(4.14)

With just three colors, we can observe exponential growth in the number of

possible permutations. Therefore, we decided not to explore this exhaustively but

instead to assign colors to pieces based on the symmetry groups discussed earlier.

Each group of pieces is assigned the same color. We arrived at this decision with

the expectation that it would be more intuitive to assign pieces from the same

symmetry group to the same color.

This means that we now have a total of five colors. When calculating the

number of different constraints we can apply between pieces of the same color in

a puzzle, it evaluates to 4 (constraint types, excluding the “no constraint” type)

multiplied by 5 (number of colors), which is 20. As for constraints between pieces

of different colors, we have 5 (for the choice of the first color) multiplied by 4 (for

the choice of the second color) multiplied by 4 (constraint types), resulting in 80

combinations.

48

Our goal now is to combine this with the previous analysis of placement

constraint patterns. We aim to find a placement constraint pattern (bumps and

holes) that would not only result in having the largest number of valid solutions

but also have enough solutions that are valid given all the newly defined color

constraint types, resulting in a large enough pool of candidate puzzles for each

chapter in the curriculum. We modify the evaluator to achieve this.

The pseudocode shown in Algorithm 6 shows how we analyze all the adjacency

constraint patterns given the list of solutions that are reachable by the selected

placement constraint pattern.

49

Algorithm 6 AdjacencyConstraintSpaceSearch(solutions)

1: maxMinBin← 0
2: bestPattern← null
3: for placementPattern = 0 to numPlacementPatterns do
4: solutions← FilterByPattern(allSolutions, placementPattern)
5: puzzles← [[], [], [], []]
6: for t = 1 to 4 do
7: for i = 0 to solutions.size()− 1 do
8: s← solutions[i]
9: valid← true
10: for clr1 = 1 to 5 do
11: for clr2 = 1 to 5 do
12: if clr1 == clr2 and s.numPiecesOfColor[clr1] == 1

then
13: continue
14: for p1 in s.piecesOfColor[clr1] do
15: for p2 in ¬s.piecesOfColor[clr2] do
16: if t == 1 and g.edge(p1, p2) then
17: valid← false

18: if t == 2 and s.edge(p1, p2) then
19: valid← false

20: if t == 3 and (s.edge(p1, p2) or ¬s.vertex(p1, p2)
then

21: valid← false

22: if t == 4 and (s.edge(p1, p2) or s.vertex(p1, p2)
then

23: valid← false

24: if valid then
25: puzzles[t].add((s, clr1, clr2))

26: minBin←∞
27: for t = 1 to 4 do
28: if puzzles[t].size() < minBin then
29: minBin = puzzles[t].size()

30: if minBin > maxMinBin then
31: maxMinBin = minBin
32: bestPattern = placementPattern

33: return bestPattern

50

In this procedure, we iterate through all placement constraint patterns, and

for each of them, we go through all the solutions that are valid given that pattern

and see how many different color constraint instances it can support. That is,

we iterate through the four different color constraint types, and for each of them,

we iterate through all the possible same-color combinations and all two-color

ones. Then, for each of those combinations, we evaluate whether introducing a

constraint defined using them would still keep the solution valid; that is, checking

if the solution already satisfies that constraint. For example, a constraint could

be that blue and green pieces must share an edge, so we verify in the solution

whether this condition is met for all blue and green pieces.

Following the validation of a solution according to a constraint rule, we ap-

pend a new tuple to the list of solutions that comply with that specific constraint

type. This tuple comprises the solution itself and the two colors involved. Sub-

sequently, upon examining all possible adjacency-constraint configurations for a

given placement constraint pattern, we proceed to identify the constraint type

that results in the fewest number of valid solutions. Upon completing the loop

for all placement constraint patterns, we then determine the pattern that yields

the highest minimum count and designate it as the “best pattern” for further

processing.

The goal of this search is to find the pattern that would lead to having the

“richest” curriculum, meaning the curriculum with the largest number of puzzles

in each of its different chapters. At this point, we have to define what types of

chapters we want our final curriculum to have.

As mentioned earlier, we aim to incorporate several distinct chapters into our

puzzle, each introducing a new type of constraint. Thus far, we have established

one type of placement constraint, involving the side of the board with bumps,

51

and the holes on piece triangles adhering to specific configurations outlined by the

selected constraint pattern. Additionally, we have four types of color constraints,

which can be imposed between pieces of the same color or between those of two

different colors. With this array of constraints, we can divide the puzzles into six

categories. The first category has no constraints and the subsequent ones each

feature one of the aforementioned constraint types. Furthermore, we create a

category that encompass combinations of multiple constraint types.

Following this decision, we opted to incorporate a total of 12 chapters into

the curriculum. The first six consist of puzzles to be solved on the “clear” side

of the board (the side with no placement constraints, i.e., no bumps), while the

remaining six are intended for the side of the board with bumps. The six chapters

in each half are defined by the type of color constraint applied to them, as outlined

in the following list:

1. No color constraints.

2. Pieces of color X must share an edge (note that in this case, we refer to one

color, for example, red pieces must not share edges with each other. The

color is defined differently in each puzzle).

3. Pieces of color X must not share an edge.

4. Pieces of color X must share a corner.

5. Pieces of color X must not share a corner.

6. Any of the four constraint types above, but between pieces of different colors

X and Y.

At this point, we specify that our chosen placement constraint pattern should

not only maximize the overall number of solutions but also yield the highest

52

Figure 4.9: Selected placement pattern. Holes are denoted as gray circles. Pieces
are grouped together based on what type of symmetry they hold. The last two
groups contain pieces that are not symmetrical in any way.

minimum number of puzzles across the twelve chapters we have outlined. This

criterion is crucial as it ensures a broader pool of puzzles within each category,

thereby enhancing the curriculum’s design, as we will discuss in Chapter 5. The

final pattern for color assignments is depicted in Figure 4.10, and the associated

best placement pattern is shown in Figure 4.9. This pattern has 101 solutions,

which is lower than what we arrived at in the previous section; however, it is the

best when it comes to the maximum minimum number of puzzles per category,

with that being 27 puzzles compared to 21 from the pattern selected originally

in the previous section.

53

Figure 4.10: Selected adjacency pattern. We assigned colors to pieces according
to which symmetry group they belong to.

54

Chapter 5

Building the Curriculum

In this chapter, we discuss the process of building the curriculum. We begin by

explaining how we derive initial states for puzzles from their solutions. Next, we

introduce entropy analysis and discuss the concept of inference rules, presenting

a selection relevant to our puzzle. We demonstrate how these rules reflect player

skills and puzzle comprehension. Then, we introduce the concept of differential

entropy, outlining its potential contribution to the development of more effective

curricula. Finally, we show how we utilize entropy analysis and differential en-

tropy to structure the finalized curriculum from the set of puzzles derived by the

initial state finder from the solutions generated in previous steps of the process.

5.1 Finding Initial States

Before beginning to build the curriculum, a few key components need to be

prepared. The first of these is the initial state finder. After completing the

constraint analysis portion of the process, we now have a list of solutions for each

constraint category. To convert these solutions into puzzles, we need to determine

55

Figure 5.1: A puzzle’s initial state and solution.

suitable initial states for players to start from and reach these solutions. An

example of an initial state and the corresponding unique solution is shown in

Figure 5.1.

