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Abstract

Adaptive approaches for model-based fault detection, diagnosis and control are the

focus of this research. Both analytical and data-driven model-based techniques are studied

along with the investigation of their practical applications.

This thesis is organized in two parts. In Part I, adaptive fault estimation (FE) and

fault tolerant shape control (FTSC) designs are proposed for stochastic distribution sys-

tems. First, an adaptive FE and dynamic output feedback FTSC scheme is designed for a

class of nonlinear non-Gaussian stochastic systems subject to time-varying loss of control

effectiveness faults, where time-varying faults, Lipschitz nonlinear property and general

stochastic characteristics are taken into consideration simultaneously. Then, the FE and

FTSC schemes are extended to particle size distribution (PSD) processes subject to si-

multaneous time-varying actuator and sensor faults. The proposed adaptive FE and FTSC

schemes are validated in both simulation and application examples.

In Part II, adaptive data-driven model-based fault detection and diagnosis (FDD) meth-

ods are proposed for rotating machinery. First, a novel sinusoidal synthesis based adaptive

tracking (SSBAT) technique is proposed based on a data-driven rotating machinery model

identified using time-series vibration data and incorporating physical constraints of rotat-

ing equipment; the SSBAT model is then used as an adaptive predictor to generate residual

for FDD. Then, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS)

model is proposed to improve the fault diagnosis performance of the SSBAT scheme; a

time-weighted-error Kalman filter is designed to estimate the MEDSS model parameters
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adaptively. Both methods are tested and proved to be effective through simulation examples

and a practical case study for rubbing fault diagnosis in an industrial steam turbine.
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Chapter 1

Introduction

1.1 Background of Model-Based Fault Detection and Di-

agnosis (FDD)

The complexity and automation level of industrial systems and processes has been
growing rapidly in the past several decades, along with the ever-increasing demands for
enhanced performance and reduced operation costs. This trend has made modern systems
more vulnerable to system faults or errors than ever. Therefore, one of the most critical
issues facing control engineers is the system reliability and safety. As an effective tool to
detect system/component malfunctions and further mitigate harmful fault effects, fault de-
tection and diagnosis (FDD), along with fault-tolerant control (FTC), has recently received
considerable attention, both in industries and research communities.

Generally, there are three tasks for an FDD scheme: (i) fault detection, which indi-
cates the occurrence of a fault and the time of fault occurrence; (ii) fault isolation, which
determines the location and the type of the fault; and (iii) fault identification, which deter-
mines the size of the fault. Usually, fault isolation and identification are referred to as fault
diagnosis or fault estimation (FE) in literature [1]. FDD approaches can be generally cate-
gorized into five classes as [2]: (i) model-based techniques, (ii) hardware redundancy based
techniques, (iii) signal processing based techniques, (iv) statistical data based techniques,
and (v) artificial intelligence based technique. This thesis is focused on the first category,
i.e. model-based FDD.

As one topic closely related to FDD, fault-tolerant control (FTC) is considered to be an
important part of reliable and safety control systems. Depending on how the redundancy
is used, FTC schemes can be classified as either passive FTC or active FTC. In a passive

1



FTC, a single controller is designed with consideration of both normal conditions and the
expected faults. With this scheme, the system will be robust to the class of faults which
have been taken into account in the design step. In contrast, in an active FTC scheme,
the information from the monitoring system is utilized to perform FDD. The results are
then used to reconfigure the controller or compensate the system, ensuring the stability and
certain performance, possibly degraded.

For both FDD and FTC, there is no doubt that an accurate system model representation
is crucial. Therefore, for model based FDD and FTC, the first and fundamental step is
to obtain a plant model. There are two branches in model based FDD and FTC, namely,
first-principles model-based and data-driven model-based. The former one attempts to in-
corporate physical constitutive relations of the system into a mathematical formulation. On
the contrary, data-driven model-based techniques utilize input-output data to identify the
system model; they can be beneficial when understanding of first principles of system op-
eration is not straightforward or when the system is so complex that developing an accurate
analytical model is prohibitively expensive. Data-driven approaches can often be deployed
quickly and cost-effectively. By incorporating partial information of physical mechanism,
data-driven model-based techniques are able to provide a sufficient and accurate coverage
of system behavior. Both of the analytical model-based and the data-driven model-based
FDD are studied in this thesis.

1.1.1 Model-Based FDD

The core idea of model-based FDD techniques is to replace the hardware redundancy
by a system model such that process behavior can be reconstructed in an on-line fashion.
This system model is referred to as software redundancy as opposed to the hardware re-
dundancy in literature. In practice, the software redundant system model is driven by the
same inputs and runs in parallel with the real process. Under fault-free condition, the es-
timated process variables are expected to follow the measured ones with small errors like
white noise. On the contrary, an evident deviation will be observed by the comparison be-
tween the estimated and the measured variables if there exists any fault. The result of such
comparison, which is called residual, plays a vital role in FDD. Residual generation refers
to the procedure of making the estimates of the process variables and then calculating the
difference between the measured variables and their estimates [3].

There have been a variety of approaches to model-based fault detection since the early
1970s [4, 5]. The first model-based fault detection method, the so-called failure detec-
tion filter (FDF), was proposed by Beard [6] and Jones [7]. Since then, model-based FDD

2



theories such as diagnostic observer scheme [8], parity space approach [9] and parameter
estimation based method [10], have received a wide attention. Especially during the last
two decades, research on model-based FDD has undergone extensive development and it
now becomes an important branch of automatic control theory [3]. The efficiency of the
model-based fault detection technique has been demonstrated by many successful applica-
tions in automatic control systems such as vehicle control systems, power systems, process
control systems and so on [11].

Since the 1990s, the so-called observer-based fault detection method, among the exist-
ing model-based fault detection schemes, has received much attention due to the substantial
results on observer design in control theory [12]. The fundamental theory of observer-based
approach for fault detection and isolation (FDI) is about constructing a residual signal and
determining a residual evaluation function to compare with a predefined threshold. In the
literature, results on observer-based FDI approach in time domain and for linear systems
are rich [13, 14, 15]. Design of model based FDI can also be done in the frequency domain
[16, 17]. In addition, adaptive observer [18, 19, 20] and nonlinear robust observer-based
schemes [21, 22] are developed for FDI purposes. It is worth noting that the diagnostic
observers used for FDI are different from the well-known state observers. The diagnostic
observer design is not focused on state estimation, instead, output estimators are needed
that are generally realized as filters [19].

For many systems in industrial processes, modeling from physical principles is usu-
ally cumbersome, time-consuming and sometimes not realistic. Moreover, the reliability
of the first-principles model-based FDI may be difficult to guarantee. As no technical
process can be modeled exactly and there often exist unknown disturbances, the fault mes-
sage in the residual signal is usually masked by model uncertainties and unknown distur-
bances. Another challenge facing first-principles model-based approaches is the loss of
fidelity over time when a dynamic system experiences variations in operation conditions.
To overcome these drawbacks of first-principles model-based approaches and save the ef-
fort and time spent in modeling the plant, identified model-based fault detection methods
have been widely adopted in recent years [23, 24, 25]. As mentioned above, input-output
relationships are required for FDI, which can be obtained directly from the input-output
data. Thus, the motivation of data-driven model-based FDI is to bypass the cumbersome,
time-consuming and possibly inaccurate modeling process from first-principles, and build
an identified model-based on input-output data for fault detection and diagnosis purposes.
Because of increased automation level, faster sampling rate and advances in computing, a
large amount of data is available on-line. Many researchers have attached great importance
to identified model-based methods in diagnosis and prognosis [5, 10, 25, 26]. The Part II

3



of this thesis is focused on data-driven model-based fault detection and diagnosis.
It is generally difficult to obtain the exact information of the size of a fault from an

FDI strategy alone. For this reason, fault estimation scheme is designed to provide an
estimate of accurate size and shape of the fault to achieve the required fault diagnosis.
Fault estimation, by definition, is the ability to estimate the magnitude of a fault and its
time history. So far, various types of fault estimation approaches have been proposed in
literature, such as the sliding mode observer (SMO) based techniques [27, 28, 29, 30], the
adaptive observer-based approaches [31, 32, 33, 34], the unknown input observer-based
approaches [35], and the descriptor observer-based methods [36, 37, 38]. Based on the
estimated faults, FTC can be implemented. Compared to a fault detection problem, fault
estimation is a more challenging task because it is required to identify the fault type and
estimate the size of the fault.

1.1.2 Adaptive Techniques for Fault Detection and Estimation

Since process operation conditions can change due to disturbances and varying envi-
ronmental conditions, an on-line update of model parameters during process operation is
of practical interests. The goal is to gradually change the scope of the system dynamics as
new cases and problems emerge, or as more information becomes available. Among the
existing adaptive schemes, the recursive technique least squares methods have been well
developed and widely applied [39, 40, 41].

In the recent decade, the well-developed adaptive observer theory is successfully ap-
plied to FDI, due to its robustness against model uncertainties and sensitivity to faults.
This is the result of a reasonable integration and extension of the observer-based and pa-
rameter identification-based fault detection schemes. A number of adaptive observer-based
FDI approaches have been proposed for the case of linear systems and several results are
available [18, 19, 20]. The work in [42, 43] extended the earlier research to the case of
nonlinear systems .

Application of advanced adaptive observer techniques to fault identification and esti-
mation was originated in the 1990s [44, 45]. Based on the assumptions of quasi-constant
or slowly varying faults, fault estimation was realized successfully and reliably in the early
results. Since then, a number of research results have been published. To name a few, the
adaptive observer techniques are used for fault estimation in linear time varying (LTV) sys-
tems [46], non-linear systems [47, 48, 49, 50], Takagi-Sugeno fuzzy systems [51], stochas-
tic Markovian jumping systems (MJSs)[52, 53], and multi-agent systems [54]. A fast fault
estimation scheme was proposed in [31] and it was successfully applied for estimating
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time-varying faults.

1.2 FDD and FTC for Stochastic Distribution Systems

In practical applications, almost all control systems are subject to random noises in var-
ious forms, such as system parameter variations and sensor noise, etc. Therefore, stochastic
systems deserve special attentions in control engineering design. In the existing research
work on stochastic systems, linear systems subject to Gaussian noises are mainly consid-
ered. However, these assumptions are not realistic for most of the practical systems, where
nonlinearities naturally exist and as a result non-Gaussian property exists as well, namely,
first or second moments of the output distribution are not sufficient enough to represent all
the stochastic properties [55]. In order to handle the nonlinearity and non-Gaussian nature,
output distribution shape or probability density function (PDF), rather than output signal
itself, is utilized to develop new system representations. This type of systems is referred
to as stochastic distribution systems in literature [56, 57]. Control objectives for stochas-
tic distribution systems can be represented by achieving a desirable distribution shape (or
PDF) of the system output, which leads to shape control [57, 58, 59, 60, 61] or stochastic
distribution control (SDC). Thanks to the improvement in sensing technology, the output
distribution or PDFs become measurable [62, 63], and research on SDC has received wide
attention and been regarded as a new branch of stochastic control. In literature, B-spline
approximation is commonly used to construct the dynamic relationships between the input
and the output distribution shapes (or PDF) of stochastic distribution systems. There has
been a growing interest in square-root rational B-spline models [64], due to great simplicity
resulted from mutually independent weights inherent to the square-root B-spline models.
One of the most important advantages of using B-spline approximation is that the distri-
bution shape tracking problem can then be naturally reduced to a tracking problem of the
weights in B-spline models.

Nonlinear stochastic shape control also finds its application in the particle size distribu-
tion (PSD) problem in many industries, e.g. chemical processes, paper industries, geotech-
nical engineering processes [58]. In these processes, a controller is formulated in such a
way that the controlled output distribution can track the target distributions assuming the
availability of particle distribution measurements.

Recently, monitoring techniques are greatly improved by the combination of spectro-
scopic methods and fiber optics technology like the near infrared spectroscopy (NIRS),
which allow for the in-situ and in-line acquisition of process data [65]. Here are some PSD
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shape control examples:

• Crystallizers: Control the PSD shape to allow pharmaceutical products have the de-
sired physiological effects [66].

• Emulsion Polymerization Reactors: Control the PSD shape to ensure the manufacture
of coatings, adhesives, pigments and latex paints with the desired physiochemical
properties [67].

• Biochemical Reactors: Control of the cell PSD shape to increase the production of
key metabolites produced by microbial and mammalian cells [68].

Safety and reliability are of paramount importance for general stochastic distribution
processes. However, compared to the more conventional state and/or output measurement
based control, the research on SDC systems in the existing literature of FDD and FTC is
still new and has fewer results. The first attempt was made in [69] by applying standard
observer-based fault detection technique to the fault detection of output probability density
functions for a retention system in the paper making. In [70], an adaptive fault diagno-
sis method was provided to estimate the fault for general stochastic systems. In [71], two
optimization measures, namely guaranteed cost performance and H∞ performance, were
applied in an optimal FDD scheme for stochastic dynamic systems with time delays. B-
spline neural networks and nonlinear filters were used to perform FDD for time-delay SDC
systems in [72]. In [73], an FTC scheme was proposed for singular stochastic distribution
systems based on an iterative learning observer. In [74], an FD algorithm based on a neu-
ral network observer was proposed for stochastic distribution systems, and a PI controller
reconfiguration scheme was implemented to achieve fault tolerance.

1.3 Fault Diagnosis for Rotating Components

Rotating machinery has been considered as one of the most important classes of ma-
chinery. It is extensively used in the industrialized world, and various application can be
found in literature [75]. From the large scale, rotating machines are used in aircraft en-
gines, centrifuges, and marine propulsion systems. They have also enjoyed popularity in
household accessories. The correct functioning of rotating systems is of great importance.
Failure of rotor components may cause huge economic losses [76]. Moreover, it can en-
danger human lives or lead to catastrophic consequences [77] [78]. Therefore, it is critical
to make sure that the rotating machines operate reliably.
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It is well known that rotor systems can exhibit instability for large angular velocities
due to internal damping, unbalanced weight, or imperfect lubrication in the rotor bearings
[79]. Early detection of faults in the full speed operating phase is very crucial for these
machines due to safety concerns. Even for the normal operation, significant vibration may
take place during start-up and coast-down processes as the rotational speed goes through
critical speeds corresponding to the vibration modes of the system.

Excessive vibration cannot be avoided even with the best design practices. Since many
rotor vibration causes are so subtle and pervasive, a vibration model of high fidelity is de-
sirable. There are mainly two different types of models to describe the vibration of the
rotating machine: theoretical model based on first-principle laws and data-driven model
based on input-output data. The former is focused on building a model which describes
machine dynamics and structural behavior. Physical modeling methods include lumped-
parameter models (e.g. transfer matrix based) [80, 81, 82] , and more commonly used,
distributed-parameter model approximation based methods (e.g. finite element models)
[75, 83]. However, the physical model may be too complex to use for the complicated ma-
chine, especially when describing nonlinear behaviors and when the model parameters are
varying along the rotating speed. Data-driven modeling can make full use of the vibration
data and significantly simplify the model. Moreover, it can be updated on-line to adapt to
the changing condition.

With the development of miniature sensors, wireless communication, and high-efficiency
computing techniques, data-driven methods based on time-series vibration signal become
more popular and applicable in machine fault diagnosis applications [84]. Autoregres-
sive (AR) model is a commonly used data-driven model, which is usually a linear model
identified from the signal under no-fault condition. An accurate AR model can reflect the
characteristics of a dynamic system [78][85][86], and the model parameters carry impor-
tant information of the system condition. The residual between predicted value by the AR
model and measured value is well-suited to extract features associated with a vibration
fault. AR models are data driven in nature so that faults can be detected or even isolated
without knowledge about the physical model of the system. On the other hand, AR models
may be of high dimensions. For a vibration signal composed of M sinusoids, at least a 2M

order model is shown to be suitable [78]. In addition, the AR method normally requires a
priori knowledge of the vibration under no-fault conditions for data-fitting.

Over the past two decades, the order-tracking (OT) technique has been actively re-
searched. The conventional order tracking approaches use orders (i.e. multiples of the
rotating speed) as the frequency base [87], which are mainly based on Fourier analysis,
such as windowed Fourier transform (WFT) and the resampling methods [87][88]. These
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approaches have limited resolution in some situations and suffer from a number of short-
comings. In particular, they are ineffective when there exists multiple components rotating
at independent speeds. For performance improvement, model-based methods have been
proposed, where OT problems are formulated based on state space models. A well-known
scheme is Vold-Kalman-filter(VKF) OT [89][90][91], in which the order amplitudes are
calculated off-line using a least-squares approach. Therefore, the VKF OT method is gen-
erally implemented as a post-processing scheme. Both the conventional OT and the model
based OT methods require information of shaft speed. Gabor OT is another technique
which can extract specific order components in addition to characterizing the processed
signal in rpm-frequency domain [92]. However, The Gabor OT can be used for applica-
tions where rotational speed information is not available.

Linear models are preferably identified in data-driven methods to conduct fault detec-
tion and fault diagnosis. However, it can be inappropriate when dealing with nonlinear and
multi-mode processes, where it is likely leading to an FDD method with poor performance;
also, the process operation conditions and the environment around the process under mon-
itoring may change with time. In order to handle the time varying process behavior, an
adaptive update of the model parameters is of paramount importance in data-driven FDD
[93, 94, 95]. Inspired by the known adaptive observer scheme in the control theory, adap-
tive data-driven model-based FDD technique provides an efficient and powerful tool to
handle FDD in highly dynamic systems and control loops, which are generally located at
the process level. Among the existing adaptive schemes, the recursive technique has been
well developed and widely applied to data-driven models. However, it is worth mention-
ing that in the existing literature, the convergence or stability properties of recursive and
adaptive data-driven FDD methods have not received enough attention, while they actually
play a central role when a dynamic process is under consideration and a fault diagnostic
observer is applied.

1.4 Summary of Contributions

The main results of this thesis can be organized into two parts. New results of adaptive
FDD and FTC for stochastic distribution system based on the analytical model is given in
Part I, which consists of Chapter 2 and Chapter 3. Adaptive FDD for rotating machinery
based on the data-driven model are illustrated in Part II, which consists of Chapter 4 and
Chapter 5.

PART I. Adaptive FDD and FTC for Stochastic Distribution Systems

8



Chapter 2 studies the problem of adaptive fault estimation and fault tolerant control
for a class of nonlinear non-Gaussian stochastic systems subject to time-varying loss of
control effectiveness faults. The output distribution, rather than the system output signal
itself, is adopted for FDD and FTC, and square root rational B-spline approximation is used
to fit the distribution shape. A unified framework is proposed, where time-varying faults,
Lipschitz nonlinear property and general stochastic characteristics are taken into consid-
eration. Both the states and faults are simultaneously estimated in an adaptive observer.
Then, a fault tolerant shape controller is formulated to compensate for the faults and real-
ize stochastic output distribution tracking. Both the fault estimation and the fault tolerant
control schemes are designed based on linear matrix inequality (LMI) technique. Satis-
factory performance is achieved in a numerical simulation example; further, the proposed
scheme is successfully tested in a practical example of soil particle gradation control in the
geotechnical application.

Chapter 3 investigates the problem of fault-tolerant shape control for particle size dis-
tribution (PSD) process subject to simultaneous time-varying actuator and sensor faults.
Actuator and sensor faults are taken into consideration in a unified framework based on
adaptive observer (AO) technique. An innovative on-line fault estimation scheme is pro-
posed for simultaneous actuator fault and sensor fault estimation. Then an augmented con-
troller based on the virtual actuator and virtual sensor techniques is designed to compensate
for the faults and further realize PSD shape tracking. A simulation example of emulsion
polymerization is used to validate the proposed scheme and satisfactory performance is
obtained.

PART II. Adaptive FDD for Rotating Machinery

Chapter 4 presents a novel sinusoidal synthesis based adaptive tracking (SSBAT) tech-
nique for vibration-based rotating machinery fault detection and diagnosis. The proposed
SSBAT algorithm is an adaptive data-driven model-based FDD technique that takes ad-
vantage of the sinusoidal nature of vibration signals and transfers the nonlinear problem
into a linear adaptive problem in the time domain based on a state-space realization. It has
low computation burden and does not need a priori knowledge of the machine under the
no-fault condition which makes the algorithm ideal for on-line fault detection. A modified
Least-Squares (LS) algorithm is adopted to estimate the model parameters. Signal track-
ing is then realized by applying adaptive sinusoidal synthesis to the vibration signal. In
addition to tracking, the proposed data-driven model is mainly used as an adaptive predic-
tor. The health condition of the rotating machine is monitored by checking the residual
between the predicted and measured signals. The convergence of the parameter estimation
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and the stability of entire system are proved. The method is validated using both numerical
simulation and practical application data.

In Chapter 5, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS)
model is proposed to improve the FDD performance of the regular sinusoidal synthesis
(SS) method in Chapter 4. The minimum entropy deconvolution (MED) technique is used
to optimize the SS filter during the model construction process by taking phase information
of the harmonic components into consideration, due to the fact that phase relationships are
important in differentiating noise from characteristic impulsive fault signatures. A time-
weighted-error Kalman filter is used to estimate the MEDSS model parameters adaptively.
Three simulation examples and a practical application case study are provided to illustrate
the effectiveness of the proposed method. The regular SS method and the autoregressive
MED (ARMED) method are also implemented for comparison purposes.
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Part I

Adaptive FDD and FTC for Stochastic

Distribution Systems
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Most of the existing observer-based FDD results in literature for stochastic systems are
based on Gaussian assumption, and thus, the optimization objective is naturally focused on
first and second statistical moments, i.e. mean and variance. However, due to the presence
of nonlinearities, hardly any variables strictly obey a Gaussian distribution in practice.
Meanwhile, conventional FE methods are generally designed based on the input-output
mathematical models, where output signals are normally required. These limitations make
it invalid to apply conventional FDD and FE methods to stochastic distribution systems due
to their nonlinearity nature and the fact that output distributions or PDFs, rather than output
signal itself, can be measured [73]. Therefore, new observer-based FDD design algorithms
are required for general stochastic systems using the output stochastic distributions.

In this part, the stochastic distribution system model is firstly characterized using B-
spline approximation following a two-step procedure for further FDD and FTC scheme
design. In the first step, B-spline based method is used to approximate a general stochastic
distribution (Gaussian or non-Gaussian); the output distributions or PDFs of the system are
expected to be represented by the weight dynamics corresponding to some basis functions.
In the second step, a further dynamical model is established to relate system input and the
dynamical weight vector of the B-spline expansion. Nonlinear weight dynamical models
are considered instead of linear ones in this part.

In Chapter 2, an innovative fault tolerant shape control (FTSC) scheme based on output
feedback is proposed. A specific type of actuator faults, namely, loss of control effective-
ness (LOCE) faults, are considered in a nonlinear non-Gaussian stochastic process. A fast
adaptive fault estimation (FAFE) algorithm is designed considering time-varying LOCE
faults and the nonlinear effect. Based on the estimation results, a dynamic output feedback
FTSC scheme is proposed such that the resulting closed-loop tracking system is stable and
an optimized control performance is guaranteed.

Chapter 3 presents an FTSC scheme based on adaptive FE for more general fault sce-
narios. An innovative adaptive observer-based FE algorithm is designed to simultaneously
estimate the actuator and sensor faults for stochastic distribution control systems. The
shape control strategy is further introduced in the application of PSD distribution control.

Notation: R is the set of real numbers. P > 0 denotes that P is a symmetric positive
definite matrix. ‖ · ‖ denotes the Euclidean norm of a vector or the spectral norm of a
matrix. λmax(A) and λmin(A) represent the maximum and minimum eigenvalues of matrix
A, respectively. In LMIs, “ ∗ ” represents a term that is induced by symmetry. The su-
perscripts “�” and “− 1” stand for matrix transposition and matrix inverse, respectively.
Matrices, if their dimensions are not explicitly stated, are assumed to be compatible with
related algebraic operations.
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Chapter 2

Adaptive Fault-Tolerant Shape Control

for Nonlinear Lipschitz Stochastic

Distribution Systems

2.1 Introduction

Compared to the more conventional state and/or output measurement based control, in
the existing literature on fault estimation and fault-tolerant control, the research on shape
control systems with Lipschitz nonlinear and general stochastic characteristics is still new.
In [58], a fault-tolerant stochastic shape control scheme based on adaptive control compen-
sation for stochastic distribution systems was proposed. A specific type of actuator faults,
namely the loss of control effectiveness (LOCE), was considered. However, it was assumed
all states available in the work, which is a strong limitation in many control problems. Also,
the nonlinear effects were assumed to be known, which is not practical in some applica-
tions. Moreover, in that work, the time-varying faults were not considered, which means
all the faults are assumed to be constants or slowly changing.

To improve the existing results, this chapter aims to provide an innovative fault-tolerant
shape control scheme based on output feedback. The main difficulty in this study is to
estimate and accommodate the time varying LOCE faults in a nonlinear non-Gaussian
stochastic process. In this chapter, a new fast adaptive fault estimation (FAFE) algorithm
is proposed considering time-varying LOCE faults and the nonlinear effect. Based on the
estimation results, a dynamic output feedback fault-tolerant shape control (FTSC) scheme
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is proposed such that the resulting closed-loop tracking system is stable and an optimized
control performance is guaranteed.

The remainder of this chapter is organized as follows: Section 2.2 provides some pre-
liminary results. The adaptive observer-based fault estimation and the dynamic output
feedback FTSC are presented in Section 2.3 and Section 2.4, respectively, as the main
results. In Section 2.5, a numerical example and a practical application example of soil
particle gradation control in the geotechnical application are provided to demonstrate the
feasibility of the proposed approach. Finally, the conclusion is drawn in Section 2.6.

2.2 Preliminaries and Problem Formulation

2.2.1 Distribution Approximation With B-spline Functions

For a dynamic stochastic system, denote u(t) as the control input, and y(t) ∈ [α, β ] as
the output at time t. Assume y(t) is uniformly bounded. With the input u(t), the conditional
probability P of the output y(t) ∈ [α, γ] (α ≤ γ ≤ β ), at time t, is defined by,

P(α ≤ y(t)≤ γ|u(t)) =
∫ γ

α
ρy|u(η , t)dη , (2.1)

where ρy|u(η , t) denotes the PDF of y(t) = η , and η is the specific output value. For
simplicity, ρu(η) and ρu(η , t) are used by dropping the subscript y. The output PDF ρu(η)

is assumed to be measurable, continuous and bounded (see [64] and references therein). In
many engineering applications, on-line measurement of the distribution of output variables
is essential and can be achieved by using proper instrumentation [65, 96, 97].

