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Abstract

Increasing demand for bandwidth-hungry applications, along with the bandwidth scarcity,

has generated a certain momentum toward designing bandwidth-efficient techniques. Re-

cently, multi-way relay channels (MWRCs) have been proposed to improve the spectral

efficiency in wireless systems. The main focus of this dissertation is studying the achiev-

able rates of MWRCs as well as proposing methods to improve it.

In the first part of our work, we focus on the users’ bit mappingand propose a new map-

ping for phase-shift keying modulation which increases theachievable rate and decreases

the bit error rate of a pairwise MWRC. Interestingly, our proposed mapping outperforms

the well-known Gray mapping in terms of both metrics on an additive white Gaussian noise

(AWGN) channel.

Then, the achievable rates of a pairwise MWRC, with a simple memoryless relay, where

the communication happens over a fading channel with AWGN isstudied. For this setup,

we determine what relaying strategy suits best based on the system’s signal-to-noise ratio.

Later, we extend our rate analysis to the case where the relayis more complex and has

memory. First, a symmetric MWRC with AWGN is considered. Forthis setup, the capacity

gap of different relaying strategies are derived and then they are compared with that of one-

way relaying. Second, we consider a pairwise MWRC where the links are asymmetric. We

show that the system’s achievable rate is dependent on the users’ transmission pairing in

this case. An optimal pairing to maximize the achievable rate is also found.

In the last part of our contributions, erasure MWRCs are the subject of interest. For

such channels, we derive an upper bound on the system’s achievable rate and also propose

low-latency data sharing schemes based on fountain coding.Further, we define a measure,

called end-to-end erasure rate, which is used to compare theperformance of our proposed

schemes with the rate upper bound and the achievable rate of one-way relaying.

Summarily speaking, in the MWRCs’ setups studied in this dissertation, multi-way

relaying is beneficial when the number of users and the error (erasure) rate are not large.

Otherwise, one-way relaying may provide higher data rates.
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Chapter 1

Introduction

Bandwidth and energy are the two most precious resources in communication systems. The

exploding demand for high-speed data communications, e.g.multimedia-rich data applica-

tions, has exposed a serious challenge into the telecommunications and information theory

communities across the globe. On one hand, bandwidth-hungry applications constantly

take bite on the currently available frequency range. On theother hand, expansion of the

communications networks has led to an increasing energy consumption and CO2 emission

by information communications technology (ICT) industries.

The importance of achieving energy-efficient communications has two folds: i) Envi-

ronmental causes: It has been reported that ICT-related industries have three percent of

the world-wide energy consumption causing two percent of the global carbon emission [3].

Although the share of ICT in energy consumption looks small,it is expected to rapidly

increase specially in developing counties resulting in higher carbon emission. ii) Oper-

ational cost: Extension of the communications networks andproviding higher data rates

have caused the energy cost to hold a significantly high shareof the operating expenses for

communications service providers. To sustain affordable services for their customers and

increase their revenue, service providers are also interested in developing energy-efficient

methods by researchers.

To overcome the energy consumption issue, there have been efforts in communications

society toward reachinggreen communications. In green communications, we look for new

communication paradigms to lower the energy consumption inICT systems. Figure 1.1

presents a relation between the consumed energy and the datarate over the time. As seen in

this figure, it is forecasted that while data rate and power consumption proportionally have

been increasing in the past years, using new green technologies, we can save on the power

consumption and still increase the data rate.
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Figure 1.1: Relation between bit rate and power consumptionover time (figure is from [1]).

The importance of bandwidth lays on its direct connection with the data rate in a com-

munication system. In early days of digital communications, Shannon showed that the data

rate is directly proportional to the system’s available bandwidth. Thus, it is always desir-

able for a wireless operator to have as much bandwidth as possible for being able to provide

high data rate service to its costumers. However, the bandwidth has a limited operational

range and cannot be freely dedicated to the operators. To better indicate the bandwidth

scarcity, we bring the attention of the reader to Figure 1.2 showing the frequency alloca-

tion in US. For the map of frequency allocation in Canada, theinterested reader is referred

to [4]. As seen in this figure, for each communication application, a fixed frequency chunk

has been assigned and packed into the crowded spectrum map. For each application, the

system should be designed in a way that the application requirements, e.g. data rate, are

met without exceeding its assigned frequency band.

Nowadays, wireless operators are faced with a challenging dilemma. While emerging

popular broadband services, like mobile TV or social networking, have found their way

through the consumers’ market, the operators’ available spectrum has not been much ex-

tended by governing organizations. Thus, to cope with the increasing data rate demand, the

operators are eager to find ways in order to acquire more bandwidth or use the available

spectrum more effectively.

One solution for the operators is to acquire the bandwidth ofthe less popular services

through spectrum auctions. A well-known example of these auctions isAuction 73for the

700 MHz, previously used for analog TV broadcast [5]. The auction was organized by the

Federal Communications Commission (FCC) in 2008 and major wireless operators in US

took part in the auction. Auction 73 raised around 20 billiondollars in total. Consider-

ing the increasing data rate demand, it is not surprising to know that FCC is planning to
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Figure 1.2: Frequency allocation for communications services in US (figure is from [2]).
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hold another auction in 2014 to sell another part of the analog TV broadcast spectrum [6].

Although operators are able to resolve some of their bandwidth issues through auctions, it

costs the operators a significant money to bid on the spectrumand also makes the bandwidth

even pricier!

1.1 Techniques to Provide more Bandwidth Access

Following the above discussion on the bandwidth scarcity and increasing demand for broad-

band data services, researchers are well-motivated by industry to develop methods for com-

munication over frequency bands which are not currently utilized due to technical issues as

well as using the current available bandwidth in a more smartfashion. In the following, we

briefly discuss the state of the art on the developed techniques to achieve these goals.

1.1.1 SHF and EHF Communications

As seen in Figure 1.2, many different frequency chunks have been assigned to mobile ser-

vices across the spectrum map. Current mobile systems (2G, 3G and 4G systems) use

frequency bands in the ultra-high frequency (UHF) band, i.e. 300 MHz to 3 GHz. How-

ever, there are still many unused sections in the super high frequency (SHF), i.e. 3 GHz to

30 GHz, and extremely high frequency (EHF), i.e. 30 GHz to 300GHz, bands which are

licensed for mobile applications.

The most important feature of SHF and EHF frequency sectionsis their significantly

large bandwidth. While the frequency chunks in the UHF band are in the order of tens of

MHz, SHF and EHF can provide bandwidth in the order of hundreds of MHz and even GHz.

Such large bandwidths can easily support broadband data applications. However, there is a

major barrier to use the SHF and EHF frequency bands for data communications. As we go

higher in the frequency, the signal strength attenuates much faster over the distance. This

makes SHF and EHF bands mainly applicable to very-short range communication applica-

tions. This limits the possible applications of SHF and EHF bands. However, academic and

industry researchers plan to employ SHF and EHF bands along with femtocell design [7] to

achieve significantly high data rates in cellular systems.

1.1.2 Dynamic Spectrum Access

Spectrum measurements over different municipal areas haveshown that while for each

application a fixed frequency portion is assigned, most of the time the channel is indeed not

in use. For instance, a spectrum measurement between August31 and September 1, 2004
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in New York City revealed that only 13 percent of the dedicated spectrum were utilized

[8, 9]. This means that fixed spectrum assignment could lead into 87 percent of spectrum

waste. Measurements over other locations across the globe give the same outcome on the

inefficient use of frequency bands.

To improve the spectral-efficiency in the system and fill the time when spectrum sits

idle, some ideas were suggested promoting dynamic channel assignment for users [10,11].

The idea has been developed since then and novel spectrum sharing and dynamic spec-

trum access schemes have been developed unleashing innovative new products and ser-

vices [12, 13]. For instance, a thorough study on the dynamicspectrum access was con-

ducted by defence advanced research project agency (DARPA)whose main goal was devel-

oping techniques for dynamic spectrum access in military applications. Later, based on the

idea of dynamic spectrum access,Cognitive Radio Systems(CRSs) were proposed which

have gained a significant attention in communications society [14–16]. The basic idea be-

hind CRSs is to prioritize users based on their quality of service requirements and allow

them to access the spectrum according to their priorities. Bringing CRSs into reality is still

an ongoing research field facing its own challenges such as developing spectrum sensing

techniques, new physical layer design, and multiple-access schemes.

1.1.3 Efficient Use of Acquired Bandwidth

After acquiring a frequency bandwidth, regardless of the fact whether the bandwidth access

is static or dynamic, it is desirable to use the bandwidth as effectively as possible. Design of

bandwidth-efficient methods have been considered since early days of digital communica-

tions. One important measure in this regard isspectral efficiencyindicating the information

rate (reliably) transmitted over a given bandwidth.

Over that past few decades, various techniques have been developed to improve spectral

efficiency. One recent development is the idea ofnetwork coding[17]. The fundamental

notion of network coding is to allow data mixing at intermediate nodes of the network

instead of only blindly forwarding it. In some situations, it has been shown that network

coding can actually achieve the ultimate data throughput ofthe network [18] which was not

feasible through conventional data forwarding schemes.

Since the proposal of network coding, the communications research community has ap-

plied the concept of network coding into different applications including relay networks. A

good example of the network coding’s application in relay networks is calledtwo-way relay

channels(TWRCs) [19–21]. In a TWRC, two users (fully) share their data through a relay

5



without having direct links. It is shown that TWRCs are able to significantly increase the

data rate compared to the conventional one-way relaying (OWR). In fact, TWRCs exploit

the interference, instead of avoiding it, in order to elevate the system throughput.

Later, Gunduzet al. extended the setup of TWRCs to more than two users and suggested

multi-way relay channels(MWRCs) [22]. In a multi-way relay channel, several users want

to (fully) share data with the help of one or more relays. Instead of treating the data of each

user individually, in an MWRC, relay applies the concept of network coding to deal with

the users’ data in a more smart fashion. Unlike OWR where we have separate sets of data

source and destination, each user serves as both data sourceand destination in an MWRC.

MWRCs are still in their early stage of development. Due to their potential impor-

tance in improving the spectral efficiency, design of rate-efficient MWRCs is considered

in this dissertation. A summary of our work as well as the organization of the presented

contributions in this thesis are provided in the next section.

1.2 Summary of Contributions and Thesis Organization

In this thesis, we first describe the concept of MWRCs in more detail. Then, we pro-

ceed with presenting our contributions that are mostly focused on proposing rate-efficient

schemes to enable data communications for different setupsof MWRCs. We also suggest

some ideas for future research directions.

Chapter 2 focuses on the preliminaries of MWRCs. We present aliterature review on the

development of MWRCs and summarize the state of the art in thefield. Then, we describe

MWRCs in more detail and provide a brief review on different multi-way relaying (MWR)

techniques employed in MWRCs: i) amplify-and-forward (AF), ii) decode-and-forward

(DF), iii) compress-and-forward (CF) and iv) functional-decode-forward (FDF). For each

relaying scheme, its achievable rate is also presented.

One of the first challenges in an MWRC is signal demodulation at the relay. An im-

portant example of these challenges is the existence of ambiguous point(s) in the received

constellation at the relay. The ambiguous point representsthe superposition of two or more

different transmitted symbols by users. Thus, the relay is not able to correctly demodulate

the received signal. Our first concern is to make sure that thereceived constellation at the

relay is ambiguity-free by choosing proper mapping at the user side. Then, we will discuss

design of a set of mappings to decrease the system bit error rate (BER) and also increase

the achievable data rate. The result of our symbol mapping design for TWRCs and pairwise
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MWRCs with phase-shift keying modulation (PSK) is discussed in Chapter 3.

We present an analysis for the achievable rate of memorylessTWRCs in Chapter 4.

Memoryless relaying is important in low-complexity networks, e.g. sensor networks, and

delay-intolerant systems. We compare the achievable rate of AF and demodulate-and-

forward (DMF) which can be considered as DF for memoryless systems. Our results show

that unlike memoryless one-way relaying, increasing users’ signal-to-noise ratio (SNR)

benefits AF more than DMF. Another interesting observation is that while with DMF a

higher data rate is provided for the user whose channel condition is better, with AF the sit-

uation is the reverse. That is, the user with worse channel condition can receive at a higher

data rate. Further, we find that for a TWRC with asymmetric users’ channels, AF can take

advantage of power back-off at the users, without degradingthe data rate, to save energy

while power back-off is not beneficial for DMF. Please note that the results are applicable

to the pairwise MWRCs as well.

Another research problem that we address in this thesis is related to the achievable rates

of MWRCs with symmetric channels and additive white Gaussian noise (AWGN). More

specifically, considering an MWRC withN users, we prove that similar to CF, FDF guar-

antees a gap less than 1
2(N−1) bit from the capacity upper bound while DF and AF are

unable to ensure this rate gap. For DF and AF, we identify situations where they also have

a rate gap less than 1
2(N−1) bit. Then, we compare the performance of the aformentioned

MWR techniques with OWR. We show that although MWR has higherrelaying complex-

ity, surprisingly, it can be outperformed by OWR depending on N and the system’s SNR.