We define two stipulations for identifying these initial states. Firstly, each

initial state must exclusively lead to a single solution. This is to ensure the

inclusion of as many distinct solutions as possible in the curriculum. We note

that adherence to this requirement depends on the set of constraints within the

puzzle. For instance, if an initial state yields two solutions but one of them fails to

comply with the puzzle’s constraints, that solution can be disregarded, rendering

the initial state valid. Secondly, each initial state must have the minimum number

of pieces necessary to uniquely lead to the solution.

56

Algorithm 7 FindInitialState(solution, otherSolutions)

1: for pattern = 0 to numPatterns− 1 do ▷ generator
2: unique← true
3: clone← solution.clone()
4: for piece = 0 to numPieces− 1 do
5: if pattern.bits[piece] == 0 then
6: clone.remove(p)

7: for other in otherSolutions do ▷ evaluator
8: if solution.forbiddenPiece == other.forbiddenPiece then
9: continue ▷ only compare to solutions with the same starting

pieces

10: if ¬V alidateConstraints(other, solution.constraints) then
11: continue ▷ only compare to solutions that satisfy the defined

constraints
12: otherClone← other.clone()
13: for piece = 0 to numPieces do
14: if pattern.bits[piece] == 0 then
15: otherClone.remove(p)

16: if equivalenceTest(clone, otherClone) then
17: unique← false
18: break
19: if unique then
20: return pattern

21: return ϕ

To construct the initial state finder function, we formalize it as an EPCG

procedure, as shown in Algorithm 7. In this scenario, the generator produces all

possible sets of initial pieces for the puzzle. Each set can contain any number of

pieces, ranging from none to all solution pieces. The idea is that, for each set of

initial pieces, we remove all the pieces from the solution that are not included in

that initial set and consider that as an initial state for the solution.

To determine the maxRank for the generator, we calculate the total number

of possible initial piece sets. If we consider the case with the trapezoid pieces,

there are 10 total pieces in those sets, including both trapezoids, while there are

57

9 pieces for the piece set that does not include trapezoids. For each piece in the

solution, it can either be in the initial set or not, resulting in two possibilities

for each piece. This leads to a total number of configurations equal to 210 or 29,

depending on whether trapezoids are part of the solution or not.

With the maxRank calculated, we proceed to define the unRank function.

A rank in this case is a binary number, with each bit corresponding to a specific

piece, representing whether that piece is in the initial piece set or not. To convert

this rank back to a state, we iterate through its bits and remove the pieces with

zero values from the solution state. This results in a state where only the pieces

in the initial set are present, and they are all in the same locations as they were

in the solution.

As for the evaluator, in this case, we use it to determine whether an initial

piece set leads to a unique solution or not. To assess this, we iterate through

all the other solutions that have the same set of solution pieces (i.e., the same

“forbidden” piece) and also adhere to the constraints applied to the solution. For

each of these solutions, we compare the locations of the pieces in the initial piece

set with those in the solution we are assessing. If the locations match, it indicates

that the initial piece set can lead to multiple solutions, rendering it invalid based

on our criteria. Otherwise, we label it as the initial state for the solution and

proceed to the next one.

One crucial aspect to consider when comparing the initial locations of pieces is

that states may be rotationally or flip equivalent to each other. This implies that

we must rotate the initial state several times to ensure that none of its rotated

and/or flipped versions have their pieces in the same locations as those of the

solution we are comparing it to.

To ensure that we encounter the first valid initial piece set with the minimum

58

number of pieces, we need to iterate through the ranks in the generator in a

specific order. This can be achieved by initially iterating through the case with

no pieces in the initial set, then progressing to the cases with only one piece in

the initial set, followed by those with two pieces, and so on.

The runtime of the initial state finder function depends on the number of

solutions that adhere to the same constraints defined for the puzzle under as-

sessment. When executed for the unconstrained case, it takes approximately 0.8

seconds per solution. This performance was achieved by running the function in

XCode on an Apple M1 MacBook Air 2020 with 8 GB of RAM.

5.2 Entropy Analysis

For the puzzle game we are building, entropy analysis serves as an appropriate

method for evaluating difficulty. This involves measuring information entropy,

which quantifies uncertainty in random variable outcomes. As discussed previ-

ously in Chapter 2, the MUSE entropy analysis algorithm, which we use in this

work, takes as input a state, a successor function, and inference rules, produc-

ing an entropy score as output. We utilize the initial states derived using the

method discussed in the previous section as input for the entropy analyzer. The

successor function for this puzzle generates all possible actions that one can take

from the current state, constituting a list of all potential placements for each new

piece, excluding the “forbidden” piece, on the board. Inference rules represent

expert knowledge, aiding in reducing entropy scores, as discussed in the following

section.

59

5.3 Inference Rules

Players of logic puzzles typically establish a set of guidelines to assist them with

puzzle-solving. For instance, in traditional rectangular jigsaw puzzles, players

often can tell that two straight edges are corner pieces, and these corners must

be neighboring other pieces that posses straight edges. These deductions can be

formalized into inference rules.

Inference rules reduce uncertainty in logic puzzles by modeling the uncertainty

experienced by skilled players during puzzle-solving. For example, in jigsaw puz-

zles, experienced players understand that connecting pieces with straight edges to

those without them is unnecessary, significantly reducing the number of connec-

tions to explore. By decreasing the number of actions that experienced players

need to consider, inference rules diminish the uncertainty encountered at each

step of puzzle-solving.

In the context of the puzzle we are constructing, we have devised a set of infer-

ence rules that we anticipate players will learn as they progress through the game,

thereby facilitating puzzle-solving. These rules were primarily formulated based

on observations made during puzzle design; however, this list is not exhaustive,

and there are other inference rules yet to be discovered and implemented.

5.3.1 Location can only fit a certain piece rule

When solving a puzzle, there are instances where a state features vacant spaces

that perfectly match one of the remaining pieces. A vacant or empty space is a

group of empty triangles connected by edges. Since we have only one piece of

each shape (excluding the trapezoids, which require consideration for each one

separately), it becomes evident that the piece corresponding to the empty space

60

Figure 5.2: An example where a location can only one certain piece. In this case
the purple “Hook” piece.

is the correct choice. Figure 5.2 illustrates an example of this scenario.

5.3.2 Piece can only go in one place rule

This scenario bears some resemblance to the previous one, but it occurs when

a piece has only one possible position on the board. A distinguishing factor is

that in this case, the designated location may not exclusively accommodate that

particular piece; it could potentially fit other pieces as well. Figure 5.3 provides

a clearer illustration of this scenario.

5.3.3 Size of empty space rule

Here, we observe that each piece is comprised of either three or six triangles, both

of which are divisible by three. Consequently, if an empty area within the board

contains a number of triangles that is not divisible by three, the current state is

invalid, which means it is a state that we know we cannot reach the solution from.

This is because the remainder after division by three will consist of triangles that

61

Figure 5.3: An example where a piece can only go into one location on the board.
In this case the red “Butterfly” piece.

cannot be filled, given that no piece can accommodate them, as all pieces have

a number of triangles divisible by three. Figure 5.4 illustrates a few examples of

such instances.