The commonly adopted square-root rational B-spline model is proposed here to approx-
imate PDF ρu(η) [64]

√
ρu(η) =

∑n
i=1 ωiΓi(η)√

∑n
i=1, j=1 ωiω j

∫ β
α Γi(η)Γ j(η)dη

=
Γ(η)ω√
ω�Γ f ω

, ∀η ∈ [α, β ], (2.2)

where Γ(η) = [Γ1(η), · · · ,Γn(η)], Γi(η) ≥ 0, is the pre-specified basis function. Γ f =∫ β
α Γ�(η)Γ(η)dη , and ω = [ω1, · · · ,ωn]

�, represents the corresponding weight coefficient
vector. Here ωi ≥ 0, (i = 1, ...,n) is independent from each other. They are called pseudo
weights as they have no physical meanings and are only used to form the desirable PDFs.
A preliminary study [98] has shown that the output PDF function can be approximated by
Eq.(2.2) to a desired accuracy.
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2.2.2 System Model With LOCE Faults

In this thesis, using the square-root rational B-spline approximation model for the out-
put distribution, the whole dynamic system can be characterized by the model Σ1 in (2.3).
Firstly, the dynamic relationship between the input u(t) and the measured pseudo weights
ω(t) is characterized. Then the output PDF

√
ρu(η , t) is determined based on the output

pseudo weights.

Σ1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = Ax(t)+Gg(x(t))+BF(t)u(t)

ω(t) =Cx(t)√
ρu(η , t) = Γ(η)ω(t)√

ω�(t)Γ f ω(t)

, (2.3)

where x(t) ∈ R
m is the unmeasurable state vector, ω(t) ∈ R

n is the measurable output
vector. u(t) ∈ R

p is the control input vector. A ∈ R
m×m, G ∈ R

m×m, B ∈ R
m×p, C ∈ R

n×m

are the known matrices. Herein the control effectiveness factor F(t) ∈ R
p×p is described

by the following diagonal matrix form:

F(t) = diag{ f1(t), f2(t), . . . , fp(t)}, (2.4)

fi(t) ∈ [ f i f i], i = 1,2 . . . , p, 0 < f i ≤ f i ≤ 1

where p is the number of inputs, fi(t) represents the effectiveness loss of the ith actuator
channel at time t. f i and f i represent the known lower and upper bounds of fi(t), respec-
tively.

Remark 2.2.1 It should be noted that the assumption 0 < f i ≤ f i ≤ 1 is mainly for de-

scribing the loss of control effectiveness. The fault-free condition can be represented with

f i = f i = 1, while fi = 0 represents a total failure (complete loss) of the ith actuator. When

0 < fi < 1, the ith actuator is considered to be partial loss of control effectiveness. For

simplicity, the complete loss condition is not considered in this work.

Assumption 2.2.1 The nonlinear function g(x(t)) ∈ R
m is assumed to be Lipschitz about

x uniformly, that is:⎧⎨
⎩ g(0) = 0

||g(x(t1))−g(x(t2))||2 ≤ ||l f [x(t1)− x(t2)]||2
(2.5)

for any x(t1), x(t2) ∈ R
m, where l f is a Lipschitz constant. Moreover, it is assumed that the

corresponding coefficient matrix G > 0.
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Assumption 2.2.2 All pairs (A,BF(t)) are uniformly completely controllable for all the

LOCE faults F(t) under consideration.

Assumption 2.2.3 The pair (A, C) is observable.

Assumption 2.2.4 The LOCE faults F(t) are differentiable, and ‖ Ḟ(t) ‖ is bounded as

‖ Ḟ(t) ‖≤ fmI, where fm is a positive constant and I is an identity matrix.

Assumption 2.2.5 The input vector ui(t), i= 1, . . . , p satisfies the persistent excitation con-

dition. It means that there exist scalars μ1 > 0 and μ2 > 0, such that for any time t and

time constant t0, the following condition holds [32]:

μ1 ≤
∫ t+t0

t
ui(τ)ui(τ)dτ ≤ μ2. (2.6)

It can be clearly seen that for the actuator faults considered in this chapter, the control
effectiveness matrix F(t) is naturally a diagonal matrix. This is consistent with the fault-
free case, where F(t) = I is an identity matrix. Such a formulation can cover several fault
cases: (1) At each time only one fi(t) changes, meaning that only one actuator is faulty; (2)
when one fault affects different actuators, for example, when several actuators have control
effectiveness losses at the same time, such a case is modeled as simultaneous changes in
several factors fi(t) (from their nominal value of 1) and these changes can be same or
different, constant or time-varying. It is worthwhile to note that, using the model Σ1 in
(2.3), uncertainties in B matrix can also be handled, which is also pointed out in Remark 3
of [58] .

2.2.3 Control Objectives

The target PDF distribution can be approximated as:

√
ρ∗(η , t) =

Γ(η)ωg(t)√
ω�

g (t)Γ f ωg(t)
, ∀η ∈ [α, β ] (2.7)

where ωg(t) is the vector of target pseudo weights corresponding to the given B-spline basis
function Γ(η). Therefore, the shape control objective is simplified to find the control input
u(t) such that ρu(η , t) follows ρ∗(η , t). If eω(t) = ω(t)−ωg(t)→ 0, then

√
ρu(η , t)−√

ρ∗(η , t)→ 0. The considered FTSC can be formulated as the tracking of ωg(t).
The optimal controller is designed by minimizing the upper bound of the following cost

function

Jt =
∫ ∞

0
[ξ�(t)Z1ξ (t)+ x�(t)Z2x(t)+u�(t)Z3u(t)]dt, (2.8)

16



where ξ (t) =
∫ t

0(ω(τ)−ωg(τ))dτ , Z1 > 0, Z2 > 0 and Z3 > 0 (Z1 ∈R
n×n,Z2 ∈R

m×m and
Z3 ∈ R

p×p).

2.3 Adaptive Fault Estimation

In this section, a novel fast adaptive fault estimation algorithm is presented consider-
ing the time-varying LOCE faults. In addition to the pure integral term in conventional
adaptive fault estimation method, a proportional term is included in the fault estimation
process. Hence, the FAFE algorithm has a faster convergence rate and is appropriate for
time-varying LOCE fault estimation.

Let x̂(t), F̂(t) and ω̂(t) be the estimates of the states, faults and output, respectively.
L ∈ R

m×n is the observer gain matrix. The fault estimation observer is obtained:

Σ2 :

⎧⎨
⎩

˙̂x(t) = Ax̂(t)+Gg(x̂(t))+BF̂(t)u(t)−L(ω̂(t)−ω(t))

ω̂(t) =Cx̂(t)
. (2.9)

Denote ex(t) = x̂− x, eF(t) = F̂(t)−F(t), ėF(t) = ˙̂F(t)− Ḟ(t), eω(t) = ω̂(t)−ω(t) =

Cex(t), and ge(t) = g(x̂(t))− g(x(t)). Then the error equation between the system Σ1 in
(2.3) and the observer Σ2 in (2.9) is described as:

ėx(t) = (A−LC)ex(t)+Gge(t)+BeF(t)u(t). (2.10)

Lemma 2.3.1 For a given positive scalar μ0 and a symmetric positive definite matrix R0 ∈
R

r0×r0 , the following conditions holds [31]:

2a�b ≤ 1
μ0

a�R0a+μ0b�R−1
0 b, (2.11)

where a,b ∈ R
r0 .

Based on Lemma 2.3.1, T heorem 2.3.1 is given to provide the main results for the on-line
estimation of states and faults. Then, both the estimated states and time-varying faults will
be adopted to carry out fault-tolerant stochastic shape control in the following section.

Theorem 2.3.1 For the error system (2.10), given small positive scalar μ > 0 and v > 0,

if there exist symmetric positive definite matrices P1 ∈ R
m×m, P2 ∈ R

p×p , R ∈ R
p×n, and

any matrix M ∈ R
m×n such that the following optimization problem exists an solution

min
P1,P2,R,M

σ (2.12)
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subject to the following matrix inequalities

Ω1 =

⎡
⎣ σ I P1B−C�R�

(P1B−C�R�)� σ I

⎤
⎦> 0, (2.13)

and

Ω2 =

⎡
⎢⎢⎢⎣

Δ1 P1G −vA�P1B+ vC�M�B

∗ −I −vG�P1B

∗ ∗ −2vB�P1B+ 1
μ P2

⎤
⎥⎥⎥⎦< 0, (2.14)

where Δ1 = P1A+A�P1 −MC−C�M�+ l2
f Im, M = P1L, then the following adaptive esti-

mation algorithm:

˙̂fi(t) = Pro j[ f i f i]
{−p3iRi[vėω(t)+ eω(t)]ui(t)} (2.15)

can render ex(t) and e f (t) uniformly ultimately bounded so that the error system is stabi-

lized, where Pro j[ f i f i]
represents the projection operator to project the estimated ˙̂fi(t) to

the interval [ f i f i]. Ri is the ith row of R. ui is the ith input channel and p3i > 0 is the

learning rate for the ith fault.

Proof. The following Lyapunov candidate is chosen here:

Ve(t) = e�x (t)P1ex(t)+ trace[eF(t)P−1
3 eF(t)], (2.16)

where P3 = diag(p31, p32, . . . , p3p).
According to (2.10) and (2.15), the derivative along the trajectory of the state error

(2.10) can be written as

V̇e(t) = 2e�x (t)P1[(A−LC)ex(t)+Gge(t)+BeF(t)u(t)]

+2trace(eF(t)P−1
3 [ ˙̂F(t)− Ḟ(t)])

= 2e�x (t)P1[(A−LC)ex(t)+Gge(t)+BeF(t)u(t)]

−2trace[veF(t)RCėx(t)u�(t)]−2trace[eF(t)RCex(t)u�(t)]

−2trace[eF(t)P−1
3 Ḟ(t)].

(2.17)

As assumed in (2.5), ‖ g(x1(t))−g(x2(t)) ‖2≤‖ l f (x1(t)− x2(t)) ‖2. Therefore,

‖ l f ex(t) ‖2 − ‖ ge(t) ‖2≥ 0. (2.18)
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Hence,

V̇e(t)≤ 2e�x (t)P1[(A−LC)ex(t)+Gge(t)+BeF(t)u(t)]

−2trace[veF(t)RCėx(t)u�(t)]−2trace[eF(t)RCex(t)u�(t)]

−2trace[eF(t)P−1
3 Ḟ(t)]+ e�x (t)l

�
f l f ex(t)−g�e (t)ge(t).

(2.19)

Let
P1B =C�R�. (2.20)

Then

2trace[veF(t)RCėx(t)u�(t)] =2trace[vu�(t)eF(t)RCėx(t)]

=2vė�x (t)P1BeF(t)u(t).
(2.21)

Similarly,

2trace[eF(t)RCex(t)u�(t)] =2e�x (t)P1BeF(t)u(t). (2.22)

Eq. (2.20) represents an equality constraint that is difficulty to satisfy together with the
condition (2.14). Alternatively, it can be approximated in the LMI form of minimizing σ
subject to the following inequality[31]:⎡

⎣ σ I P1B−C�R�

(P1B−C�R�)� σ I

⎤
⎦> 0. (2.23)

Then Eq. (2.19) becomes:

V̇e(t)≤ 2e�x (t)P1[(A−LC)ex(t)+Gge(t)]−2vė�x (t)P1BeF(t)u(t)

−2trace[eF(t)P−1
3 Ḟ(t)]+ e�x (t)l

�
f l f ex(t)−g�e (t)ge(t).

(2.24)

From Lemma 2.3.1 and Assumption 2.2.4, the following can be derived:

−2trace[eF(t)P−1
3 Ḟ(t)]≤ 1

μ
(−(eF(t)u(t))�(U−1P4U−1)(−eF(t)u(t)))

+μ[P−1
3 Ḟ(t)u(t)]�(U−1P4U−1)−1P−1

3 Ḟ(t)u(t)

≤ 1
μ
[eF(t)u(t)]�P2[eF(t)u(t)]+μ f 2

mū2λmax[(P−1
3 )�P−1

2 P−1
3 ],

(2.25)

where P2 =U−1P4U−1, U = diag(u, . . . ,u), u and ū are the minimum and maximum con-
stant value of the input among all the input channels, respectively. λmax[(P−1

3 )�P−1
2 P−1

3 ] is
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the maximum eigenvalue of [(P−1
3 )�P−1

2 P−1
3 ]. Then, Eq. (2.24) becomes:

V̇e(t)≤ 2e�x (t)P1[(A−LC)ex(t)+Gge(t)]−2ve�x (t)(A−LC)�P1BeF(t)u(t)

−2vg�e (t)G
�P1BeF(t)u(t)−2vu�(t)eF(t)B�P1BeF(t)u(t)

+
1
μ
[eF(t)u(t)]�P2[eF(t)u(t)]+μ f 2

mū2λmax[(P−1
3 )�P−1

2 P−1
3 ]

+ e�x (t)l
�
f l f ex(t)−g�e (t)ge(t)

= ē(t)�Ω2ē(t)+μ f 2
mū2λmax[(P−1

3 )�P−1
2 P−1

3 ],

(2.26)

where ē(t) =
[

e�x (t) g�e (t) u�(t)eF(t)
]�

.
If Ω2 < 0,we can have:

V̇e(t)<−λmin(−Ω2)||ē(t)||2 +μ f 2
mū2λmax[(P−1

3 )�P−1
2 P−1

3 ] , (2.27)

where λmin(−Ω2) denotes the minimum eigenvalue of [−Ω2]. Therefore, V̇e(t)< 0 for

λmin(−Ω2)||ē(t)||2 > μ f 2
mū2λmax[(P−1

3 )�P−1
2 P−1

3 ].

It means the estimation will always converge until ||ē(t)||2 arrives at

μ f 2
mū2λmax[(P−1

3 )�P−1
2 P−1

3 ]/λmin(−Ω2),

which means the estimation errors of both the states and faults will be uniformly bounded.
This is the end of the proof.

2.4 Adaptive Fault-Tolerant Control

In this section, a dynamic output feedback fault-tolerant shape control scheme for the
nonlinear non-Gaussian stochastic distribution system is proposed. Let x̄(t)= [ξ�(t) x�(t)]�,
where ξ (t) is defined in (2.8). We have the following augmented system Σ3:

Σ3 :

⎧⎨
⎩

˙̄x(t) =Āx̄(t)+ Ḡg(x(t))+ B̄F(t)u(t)+ H̄ωg(t)

ω(t) =C̄x̄
, (2.28)

where Ā∈R
(m+n)×(m+n), Ḡ∈R

(m+n)×m, B̄∈R
(m+n)×p, H̄ ∈R

(m+n)×n,C̄ ∈R
n×(m+n). These

matrices can be described as follows,

Ā =

⎡
⎣ 0 C

0 A

⎤
⎦ , Ḡ =

⎡
⎣ 0

G

⎤
⎦ , B̄ =

⎡
⎣ 0

B

⎤
⎦ , H̄ =

⎡
⎣ −I

0

⎤
⎦ , C̄ =

[
0 C

]
. (2.29)
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It is not difficult to prove that the controllability of the augmented system is guaranteed
when (A,B) is stabilizable and the matrix of⎡

⎣ C 0

A B

⎤
⎦

has full row rank.
As the states are not available, an observer-based tracking controller is designed for

fault-free condition. Let

ξ̂ (t) =
∫ t

0
(ω̂(τ)−ωg(τ))dτ, (2.30)

ˆ̄x(t) = [ξ̂
�
(t) x̂�(t)]�, (2.31)

ex̄ = ˆ̄x− x̄. (2.32)

Here x̂(t) and ω̂(t) are obtained from the adaptive observer in (2.9). The fault-free con-
troller is

uN(t) = K ˆ̄x(t), (2.33)

where K ∈ R
p×(m+n) is the controller gain to be determined.

For the fault condition of loss of actuator effectiveness, the controller is given by

uF(t) = Ê(t)uN(t) = Ê(t)K ˆ̄x(t), (2.34)

where ÊF̂ = F̂Ê = I. Here Ê is easy to obtain as F̂ is diagonal and each element f̂i ≥ f i > 0.

Then, substituting (2.34) into (2.28), the closed-loop augmented model of is given by

˙̄x(t) =Āx̄(t)+ B̄F(t)uF(t)+ Ḡg(x(t))+ H̄ωg(t)

=Āx̄(t)+ B̄F̂(t)Ê(t)uN(t)− B̄F̂(t)Ê(t)uN(t)+ B̄F(t)uF(t)+ Ḡg(x(t))+ H̄ωg(t)

=Āx̄(t)+ B̄K ˆ̄x(t)− B̄eF(t)uF(t)+ Ḡg(x(t))+ H̄ωg(t)

=Āx̄(t)+ B̄Kx̄(t)+ B̄Kex̄ − B̄eF(t)uF(t)+ Ḡg(x(t))+ H̄ωg(t)

=(Ā+ B̄K)x̄(t)+ B̄Kex̄ − B̄eF(t)uF(t)+ Ḡg(x(t))+ H̄ωg(t).

(2.35)

A stability condition with the guaranteed cost performance (2.8) of the closed-loop fault
system (2.35) is presented as follows.
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Theorem 2.4.1 Given a constant γ > 0, the matrices Z̄ = diag{Z1, Z2} > 0 and Z3 > 0,

if there exist a constant κ1 > 0, a symmetric positive definite matrices P5 ∈ R
(m+n)×(m+n),

such that the following inequality holds

Ω3 =

⎡
⎣ Δ2 P5H̄

∗ −γI

⎤
⎦< 0, (2.36)

where Δ2 = P5(Ā+ B̄K) + (Ā+ B̄K)�P5 + 2l f P5G̃+ Z +K�Z3K + κ1I, G̃ = [0 Ḡ] and

G̃ ∈R
(m+n)×(m+n), then the closed-loop system in (2.35) is stable, and output weight vector

ω(t) converges to the desired weight ωg(t). Furthermore, the performance index (2.8) has

an upper bound:

Jt ≤e�x (0)P1ex(0)+ trace[eF(0)P−1
3 eF(0)]

+ x̄�(0)P5x̄(0)+ γ
∫ ∞

0
ω�

g (t)ωg(t)dt.
(2.37)

Proof. In the proof, firstly we show that the states of system (2.35) are bounded for all
t; then we show that the system (2.35) is stable and ω(t) converges to the desired weight
ωg(t). At last we show that (2.37) is true.

Choose a Lyapunov function as

V (t) =Vx̄(t)+ εVe(t), (2.38)

where Vx̄(t) = x̄�(t)P5x̄(t), and Ve(t) is defined in (2.16). ε is a positive scalar. By differ-
entiating Vx(t) along the trajectory of the system (2.35) it gives

V̇x̄(t) = 2x̄�(t)P5[(Ā+ B̄K)x̄(t)+ B̄Kex̄ − B̄eF(t)uF(t)+ Ḡg(x(t))+ H̄ωg(t)]. (2.39)

Add −γω�
g (t)ωg(t) to (2.39), and according to Assumption 2.2.1,

V̇x̄(t)− γω�
g (t)ωg(t)

=2x̄�(t)P5[(Ā+ B̄K)x̄(t)+ Ḡg(x(t))+ H̄ωg(t)]− γω�
g (t)ωg(t)

+2x̄�(t)P5B̄Kex̄(t)−2x̄�(t)P5B̄eF(t)uF(t)

≤2x̄�(t)P5(Ā+ B̄K)x̄(t)+2l f P5G̃ ‖ x̄(t) ‖2 +2x̄�(t)P5H̄ωg(t)− γω�
g (t)ωg(t)

+2x̄�(t)P5B̄Kex̄(t)−2x̄�(t)P5B̄eF(t)uF(t)

=ϑ�(t)Ω4ϑ(t)+2x̄�(t)P5B̄Kex̄(t)−2x̄�(t)P5B̄eF(t)uF(t),

(2.40)
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where ϑ(t) = [x̄�(t) ω�
g (t)]� and

Ω4 =

⎡
⎣ Δ3 P5H̄

∗ −γI

⎤
⎦ ,

where Δ3 = P5(Ā+ B̄K)+ (Ā+ B̄K)�P5 + 2l f P5G̃. For any ϑ(t) �= 0. If (2.36) holds, we
have

ϑ�(t)Ω4ϑ(t)+ x̄�(t)(Z +K�Z3K +κ1I)x̄(t) = ϑ�(t)Ω3ϑ(t)< 0. (2.41)

Therefore,

V̇x(t)− γω�
g (t)ωg(t)

<− x̄�Zx̄(t)− x̄�K�Z3Kx̄(t)−κ1||x̄(t)||2 +2x̄�(t)P5B̄Kex̄(t)

−2x̄�(t)P5B̄eF(t)uF(t)

<−κ1||x̄(t)||2 +2x̄�(t)P5B̄Kex̄ −2x̄�(t)P5B̄eF(t)uF(t).

(2.42)

Hence, according to (2.27) and (2.42), it can be obtained that

V̇ (t)− γω�
g (t)ωg(t)

=V̇x(t)+ εV̇e(t)− γω�
g (t)ωg(t)

<−κ1||x̄(t)||2 +2x̄Δ4ζ (t)− ε[λmin(−Ω2)||ē(t)||2

−μ f 2
mū2λmax((P−1

3 )�P−1
2 P−1

3 )].

(2.43)

where
Δ4 = [P5B̄K −P5B̄],

and
ζ (t) = [e�x̄ (t) u�F (t)eF(t)]�.

For

λmin(−Ω2)||ē(t)||2 > μ f 2
mū2λmax((P−1

3 )�P−1
2 P−1

3 ), (2.44)

there exists κ2 so that

λmin(−Ω2)||ē(t)||2 −μ f 2
mū2λmax((P−1

3 )�P−1
2 P−1

3 ) = κ2||ē(t)||2, (2.45)

and let κ̄3 =‖ [P5B̄K −P5B̄] ‖, then (2.43) becomes,

V̇ (t)− γω�
g (t)ωg(t)<−κ1||x̄(t)||2 − εκ2||ē(t)||2 +2κ̄3 ‖ x̄ ‖‖ ζ (t) ‖ . (2.46)
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According to (2.26), ē(t)=
[

e�x (t) g�e (t) u�F (t)eF(t)
]�

, moreover, according to (2.30),
(2.31) and (2.32), there exists κ so that,

κ̄3 ‖ ζ (t) ‖≤ κ3 ‖ ē(t) ‖, (2.47)

then

V̇ (t)− γω�
g (t)ωg(t)

<−κ1||x̄(t)||2 − εκ2||ē(t)||2 +2κ3 ‖ x̄ ‖‖ ē(t) ‖

=− εκ2[||ē(t)||2 − 2κ3

εκ2
‖ x̄ ‖‖ ē(t) ‖+ κ2

3

ε2κ2
2
||x̄(t)||2]+ κ2

3
εκ2

||x̄(t)||2 −κ1||x̄(t)||2

<− 1
εκ2

(εκ1κ2 −κ2
3 )||x̄(t)||2.

(2.48)

It is easy to find a ε so that εκ1κ2 > κ2
3 . Then,

V̇ (t)− γω�
g (t)ωg(t)< 0. (2.49)

Let κ = 1
εκ2

(εκ1κ2 −κ2
3 ), and we have,

V̇ (t)<−κ||x̄(t)||2 + γ||ωg(t)||2. (2.50)

Thus, V̇ (t) < 0 if ||x̄(t)|| >
√

γ
κ ||ωg(t)|| holds, which means that for all t, the state vector

||x̄(t)|| will converge until it arrive at min{||x̄(0)||,
√

γ
κ ||ωg(t)||}. That means limt→∞ x̄ =

x̄e and limt→∞ ξ = ξe , where x̄e and ξe are the equilibrium value of x̄ and ξ , respectively.
Hence, limt→∞ ξ̇ = 0. Consequently, limt→∞(ω(t)−ωg(t)) = 0 holds, which means ω(t)

converge to the desired weight ωg(t).
Finally, it is left to verify that the tracking performance should be guaranteed. Accord-

ing to (2.40), (2.41), (2.42), (2.43) and (2.45),

V̇ (t)+ x̄�(t)Zx̄(t)+ ū�(t)Z3ū(t)− γω�
g (t)ωg(t)

=V̇x̄(t)+ εV̇e(t)− γω�
g (t)ωg(t)+ x̄�(t)Zx̄(t)+ ū�(t)Z3ū(t)

=V̇x(t)− γω�
g (t)ωg(t)+ x̄�(t)(Z +K�Z3K +κ1I)x̄(t)−κ1||x̄(t)||2 − εκ2||ē(t)||2

≤ϑ�(t)Ω3ϑ(t)−κ1||x̄(t)||2 − εκ2||ē(t)||2 +2κ3 ‖ x̄ ‖‖ ē(t) ‖
<ϑ�(t)Ω3ϑ(t)−κ||x̄(t)||2.

(2.51)

If (2.36) holds, we have (2.51) is less than 0.
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Integrating left side of (2.51) from t = 0 to t = ∞, we obtain

Jt =
∫ ∞

0
[ξ�(t)Z1ξ (t)+ x�(t)Z2x(t)+ ū�(t)Z3ū(t)]dt

<−
∫ ∞

0
V̇ (t)dt + γ

∫ ∞

0
ω�

g (t)ωg(t)dt

<εe�x (0)P1ex(0)+ εtrace[eF(0)P−1
3 eF(0)]+ x̄�(0)P5x̄(0)+ γ

∫ ∞

0
ω�

g (t)ωg(t)dt.

(2.52)

This completes the proof.
Although T heorem 2.4.1 provides a sufficient condition for closed-loop stability and

PDF weight tracking, it provides a sufficient condition for the desirable stability and the
output distribution shape tracking performance, but this condition cannot be used directly
for obtaining the controller gain K. In order to obtain a feasible LMI condition for the con-
troller gain, an appropriate transformation is taken together with an optimization method
to obtain an optimal tracking controller design as follows.

Theorem 2.4.2 For the system (2.35) associated with the cost function (2.37), given a

constant γ > 0, the matrices Z = diag{Z1, Z2} > 0, Z3 > 0, if there exist solutions in

the following optimization problem

min
κ1,Z,Z3,Q1,W1

trace(T1) (2.53)

subject to the following LMIs

Ω5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ4 H̄ Q1 W�
1 Q1

∗ −γI 0 0 0

∗ ∗ −Z−1 0 0

∗ ∗ ∗ −Z−1
3 0

∗ ∗ ∗ ∗ −κ1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (2.54)

Ω6 =

⎡
⎣ T1 I

I Q1

⎤
⎦> 0, (2.55)

with the constant κ1 > 0, the matrix Q1 > 0 and any matrix W1, then K =W1Q−1
1 is an opti-

mal fault-tolerant shape controller gain, which ensures the minimization of the guaranteed

cost (2.37) for the system (2.35), where

Δ4 = ĀQ1 +Q1Ā�+ B̄W1 +W�
1 B̄�.
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Proof. Suppose the inequality (2.36) holds and let

Ξ1 =

⎡
⎣ P−1

5 0

0 I

⎤
⎦ . (2.56)

Then, pre-multiplying (2.36) by Ξ�
1 and post-multiplying by Ξ1, the following inequality

holds ⎡
⎣ Δ5 H̄

∗ −γI

⎤
⎦< 0, (2.57)

where Δ5 = ĀQ1 +Q1Ā�+ B̄W1 +W�
1 B̄�+2l f G̃Q1 +Q1(Z +K�Z3K +κI)Q1, and Q1 =

P−1
5 . Applying the Schur complement to (2.57), the inequality (2.54) holds and the perfor-

mance index (2.37) can be rewritten as

Jt ≤e�x (0)P1ex(0)+ trace[eF(0)P−1
3 eF(0)]

+ x̄�(0)Q−1
1 x̄(0)+ γ

∫ ∞

0
ω�

g (t)ωg(t)dt.
(2.58)

Moreover, the minimization of Trace(T1) implies the minimization of the guaranteed cost
in (2.58). The stability of the closed-loop system by such K can be easily induced from
T heorem 2.4.2 so the proof will not be repeated herein. This completes the proof.