Summarily speaking, for largeN and small users’ transmit power, OWR usually provides

higher rates than MWR.

In addition, we consider the situation where the links between the users and the relay

are not symmetric and have different SNRs. For instance, in afading environment, different

users most likely have channels with different gains resulting in different received SNRs.

In Chapter 6, we first study the achievable common rate of an MWRC, considering the

possible difference between the condition of the users’ channels. Our common rate analysis

reveals that for pairwise MWRCs, the achievable common datarate depends on the order

of users’ transmission pairing (scheduling). This motivates us to find the optimal users’

transmissions pairing maximizing the achievable common rate of the system.

In Chapter 7, we consider an erasure multi-way relay channel(EMWRC) in which

several users share their data through a relay over erasure links. Assuming no feedback

channel between the users and the relay, we first identify thechallenges for designing a
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data sharing scheme over an EMWRC. Then, to overcome these challenges, we propose

practical low-latency and low-complexity data sharing schemes based on fountain coding.

Later, we introduce the notion of end-to-end erasure rate (EEER) and analytically derive it

for the proposed schemes. Using EEER and computer simulations, the achievable rate and

fountain coding overhead of our proposed schemes are compared with the ones of OWR.

This comparison implies that when the number of users and thechannel erasure rates are

not large, our proposed schemes outperform OWR over EMWRCs.

The conclusion of this dissertation along with the future research directions are pre-

sented in Chapter 8. Furthermore, the proofs of the theoremspresented in this dissertation

are brought in the appendix to improve the readability.

8



Chapter 2

Background

In this chapter, we first provide the history of the development of MWRCs. Then, we

present a general system model for MWRCs and then explain existing relaying strategies

for them. The achievable rates of these relaying strategiesare also presented.

2.1 Development of MWRCs

Conventionally, relays are used to assist the data communication in only one direction. That

is, a group of users, serving as data sources, send their datato another group of users, called

data destinations, with the help of one or more relays. In this setup, there is a data flow in

one direction from data sources to the data destinations. This scheme is often called one-

way relaying (OWR). The relaying paradigm eventually changed with the introduction of

two-way relaying (TWR).

Before proceeding with the literature review on TWR and thenmulti-way relaying

(MWR), we first provide an intuition on how the spectral efficiency of a simple relay net-

work can be enhanced. In Figure 2.1, usersA andB want to exchange their data, calledxA

andxB respectively, through a relay, denoted byR. Different relaying approaches can be

employed by the relay to accomplish the task. Figure 2.1(a) depicts OWR where the users

share their data in four time slots. First,xA is sent toB in two time slots and thenxB is

delivered toA in two other time slots. This approach can be enhanced by employing the

concept of network coding [17] (Figure 2.1(b)) in whichR does some operations on the

data instead of simply forwarding them. First, users transmit their data to the relay in two

time slots. Then, the relay XORsxA andxB and broadcastsxA ⊕ xB to both users. Now,

having its own data, each user derives the other user’s data from the transmitted XORed

signal. In this scheme, data exchange between the users is accomplished after three time

slots and its spectral efficiency is43 times better than OWR. This is a simple form of TWR
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where both users are data sources and data destinations. Thespectral efficiency in this ex-

ample can be further improved by employing the network coding at the physical layer. This

scenario is shown in Figure 2.1(c). In this case, instead of combining the users’ data at

the relay, the wireless media is exploited to perform the data combining. For this purpose,

both users transmit simultaneously and their data is in factXORed at the physical layer.

After receiving the XORed data, relay broadcasts it to the users. Using network coding at

the physical layer, the data exchange between the users is done in only two time slots and

its spectral efficiency is two times better than OWR. Note that this solution consumes the

minimum number of time slots for data exchange between the users.

A

A

B

B

A B

A B

Time Slot 1

Time Slot 2

Time Slot 3

Time Slot 4

xA

xA

xB

xBR

R

R

R

(a) Conventional one-way relaying
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B

B

B

Time Slot 1

Time Slot 2

Time Slot 3

xA
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xA ⊕ xBxA ⊕ xB
R

R

R

(b) Two-way relaying with network coding

A

A

B

B

Time Slot 1

Time Slot 2

xA xB

xA ⊕ xBxA ⊕ xB R

R

(c) Two-way relaying with physical-layer network coding

Figure 2.1: Different Relaying Approaches.

Employing TWR to improve the spectral efficiency in a relay network first appeared

in [19, 20]. In these contributions, authors first consider atwo-way relay communication

between two users and exploit network coding and the physical-layer broadcast property of

the wireless channels to improve data throughput. The result is a significant enhancement
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over conventional OWR. They further propose aphysical piggybackingto extend the con-

cept to the networks with more than two users, however, the communication between the

users still happen in the form of TWR.

TWR has been usually studied under a standard framework called two-way relay chan-

nel (TWRC). Basically, a TWRC is similar to the scenario depicted in Figure 2.1 where two

users exchange their data with the help of a relay. There exist extensive studies on TWRCs

considering different aspects of them [21, 23–27]. Further, multi-pair two-way relaying is

considered in some recent works where several pairs of usersexchange their data based on

the concept of TWR [28].

A more general scheme, called multi-way relay channel (MWRC), was later proposed.

In an MWRC, several users exchange their data via the relay. This setup is the extension

of TWRCs to more than two users. MWRCs were first studied by Gunduz et al. in [22]

where they consider a relay network with several clusters ofusers. The users within each

cluster want to fully exchange their data with each other with the help of a relay. For

this setup, the authors find the upper bound on the achievablecommon rate as well as the

achievable rates of different relaying strategies when thelinks between the users and the

relay are symmetric with AWGN. Later, the achievable rates of MWRCs have been studied

for different scenarios, e.g. binary symmetric [29], symmetric Gaussian [30], and finite

field channels [31].

Use of MWRCs is counted as a promising approach to enable multicasting in wireless

networks. Some applications of MWRCs are in the device-to-device communications [32],

file sharing between several wireless devices, or conference calls in a cellular network.

2.2 Data Sharing Model in an MWRC

In an MWRC,N ≥ 2 users communicate their data without having direct user-to-user links.

We name users byu1, u2, . . . , uN and their information message bym1,m2, . . . ,mN . To

overcome the effect of the noise,ui applies channel coding onmi which results in the coded

messagexi. To enable data communication between users, a relayR is employed. Here,

each user aims to decode all other users data as well as to transmit its data to all other users.

In this MWRC, data communication consists of uplink and downlink phases. In the

uplink phase, users transmit their coded data over a multiple access (MAC) channel. Each

user has a limited powerP , thus, for alli, E[x2i ] ≤ P . Assuming a zero-mean Gaussian
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noise with unit variance for relay,nr, the received signal atR is

yr =

N
∑

i=1

xi + nr. (2.1)

Please note that (2.1) is also valid for fading MWRCs when perfect power control [33]

at the users is applied. The system model for MWRCs with fading and imperfect (or no)

power control is discussed later.

Depending on the relaying strategy,R forms its message,xr, based onyr. Then,xr is

broadcast to all users during the downlink phase. The data transmission in the downlink

is in fact a broadcast (BC) channel where each user has side information, i.e. its own

information. The received signal byui in the downlink phase is

yi = xr + ni (2.2)

whereni is ui’s receiver Gaussian noise with zero mean and unit variance.Here, relay has

also a limited powerPr, thus,E[x2r ] ≤ Pr. Figure 6.1(a) and 6.1(b) depict the uplink and

downlink phases in an MWRC. Here, we presented a simple symmetric model for MWRCs

to ease the discussion. However, in Chapter 6, we consider anasymmetric MWRC with

different channel gains for the users.

Relay

u1 u2 ui ui+1 uN−1uN

x1 x2 xi xi+1 xN−1 xN

(a) Uplink phase.

Relay

u1 u2 ui ui+1 uN−1uN

xr

(b) Downlink phase.

Figure 2.2: Demonstration of the uplink and downlink phases.

In this dissertation, we mainly focus on the common rate capacity of MWRCs. The
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common rate capacity is the data rate at which all users can transmit and receive data reli-

ably. According to this definition, if we denote the uplink rate forui byRu
i and the downlink

data rate byRd
i , then, the common rate capacity,Rc, is

Rc = sup{min{Ru
1 , R

u
2 , . . . , R

u
N , Rd

1, R
d
2, . . . , R

d
N}}. (2.3)

For more details on common rate definition and its applications in MWRCs, the reader

is encouraged to see [22] and [34]. Please note that even for asymmetric MWRC with

AWGN, Rc is yet to be known. However, an upper bound onRc can be derived using the

cut-set theorem [35]:

Theorem 2.1 The upper bound on the achievable common data rate of the assumed MWRC,

Rc
UB, is

Rc
UB = min

{

log (1 + (N − 1)P )

2(N − 1)
,
log (1 + Pr)

2(N − 1)

}

(2.4)

Proof: Please see [22].

2.3 Relaying Strategies in MWRCs

As mentioned, after receiving the users’ transmitted signal in the uplink, the relay forms its

message based on the relaying strategy and forwards it to theusers in the downlink. Differ-

ent relaying strategies provide different levels of the performance in the system. In the fol-

lowing, we describe the relaying strategies used in MWRCs indetail and also present their

achievable common data rate when the links are symmetric AWGN channels. A detailed

comparison between the achievable rates of the following relaying schemes is provided in

Chapter 5.

2.3.1 Amplify-and-Forward

Amplify-and-forward (AF) is the simplest relaying strategy in terms of the relaying com-

plexity. AF was first proposed for OWR and is easily adopted inMWRCs. With AF, all

users simultaneously transmit their data over the channel in the uplink phase. After receiv-

ing the users’ signals, the relay then simply amplifies the received signal and broadcasts it

back to all users. The amplification is done such that the transmit power of the relay does

not exceedPr. Thus,xr = α(
∑N

i=1 xi + nr) where

α =

√

Pr

NP + 1
. (2.5)
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After receiving the relay’s broadcast signal, each user then subtracts its own message from

the broadcast message and then decodes the data of all other users. After subtracting its

own signal, the received signal atui is modeled as

yi = α(
∑

j 6=i

xj + nr) + ni = α
∑

j 6=i

xj + (αnr + ni). (2.6)

The signal model in (2.6) is similar to the signal model for anAWGN multiple-access

channel withN − 1 users where the noise isαnr + ni. Thus, it is easy to show that the

achievable common data rate of AF,Rc
AF, is as follows.

Lemma 2.1 In anN -user MWRC with AWGN channels,

Rc
AF =

1

2(N − 1)
log

(

1 +
(N − 1)PPr

1 +NP + Pr

)

(2.7)

is the maximum common data rate that AF can achieve.

2.3.2 Decode-and-Forward

Decode-and-forward (DF) is another relaying strategy commonly used in relay networks.

In DF, all users simultaneously transmit their coded packets to the relay in the uplink phase.

After receiving users’ signals’,R decodes the data of all users. To broadcast in the down-

link phase, relay employs a broadcast scheme based on Slepian-Wolf coding [36] where

m1,m2, . . . ,mN are treated as source messages andmi is considered as the correlated side

information atui [22]. After receivingxr, each user then decodes the data of the rest of the

users.

Lemma 2.2 The maximum achievable common rate for a DF MWRC with AWGN links is

Rc
DF = min

{

log (1 +NP )

2N
,
log (1 + Pr)

2(N − 1)

}

. (2.8)

Proof: See [22].

In (2.8), the first term inside the braces reflects the uplink achievable rate and the second

term is related to the downlink achievable rate.

2.3.3 Compress-and-Forward

Compress-and-forward (CF) was proposed many years ago in the early stages of relay chan-

nels by Cover and El Gamal in [37]. Recently, its applicationfor TWR and MWR has been
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studied [22,38]. In CF , relay quantizes its received signalin the uplink and then compresses

it. Naming the quantized version ofyr by ŷr, we have

ŷr =

N
∑

i=1

xi + nr + nq (2.9)

wherenq is the quantization error. Then, without attempting to decode users’ messages,

relay applies a source coding scheme onŷr and formsxr. The source coding scheme can

be lossless, e.g. Slepian-Wolf [39], or can be lossy like Wyner-Ziv [40]. Then, the relay

broadcastsxr to the users and they decode the other users’ data through thenoisy version

of the compressed relay’s observation. The interested reader is referred to [41] for more

information on the application of CF in relay networks. For the achievable rate of CF in

MWRCs, the following lemma is proved.

Lemma 2.3 The maximum achievable common rate by CF for the described MWRC is

Rc
CF =

1

2(N − 1)
log

(

1 +
(N − 1)PPr

1 + (N − 1)P + Pr

)

(2.10)

Proof: Please see [22].