To verify if a state has this property, we first identify the sizes of connected

regions consisting of empty triangles. We then compile these triangles into a

list to avoid redundant exploration. With the list of empty regions in hand, we

determine the size of each and ensure that it is either divisible by 6 (if trapezoids

are not available, either because they are forbidden or have both been placed), or

that it is divisible by 3 (if at least one trapezoid remains). Finally, we return a

boolean value indicating whether the state includes at least one empty area with

an invalid size.

5.3.4 Piece that fits the space not available rule

If a space can only accommodate a specific piece, meaning that the space matches

the shape and size of the piece, but the piece is either forbidden or already in use,

62

Figure 5.4: Examples where the first inference rule applies. In both examples we
have empty regions of sizes non-divisible by three shaded red. In the first board
we have two empty spaces of sizes 4 and 2, and in the second one we have one
large empty space of size 13 and a smaller one of size 2 that are invalid.

it is reasonable to conclude that the solution cannot be derived from that state.

However, this conclusion does not hold if the piece that fits the space is not a

trapezoid, but both trapezoids are available. In this scenario, the two trapezoids

can be arranged to resemble the piece precisely, as we previously discussed in

Chapter 4.1 (all the larger pieces are merely variations of the two trapezoids

sharing an edge or more). Figure 5.5 illustrates examples of states where this

rule would apply.

To conduct this check, we first compile a list of empty spaces. If any of them

is of size 3 and no trapezoids are available, we return a value indicating that the

state is invalid. Otherwise, we examine each space of size 6, ensuring that there is

a remaining piece with a suitable location to fit into it. If no such piece is found,

we return a value indicating that the state is invalid. If all the size 6 spaces pass

the check, we return a value indicating that the state is valid.

63

Figure 5.5: Examples where the fourth inference rule applies. In both examples,
the piece that corresponds to the shaded empty space is unavailable. In the
first instance, the space resembles the “Hook” piece, which has already been
used in the solution. Additionally, a trapezoid has been positioned, eliminating
the option of using the two trapezoids to form the shape of a “Hook” piece.
The second example operates under similar principles, but with the “Snake” and
trapezoid pieces. In both cases, we note that these pieces have already been
placed.

5.3.5 Pieces are composed of trapezoids rule

As previously mentioned in Chapter 4.1, in this particular puzzle, all larger pieces

consisting of 6 triangles are constructed from two trapezoids sharing one or more

edges. This characteristic proves useful when encountering a state with an empty

space that cannot accommodate any of our pieces. While this rule somewhat

overlaps with the previous one, it is generally more efficient to directly dismiss a

state with an “incoherent” empty space shape, rather than comparing its shape

to all available pieces before discarding it. Figure 5.6 illustrates some examples

of this scenario.

To execute this verification, we start by clearing the list of spaces, focusing

solely on those of size 6. This rule specifically applies to spaces of this size; it

is not relevant for larger or smaller spaces. For each of these size 6 spaces, we

64

Figure 5.6: Examples where the fifth inference rule applies. In both examples,
the size of both the shaded empty areas is 6, which qualifies them under the first
inference rule. However, it is evident that the configurations described cannot be
constructed using any combination of two trapezoids, indicating that such pieces
do not exist in our set to begin with.

examine whether there is a configuration involving two trapezoids that would fit

within the space. We conduct this check by attempting to position two trapezoids

within the space without overlap, ensuring they completely occupy the area. If

we cannot find such a configuration, it indicates that the state is invalid.

Table 5.1 presents statistics for the entropies of puzzles in each constraint

category. Note that we set a hard cap of 3000 puzzles for each category since this

number is sufficient when choosing our final set puzzles. This is especially im-

portant given that calculating entropies for entire sets would be computationally

expensive and time-consuming.

5.4 Differential Entropy

Incorporating inference rules aids in refining the entropy score of a puzzle. This

is because they eliminate certain actions that are deemed unnecessary due to

65

Ch Constraint type(s) Puzzles Min Max Avg Med Std
1 No constraints 2508 0.00 16.61 6.46 6.17 2.43
2 Edges must touch 3000 0.00 17.69 6.75 6.58 2.32
3 Edges must not touch 3000 0.00 16.27 6.84 6.58 2.38
4 Corners must touch 3000 0.00 17.69 6.87 6.58 2.34
5 Corners must not touch 444 1.00 13.85 7.93 7.81 2.16
6 Multi-color constraints 3000 1.00 16.15 7.52 7.39 2.48
7 Bumps 101 3.00 18.25 9.71 9.39 3.33
8 Bumps + Edges must touch 213 3.00 19.20 9.92 9.58 3.14
9 Bumps + Edges must not touch 136 3.00 20.05 10.90 11.28 3.88
10 Bumps + Corners must touch 174 3.00 19.89 9.96 9.58 3.12
11 Bumps + Corners must not touch 27 6.32 18.34 12.04 11.70 2.88
12 Bumps + Multi-color constraints 292 3.00 20.05 11.55 11.57 3.70

Table 5.1: Entropy statistics for the chapters.

their potential to lead to invalid future states. A notion arises here: measuring

the entropy of a puzzle with and without a specific inference rule. This approach

allows us to quantify the reduction in entropy resulting from the addition of the

inference rule.

DE(s, r) = E(s, [])− E(s, [r]) (5.1)

As discussed in Section 5.2, the entropy analyzer takes as input a state, a

successor function, and a set of inference rules. As can be seen in Equation 5.1,

to calculate differential entropy, we first run the analyzer on the initial state of a

puzzle with that inference rule in the input set of rules, record the resulting score

(E(s, []) in the equation, where s is the initial state and the square empty brackets

represent having an empty set of inference rules), and then run the analyzer again

without that rule in the set, recording the result (E(s, [r]) in the equation, where

r inside the square brackets represents the inference rule). Finally, we subtract

the entropy score with the inference rule from that without it; this difference is

66

Figure 5.7: Curriculum building step.

the differential entropy (DE(s, r) in the equation).

For each puzzle in our final set, and for each inference rule individually, we

conduct this analysis. Initially, we measure the entropy for all these puzzles

without any inference rules. Subsequently, we repeat the process with each infer-

ence rule enabled individually. The resulting data is organized into a table, with

puzzles sorted from highest to lowest difference in entropy between having no

inference rules and having a specific rule enabled. A higher difference indicates a

more significant reduction in difficulty resulting from learning the corresponding

inference rule. We leverage this information when constructing our final curricu-

lum, as it provides insight into how players can utilize specific inference rules

when solving puzzles.

5.5 Design of the Curriculum

Now that all the analysis tools have been implemented, we can begin the process

of building the curriculum. This involves obtaining all the puzzles, which serve as

the initial states for the solutions across all constraint categories. After obtaining

these puzzles, along with their associated entropy scores with all inference rules

enabled, and after calculating the differential entropy for all puzzles that do not

have constraints, our goal is to construct a curriculum using all these pieces. This

step is the one before last in the process, as shown in Figure 5.7.