2.5 Overall Adaptive Fault Estimation and Fault-Tolerant

Control Scheme

In Fig. 2.1, the block diagram of the proposed fault-tolerant shape control scheme for
stochastic distribution system against LOCE failures is given.

The detailed implementation of the scheme is sketched here:

1. According to the target PDF shape, Chose the appropriate n B-spline basis functions
Γi(i = 1,2, · · · ,n);

2. Calculate the target pseudo weights vector ωg according to Eq. (2.7);

3. Measure the system output PDF, calculate the pseudo weights vector ω(t) according
to Eq. (2.2);

4. Adaptively estimate the states and LOCE faults according to Theorem 2.3.1;
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Figure 2.1: Overall adaptive fault estimation and fault-tolerant control scheme

5. Calculate the optimal fault-tolerant shape controller gain K according to Theorem
2.4.2;

6. Design the FTSC law according to Eq. (2.34) based on the estimated states, faults
and the calculated K in step 4.

2.6 Simulation and Practical Application

2.6.1 A Numerical Example

To demonstrate and validate the proposed adaptive FTSC scheme, an example is given
and simulation results are obtained. Consider a stochastic system whose desired output
PDF is shown in Fig. 2.2.

It is formulated according to Eq. (2.2) with the B-spline functions Γi(η),(i= 1,2,3,4,5)
as follows:

Γi(η) =0.5(
η

100
− i+1)2Ii +

[
−(

η
100

)2 +(2i+1)
η

100

−2
i

∑
j=1

j+0.5

]
Ii+1 +0.5(i+2− η

100
)2Ii+2,

where Ii, (i = 1,2,3,4,5) is the interval function defined as:

Ii =

⎧⎨
⎩ 1, η ∈ [100(i−1), 100i)

0, otherwise
.
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Figure 2.2: Target PDF distribution

The corresponding pseudo weights for the target PDF distribution ρg(η) in Figure 2.2 is
ωg = [6, 0.1, 4, 5, 4]�. The system coefficients matrices corresponding to Eq.(2.3) are
assumed to be:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5 0 0 0

−2.5 0 19.5 0 12

0 0 0 1 0

48.6 0 −48.6 −1.25 5.5

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.4 0 0 0 0

0 21.6 0 0 0

0 0 3.5 0 0

0 0 0 7.8 0

0 0 0 0 15.6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C = I5×5, G= I5×5 and g(x) = 1
1+e−x −0.5. The initial condition in the dynamic weight sys-

tem is given by (2.3) with the above matrices and x(0)= [1, 1, 1, 1, 1]�. The sampling time
is 0.001s. Different type of LOCE faults F(t) = diag[0.2, 0.7+0.2cos(0.3t), 1, 0.4, 0.3]
have been added to demonstrate the effectiveness of the proposed methods. According
to the fault types, we can find that u1,u4,u5 have constant control effectiveness losses of
0.2,0.4 and 0.3, respectively. u3 is normal with no control effective loss and u2 faces a
oscillatory type of fault.

Fig. 2.3(a) and Fig. 2.3(b) illustrates the system states and faults estimation perfor-
mances, respectively. Accurate estimations have been reached in both of them. Especially
in Fig. 2.3(b), the no fault, constant faults and time-varying fault can be estimated simulta-
neously and the estimation results are accurate. Correspondingly, in Fig.2.4(a), the pseudo
weights tracking is achieved at ω = [6.002, 0.098, 3.984, 4.998, 3.992]�. In Fig. 2.4(b),
the satisfactory tracking of target PDF distribution is obtained. Finally, in Fig.2.5, the PDF
shape tracking evolution along the time is demonstrated in the 3-D plot.
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Figure 2.3: Estimation of states and faults
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Figure 2.4: Tracking performance of the weights and the PDF distribution

Figure 2.5: 3D dynamic PDF tracking
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2.6.2 Application in Soil Particle Distribution Control

In many geotechnical projects, the soil structure and composition plays an extremely
important role. They are the indicator of other engineering properties such as compress-
ibility, shear strength, and hydraulic conductivity. The particle distribution of soils is the
main fact that affects the permeability and stability of the structure. Foundation with bad
soil gradation will lead to leakage loss or even failure of piping. Soil gradation is extremely
important for a construction project such as highway, embankment or earthen dam. For this
reason, it is vital to control the particle distribution of soils. For example, Fig. 2.6 shows
several good gradation curves for crushable soils [99].

Figure 2.6: Gradation curves of the soil

The particle distribution curve according to the particle size can be obtained by taking
the derivative of the gradation curve. By using one of the gradation curves in Fig. 2.6, we
obtain the particle size distribution, shown in Fig. 2.7. Here in Fig. 2.7, coordinates on
the horizontal axis are bin numbers, which divide the particle distribution into five groups
corresponding to the decibel coordinates of Fig. 2.6.

With the development of robotics technology, robots (or robotic arms) have been ap-
plied in construction projects to select different soil particles and mix them. For example,
excavators are commonly used to collect soils and sands of different size. After that, the
collected soils and sands can be mixed to reach a good gradation. However, the measur-
able output for control is the particle size distribution. In this section, we will apply the
techniques introduced in this chapter to the soil gradation control problem.

The detailed mechanical and dynamic models for an excavator are complex. For sim-
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Figure 2.7: Particle distribution curve

plicity, we assume the excavator is controlled through a single link flexible joint system and
the position and velocity of both the motor and the link joint are measurable. For the joint
system, it can be described by a deterministic physical model. However, for the whole sys-
tem from the input of motor control to the output of soil particle distribution, it is described
by an unknown non-linear stochastic system. It is assumed here that the input affects the
distribution of the system output directly. The unknown system relationship between the
deterministic output of the excavator and the stochastic output of soil particle distribution
is fitted by B-spline approximation. Assume η(t) denote the soil size. ρ(η) represents the
soil size distribution of η(t) under the control input u(t).

The single link flexible joint system can be represented in the state space model, [100]:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ̇l = ωl

ω̇l =− k
Jl
(θl −θm)− mgl

Jl
sin(θl)+

KD
Jl

u1

θ̇m = ωm

ω̇m = k
Jm
(θl −θm)− D

Jm
ωm + Kτ

Jm
u2

(2.59)

whereθl and ωl represent the link angular position and the link angular velocity respec-
tively, while θm and ωm denote the motor angular position and motor angular velocity
respectively. In this system, the control input u1 is assumed to be directly applied to the
link joint to regulate the link angular velocity (e.g. manual control) while the control input
u2 is the motor voltage signal.

For this system, the motor position and velocity can be measured. Moreover, the link
angular position and the link angular velocity can also be measured. Parameters of this sin-
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Table 2.1: Model Parameters

Parameters (Units) Value

Motor inertia, Jm(kg m2) 3.7×10−3

Link inertia, Jl(kg m2) 9.3×10−3

Link mass, m(kg) 2.1×10−1

Link length, l(m) 3.0×10−1

Torsional spring constant, k(Nm/rad) 1.8×10−1

Viscous friction coefficient, D(Nm/V ) 4.6×10−2

Amplifier gain, Kτ(Nm/V ) 8×10−2

Orthogonal amplifier gain, KD(Nm/V ) 1.3×10−2

gle link model are provided in Table 2.1. Using the state vector as x = [x1 x2 x3 x4]
T , where

x1,x2,x3 and x4 represent θl,ωl,θm and ωm respectively, the deterministic joint model can
be presented by Eq. (2.3), while the measured output soil size distribution function of
the considered stochastic system can be expressed as a linear combination of all the pre-
specified B-spline basis functions. Here it is assumed that, with the proper basis B-spline
functions, the dynamics between the weights and the control input are known, which is ac-
tually obtainable through a series of experiments. The dynamics can be expressed as (2.7).
It is assumed that the target distribution function T (η) belongs to the following functional
space:

T (η) ∈ Ω0 = {ρ|ρ =
Γ(η)ω(t)√
ω�(t)Γ f ω(t)

,ω ∈ Rn×1,ω ≥ 0} (2.60)

where ω(t) denotes the weight vector .
On-line measurement of the distribution of soil particles is essential and can be achieved

by using proper instrumentation. For example, the more traditional sieving method is gen-
erally used while more advanced laser diffraction and light scattering-based methods are
applied to grain size analysis. In addition, the soil size distribution function ρ(η , t) at
each sampling time t can be obtained by one of the standard density estimation methods
introduced in [101].
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Appropriate B-spline base functions corresponding to Fig. 2.7 are chosen to be:

Γ1(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

η3, 0 ≤ η < 1

1
6
(−3η3 +12η2 −12η +4) 1 ≤ η < 2

1
6
(3η3 −24η2 +60η −44) 2 ≤ η < 3

1
6
(4−η)3 3 ≤ η < 4

, (2.61)

Γ2(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6
(η −1)3, 1 ≤ η < 2

1
6
(−3η3 +21η2 −45η +31) 2 ≤ η < 3

1
6
(3η3 −33η2 +117η −131) 3 ≤ η < 4

1
6
(5−η)3 4 ≤ η < 5

. (2.62)

The system coefficients matrices corresponding to Eq.(2.7) are obtained:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−19.5 0 19.5 0

0 0 0 1

48.6 0 −48.6 −1.25

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

1.4 0

0 0

0 21.6

⎤
⎥⎥⎥⎥⎥⎥⎦
,

G = I, g(x(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

−3.33sin(x1)

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
, C =

⎡
⎣ 0 0 1 0

0 0 0 1

⎤
⎦ .

An upper bound on ||dg(x)
dx || is found as 3.33, therefore Assumption 2.2.1 can be satisfied

and l f = 3.33. The desired distribution is supposed to be described by (2.7) with ωg =

[4, 2]�. The sampling time Ts = 0.0005s. Time-varying LOCE fault F(t) has been added
to demonstrate the effectiveness of the proposed methods. Here, the oscillatory type of
fault signals are used as

F(t) =

⎡
⎣ 0.5+0.1cos(0.2t) 0

0 0.5+0.3cos(0.3t)

⎤
⎦ .

The LOCE faults and their estimates are shown in Fig.2.8(a). From the simulation
results, it can be seen that both the states and the faults can be accurately estimated.
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Figure 2.8: Fault estimation and weights tracking

Fig.2.8(b) shows the tracking performance of the pseudo weights. From the figure, we
can clearly see that ω converge to ωg = [4, 2]� rapidly in only a few iterations. Fig.2.9(a)
demonstrates the final soil size distribution shape tracking result with excellent perfor-
mance. By comparing to the desirable distribution curve of the soil gradation. It can be
concluded that the proposed fault-tolerant shape control can accomplish satisfactory per-
formance in this soil particle distribution control application. Finally, in Fig.2.9(b), the 3-D
plot of the dynamic distribution tracking is presented, which illustrates the shape tracking
evolution along the time.
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Figure 2.9: Tracking performance

If no FTSC scheme is applied, the pseudo weights tracking result is shown in Fig.2.10(a),
and the corresponding distribution shape tracking result is illustrated in Fig. 2.10(b). From
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Figure 2.10: Tracking performance without FTSC

both of the figures, we can see that, without the FTSC method, the tracking performance is
seriously deteriorated when LOCE faults exist.

2.7 Conclusions

In this chapter, the FTSC problem for nonlinear and non-Gaussian stochastic distri-
bution system is studied. Firstly, an innovative adaptive observer-based fault estimation
technique is proposed for time-varying LOCE faults. Both the fault-free and LOCE fault
condition can be estimated in the unified framework, simultaneously. Then, an observer-
based fault-tolerant stochastic shape controller is developed. In addition, the optimized
control performance can be achieved. Simulation results show that the proposed scheme
can achieve accurate estimation for time-varying LOCE faults. Furthermore, the stochastic
shape tracking performance is highly enhanced through the FTSC technique developed in
this work. A successful application example in soil particle distribution control demon-
strates the feasibility and effectiveness of the proposed adaptive fault estimation and FTSC
method for particle size distribution control.
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Chapter 3

Fault-Tolerant Shape Control Under

Simultaneous Actuator and Sensor

Faults

3.1 Introduction

Particulate processes where the product takes the form of particles, are ubiquitous in
agricultural, chemical, mineral and pharmaceutical industries [102]. Examples include the
crystallizers for pharmaceutical products [66], the emulsion polymerization reactors for
the manufacture of coatings, pigments, latex paints [67], and the biochemical reactors for
metabolite production [68]. In these particulate processes, control of particle size distribu-
tion (PSD) is the key to achieve the desired physiological and physiochemical properties.

The lumped statistical values, such as moments, are insufficient to characterize the
properties of particulate systems. The dynamics of these complex systems can be captured
with the full PSD. In the existing research, to obtain a model based PSD controller, math-
ematical models are designed based on the population balance equation (PBE), coupled
with material and energy balance equations, which are nonlinear partial integro-differential
equations [102][103]. Analytical solution of the PBE model can only be obtained under
very strict assumptions. Therefore, most solution methods are based on numerical analy-
sis. However, the order of the system will be high because of the discretization of spatial
variables, resulting in high computation burden. Moreover, the controllability and observ-
ability become more difficult to satisfy [104]. The high-order factor may also render the
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corresponding linear control problems unsolvable [105].
The presence of faults, if not taken into account in the controller design, may lead to

severe deterioration of the closed-loop system performance. The existing research mainly
deals with actuator and sensor faults separately and in different formulations, while in many
practical applications, actuator and sensor faults can occur in the same system, and even
in same time. Misinterpretation of the two different kinds of faults may cause missing-
detection, increased maintenance cost, and even system damage. Therefore it is preferable
to consider estimation of actuator and sensor faults under a rigorously formulated and uni-
fied framework. Sliding mode observers (SMOs) were designed to estimate the actuator
and sensor faults simultaneously in [106][107]. However, SMOs need strong assumptions
for the ranks of system matrices, which may be difficult to satisfy in some particulate sys-
tems.

In this chapter, a shape control scheme is proposed as an alternative to the conventional
PSD control. The shape control method can be applied in the particulate process system
because the objective of PSD control is to achieve a target particle size distribution shape,
which aligns with the original goal of shape control in tracking a desirable PDF shape.

To improve the existing results, in [58] and Chapter 2 of this thesis, for fault-tolerant
stochastic shape control, and further apply it in particulate processes, this Chapter aims to
provide a fault-tolerant shape control scheme based on adaptive fault estimation for more
general fault scenarios. The main contributions of this Chapter are summarized as follows:
(i) The shape control strategy is introduced for the application of PSD distribution control
for the first time. (ii) An innovative adaptive observer-based fault estimation scheme is pro-
posed to simultaneously estimate the actuator and sensor faults for a nonlinear particulate
process. (iii) The proposed fault estimator is designed and operated for fault-free, constant
fault and time-varying fault conditions in a unified framework. (iv) Shape control recon-
figuration is realized through a virtual actuator and a virtual sensor, which can compensate
for both the actuator and sensor faults based on fault estimation.

The remainder of the chapter is organized as follows: Section 3.2 provides preliminary
results and problem formulation. The fault estimation and the fault-tolerant shape control
design are presented in Section 3.3 as the main results. Finally, in section 3.4, an application
simulation example of emulsion polymerization is provided to demonstrate the feasibility
of the proposed approach. The conclusion is drawn in Section 3.5.
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3.2 Preliminaries and Problem Formulation

3.2.1 Distribution Approximation With B-spline Functions

For a particulate process, the PSD function of particles defines quantitatively how the
sizes of the particles are distributed among the particles in the entire population. The PSD
function is assumed to be measurable, continuous and bounded. Denote u(t) as the control
input and ρ(η , t) as the PSD function, where η ∈ [α, β ]. It should be noted that in this case,
the PSD shape of the output is controllable by the input. In many particulate processes, on-
line measurement of the PSD function is essential and can be achieved by using proper
instrumentation [108].

The commonly adopted square-root rational B-spline model is proposed here to approx-
imate PSD function ρ(η , t), [64].

√
ρ(η , t) =

∑n
i=1 ωi(t)Γi(η)√

∑n
i=1, j=1 ωi(t)ω j(t)

∫ β
α Γi(η)Γ j(η)dη

=
Γ(η)ω(t)√
ω�(t)Γ f ω(t)

, ∀η ∈ [α, β ] (3.1)

where Γ(η) = [Γ1(η), · · · ,Γn(η)] and Γ f =
∫ β

α Γ�(η)Γ(η)dη . Γi(η) ≥ 0, is the pre-
specified basis function. ω(t) = [ω1(t), · · · ,ωn(t)]�, ω(t) �= 0, represents the correspond-
ing weight coefficients. Here ωi(t), (i = 1, ...,n) are independently determined and decou-
pled from each other. They are called pseudo weights as they have no physical meanings
and are only used to form the desirable PSDs.

3.2.2 System Model With Simultaneous Time-varying Actuator and

Sensor Faults

In this chapter, using the square-root B-spline approximation model for the output PSD,
the whole dynamic system can be characterized. The dynamic plant model is given in
Eq.(3.2a). The relationship between the pseudo weights and the states without sensor faults
is established in Eq.(3.2b). It is worth pointing out that the output matrix C is identified
and may have no physical meaning.

ẋ(t) = Ax(t)+g(x(t))+Bu(t)+F fa(t), (3.2a)

ω(t) =Cx(t), (3.2b)

where x(t) ∈ R
m is the measurable state vector; ω(t) ∈ R

n is the calculated weight vector
from the measurable PSD function through Eq. (3.1); fa(t) ∈ R

p,(n > p) is the time-
varying actuator fault vector; u(t) ∈ R

l,(l ≥ p) is the control input; A ∈ R
m×m, B ∈ R

m×l ,
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F ∈ R
m×p and C ∈ R

n×m are the known matrices. The nonlinear function g(x(t)) ∈ R
m is

Lipschitz about x uniformly, i.e.: ||g(x(t1))−g(x(t2))||2 ≤ l f ||(x(t1)− x(t2))||2, l f > 0 and
g(0) = 0 for any x(t1), x(t2) ∈ R

m as in [58], where l f is a Lipschitz constant.
When sensor faults are present, the measured PSD function is given in Eq. (3.3a).

The corresponding faulty weights and fault-free weights are calculated through Eq. (3.1).
Assume that the relationship between the faulty weights and the fault-free weights can be
built as Eq. (3.3b),

ρ f (η , t) = ρ(η , t)+D0 fs(t), (3.3a)

ω f (t) = ω(t)+D fs(t), (3.3b)

where ρ f (η , t) and ρ(η , t) are the measured PSD with and without sensor faults, respec-
tively. fs(t) ∈ R

q(q ≤ n) is the sensor fault vector. D0 ∈ R
1×q is the corresponding coef-

ficient matrix. ω f (t) ∈ R
n and ω(t) ∈ R

n are the corresponding weights calculated from
ρ f (η , t) and ρ(η , t), respectively. D ∈ R

n×q is the coefficient matrix to map the sensor
faults into weights formulation.

Remark 3.2.1 The relationship between ω f (t) and ω(t) in (3.3b) is obtained by linear

approximation of the Taylor expansion of Eq. (3.3b) based on the B-spline approximation

in Eq. (3.1).

Combining Eq. (3.2a) and (3.3b), the dynamic system with both actuator and sensor
faults can be represented in Σ1 as:

Σ1 :

⎧⎨
⎩

ẋ(t) = Ax(t)+g(x(t))+Bu(t)+F fa(t)

ω f (t) =Cx(t)+D fs(t)
. (3.4)

Assumption 3.2.1 rank(CF) = rank(F) = p

Assumption 3.2.2 For every complex number s with nonnegative real part

rank

⎡
⎣ sIm −A F

C 0

⎤
⎦= m+ p. (3.5)

Assumption 3.2.3 The actuator fault fa and sensor fault fs are norm bounded. Also, fa

and fs are differentiable after their occurrence.

Remark 3.2.2 Assumption 1 indicates that the number of independent measurements can-

not be smaller than that of independent actuator faults. Assumption 3.2.2 is given as the

minimum phase condition [106].
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3.2.3 Control Objectives

With the presence of simultaneous actuator and sensor faults, a fault-tolerant controller
composed of a normal controller and a virtual actuator compensator, together with an vir-
tual sensor compensator vs(t) will be designed to realize the fault-tolerant shape control
(FTSC). Adding the sensor compensator, Σ1 becomes:

Σ2 :

⎧⎨
⎩

ẋ(t) = Ax(t)+g(x(t))+Bu(t)+F fa(t)

ωc(t) =Cx(t)+D fs(t)+Dvs(t)
, (3.6)

where the vector ωc(t) ∈ R
n is the compensated weights. vs(t) ∈ R

q denotes the virtual
sensor compensator and D is the corresponding coefficient matrix which is assumed to be
identical to the sensor fault coefficient matrix.

To investigate the fault-tolerant shape controller for Σ2, the target particle distribution
can be approximated as follows:

√
ρ∗(η , t) =

Γ(η)ωg(t)√
ω�

g (t)Γ f ωg(t)
, ∀η ∈ [α, β ] (3.7)

where ρ∗(η , t) is the target PSD function and ωg(t) is the corresponding target weights
based on the given B-spline basis function Γ(η). Therefore, the shape control objective
is simplified to finding the control input u(t) and the sensor compensator vs(t) such that
ρ(η , t) follows ρ∗(η , t). It is known that if eω(t) = ω(t)−ωg(t)→ 0, then

√
ρ(η , t)−√

ρ∗(η , t) → 0. The considered fault-tolerant shape controller can be formulated as the
tracking of ωg(t) even when actuator and sensor faults occur, simultaneously.

The dynamic system Σ2 is reformulated so that the fault-tolerant controller and the
sensor fault compensator can be combined to form an augmented control signal ū(t) =

[v�s (t) u�(t)]�. Denote ξ (t) =
∫ t

0(ωc(τ)−ωg(τ))dτ and x̄(t) = [ξ�(t) x�(t)]�, f̄ (t) =

[ f�s (t) f�a (t)]�. We obtain the following augmented system model Σ3:

Σ3 :

⎧⎨
⎩

˙̄x(t) = Āx̄(t)+ ḡ(x(t))+ B̄ū(t)+ H̄ωg(t)+ F̄ f̄ (t)

ωc(t) = C̄x̄(t)+ D̄ f̄ (t)+Dvs(t)
, (3.8)

where Ā∈R
(m+n)×(m+n), B̄∈R

(m+n)×(q+l), H̄ ∈R
(m+n)×n, F̄ ∈R

(m+n)×(p+q),C̄ ∈R
n×(m+n),

D̄ ∈ R
n×(p+q). Here ḡ(x(t)) = [0 g�(x(t))]� and ḡ(x(t)) ∈ R

m+n. According to the Lips-
chitz assumption, ‖ ḡ(x(t)) ‖=‖ g(x(t)) ‖≤ l f ‖ x(t) ‖≤ l f ‖ x̄(t) ‖. It is assumed that (Ā, B̄)
is stabilizable. These matrices can be described as follows,

Ā =

⎡
⎣ 0 C

0 A

⎤
⎦ , B̄ =

⎡
⎣ D 0

0 B

⎤
⎦ , H̄ =

⎡
⎣ −I

0

⎤
⎦ ,
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F̄ =

⎡
⎣ D 0

0 F

⎤
⎦ ,C̄ =

[
0 C

]
, D̄ =

[
D 0

]
. (3.9)

3.3 Adaptive Observer-Based Fault-Tolerant Shape Con-

trol

3.3.1 Optimal Shape Tracking of the Fault-Free System

In this part, a shape tracking controller with optimal control performance is designed
for the fault-free model. The following state feedback tracking controller is designed:

uN(t) = KNx̄(t), (3.10)

where KN ∈ R
l×(m+n) is the normal controller gain to be determined and the virtual sensor

vs(t) = 0 for the fault-free model. Then, the closed-loop augmented normal model of
system (3.8) is given by

˙̄x(t) = (Ā+ B̄2KN)x̄(t)+ ḡ(x(t))+ H̄ωg(t), (3.11)

where B̄2 is the second column block of B̄.

Remark 3.3.1 The augmented state vector x̄(t) is available because the states are assumed

to be measurable and ξ (t) can be calculated as ξ (t) =
∫ t

0(ωc(τ)−ωg(τ))dτ .

The optimal controller is designed by minimizing the upper bound of the following cost
function:

Jt =
∫ ∞

0
[ξ�(t)Z1ξ (t)+ x�(t)Z2x(t)+u�N (t)Z3uN(t)]dt, (3.12)

where Z1 > 0, Z2 > 0 and Z3 > 0 (Z1 ∈ R
n×n,Z2 ∈ R

m×m and Z3 ∈ R
l×l).

A stability condition with the guaranteed cost performance (3.12) of the closed-loop
fault-free system (3.11) is presented as follows.

Theorem 3.3.1 Given a constant γ > 0, the matrices Z̄ = diag{Z1, Z2}> 0 and Z3 > 0, if

there exist a constant κ > 0, a matrix P1 > 0, such that the following inequality holds

Ω1 =

⎡
⎣ Δ1 P1H̄

∗ −γI

⎤
⎦< 0, (3.13)

41



where Δ1 = P1(Ā+ B̄2KN)+(Ā+ B̄2KN)
�P1 +2l f P1 +Z +K�

N Z3KN +κI, then the closed-

loop system in (3.11) is stable, and ω(t) converges to the desired weight ωg(t). Further-

more, the performance index (3.12) has an upper bound:

Jt ≤ x̄�(0)P1x̄(0)+ γ
∫ ∞

0
ω�

g (t)ωg(t)dt. (3.14)

Proof. Choose a Lyapunov function as V1(t) = x̄�(t)P1x̄(t). By differentiating V1(t) and
subtract γω�

g (t)ωg(t) in both sides of the equation, it gives

V̇1(t)− γω�
g (t)ωg(t)

=2x̄�(t)P1[(Ā+ B̄2KN)x̄(t)+ ḡ(x(t))+ H̄ωg(t)]− γω�
g (t)ωg(t)

≤2x̄�(t)P1(Ā+ B̄2KN)x̄(t)+2l f x̄�P1x̄+2x̄�(t)P1H̄ωg(t)− γω�
g (t)ωg(t)

=ϑ�(t)Ω2ϑ(t),

(3.15)

where ϑ(t) = [x̄�(t) ω�
g (t)]� and

Ω2 =

⎡
⎣ Δ2 P1H̄

∗ −γI

⎤
⎦ ,

where Δ2 = P1(Ā+ B̄2KN)+(Ā+ B̄2KN)
�P1 +2l f P1. For any ϑ(t) �= 0, if (3.13) holds, we

have

ϑ�(t)Ω2ϑ(t)+ x̄�(t)(Z +K�
N Z3KN +κI)x̄(t)≤ ϑ�(t)Ω1ϑ(t)< 0. (3.16)

Therefore,

V̇1(t)− γω�
g (t)ωg(t)<− x̄�Zx̄(t)− x̄�K�

N Z3KNx̄(t)−κ||x̄(t)||2. (3.17)

As Z > 0 and Z3 > 0, we can have x̄�Zx̄(t)> 0 and x̄�K�
N Z3KNx̄(t)> 0. Therefore, (3.17)

can be relaxed to be the following:

V̇1(t)− γω�
g (t)ωg(t)<−κ||x̄(t)||2. (3.18)

Then, it can be obtained that

V̇1(t)<−κ||x̄(t)||2 + γ||ωg(t)||2. (3.19)

Thus, V̇1 < 0 if ||x̄(t)|| >
√

γ
κ ||ωg(t)|| holds, which means that for all t, the state vector

||x̄(t)|| satisfies ||x̄(t)|| ≤ max{||x̄(0)||,
√

γ
κ ||ωg(t)||}.
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Then, we show that there is a unique equilibrium point of (3.11) for the given ωg(t).
Corresponding to a fixed initial condition and the input ωg(t), assume that x̄1(t) and x̄2(t)

are two trajectories of the system (3.11). Then, the dynamics of ε(t) = x̄1(t)− x̄2(t) can be
described as

ε̇(t) = (Ā+ B̄2KN)ε(t)+ [ḡ(x1(t))− ḡ(x2(t))]

≤ (Ā+ B̄2KN)ε(t)+ l f ||ε(t)||
(3.20)

with initial condition ε(t) = 0. By using the Lyapunov function V2(t) = ε�(t)P1ε(t), we
have

V̇2(t)≤ 2ε�(t)P1[(Ā+ B̄2KN)ε(t)+ l f ||ε(t)||]
= ϑ�

1 (t)Ω2ϑ1(t),
(3.21)

where ϑ1(t) = [ε�(t) 0]�. Then it can be seen that V̇2(t) < −κ||ε(t)||2. Thus, it can
be verified that ε = 0 is the unique asymptotically stable equilibrium point of the system
(3.20). It means that the closed-loop system (3.11) also has a unique stable equilibrium
trajectory. Hence, limt→∞ ξ (t) = ξe and limt→∞ ξ̇ (t) = 0, where ξe is the equilibrium value
of ξ . Consequently, limt→∞(ω(τ)−ωg(τ)) = 0 holds, which means ω(t) can converge to
the desired weight ωg(t).