It can be shown that for an MWRCs with symmetric channels and AWGN, CF achieves

the common rate capacity to within 1
2(N−1) bit.

2.3.4 Functional-Decode-Forward

Ong et al. propose a relaying strategy for MWRCs, called functional-decode-forward

(FDF) [29, 34]. FDF is based on the use of nested lattice codes[42] at the users to encode

their messages. Lattice-based relaying was initially considered for TWRCs resulting in sig-

nificant performance improvement [27,43]. Namet al. show that nested lattice codes indeed

achieve to within1
2 bit of the TWRCs’ capacity even when the users’ channels are asym-

metric. Lattice-based relaying can also be used for data transmission from several sources

to a destination in a cooperative network and is often calledcompute-and-forward [44].

For an MWRC with FDF, the uplink and downlink phases are divided intoN − 1 MAC

and BC slots respectively [34]. Users encode their data witha special class of lattice codes

and in each MAC slot, a pair of users transmits their coded packets to the relay. Denoting

the relay’s received signal atlth uplink slot byyr,l, we have

yr,l = xl + xl+1 + nr (2.11)

for l = 1, 2, . . . , N − 1. Due to the special structure of nested lattice codes,R is able to

directly decode the sum of the users’ data instead of decoding them separately. Thus, the
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relays message atlth downlink slot isxr,l = xl ⊕ xl+1. After N − 1 downlink time slots in

whichR sends its messages, each user has receivedN−1 independent linear combinations

of the other users’ data. Hence, it can decode the data of all of them. Please note that each

user on average transmits in only2N of the uplink phase, hence, it can upscale its transmit

power toNP
2 without violating the users’ average power constraint. Please note that in the

MWRCs with FDF, users transmit to the relay in pairs. In otherwords, only two users

transmit their data to the relay at each uplink slot. We referto this approach bypairwise

MWRCs.

The following theorem is proved [34] for the achievable rateof FDF.

Lemma 2.4 The maximum achievable common rate of FDF over an MWRC with AWGN

links between the users and the relay is

Rc
FDF = min

{

log
(

1
2 + NP

2

)

2(N − 1)
,
log (1 + Pr)

2(N − 1)

}

. (2.12)

Proof: Please see [34].

Similar to DF, the first and second terms between the bracketsin (2.12) present the

uplink and downlink achievable rates by FDF respectively.

Later, we consider a simpler version of FDF, called demodulate-and-forward (DMF),

used for memoryless relaying. In DMF, the relay simply demodulates the modulo-sum of

the users’ transmitted symbols and broadcasts it to the users. The scheme is explained with

more details in Chapter 4.
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Chapter 3

Bit Mapping Design for FDF
MWRCs with PSK Modulation

In a system employing physical-layer network coding, the superimposed constellation at

the relay may have ambiguity where one received signal is associated with more than one

possible combination of users’ data. In this chapter, we findthe necessary and sufficient

condition on a user bit mapping which removes this ambiguityfor phase shift keying (PSK)

modulation. Further, we introduce the concept of semi-Graymapping which improves the

system BER performance and achievable rate.

3.1 Introduction

As mentioned in the previous chapter, in an FDF MWRC, the relay directly decodes the

modulo-sum of the users’ transmitted messages. Before proceeding to the decoding, the

relay needs to first demodulate the sum of the users’ transmitted symbols. Note that due

to simultaneous users’ transmissions, relay receives the superimposed version of the users’

transmitted constellation.

For a fixed modulation scheme at the users, the performance ofthe decoding at the

relay depends on the users’ symbol mapping. The first performance issue which needs

consideration is the ability of demodulating the modulo-sum of the users’ data without

ambiguity. For conventional modulation schemes and assuming perfect power control and

synchronization at the user side, the generated constellation at the relay usually has at least

one point associated with more than one combination of the users’ constellation points.

This in turn causes a demodulation ambiguity at the relay which should be resolved. When

power control and synchronization at the users are imperfect, instead of ambiguity points,

constellation points at very small distance from one another will be formed at the relay.
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This will significantly increase the bit error rate (BER) of the system. Thus, resolving the

ambiguity in the ideal case would immediately benefit any practical case too.

The signal ambiguity at the relay can be handled by using a non-binary demodulation at

the relay proposed in [24] when users apply pulse amplitude modulation (PAM) or quadra-

ture amplitude modulation (QAM). While a binary system needs simple XOR operation,

non-binary schemes are not as simple. Hence, it is a matter ofinterest to design binary de-

modulation schemes without ambiguity. For this purpose, the authors propose a new PAM

scheme in [45] which modifies the spacing between PAM constellation points. Although

this method can remove the ambiguity, the non-uniform spacing of PAM points results in

a smaller noise margin and higher BER at the relay. It should be added that the proposed

demodulation schemes in [24] and [45] do not include phase modulation, e.g. PSK.

In this work, we focus on designing simple modulation/demodulation scheme for FDF

TWRCs (and similarly pairwise MWRCs) when PSK modulation isused for data commu-

nication. To this end, we resolve the ambiguity through careful mapping of the symbols by

finding the necessary and sufficient condition of the mappingfor an ambiguity-free demod-

ulation at the relay. A user mapping holding this condition is called alegitimatemapping.

Since our solution is not based on modifying the spacing between constellation points,

the BER is not compromised. In fact, we find a set of legitimatemappings that even im-

prove the BER. For this, we use a symbol labeling at the users that results in a superimposed

constellation at the relay whose minimum-distance points are Gray-labeled. Thus, the la-

beling of minimum-distance points differs in only one bit1. In this case, the superimposed

constellation is said to besemi-Graymapped. Notice that the user constellation may not

be Gray-labeled. Our simulation results confirm that the semi-Gray scheme outperforms

binary reflected Gray mapping (BRGM) which is shown to be the optimal mapping for

conventional systems over AWGN channels in high SNR regime [47]. Further, under bit-

interleaved coded modulation (BICM), our proposed semi-Gray mapping achieves higher

rates than BRGM. Convergence to the achievable rate of codedmodulation (CM) also oc-

curs at much lower SNRs.

This chapter is organized as follows: Section 3.2 describesthe system model and defines

the considered problem. The properties of the received superimposed constellation at the

relay are identified in Section 3.3. Our proposed symbol mapping and some analytical

1The bit error rate of a constellation in the high SNR region can be written in the form ofk1k2Q(dmin/2σ)
[46]. Here,dmin is the minimum distance of the constellation andσ2 is the noise variance. Also,k1 represents
the average number of constellation points at distancedmin andk2 is the average number of mapping bits that
the points in distancedmin differ. The minimum value ofk2 is 1 which is achieved by our proposed labeling.
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performance analysis are presented in Section 3.4. Section3.5 evaluates the performance

of our proposed set of mappings through simulations. The work of this chapter is concluded

in Section 3.6.

3.2 Preliminaries

3.2.1 System Model

Here, we consider a FDF TWRC with a relayR and two usersu1 andu2 communicating

over AWGN channels. The system model can be readily extendedto pairwise FDF in

MWRCs. Users apply power control and are synchronized at thesymbol and phase level

[48], however, our symbol mapping study is still helpful when these assumptions do not

hold perfectly. Users and the relay applyM -PSK modulation,M ≥ 4 andM = 2k, where

k is a positive integer.

Without loss of generality, it is assumed that the users’ constellation has one point on

(1,0) which is assigned to the all zero symbol. We name the constellation points, starting

counter clockwise from the point on (1,0), byC0, C1, . . . , CM−1. We assume similar sym-

bol mappings for both users. We like to have binary operationat the relay such that users

send their data symbols to the relay in time slot 1 while in time slot 2, relay broadcasts the

bit-wise XOR of the users’ transmitted symbols. Denoting the users transmitted symbol by

Su1 andSu2, the relay wants to sendSr = Su1 ⊕Su2 back to the users. HavingSr and their

own data, each user can extract the other user data by a simplebit-wise XOR.

3.2.2 Statement of the Problem

The received constellation at the relay,Cr, is the superimposition of the two users constel-

lations. Although the size ofCr is larger thanM , only M XOR sequences are associated

with it. Thus, the relay can still use a constellation withM points to transmitSr to the

users. Figure 3.1 showsCr when 8-PSK is used and the synchronization and power control

are accurate. Notice that in Figure 3.1, there is a constellation point at (0,0) associated with

eight different pairs of(Su1 , Su2). If the XOR value of these pairs differ from each other,

an ambiguity will occur, i.e., the relay cannot decide whichof the possible XOR values is

correct.

If the synchronization or power control is not perfect, there may not be any ambiguity in

Cr, but small minimum Euclidean distance is an issue. Figure 3.2 shows one such case with

a small power control error. If the XORs of the opposite points in the constellation are not
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equal, the points formed around(0, 0) will have different mappings causing a smalldmin

and therefore a high error probability. Thus, a mapping which removes the ambiguity under

perfect power control is helpful in the case of imperfect power control by ensuring that the

closest points inCr (points around(0, 0) in Fig. 3.2) have the same labeling. As a conse-

quence, the minimum distance among the points with non-identical labels is improved. In

the rest of this chapter, we assume perfect synchronizationand power control.
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Figure 3.1: Transmitted and received constellations for an8-PSK system.
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Figure 3.2: Transmitted and received constellations for an8-PSK system when power con-
trol is not accurate.
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3.2.3 Definitions

Later, we use the known BRGM and set-partitioning mappings for performance studies.

Hence, we review them.

A BRGM of orderM is derived byM − 1 recursive reflections of the binary mapping,

(0, 1). In the recursive reflection to construct the mapping of order i from i − 1, first we

reflect the mapping of orderi − 1. Then, we add 0 to the left of each mapping in the first

half of the resulted sequence and put 1 at the left of the mappings in the second half. BRGM

has a unique property where neighboring labels are different in only one bit. Examples of

BRGM for 8-PSK and 16-PSK are presented in Table 3.1 and 3.2 respectively.

Another important mapping proposed for applications in coded modulation (CM) sys-

tems is the set-partitioning mapping proposed by Ungerboeck in [49]. The purpose of this

mapping is partitioning the constellation points into subsets with increasing minimum dis-

tance. The importance of set-partitioning labeling is thatunder sequential decoding it results

in the maximum achievable rate. Please notice that set-partitioning mapping for anM -PSK

constellation results in natural mapping for the constellation points from 0 toM − 1. Table

3.1 and 3.2 give examples for set-partitioning mappings for8-PSK and 16-PSK.

3.3 Properties of the Relay’s Received Constellation (Cr)

Now, we briefly describe the structure ofCr for any arbitrary PSK modulation under perfect

power control and synchronization and then find its minimum Euclidean distance.

Lemma 3.1 Cr has M2

2 + 1 points. One of these points is located at (0,0) and the rest are

located onM
2 co-centered circles with different radii.

Proof: See Appendix. �

We denote theM2 groups (circles) stated in Lemma 3.1 byg1, g2, . . . , gM
2

starting from

the closest group to the center. All points inCr are associated with a unique combination

of users pair of symbols except the center point which represents the combination of any

two opposite points on theM -PSK constellation. Since the mappings of these points are

different, their XOR cannot be all zero symbol. In fact, depending on the users’ mapping,

the center point can take any possibleM−1 XOR values, namelyA1, A2, . . . , AM−1, other

than all zero symbol,A0.

Theorem 3.1 givesdmin of Cr, but we state the following lemma first.
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Lemma 3.2 The distance between a point ingi and its neighbor fromgi+1 is independent

of i and equal to

dn =

√

2

[

1− cos

(

2π

M

)]

= 2 sin
( π

M

)

. (3.1)

Proof: AssumeP1 = Cj +CM/2+j−i−1 represents an arbitrary point ingi. The closest

point toP1 ongi+1, calledP2, is in the form ofP2 = Cj+CM/2+j−i−2. Thus, if we denote

the distance between two points byd(·, ·), thend(P1, P2) = d(CM/2+j−i−1, CM/2+j−i−2).

This is the distance between two neighboring points on theM -PSK constellation which is

equal todn in (3.1). �

Theorem 3.1 The minimum Euclidean distance ofCr is

dmin = 2

[

1− cos

(

2π

M

)]

(3.2)

anddmin happens between two neighboring points ong1 and also between two neighboring

points which one of them is located ongM
2
−2 and the other ongM

2
.

Proof: See Appendix. �

3.4 Symbol Mapping Strategy for PSK

3.4.1 Legitimate Mappings

Since the only ambiguity point inCr is the (0,0) point, for anM -PSK mapping not to

cause any ambiguity, the XORs of its opposite points must allbe equal. We refer to such a

mapping as a legitimate mapping.