67

The curriculum contains twelve chapters in total, each introducing a new

constraint or combination of constraints. With the first chapter being dedicated

to introducing players to the puzzle.

The introductory chapter of the curriculum comprises two main parts. In the

first part, we present a series of easy puzzles, all without any constraints. To

select these puzzles, we prioritize those with the lowest entropies among all the

puzzles that do not have constraints. However, during this process, we observed

that even the easiest puzzles in the set may not be easy enough for beginners as

suggested by their entropy estimates. This is because, in generating the initial

states for these puzzles, as indicated in Section 5.1, we chose initial states that

have the minimum number of pieces required to uniquely lead to the solution.

To address this, we devise a function to estimate the entropy difference re-

sulting from adding each remaining piece to the initial state. Consequently, for

each puzzle, we have the option to either choose pieces that minimally decrease

entropy or those that decrease it maximally. Which is similar to the previous

work on Snakebird as discussed in Chapter 2. We opted for the latter and ob-

tained three easy puzzles that still provide some level of challenge, encouraging

players to engage in reasoning while solving them.

The next segment of the introductory chapter aims to teach players using the

various inference rules we identified. To accomplish this, we regenerate all initial

states for the puzzles that do not have constraints defined for them to include

more pieces at the start (as overly difficult puzzles might defeat the purpose of

teaching beginners). Then, we calculate the entropies for all these puzzles with

all inference rules disabled. After that, we repeat the process with each rule

enabled individually. This allows us to ascertain a differential entropy score for

each puzzle for each inference rule. Next, for each inference rule, we arrange the

68

puzzles in descending order of the differential entropy for that rule. After that, we

select the top three puzzles for each rule and append them to the list of puzzles

in the introductory chapter. The assumption here is that by presenting players

with puzzles exhibiting high differential entropies, we implicitly encourage them

to learn the associated inference rules to navigate these puzzles more adeptly.

This assumption necessitates evaluation through experimentation, as explored in

Chapter 6.

The remaining chapters of the curriculum each introduce a new constraint or

combination thereof. The first six chapters (including the introductory chapter)

feature puzzles to be solved on the unconstrained side of the board (the side

without bumps). The distinction lies in the type of color constraint imposed in

each chapter, progressively going from: no constraint to touching edges, non-

touching edges, touching corners, non-touching corners, and finally a chapter

encompassing all these constraint types, however defined between different colors.

The second half of the curriculum mirrors this sequence, with the stipulation that

puzzles from the second half must be solved on the constrained side of the board

(the side with bumps) in those chapters.

For each chapter in the curriculum following the introductory one, we first

order all puzzles based on entropy. And then, we choose puzzles closest to the

following entropy value:

entropyi = entropymin + (entropymax − entropymin) ∗ i/11 (5.2)

Where i is an integer that goes from zero to 11, denoting the index of the

puzzle within the chapter we are building (assuming zero indexing). entropymin

gives the entropy of the lowest-entropy puzzle in the set of candidate puzzles for

the chapter, and entropymax gives that of the highest-entropy puzzle. Through

69

using this formula, we attempt to find puzzles that sample the entropy spectrum

for the set uniformly.

Now, we have a comprehensive curriculum consisting of twelve chapters, each

comprising twelve puzzles, yielding a total of 144 puzzles throughout the cur-

riculum. In the next chapter, we delve into the curriculum, offering examples of

puzzles from each chapter and providing statistics about them. Additionally, we

share the findings of a playtesting experiment conducted to assess the effective-

ness of the curriculum. Note that more can be done here; this process allows us

to build a curriculum, but further iteration and refinement are possible and may

be necessary.

70

Chapter 6

Curriculum Evaluation

In this chapter, we present the curriculum we built and discuss its essential parts.

We analyze a few puzzles from the first chapter of the curriculum. Then, we

explain the process of the playtesting experiment that we conducted and note

observations that were made. This constitutes the final part of the process, as

shown in Figure 6.1.

6.1 Curriculum Analysis

The curriculum we developed comprises a total of 12 chapters, each containing

12 puzzles. With the exception of the first chapter, each subsequent chapter

was crafted to introduce either a new constraint or combination of constraints.

Figure 6.1: Curriculum evaluation step.

71

Moreover, the puzzles within each chapter are arranged in ascending order of

difficulty (based on entropy measures), spanning from the lowest to the highest

among all candidate puzzles for that particular chapter.

The first two pages in the curriculum include some basic instructions that

introduce the player to the concept of the game. Figure 6.2 depicts those pages.

The first one gives a general idea of how the curriculum should be navigated,

while the second page introduces the different symbols used in the puzzle to

denote the various constraints.

Subsequently, the chapters are presented one by one, starting with the intro-

ductory chapter. The puzzles in the first chapter are broken into two main types:

easy puzzles that introduce the basic concept of the game, and slightly harder

ones that introduce the different inference rules.

Figure 6.3 depicts the first page of the introductory chapter, which includes

the first three puzzles (labeled 1 to 3). These puzzles were designed to familiarize

the player with the different piece shapes. All of these puzzles have an entropy

estimate of zero, indicating that the “shortest” path to the solution involves no

choice at all. In other words, each piece can only fit into one location, which is its

correct position in the solution. We define the shortest solution to a puzzle as the

solution in which the player consistently attempts to place the most constrained

piece next.

Figure 6.4 illustrates the process of solving the first puzzle in the curriculum.

We begin from the initial state shown at the top left, which also indicates that

the forbidden piece in this puzzle is the “Mountains” piece. We start by placing

the most constrained piece in the set, which in this case is the “Butterfly” piece

because it can only occupy one location on the board. Next, we observe that the

“Hexagon” piece also has only one available position, so we place it accordingly.

72

Figure 6.2: Instruction pages at the start of the curriculum.

73

Figure 6.3: First page in the introductory chapter of the curriculum.

74

Figure 6.4: Solving the first puzzle.

75

Afterward, we are left with three pieces: “Snake”, “Trapezoid”, and “Elbow”.

Among these, the “Snake” piece is the most constrained as it can only occupy the

middle-right location on the board. At this point, we have the option to place

either the “Trapezoid” or the Elbow piece. We opt to place the latter because

the “Trapezoid” can fit into three possible locations at this state. Finally, we

place the “Trapezoid” piece and achieve the goal state.

The next three puzzles attempt to teach the player the “Size of empty space”

inference rule. This rule stipulates that each empty space on the board must

be of a size divisible by 6 if no trapezoids remain, or by 3 otherwise. Puzzles

aiming to teach this rule are those with the highest differential entropy, meaning

the entropy difference between having that rule enabled in the entropy estimator

and having it disabled.

The remaining six puzzles in the first chapter attempt to teach two more

inference rules. The first three are for the “Piece that fits the space not available”

rule, and the other three are for the “Pieces are composed of trapezoids” rule.

For each, we again use the concept of differential entropy to determine which

puzzles the player will benefit from the most by knowing those rules. The two

figures below show the selected puzzles for this section. The remaining chapters

also include twelve puzzles each, with puzzles ordered incrementally in terms of

entropy. The complete curriculum can be found in the appendices section at the

end of this document.