Finally, it is left to show that the tracking performance is guaranteed. According to Eq.
(3.15) and Eq. (3.16), the following Eq. (3.22) can be obtained:

V̇1(t)− γω�
g (t)ωg(t)+ x̄�(t)Zx̄(t)+u�N (t)Z3uN(t)+κ x̄�(t)x̄(t)≤ ϑ�(t)Ω1ϑ(t). (3.22)

If (3.13) holds, then the right-hand-side of Eq. (3.22) is less than 0. Furthermore, we have
κ x̄�(t)x̄(t)≥ 0, as κ > 0. Therefore, the following Eq. (3.23) can be obtained by relaxing
the condition of Eq. (3.22):

V̇1(t)− γω�
g (t)ωg(t)+ x̄�(t)Zx̄(t)+u�N (t)Z3uN(t)≤ 0. (3.23)

Integrating both sides of (3.23) from t = 0 to t = ∞, we obtain

Jt =
∫ ∞

0
[ξ�(t)Z1ξ (t)+ x�(t)Z2x(t)+u�N (t)Z3uN(t)]dt

≤−
∫ ∞

0
V̇1(t)dt + γ

∫ ∞

0
ω�

g (t)ωg(t)dt

≤ x̄�(0)P1x̄(0)+ γ
∫ ∞

0
ω�

g (t)ωg(t)dt.

(3.24)

This completes the proof.
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Theorem 3.3.1 only provides a sufficient condition but cannot be used directly for ob-
taining the controller gain KN . A feasible LMI realization is designed in Theorem 3.3.2 as
follows.

Theorem 3.3.2 For the system (3.11) associated with the cost function (3.14), given a

constant γ > 0, the matrices Z = diag{Z1, Z2} > 0, Z3 > 0, if there exist solutions in

the following optimization problem

min
κ,Z,Z3,Q1,W1

trace(S) (3.25)

subject to the following LMIs

Ω3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ3 H̄ Q1 W�
1 Q1

∗ −γI 0 0 0

∗ ∗ −Z−1 0 0

∗ ∗ ∗ −Z−1
3 0

∗ ∗ ∗ ∗ −κI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.26)

Δ3 = ĀQ1 +Q1Ā�+ B̄2W1 +W�
1 B̄�

2 +2l f Q1,

Ω4 =

⎡
⎣ S I

I Q1

⎤
⎦> 0, (3.27)

with the constant κ > 0, the matrix Q1 > 0 (Q1 ∈ R
(m+n)×(m+n)) and any matrix W1 ∈

R
l×(m+n). Then KN =W1Q−1

1 is an optimal stabilizing shape controller gain, which ensures

the minimization of the guaranteed cost (3.14) for the system (3.11).

Proof. Suppose the inequality (3.13) holds and let

Ξ1 =

⎡
⎣ P−1

1 0

0 I

⎤
⎦ . (3.28)

Then, pre-multiplying (3.13) by Ξ�
1 and post-multiplying by Ξ1, the following inequality

holds ⎡
⎣ Δ3 H̄

∗ −γI

⎤
⎦< 0, (3.29)
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where Δ3 = ĀQ1+Q1Ā�+ B̄2W1+W�
1 B̄�

2 +2l f Q1+Q1(Z+K�
N Z3KN +κI)Q1, and Q1 =

P−1
1 . Applying the Schur complement to (3.29), the inequality (3.26) holds and the perfor-

mance index (3.14) can be rewritten as

Jt ≤ x̄�(0)Q−1
1 x̄(0)+ γ

∫ ∞

0
ω�

g (t)ωg(t)dt. (3.30)

Moreover, it is easy to show that Q−1
1 < S in (3.27) . Thus, the minimization of Trace(S)

implies the minimization of the guaranteed cost in (3.30). This completes the proof.

3.3.2 Actuator and Sensor Fault Estimation

The results for fault estimation are presented in this section. A lemma is introduced
first.

Lemma 3.3.1 Based on Assumption 3.2.1, there exist T1 and T2, so that

z =

⎡
⎣ z1

z2

⎤
⎦= T1

⎡
⎣ x1

x2

⎤
⎦ , w =

⎡
⎣ w1

w2

⎤
⎦= T2

⎡
⎣ ω1 f

ω2 f

⎤
⎦ , (3.31)

and the corresponding transformed system matrices for Σ1 in (3.6) become:

T1AT−1
1 =

⎡
⎣ A1 A2

A3 A4

⎤
⎦ , T1 =

⎡
⎣ G1

G2

⎤
⎦ , T1B =

⎡
⎣ B1

B2

⎤
⎦ ,

T1F =

⎡
⎣ F1

0

⎤
⎦ , T2CT−1

1 =

⎡
⎣ C1 0

0 C4

⎤
⎦ , T2D =

⎡
⎣ 0

D2

⎤
⎦ ,

where T1 ∈R
m×m,T2 ∈R

n×n,z1 ∈R
p,w1 ∈R

p,A1 ∈R
p×p,A4 ∈R

(m−p)×(m−p),G1 ∈R
p×m,B1 ∈

R
p×l,F1 ∈ R

p×p,C1 ∈ R
p×p,C4 ∈ R

(n−p)×(m−p),D2 ∈ R
(n−p)×q. F1 and C1 are invertible.

Proof. See [109].
Hence, Σ1 can be transformed into two subsystems,

Σ11 :

⎧⎨
⎩

ż1(t) =A1z1(t)+A2z2(t)+G1g(T−1
1 z(t))+B1u(t)+F1 fa(t)

w1(t) =C1z1(t)
, (3.32)

Σ12 :

⎧⎨
⎩

ż2(t) =A4z2(t)+A3z1(t)+G2g(T−1
1 z(t))+B2u(t)

w2(t) =C4z2(t)+D2 fs(t)
. (3.33)

Remark 3.3.2 The pair (A4,C4) is detectable when Assumption 3.2.2 holds [109].
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A new state z3(t) ∈ R
n−p is introduced as a filtered version of w2(t),

ż3(t) =−A f z3(t)+A fC4z2(t)+A f D2 fs(t), (3.34)

where A f ∈ R
(n−p)×(n−p) is a stable matrix. Define z̃2 = [z�2 z�3 ]

� ∈ R
m+n−2p. Then Σ11

becomes:

Σ13 :

⎧⎨
⎩

ż1(t) =A1z1(t)+ Ã2z̃2(t)+G1g(T−1
1 z(t))+B1u(t)+F1 fa(t)

w1(t) =C1z1(t)
, (3.35)

where Ã2 =
[

A2 0
]
∈ R

p×(m+n−2p). Via augmentation, Σ12 then becomes:

Σ14 :

⎧⎨
⎩

˙̃z2(t) =Ã4z̃2(t)+ Ã3z1(t)+ G̃2g(T−1
1 z(t))+ B̃2u(t)+ D̃2 fs(t)

w3(t) =C̃3z̃2(t)
, (3.36)

where Ã4 ∈R
(m+n−2p)×(m+n−2p), Ã3 ∈R

(m+n−2p)×p, B̃2 ∈R
(m+n−2p)×l , G̃2 ∈R

(m+n−2p)×m,
D̃2 ∈ R

(m+n−2p)×q and C̃3 ∈ R
(n−p)×(m+n−2p). The matrices can be obtained as:

Ã4 =

⎡
⎣ A4 0

A fC4 −A f

⎤
⎦ , Ã3 =

⎡
⎣ A3

0

⎤
⎦ , G̃2 =

⎡
⎣ G2

0

⎤
⎦ ,

B̃2 =

⎡
⎣ B2

0

⎤
⎦ , D̃2 =

⎡
⎣ 0

A f D2

⎤
⎦ ,C̃3 =

[
0 In−p

]
.

From the above augmented system Σ14, the sensor faults are transformed into a new form
similar to actuator faults. It is easy to prove that (Ã4,C̃3) is observable if (A4,C4) is de-
tectable [110].

For systems (3.35) and (3.36), the following two adaptive observers are built:

Σ41 :

⎧⎪⎨
⎪⎩

˙̂z1(t) =A1ẑ1(t)+ Ã2 ˆ̃z2(t)+G1g(T−1
1 ẑ(t)) +B1u(t)+F1 f̂a(t)+L1(ŵ1 −w1)

ŵ1(t) =C1ẑ1(t)
,(3.37)

Σ42 :

⎧⎪⎨
⎪⎩

˙̃̂z2(t) =Ã4 ˆ̃z2(t)+ Ã3C−1
1 w1(t)+ G̃2g(T−1

1 ẑ(t))+ B̃2u(t)+ D̃2 f̂s(t)+L2(ŵ3 −w3)

ŵ3(t) =C̃3 ˆ̃z2(t)
,(3.38)

where ẑ1, ˆ̃z2, ẑ, f̂a, ŵ1, ˆ̃z2, f̂s, and ŵ3 are the estimates of z1, z̃2, z, fa, w1, z̃2, fs, and
w3, respectively. L1 ∈ R

p×p and L2 ∈ R
(m+n−2p)×(n−p) are the two observer gains to be

designed.
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Let e1(t)= ẑ1−z1, e2(t)= ˆ̃z2− z̃2, e f a(t)= f̂a(t)− fa(t), ė f a(t)=
˙̂fa(t)− ḟa(t), e f s(t)=

f̂s(t)− fs(t), ė f s(t) =
˙̂fs(t)− ḟs(t), ew1 = ŵ1 − w1 = C1e1, ew3 = ŵ3 − w3 = C̃3e2 and

ge(t) = g(T−1
1 ẑ(t))−g(T−1

1 z(t)). Then, we have the error dynamics as:⎧⎨
⎩

ė1(t) =(A1 +L1C1)e1(t)+ Ã2e2(t)+G1ge(t)+F1e f a(t)

ė2(t) =(Ã4 +L2C̃3)e2(t)+ G̃2ge(t)+ D̃2e f s(t)
. (3.39)

The following Lemma is needed for the subsequent results.

Lemma 3.3.2 For a given positive scalar μ0 and a symmetric positive definite matrix R0 ∈
R

r0×r0 , the following conditions holds[31]:

2a�b ≤ 1
μ0

a�R0a+μ0b�R−1
0 b, (3.40)

where a,b ∈ R
r0 and r0 is a random real integer.

Based on the above lemma, the following adaptive estimation algorithm is obtained.

Theorem 3.3.3 For the error dynamics system (3.39), given small positive scalars μ1 >

0 and μ2 > 0, if there exist symmetric positive definite matrices P2 ∈ R
p×p, P4 ∈ R

p×p,

P3 ∈ R
(m+n−2p)×(m+n−2p), P5 ∈ R

q×q, R1 ∈ R
p×p, R2 ∈ R

q×q and any matrix E1 ∈ R
p×p,

E2 ∈R
(n−p)×q, M1 ∈R

p×p, M2 ∈R
(m+n−2p)×(n−q) such that a solution σ > 0 exists for the

following optimization problem:

min
E1,E2,P2,P3,P4,P5,R1,R2,M1,M2

σ (3.41)

subject to the following matrix inequalities

Ω5 =

⎡
⎣ σ I P2F1 −C�

1 E1

P2F1 −C�
1 E1 σ I

⎤
⎦> 0, (3.42)

Ω6 =

⎡
⎣ σ I P3D̃2 −C̃�

3 E2

P3D̃2 −C̃�
3 E2 σ I

⎤
⎦> 0, (3.43)

and

Ω7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ11
7 P2Ã2 P2G1 Δ14

7 0

∗ Δ22
7 P3G̃2 − 1

v1
Ã�

2 P2F1 Δ25
7

∗ ∗ −I − 1
v1

G�
1 P2F1 − 1

v2
G̃�

2 P3D̃2

∗ ∗ ∗ Δ44
7 0

∗ ∗ ∗ 0 Δ55
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.44)
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where Δ11
7 = P2A1 + A�

1 P2 + M1C1 +C�
1 M�

1 + α1l2
f ‖ T−1

1 ‖2 I, Δ22
7 = P3Ã4 + Ã�

4 P3 + M2C̃3 +

C̃�
3 M�

2 +α2l2
f ‖ T−1

1 ‖2 I, Δ14
7 =− 1

v1
A�

1 P2F1− 1
v1

C�
1 M�

1 F1, Δ25
7 =− 1

v2
Ã�

4 P3D̃2− 1
v2

C̃�
3 M�

2 D̃2, Δ44
7 =

−2 1
v1

F�
1 P2F1 +

1
μ1v1

R1, Δ55
7 =−2 1

v2
D̃�

2 P3D̃2 +
1

μ2v2
R2, and M1 = P2L1,M2 = P3L2.

Then the following adaptive estimation algorithm:⎧⎨
⎩

˙̂fa(t) =−P−1
4 E�

1 [ėw1(t)+ v1ew1(t)]

˙̂fs(t) =−P−1
5 E�

2 [ėw3(t)+ v2ew3(t)]
(3.45)

can render e1(t), e2(t), e f a(t) and e f s(t) uniformly ultimately bounded so that the error

system is stabilized. L1 and L2 can be obtained from L1 = P−1
2 M1 and L2 = P−1

3 M2, re-

spectively.

Proof. The following Lyapunov candidate is chosen here:

V3(t) =e�1 (t)P2e1(t)+ e�2 (t)P3e2(t)+
1
v1

e�f a(t)P4e f a(t)+
1
v2

e�f s(t)P5e f s(t). (3.46)

According to the Lipschitz assumption, ‖ g(x1(t))− g(x2(t)) ‖≤ l f ‖ (x1(t)− x2(t)) ‖.
Therefore,

‖ l f ex(t) ‖2 − ‖ ge(t) ‖2≥ 0, (3.47)

where ex(t) = x̂− x = T−1
1 (ẑ− z). There exist α1 > 0 and α2 > 0, so that

α1l2
f ‖ T−1

1 ‖2‖ e1 ‖2 +α2l2
f ‖ T−1

1 ‖2‖ e2 ‖2 − ‖ ge(t) ‖2≥ 0. (3.48)

The time derivative of (3.46) can be written as

V̇3(t)≤ 2e�1 (t)P2[(A1 +L1C1)e1(t)+ Ã2e2(t)+G1ge(t)+F1e f a(t)]

+2e�2 P3[(Ã4 +L2C̃3)e2(t)+ G̃2ge(t)+ D̃2e f s(t)]

+
2
v1

e�f a(t)P4[
˙̂fa(t)− ḟa(t)]+

2
v2

e�f s(t)P5[
˙̂fs(t)− ḟs(t)]

+α1l2
f ‖ T−1

1 ‖2‖ e1 ‖2 +α2l2
f ‖ T−1

1 ‖2‖ e2 ‖2 − ‖ ge(t) ‖2 .

(3.49)

Let

˙̂fa(t) =−P−1
4 E�

1 [ėw1(t)+ v1ew1(t)]

=−P−1
4 E�

1 C1
[
(A1 +L1C1)e1(t)+ Ã2e2(t)+G1ge(t)+F1e f a(t)

]− v1P−1
4 E�

1 C1e1(t),

˙̂fs(t) =−P−1
5 E�

2 [ėw3(t)+ v2ew3(t)]

=−P−1
5 E�

2 C̃3
[
(Ã4 +L2C̃3)e2(t)+ G̃2ge(t)+ D̃2e f s(t)

]− v2P−1
5 E�

2 C̃3e2(t),
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and

P2F1 =C�
1 E1, (3.50)

P3D̃2 = C̃�
3 E2. (3.51)

Eq. (3.50) and Eq. (3.51) represent equality constraints that are difficulty to satisfy together

with the condition (3.44). Alternatively, they can be approximated in the LMI form of

minimizing σ subject to the following inequalities[31]:⎡
⎣ σ I P2F1 −C�

1 E1

P2F1 −C�
1 E1 σ I

⎤
⎦> 0, (3.52)

⎡
⎣ σ I P3D̃2 −C̃�

3 E2

P3D̃2 −C̃�
3 E2 σ I

⎤
⎦> 0. (3.53)

Then Eq. (3.49) becomes:

V̇3(t) =2e�1 (t)P2[(A1 +L1C1)e1(t)+ Ã2e2(t)+G1ge(t)]+2e�2 P3[(Ã4 +L2C̃3)e2(t)+ G̃2ge(t)]

−2
1
v1

e�f a(t)E
�
1 C1

[
(A1 +L1C1)e1(t)+ Ã2e2(t)+G1ge(t)+F1e f a(t)

]
−2

1
v1

e�f a(t)P4 ḟa(t)−2
1
v2

e�f s(t)E
�
2 C̃3

[
(Ã4 +L2C̃3)e2(t)+ G̃2ge(t)+ D̃2e f s(t)

]
−2

1
v2

e�f s(t)P5 ḟs(t)− ‖ ge(t) ‖2 +α1l2
f ‖ T−1 ‖2‖ e1 ‖2 +α2l2

f ‖ T−1 ‖2‖ e2 ‖2 .

(3.54)

From Lemma 3.3.2, the following can be derived:

−2e�f a(t)P4 ḟa(t)≤ 1
μ1

[−e f a(t)]�R1[−e f a(t)]+μ1[P4 ḟa(t)]�R−1
1 [P4 ḟa(t)]

≤ 1
μ1

e�f a(t)R1e f a(t)+μ1 f 2
m1λmax(P�

4 R−1
1 P4),

(3.55)

and

−2e�f s(t)P5 ḟs(t)≤ 1
μ2

[−e f s(t)]�R2[−e f s(t)]+μ2[P5 ḟs(t)]�R−1
2 [P5 ḟs(t)]

≤ 1
μ2

e�f s(t)R2e f s(t)+μ2 f 2
m2λmax(P�

5 R−1
2 P5),

(3.56)

where fm1 and fm2 are the maximum values of ḟa(t) and ḟs(t), respectively. λmax(P�
4 R−1

1 P4)

and λmax(P�
5 R−1

2 P5) are the maximum eigenvalues of [(P�
4 R−1

1 P4)] and [(P�
5 R−1

2 P5)], re-
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spectively. Then, Eq. (3.54) becomes:

V̇3(t)≤2e�1 (t)P2[(A1 +L1C1)e1(t)+ Ã2e2(t)+G1ge(t)]+2e�2 P3[(Ã4 +L2C̃3)e2(t)+ G̃2ge(t)]

−2
1
v1

e�f a(t)E
�
1 C1

[
(A1 +L1C1)e1(t)+ Ã2e2(t)+G1ge(t)+F1e f a(t)

]
+

1
μ1v1

e�f a(t)R1e f a(t)−2
1
v2

e�f s(t)E
�
2 C̃3

[
(Ã4 +L2C̃3)e2(t)+ G̃2ge(t)+ D̃2e f s(t)

]
+

1
μ2v2

e�f s(t)R2e f s(t)− ‖ ge(t) ‖2 +α1l2
f ‖ T−1 ‖2‖ e1 ‖2 +α2l2

f ‖ T−1 ‖2‖ e2 ‖2

+
μ1

v1
f 2
m1λmax(P�

4 R−1
1 P4)+

μ2

v2
f 2
m2λmax(P�

5 R−1
2 P5)

=ẽ�(t)Ω7ẽ(t)+
μ1

v1
f 2
m1λmax(P�

4 R−1
1 P4)+

μ2

v2
f 2
m2λmax(P�

5 R−1
2 P5),

(3.57)

where ẽ(t) =
[

e�1 (t) e�2 (t) g�e (t) e�f a(t) e�f s(t)
]�

.

When (3.44) is satisfied,we can have:

V̇3(t)<−λmin(−Ω7)||ẽ(t)||2 + μ1

v1
f 2
m1λmax(P�

4 R−1
1 P4)+

μ2

v2
f 2
m2λmax(P�

5 R−1
2 P5), (3.58)

where λmin(−Ω7) denotes the minimum eigenvalue of [−Ω7]. Therefore, for

λmin(−Ω7)||ẽ(t)||2 > μ1

v1
f 2
m1λmax(P�

4 R−1
1 P4)+

μ2

v2
f 2
m2λmax(P�

5 R−1
2 P5),

V̇3(t)< 0. It means the estimation will always converge until ||ẽ(t)||2 arrives at

[
μ1

v1
f 2
m1λmax(P�

4 R−1
1 P4)+

μ2

v2
f 2
m2λmax(P�

5 R−1
2 P5)]/λmin(−Ω7),

which means the estimation errors of both the actuator faults and sensor faults will be
uniformly bounded. This is the end of the proof.

3.3.3 Fault-Tolerant Shape Control

In this part, considering the simultaneous occurrences of time-varying actuator and
sensor faults, a novel yet straightforward shape control compensation algorithm based on
virtual actuator and virtual sensor is designed, which is to be added to the normal control
law in order to reduce/eliminate the impact of the faults on the system,

ū(t) = ūN(t)+ v̄(t) (3.59)

where ūN(t) = [0, u�N (t)]� ∈ R
(l+q)×1 is the augmented normal controller.

v̄(t) = [v�s (t), v�a (t)]� ∈ R
(l+q)×1 is the augmented virtual actuator and virtual sensor,

where va(t) ∈ R
l×1 is the virtual actuator and vs(t) ∈ R

q×1 is the virtual sensor. The signal
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ū(t) in Eq. (3.8) is then determined and computed according to Eq. (3.59) while the virtual
actuator and the virtual sensor can be obtained as:⎧⎨

⎩
va(t) =−S f f̂a(t)

vs(t) =− f̂s(t)
(3.60)

where S f satisfies BS f = F , such that the additional term in Eq. (3.60) can compensate for
the fault effects.

Substitute Eq. (3.60) into Eq. (3.6) and the dynamic system with actuator and sensor
compensation can be expressed as follows:⎧⎨

⎩
ẋ(t) = Ax(t)+g(x(t))+BuN(t)+F [ fa(t)− f̂a(t)]

ωc(t) =Cx(t)+D[ fs(t)− f̂s(t)]
(3.61)

Based on Eq.(3.45), the fast convergence of the fault estimation can be reached while the
system stability can be guaranteed by uN(t) in Eq.(3.10).

Remark 3.3.3 The main objective of this chapter is to achieve fault-tolerant shape control

so that the PSD function of a particulate process can track a given target shape in the

presence of simultaneous actuator and sensor faults. The augment adaptive control law

may reduce (or even eliminate) the impact of faults. It is worth pointing out that this

adaptive control law can also achieve tracking in the fault-free situation. In that case,

f̂a(t) = 0, f̂s(t) = 0 and ū(t) = ūN(t).

3.4 Overall Adaptive Fault-Tolerant Control Scheme

In Fig. 3.1, the block diagram of the proposed fault-tolerant shape control scheme for
PSD system under simultaneous actuator and sensor faults is given.

The detailed implementation of the scheme is sketched here:

1. According to the target PSD shape, Chose the appropriate n B-spline basis functions
Γi(i = 1,2, · · · ,n);

2. Calculate the target pseudo weights vector ωg according to Eq. (3.7);

3. Measure the system output PDF, calculate the pseudo weights vector ω(t) according
to Eq. (3.1);

4. Design an optimal shape controller for the fault-free system based on Theorem 3.3.2;
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Figure 3.1: Overall adaptive fault-tolerant control scheme

5. Simultaneously estimate the actuator and sensor faults according to Theorem 3.3.3;

6. Design the FTSC law based on the optimal fault-free controller by adding a virtual
actuator and a virtual sensor according to Eq. (3.61).

3.5 Simulation of PSD Shape Control in Emulsion Poly-

merization

The process of emulsion polymerization in polymer industry is used as a simulation ex-
ample in this work. The main target is to regulate the full PSD shape, which is an important
process as many properties of the polymer product are decided by the full PSD [111]. The
control of emulsion polymerization systems is a well-studied topic. However, the existing
results are mainly based on the high order discretized PBE equation. In [111], based on the
discretized population balance model of the semibatch VAc/BuA emulsion copolymeriza-
tion system, a model order reduction technique using principal component analysis (PCA)
was proposed for model predictive control (MPC). Satisfactory control performance was
achieved. However, to derive the controllable model for MPC, a numerical discretization
process, and a model reduction step should be applied, which cause complexities in compu-
tation. In this work, an alternative method is proposed to use the distribution shape control
scheme.
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A semibatch VAc/BuA emulsion copolymerization system proposed in [111] is adopted
in Figure 3.2 for illustration. The target particle size distribution is shown in Fig. 3.3.

Figure 3.2: Schematic diagram of the experimental system
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Figure 3.3: Particle distribution curve

The inputs of the emulsion polymerization system are the feed rates of vinyl acetate
(VAc), butyl acrylate (BuA), tert-butyl hydroperoxide (tBHP) and surfactant, respectively.
For simple demonstration, actuation saturation is not considered in this chapter. A state
vector of four elements is selected to construct the state space model, which represents the
values of the particle distribution at four discretization point. Then, the emulsion poly-
merization system can be represented according to Eq. (3.6), where the measured output
PSD shape function of the considered stochastic system can be expressed as a function
of all the pre-specified B-spline basis functions. Unlike the system model established in
[111], which is derived based on the reduced order PBE equation, the system equation of
Eq. (3.6) in this work is assumed to be identified using the process data. The dynamics
between the weights and the control input can be well represented by choosing the proper
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basis B-spline functions. The dynamics can be expressed as Eq.(3.7). It is assumed that the
target distribution function ρg(η) belongs to the following functional space:

ρg(η) ∈ Ω0 = {ρ|
√

ρu(η , t) =
Γ(η)ω(t)√
ω�(t)Γ f ω(t)

}, (3.62)

where ω(t) denotes the weight vector and ω ∈ R
4×1,ω ≥ 0.