It has been shown in [47] that BRGM is the optimal mapping for PSK in terms of

BER. We show that it is also a legitimate mapping. It is easy toshow that for a 4-PSK

(QPSK) constellation, BRGM is a legitimate mapping. Now, BRGM for anyM ≥ 8, S, is

constructed from BRGM forM4 , S′, as follows, where0 ≤ i < M
4 -PSK

Si = (00S′
i), SM

4
+i = (01S′

i), SM
2
+i = (11S′

i), S 3M
4

+i = (10S′
i). (3.3)

Now, for any0 ≤ j < M
2 , Sj ⊕ SM

2
+j = (110 . . . 0). Thus, BRGM is legitimate.

Set-partitioning is also a legitimate mapping because in the set-partitioning mapping,

the mapping of every two opposite points differ in their lastbit. Hence, the XOR of any

two opposite constellation points gives(10 . . . 0).

To this point, we discussed what mappings do not cause ambiguity in the system. Com-

paring the performance of different legitimate mappings isaddressed in the following. In
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fact, we find out that BRGM, although a legitimate mapping, isnot a desired mapping in

terms of the BER and achievable rate. As a consequence, it is important to look for other

legitimate mappings that improve these performance metrics.

3.4.2 Semi-Gray Mapping forCr

It is shown in [50] that BRGM is optimal for PSK, PAM and QAM modulation and gives the

lowest average probability of error. Also, Caireet. al[51] show that BRGM is BER-optimal

when BICM is used and they conjecture that it maximizes the capacity.

Even if users apply BRGM, it does not mean that the superimposed constellation at the

relay is Gray-labeled or has its desired properties. This hints that a careful mapping must be

performed at the user side, which in turn motivates us to introduce the concept ofsemi-Gray

mapping.Cr is semi-Gray mapped if any two points of it with distancedmin differ in only

one bit. While in BRGM any point differs in maximum one bit from its closest neighbors,

here, the focus is only on pairs with the minimum distancedmin. Please notice that we

use the semi-Gray mapping term for both user and relay interchangeably. By semi-Gray

mapping for users, we mean a legitimate mapping at the users which results in a semi-Gray

mapped constellation at the relay.

Theorem 3.2 A legitimate mapping at the users results in a semi-Gray mapping at the

relay if and only if for anyi = 0, 1, . . . ,M − 1, Si andSi+2 differ in only one bit. Here, if

i+ 2 > M − 1, we considerSi+2−M instead ofSi+2.

Proof: See Appendix. �

Corollary 3.1 The superimposition of two PSK constellations with BRGM is not semi-

Gray.

Proof: In BRGM, for anyi, Si andSi+2 differs in two bits. �

Corollary 3.2 Except for QPSK, set-partitioning mapping is not semi-Gray.

Proof: Since set-partitioning mapping for PSK results in natural mapping, clearly, not

all Si andSi+2 differ in one bit. �

We like to find a legitimate mapping forM -PSK such that it results in a semi-Gray map-

ping at the relay. To this aim, we use a technique similar to the approach used for generat-

ing BRGM [50]. Assume thatG0, G1, . . . , GM
2
−1 denotes BRGM forM2 -PSK modulation.

To build the desired mapping, we assign0G0, 0G1, . . . , 0GM
2
−1 to the even constellation
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points and1G0, 1G1, . . . , 1GM
2
−1 to the odd constellation points. Now, it is easy to show

that the XORs of every two opposite constellation points areequal. Also, according to The-

orem 3.2, the mapping is semi-Gray. We call this mappingreflected semi-Graymapping.

In addition to the above example, one can find other legitimate mappings resulting

in semi-Gray mapping. In Section 4.4, we compare the performance of some of these

mappings.

Remark 3.1 our discussion can be extended to other modulation schemes depending on

the constellation shape. For instance, Figure 3.3(a) and Figure 3.3(b) show two different

constellations for 8-QAM [52]. It can be shown that while onecan find a semi-Gray map-

ping for the constellation in Figure 3.3(b), there is no semi-Gray mapping for Figure 3.3(a).

Both constellations, however, have legitimate mappings, because they cause ambiguity only

at (0,0).
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Figure 3.3: Two different constellations for 8-QAM.

3.4.3 Achievable Uplink Rate Analysis

The symbol mapping at the users can also affect the achievable rate of the system in the

uplink, i.e. users to relay transmission. To this end, we findthe achievable rates of our

proposed mappings under CM and BICM in the uplink. Then, we use the derived rates to

compare the performance of different symbol mappings. It isassumed that a user sends

each of the PSK constellation points with equal probability.
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It is worthy to mention that the FDF rates presented in Chapter 2 are for the ideal case

where the relay uses Gaussian modulation. In a practical system, due to the infeasibility of

the Gaussian modulation, the achievable rates are smaller when common modulations are

used. Note that CM and BICM can be built based on the (nested) lattice codes [53].

Assumexr ∈ {A0, A1, . . . , AM−1} is the bitwise XOR of the users data. Notice that

xr is the desired information to be decoded at the relay. Also,yr represents the received

signal at the relay. Thus, the transmission from the users tothe relay can be viewed as a

virtual single-input single-output channel whose input isxr and its output isyr. Then, the

achievable rate of this channel is

R = I(xr; yr) = Exr,yr

[

log2
p(yr|xr)
p(yr)

]

. (3.4)

Notice that for a pointz from Cr with mappingxr, the relay receives the correct symbol if

it detects any of the constellation points with mappingxr which may not necessarily bez.

Thus,

p(yr|xr) =
∑

z∈Cxr
r

p(yr|z)p(z)
p(xr)

, p(yr) =
∑

z∈Cr
p(yr|z)p(z) (3.5)

whereCxr
r denotes the points ofCr with mappingxr. Now, consideringp(xr) = 1/M,∀xr ∈

{A0, Aa, . . . , AM−1}, (3.4) can be rewritten as

R = log2 M − Exr,yr











log2

∑

z∈Cr
p(yr|z)p(z)

∑

z∈Cxr
r

p(yr|z)p(z)











. (3.6)

Similarly, when BICM is applied, ifb denotes a binary random variable for the users

data bits, we have

R = I(xr; yr) = log2M −
log2 M
∑

i=1

Eb,yr













log2

∑

z∈Cr
p(yr|z)p(z)

∑

z∈Ci
Rb

p(yr|z)p(z)













(3.7)

whereCi
Rb

represents the constellation points inCr whoseith bit of mapping isb. For the

simplicity of presentation, we skip deriving the analytical form of the probability distrivu-

tions and derive the capacity for the proposed schemes through computer simulation.

3.5 Simulation Results

In this section, we compare the performance of different mappings in terms of their BER

and achievable rate. Please note that the BER and achievablerates are calculated at the
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relay. While many user mappings result in semi-Gray mappingat the relay, we consider

two of them. The first mapping is reflected semi-Gray mapping and the second one is

an arbitrary semi-Gray mapping, both presented in Table 3.1and Table 3.2. We compare

the BER performance of these two semi-Gray mappings with BRGM. Also, for achievable

rates’ comparison, we compare the performance of semi-Graymapping with BRGM and

set-partitioning mapping under BICM and CM. The simulations are performed for 8-PSK

and 16-PSK.

BRGM (000)(100)(101)(111)(110)(010)(011)(001)
Reflected semi-Gray (000)(100)(001)(101)(011)(111)(010)(110)
Arbitrary semi-Gray (000)(111)(001)(110)(101)(010)(100)(011)

Set-partitioning (000)(001)(010)(011)(100)(101)(110)(111)

Table 3.1: Different mappings for 8-PSK.

BRGM (0000)(0001)(0011)(0010)(0110)(0111)(0101)(0100)
(1100)(1101)(1111)(1110)(1010)(1011)(1001)(1000)

Reflected semi-Gray (0000)(1000)(0100)(1100)(0101)(1101)(0111)(1111)
(0110)(1110)(0010)(1010)(0011)(1011)(0001)(1001)

Arbitrary semi-Gray (0000)(1111)(1000)(0111)(1100)(0110)(0100)(1110)
(0101)(1010)(1101)(0010)(1001)(0011)(0001)(1011)

Set-partitioning (0000)(0001)(0010)(0011)(0100)(0101)(0110)(0111)
(1000)(1001)(1010)(1011)(1100)(1101)(1110)(1111)

Table 3.2: Different mappings for 16-PSK.

Figure 3.4 shows the BER of BRGM, reflected semi-Gray and the arbitrary semi-Gray

mappings in terms of the user transmitted SNR. We consider both cases of perfect and

imperfect power control at the users. Here, both semi-Gray mappings outperform BRGM

in higher SNRs and have the same BER performance in high SNR region. However, in low

SNRs, we can see that while BRGM and reflected semi-Gray mappings have almost the

same performance, the arbitrary semi-Gray mapping has a higher BER. This comes from

the mapping of theCr points with the second smallest distance afterdmin, calledds. With

BRGM, points with distanceds are all Gray-mapped (i.e., differ in only one bit) at the relay,

while for the chosen arbitrary semi-Gray mapping, none of these points are Gray-mapped.

On the other hand, using the reflected semi-Gray mapping, half of the points with distance

ds are Gray mapped. Hence, it has a lower BER compared to the arbitrary semi-Gray
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mapping and a slightly higher BER compared to BRGM.
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Figure 3.4: BER performance of the relay when users apply 8-PSK modulation.

Figure 3.5 represents the BER performance of three different mappings for 16-PSK

modulation. Similar to the previous case, here, we have BRGM, reflected semi-Gray map-

ping and the arbitrary semi-Gray mapping. Again, we see a performance improvement

by both reflected semi-Gray and arbitrary semi-Gray mappings in high SNRs compared to

BRGM. Since the superimposed constellation for 16-PSK is more sensitive to power control

error than 8-PSK, in this figure we use a smaller deviation in the power control compared

to Figure 3.4.

Figures 3.6 and 3.7 depict the comparison between the achievable rates of BRGM, semi-

Gray and set-partitioning mappings under BICM and CM. As we can see, in higher SNRs,

reflected semi-Gray outperforms other mappings and decreases the gap between BICM and

CM.
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Figure 3.5: BER performance of the relay when users apply 16-PSK modulation.

3.6 Conclusion

In this chapter, we studied the symbol mapping for applying simple bitwise XOR detection

at the relay when PSK modulation is used. First, we characterized the received constellation

at the relay. Then, we found a set of mappings for the users, called legitimate mappings,

which prevent decoding ambiguity at the relay. Further, we introduced the concept of semi-

Gray mapping at the relay where the constellation points with distancedmin are Gray-

mapped. The necessary and sufficient condition for a legitimate mapping at the users which

generates a semi-Gray mapping at the relay was also found. Our simulations showed that a

semi-Gray mapping can generally improve the BER and achievable rate in high SNRs, but

the performance of different semi-Gray mappings varies in low SNRs. Finding the optimal

semi-Gray mapping is an open problem for future work. Since communication systems

typically operate in small error rate regions, this optimalmapping should guarantee the

lowest BER in medium to high SNR regime.
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Figure 3.6: Achievable rates of 8-PSK modulation.
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Chapter 4

Achievable Rates of Memoryless
TWRCs

In this chapter, we study AF and DMF, in terms of their achievable data exchange rate, for a

memoryless TWRC. Our results show that unlike memoryless one-way relaying, increasing

users’ SNR benefits AF more than DMF. Another interesting observation is that while with

DMF a higher data rate is provided for the user whose channel condition is better, with

AF the situation is the reverse. Further, we find that for a TWRC with asymmetric users’

channels, AF can take advantage of power back-off at the users, without degrading the data

rate, to save energy.

4.1 Introduction

In a memoryless relaying scenario, the relay performs only simple operations on its current

received signal. Such systems are found in delay-intolerant or sensor network applications

[48]. Since AF relay just amplifies its received signal, it can be readily used in memoryless

MWRCs. To use DF in a memoryless MWRC, demodulate-and-forward (DMF) [24,54] is

proposed. In DMF, the relay first demodulates its current received signal and then forwards

it to the users. The main focus of this chapter is studying theachievable data rate of AF

and DMF for practical memoryless TWRCs. While we discuss TWRCs, the arguments are

valid for pairwise MWRCs as well.

In this chapter, it is assumed that users want to exchange data through a memoryless

relay over a fading environment with AWGN. For simplicity ofthe analysis, similar to [48]

and [54], we assume that BPSK is used for DMF. However, our rate analysis approach can

be easily extended to other modulations schemes.

Based on the considered TWRC setup, we find the achievable data reception rate for
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each user, which is defined as the rate that the user can receive data from the other user.

Then, we determine the users’ data exchange rate which is theminimum of the two users

reception rates. Note that the data exchange rate represents the common rate at which both

users can share data.

Our study reveals that for memoryless relaying over a Rayleigh fading environment, AF

generally achieves better performance. More specifically,by increasing the users’ SNR, AF

achieves higher data exchange rates than DMF for a fixed relaySNR. This is opposite to

the behavior seen in memoryless one-way relaying [55]. Also, we show that, surprisingly,

the user with worse channel condition has a higher data reception rate than the other user

when AF is used.