6.2 Playtesting Experiment

Upon completing the curriculum, we conducted an informal playtesting exper-

iment involving members of our Moving AI lab, comprising six participants in

76

total.

Each participant received a 3D-printed physical board featuring both the clear

side and the side with bumps. Additionally, they were provided with a complete

set of colored pieces and copies of the curriculum.

Initially, we asked participants to attempt solving the last puzzle in the in-

troduction set without first completing the preceding eleven puzzles. After ap-

proximately 15 minutes, none of the participants were able to solve the puzzle.

Subsequently, we instructed them to work through the first few puzzles in the

chapter before revisiting the challenging puzzle. Following this guidance, two

participants successfully solved the previously challenging puzzle. For the re-

maining participants, we advised them to complete all the puzzles leading up to

the twelfth one before attempting it again. At this stage, four out of the five

participants were able to solve the previously difficult puzzle.

Following these initial tasks, participants were given the freedom to navi-

gate through the curriculum as they desired. Some chose to tackle the more

challenging puzzles, while others preferred to progress through the curriculum

incrementally. We observed that when a participant encountered difficulty with

a puzzle, they tended to either backtrack to the beginning of the chapter con-

taining that puzzle and work their way back to it, or persistently attempted to

solve it until success was achieved.

An interesting observation made by one of the participants (who is also the

supervisor of this thesis study) during the challenge to complete the final puzzle

in the curriculum (puzzle number 144) was that the puzzle was actually easier

than its entropy measure initially suggested. The puzzle is depicted in Figure 6.5.

What the participant noticed was that three of the pieces were highly constrained

because the color constraint required those pieces to be touching. Specifically, the

77

Figure 6.5: The final puzzle in the curriculum, with the initial state on the left
and the solution on the right. In the top-left corner, a constraint is defined for this
puzzle, indicating that blue and red pieces must touch corners. In the bottom-left
corner, we see that the forbidden piece is the “Wrench”. The top-right corner
indicates that this puzzle is to be solved on the side with dots (later renamed to
bumps). Finally, in the bottom-right corner, we can see the entropy estimate for
the puzzle.

“Hexagon” and the “Butterfly” pieces were both required by the constraint rule

to be touching corners with the “Mountains” piece. The participant explained

that once this constraint was satisfied, the rest of the puzzle became straightfor-

ward to solve. Interestingly, this highlighted a limitation in our entropy analysis

algorithm; specifically, it revealed that we overlooked an inference rule which

would have resulted in a much lower entropy estimate for that puzzle. This could

be resolved with further iteration on the curriculum, as indicated at the end of

the previous chapter.

The unimplemented rule appears to pertain to color constraints involving the

placement of three different pieces that must be connected. In our implementa-

tion, we only considered two pieces at a time when evaluating constraint-related

inference rules. The second part of the figure above illustrates an example of this,

which occurred in the final puzzle.

78

Additionally, one participant suggested that including a written description

of the inference rule on the instructions page would aid players in learning these

rules, rather than having them attempt to learn them blindly. While we agree

that this approach facilitates rule learning, we also acknowledge that it may be

somewhat limited in the general case, as some games have inference rules that

are not as straightforward to describe and may be challenging to communicate

directly through instructions without causing confusion among players.

Overall, the general consensus among participants was that having a curricu-

lum indeed helped them navigate the puzzle more effectively and understand it

more deeply. However, we recognize that drawing firm conclusions on curriculum

evaluation without conducting a complete and formal user study is challenging.

79

Chapter 7

Conclusions and Future Work

In this study, we built a complete puzzle end-to-end using Exhaustive Procedu-

ral Content Generation (EPCG). We began by determining the puzzle type we

intended to work with and then proceeded to develop a corresponding definition.

Subsequently, we generated all solutions for the puzzle. Following this, we de-

vised definitions for constraints and generated all the constraint combinations,

repeating this process until we reached a set of constraints that are both intuitive

aesthetically and applicable to a sufficiently large number of puzzles. After this,

we built an entropy analyzer that provides an estimate of the difficulty for each

puzzle and leveraged it to devise the final curriculum for the puzzle.

The main contributions of our work can be summarized as the following:

1. We demonstrated the feasibility of utilizing EPCG for driving end-to-end

game design. We crafted a complete puzzle accompanied by a range of di-

verse constraint types. Nonetheless, this process still required input from

the developers to ensure adherence to specific aesthetic requirements, mak-

ing the puzzle intuitive enough for human players. We note that while it

80

may be possible to execute this process in its entirety without any human

input, it is likely that it would be challenging to derive compelling games

solely through automated means.

2. We built an entropy analyzer for the puzzle together with a set of inference

rules.

3. We introduced the concept of differential entropy, which posits that puzzles

exhibiting the greatest difference in entropy when a specific inference rule is

enabled versus when it is disabled are most beneficial for learning that rule.

However, this premise remains speculative until validated through formal

experimental evaluation.

4. We designed a curriculum for the game aimed at providing a sense of pro-

gression, utilizing entropy analysis and differential entropy. Specifically, we

applied the concept of differential entropy in selecting puzzles for the in-

troductory chapter of the curriculum. The objective was to leverage these

puzzles to teach players the various inference rules, each corresponding to

distinct skills that aid in navigating the puzzle more effectively.

In terms of future work, there a few directions to consider: improving the

entropy analyzer, running more concrete evaluations, generating other types of

constraints, or generating initial states in different ways.

Improving the entropy analyzer. This can be achieved by introducing ad-

ditional inference rules, or through improving the existing ones. An example of

a potential improvement to an inference rule is to extend the color constraint

inference rule to handle multiple touching pieces as noted in the playtesting ex-

periment discussed at the end of Chapter 6.

81

Running more evaluations As noted in Chapter 6, the playtest experiment

we conducted was informal and may not be the best method for evaluating the ap-

proaches employed. There are several ways to conduct a more formal evaluation.

One approach is to evaluate the entropy analyzer by performing a depth-first it-

erative deepening search on the puzzles to attempt to solve them, comparing the

number of expansions to the puzzle’s entropy measure. Another method involves

creating a policy learning agent and assessing the order in which it learns the

puzzles to determine if it aligns with the entropy measures’ recommendations. A

third approach is to conduct a formal user study, which could involve distribut-

ing puzzles to random participants or specifically to puzzle design experts and

collecting their evaluations on the constrats’ interestingness or the puzzles’ levels

of difficulty to assess how well the entropy measure aligns with their perceptions.

Generating other types of constraints This could be done either through

introducing new constraint types beyond placement and adjacency constraints or

by exploring different ways to define the established constraints. As illustrated

in Chapter 4.1, our criteria for selecting the best constraint pattern for each

constraint type were partially subjective, as they depended on some aesthetic

choices that we made. This suggests that alternative approaches might lead to

different sets of constraints for this puzzle. An example of a new constraint

could be one that prevents two pieces of the same color from being placed in

the same row or column, though this would require defining what constitutes

a row or column in this puzzle. Additionally, one could explore new ways to

combine existing constraints, such as puzzles featuring two adjacency constraint

rules instead of one.