Remark 3.5.1 The system matrices can be identified based on the input and the output

pseudo weights corresponding to the selected B-spline functions. It is reasonable as there

is abundant process data to identify the system matrices.

On-line measurement of the distribution of particle size, in this case, is essential and
can be achieved by using proper instrumentation. For example, the PSD measurements
can be obtained by a capillary hydrodynamic fractionator. In addition, the combination of
near-infrared spectroscopy (NIRS) method and fiber optic technology are widely adopted
for reduction of time delays normally involved with sample preparation [65].

The PSD is formulated as in Eq. (3.1) with the B-spline functions Γi(η),(i = 1,2,3)
corresponding to Fig. 3.3 chosen to be:

Γ1(η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.5(
η

100
)2, 0 ≤ η < 100

− (
η

100
)2 +3

η
100

−1.5, 100 ≤ η < 200

0.5(3− η
100

)2 200 ≤ η < 300

Γ2(η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.5(
η

100
−1)2, 100 ≤ η < 200

− (
η

100
)2 +5

η
100

−5.5, 200 ≤ η < 300

0.5(4− η
100

)2, 300 ≤ η < 400

Γ3(η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.5(
η

100
−2)2, 200 ≤ η < 300

− (
η

100
)2 +7

η
100

−11.5, 300 ≤ t < 400

0.5(5− η
100

)2, 400 ≤ η < 500

Γ4(η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.5(
η

100
−3)2, 300 ≤ η < 400

− (
η

100
)2 +9

η
100

−19.5), 400 ≤ η < 500

0.5(6− η
100

)2, 500 ≤ η < 600
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After a B-spline approximating procedure, the dynamical relations between ω and u are
described by Eq. (3.6) with all the system matrices are identified and here directly given
as:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−5.8 −5 −6 −8.9

−48.6 −1.25 48.6 −9.3

−9.3 −6.5 −8 10

1.95 −7 −1.95 −2

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 14 0 0

21.6 0 0 0

0 0 0 12

0 0 23 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 14

21.6 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and g(x) = 1
1+e−x − 0.5 is used to represent the unmodeled dynamics. The desired PSD

ρ∗(y, t) is chosen based on Eq. (3.7), with ωg = [4.5, 0.1, 4, 5]�. In the simulation, sensor
noise is added to Eq. (3.6). The noise is assumed to be zero mean i.i.d with standard
deviation of 0.1. The initial condition in the dynamic weight system is given by Eq. (3.6)
with the above matrices and x(0) = [6, 4, 6, 2]�. The sampling time is 0.1 min.

The simulation is performed for both fault-free and faulty cases to demonstrate the
applicability of the proposed method for both conditions. For the first 500 minutes, there
were no faults added to the system. Time-varying actuator faults fa and sensor faults fs

was simultaneously added to the system at the time of 500 minutes. Here, the oscillatory
type of fault signals is used.

fa(t) =

⎡
⎣ 1.5+0.1sin(0.0003t)

0.8+0.1sin(0.0005t)

⎤
⎦ ; fs(t) =

⎡
⎣ 0.2+0.1sin(0.0003t)

1.5+0.1sin(0.0005t)

⎤
⎦

Choosing v1 = v2 = 1, μ1 = μ2 = 1, according to Theorem 3.3.3, both the actuator
faults and sensor faults can be estimated at the same time. The actuator faults and their
estimates are shown in Fig.3.4(a), while the sensor faults and their estimates are illustrated
in Fig.3.4(b). From the simulation results, it can be seen that the proposed algorithm can be
applied in both fault-free and faulty conditions without fault detection module. Moreover,
both the actuator and sensor faults can be accurately estimated.

Fig.3.5(a) shows the tracking performance of the pseudo weights. From the figure, we
can clearly see that ω converge to ωg = [4.5, 0.1, 4, 5]� rapidly in only a few iterations in
the fault-free condition. After faults occur at the time of 500 minutes, there are noticeable
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Figure 3.4: Faults and their estimation
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Figure 3.5: Weights and control inputs

spikes caused by the faults for the tracking weights. However, all the weights converge to
the target quickly. This can be further illustrated in Fig. 3.5(b), which shows responses
of the control inputs. The actuator faults are quickly compensated by the inputs once
the faults happened. Finally, Fig.3.6(a) demonstrates the final PSD shape tracking result
with excellent performance. In Fig.3.6(b), the 3-D plot of the PSD distribution tracking
is presented, which illustrates the shape tracking evolution along the time. In Fig. 3.5(a),
3.5(b) and 3.6(b), only the results of first 1000 minutes are shown.

3.6 Conclusions

In this chapter, the fault-tolerant shape control problem for PSD process under simul-
taneous actuator and sensor faults is investigated. Simultaneous time-varying actuator and
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Figure 3.6: Shape tracking performance

sensor faults can be estimated based on an adaptive observer. A fault-tolerant shape con-
trol scheme is proposed using virtual actuator and virtual sensor techniques based on the
estimated faults. An optimal performance can be reached in both fault-free and faulty con-
ditions. The simulation results for an emulsion polymerization process example show the
proposed method can be applied in both fault-free and faulty cases without a separate fault
detection module. Moreover, it can estimate the time-varying actuator and sensor faults
simultaneously and achieve a satisfactory tracking performance.
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Part II

Adaptive FDD for Rotating Machinery
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Fault detection and diagnosis is very crucial when it comes to rotating machines be-
cause component failures, especially those of rolling element bearings and gears, can lead
to costly downtime or even catastrophic consequences. While analytical model-based FDD
techniques significantly rely on accurate system description, the recent development of
miniature sensors, wireless communication, and high-efficiency computing techniques has
provided researchers with an alternative data-driven approach [84]. Using time-series vi-
bration signal and incorporating certain physical features of the specific practical system
can significantly improve FDD performance and decrease computation complexity.

In this part, two data-driven model-based FDD techniques are proposed based on si-
nusoidal synthesis (SS) model representation constructed by incorporating sinusoidal con-
straints.

In Chapter 4, an innovative sinusoidal synthesis based adaptive tracking (SSBAT) scheme
is proposed for rotating machinery fault diagnosis based on vibration data. Adaptive param-
eter estimation technique is adopted for establishing the time-varying data-driven model.

In Chapter 5, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS)
FDD scheme is proposed, where the phase information of the rotating machinery is further
used, following the minimum entropy deconvolution (MED) technique, to improve the
SSBAT FDD performance in Chapter 4. A time-weighted-error Kalman filter is used to
estimate the MEDSS model parameters adaptively.

59



Chapter 4

Adaptive Sinusoidal Synthesis Model for

Rotating Machinery FDD∗

4.1 Introduction

Frequency domain or spectral analysis of vibration signals is commonly used for ro-
tating machinery fault detection. Cyclostationary analysis [112] can take advantage of the
stochastic process nature of the vibration signal. Cepstrum analysis [113] is another com-
mon technique in this field. In this method, the cepstrum magnitude is used to detect the
sidebands associated with time-varying components or to quantify harmonics. Spectral
Kurtosis (SK) was proposed for fault detection based on rotating machine vibration data in
[114]. SK is a method in which a bandpass filter is selected to maximize the Kurtosis of
the resulting filtered signal. The SK method is shown to be effective in rotating machine
monitoring and has been receiving wide research attention in the last few years.

In contrast to frequency analysis, time-domain analysis is fast and easy to implement.
There have already been a great amount of schemes developed for time-domain analysis.
Most methods are applied to the raw signals directly such as Root Mean Square (RMS),
Crest Factor (CF), Energy Ration (ER), Kurtosis and Energy Operator (EO) [115]. Among
the many commonly used time-domain methods, the Time Synchronous Average Signal
(TSA) based method is deemed to be powerful. TSA can be used to remove any signal com-
ponents that are not synchronous with the rotating bearings or gears. Therefore, random
background noises and disturbances can be easily removed. To filter out asynchronous vi-

∗Parts of the results in this chapter appeared in Mechanical Systems and Signal Processing, vol. 83, pp.

356-370, 2017.
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bration and noise, speed or tachometer information is combined with angular re-sampling.
TSA method has found successful applications in bearing and gear fault detection [78]. A
major drawback of TSA is the significant loss of information contained in the distribution
or autocorrelation function, which may contain important information related to possible
faults [116].

Adaptive model-based OT methods were recently proposed based on a recursive least-
squares [117] and adaptive VKF approach [118]. Online real-time process monitoring
has been performed using the adaptive VKF OT techniques [119]. When applying order
tracking to rotating machinery fault diagnosis, order amplitudes, as a function of harmonic
order and shaft speed, are calculated and analyzed for fault diagnosis purpose. Therefore,
this method can be referred to as order domain fault diagnosis. Human experience or
intelligent expert system may be needed in OT based fault diagnosis[120][121].

It is known that the vibration feature of a rotating machine usually consists of three ma-
jor components: a sinusoidal component, an impact caused broadband frequency compo-
nent and random noise [122]. Therefore, detection of impact-faults such as rotor rubbing,
rolling element bearing inner or outer race faults, and gear tooth faults can be improved
through prediction based on a sinusoidal restriction [123]. These impact faults are among
the most damaging machine faults and it is crucial to detect them before they cause more
catastrophic failures. Impact faults are known to periodically excite the rotating machine
dynamics with time-localized disturbances. Analysis based on sinusoidal synthesis is well
established as a method for synthesizing accurate replicas of musical tones [124]. Sinu-
soidal expansion and parameter identification methods were also developed and applied to
bearing and gear fault detection and prognosis [125]. Recently, adaptive filtering and es-
timation theory have been utilized for estimation of sinusoidal frequencies and amplitudes
[126][127][128]. A discrete-time version of the frequency estimator model was given in
[129] and it was adopted for gear crack fault detection.

As indicated in [115], for a vibration signal, its trend represented by the sinusoidal
components is more obvious in frequency domain while the impulse feature of an impact
fault is more prominent in the time domain. On the other hand, it is known that an impact
fault has a broadband spectrum in the frequency domain, and can sometimes be treated
and filtered out as noises. Hence, a time domain featured fault detection scheme that also
carries sinusoidal properties of vibration signals is highly suitable since it can take use of
both time-domain and frequency domain information. In this chapter, a sinusoidal syn-
thesis based adaptive tracking (SSBAT) scheme is designed and further a fault detection
scheme based on SSBAT is proposed. The SSBAT method is constructed based on the
harmonic or semi-harmonic structure of the vibration signals, and it leads to a time domain
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linear predictor (or filter) in which the sinusoidal properties are explicitly incorporated.
Unlike AR based methods, the scheme considered in this work is based on a time-series
model constructed by incorporating the sinusoidal constraints. It can predict future vibra-
tion samples based on a sum of sinusoidal components while the number of sinusoids and
the rotating speed can be unknown. The advantage of low computation complexity and
recursive form from linear predictors are retained in this method. The parameters of the
predictor (filter) are updated continuously via adaptive estimation. This makes it possible
to synthesize the vibration signal with a low order but time-varying SSBAT model. More-
over, no prior knowledge such as data-fitting under no-fault conditions is needed in this
approach. Different from the frequency estimation (identification) problem, which in its
own right an interesting research topic with many results produced recently [127][130], the
SSBAT method proposed in this chapter is not focused on identifying amplitudes, frequen-
cies, and phases of the sinusoidal components but rather focused on vibration trending and
fault detection problems. Compared to the model based order tracking (OT) methods, the
proposed scheme utilizes similar time-domain techniques based on state space modeling.
However, the method in this work renders a synthesized time-domain signal, instead of
extracting individual order components in OT methods, for impact fault detection. More-
over, the explicit knowledge of the rotating speed is not required for the proposed SSBAT
method. Instead, the speed dependent model parameters are estimated during the process.

The remainder of this chapter is organized as follows: The SSBAT model is presented
in Section 4.2, together with proofs of tracking stability and parameter convergence. In
Section 4.3, the SSBAT model based fault detection approach is proposed. Simulation ex-
amples to illustrate tracking performance, parameter convergence, fault detection, and a
practical application in turbine rubbing fault detection are given in Section 4.4 and 4.5, re-
spectively. Meanwhile, to verify the effectiveness of the SSBAT method, all the simulation
results are compared with the commonly adopted AR and ARMED analysis methods.

4.2 The Sinusoidal Synthesis Based Adaptive Tracking (SS-

BAT) Scheme and Its Application to Fault Diagnosis

The sinusoidal synthesis approach has been widely adopted in the sound production
model [131] and can be applied in vibration signal synthesis [94]. The rotating machinery
vibration signal consists of three significant components: ‘a sinusoidal component due to
time varying loading, a broadband impulsive component due to characteristic impulsive
fault signatures, and random noise’ [122]. Therefore, the measured vibration signal with
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periodic characteristic impulsive fault signatures can be represented as follows:

ym[k] = yo[k]+d[k]+ v[k], (4.1)

where ym[k] is the measured discrete signal at time kT ; yo[k] is the nominal fault-free vi-
bration signal; d[k] denotes the periodic impact fault signal, and v[k] is a Gaussian white
noise with mean 0 and variance σ2. yo[k] can be represented as the combination of a finite
number of harmonic components as follows:

yo[k] =
m

∑
i=1

Aicos(kT ωi +φi), (4.2)

where T is the sampling time; m is the number of sinusoidal components; Ai ∈ R+ is the
amplitude of the ith component; ωi is the corresponding frequency, and φi ∈ [−π,+π]
denotes the initial phase. d[k] can be expressed as a series of impulses convolved with a
transmission path from the fault element to the vibration sensor [132]:

d[k] = h[k]∗ (
∞

∑
j=0

δ [k− jTd]), (4.3)

where h refers to the vibration transmission path and Td is the fault period.

4.2.1 Sinusoidal Synthesis Model

The sinusoidal synthesis (SS) model proposed in this section is used to synthesize the
nominal signal, i.e. d[k] is assumed to be zero during the derivation of SS filter. The SS
module can be expressed in the state space form as Σ f :

Σ f :

⎧⎨
⎩

x[k+1] = Ax[k]+Bym[k]

y[k] =Cx[k]
, (4.4)

where only ym[k] is the known (measured) vibration signal, which is represented in Eq.
(4.1). y[k] is the SS filtered vibration signal, which is used to synthesize the nominal signal
yo[k].

The scheme consists of a sinusoidal synthesis tracking model and a parameter estimator,
hence it is indeed an adaptive tracking model. For designing the model Σ f , firstly, the
system matrices of A, B and C are to be chosen according to the sinusoidal characteristics
of the vibration signal. It is known that the z-transform of each sinusoidal component is:

yi[k] =Aicos(kT ωi+φi)⇒Yi(z)=
Ai[z2 − zcos(T ωi −φi)]

z2 −2zcos(T ωi)+1
:=

Ni(z)
z2 −2zcos(T ωi)+1

, (4.5)
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where Ni(z) represents the numerator polynomial. Therefore, the nominal signal can be
expressed in the z-domain as Eq. (4.6).

Yo(z) =
m

∑
i=1

Yi(z) =
N(z)
D(z)

, (4.6)

and further
Yo(z)D(z) = N(z), (4.7)

where N(z) and D(z) are the numerator and the denominator polynomial of the z-transform
of the nominal vibration signal and D(z) is :

D(z) =
m

∏
i=1

[z2 −2zcos(T ωi)+1]

= z2m +βm−1z2m−1 +βm−2z2m−2 + · · ·+β0zm

+ β1zm−1 + · · ·+βm−2z2 +βm−1z+1, (4.8)

where βis refer to the polynomial coefficients for the denominator. In order to track a sinu-
soidal signal, the denominator D(z) is of interest and contains the main frequency character-
istics. This is similar to the idea of Internal Model Principle [133] in control systems, where
the poles of the reference signal ym[k] should be incorporated in the model. In this case,
D(z) is also called a reference generating polynomial. Because the generating polynomial
D(z) contains all structural properties of the signal, and such properties are independent of
the amplitude and the phase of the reference signal [126], for simplicity, we can assume the
signal amplitude as zero in this modeling stage, thus N(z) = 0. Eq. (4.7) is then rewritten
as follows,

z2mY (z) = −(βm−1z2m−1 +βm−2z2m−2 + · · ·+β0zm

+ β1zm−1 + · · ·+βm−2z2 +βm−1z+1)Yo(z), (4.9)

where Y (z) is the filtered vibration signal, and Yo(z) is the nominal fault-free vibration
signal. However the above expression is non-causal and z2mY (z) cannot be obtained in real
time. For causality, one can filter each side of Eq. (4.9) with a 2mth order stable filter 1

Λ ,
where Λ is chosen as an arbitrary 2mth order stable polynomial [134] with all roots inside
the unit circle:

Λ(z) = z2m +λ2m−1z2m−1 + · · ·+λ1z+λ0. (4.10)

Eq. (4.9) then becomes:

Y (z) = [
(λ2m−1 −βm−1)z2m−1 +(λ2m−2 −βm−2)z2m−2 + · · ·+(λm −β0)zm

Λ(z)

+
(λm−1 −β1)zm−1 + · · ·+(λ0 −1)

Λ(z)
]Yo(z), (4.11)
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where βi, i = 0,1, · · · ,m − 1 are unknown parameters to be estimated. As the nominal
vibration signal yo[k] is unknown, the measured signal ym[k] can be used to pass through
the filter. According to the above z−transform, we can easily obtain the matrices of the
state space tracking model Σ f in Eq. (4.4) as:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ2m−1 · · · −λ1 −λ0

1 · · · 0 0

0 · · · 0 0
... . . . ...

...

0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2m×2m

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

2m×1

, λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ2m−1

λ2m−2

· · ·
λ1

λ0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2m×1

,

C = [λ2m−1 −βm−1,λ2m−2 −βm−2, · · · ,λm −β0, · · · ,λ1 −βm−1,λ0 −1]1×2m = λ T −β TV

(4.12)

β =

⎡
⎢⎢⎢⎢⎢⎢⎣

βm−1

βm−2

· · ·
β0

⎤
⎥⎥⎥⎥⎥⎥⎦

m×1

, V =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 · · · 0 1 0

0 1 · · · 0 · · · 1 0 0
...

... . . . ... ... ...
...

...

0 · · · 0 1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

m×2m

,

where the structures and coefficients of A and B are all known if m, the number of sinusoidal
components in the signal, is known. However, in many cases, m is unknown. In this case,
a model order of 2n is chosen to synthesize the vibration signal. The output matrix of C is
dependent on β , which are unknown. The signal tracking problem is then transformed to
the parameter estimation problem for C which is determined by β .

4.2.2 Adaptive Parameter Estimation With Recursive Least-Squares

(LS) Algorithm

In the proposed SSBAT model, the order 2n is not necessarily equal to 2m where m is the
actual number of sinusoidal components. Usually, n �= m, which means that the proposed
SSBAT model is used to synthesize the nominal signal with different number of sinusoidal
components. To realize this, the amplitudes, frequencies and phases of sinusoidal compo-
nents in the synthesis model will be adjusted to fit the original signal adaptively. For the
SSBAT model Σ f defined in Eq. (4.4) and (4.12), an adaptive parameter estimation method
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with modified recursive Least-Square (LS) algorithm is adopted to estimate the β [k].

β̂ [k]LS := arg min
β ,n

{1
k

k

∑
l=1

(y[l]−C[l]x[l])T (y[l]−C[l]x[l])+κn}

= arg min
β ,n

{1
k

k

∑
l=1

(y[l]− (λ T −β T [l]V )x[l])T (y[l]− (λ T −β T [l]V )x[l])+κn}.
(4.13)

Here, the LS algorithm is modified from [135]. κ > 0 is an given parameter and the term
κn is used to penalize and reject the unnecessarily high order models. let x′[k] :=V E(x[k]).
The best model order is selected after comparing Eq. (4.13) with different n. For a given n,
a normalized recursive LS algorithm is applied,⎧⎪⎪⎨

⎪⎪⎩
β̂ [k] = β̂ [k−1]− γ

Pk−1x′[k]ỹT [k]
1+ζ (x′[k])T Pk−1x′[k]

Pk = Pk−1 − γ
Pk−1x′[k](x′[k])T Pk−1

1+ζ (x′[k])T Pk−1x′[k]

, (4.14)

where ỹ[k] = ym[k]− ŷ[k], and

ym[k] = (λ T −β TV )x[k]+ v(k), ŷ[k] = (λ T − β̂
T
[k−1]V )x[k].

Here γ > 0 and ζ > 0 are fixed design parameters of the algorithm. P > 0 is the covariance
matrix. ym[k] and ŷ[k] are the measured signal and the computed SSBAT model output
based on the estimated β , respectively.

4.2.3 Tracking Performance and Parameter Convergence

For the proposed SSBAT model, it is clear that the model in Eq. (4.4) is stable. In this
subsection, the tracking and parameter convergence are proved. In the following Lemma
4.2.1, an optimal condition is provided for the selection of the SSBAT model order.

Lemma 4.2.1 Assume a fault-free vibration signal is comprised of m sinusoidal elements

as

ym[k] =
m

∑
i=1

Aicos(kT ωi +φi)+ v[k]. (4.15)

For the SSBAT model to be optimal in the sense that the minimization problem defined in

Eq. (4.13) is achieved, it is necessary that n ≤ m.
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Proof: To show this, we can assume the opposite and then show the contradiction. Assume
that for the optimal SSBAT, we have n ≥ m (but n < 2m). The denominator of the z-
transform of Eq. (4.15) is given in Eq. (4.8). The optimal SSBAT model of Eq. (4.13) can
be expressed as:

ŷ[k] =
m

∑
i=1

Âicos(kT ω̂ i + φ̂ i)+
n

∑
i=m+1

Aicos(kT ω̂ i + φ̂ i). (4.16)

There exists β̂ = [β̂ 0, β̂ 1, · · · , β̂ m−1]
T , so that when the optimal estimation is reached,

E[
m

∑
i=1

Âicos(kT ω̂ i + φ̂ i)] = E(ym[k]),

and
n

∑
i=m+1

Âicos(kT ω̂ i + φ̂ i) = 0.

For this condition, the optimal solution for Eq. (4.13) is,

1
k

k

∑
l=1

(y[l]−Ĉx[l])T (y[l]−Ĉx[l])+κn = σ2 +κm,

where σ2 is the variance of the noise. This optimal result is reached when n = m. For any
n > m,

1
k

k

∑
l=1

(y[l]−Ĉx[l])T (y[l]−Ĉx[l])+κn > σ2 +κm,

which contradicts with the minimization principle of the optimal SSBAT. Hence, to satisfy
the optimization condition of Eq. (4.13). It is necessary that n ≤ m. The proof is then
completed.

The Lemma 4.2.1 provides a condition for realizing the proposed SSBAT. In Theorem
4.2.1, the tracking performance and the parameter convergence of the proposed adaptive
tracking model is shown for the case when n = m.

Theorem 4.2.1 For a vibration signal composed of finite m sinusoids as Eq. (4.15), and

the 2nth order SSBAT model in Eq. (4.4), when n=m, the estimated parameter β̂ converges

to the nominal β , i.e. lim
k→+∞

E(β̂ [k]) = β and the tracking error satisfies that lim
k→+∞

E(ŷ[k]−
ym[k]) = 0.

Proof. For the ith sinusoidal component in Eq. (4.15), there are two points in the spectrum
at −ωi and +ωi, where ωi is the corresponding angular frequency. Therefore, the vibration
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signal composed of m sinusoidal signals is able to contribute 2m points to the spectrum.
Hence, according to [136] (Theorem 2.7.2), the signal is persistently exciting of order 2m.

Here, the convergence proof for the condition of n = m is given. According to the
definition of Persistent Excitation, there exist a constant α > 0, such that,

P ≥ αI, (4.17)

where I is an identity matrix. According to Eq. (4.14) and let β̃ [k] = E(β̂ [k]−β ), then,

β̃ [k] = β̃ [k−1]− γ
Pk−1x′[k]x′[k]T β̃ [k−1]

1+ζ x′[k]T Pk−1x′[k]
= (I − γ

Pk−1x′[k]x′[k]T

1+ζ x′[k]T Pk−1x′[k]
)β̃ [k−1], (4.18)

PkP−1
k−1 = (I − γ

Pk−1x′[k]x′[k]T

1+ζ x′[k]T Pk−1x′[k]
). (4.19)

Therefore,
P−1

k E(β̃ [k]) = P−1
k−1E(β̃ [k−1]), (4.20)

as

Pk −Pk−1 =−γ
Pk−1x′[k]x′[k]T Pk−1

1+ζ x′[k]T Pk−1x′[k]
≤ 0, (4.21)

Pk ≥ αI. (4.22)

Since we focus on tracking the trend of the vibration signal, x′[k] varies with time in general,
and in most cases, x′[k] �= 0. From the above, it is readily obtained that

lim
k→+∞

Pk = P̄.

where P̄ ≥ αI is a constant matrix. Therefore,

lim
k→+∞

Pk = lim
k→+∞

Pk−1,

and based on Eq. (4.20), it is obtained that

lim
k→+∞

E(β̂ [k]) = lim
k→+∞

E(β̂ [k−1]).

To further prove the convergence, define Vk = β̃ [k]T P−1
k β̃ [k]. Then from Eq. (4.20), we

have

Vk −Vk−1 = β̃ [k]T P−1
k β̃ [k]− β̃ [k−1]T P−1

k−1β̃ [k−1] = (β̃ [k]− β̃ [k−1])T P−1
k−1β̃ [k−1]

=−(γ
Pk−1x′[k]x′[k]T β̃ [k−1]

1+ζ x′[k]T Pk−1x′[k]
)T P−1

k−1β̃ [k−1] =−γ
(β̃ T

[k−1]x′[k])2

1+ζ x′[k]T Pk−1x′[k]
.

(4.23)
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Refer to Eq. (4.17) and the Persistent Excitation condition, we can derive

Vk −Vk−1 < 0.

Hence,
lim

k→+∞
Vk = 0,

which means lim
k→+∞

β̃ [k] = 0, i.e.

lim
k→+∞

E(β̂ [k]) = β .

As E(ỹ[k]) = β̃x′[k] and x′[k] is bounded, it is readily obtained that

lim
k→+∞

E(ŷ[k]− ym[k]) = 0.

Therefore, the tracking of the SSBAT is converge and the proof is complete.

Remark 4.2.1 When n < m, it means that the proposed SSBAT model is used to synthe-

size the nominal signal with fewer number of sinusoidal components. To realize this, the

amplitudes, frequencies and phases of sinusoidal components in the synthesis model will

be adjusted to fit the original signal adaptively. The synthesized signal is time-variant in

nature. The tracking error is bounded due to the fact that the SSBAT is stable (see Eg. (2)

and the matrix A in Eq. (4.12)).

4.2.4 SSBAT Based Fault Detection Approach

An SSBAT model based fault detection approach is proposed in this work for rotating
machines. First of all, the established SSBAT algorithm is used as a linear predictor to ob-
tain the one-step ahead signal. An on-line SSBAT residual can be calculated by subtracting
the predicted signal from the measured data. Random prediction error may occur if the
rotating machinery remains in a healthy condition. However, when a localized fault, e.g., a
shaft crack or a rotor rubbing develops, we can express ym[k] as

ym[k] =

⎧⎪⎨
⎪⎩
(λ T −CTV )x[k]+ v[k], k < k f

(λ T −CTV )x[k]+ v[k]+d[k] k ≥ k f

.