A practical application of our rate analysis is for TWRCs with asymmetric users’ chan-

nels. When users have asymmetric fading characteristics, we observe that DMF provides

almost equal reception rate for both users while users have different reception rates in AF.

Now, if a symmetric data exchange rate is intended, AF can be more power-efficient by

decreasing the transmission power of the user with better channel condition without de-

grading the data rate. This is a valuable observation for energy-limited systems like sensor

networks.

Here is the organization of the chapter. Section 4.2 presents the system model and de-

scribe AF and DMF in more detail. Then, the rate analysis for AF and DMF is presented

in Section 4.3. Numerical examples are provided in Section 4.4. Finally, Section 4.5 con-

cludes the chapter.

4.2 System Model

Here, we denote users byu1 and u2 and the relay byR. In the first time slot, called

multiple access (MAC) phase,u1 andu2 simultaneously transmit their coded data bits,x1

andx2, with powerP1 andP2 respectively. We assume that each user transmits 0 or 1 with

equal probability. Also, there is no direct link between theusers. Then,R broadcasts the

amplified version of the received signal (for AF) or the XOR ofthe messages (for DMF)

in the broadcast (BC) phase with powerPr. Please note that the relay does not attempt to

decode the users data. Knowing its own data, each user then subtracts its data from the

relay broadcast message and retrieves the other users transmitted bit and proceed with data

decoding.

The communication between the users and the relay takes place over a fading channel
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with Gaussian noise. The channel gains fromu1 to R and fromu2 to R are0 ≤ h1 and

0 ≤ h2 respectively. Further, the channels are assumed to be reciprocal. As we discuss later,

in AF, each user has to know its own channel gain, but this assumption is not necessary

for DMF. Also, the relay knows bothh1 andh2. Without loss of generality, we assume

h1P1 ≤ h2P2.

To evaluate the data exchange rate in a memoryless system, weneed to take the effect

of the modulation into account. Although the Gaussian modulation gives the highest rate, it

is not feasible in practice. Using BPSK is appropriate for memoryless relaying [48,54] and

we accommodate it here for the relay and users.

4.2.1 Signal Modeling in the MAC Phase

When the users transmit their data to the relay, channel superimposes their transmitted

signal. Thus, the arrived signal atR in the MAC phase is

yr = h1
√

P1x1 + h2
√

P2x2 + nr (4.1)

wherenr is the Gaussian noise with varianceσ2
r . Although the MAC phase is similar for

both AF and DMF, their BC phases are different. In the following, we present the BC model

for AF and DMF separately.

4.2.2 Signal Modeling for AF in the BC Phase

To keep the output power limited toPr, R amplifies the received signal by

α =

√

Pr

h21P1 + h22P2 + σ2
r

. (4.2)

and then transmits

xr = αyr = α(h1
√

P1x1 + h2
√

P2x2 + nr). (4.3)

Now, if u1 andu2 know their own channel gains as well asα, they can subtract their own

signal from the broadcast signal. Thus, the final received signal byu1 andu2, calledy1 and

y2 respectively, are

y1 = αh1h2
√

P2x2 + αh1nr + n1, (4.4)

y2 = αh1h2
√

P1x1 + αh2nr + n2 (4.5)

wheren1 andn2 are the Gaussian noise atu1 andu2 with varianceσ2
1 andσ2

2 respectively.
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4.2.3 Signal Modeling for DMF in the BC Phase

In DMF, R receivesyr and then demodulates it. The demodulated bit atR can be modeled

asxr = x1 ⊕ x2 ⊕ zr wherezr represents the effect of the detection error. Then,xr is

modulated byR with BPSK modulation and broadcast to the users. The received signals

by u1 andu2 are

y1 = h1
√

Prxr + n1, (4.6)

y2 = h2
√

Prxr + n2. (4.7)

Finding the error probability forzr is necessary to characterize this binary channel.

While u1 andu2 use binary constellation for data transmission,R receives a constellation

with four points{−h2
√
P2 − h1

√
P1,−h2

√
P2 + h1

√
P1, h2

√
P2 − h1

√
P1, h2

√
P2 +

h1
√
P1}. Assuming that -1 is assigned to 0 and +1 to 1, receiving−h2

√
P2 − h1

√
P1 or

h2
√
P2 +h1

√
P1 means that both users have sent either 0 or 1. Thus, their XOR is 0 andR

sends -1. Similarly,R sends +1 when it receives−h2
√
P2 + h1

√
P1 or h2

√
P2 − h1

√
P1

(Figure 4.1).

0 1 1 0

−h
2
 − h

1
h

2
 − h

1
h

2
 + h

1−h
2
 + h

1

Figure 4.1: The received signal at the relay whenP1 = P2 = 1.

Now, knowing the channel gains at the relay, the conditionalprobability of wrongly

detectingx1 ⊕ x2 = 1, whenx1 ⊕ x2 = 0, is

p0→1
r = Q

(

h1
√
P1

σr

)

−Q
(

2h2
√
P2 + h1

√
P1

σr

)

(4.8)
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whereQ(·) is the Gaussian Q-function. Similarly, the conditional probability of detecting

x1 ⊕ x2 = 0 when it is indeed 1 is

p1→0
r = Q

(

h1
√
P1

σr

)

+Q
(

2h2
√
P2 − h1

√
P1

σr

)

. (4.9)

4.3 Analysis of the Data Exchange Rate

In this section, we analytically find the data exchange rate of AF and DMF schemes using

the system model described in Section 4.2.

4.3.1 Analysis of the AF Data Exchange Rate

AssumeX1 andX2 are random variables representing input bits atu1 andu2. Also, random

variablesY1 andY2 stand for the received signal sequence atu1 andu2. For a givenh1 and

h2, the achievable reception rate ofu1 is

R1
AF(h1, h2) = H(Y1)−H(Y1|X2). (4.10)

GivenX2, the only source of ambiguity aboutY1 is the noise termαh1nr + n1, which is a

Gaussian noise with varianceα2h21σ
2
r + σ2

1 becausen1 andnr are independent. Hence,

H(Y1|X2) =
1

2
log2(2πeα

2h21σ
2
r + 2πeσ2

1). (4.11)

On the other hand, the entropy ofY1 is

H(Y1) = −
∫ ∞

−∞
fY1(y) log2 fY1(y) dy (4.12)

wherefY1(y) is the probability distribution function (pdf) ofY1. Now, to find all terms in

(4.10), we need to derivefY1(y). Due to the independency ofn1 andnr, it can be shown

that

fY1(y) =
1

2
√

2π(α2h21σ
2
r + σ2

1)

(

e
− (y+α

√
P2h1h2)

2

2(α2h21σ
2
r +σ2

1) + e
− (y−α

√
P2h1h2)

2

2(α2h21σ
2
r +σ2

1)
)

(4.13)

Replacing (4.13) in (4.12),H(Y1) can be found. In a fading environment, the average

reception rate is derived by integration over the distribution of h1 andh2 as follows

R1
AF =

∫ ∫

R1
AF(h1, h2)fh1,h2(x, y) dxdy (4.14)

wherefh1,h2(x, y) is the joint distribution ofh1 andh2. Whenh1 andh2 are deterministic,

R1
AF = R1

AF(h1, h2). Similarly,R2
AF is found. Now, the exchange rate is

Rc
AF = min{R1

AF, R
2
AF}. (4.15)
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Remark 4.1 In (4.13),α2h2iσ
2
r + σ2

i is a measure of the noise atui for i = 1, 2. On the

other hand, a user with a larger signal to noise ratio receives the data with a higher rate.

If σ1 = σ2 andP1 = P2, sinceh1 < h2

α2h21σ
2
r + σ2

1 < α2h22σ
2
r + σ2

2 . (4.16)

Thus,u1 has a higher reception data rate. It means that the data exchange rate is limited

by the reception rate ofu2 which has a better channel condition.

4.3.2 Analysis of the DMF Exchange Rate

Notice that here,Y1 is an estimation ofX1 ⊕X2. In fact, we can assume thatX1 ⊕X2 is

transmitted over the channel. Sinceu1 knows its own data, the only ambiguity inX1⊕X2 is

related toX2. Hence, assuming thath1 andh2 are given and considering thatX2 is binary,

the reception rate ofu1 is

RDMF1(h1, h2)=
1

2

∑

X2=0,1

∫ ∞

−∞
fY1|X2

(y|x) log2
fY1|X2

(y|x)
fY1(y)

dy (4.17)

wherefY1|X2
(y|x) is the conditional distribution ofY1 givenX2. Now, one can show that

fY1,X2(y|x2=0)=
1−p0→1

r
√

2πσ2
1

e
− (y+

√
Prh1)

2

2σ2
1 +

p0→1
r

√

2πσ2
1

e
− (y−

√
Prh1)

2

2σ2
1 (4.18)

and

fY1,X2(y|x2=1)=
p1→0
r

√

2πσ2
1

e
− (y+

√
Prh1)

2

2σ2
1 +

1−p1→0
r

√

2πσ2
1

e
− (y−

√
Prh1)

2

2σ2
1 . (4.19)

Notice thatfY1(y) is easily found from (4.18) and (4.19). Similarly, for the data transfer

from u1 to u2, the conditional reception rate is

RDMF2(h1, h2)=
1

2

∑

X1=0,1

∫ ∞

−∞
fY2|X1

(y|x) log2
fY2|X1

(y|x)
fY2(y)

dy. (4.20)

wherefY2|X1
(y|x) can be found similar to (4.18) and (4.19). Ifh1 andh2 follow a random

fading distribution (e.g. Rayleigh distribution), then, averaging overh1 andh2 can be done

in the same way as (4.14) to obtain the unconditional reception rates,RDMF1 andRDMF2.

Finally,RDMF = min{RDMF1 , RDMF2}.

Remark 4.2 Since the broadcast signal from the relay is identical for both users, unlike

AF, the signal to noise ratio at the users is proportional to their channel gains. In other

words, ifσ1 = σ2, the user with smaller channel gain, hereu1, receives data with smaller

reception rate and dictates the exchange data rate.
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4.4 Simulation Results

Here, we compare the users’ achievable reception and exchange rates of AF and DMF. The

fading on the users’ channels are independent and have a Rayleigh distribution as follows

fhi
(x) =

x

γ2i
e
− x2

2γ2
i i = 1, 2 (4.21)

whereE[h2i ] = γ2i is the power gain of the fading. Also,P1 = P2 = 1 andPr = 3 except

stated otherwise.

Figure 4.2 shows the rates whenσ1 = σ2 = 0.5, γ21 = 0.75 andγ22 = 1, i.e. we

have asymmetric users’ channels. As seen, DMF has a better performance in high relay

SNRs but AF gives higher rates in low and medium SNRs. The behavior of the users in

terms of the reception rate is as mentioned in Remark 4.1 and 4.2. It means that for AF,u1

(user with smaller channel gain) achieves higher receptionrates whileu2 (user with larger

channel gain) has higher reception rates when DMF is used.

There is an interesting point about the curves in Figure 4.2.Even with unequal channel

conditions, users have almost equal achievable reception rates at low to medium SNRs

when DMF is used. This is due to the bottleneck on the rate caused by the demodulation

decision at the relay. It means that the demodulation error at the relay limits the rate, not the

downlink fading channel from the relay to the users. Hence, users’ exchange rate is almost

equal to their individual reception rates.

On the other hand, for AF, the user with better channel,u2, has a lower reception rate

thanu1. Using this fact,u2 can back off its output power without affecting the data ex-

change rate. This point is significantly helpful in scenarios where users have limited power

resources, e.g. in sensor networks. The power adjustment for AF is studied more thoroughly

in Figure 4.3. In this figure,γ22 = 1 and1/σ2
r = 10 dB. Then, by changingγ21 , the users’

channels become asymmetric and we find the value ofP2 sustaining the same data exchange

rate over the asymmetric channels as ifP2 = 1. For instance when1/σ2
1 = 1/σ2

2 = 20 dB

andγ21 = 0.1, u2 can save its transmission power by almost 80 percents.

The rate curves forγ21 = 0.5 andγ22 = 1 are presented in Figure 4.4. For AF, the

data reception rate of both users decreases compared to Figure 4.2. For DMF, changingγ1

decreases the reception rate ofu1, but the reception rate ofu2 is not noticeably affected in

high SNRs. This is because of the small noise power at the relay which keeps the error rate

low despite smallerγ1.