82

Generating initial states in different ways The initial state function we

developed aims to find, for each puzzle, the initial state that uniquely leads to

the desired solution with the minimum number of initial pieces. However, this is

not strictly necessary, and initial states can be tailored to other objectives. For

instance, one could attempt to find puzzles that begin with no pieces, given a set

of constraints. Alternatively, one could introduce a chapter containing puzzles

that all start with the same piece but in different locations and with different

sets of constraints.

83

Bibliography

Alfred V. Aho. Computation and computational thinking. Ubiquity, January

2011.

Liapis Antonios, N Yannakakis Georgios, Alexopoulos Constantine, and Lopes

Phil. Can computers foster human users’ creativity? theory and praxis of

mixed-initiative co-creativity. Digital Culture & Education, 2016.

Second-Lieutenant Augustine Blanchonnet. Development of a curriculum for a

tangram type puzzle. 2021.

Blizzard. Diablo. In Proceedings of the 1996 Annual Conference, 1996.

Jonathan Blow and Marc ten Bosch. Designing to reveal the nature of the uni-

verse. Talk presented at Indiecade, October 2011.

Jose M Campillo-Robles, Ibon Alonso, Ane Gondra, and Nerea Gondra. Calcula-

tion and measurement of center of mass: An all-in-one activity using tangram

puzzles. 2022.

Eugene You Chen Chen, Adam White, and Nathan R Sturtevant. Entropy as

a measure of puzzle difficulty. In Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment, 2023.

William Byron Forbush. Manual of play, 1914.

84

Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup.

Procedural content generation for games: A survey. ACM Transactions on

Multimedia Computing, Communications, and Applications (TOMM), 2013.

Christoffer Holmg̊ard, Antonios Liapis, and Georgios N Yannakakis. Measuring

game complexity using information theory. IEEE Transactions on Games,

2017.

Arthur H Land and Alvin G Doig. An automatic method of solving discrete

programming problems. Econometrica: Journal of the Econometric Society,

1960.

Jongpil Lee, Haoran Huang, Xiangyu Wang, and Marcelo Milrad. Developing a

serious game for introductory programming: A case study. In Proceedings of

the 2019 3rd International Conference on Educational Innovation and Philo-

sophical Inquiries (ICEIPI 2019), 2019.

Rebecca Morelle. Text reveals more ancient secrets. BBC News, April

2007. URL https://www.bbc.com/news/science-environment-44223824.

Archived from the original on 19 February 2009. Retrieved 2009-03-31.

Mossmouth. Spelunky. In Proceedings of the 2008 Annual Conference, 2008.

Wendy Myrvold and Frank Ruskey. Ranking and unranking permutations in

linear time. Information Processing Letters, 2001.

Thorbjørn Nielsen and Rachel Smith. Difficulty, flow, and enjoyment: An empir-

ical study of computer games. Journal of Entertainment Computing, 2018.

Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown,

J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bar-

tolo, E. Battaner, R. Battye, K. Benabed, A. Benôıt, A. Benoit-Lévy, J. P.

85

https://www.bbc.com/news/science-environment-44223824

Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, A. Bonaldi, L. Bonavera, J. R.

Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. C.

Butler, E. Calabrese, J. F. Cardoso, A. Catalano, A. Challinor, A. Chamballu,

R. R. Chary, H. C. Chiang, J. Chluba, P. R. Christensen, S. Church, D. L.

Clements, S. Colombi, L. P. L. Colombo, C. Combet, A. Coulais, B. P. Crill,

A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis,

A. de Rosa, G. de Zotti, J. Delabrouille, F. X. Désert, E. Di Valentino, C. Dick-

inson, J. M. Diego, K. Dolag, H. Dole, S. Donzelli, O. Doré, M. Douspis,

A. Ducout, J. Dunkley, X. Dupac, G. Efstathiou, F. Elsner, T. A. Enßlin,

H. K. Eriksen, M. Farhang, J. Fergusson, F. Finelli, O. Forni, M. Frailis, A. A.

Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, C. Gauthier,

M. Gerbino, T. Ghosh, M. Giard, Y. Giraud-Héraud, E. Giusarma, E. Gjerløw,

J. González-Nuevo, K. M. Górski, S. Gratton, A. Gregorio, A. Gruppuso, J. E.

Gudmundsson, J. Hamann, F. K. Hansen, D. Hanson, D. L. Harrison, G. Helou,

S. Henrot-Versillé, C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt,

E. Hivon, M. Hobson, W. A. Holmes, A. Hornstrup, W. Hovest, Z. Huang,

K. M. Huffenberger, G. Hurier, A. H. Jaffe, T. R. Jaffe, W. C. Jones, M. Ju-

vela, E. Keihänen, R. Keskitalo, T. S. Kisner, R. Kneissl, J. Knoche, L. Knox,

M. Kunz, H. Kurki-Suonio, G. Lagache, A. Lähteenmäki, J. M. Lamarre,

A. Lasenby, M. Lattanzi, C. R. Lawrence, J. P. Leahy, R. Leonardi, J. Lesgour-

gues, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Linden-Vørnle, M. López-

Caniego, P. M. Lubin, J. F. Maćıas-Pérez, G. Maggio, D. Maino, N. Mandolesi,

A. Mangilli, A. Marchini, M. Maris, P. G. Martin, M. Martinelli, E. Mart́ınez-

González, S. Masi, S. Matarrese, P. McGehee, P. R. Meinhold, A. Melchiorri,

J. B. Melin, L. Mendes, A. Mennella, M. Migliaccio, M. Millea, S. Mitra, M. A.

Miville-Deschênes, A. Moneti, L. Montier, G. Morgante, D. Mortlock, A. Moss,

D. Munshi, J. A. Murphy, P. Naselsky, F. Nati, P. Natoli, C. B. Netterfield,

86

H. U. Nørgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, C. A. Oxborrow,

F. Paci, L. Pagano, F. Pajot, R. Paladini, D. Paoletti, B. Partridge, F. Pasian,

G. Patanchon, T. J. Pearson, O. Perdereau, L. Perotto, F. Perrotta, V. Pet-

torino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski,

E. Pointecouteau, G. Polenta, L. Popa, G. W. Pratt, G. Prézeau, S. Prunet,

J. L. Puget, J. P. Rachen, W. T. Reach, R. Rebolo, M. Reinecke, M. Re-

mazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Ros-

setti, G. Roudier, B. Rouillé d’Orfeuil, M. Rowan-Robinson, J. A. Rubiño-

Mart́ın, B. Rusholme, N. Said, V. Salvatelli, L. Salvati, M. Sandri, D. Santos,

M. Savelainen, G. Savini, D. Scott, M. D. Seiffert, P. Serra, E. P. S. Shellard,

L. D. Spencer, M. Spinelli, V. Stolyarov, R. Stompor, R. Sudiwala, R. Sunyaev,

D. Sutton, A. S. Suur-Uski, J. F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffo-

latti, M. Tomasi, M. Tristram, T. Trombetti, M. Tucci, J. Tuovinen, M. Türler,

G. Umana, L. Valenziano, J. Valiviita, F. Van Tent, P. Vielva, F. Villa, L. A.

Wade, B. D. Wandelt, I. K. Wehus, M. White, S. D. M. White, A. Wilkinson,

D. Yvon, A. Zacchei, and A. Zonca. Planck 2015 results. XIII. Cosmological

parameters. , September 2016.