In this case, a periodical significant deviation is expected from the model. This is because
the SSBAT model can track the vibration signal trend with sinusoidal properties but will
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not predict/track the abrupt impulse like fault (which has a very wide spectrum):

E(ỹ[k]) = E(ym[k]− ŷ[k]) =

⎧⎪⎨
⎪⎩

ε̄ k < k f

ε̄ +d[k] k ≥ k f

.

where ε̄ is the mean of the random noise.
Clearly, the frequency-time domain feature extraction capability of SSBAT is well-

suited to the nature of vibration signals and poses important applications in the fields of
rotating machinery fault detection. In practice, when processing data of a long time period,
the Kurtosis of the SSBAT residual can be calculated as an indicator to further confirm
whether the abnormal fault has occurred. The implementation of the algorithm is sketched
here.

1. Estimate the SSBAT model parameters β̂ according to Eq. (4.14);

2. Compute the estimated output ŷ[k] based on Eq. (4.4) and Eq. (4.12) but using the
estimated parameters β̂ ;

3. Calculate the on-line SSBAT residual ỹ[k];

4. Calculate the Kurtosis of the SSBAT residual for fault detection.

4.3 Simulation Examples

4.3.1 Example 1: Signal Tracking

For validation, a simulated vibration signal is generated. The vibration signal is formed
as 10 harmonic components at 60 Hz, 120 Hz, 180 Hz, 240 Hz, 300 Hz, 360 Hz, 420 Hz,
480 Hz, 540 Hz, 600 Hz, which have random amplitudes of 2.7, 2.0, 0.1, 0.2, 0.1, 0.07,
0.2, 0.3, 0.1 and 0.05 respectively and initial phases of 0.33π , 0.58π , 2.1π , 0.9π , 1.3π ,
0.2π , 0.5π , 1.3π , 0.2π and 1.9π rad respectively. Additive white Gaussian noise with zero
mean and standard deviation of 0.01 is included. During the simulation, 5000 samples
have been generated with a sample time period of 1 second. The first 1000 simulated data
samples are plotted in Fig. 4.1(a) and its corresponding spectrum calculating through Fast
Fourier Transform (FFT) is shown in Fig. 4.1(b). The simulated vibration dataset was
divided into two parts with evaluation set of 3000 samples and validation set of the rest
2000 samples. The tracking test has been carried out for one-component SSBAT, two-
component SSBAT, three-component SSBAT and AR with minimum Akaike Information
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Figure 4.1: Simulated signal: (a) simulated vibration signal; (b) spectrum of the simulated

signal.

Criterion (AIC) [137], denoted as SSBAT1, SSBAT2, SSBAT3 and AR AIC, respectively.
By one-component, two-component, or in general n-component SSBAT model, we mean
that the model in Eq. (10) corresponds to the sum of n sinusoids as given in Eq. (1)
(n = 1, 2, 3, ..).

The AIC order of autoregressive method is computed from 1 to 150 with step 5. In this
example, it is calculated to be 146. Tracking results for the validation set are compared in
Fig. 4.2. Only first 200 samples out of the 2000 data are plotted to illustrate the convergence
speed of different algorithms. However, the fit value is calculated based on the all 2000
validation data. The fit value is defined in % as the normalized root mean square (NRMSE)
measure of the goodness of fit, which is calculated as:

FIT = 100
1−||y− ŷ||2
||y− ȳ||2 ,

where y is the validation data, ȳ is the mean of the validation data and ŷ is the estimated
output. ||y||2 means the Euclidean Norm of y. Fig. 4.2(a), 4.2(b) and 4.2(c) shows the iden-
tification results of one-component, two-component and three-component SSBAT algo-
rithm. Very fast convergence (within 50 iterations) and satisfactory fitting results (89.73%,
90.57% and 92.09% respectively) are demonstrated. Also, it shows that no significant im-
provement is made by increasing the sinusoidal component numbers, which indicates the
capability of the SSBAT using a low order adaptive model to synthesize a high order sinu-
soidal comprised signal. Fig. 4.2(d) shows the performance of AR algorithm with the order
of 146. It has also reached the fitting value of 85.84%. However, it needs at least 150 itera-
tions to converge. Hence, the proposed SSBAT method has demonstrated fast and superior
tracking performance compared with the AR method. Particularly, the SSBAT algorithm is
qualified to apply in adaptive sinusoidal synthesis.

The computation time for signal tracking simulation in Fig. 4.2 of the SSBAT method
is compared with that of the AR method. It is obtained based on using MATLAB on a local
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Figure 4.2: Signal tracking performance: (a) one-component SSBAT; (b) two-component

SSBAT; (c)three-component SSBAT; (d) AR AIC.

workstation with Xeon(R) CPU at 2.4 GHz. As we can see, the computation of SSBAT is
much more time efficient than the 146 order AR AIC method. The result is shown in Table
4.1.

The adaptive evolution of the estimated parameters for One-component SSBAT is demon-
strated in Figure 4.3. It is clearly shown that the parameters evolve periodically to adapt
the vibration signal when the order of the synthesis model is much lower than the actual
number of sinusoidal components.

Table 4.1: Computation Time

Algorithm SSBAT1 SSBAT2 SSBAT3 AR AIC

Time (Seconds) 0.216892 0.143940 0.150662 7.383978

Fit ( %) 89.73 90.57 92.09 85.84
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4.3.2 Example 2: Parameters Convergence

To demonstrate the convergence, we assume, m = n, and the vibration signal is exactly
composed of three sinusoidal components with angular velocity

T ω1 = 0.8,T ω2 = 2.9,T ω3 = 1.5

Amplitudes and phases of the three components are randomly chosen which have no influ-

ence for parameter tracking. The nominal β can be calculated from Eq. (4.8):

D(z) =
3

∏
i=1

(z2 −2zcos(T ωi)+1) = z6 +0.4070z5 +0.2165z4 +1.1969z3 +0.2165z2 +0.4070z+1,

where β = [β0,β1,β2]
� = [1.1969,0.2165,0.4070]�.

If we use a SSBAT signal with three sinusoidal components to synthesize the nominal
signal, then the values of β̂ i,(i = 0,1,2) are converged to the true values βi as shown in Fig.
4.4. According to Eq. (4.8), βi are directly corresponding to ωi. Therefore, the frequencies
of the SSBAT model ω̂ i can track that of the nominal sinusoidal components ω i when the
number of sinusoidal components of the synthesis model is equal to the actual number of
nominal sinusoidal components, i.e. n = m.

4.3.3 Example 3: Fault Detection

To demonstrate the application of the proposed SSBAT algorithm in fault detection, a
decaying exponential enveloped sinusoidal impact is periodically added to the simulated
signal in Example 1 . The maximum amplitude of the impact is 2 and the time constant
of the exponential envelop is 0.002. The modeled impact fault is added to the signal at a
period of 83 milliseconds, which means the impact impulse occurs 12 times every second.
This is commonly seen in gear tooth defect such as a tooth root crack or spall [85]. The
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Figure 4.4: Parameter convergence

fault impact is shown in the top of Fig. 4.5(a). The vibration signal after adding exponential
envelope impacts is shown in the bottom of Fig. 4.5(a) and its corresponding spectrum is
illustrated in Fig. 4.5(b).

After constructing the fault signal, several methods including the one-component, two-
component, three-component SSBAT based together with the AR AIC and ARMED meth-
ods are adopted to detect the fault. The prediction residual of the five methods are presented
in Fig. 4.6. The time duration of the 2000 samples correspond to 0.4 seconds, which means
that it has gone through 4.8 periods of the fault impacts.
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Figure 4.5: Signal with faults: (a) vibration signal with added exponential envelope im-

pacts; (b) spectrum of the simulated signal with fault.

In Fig. 4.6, all four methods have detected four obvious faults. By comparing the re-
sults, all the three SSBAT algorithms can detect the faults and have achieved comparable
performance as the ARMED method. However, it is clearly seen that the ARMED has fil-
tered out much more signal information in the residual. Moreover, the SSBAT and ARMED
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Figure 4.6: Fault detection results: (a) one-component SSBAT residual; (b) two-component

SSBAT residual; (c) three-component SSBAT residual; (d) AR AIC residual; (e) ARMED

residual.

give better results than that using the AR AIC method. This is because the AR AIC method
has over fitted the fault information while the SSBAT does not. The SSBAT method re-
tains the sinusoidal characteristics of the vibration signal during the adaptive tracking (or
trending) but it will not adapt to the abrupt impulse like faults.

The Kurtosis values are analyzed to evaluate the SSBAT, AR AIC and ARMED meth-
ods’ capability in detecting impact faults. Faults of various levels have been added to the
simulated vibration signal. By comparing the fault peak disturbance versus the kurtosis in
Fig. 4.7, it is noticed that the AR AIC and ARMED method have the same Kurtosis values.
It can be seen that the SSBAT schemes tend to demonstrate better performance than AR
methods with faults of higher amplitudes while both AR models perform better for faults
with smaller amplitudes. It means that the SSBAT methods are not as sensitive as the two
AR methods. However, proper tuning of the SSBAT model order can help improve this
aspect. For example, among the SSBAT methods, the three-component SSBAT method
has the best fault detection performance. Note that, when calculating the Kurtosis, the first
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200 samples of the residual signal are ignored to allow for the SSBAT and AR models to
converge.

4.4 Application to Steam Turbine Fault Diagnosis

Vibration data acquired from a turbine generator is investigated in this section. The
50MW back pressure steam turbine generator consists of a steam turbine and a generator
[138], Fig. 4.8.

Figure 4.8: Layout of the back pressure steam turbine generator

Data is collected by two vibration sensors on bearing 4 installed along x and y axes. A
data measurement set of 1226 samples is collected every two hours at a sampling rate of 9.7
kSamples/second. Under normal operation, the turbine is rotating at approximately 60Hz,
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resulting in approximately 161 samples per revolution and nearly 8 rotor revolutions per
dataset. The vibration sensors on each axis detect the decomposed vibration signal. Hence,
the fault detection can be carried out in each direction and here we only analyze the x−axis

vibration signal. The datasets used in this case study were collected from August 10th, 2005
to January 15th, 2006, in which two machine downtimes were observed and recorded. A
rotor-stator rubbing event caused by the shaft bending was verified by inspection and fixed
during the second downtime. Therefore, we are expecting a repeating fault once per shaft
revolution, which is consistent with a rotor-to-stator rubbing fault. Since there are nearly 8
revolutions in each data set recorded in this application, 7 or 8 impulsive fault signatures
are expected. In the following analysis, it is assumed the fault is not known beforehand and
completed fault detection procedure is conducted.

The condition of the turbine is analyzed with one component SSBAT, two component
SSBAT, and three component SSBAT methods. Moreover, AR method with optimal order
calculated with AIC and ARMED method are also adopted to compare with the SSBAT
methods.

Firstly, the Root Mean Square (RMS) of the vibration signal is calculated for the tur-
bine. It has been shown that the energy and root mean square of vibration signal will change
when a bearing fault occurs [139]. The RMS of the vibration is calculated for the whole
vibration data to give a general impression of the defects in the time domain, Fig. 4.9 (a).

It is suspected that there is a fault between the two machine downtimes, which is a
month-long downtime after August 10th, 2005 and another short downtime on January
15th, 2006. There are two possibilities according to the RMS results. A maintenance
may have been carried out during the first downtime and the physical model may deviate.
Therefore, a small calibration may have been conducted during the second downtime on
January 15th, 2006. The second possibility is that abnormal behavior was observed before
August 10th, 2005 and a maintenance was carried out. However the problem was not
corrected and the fault lasted for the following 4 months until the second maintenance was
conducted on January 15th, 2006. The SSBAT method and the AR methods are adopted
to the whole data sets and the corresponding Kurtosis of the residual is plotted in Fig. 4.9
(b-e). All the methods indicate high fault level during the time interval between the two
downtimes. Therefore, we can confirm that there exists certain fault(s) during this period.

The suspected fault is identified during the specific time interval from September 22,
2005, to January 15th, 2006. We randomly select one data set during this time period
to conduct a more detailed analysis. Fig. 4.10(a) shows the vibration of the data set at
that time. Fig. 4.10 (b-f) shows the residual of the three SSBAT methods and the AR
methods. All the methods generate residuals from which 7 repeating faults indicating the
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Figure 4.9: Kurtosis comparison for four methods: (a) RMS of the vibration; (b) Kurtosis

of one-component SSBAT residual; (c) Kurtosis of two-component SSBAT residual; (d)

Kurtosis of three-component SSBAT residual; (e) Kurtosis of AR AIC residual.

fault occurrence once per shaft revolution can be observed. From the figures, it can be
seen that all the SSBAT methods perform satisfactorily detecting the fault while the two-
component SSBAT has the best performance. The AR AIC method is also able to give
some indication to the fault although there exist certain ambiguities. It is noticed that in
this application, the ARMED method has shown better performance over other methods.
The SSBAT methods have shown comparable performance as the ARMED method. It
should be noted that the SSBAT method only utilizes the online data set to detect the fault
while both the AR models need to use the history no-fault data sets to fit model.

Fig. 4.11 shows the location of the faults with respect to the rotor orbit. In Fig. 4.11(a)
the X-axis vibration is plotted together with two-component SSBAT residual signal. Al-
though there is no sign of fault on the Y-axis vibration according to the two-component
SSBAT result (Fig. 4.11(b)), it is still able to identify the exact location on the rotor orbit.
In Fig. 4.11(c) the vibration orbit is shown and the location of suspected fault can be iden-
tified. From the orbit, we can see some sign of abnormal vibration in the x direction at the
fault location.
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Figure 4.10: Fault detection results for turbine: (a) vibration signal; (b) one-component SS-

BAT residual; (c) two-component SSBAT residual; (d) three-component SSBAT residual;

(e) AR AIC residual; (f) ARMED residual.

4.5 Conclusion

In this chapter, an SSBAT fault diagnosis method is proposed. The data-driven algo-
rithm is based on the specific features of the vibration data from rotating machinery. This
adaptive model is constructed based on the sinusoidal structure of the vibration signals. It is
well suited to the nonlinear nature of the sinusoidal model analysis. Moreover, it transforms
the problem into a linear adaptive problem based on the time-frequency characteristics of
sinusoids. Three simulation examples were performed to illustrate the SSBAT tracking, pa-
rameter convergence, and fault detection performance, respectively. In addition, a practical
application to a steam turbine fault detection is also presented. For performance evaluation,
the standard AR AIC predictive model and ARMED algorithm are compared with the SS-
BAT models in both simulation examples and the application example. The experimental
data indicated that the SSBAT method is better than the AR algorithm and has achieved
comparable performance as the ARMED method.

79



0 200 400 600 800 1000 1200
−2

0

2

X
−a

xi
s 

V
ib

ra
tio

n 
(m

il)

(a)

0 200 400 600 800 1000 1200
−2

0

2

Sample

Y
−a

xi
s 

V
ib

ra
tio

n 
(m

il)

(b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
X: −0.5273
Y: 0.6778

X−axis Vibration (mil)

(c)

Y
−a

xi
s 

V
ib

ra
tio

n 
(m

il)

Vibration
Residual

Figure 4.11: The position of faults in orbit map: (a) X-axis vibration overlayed with two-
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Chapter 5

Minimum Entropy Deconvolution

Optimized Sinusoidal Synthesis and Its

Application to Vibration Based Fault

Detection ∗

5.1 Introduction

A sinusoidal synthesis based fault detection method was proposed in Chapter 4 and it
was successfully adopted for steam turbine fault detection [94]. The frequency information
of the vibration signal can be fully used in developing the sinusoidal synthesis data-driven
model. However, it is insensitive to phase properties, which can differentiate noise from
characteristic impulsive fault signatures.

Kalman filtering is an effective means of estimating the time-varying coefficients and
is widely applied in speech parameter estimation problems [140, 141]. Recently, the the-
ory of adaptive filtering and estimation has also been applied to estimate frequencies and
amplitudes of sinusoidal signals [126, 127, 128, 142]. Minimum Entropy Deconvolution
(MED), originally proposed by Wiggins for applications on seismic recordings [143], was
adopted for gear fault detection together with the AR method by H. Endo et. al. [85].
It was shown that the ARMED resulted in improved performance over the traditional AR

∗Parts of the results in this chapter appeared in Journal of Sound and Vibration, vol. 390, pp. 218-231,

2017.
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method. The MED algorithm can make use of higher-order statistical characteristics, in
particular, the kurtosis, of the signal. Kurtosis is defined as the fourth moment of the dis-
tribution and measures the relative peakedness or flatness of a distribution as compared to
a normal distribution. Kurtosis provides a measure of the size of the tails of a distribution
and is used as an indicator of major peaks in a set of data. Kurtosis has been used for
diagnosing bearing, and gearbox faults [144]. Recently, a new Maximum Correlated Kur-
tosis Deconvolution method was proposed and shown to be effective in detecting periodic
fault signatures [132]. However, it requires a priori knowledge of the fault period, and for
non-integer fault periods, it requires an additional resampling preprocessing stage [145].

Based on the existing work [85, 94, 132], this chapter outlines a MED based sinusoidal
synthesis (MEDSS) data-driven model designed for fault diagnosis in rotating machinery
[95]. First, the sinusoidal synthesis model proposed in Chapter 4 is adopted. In the process
of building the SS model, the MED technique is applied to optimize the model parame-
ters. The MED algorithm is more sensitive to the phase relationship (which differentiates
white noises from impulses) by using higher-order statistical properties compared to the
autocorrelation measurements like AR [85]. Thus it is effective in deconvolving the impul-
sive sources from a mixture of signals. Therefore, the MEDSS model is insensitive to the
strong background noises encompassing other vibration sources and is more sensitive to
characteristic fault with impulsive signatures. Finally, a time-weighted-error Kalman filter
is designed for estimating the parameters of the MEDSS model adaptively. This makes
it possible to synthesize the vibration signal with a low order but time-varying MEDSS
model. The advantages of low computation complexity and adaptive form from linear pre-
dictors are retained in this method. The scheme proposed in this chapter is mainly used for
detection of defects in rotating elements that have sharp leading and trailing defect edges,
which typically generate strong impulsive signatures.

The remainder of this chapter is organized as follows: The MEDSS model is designed
and its application in fault diagnosis is proposed in Section 5.2 as the main results. In
Section 5.3, three simulation examples are provided to illustrate the fault detection perfor-
mance for fault-free, high signal-to-noise ratio (SNR) faulty and low SNR faulty conditions.
A practical application example for rubbing fault detection in an industrial steam turbine is
given in Section 5.4, followed by a conclusion in Section 5.5.
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5.2 The MEDSS Model and Its Application to Fault De-

tection

The measured vibration signal with periodic characteristic impulsive fault signatures
can be represented as Eq. (5.1).

ym[k] = yo[k]+d[k]+ v[k], (5.1)

where the meaning of the symbols are the same to Chapter 4, Eq. (4.1).

5.2.1 Regular Sinusoidal Synthesis (SS) Model

The regular SS model proposed in Chapter 4, Eq. (4.4) is used to predict the deter-

ministic pattern of the fault free vibration signal, yo[k]. Chapter 4, Eq. (4.6) then can be

represented in the filter form as follows [94]:

Y (z) =
(λ2m−1 −βm−1)z2m−1 + · · ·+(λm −β0)zm +(λm−1 −β1)zm−1 + · · ·+(λ0 −1)

Λ(z)
Yo(z)

= G(z)Yo(z), (5.2)

where Y (z) is the filtered vibration signal, Yo(z) is the nominal fault-free vibration signal,
and G(z) denotes the SS filter.

From Eq.(5.2), the transfer function G(z) is stable, and can be treated as an SS filter.
Therefore, Eq.(5.2) denotes the process of data prediction, which can be presented in the
time domain as follows:

y[k] = g[k]∗ yo[k] =
m

∑
i=0

g[i]yo[k− i], (5.3)

where g represents the characteristic response of the filter G(z) and it is assumed that g[0] =
0 for a one-step ahead predictor. As the nominal vibration signal yo[k] is unknown, the
measured signal ym[k] can be used to pass through the SS filter.

5.2.2 MED Optimization

In section 5.2.1, the sinusoidal synthesis filter is reviewed, which incorporates specifi-
cally the frequency characteristics of the sinusoidal signal. In this section, the MED tech-
nique is applied to extract the phase information and further optimize the SS filter g. Ac-
cording to Chapter 4, Eq.(4.10), the filter g is arbitrarily selected as long as Λ is a stable
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polynomial [134]. The nominal vibration signal yo[k] is not available, but instead, the mea-
sured signal ym[k] is available, which contains noises and impact fault signals as shown in
Eq.(5.1). When the faults are in their early stages, the characteristic impulsive fault sig-
nature d[k] is relatively small compared to the noise v[k] and its presence can be masked
by the noise. Moreover, both the noise and the fault signature d[k] are in nature broad-
band excitation signals, and their magnitude spectra are not easily differentiable. The most
significant difference is contained in the phase information of the signal. Hence, in this
section, the MED approach is designed to further highlight the distinctive characteristics of
the impulse-like fault signatures so that they can be detected from the noisy measurement
signals. Meanwhile, such a filter can minimize or even eliminate noises encompassing
other vibration sources for the machine under inspection. The enhanced MEDSS filter can
be denoted as follows:

ge = g∗ f , (5.4)

where f is the corresponding MED filter whose coefficient vector F = [ f0, f1, · · · , fL]
T and

L is the order of the filter. The MED filter is used to optimize the original SS filter g. In
the MEDSS filter, the entropy of the measured signal ym[k] is minimized, which means the
effect of random noises is minimized and the structured information of the impulsive fault
signatures is enhanced. A comparison of noises with the impulsive fault signatures shows
their magnitude response is similar (as broadband excitations), but impulses have much
more distinctive phase responses than random noises. Such structured information will be
highlighted by minimum entropy deconvolution algorithms. On the other hand, the high
entropy noises will be removed [85].

Next we will present a state space representation for the MEDSS by combining both the
sinusoidal synthesis model and the MED filter. The sinusoidal synthesis model of Eq.(5.3)
becomes the following:

y = ge ∗ yo ≈ ge ∗ ym = g∗ f ∗ ym. (5.5)

Here, ym[k] can be used instead of yo[k] because the noise effect is to be minimized by the
MED filter.

The MED filter f is iteratively calculated based on the measured vibration signal. As-
sume s = f ∗ ym, where S = [s[1],s[2], · · · ,s[N]]T and N is the total number of samples.
The MED filter f can be designed by maximizing the kurtosis of the measured vibration
signal. Kurtosis is defined as the fourth moment of the distribution and is used to measure
how outlier-prone a signal is. Due to the impulse-like rotating fault manifestation, kurtosis
is suitable to be a fault indicator in rotating machinery. The MED filter f is designed by
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maximizing the kurtosis of the filtered signal through Eq. (5.6) [144]:

max
f

Kurtosis = max
f

K( f ) = max
f

∑N
j=1 (s[ j]−μs)

4(
∑N

j=1 (s[ j]−μs)
2
)2 . (5.6)

Assuming s[n] is zero-mean, i.e. μs = 0, then Eq. (5.6) becomes as follows:

max
f

K( f ) = max
f

∑N
j=1 s4[ j](

∑N
j=1 s2[ j]

)2 . (5.7)

The filter coefficients fl,(l = 0,1, . . . ,L) corresponding to the maximum Kurtosis can be
calculated by setting the derivatives of K( f ) in Eq.(5.7) with respect to fl to be zero. We
then have the following:

d
d fl

K( f ) = 0, l = 0,1, . . . ,L. (5.8)

As we have
∂ s[ j]
∂ fl

=
∂ (∑L

p=0 fpym[ j− p])

∂ fl
= ym[ j− l] (5.9)

and
∂K( f )
∂ s[ j]

=
4s3[ j]∑N

j=1 s2[ j]−4s[ j]∑N
j=1 s4[ j]

(∑N
j=1 s2[ j])3

. (5.10)

Substituting Eq. (5.7), Eq. (5.9) and Eq. (5.10) into Eq. (5.8), we have Eq.(5.11) as
follows:

N

∑
j=1

∂K( f )
∂ s[ j]

∂ s[ j]
∂ fl

=
N

∑
j=1

{
4s3[ j]∑N

j=1 s2[ j]−4s[ j]∑N
j=1 s4[ j]

(∑N
j=1 s2[ j])3

ym[ j− l]

}
= 0, l = 0,1, . . . ,L.

(5.11)
Rearrange Eq.(5.11) and we can obtain the following Eq. (5.12):

∑N
j=1 s2[ j]

∑N
j=1 s4[ j]

N

∑
j=1

s3[ j]ym[ j− l] =
N

∑
j=1

(s[ j]ym[ j− l]), l = 0,1, . . . ,L. (5.12)

As

s[ j] =
L

∑
p=0

fpym[ j− p], (5.13)

Eq.(5.12) becomes the following:

∑N
j=1 s2[ j]

∑N
j=1 s4[ j]

N

∑
j=1

s3[ j]ym[ j− l] =
N

∑
j=1

(
L

∑
p=0

fpym[ j− p]ym[ j− l]), l = 0,1, . . . ,L. (5.14)
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Then the MED filter coefficients can be calculated in the matrix form as follows:

F =
∑N

j=1 s2[ j]

∑N
j=1 s4[ j]

(
ΓΓΓΓΓΓT)−1 ΓΓΓ

[
s3[1] s3[2] . . . s3[N]

]T
(5.15)

ΓΓΓ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ym[1] ym[2] ym[3] . . . ym[N]

0 ym[1] ym[2] . . . ym[N −1]

0 0 ym[1] . . . ym[N −2]
...

...
... . . . ...

0 0 0 . . . ym[N −L]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(L+1)×N

where F is iteratively calculated.
The MED filter can be denoted in the transfer function form as the following:

F(z) =
L

∑
l=0

flz−l =
f0zL + f1zL−1 + · · ·+ fL

zL . (5.16)

The MEDSS filtered signal then becomes:

Y (z) =G(z)F(z)Ym(z), (5.17)

where Ym(z) is the z-transform of ym[k].
According to Eq.(5.17), the MEDSS model is established as a (2m+L)th order state

space model Σ1:

Σ1 :

⎧⎨
⎩

x[k+1] = Ax[k]+Bym[k]

y[k] = Cx[k]
, (5.18)

where

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ2m−1 −λ2m−2 · · · −λ0 0 . . . 0 0

1 0 · · · 0 0 . . . 0 0

0 1 · · · 0 0 . . . 0 0
...

... . . . ...
... . . . ...

...

0 0 · · · 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2m+L)×(2m+L)

, B=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
(2m+L)×1

,

ΛΛΛ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ2m−1

λ2m−2

· · ·
λ1

λ0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2m×1

,βββ =

⎡
⎢⎢⎢⎢⎢⎢⎣

βm−1

βm−2

· · ·
β0

⎤
⎥⎥⎥⎥⎥⎥⎦

m×1

,V =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 · · · 0 1 0

0 1 · · · 0 · · · 1 0 0
...