The curves for the achievable reception rates are presentedin Figure 4.5 whenσ1 =

σ2 = 0.1. For DMF, despite high SNR at the users, the users’ receptionrates are limited by
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Figure 4.2: Users’ achievable reception rates whenσ1 = σ2 = 0.5 andγ21 = 0.75 and
γ22 = 1.

the relay decision. As a consequence, both users have almostequal rates. However, for AF,

users have different reception rates and power adjustment at u2 is advantageous. Further-

more, comparing Figure 4.2 and 4.5 shows that AF has a significantly better performance

over DMF in a wide range of relay SNRs when users SNR increases. This behavior is differ-

ent from the memoryless one-way relaying [55] where DMF shows a superior performance

over AF when users’ SNR increases. To better investigate theeffect of increasing users’

SNR on the data exchange rate, Figure 4.6 is presented. This figure depicts the comparison

between the data exchange rates of AF and DMF for a fixedσr. As seen, by increasing the

users SNR, AF starts outperforming DMF and the gap between their performance increases

by increasing the users SNR.
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4.5 Conclusion

We studied the data exchange rate between the users in a memoryless TWRC. For this

purpose, we assumed that the users transmit their data usingBPSK modulation over a fading

channel with AWGN. Our study showed that AF outperforms DMF in a wide range of

practical SNRs for a Rayleigh fading environment. In fact, unlike memoryless one-way

relaying, the advantage of AF over DMF becomes even more by increasing the SNR at

the user side. In addition, our analysis revealed that when AF is used, power back-off at

the users can significantly save energy without affecting the achievable data exchange rate.

The importance of this observation is more notable for energy-limited systems like sensor

networks.
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Chapter 5

Achievable Rates of Symmetric
MWRCs with AWGN

In this chapter, we compare OWR and MWR in terms of their achievable rates. First,

we prove that for MWR, lattice-based relaying ensures a gap less than 1
2(K−1) bit from

the capacity upper bound while MWR based on decode-and-forward (DF) or amplify-and-

forward (AF) is unable to guarantees this rate gap. For DF andAF, we identify situations

where they also have a rate gap less than12(K−1) bit. Later, we show that although MWR

has higher relaying complexity, surprisingly, it can be outperformed by OWR depending on

K and the system SNR. Summarily speaking, for largeK and small users’ transmit power,

OWR usually provides higher rates than MWR.

5.1 Introduction

The performance of MWRCs in terms of their achievable rate has been widely studied.

In [22], it is shown that for an MWRC, CF can achieve to within1
2(N−1) bit of the capacity

whereN is the number of users. Also, for TWRCs with FDF, it is shown that the capacity

gap is less than12 bit [56] while FDF achieves the capacity for binary MWRCs [29]. Onget

al. show that under some conditions, FDF achieves the capacity of MWRCs with AWGN

[34]. Furthermore, they briefly discuss the capacity gap of FDF when all users and the relay

have equal power.

In this chapter, a detailed performance comparison betweenMWR and OWR is pro-

vided. More specifically, we focus on the achievable rate of symmetric MWRCs with

AWGN under both relaying schemes. Note that the system modelfor our analysis in this

chapter is similar to the model described in Chapter 2. For MWR, we prove that similar to

CF, FDF assures a gap less than12(N−1) bit from the capacity. For AF and DF, we first show
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that they may have a larger than 1
2(N−1) bit capacity gap and then we find the SNR regions

where a gap smaller than 1
2(N−1) bit is guaranteed. In the next step, we study the achievable

rate of the system using OWR. For this purpose, we consider OWR with AF and DF and

show that for the considered MWRC setup, DF always outperforms AF when OWR is used.

Then, the achievable rate of MWR with CF and FDF (guaranteeing a less than 1
2(N−1) -bit

gap) is compared with the rate of DF OWR. Surprisingly, in spite of a higher relaying com-

plexity, MWR is not always superior to OWR and we find the SNR regions where OWR

indeed outperforms MWR. According to our study, by decreasing SNR or increasingN ,

we may see OWR surpassing MWR.

The chapter is organized as follows: The capacity gap analysis for MWR is discussed in

Section 5.2 and Section 5.3 focuses on the rate study for OWR.Rate comparison between

MWR and OWR is presented in Section 5.4 and Section 5.5 concludes this chapter.

5.2 Rate Analysis for MWR

In this section, we summarize our results on the capacity gapanalysis for different relay-

ing strategies. The capacity gap of the relaying schemes is the measure of their perfor-

mance compared to maximum possible data rate of the system. Since the exact capacity of

MWRCs is yet to be known, here, we use the capacity upper boundto derive the capacity

gap of the relaying schemes. In the following, we consider FDF, DF, and AF for the capac-

ity gap study. The capacity gap for the aforementioned schemes is studied for a MWRC

where the links are AWGN channels. Note that the capacity gapof CF has been studied

previously [22].

5.2.1 Capacity Gap of FDF

Using the achievable rates of FDF presented in Chapter 2, we can prove the following

theorem on the capacity gap of FDF.

Theorem 5.1 The gap between the achievable rate of FDF and the capacity ofanN -user

symmetric Gaussian MWRC is less than12(N−1) bit.

Proof: See Appendix.

For numerical illustrations, the achievable rate of FDF andthe capacity upper bound for

several cases are depicted in figures 5.1, 5.2 and 5.3. In Figure 5.1, users’ SNR effect on

the capacity gap is studied while the effect of the relay SNR andN are presented in Figure
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5.2 and Figure 5.3 respectively. As seen, the achievable rate of FDF always sits above the
1

2(N−1) -bit gap. Further, when downlink limits the rate, FDF achieves the capacity.
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Figure 5.1: Achievable rates of relaying schemes whenN = 3 andPr = 15 dB.

5.2.2 Capacity Gap of DF

Our analysis reveals that depending on SNR andN , DF may not be able to guarantee a
1

2(N−1) -bit gap toRc
UB. The following theorem summarizes the result.

Theorem 5.2 The gap betweenRc
DF and Rc

UB is less than 1
2(N−1) bit if either Pr <

min{2(1+NP )
N−1
N −1, (N−1)P} or (N−1)P < Pr and(N−1)P < 2(1+NP )

N−1
N −1.

Proof: Please see Appendix.

As the numerical results in figures 5.1, 5.2 and 5.3 indicate,in some SNR regions and

depending on the number of users, the capacity gap might be larger than 1
2(N−1) bit for DF.

5.2.3 Capacity Gap of AF

For AF, we state the following theorem on the capacity gap.

45



0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pr (dB)

B
its

 

 
Upper bound

1
2(N−1)

-bit gap

FDF rate
DF rate
AF rate
CF rate

Figure 5.2: Achievable rates of relaying schemes whenN = 3 andP = 10 dB.

Lemma 5.1 In anN -user symmetric Gaussian MWRC,

Rc
AF =

1

2(N − 1)
log

(

1 +
(N − 1)PPr

1 +NP + Pr

)

(5.1)

is the maximum common rate that AF can achieve.

Now, the following theorem is presented on the capacity gap of AF.

Theorem 5.3 The gap betweenRc
AF andRc

UB is less than 1
2(N−1) if Pr ≤ (N − 1)P and

P 2
r −(N−2)PPr < NP or (N−1)P < Pr andN(N−1)P 2−P−1 < Pr+(N−1)PPr.

Proof: Please see Appendix.

Depending on the SNR andN , the achievable rate of AF may fall under the1
2(N−1) -bit

gap from the capacity upper bound (figures 5.1, 5.2 and 5.3).

5.3 Rate Analysis for OWR

In this section, we study the achievable rate of OWR. In a MWRCwith OWR, transmission

time in both uplink and downlink phases is divided intoN slots. In each slot, one user
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Figure 5.3: Achievable rates of relaying schemes whenP = 10 dB andPr = 15 dB.

serves as the source and the rest are the data destinations. First, the source user transmits

in the uplink slot and thenR broadcasts the data back to the users in the downlink slot.

Since each user transmits in only one uplink slot and stays silent in the rest, it can upscale

its power toNP during its transmission turn without violating the power constraint.

When DF is employed for OWR,R first decodes the received data from the source in

the uplink and then broadcasts it to the users. Then, destination users decode the received

signal from the relay. It is easy to show that the achievable rate of DF OWR is

RDFO
= min

{

log (1 +NP )

2N
,
log (1 + Pr)

2N

}

(5.2)

For AF, R amplifies and forwards the received signal in the uplink without further

processing. The decoding is done at the destination users. The achievable rate of this

scheme is

RAFO
=

1

2N
log

(

1 +
NPPr

1 +NP + Pr

)

(5.3)

It can be shown that OW (with DF or AF) does not guarantee a12(N−1) -bit gap.
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Now, we like to compare the performance of AF and DF for OW. Using the achievable

rates in (5.2) and (5.3), we can derive the following theorem.

Theorem 5.4 In a symmetric Gaussian MWRC with OWR, DF always outperformsAF in

terms of the achievable rate.

Proof: See Appendix.

5.4 Comparison Between the Rate of OWR and MWR

In this section, we compare the performance of OWR and MWR. For OWR, we consider

DF which has the superior performance over AF. Also, FDF and CF are considered for

MWR since they provide a guaranteed rate performance (capacity gap).

5.4.1 Comparison of DF OWR and FDF MWR

First, assumePr <
NP
2 . Thus,

RFDF =
log(1 + Pr)

2(N − 1)
, RDFO

=
log(1 + Pr)

2N
. (5.4)

In this region, it is clear that MWR outperforms OWR due to itssmaller pre-log factor.

However, increasingN decreases the gap between MWR and OWR. Consider the second

SNR region whereNP
2 ≤ Pr < NP and

RFDF =
log(1 + NP

2 )

2(N − 1)
, RDFO

=
log(1 + Pr)

2N
. (5.5)

In this SNR region, FDF MWR surpasses DF OWR if

Pr < (1 +
NP

2
)

N
N−1 − 1 (5.6)

Since the right hand side of (5.6) is an increasing function of P , it can be concluded that for

a fixedPr, decreasingP reduces the chance of holding the inequality (5.6). It meansthat

when the relay’s received SNR decreases, OWR may start performing better than MWR.

Now, we consider a third region whereNP ≤ Pr. Here,

RFDF =
log(1 + NP

2 )

2(N − 1)
, RDFO

=
log(1 +NP )

2N
. (5.7)

Thus, MWR performs better if

(1 +NP )
1
N < (1 +

NP

2
)

1
N−1 . (5.8)
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From (5.8) and noticing that(1+x)
1
x is a decreasing function andlim

x→0
(1 + x)

1
x = ex, it can

be concluded that decreasingP or increasingN (without violatingKP ≤ Pr) is in favor of

OWR. Numerical results for the comparison between the achievable rate of DF OWR and

FDF MWR are presented in Figure 5.4 and Figure 5.5. As seen, whenN = 2, for smallP

(low receive SNR at the relay), OWR performs close to MWR and even outperforms FDF.

Increasing SNR causes the gap between OWR and MWR to largen. By settingN = 8, we

see that for a significant SNR region OWR surpasses FDF.
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Figure 5.4: Comparison between the achievable rates of OWR and MWR whenPr = 15
dB andN = 2.

5.4.2 Comparison of DF OWR and CF MWR

To compare the performance of DF OWR and CF MWR, we use two SNR regions. First,

assumePr < NP . Thus,

RCF =
1

2(N − 1)
log

(

1 +
(N − 1)PPr

1 + (N − 1)P + Pr

)

, RDFO
=

log(1 + Pr)

2N
. (5.9)
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Figure 5.5: Comparison between the achievable rates of OWR and MWR whenPr = 15
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From (5.9), we can conclude that MWR outperforms OWR in this SNR region when

Pr <

(

1 +
(N − 1)PPr

1 + (N − 1)P + Pr

) N
N−1

− 1. (5.10)

In (5.10), ifPr ≥ 1, using the derivative of the right hand side of (5.10), it canbe shown

that whenP decreases, MWR may lose its advantage over OWR.

Now, we consider the second SNR region whereNP ≤ Pr. Thus

RCF =
1

2(N − 1)
log

(

1 +
(N − 1)PPr

1 + (N − 1)P + Pr

)

, RDFO
=

log(1 +NP )

2N
. (5.11)

MWR with CF performs better than DF OWR if

(1 + (N − 1)P )((1 +NP )
N−1
N − 1)

(N − 1)P + 1− (1 +NP )
N−1
N

< Pr. (5.12)

It can be concluded that for low SNRs, (5.12) does not hold andOWR outperforms MWR.

Further, the left side of (5.12) is an increasing function ofN . Thus, by increasingN ,

we may start seeing higher rates from OWR than MWR. Figures 5.4 and 5.5 depict the
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comparison between the achievable rate of DF OWR and CF MWR. As seen, when the

number of users increase fromN = 2 to N = 8, the superiority of OWR over MWR

extends to a wider range of SNRs.