Noor Shaker, Julian Togelius, Mark J Nelson, et al. Search-based procedural

content generation: A taxonomy and survey. Transactions on Computational

Intelligence and AI in Games, 2016.

CE Shannon. A mathematical theory of communication. the bell systems tech-

nical journal, 27: July 379–423, 1948.

Jerry Slocum. The tao of tangram, 2001.

Jerry Slocum. The tangram book: The story of the chinese puzzle, 2003.

Adam M. Smith, Ahmed Khalifa, Ahmed E. Metwally, Julian R. Clarke,

87

Michael Cerny Green, and Julian Togelius. Procedural generation of dun-

geons for minecraft. In Proceedings of the 14th International Conference on

the Foundations of Digital Games (FDG), 2019.

Gillian Smith. Challenges in procedural content generation. ACM Computers in

Entertainment (CIE), 2010.

Nathan Sturtevant. An argument for large-scale breadth-first search for game

design and content generation via a case study of fling! Proceedings of the

AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-

ment, Jun. 2021. URL https://ojs.aaai.org/index.php/AIIDE/article/

view/12594.

Nathan Sturtevant and Matheus Ota. Exhaustive and semi-exhaustive procedu-

ral content generation. In Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, 2018.

Nathan Sturtevant, Nicolas Decroocq, Aaron Tripodi, Carolyn Yang, and

Matthew Guzdial. A demonstration of anhinga: A mixed-initiative epcg

tool for snakebird. Proceedings of the AAAI Conference on Artificial In-

telligence and Interactive Digital Entertainment, Oct. 2020a. URL https:

//ojs.aaai.org/index.php/AIIDE/article/view/7451.

Nathan Sturtevant, Nicolas Decroocq, Aaron Tripodi, Carolyn Yang, and

Matthew Guzdial. A demonstration of anhinga: A mixed-initiative epcg tool

for snakebird. In Proceedings of the AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment, 2020b.

Nathan R. Sturtevant. Exploring epcg in the witness. In Knowledge Extraction

from Games (AAAI workshop), 2019. URL http://www.cs.ualberta.ca/

~nathanst/papers/puzzles.pdf.

88

https://ojs.aaai.org/index.php/AIIDE/article/view/12594
https://ojs.aaai.org/index.php/AIIDE/article/view/12594
https://ojs.aaai.org/index.php/AIIDE/article/view/7451
https://ojs.aaai.org/index.php/AIIDE/article/view/7451
http://www.cs.ualberta.ca/~nathanst/papers/puzzles.pdf
http://www.cs.ualberta.ca/~nathanst/papers/puzzles.pdf

Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmg̊ard,

Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural

content generation via machine learning (PCGML). CoRR, 2017. URL http:

//arxiv.org/abs/1702.00539.

Julian Togelius, Renzo De Nardi, Simon M Lucas, Mike Preuss, Nicola Beume,

and Sebastian Risi. Search-based procedural content generation. In Proceedings

of the 2011 IEEE Conference on Computational Intelligence and Games, 2011.

Michael Toy, Glenn Wichman, Ken Wichman, and Jon Wichman. Rogue. In

Proceedings of the 1980 Annual Conference, 1980.

Fernando Valls, Mireia Usart, Jordi Mateu, and Josep M Duart. Evaluation of a

multi-criteria assessment tool for educational games in elementary schools. In

2017 9th International Conference on Virtual Worlds and Games for Serious

Applications (VS-Games), 2017.

Georgios N Yannakakis and Julian Togelius. Experience-driven procedural con-

tent generation. IEEE Transactions on Affective Computing, 2015.

Georgios N Yannakakis and Julian Togelius. Artificial intelligence and games,

2018.

Zhongyu Zhang, Bei Lian, Chongguang Chen, Kang Li, Yanzhang Li, and Xiao-

long Liu. Enhancing game-based learning outcomes using an adaptive difficulty

adjustment mechanism. Educational Technology Research and Development,

2019.

89

http://arxiv.org/abs/1702.00539
http://arxiv.org/abs/1702.00539

Appendix

7.1 Curriculum

This is the complete curriculum built for this puzzle, containing 12 chapters in

total. The top left corner shows the adjacency constraint. The text on the top

right indicates which side of the board the puzzle must be solved on; “Free”

denotes the side without bumps, while “Dots” refers to the side with bumps.

The bottom left corner indicates which piece must not be used in the solution.

Finally, in the bottom right corner, the entropy estimate for the puzzle can be

found (with all inference rules enabled).

90

7.1.1 Chapter 1

Free

1

Forbidden:

Free

1

Forbidden:

Free

1

Forbidden:

Free

6.32193

Forbidden:

91

Free

10.1098

Forbidden:

Free

9.2854

Forbidden:

Free

7.80735

Forbidden:

Free

14.4919

Forbidden:

92

Free

9.83289

Forbidden:

Free

4.58496

Forbidden:

Free

3

Forbidden:

Free

3.32193

Forbidden:

93

7.1.2 Chapter 2

Must Touch Edges With Free

Forbidden:

Must Touch Edges With Free

1

Forbidden:

Must Touch Edges With Free

2

Forbidden:

Must Touch Edges With Free

2.58496

Forbidden:

94

Must Touch Edges With Free

3.58496

Forbidden:

Must Touch Edges With Free

5.16993

Forbidden:

Must Touch Edges With Free

7

Forbidden:

Must Touch Edges With Free

8.78136

Forbidden:

95

Must Touch Edges With Free

10.5078

Forbidden:

Must Touch Edges With Free

12.2668

Forbidden:

Must Touch Edges With Free

14.1472

Forbidden:

Must Touch Edges With Free

16.2703

Forbidden:

96

7.1.3 Chapter 3

Must Not Touch Edges With Free

Forbidden:

Must Not Touch Edges With Free

1

Forbidden:

Must Not Touch Edges With Free

2

Forbidden:

Must Not Touch Edges With Free

2.58496

Forbidden:

97

Must Not Touch Edges With Free

3.80735

Forbidden:

Must Not Touch Edges With Free

5.58496

Forbidden:

Must Not Touch Edges With Free

7.22882

Forbidden:

Must Not Touch Edges With Free

9

Forbidden:

98

Must Not Touch Edges With Free

10.7549

Forbidden:

Must Not Touch Edges With Free

12.5622

Forbidden:

Must Not Touch Edges With Free

14.5179

Forbidden:

Must Not Touch Edges With Free

17.6915

Forbidden:

99

7.1.4 Chapter 4

Must Touch Corners With Free

1

Forbidden:

Must Touch Corners With Free

3

Forbidden:

Must Touch Corners With Free

3.58496

Forbidden:

Must Touch Corners With Free

4.58496

Forbidden:

100

Must Touch Corners With Free

5

Forbidden:

Must Touch Corners With Free

5.58496

Forbidden:

Must Touch Corners With Free

6

Forbidden:

Must Touch Corners With Free

7.32193

Forbidden:

101

Must Touch Corners With Free

8.78136

Forbidden:

Must Touch Corners With Free

9.75489

Forbidden:

Must Touch Corners With Free

11.4919

Forbidden:

Must Touch Corners With Free

13.8517

Forbidden:

102

7.1.5 Chapter 5

Must Not Touch Corners With Free

Forbidden:

Must Not Touch Corners With Free

1

Forbidden:

Must Not Touch Corners With Free

2

Forbidden:

Must Not Touch Corners With Free

2.58496

Forbidden:

103

Must Not Touch Corners With Free

4

Forbidden:

Must Not Touch Corners With Free

5.58496

Forbidden:

Must Not Touch Corners With Free

7.33985

Forbidden:

Must Not Touch Corners With Free

10.9069

Forbidden:

104

Must Not Touch Corners With Free

11.9773

Forbidden:

Must Not Touch Corners With Free

13

Forbidden:

Must Not Touch Corners With Free

14.5179

Forbidden:

Must Not Touch Corners With Free

17.6915

Forbidden:

105

7.1.6 Chapter 6

Must Not Touch Corners With Free

1

Forbidden:

Must Not Touch Corners With Free

2

Forbidden:

Must Not Touch Edges With Free

4

Forbidden:

Must Touch Edges With Free

6.58496

Forbidden:

106

Must Touch Edges With Free

8.80735

Forbidden:

Must Not Touch Corners With Free

9.32193

Forbidden:

Must Touch Edges With Free

10.1293

Forbidden:

Must Not Touch Corners With Free

10.6294

Forbidden:

107

Must Not Touch Corners With Free

11.585

Forbidden:

Must Not Touch Corners With Free

12.9069

Forbidden:

Must Not Touch Edges With Free

14.1472

Forbidden:

Must Not Touch Corners With Free

16.1472

Forbidden:

108

7.1.7 Chapter 7

Dots

3

Forbidden:

Dots

4.58496

Forbidden:

Dots

5.58496

Forbidden:

Dots

6

Forbidden:

109

Dots

7

Forbidden:

Dots

8.39232

Forbidden:

Dots

9.49185

Forbidden:

Dots

10.4919

Forbidden:

110

Dots

12.4594

Forbidden:

Dots

13.6618

Forbidden:

Dots

15.0362

Forbidden:

Dots

18.2512

Forbidden:

111

7.1.8 Chapter 8

Must Touch Edges With Dots

3

Forbidden:

Must Touch Edges With Dots

4

Forbidden:

Must Touch Edges With Dots

5

Forbidden:

Must Touch Edges With Dots

6.32193

Forbidden:

112

Must Touch Edges With Dots

7

Forbidden:

Must Touch Edges With Dots

8.16992

Forbidden:

Must Touch Edges With Dots

10.3399

Forbidden:

Must Touch Edges With Dots

11.9513

Forbidden:

113

Must Touch Edges With Dots

12.9513

Forbidden:

Must Touch Edges With Dots

14.1472

Forbidden:

Must Touch Edges With Dots

16.7993

Forbidden:

Must Touch Edges With Dots

19.8927

Forbidden:

114

7.1.9 Chapter 9

Must Not Touch Edges With Dots

3

Forbidden:

Must Not Touch Edges With Dots

4

Forbidden:

Must Not Touch Edges With Dots

5

Forbidden:

Must Not Touch Edges With Dots

6

Forbidden:

115

Must Not Touch Edges With Dots

7

Forbidden:

Must Not Touch Edges With Dots

9.32193

Forbidden:

Must Not Touch Edges With Dots

10.1699

Forbidden:

Must Not Touch Edges With Dots

11.1699

Forbidden:

116

Must Not Touch Edges With Dots

12.3663

Forbidden:

Must Not Touch Edges With Dots

14.6294

Forbidden:

Must Not Touch Edges With Dots

17.1472

Forbidden:

Must Not Touch Edges With Dots

19.2034

Forbidden:

117

7.1.10 Chapter 10

Must Touch Corners With Dots

6.32193

Forbidden:

Must Touch Corners With Dots

8.16992

Forbidden:

Must Touch Corners With Dots

8.32193

Forbidden:

Must Touch Corners With Dots

9.16992

Forbidden:

118

Must Touch Corners With Dots

10.2288

Forbidden:

Must Touch Corners With Dots

11.4553

Forbidden:

Must Touch Corners With Dots

11.9069

Forbidden:

Must Touch Corners With Dots

12.4367

Forbidden:

119

Must Touch Corners With Dots

13.0224

Forbidden:

Must Touch Corners With Dots

14.4367

Forbidden:

Must Touch Corners With Dots

17.1472

Forbidden:

Must Touch Corners With Dots

18.3399

Forbidden:

120

7.1.11 Chapter 11

Must Not Touch Corners With Dots

3

Forbidden:

Must Not Touch Corners With Dots

4

Forbidden:

Must Not Touch Corners With Dots

4.58496

Forbidden:

Must Not Touch Corners With Dots

6.58496

Forbidden:

121

Must Not Touch Corners With Dots

7

Forbidden:

Must Not Touch Corners With Dots

8.32193

Forbidden:

Must Not Touch Corners With Dots

9.64386

Forbidden:

Must Not Touch Corners With Dots

10.5622

Forbidden:

122

Must Not Touch Corners With Dots

12.3399

Forbidden:

Must Not Touch Corners With Dots

13.5887

Forbidden:

Must Not Touch Corners With Dots

14.6618

Forbidden:

Must Not Touch Corners With Dots

19.8927

Forbidden:

123

7.1.12 Chapter 12

Must Not Touch Edges With Dots

3

Forbidden:

Must Not Touch Edges With Dots

4

Forbidden:

Must Touch Edges With Dots

5.58496

Forbidden:

Must Not Touch Edges With Dots

6.32193

Forbidden:

124

Must Not Touch Corners With Dots

8.32193

Forbidden:

Must Not Touch Corners With Dots

10.1699

Forbidden:

Must Touch Edges With Dots

11.4798

Forbidden:

Must Not Touch Corners With Dots

12.9248

Forbidden:

125

Must Not Touch Edges With Dots

13.1997

Forbidden:

Must Not Touch Edges With Dots

17.7398

Forbidden:

Must Not Touch Edges With Dots

19.7228

Forbidden:

Must Touch Corners With Dots

20.0496

Forbidden:

126

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Background
	PCG
	EPCG
	Examples of EPCG
	Fling!
	The Witness
	Anhinga

	Puzzle Entropy

	Building the Puzzle
	Defining Puzzle Framework
	Generating All Solutions

	Constraint Analysis
	Constraint Types
	Placement Constraints
	First Iteration
	Second Iteration
	Third Iteration
	Fourth Iteration
	Fifth Iteration
	Final Evaluation

	Adjacency Constraints

	Building the Curriculum
	Finding Initial States
	Entropy Analysis
	Inference Rules
	Location can only fit a certain piece rule
	Piece can only go in one place rule
	Size of empty space rule
	Piece that fits the space not available rule
	Pieces are composed of trapezoids rule

	Differential Entropy
	Design of the Curriculum

	Curriculum Evaluation
	Curriculum Analysis
	Playtesting Experiment

	Conclusions and Future Work
	Bibliography
	Appendix
	Curriculum
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