... . . . ... ... ...
...

...

0 · · · 0 1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

m×2m

,

86



ΨΨΨ =

⎡
⎢⎢⎢⎢⎢⎢⎣

f0 f1 · · · f2m−1 f2m · · · fL 0 · · · 0

0 f0 · · · f2m−2 f2m−1 · · · fL−1 fL · · · 0
...

... . . . ...
... . . . ...

... . . . ...

0 0 · · · f0 f1 · · · fL−2m+1 fL−2m+2 · · · fL

⎤
⎥⎥⎥⎥⎥⎥⎦

2m×(2m+L)

,

C = ΛΛΛ�ΨΨΨ−βββ�
VΨΨΨ. (5.19)

The structures and coefficients of A, B, and ΛΛΛ are all known if m, the number of sinusoidal
components in the signal, is known. ΨΨΨ can be obtained based on the measured vibration
signal. βββ is the unknown parameter vector. However, m, the number of harmonic compo-
nents, is usually unknown in practice. In this case, a model order of 2n+L(n ≤ m) is used
to synthesize the vibration signal. The reason is that, in the SS filter, a lower order model
can be used to synthesize a finite number of harmonic components of the vibration signal
when the number of components is unknown [94].

Although the actual order of the MEDSS model is 2n+ L, the number of unknown
parameters in βββ is still n, which is the same as in the regular SS model. Therefore, in the
simulation study, for comparison with the regular SS, the (2n+L)th order MEDSS filter
model is still named the 2nth order MEDSS filter.

5.2.3 Adaptive Parameter Estimation Using Kalman Filter

The output matrix C in (5.18) is unknown and depends on βββ , which is determined
by the spectral distribution of the vibration signal. The MEDSS model in Σ1 then can be
transformed to Σ2 based on βββ :

Σ2 :

⎧⎨
⎩

x[k+1] = Ax[k]+Bym[k]

y′[k] = βββ�[k]x′[k]+ v[k]
, (5.20)

where y′[k] = ΛΛΛ�ΨΨΨx[k]− ym[k] and x′[k] = VΨΨΨx[k]. Here, the noise v[k] is added because
the measured vibration signal ym[k] is used in y′[k] instead of y[k].

In the MEDSS model, the unknown parameter vector βββ can be estimated based on
the measured vibration signal. The parameter estimation is constructed in a Kalman filter
framework, as given in Σ3:

Σ3 :

⎧⎨
⎩

βββ [k+1] = ΦΦΦ[k,k−1]βββ [k]

y′[k] = x′[k]T βββ [k]+ v[k]
, (5.21)
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where ΦΦΦ[k,k−1] is the unknown time varying parameter transition matrix. The parameters
of βββ [k] in Σ3 are obtained in the following Eq. (5.22) [146]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̂ββ [k|k−1] = ΦΦΦ[k|k−1]β̂ββ [k−1|k−1]

Vβ [k|k−1] = ΦΦΦ[k|k−1]Vβ [k−1|k−1]ΦΦΦT [k|k−1]

Kβ [k] = Vβ [k|k−1]x′[k−1](x′T [k−1]Vβ [k|k−1]x′[k−1]+R)−1

β̂ββ [k|k] = β̂ββ [k|k−1]+Kβ [k](y
′[k]− x′�[k−1]β̂ββ [k|k−1])

Vβ [k|k] = Vβ [k|k−1]−Kβ [k]x
′�[k−1]Vβ [k|k−1]

, (5.22)

where R is the covariance of the measurement noise. Vβ is the error covariance and Kβ [k]

is the Kalman gain. ΦΦΦ[k|k−1] is assumed to be the identity matrix during the iteration.
As mentioned above, when the exact number of sinusoidal components m is unknown,

a lower model order n is usually chosen (i.e. n ≤ m). The synthesized signal, in this case,
has non-stationary frequency characteristics, which means the parameter vector βββ [k] is
time varying. The classic Kalman filter algorithm in Eq.(5.22) may not be suitable for this
parameter estimation problem (where the parameters are periodically time-varying), since
it has an ‘infinite memory’ [140], meaning that the current estimated parameter is affected
by the entire history of the signal. In this chapter, the time-weighted-error Kalman filtering
technique is adopted. This method was proposed in [147] and was adopted for parameter
estimation in many applications, e.g. the speech parameter estimation problem, [140]. The
cost function of the time-weighted-error Kalman filter is given as follows[140]:

Jk =
k

∑
j=1

ρk− j(y′[ j]−x′[ j]T βββ [ j])2, (5.23)

where ρ is the forgetting factor and 0 < ρ ≤ 1. In (5.23), the recent data has heavier weight
than the previous data. Hence, the tracking of time-varying parameters can be realized.
The smaller ρ is, the smaller windows of data will affect the estimation of parameters. The
iteration of error covariance Vβ [k] in Eq. (5.22) then becomes as follows:⎧⎨

⎩
Vβ [k|k−1] = ρ−1ΦΦΦ[k|k−1]Vβ [k−1|k−1]ΦΦΦT [k|k−1]

Vβ [k|k] = Vβ [k|k−1]−Kβ [k]x
′�[k−1]Vβ [k|k−1]

. (5.24)

Once we have obtained the estimated parameter β̂ββ , we can calculate the system matrix Ĉ

and further predict the one-step ahead signal. The estimated system matrix Ĉ is calculated
according to Eq.(5.19):

Ĉ = ΛΛΛ�ΨΨΨ− β̂ββ
�

VΨΨΨ. (5.25)
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The linear predictor filter is then established as:

Σ4 :

⎧⎨
⎩

x[k+1] = Ax[k]+Bym[k]

ŷ[k] = Ĉx[k]
, (5.26)

where x[k] ∈ R
2n+L, A ∈ R

(2n+L)×(2n+L), B ∈ R
(2n+L)×1, Ĉ ∈ R

(2n+L)×1, and they are in
the same form as in Eq. (5.19).

5.2.4 Fault Detection Based on MEDSS filter

The MEDSS filter based fault detection for characteristic impulsive fault signatures of
rotating machinery is proposed in this section. The established SS filter is used as a linear
predictor to obtain the one-step ahead nominal signal. An on-line residual can be calculated
by subtracting the predicted signal from the measured data. This residual (or unpredictable
part of the signal) contains noises and impulse, which has a white spectrum and is called
‘pre-whitened’ [148]. To minimize the effect of the colored noise and enhance the fault
information in the residual signal, corresponding to the MED process in the predictor, the
measured signal ym[k] is replaced with the MED filtered signal s[k]. Random prediction
error may occur if the rotating machinery remains in a healthy condition. However, when
a localized fault, e.g., a shaft crack or a rotor rubbing develops, a periodical significant
deviation is expected from the model. This is because the linear predictor model can track
the vibration signal trend with sinusoidal properties, but will not predict/track the abrupt
impulse like fault (which has a very wide spectrum):

ỹ[k] = s[k]− ŷ[k] =

⎧⎪⎨
⎪⎩

v f [k] k < k f

v f [k]+d[k] k ≥ k f

, (5.27)

where k f denotes the time when the fault happen. v f [k] is the MED-filtered noise, which is
approximately a small noise with zero means and much smaller variance than the original
noise v[k] and d(k) represents the periodic impulsive fault signature. The implementation
of the algorithm is sketched here.

1. Construct the MEDSS model Σ1, where the model order is assumed to be 2n;

2. Estimate the sinusoidal frequency parameter vector β̂ββ using the time-weighted-error
Kalman filter based on (5.22) and (5.24);

3. Calculate the system matrix Ĉ according to (5.25);
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4. Predict the one-step ahead signal based on the MEDSS predictor model Σ4;

5. Calculate the residual according to (5.27) and conduct fault detection by residual
evaluation.

5.3 Simulation

For validation, a simulated vibration signal is generated based on Eq. (5.28).

ym[k] =
m

∑
i=1

Aicos(kT ωi +φi)+ v[k], (5.28)

where m = 10, meaning 10 harmonic components. The amplitudes of Ai are randomly
picked as 0.5 mil, 0.1 mil, 0.1 mil, 0.2 mil, 0.1 mil, 0.07 mil, 0.2 mil, 0.3 mil, 0.1 mil and
0.05 mil. ωi,(i = 1,2, ..,10) are 60 Hz, 120 Hz, ..., 600 Hz, respectively. The initial phases
of φi are randomly selected as 0.33π , 0.58π , 2.1π , 0.9π , 1.3π , 0.2π , 0.5π , 1.3π , 0.2π and
1.9π rad, respectively. v is a white noise, v ∼ N (0,4× 10−4). The sampling time T is
0.0002 s, which means that 5000 samples have been generated in one second.

5.3.1 Example 1: Analysis of the fault-free signal

The MED technique has a feature of enhancing the impulsive fault signatures. There-
fore, it is meaningful to check if the MEDSS filter will lead to increased false alarms. In
this example, a fault-free signal is analyzed. The simulated signal is plotted in Figure 5.1
(a) while the residual signals from three different methods are shown in Figure 5.1 (b-d).
The three methods are the proposed MEDSS filter, the regular SS filter, and the ARMED
method proposed in [85]. For both of the MEDSS and the regular SS models, the order
2n = 4 is chosen. From Figure 5.1, we can see that all three methods perform well with no
false alarms under the fault-free condition. As we can see from Figure 5.1 (b) and Figure
5.1 (d), there is a peak at around sample number 240. It should be noted that the peak does
not indicate the presence of a fault and is an artefact of the MED technique. The defini-
tion of MED assumes zero data xn = 0, for n < 1. This assumption creates a discontinuity
between all the zero samples and the actual first sample x1. This discontinuity causes a spu-
rious impulse to be convolved at the beginning of the prediction [145]. However, the false
alarm disappears after the algorithms converge and has no significant effect on detection of
the periodic impulsive fault signatures proposed in this work.
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Figure 5.1: Comparison of fault detection performance with fault-free signal: (a) simulated

signal with no fault, (b) residual of the 4th order MEDSS predictor, (c) residual of the 4th

order regular SS predictor, (d) residual of the ARMED predictor.

The computation time of the three methods in Figure 5.1 is provided and shown in Table
5.1 for comparison purposes. It is obtained by using MATLAB on a local workstation with
Xeon(R) CPU at 2.4GHz. As we can see, the regular SS method is the most time efficient.
The computation time of MEDSS is about 10 times that of the regular SS and 1/10 that
of the ARMED. In addition, the corresponding kurtosis values of the residuals are shown
in Table 5.1, from which we can see that only the ARMED residual has a relatively higher
kurtosis value, while the other two methods render low kurtosis values close to that of the
raw (fault-free) signal. As kurtosis is an indicator that reflects the “peakness” property
of a signal, the relative high ARMED kurtosis value shows a potential possibility of false
indication of the fault in the fault-free signal.
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Table 5.1: Computation time and Kurtosis of Example 1

Raw signal MEDSS Regular SS ARMED

Time(seconds) - 1.3861 0.1227 12.2267

Kurtosis 2.4492 2.9139 2.9234 16.9545

5.3.2 Example 2: Detection of impulsive fault signatures (high SNR)

To illustrate the performance of the proposed algorithm in detecting characteristic im-
pulsive fault signatures, a decaying exponential enveloped sinusoidal impact is simulated
and periodically added to the original fault-free signal. The periodic impact is formulated
as Eq. (5.29):

d[k] =
∞

∑
j=0

damp ··· sin[(kT − jTd − koT )ωs] ··· e−
kT− jTd−koT

tc ···H[kT − jTd − koT ], (5.29)

where H[n] is the Heaviside step function [134]:

H[n] =

⎧⎨
⎩

1, n ≥ 0

0, n < 0
, (5.30)

and the maximum amplitude of the impact damp is 2 mil. Each single impact is modulated
to a sinusoidal form and decays exponentially. ωs = 720π is the angular frequency of
the sinusoidal modulation function. tc = 0.002s is the time constant of the exponential
decaying envelop. The period of the fault Td = 1/6s, which means the simulated fault is
implemented at the frequency of 6Hz. The sampling time T is 0.0002s. ko is the sample
number where the first impact appears and here ko = 209. The periodic impulsive fault
signatures are illustrated in Fig. 5.2.
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Figure 5.2: Impulsive fault signatures
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The additive white Gaussian noise in this example is assumed to be at a low level to
simulate the high SNR (signal to noise ratio) condition. By adding the impulsive fault
signatures and the noise. Eq. (5.28) is changed to be the following Eq. (5.31).

ym[k] =
m

∑
i=1

Aicos(kT ωi +φi)+d[k]+ vs[k], (5.31)

where the sinusoidal components ∑m
i=1 Aicos(kT ωi+φi) are the same as those of Eq. (5.28).

d[k] is formulated in Eq. (5.29). vs is a white noise, vs ∼ N (0,4× 10−4). The fault
detection results of the three methods are illustrated in Figure 5.3, where we can see that all
three schemes can successfully detect the periodic characteristic impulsive fault signatures
in this high SNR condition. It is worth pointing out that the ‘signal’ here is referred to
the defect-related signal. The corresponding residual kurtosis values are shown in Table
5.2, from which it is clear that the kurtosis values rendered by all three methods increase
dramatically from that of the raw signal. The increased kurtosis values show that all of the
three methods indicate the existence of impulsive fault signatures.
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Figure 5.3: Fault detection comparison for faulty signal with high SNR: (a) simulated signal

with fault (low noise); (b) residual of the 4th order MEDSS predictor; (c) residual of the

4th order regular SS predictor; (d) residual of the ARMED predictor.
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Table 5.2: Kurtosis of the raw signals and the residuals in Example 2

Raw signal MEDSS Regular SS ARMED

Fault with high SNR 2.6771 41.7973 7.2264 102.4685

5.3.3 Example 3: Detection of impulsive fault signatures (low SNR)

To further model the low SNR condition for impulsive fault signatures detection, a
relatively high noise is used in this example. Eq. (5.31) is changed to be the following Eq.
(5.32).

ym[k] =
m

∑
i=1

Aicos(kT ωi +φi)+d[k]+ vL[k], (5.32)

where vL[k] represent a white noise sequence, vL ∼ N (0, 0.0144). The rest of the param-
eters are the same as those of Eq. (5.31).

The fault detection results are shown in Figure 5.4. When the MEDSS model or the
ARMED method is used, all 6 impulsive signatures are detected. But the regular SS model
cannot perform fault detection in this case, mainly due to the low SNR. The fault detection
performance of the proposed MEDSS model is better than that of the ARMED method.
From Figure 5.4 (d), we can see that, in addition to noises, the useful fault signature is also
‘washed off’ by the ARMED filter. The similar results are also obtained in kurtosis values,
shown in Table 5.3. The kurtosis of the MEDSS residual is highly enhanced, while the
other two methods show no obvious differences compared to the raw signal. Therefore, we
can conclude that the advantage of the MEDSS filter is further illustrated in this example,
where the fault signal is contaminated by strong noises.

Table 5.3: Kurtosis of the raw signal and the residuals in Example 3

Raw signal MEDSS Regular SS ARMED

Fault with low SNR 2.7235 20.9642 2.9485 3.3502

5.4 Application to Turbine Fault Diagnosis

The same steam turbine generator proposed in Chapter 4, Figure 4.8 is adopted here to
demonstrate the feasibility of the proposed MEDSS method.
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Figure 5.4: Fault detection comparison for faulty signal with low SNR: (a) simulated signal

with fault (high noise); (b) residual of the 4th order MEDSS predictor; (c) residual of the

4th order regular SS predictor; (d) residual of the ARMED predictor. The y-scale of (d) is

changed for clarity purposes and is one-fifth that of (a-c).

Here, we randomly select one dataset during the time period of August 10th, 2005 to
January 15th, 2006 to conduct a more detailed analysis. First, the fault detection perfor-
mance of the MEDSS method and the regular SS method are compared and the results are
shown in Figure 5.5. Both the 4th order and the 6th order models are used to conduct fault
detection. The results of the MEDSS models are shown in Figure 5.5(b) and (c), while the
corresponding results of regular SS models are shown in Figure 5.5(d) and (e). We can
find out that both methods are able to successfully detect the faults. However, the residuals
from the regular SS method are contaminated by more noises compared to that from the
MEDSS scheme.

To further illustrate the superiority of the MEDSS method in the low SNR condition,
another data set is selected and the fault detection result is shown in Figure 5.6. In this
data set, the 8 impulsive fault signatures can be clearly detected by the MEDSS method,
while the fault signature is ‘buried’ in the noise in the regular SS residual. It is clear that
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Figure 5.5: Fault detection of MEDSS vs regular SS method: (a) vibration (mil); (b) resid-

ual of the 4th order MEDSS predictor; (c) residual of the 6th order MEDSS predictor; (d)

residual of the 4th order regular SS predictor; (e) residual of the 6th order regular SS pre-

dictor. The y-scales of (b-e) are changed for clarity purposes and are one-fourth that of

(a).

the MEDSS can minimize the effect of the colored noise and enhance the fault information
in the residual signal.

The fault detection performance of the MEDSS method and the ARMED method are
compared in Figure 5.7. A 4th order and a 6th order MEDSS model are used to conduct
the fault detection, and the corresponding results are shown in Figure 5.7 (b) and (c). In
both cases, the MEDSS filter renders satisfactory fault detection results while the 6th order
MEDSS performs better. The ARMED scheme is also implemented and the result is shown
in Figure 5.7 (d). It can detect most of the fault impacts. However, it should be noted that
the first impact fault within the first 50 samples cannot be detected. As we know, in the
AR method, training (fitting) of the model in the first several iterations is needed, while the
MEDSS algorithm adopts the sinusoidal characteristics and needs no history data to fit the
model.
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Figure 5.6: Fault detection of MEDSS vs regular SS method in low SNR condition: (a)

vibration (mil); (b) residual of the 6th order MEDSS predictor; (c) residual of the 6th order

regular SS predictor. The y-scales of (b-c) are changed for clarity purpose and are one-half

that of (a).
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Figure 5.7: Fault detection of MEDSS vs ARMED method: (a) vibration (mil); (b) residual

of the 4th order MEDSS predictor; (c) residual of the 6th order MEDSS predictor; (d)

residual of the ARMED predictor. The y-scales of (b-d) are changed for clarity purpose

and are one-fourth that of (a).

97



Figure 5.8: 3D plot of the residual of MEDSS predictor for 50 sample sets.

Figure 5.9: 3D plot of the residual of ARMED predictor for 50 sample sets.

98



Figure 5.10: 3D plot of the residual of regular SS predictor for 50 sample sets.

Finally, in this case study, 50 datasets are tested using the three methods. The results
are plotted to illustrate the detection performance in terms of rate of correct detection (or
the rate of missing detection). The fault detection results of the MEDSS method are given
in Figure 5.8. It is clear that the 8 impulsive fault signatures are detected in all 50 sample
sets, thereby indicating an extremely high rate of detection. The results of the ARMED
and regular SS methods are shown in Figure 5.9 and 5.10, respectively. We can see that
the ARMED method can detect 7 faults in most of the datasets. However, the impulsive
signatures between the 30th and the 40th sample sets are vague. The regular SS method
can only detect a few fault impulses in some of the data sets.

5.5 Conclusion

In this chapter, an MEDSS data-driven model is proposed to improve the fault diag-
nosis performance of the regular SS filter. Firstly, we developed a state space form of
the MEDSS filter, which can extract the nominal vibration signals from background noise
and faults. Then, the system matrix of the MEDSS model is adaptively estimated using
a time-weighted-error Kalman filter. Base on the identified model, the MEDSS model is
used as a one-step predictor to generate the residual signal. Fault diagnosis can be real-
ized based on the residual. Three simulation examples of fault-free, fault with high SNR,
and fault with low SNR are provided to demonstrate the fault detection performance of
the proposed method. Finally, the proposed MEDSS method is applied in a case study of
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steam turbine rotor-stator rubbing fault diagnosis. For comparison, the regular SS method
and the ARMED method are also implemented and tested in the simulation study. The
MEDSS model has demonstrated superior performance over the regular SS method and it
also shows comparable or even better performance than the ARMED method in the simula-
tion examples. Specifically, the MEDSS model has shown potential in effectively detecting
characteristic impulsive fault signatures in rotating machines, especially in the low SNR
cases. In the future work, the stability of the proposed MEDSS filter can be studied.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, adaptive model-based fault detection and diagnosis (FDD) and fault-
tolerant control (FTC) are studied. The objective is to investigate and develop adaptive
approaches to achieve better FDD and FTC performances for practical applications. The
results of this research are further summarized as follows:

• In chapter 2, the fault- tolerant shape control (FTSC) problem for nonlinear and non-
Gaussian stochastic distribution system is studied. An innovative adaptive observer-
based fault estimation technique is firstly proposed for a stochastic distribution sys-
tem with time-varying LOCE faults. Simulations under both fault-free and LOCE
fault conditions validate the effectiveness of FDD in the unified framework. Then,
an observer-based fault-tolerant shape controller is developed. Simulation results
demonstrate that the proposed scheme can produce accurate estimation for time-
varying LOCE faults, and in addition, optimized control performance can be achieved.
Further, an application example of soil particle gradation control demonstrates the
feasibility and effectiveness of the proposed adaptive fault estimation and FTSC ap-
proach for particle size distribution (PSD) system shape control in geotechnical pro-
cesses.

• In chapter 3, the FTSC problem for PSD process under simultaneous actuator and
sensor faults is researched. First, time-varying actuator and sensor faults are simul-
taneously estimated using a designed adaptive observer. Then, an FTSC scheme
is proposed using virtual actuator and virtual sensor techniques based on estimated
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faults. Simulation results for emulsion polymerization show that the proposed FTSC
scheme can estimate the time-varying actuator and sensor faults simultaneously and
reach a satisfactory tracking performance.

• In Chapter 4, a sinusoidal synthesis based adaptive tracking (SSBAT) fault diagnosis
approach is proposed. An adaptive data-driven model is constructed based on the si-
nusoidal structure of the vibration signals. The utilization of physical properties into
data-driven model transforms the nonlinear problem into a linear adaptive problem
based on the time-frequency characteristics of sinusoids. Identified using time-series
vibration data, the model then operates as an adaptive predictor for FDD design.
Three simulation examples are performed to illustrate the strong SSBAT tracking
ability, parameter convergence, and fault detection performance, respectively. In ad-
dition, a successful practical application to a steam turbine fault detection is also
presented.

• In Chapter 5, a minimum entropy deconvolution sinusoidal synthesis (MEDSS) model
is proposed to improve the fault detection performance of the regular SS filter. First,
a state space form of the MEDSS filter is developed, which can extract the nominal
vibration signals from background noise and faults. Then, system matrices of the
MEDSS model are adaptively estimated using a time-weighted-error Kalman filter.
Based on the identified model, the MEDSS filter is used as a one-step predictor to
generate the residual signal between the filtered and the measured signal. Fault detec-
tion is further conducted based on the residual. Three simulation examples of fault-
free, fault with high SNR, and fault with low SNR are provided to demonstrate the
fault detection performance of the proposed method. The proposed MEDSS method
is also applied in the steam turbine rotor-stator rubbing fault detection to demonstrate
the enhanced performance.

6.2 Future Work

• Explicit analytical system models for SDC systems are assumed to be known in this
thesis. However, SDC systems are generally complex and accurate analytical models
are hard to derive. In this case, data-driven model based FDD and FTC can be further
developed for practical applications.

• The SSBAT and MEDSS methods proposed in this thesis are currently limited to
detecting impact faults like rotor rubbing, bearing inner/outer race faults, and various
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gear tooth faults. In future work, these two methods can be extended to more general
types of impact faults.

• In this research, a data-driven model incorporating physical properties is used to per-
form FDD. While an analytical rotating machine model can also be developed using
physical principles with an adaptive data-driven based critical parameter identifica-
tion structure, for more sophisticated FDD design.

• Considering multiple process variables, multivariate data fusion, and machine learn-
ing techniques can be applied. These techniques can relax the dependency of fault
diagnostic methods on precise system modeling while maintaining the desired FDD
performance.
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fault-tolerant control. Springer, 2006, vol. 2.

[5] J. Chen and R. J. Patton, Robust model-based fault diagnosis for dynamic systems.
Springer Science & Business Media, 2012, vol. 3.

[6] R. V. Beard, “Failure accomodation in linear systems through self-reorganization.”
Ph.D. dissertation, Massachusetts Institute of Technology, 1971.

[7] H. L. Jones, “Failure detection in linear systems.” Ph.D. dissertation, Massachusetts
Institute of Technology, 1973.

[8] P. Frank, S. Ding, and T. Marcu, “Model-based fault diagnosis in technical pro-
cesses,” Transactions of the Institute of Measurement and Control, vol. 22, no. 1, pp.
57–101, 2000.

[9] E. Chow and A. Willsky, “Analytical redundancy and the design of robust failure
detection systems,” IEEE Transactions on Automatic control, vol. 29, no. 7, pp.
603–614, 1984.

[10] R. Isermann, “Process fault detection based on modeling and estimation methodsa
survey,” Automatica, vol. 20, no. 4, pp. 387–404, 1984.

104



[11] R. J. Patton, P. M. Frank, and R. N. Clark, Issues of fault diagnosis for dynamic

systems. Springer Science & Business Media, 2013.

[12] P. M. Frank and X. Ding, “Survey of robust residual generation and evaluation meth-
ods in observer-based fault detection systems,” Journal of process control, vol. 7,
no. 6, pp. 403–424, 1997.

[13] P. M. Frank and R. Seliger, “Fault detection and isolation in automatic processes,”
C. Leondes (ed.), Control and dynamic systems, vol. 49, pp. 241–287, 2012.

[14] R. Patton and J. Chen, “Robust fault detection using eigenstructure assignment: a
tutorial consideration and some new results,” in Decision and Control, 1991., Pro-

ceedings of the 30th IEEE Conference on. IEEE, 1991, pp. 2242–2247.

[15] N. Viswanadham, V. Sarma, and M. G. Singh, “Reliability of computer and control
systems,” 1987.

[16] A. Emami-Naeini, M. M. Akhter, and S. M. Rock, “Effect of model uncertainty on
failure detection: the threshold selector,” IEEE Transactions on Automatic Control,
vol. 33, no. 12, pp. 1106–1115, 1988.

[17] X. Ding, L. Guo, and P. Frank, “A frequency domain approach to fault detection
of uncertain dynamic systems,” in Decision and Control, 1993., Proceedings of the

32nd IEEE Conference on. IEEE, 1993, pp. 1722–1727.

[18] X. Ding, P. Frank, and L. Guo, “Fault detection via adaptive observers based
on orthogonal functions,” Advanced Information Processing in Automatic Control

(AIPAC’89), p. 95, 2014.

[19] P. M. Frank, “On-line fault detection in uncertain nonlinear systems using diagnostic
observers: a survey,” International journal of systems science, vol. 25, no. 12, pp.
2129–2154, 1994.

[20] P. Frank, X. Ding, and J. Wochnik, “Model based fault detection in diesel-
hydraulically driven industrial trucks,” in American Control Conference, 1991.
IEEE, 1991, pp. 1528–1533.