5.5 Conclusion

In this chapter, we compared the performance of OWR and MWR ina symmetric Gaussian

MWRC where several users share their data through a relay. Tothis end, we first proved

that FDF always have a capacity gap less than12(N−1) bit while depending on the users’

and relay SNR, AF and DF may have a capacity gap larger than12(N−1) . Furthermore, for

OWR, we showed that DF is always superior to AF. By comparing the achievable rate of

DF OWR with CF and FDF MWR, we concluded that MWR is likely to outperform OWR

in high SNR regions or for smallN . Conducting a similar study for fading AWGN channels

is considered as a direction for future research.
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Chapter 6

Optimal User Pairing to Maximize
the Achievable Rate in Asymmetric
MWRCs with AWGN

We study an asymmetric multi-way relay channel where users have different channel condi-

tions. For both FDF and pairwise DF, we first show that due to unequal channel conditions,

the achievable common rate of the pairwise strategy dependson the order in which the

users are paired. This motivates us to find the pairing strategy maximizing the achievable

rate. This rate is then compared with the capacity upper bound and the achievable rate of a

random user pairing.

6.1 Introduction

An efficient approach to enable data communication in an MWRCis pairwise users’ trans-

mission which is adopted in FDF. In [25], the authors argue that when there is no direct

user-to-user link, pairwise network coding is the optimal strategy for the considered net-

work setup. Furthermore, it is shown in [57] that for a class of multi-way relay channels,

which can be converted to deterministic broadcast channels, pairwise network coding is the

optimal approach. Pairwise transmission also has a reasonable decoding complexity since

the relay needs to simultaneously decode only two users at a time. Further, due to its simple

transmission scheduling, pairwise transmission can handle a situation where the number of

users dynamically changes or significantly increases.

Here, we study the performance of pairwise relaying for MWRCs over asymmetric

channels with AWGN. We consider two different scenarios forpairwise relaying: FDF

[29, 34] and pairwise decode-and-forward (PDF). In both schemes, at each uplink trans-

mission, only two users communicate with the relay. The difference between these two
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approaches lay in the way that the relay treat the users’ transmitted messages. While in

FDF the relay directly decodes the sum of the users’ messages, in PDF, it decodes the

users’ data separately and then forms the sum of them. Note that our considered pairwise

DF is different from full DF where all users simultaneously transmit their data to the relay.

For these two schemes, we first show that the achievable rate of the system depends

on how users are paired for transmission. Furthermore, to find the ultimate performance

of pairwise relaying, we find the optimal user pairings for FDF and PDF maximizing the

achievable common rate. We also derive an upper bound on the common rate of the con-

sidered asymmetric MWRC and compare the performance of FDF and PDF (with their

optimal pairings) with this bound. Furthermore, the achievable rates of FDF and PDF with

their optimal pairings are compared with the rates of FDF andPDF when random pairings

are used to investigate the performance improvement made byour proposed pairings. Our

study shows that the optimal pairing improvement is more significant in low SNR region

for FDF while it is more pronounced in high SNRs when PDF is applied.

The organization of this chapter is as follows: The preliminaries and system model are

presented in Section 6.1. Common rate analysis for FDF and PDF and their proposed opti-

mal pairings are brought in Section 6.3 and Section 6.4 respectively. Numerical examples

are presented in Section 6.5. Finally, Section 6.6 concludes this chapter.

6.2 Preliminaries

Here, it is assumed thatN ≥ 2 users, calledu1, u2, . . . , uN , want to communicate through

a relay,R, such that each user sends and receives data from all other users. We refer to

the users’ data byx1, x2, . . . , xN and to the relays transmitted data byxr. Each user has a

limited average transmit powerP while relay’s average transmit power isPr. Further, users’

channel gains to the relay areh1, h2, . . . , hN respectively. Without loss of generality, it is

assumed that|h1| ≤ |h2| ≤ . . . ≤ |hN |. The received signals at the users and the relay are

contaminated by Gaussian noise with varianceσ2.

For an MWRC with FDF or PDF, the uplink and downlink phases aredivided intoN−1

MAC and broadcast (BC) slots (phases) [29, 34]. In a MAC slot,a pair of users transmits

their data to the relay. With FDF, relay directly decodes thesum of the users’ data using

nested lattice coding [42] while relay decodes the message of each user separately [35]

(similar to conventional full DF relaying) when PDF is used and then forms the sum of the

messages. In the BC phase,R broadcasts the sum message to all users. One round of users’
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communication is accomplished afterN − 1 MAC and BC phases. Now, since each user

has receivedN − 1 independent linear combinations of the other users’ data, it can decode

the data of all of them. Please notice that in FDF and PDF schemes, users do not transmit

in all MAC slots. Thus, to have an average user power ofP , ui’s can upscale their power to
NP
2 in their transmitting slot without exceeding the average powerP [34].

We denote the transmission sequence byuo1, uo2, . . . , uoN , meaning that the consecu-

tive users in the sequence are paired for transmission (i.e{uo1, uo2}, {uo2, uo3}, ...). Here,

the channel gains foruo1, uo2, . . . , uoN are denoted byho1, ho2, . . . , hoN . Notice thatuoi

is not necessarily the same asui. Figure 6.1(a) demonstrates the MAC phase for pair

(uoi, uo(i+1)) and the BC phase is shown in Figure 6.1(b).

Relay

u1 u2 uoi uo(i+1) uo(N−1) uoN

xi xi+1

(a) ith MAC phase

Relay

u1 u2 uoi uo(i+1) uo(N−1) uoN

xi ⊕ xi+1

(b) ith BC phase

Figure 6.1: Demonstration of theith MAC and BC phases

In this chapter, we are interested in the common rate capacity of pairwise MWRCs. The

common rate capacity is the data rate that all users can reliably transmit and receive data.

According to this definition, if we denote the maximum achievable data rate during theith

MAC phase byRM
i and the maximum achievable rate in theith BC phase byRB

i , then, the

rate during theith MAC and BC phases isRc
i = min{RM

i , RB
i }. Now, one round of data

communications happens overN − 1 MAC and BC phases and the users’ common-rate
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capacity of pairwise relaying,Rc, is defined asRc = 1
N−1 mini{Rc

i}.
For the described MWRC, we derive the following bound on the common data rate.

This bound is later used to evaluate the performance of the proposed optimal pairings.

Theorem 6.1 DefiningC(x) = 1
2 log(1+x), the common rate of the aforementioned fading

MWRC with AWGN is bounded by

Rc
UB =

1

N − 1
min

{

C(P
∑N−1

i=1 |hi|2
σ2

), C(Pr|h1|2
σ2

)

}

. (6.1)

Proof: See Appendix. �

Corollary 6.1 SinceC( (N−1)P |h1|2
σ2 ) < C(P

∑N−1
i=1 |hi|2
σ2 ), whenPr ≤ (N − 1)P , we have

Rc
UB = 1

N−1C(
Pr |h1|2

σ2 ). In this case, the bound is forced by downlink.

6.3 Common Rate Analysis for an MWRC with FDF

In this section, we first study the achievable rate of FDF and then discuss how the order

of users’ transmissions affects the achievable rate. As themain result of this section, an

optimal user pairing to maximize the common rate is found.

6.3.1 Common Rate of FDF

In theith MAC phase,uoi anduo(i+1) transmit. According to [58],RM
i satisfies the follow-

ing conditions

RM
i ≤ 1

2
log+

( |hoi|2
|hoi|2+|ho(i+1)|2

+
NP |hoi|2

2σ2

)

, (6.2)

RM
i ≤ 1

2
log+

( |ho(i+1)|2
|hoi|2+|ho(i+1)|2

+
NP |ho(i+1)|2

2σ2

)

(6.3)

wherelog+(x) = max{log(x), 0}.

Transmission in theith BC phase is a broadcast channel with no private message for

users. Thus,R transmits with the rate of the user with the worst channel condition. Hence

RB
i ≤ min

j=1,2,...,N
C(Pr|hj |2

σ2
)=C(Pr|h1|2

σ2
). (6.4)

Now, common rate of FDF,Rc
FDF, is derived using the rate definition in Section 4.2.

Theorem 6.2 If 0 < Pr ≤ NP
2 − σ2

|h1|2 , FDF achieves the capacity upper bound.

55



Proof: From Corollary 6.1,RUB = 1
N−1C(

Pr |h1|2
σ2 ) is the rate upper bound. Also, for alli,

we have

log

(

NP |h1|2
2σ2

)

<log

( |hoi|2
|hoi|2+|ho(i+1)|2

+
NP |hoi|2

2σ2

)

(6.5)

Now, if 0 < Pr ≤ NP
2 − σ2

|h1|2 , then

log

(

1 +
Pr|h1|2

σ2

)

≤ log

(

NP |h1|2
2σ2

)

(6.6)

andRc
FDF = 1

N−1C(
Pr|h1|2

σ2 ). Thus,Rc
FDF = RUB . �

Remark 6.1 Whenσ → 0 andPr < NP/2, pairwise FDF achieves the upper bound.

6.3.2 Optimal User Ordering

The order of users pairing affects the bound onRM
i ’s in (6.2) whenN > 2. This in turn can

influence the achievable common rate,Rc
FDF. As a consequence, by carefully choosing the

users’ pairing, one can maximize the achievable rate.

Theorem 6.3 The optimal user transmission sequence for FDF, calledS1, is

(uo1, . . . , uoN ) = (u1, u2, . . . , uN ). (6.7)

Proof: See Appendix. �

Remark 6.2 For FDF, the effect of the optimal pairing is more significantwhen1/σ2 is

small. In this situation,P |hoi|2/σ2 andP |ho(i+1)|2/σ2 are small. Thus, the terms within

the logarithm in (6.2) heavily depends on|hoi|2/(|hoi|2+|ho(i+1)|2) and|ho(i+1)|2/(|hoi|2+
|ho(i+1)|2) and consequently user pairing.

6.4 Rate Analysis for an MWRC with PDF

Here, we find the optimal user pairing maximizing the rate of DF. For this purpose, we first

find the achievable rate of DF over an asymmetric MWRC with AWGN.
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6.4.1 Common rate of PDF

When PDF is used, the transmission in theith MAC phase is a conventional multiple access

transmission. Thus [35],

RM
i ≤ C(NP |hoi|2

2σ2
), (6.8)

RM
i ≤ C(

NP |ho(i+1)|2
2σ2

), (6.9)

RM
i ≤ 1

2
C(

NP (|hoi|2 + |ho(i+1)|2)
2σ2

). (6.10)

The BC rate constraint isRB
i ≤ C(Pr |h1|2

σ2 ), similar to FDF. Now, the achievable rate region

of FDF is derived using the common rate definition in Section 4.2.

Theorem 6.4 If Pr ≤
(

√

1 + PN |h1|2
σ2 − 1

)

σ2

|h1|2 , then PDF achieves the upper bound.

Proof: Note that from (6.10)

∀i : C(NP |h1|2
σ2

)≤C(
NP (|hoi|2+|ho(i+1)|2)

2σ2
). (6.11)

Also,

∀i : 1
2
C(NP |h1|2

σ2
) ≤ C(NP |hoi|2

2σ2
) (6.12)

Meaning that 1
2(N−1)C(

NP |h1|2
σ2 ) is a lower bound for the rate in the MAC phase. Now, if

the condition in the theorem holds, we haveC(Pr |h1|2
σ2 ) ≤ 1

2C(
NP |h1|2

σ2 ). As a consequence

Rc
DF=

1
N−1C(

Pr |h1|2
σ2 ) and Corollary 6.1 completes the proof. �

Remark 6.3 The above theorem shows the optimal region for PDF in terms ofthe achiev-

able rate. Unlike FDF, for a fixedPr, whenσ increases (lower SNRs), the condition in

Theorem 6.4 is more likely to hold, decreasing the gap between PDF and the upper bound.

6.4.2 Optimal User Ordering

The achievable rate of PDF in (6.10) is affected by the order of users’ pairing. Thus, by

choosing a proper user pairing, the achievable common rate enhances.

Theorem 6.5 The optimal transmission sequence for maximizing the common rate of PDF,

calledS2, is

(uo1, . . . , uoN ) = (u1, uN , u2, uN−1, . . . , u⌊N
2
⌋+1). (6.13)

Proof: See Appendix. �
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Remark 6.4 For smallσ, the term inside the logarithm in (6.10) can be well approximated

by P (|hoi|2 + |ho(i+1)|2)/σ2. As a consequence, the improvement of the achievable rate

made by the optimal pairing is more significant.

6.5 Simulation Results

To evaluate the performance of the proposed optimal orderings, we now present some ex-

amples. In our simulations, it is assumed that the channels between the users and relay are

Rayleigh fading with average power gain equal to 1. More specifically, in each round of

communication, users’ channel gains are assigned based onN realization of a Rayleigh ran-

dom variable. Notice that the fading is slow and users’ channel gains stay unchanged during

one complete round of data exchange between the users (N − 1 MAC and BC phases). We

use Monte Carlo simulation to average the achievable rate over the channel gains.

Figure 6.2 presents the plots for the normalized gap betweenthe achievable rate of the

optimal pairing and a random paring whenP = Pr = 1. Denoting the achievable rate

of optimal pairing and random paring byRc
o andRc

r respectively, the normalized gap,G,

is defined asG = (Rc
o − Rc

r)/R
c
o. The normalized gap is a measure of improvement by

optimal pairing over a random pairing. As mentioned in Remark 6.2, for lower SNRs, the

improvement over by the optimal pairing is more significant for FDF. As we expect from

Remark 6.4, in high SNR region, optimal pairing results in a more visible improvement

over random pairing when PDF is used.