[21] C. Aubrun, D. Sauter, H. Noura, and M. Robert, “Fault diagnosis and reconfiguration
of systems using fuzzy logic: application to a thermal plant,” International journal

of systems science, vol. 24, no. 10, pp. 1945–1954, 1993.

105



[22] W. Ge and C.-Z. FANG, “Detection of faulty components via robust observation,”
International Journal of Control, vol. 47, no. 2, pp. 581–599, 1988.

[23] S. Simani, “Data-driven design of a PI fuzzy controller for a wind turbine simulated
model,” IFAC Proceedings Volumes, vol. 45, no. 3, pp. 667–672, 2012.

[24] H. Badihi, Y. Zhang, and H. Hong, “Fuzzy gain-scheduled active fault-tolerant con-
trol of a wind turbine,” Journal of the Franklin Institute, vol. 351, no. 7, pp. 3677–
3706, 2014.

[25] S. Ding, P. Zhang, A. Naik, E. Ding, and B. Huang, “Subspace method aided data-
driven design of fault detection and isolation systems,” Journal of process control,
vol. 19, no. 9, pp. 1496–1510, 2009.

[26] R. Isermann, Fault-diagnosis systems: an introduction from fault detection to fault

tolerance. Springer Science & Business Media, 2006.

[27] J. Liu, W. Luo, X. Yang, and L. Wu, “Robust model-based fault diagnosis for pem
fuel cell air-feed system,” IEEE Transactions on Industrial Electronics, vol. 63,
no. 5, pp. 3261–3270, 2016.

[28] L. Wu, W. X. Zheng, and H. Gao, “Dissipativity-based sliding mode control of
switched stochastic systems,” IEEE Transactions on Automatic Control, vol. 58,
no. 3, pp. 785–791, 2013.

[29] J. Liu, S. Laghrouche, M. Harmouche, and M. Wack, “Adaptive-gain second-order
sliding mode observer design for switching power converters,” Control Engineering

Practice, vol. 30, pp. 124–131, 2014.

[30] J. Liu, S. Laghrouche, and M. Wack, “Observer-based higher order sliding mode
control of power factor in three-phase ac/dc converter for hybrid electric vehicle
applications,” International Journal of Control, vol. 87, no. 6, pp. 1117–1130, 2014.

[31] K. Zhang, B. Jiang, V. Cocquempot et al., “Adaptive observer-based fast fault esti-
mation,” International Journal of Control Automation and Systems, vol. 6, no. 3, p.
320, 2008.

[32] K. Zhang, B. Jiang, and P. Shi, “Fast fault estimation and accommodation for dy-
namical systems,” IET Control Theory & Applications, vol. 3, no. 2, pp. 189–199,
2009.

106



[33] M. Liu, D. W. Ho, and P. Shi, “Adaptive fault-tolerant compensation control
for markovian jump systems with mismatched external disturbance,” Automatica,
vol. 58, pp. 5–14, 2015.

[34] X. Zhao, P. Shi, X. Zheng, and L. Zhang, “Adaptive tracking control for switched
stochastic nonlinear systems with unknown actuator dead-zone,” Automatica,
vol. 60, pp. 193–200, 2015.

[35] D. Koenig, “Unknown input proportional multiple-integral observer design for linear
descriptor systems: application to state and fault estimation,” IEEE Transactions on

Automatic control, vol. 50, no. 2, pp. 212–217, 2005.

[36] Q. P. Ha and H. Trinh, “State and input simultaneous estimation for a class of non-
linear systems,” Automatica, vol. 40, no. 10, pp. 1779–1785, 2004.

[37] Z. Gao and H. Wang, “Descriptor observer approaches for multivariable systems
with measurement noises and application in fault detection and diagnosis,” Systems

& Control Letters, vol. 55, no. 4, pp. 304–313, 2006.

[38] Z. Gao and S. Ding, “Sensor fault reconstruction and sensor compensation for a class
of nonlinear state-space systems via a descriptor system approach,” IET Control

Theory & Applications, vol. 1, no. 3, pp. 578–585, 2007.

[39] K. Helland, H. E. Berntsen, O. S. Borgen, and H. Martens, “Recursive algorithm for
partial least squares regression,” Chemometrics and intelligent laboratory systems,
vol. 14, no. 1-3, pp. 129–137, 1992.

[40] S. J. Qin, “Recursive pls algorithms for adaptive data modeling,” Computers &

Chemical Engineering, vol. 22, no. 4, pp. 503–514, 1998.

[41] C. Wei et al., “Adaptive prediction by least squares predictors in stochastic regres-
sion models with applications to time series,” The Annals of Statistics, vol. 15, no. 4,
pp. 1667–1682, 1987.

[42] G. Bastin and M. Gevers, “Stable adaptive observers for nonlinear time-varying sys-
tems,” IEEE Transactions on Automatic Control, vol. 33, no. 7, pp. 650–658, 1988.

[43] R. Marino and P. Tomei, “Global adaptive output-feedback control of nonlinear sys-
tems. i. linear parameterization,” IEEE Transactions on Automatic Control, vol. 38,
no. 1, pp. 17–32, 1993.

107



[44] H. Wang and S. Daley, “Actuator fault diagnosis: an adaptive observer-based tech-
nique,” IEEE transactions on Automatic Control, vol. 41, no. 7, pp. 1073–1078,
1996.

[45] H. Wang, Z. J. Huang, and S. Daley, “On the use of adaptive updating rules for
actuator and sensor fault diagnosis,” Automatica, vol. 33, no. 2, pp. 217–225, 1997.

[46] A. Xu and Q. Zhang, “Fault detection and isolation based on adaptive observers for
linear time varying systems,” IFAC Proceedings Volumes, vol. 35, no. 1, pp. 47–52,
2002.

[47] B. Jiang, M. Staroswiecki, and V. Cocquempot, “Fault diagnosis based on adaptive
observer for a class of non-linear systems with unknown parameters,” International

Journal of Control, vol. 77, no. 4, pp. 367–383, 2004.

[48] B. Jiang and F. N. Chowdhury, “Parameter fault detection and estimation of a class
of nonlinear systems using observers,” Journal of the Franklin Institute, vol. 342,
no. 7, pp. 725–736, 2005.

[49] R. Shahnazi and Q. Zhao, “Adaptive fuzzy descriptor sliding mode observer-based
sensor fault estimation for uncertain nonlinear systems,” Asian Journal of Control,
2015.

[50] M. Defoort, K. C. Veluvolu, J. J. Rath, and M. Djemai, “Adaptive sensor and actuator
fault estimation for a class of uncertain lipschitz nonlinear systems,” International

Journal of Adaptive Control and Signal Processing, vol. 30, no. 2, pp. 271–283,
2016.

[51] B. Jiang, K. Zhang, and P. Shi, “Integrated fault estimation and accommodation
design for discrete-time takagi–sugeno fuzzy systems with actuator faults,” IEEE

Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 291–304, 2011.

[52] S.-P. He, “Fault estimation for ts fuzzy markovian jumping systems based on
the adaptive observer,” International Journal of Control, Automation and Systems,
vol. 12, no. 5, pp. 977–985, 2014.

[53] D. Lu, X. Li, J. Liu, and G. Zeng, “Fault estimation and fault tolerant control of
markovian jump system with mixed mode-dependent time-varying delays via the
adaptive observer approach,” Journal of Dynamic Systems, Measurement, and Con-

trol, 2016.

108



[54] K. Zhang, B. Jiang, and V. Cocquempot, “Adaptive technique-based distributed fault
estimation observer design for multi-agent systems with directed graphs,” IET Con-

trol Theory & Applications, vol. 9, no. 18, pp. 2619–2625, 2015.

[55] T. Li and Y. Zhang, “Fault detection and diagnosis for stochastic systems via output
pdfs,” Journal of the Franklin Institute, vol. 348, no. 6, pp. 1140–1152, 2011.

[56] H. Wang, Bounded dynamic stochastic systems: modelling and control. Springer
Science & Business Media, 2012.

[57] L. Guo and H. Wang, Stochastic distribution control system design: a convex opti-

mization approach. Springer Science & Business Media, 2010.

[58] T. Li, G. Li, and Q. Zhao, “Adaptive fault-tolerant stochastic shape control with
application to particle distribution control,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 45, no. 12, pp. 1592–1604, 2015.

[59] G. Li and Q. Zhao, “Simultaneous actuator and sensor fault estimation for adaptive
stochastic shape control,” in American Control Conference (ACC), 2016. IEEE,
2016, pp. 3868–3873.

[60] T. Li, G. Li, and Q. Zhao, “Fault tolerant shape control for output pdfs tracking
of stochastic distribution systems,” in American Control Conference (ACC), 2014.
IEEE, 2014, pp. 1945–1950.

[61] G. Li and Q. Zhao, “Robust adaptive fault estimation for nonlinear particulate pro-
cess systems,” in Electrical and Computer Engineering (CCECE), 2016 IEEE Cana-

dian Conference on. IEEE, 2016, pp. 1–4.

[62] C. Dodson and H. Wang, “Iterative approximation of statistical distributions and re-
lation to information geometry,” Statistical inference for stochastic processes, vol. 4,
no. 3, pp. 307–318, 2001.

[63] M. G. Forbes, J. F. Forbes, and M. Guay, “Regulatory control design for stochastic
processes: shaping the probability density function,” in American Control Confer-

ence, 2003. Proceedings of the 2003, vol. 5. IEEE, 2003, pp. 3998–4003.

[64] L. Yao, J. Qin, A. Wang, and H. Wang, “Brief paper-fault diagnosis and fault-tolerant
control for non-gaussian non-linear stochastic systems using a rational square-root
approximation model,” Control Theory & Applications, IET, vol. 7, no. 1, pp. 116–
124, 2013.

109



[65] A. F. Santos, F. M. Silva, M. K. Lenzi, and J. C. Pinto, “Monitoring and control of
polymerization reactors using nir spectroscopy,” Polymer-Plastics Technology and

Engineering, vol. 44, no. 1, pp. 1–61, 2005.

[66] D. Winn and M. F. Doherty, “Modeling crystal shapes of organic materials grown
from solution,” AIChE journal, vol. 46, no. 7, pp. 1348–1367, 2000.

[67] T. Crowley, E. Meadows, A. Kostoulas, and F. Doyle III, “Control of particle size
distribution in semibatch emulsion polymerization by surfactant addition,” J. Pro-

cess Control, vol. 10, pp. 419–432, 2000.

[68] P. Daoutidis and M. A. Henson, “Dynamics and control of cell populations in con-
tinuous bioreactors,” in AIChE Symposium Series, vol. 326, 2002.

[69] H. Wang and W. Lin, “Applying observer based fdi techniques to detect faults in
dynamic and bounded stochastic distributions,” International Journal of Control,
vol. 73, no. 15, pp. 1424–1436, 2000.

[70] L. Guo and H. Wang, “Fault detection and diagnosis for general stochastic systems
using b-spline expansions and nonlinear filters,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 52, no. 8, pp. 1644–1652, 2005.

[71] L. Guo, Y.-M. Zhang, H. Wang, and J.-C. Fang, “Observer-based optimal fault de-
tection and diagnosis using conditional probability distributions,” IEEE Transactions

on Signal Processing, vol. 54, no. 10, pp. 3712–3719, 2006.

[72] T. Li, Y. Yi, L. Guo, and H. Wang, “Delay-dependent fault detection and diagnosis
using b-spline neural networks and nonlinear filters for time-delay stochastic sys-
tems,” Neural Computing and Applications, vol. 17, no. 4, pp. 405–411, 2008.

[73] L. Yao, J. Qin, H. Wang, and B. Jiang, “Design of new fault diagnosis and fault
tolerant control scheme for non-gaussian singular stochastic distribution systems,”
Automatica, vol. 48, no. 9, pp. 2305–2313, 2012.

[74] L. Yao, J. Qin, A. Wang, and H. Wang, “Brief paper-fault diagnosis and fault-tolerant
control for non-gaussian non-linear stochastic systems using a rational square-root
approximation model,” IET Control Theory & Applications, vol. 7, no. 1, pp. 116–
124, 2013.

[75] G. Genta, Dynamics of rotating systems. Springer, 2007.

110



[76] M. L. Adams, Rotating Machinery Vibration: From Analysis to Troubleshooting,
2nd ed. CRC Press, Dec 2009.

[77] T. Barszcz and R. B. Randall, “Application of spectral kurtosis for detection of a
tooth crack in the planetary gear of a wind turbine,” Mechanical Systems and Signal

Processing, vol. 23, no. 4, pp. 1352–1365, 2009.

[78] W. Wang and A. K. Wong, “Autoregressive model-based gear fault diagnosis,” Jour-

nal of Vibration and Acoustics, vol. 124, no. 2, pp. 172–179, 2002.

[79] J. Goodwin, Dynamics of Rotor-bearing Systems. Unwin Hyman, 1989. [Online].
Available: http://books.google.ca/books?id=L1awAAAAIAAJ

[80] A. D. Dimarogonas, S. A. Paipetis, and T. G. Chondros, Analytical Methods in Rotor

Dynamics, 2nd ed. Springer, Feb 2013.

[81] P. H. Mathuria, A. Sainagar, M. G. Road, F. Advisor, and P. D. N. Manik, “Lateral
natural frequency of a shaft rotor system by the transfer matrix method.”

[82] S. Dunkerley, On the Whirling and Vibration of Shafts. Harrison and Sons, 1894.
[Online]. Available: http://books.google.ca/books?id=MLJJYAAACAAJ

[83] G. Li, R. Pan, and Q. Zhao, “Robust imbalance fault estimation of a flexible rotor
system,” in American Control Conference (ACC), 2016. IEEE, 2016, pp. 6703–
6708.

[84] M. May, N. Sepehri, and W. Kinsner, “Hydraulic actuator internal leakage detection
using cross-correlation time series analysis,” in ASME/BATH 2014 Symposium on

Fluid Power and Motion Control. American Society of Mechanical Engineers,
2014, pp. V001T01A003–V001T01A003.

[85] H. Endo and R. Randall, “Enhancement of autoregressive model based gear tooth
fault detection technique by the use of minimum entropy deconvolution filter,” Me-

chanical Systems and Signal Processing, vol. 21, no. 2, pp. 906–919, 2007.

[86] W. Wang, “An evaluation of some emerging techniques for gear fault detection,”
Structural Health Monitoring, vol. 2, no. 3, pp. 225–242, 2003.

[87] K. Fyfe and E. Munck, “Analysis of computed order tracking,” Mechanical Systems

and Signal Processing, vol. 11, no. 2, pp. 187–205, 1997.

111



[88] K. Bossley, R. Mckendrick, C. Harris, and C. Mercer, “Hybrid computed order track-
ing,” Mechanical systems and signal processing, vol. 13, no. 4, pp. 627–641, 1999.

[89] H. Vold and J. Leuridan, “High resolution order tracking at extreme slew rates, using
kalman tracking filters,” SAE Technical Paper, Tech. Rep., 1993.

[90] H. Vold, M. Mains, and J. Blough, “Theoretical foundations for high performance
order tracking with the vold-kalman tracking filter,” SAE Technical Paper, Tech.
Rep., 1997.

[91] M.-C. Pan and Y.-F. Lin, “Further exploration of vold–kalman-filtering order track-
ing with shaft-speed information-i: theoretical part, numerical implementation and
parameter investigations,” Mechanical systems and signal processing, vol. 20, no. 5,
pp. 1134–1154, 2006.

[92] S. Qian, “Gabor expansion for order tracking,” Sound and Vibration, vol. 37, no. 6,
pp. 18–23, 2003.

[93] G. C. Goodwin and K. S. Sin, Adaptive filtering prediction and control. Courier
Corporation, 2014.

[94] G. Li, G. L. McDonald, and Q. Zhao, “Sinusoidal synthesis based adaptive tracking
for rotating machinery fault detection,” Mechanical Systems and Signal Processing,
vol. 83, pp. 356–370, 2017.

[95] G. Li and Q. Zhao, “Minimum entropy deconvolution optimized sinusoidal synthesis
and its application to vibration based fault detection,” Journal of Sound and Vibra-

tion, vol. 390, pp. 218–231, 2017.

[96] M. Konert and J. Vandenberghe, “Comparison of laser grain size analysis with
pipette and sieve analysis: a solution for the underestimation of the clay fraction,”
Sedimentology, vol. 44, no. 3, pp. 523–535, 1997.

[97] D. Shi, N. H. El-Farra, M. Li, P. Mhaskar, and P. D. Christofides, “Predictive control
of particle size distribution in particulate processes,” Chemical Engineering Science,
vol. 61, no. 1, pp. 268–281, 2006.

[98] J. Zhou, H. Yue, and H. Wang, “Shaping of output pdf based on the rational square-
root b-spline model,” ACTA Automatica Sinica, vol. 31, no. 3, pp. 343–351, 2005.

[99] W. Yan and X. Li, “Mechanical response of a medium-fine-grained decomposed
granite in hong kong,” Engineering geology, vol. 129, pp. 1–8, 2012.

112



[100] A. Pertew, H. Marquez, and Q. Zhao, “Sampled-data stabilization of a class of non-
linear systems with application in robotics,” Journal of Dynamic Systems, Measure-

ment, and Control, vol. 131, no. 2, p. 021008, 2009.

[101] B. W. Silverman, Density estimation for statistics and data analysis. CRC press,
1986, vol. 26.

[102] D. Shi, N. H. El-Farra, M. Li, P. Mhaskar, and P. D. Christofides, “Predictive control
of particle size distribution in particulate processes,” Chemical Engineering Science,
vol. 61, no. 1, pp. 268–281, 2006.

[103] M. A. Henson, “Distribution control of particulate systems based on population bal-
ance equation models,” in American Control Conference, 2003. Proceedings of the

2003, vol. 5. IEEE, 2003, pp. 3967–3972.

[104] D. L. Boley, “Krylov space methods on state-space control models,” Circuits, Sys-

tems and Signal Processing, vol. 13, no. 6, pp. 733–758, 1994.

[105] T.-J. Su and R. R. RAIG, “Model reduction and control of flexible structures using
krylov vectors,” Journal of guidance, control, and dynamics, vol. 14, no. 2, pp. 260–
267, 1991.

[106] J. Zhang, A. K. Swain, and S. K. Nguang, “Simultaneous robust actuator and sen-
sor fault estimation for uncertain non-linear lipschitz systems,” Control Theory &

Applications, IET, vol. 8, no. 14, pp. 1364–1374, 2014.

[107] F. J. Bejarano, M. Figueroa, J. Pacheco, and J. de Jesus Rubio, “Robust fault di-
agnosis of disturbed linear systems via a sliding mode high order differentiator,”
International Journal of Control, vol. 85, no. 6, pp. 648–659, 2012.

[108] L. Guo and H. Wang, Stochastic distribution control system design: a convex opti-

mization approach. Springer Science & Business Media, 2010.

[109] M. Corless and J. Tu, “State and input estimation for a class of uncertain systems,”
Automatica, vol. 34, no. 6, pp. 757–764, 1998.

[110] J. Zhang, A. K. Swain, and S. K. Nguang, “Detection and isolation of incipient
sensor faults for a class of uncertain non-linear systems,” Control Theory & Appli-

cations, IET, vol. 6, no. 12, pp. 1870–1880, 2012.

113



[111] M. T. Dokucu, M.-J. Park, and F. J. Doyle, “Multi-rate model predictive control of
particle size distribution in a semibatch emulsion copolymerization reactor,” Journal

of Process Control, vol. 18, no. 1, pp. 105–120, 2008.

[112] A. McCormick and A. Nandi, “Cyclostationarity in rotating machine vibrations,”
Mechanical Systems and Signal Processing, vol. 12, no. 2, pp. 225–242, 1998.

[113] M. E. Badaoui, F. Guillet, and J. Daniere, “New applications of the real cepstrum
to gear signals, including definition of a robust fault indicator,” Mechanical Systems

and Signal Processing, vol. 18, no. 5, pp. 1031–1046, 2004.

[114] J. Antoni and R. Randall, “The spectral kurtosis: application to the vibratory surveil-
lance and diagnostics of rotating machines,” Mechanical Systems and Signal Pro-

cessing, vol. 20, no. 2, pp. 308–331, 2006.

[115] A. S. Sait and Y. I. Sharaf-Eldeen, “A review of gearbox condition monitoring based
on vibration analysis techniques diagnostics and prognostics,” in Rotating Machin-

ery, Structural Health Monitoring, Shock and Vibration, Volume 5, T. Proulx, Ed.
Springer, 2011, pp. 307–324.

[116] C. Capdessus, M. Sidahmed, and J. Lacoume, “Cyclostationary processes: appli-
cation in gear faults early diagnosis,” Mechanical Systems and Signal Processing,
vol. 14, no. 3, pp. 371–385, 2000.

[117] M. R. Bai, J. Jeng, and C. Chen, “Adaptive order tracking technique using recursive
least-square algorithm,” Journal of vibration and acoustics, vol. 124, no. 4, pp. 502–
511, 2002.

[118] M.-C. Pan and C.-X. Wu, “Adaptive vold–kalman filtering order tracking,” Mechan-

ical systems and signal processing, vol. 21, no. 8, pp. 2957–2969, 2007.

[119] T.-C. Yeh and M.-C. Pan, “Online real-time monitoring system through using adap-
tive angular-velocity vkf order tracking,” in ASME 2012 International Design En-

gineering Technical Conferences and Computers and Information in Engineering

Conference. American Society of Mechanical Engineers, 2012, pp. 159–163.

[120] M. Bai, J. Huang, M. Hong, and F. Su, “Fault diagnosis of rotating machinery using
an intelligent order tracking system,” Journal of Sound and Vibration, vol. 280, no. 3,
pp. 699–718, 2005.

114



[121] J.-D. Wu, Y.-H. Wang, P.-H. Chiang, and M. R. Bai, “A study of fault diagnosis in a
scooter using adaptive order tracking technique and neural network,” Expert Systems

with Applications, vol. 36, no. 1, pp. 49–56, 2009.

[122] P. D. Samuel and D. J. Pines, “A review of vibration-based techniques for helicopter
transmission diagnostics,” Journal of Sound and Vibration, vol. 282, no. 1, pp. 475–
508, 2005.

[123] A. Gerasimov, O. Morozov, E. Soldatov, and V. Fidelman, “Using the method of
modified linear prediction for robust acoustic coding of speech,” Radiophysics and

quantum electronics, vol. 49, no. 7, pp. 535–539, 2006.

[124] E. George and M. Smith, “Generalized overlap-add sinusoidal modeling applied to
quasi-harmonic tone synthesis,” in Applications of Signal Processing to Audio and

Acoustics, IEEE Workshop. IEEE, 1993, pp. 165–168.

[125] Z. Man, W. Wang, S. Khoo, and J. Yin, “Optimal sinusoidal modelling of gear mesh
vibration signals for gear diagnosis and prognosis,” Mechanical Systems and Signal

Processing, vol. 33, pp. 256–274, 2012.

[126] X. Xia, “Global frequency estimation using adaptive identifiers,” IEEE Transactions

on Automatic Control, vol. 47, no. 7, p. 1189, 2002.

[127] M. Hou, “Estimation of sinusoidal frequencies and amplitudes using adaptive iden-
tifier and observer,” IEEE transactions on automatic control, vol. 52, no. 3, pp.
493–499, 2007.

[128] S. Yang and Q. Zhao, “Real-time frequency estimation of sinusoids with low-
frequency disturbances,” in American Control Conference (ACC), 2011. IEEE,
2011, pp. 4275–4280.

[129] G. McDonald and Q. Zhao, “Model-based adaptive frequency estimator for gear
crack fault detection,” in American Control Conference (ACC), 2011. IEEE, 2011,
pp. 792–797.

[130] S. Yang and Q. Zhao, “Real-time frequency estimation for sinusoidal signals with
application to robust fault detection,” International Journal of Adaptive Control and

Signal Processing, vol. 27, no. 5, pp. 386–399, 2013.

[131] R. McAulay and T. F. Quatieri, “Speech analysis/synthesis based on a sinusoidal
representation,” IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. 34, no. 4, pp. 744–754, 1986.

115



[132] G. L. McDonald, Q. Zhao, and M. J. Zuo, “Maximum correlated kurtosis deconvo-
lution and application on gear tooth chip fault detection,” Mechanical Systems and

Signal Processing, vol. 33, pp. 237–255, 2012.

[133] B. A. Francis and W. M. Wonham, “The internal model principle of control theory,”
Automatica, vol. 12, no. 5, pp. 457–465, 1976.

[134] K. Ogata, Discrete-time control systems. Prentice Hall Englewood Cliffs, NJ, 1995,
vol. 2.

[135] H. Ma and K.-Y. Lum, “Adaptive estimation and control for systems with parametric
and nonparametric uncertainties,” Adaptive Control, pp. 15–64, 2008.

[136] S. Sastry and M. Bodson, Adaptive control: stability, convergence and robustness.
Courier Dover Publications, 2011.

[137] S. M. Kay, Modern spectral estimation. Pearson Education India, 1988.

[138] Y. Yang and Q. Zhao, “Generator thermal sensitivity analysis with support vector
regression,” in American Control Conference (ACC), 2010, June 2010, pp. 944–949.

[139] O. Seryasat, M. Shoorehdeli, F. Honarvar, and A. Rahmani, “Multi-fault diagnosis
of ball bearing using fft, wavelet energy entropy mean and root mean square (rms),”
in 2010 IEEE International Conference on Systems Man and Cybernetics (SMC).
IEEE, 2010, pp. 4295–4299.

[140] G. Mack and V. Jain, “Speech parameter estimation by time-weighted-error kalman
filtering,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 31,
no. 5, pp. 1300–1303, 1983.

[141] T. Yang, J. Lee, K. Y. Lee, and K.-M. Sung, “On robust kalman filtering with for-
getting factor for sequential speech analysis,” Signal Processing, vol. 63, no. 2, pp.
151–156, 1997.

[142] R. Bighamian, H. R. Mirdamadi, and J. O. Hahn, “Damage identification in collo-
cated structural systems using structural markov parameters,” Journal of Dynamic

Systems, Measurement, and Control, vol. 137, no. 4, p. 041001, 2015.

[143] R. A. Wiggins, “Minimum entropy deconvolution,” Geoexploration, vol. 16, no. 1,
pp. 21–35, 1978.

116



[144] H. Yang, J. Mathew, and L. Ma, “Vibration feature extraction techniques for fault
diagnosis of rotating machinery : a literature survey,” in Asia-Pacific Vibration Con-

ference, Gold Coast, Australia, 2003, pp. 801–807.

[145] G. L. McDonald and Q. Zhao, “Multipoint optimal minimum entropy deconvolution
and convolution fix: Application to vibration fault detection,” Mechanical Systems

and Signal Processing, vol. 82, pp. 461–477, 2017.

[146] G. Welch and G. Bishop, “An introduction to the kalman filter. 2006,” University of

North Carolina: Chapel Hill, North Carolina, US, 2006.

[147] T. J. Tarn and J. Zaborszky, “A practical nondiverging filter,” AIAA Journal, vol. 8,
no. 6, pp. 1127–1133, 1970.

[148] R. Randall, N. Sawalhi, and M. Coats, “A comparison of methods for separation of
deterministic and random signals,” International Journal of Condition Monitoring,
vol. 1, no. 1, pp. 11–19, 2011.

117