Figure 6.3 depicts the comparison between the achievable rate of pairwise relaying,

achievable rate of full DF and the rate upper bound. As expected from Remark 6.1 and

6.3, FDF has a better performance over high SNR region and provides rates close to the

upper bound, while PDF is more efficient in low SNRs. By increasing the number of users

while keeping the SNR fixed, downlink will more likely limit the rate (Corollary 6.1). As a

consequence, the gap between FDF and the upper bound decreases. As seen, with a higher

complexity cost, full DF provides higher data rates.

In Figure 6.4, we consider the situation wherePr = N . In other words, relay linearly

increases its power based on the number of users. As seen in this figure, by increasing1/σ2,

the gap between pairwise relaying and upper bound increases. In this case, the condition in

Corollary 6.1 does not hold and uplink is the bottleneck. Notice that the uplink achievable

rate is always less than its associated upper bound.

The achievable common rate based on the number of users is depicted in Figure 6.5.
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Figure 6.2: Normalized gap for optimal and random pairing whenPr = P = 1.

Since we are in the low SNR regions,1/σ2 = 5 dB, as we expect, PDF outperforms FDF.

Similarly, for larger SNRs, say1/σ2 = 20 dB, simulation results show the superiority of

FDF over PDF. These results are omitted here in the favor of space.

6.6 Conclusion

Here, we proposed optimal user pairings to maximize the common rate of FDF and PDF

over asymmetric fading MWRCs with AWGN. Their achievable rate with optimal pairing

were then compared with the rate upper bound as well as the achievable rate of random

pairing. The performance improvement by optimal pairing ismore significant in low (high)

SNRs for FDF (PDF). Also, we concluded that PDF (FDF) is a better pairwise strategy in

low (high) SNRs. Finding optimal user pairing in order to maximize the sum-rate in an

asymmetric MWRC with AWGN is possible for future work.
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Figure 6.3: Achievable rates whenPr = P = 1.
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Chapter 7

Low-Latency Relaying Schemes for
Erasure MWRCs

In this chapter, we consider an erasure MWRC (EMWRC). Assuming no feedback channel

between the users and the relay, we first identify the challenges for designing a data sharing

scheme over an EMWRC. Then, to overcome these challenges, wepropose practical low-

latency and low-complexity data sharing schemes based on fountain coding. Later, we

introduce the notion of end-to-end erasure rate (EEER) and analytically derive it for the

proposed schemes. EEER is then used to calculate the achievable rate and transmission

overhead of the proposed schemes. We further find an upper bound on the achievable rates

of EMWRC and observe that depending on the number of users andchannel erasure rates,

our proposed solutions can perform very close to this bound.

7.1 Introduction

MWRCs have been initially proposed and studied for Gaussian[22,34] and binary symmet-

ric [29] channels when the channel state information is known at the relay as well as users.

Hence, they can use this information to apply appropriate channel coding. However, the

channel state information may not be always known, e.g. whenthe links between the users

and relay are time-varying. Under this situation, channel coding fails to provide error-free

communication. From the viewpoint of higher network layers, this is seen as an erasure

channel where the data (packet) is received either perfectly or completely erased. Another

possible situation where the erasure channel fits is a fadingenvironment when one or more

users experience a deep fade resulting in the signal loss at the relay. Thus, recently erasure

models for multi-user relay communication has been considered [59–61]. In this work, we

focus on erasure MWRCs (EMWRCs) and seek effective data sharing schemes for them.
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Packet retransmission protocols are a simple solution to combat erasure. However, these

protocols are wasteful in EMWRCs especially in the broadcast phase. To be more specific,

if any user misses a broadcast message, a retransmission protocol forces the relay to broad-

cast its message to all users again. Further, implementing packet retransmission schemes

or fixed-rate codes to combat erasure requires having feedback channels between the users

and the relay [62]. Having such feedback channels is not always feasible. Fountain coding

(e.g LT codes [63] or Raptor codes [64]) is another well-known solution which is shown to

be near-optimal for erasure channels without the need for feedback [62]. Considering the

benefits of fountain coding in broadcast scenarios, in this work, we assume that data sharing

is done with the help of fountain codes. As we discuss later, implementing fountain coding

for EMWRCs has many challenges. These challenges are identified and considered in the

design of our strategies.

The notion of fountain coding for wireless relay networks has been originally proposed

in [65] where one source sends its data through one or more relays to a destination. It is

shown that the presented fountain coding scheme is simultaneously efficient in rate and

robust against erasure. In [66], a distributed fountain coding approach is suggested where

two (four) users communicate to a destination via a relay over erasure channels. Also,

fountain coding can be exploited to relay data across multiple nodes in a network [67].

In addition, [68–70] consider fountain coding scenarios for different setups of relay net-

works over fading channels. Molischet al. consider a cooperative setup in [68] where one

source sends its data to a destination through multiple relays and argue that using fountain

coding reduces the energy consumption for data transmission from the source to the desti-

nation. Also, in a fading environment, [69] and [70] apply fountain coding to improve the

performance in a four-node (two sources, one relay, and one destination) and a three-node

(one source, one relay, and one destination) setup respectively.

Applying fountain coding to EMWRCs, however, has its own challenges. First, it is

undesirable to perform fountain decoding and re-encoding at the relay as it requires waiting

for all data packets of all users. To avoid this latency, we are interested in data sharing

solutions that can work with fountain coding/decoding onlyat the users. Second, if users’

fountain codes are not synchronized, each user needs to track the combinations of packets

formed at all other users. This means either extra transmission overhead or extra hardware

complexity. Third, since data of all users are mixed during the transmission, fountain de-

coding will almost surely fail at some users as the received degree distribution will differ

from that of the transmitted one. In particular, the weight of degree-one equations will be
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very small (due to mixing at the relay), causing the decoder to stop at early stages. Thus,

the users’ data sharing strategies must be designed to combat this problem. Finally, we like

to have data sharing strategies that are readily scalable with the number of users.

It is important to notice that the existence of the side information in each user (i.e. each

user knows its own data) makes EMWRCs different from on-way relay networks in which

a set of users, called sources, send their data to another set, called destinations. An efficient

data-sharing strategy for EMWRCs should make use of this side information effectively.

The focus of this chapter is on devising efficient data transmission strategies based on

fountain codes for EMWRCs. Considering the design challenges pointed above, we devise

two data-sharing scheme that (i) need fountain coding/decoding only at the users’ side (thus

they have low latency) (ii) can decode each user’s data separately (thus fountain decoding

will not fail) and (iii) are easily scalable with the number of users. We also show that the

system’s performance can be further improved by performingsimple matrix operations at

the relay as well as shuffling the users’ transmission order.

To evaluate the performance of the proposed schemes, we introduce the concept ofend-

to-end erasure rate(EEER). Using EEER, we compare the achievable rate of our schemes

with the existing conventional one-way relaying (OWR). Furthermore, we derive an upper

bound on the achievable data rate of the considered EMWRC. The achievable rate of our

schemes are then compared with this bound to determine theirperformance gap. This com-

parison reveals that depending on the uplink and downlink erasure probabilities and number

of users, our proposed data sharing strategies can get very close to the rate upper bound and

outperform OWR. The proposed schemes are also compared withOWR in terms of their

transmission overhead. The implication of this comparisonis that for small erasure prob-

abilities or small number of users, the proposed schemes accomplish data sharing between

users with a smaller overhead.

7.2 System Model

In this chapter, we study an EMWRC withN users, namelyu1, u2, . . . , uN . The users want

to fully exchange their information packets with the help ofa (low-complexity) relay. Each

user hasK information packets and we assume that the information packets are seen as

data bits. It means that for thekth packet atui, denoted bymi,k, we havemi,k ∈ {0, 1}.

Also, at a given transmission turn, the transmit message ofui, derived from its information

messagesmi,1, . . . ,mi,K , is denoted byxi ∈ {0, 1}. Although the channel inputs are
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binary, the channel outputs are from a ternary alphabet{0, 1, E}. Here,E denotes the

erasure output.

To share their data, users first send their transmit messagesin the uplink phase. In each

uplink phase, some (or all) users send their data to the relay. The transmitted packet ofui

experiences erasure with probabilityǫui
in the uplink phase. Thus, the relay receives

yr =
N
∑

i=1

ai bi xi (7.1)

where the summation is a modulo-2 sum. In (7.1),ai is a binary variable showing whether

xi is transmitted in the uplink or not. Forui, ai = 1 indicates thatxi is transmitted and

ai = 0 otherwise. Also, the Bernoulli variablebi represents the erasure status ofxi. Here,

bi = 1 (with probability1 − ǫui
) means thatxi has not been erased in the uplink. In (7.1),

if all transmitting users experience erasure,yr = E.

Please note that a similar transmission model has been considered in [59–61] to model

erasure two-way relay and multiple-access channels. The erasure multiple access channel

in (7.1) models a wireless multiple-access channel where users transmit their data over a

fading environment [60]. When some users go into the deep fade, the relay loses their signal

and their transmitted data are erased. In the case of deep fade over all users, the relay does

not receive a meaningful signal and declares erasure.

After receiving the users’ data in the uplink phase, the relay forms its messagexr based

onyr. In the downlink, relay broadcasts its message to all users.ui misses relay’s broadcast

message with erasure probabilityǫdi and receives it with probability1− ǫdi .

After receiving the relay’s broadcast message, each user first tries to separate different

users’ data from each other and then decodes them. The uplinkand downlink transmissions

should continue until each user is able to retrieve the information packets of any other user

(full data exchange).

7.3 Data Sharing Schemes

In this section, we propose our data sharing schemes for the discussed EMWRCs. Our pro-

posed data sharing schemes consist of four principal parts:i) Fountain coding at the users,

ii) Users’ transmission strategy, iii) Relay’s transmission strategy, and iv) Data separation

at the users. In the rest of this section, we discuss each of these parts in detail. The perfor-

mance of these schemes is later evaluated by comparing theirachievable rates with a rate

upper bound derived in Section 7.5.
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7.3.1 Fountain Coding

To sustain reliable communications in an EMWRC, an appropriate scheme should be em-

ployed to combat erasure. Retransmission protocols are a simple approach for this purpose,

however, they are wasteful for EMWRCs due to the significantly large number of transmis-

sions that is needed to ensure receiving data by all users in the BC phase [62]. Furthermore,

implementing retransmission protocols as well as conventional erasure correcting codes

(e.g. Reed-Solomon codes) requires a feedback channel between the users and the relay.

Another approach for combating data erasure is fountain coding which provides reliable

data communication without the need for a feedback channel.In the following, we describe

how fountain coding is employed in our proposed data sharingschemes.

If relay wants to perform fountain decoding and re-encodingbefore forwarding the data

to the users, it should wait to receive all data packets from all users and then decode them.

This causes a significant delay in the data sharing process. Thus, in our proposed solution,

the fountain encoding and decoding are performed only at theusers. More specifically,

ui encodes its information packets,mi,k wherek = 1, 2, . . . ,K, with a fountain (e.g. a

Raptor [64]) code and forms its transmit messagexi. As mentioned previously, we denote

the packets by binary symbols for the sake of simplicity.

In addition, the fountain encoders at the users are considered to be synchronized. With

synchronized encoders, each user can easily keep track of the combinations of the packets

formed at the other users without exposing extra hardware complexity or overhead to the

system. Knowing the combination of the formed packets is important to proceed with the

fountain decoding at the users. To implement synchronized fountain encoders, users have

identical random number generators with equal initial seeds 1.

After encoding their packets, users send them in the uplink phase. They continue trans-

mitting fountain-coded packets until the data sharing is finished and all users have the

full data of any other user. AssumingK information packets at each user, if data shar-

ing is accomplished after sending theK ′th encoded packet, the overhead is defined as

O = K ′−K
K [62]. Please note that here, we consider the transmission overhead to evaluate

the performance of the data sharing strategies. As we see later, by reducing EEER, our pro-

posed strategies can effectively decrease the transmission overhead. Another commonly-

used measure for fountain codes is the reception overhead which depends on the character-

1An alternative to our synchronized scheme could bedistributedfountain codes, where the data of multiple
sources are independently encoded in a way that the resulting bit stream would have a degree distribution
approximating that of the fountain code [66]. The scheme is not easily scalable and its performance suffers
from uplink erasures.
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istics of the underlying fountain code. Since we do not deal with the fountain code design,

reception overhead is irrelevant to our discussions.

7.3.2 Users’ Transmission Strategies

In our proposed data sharing schemes, we define around of communicationconsisting of

L uplink andL downlink transmissions (time slots). During one round of communication,

users want to exchange one of their fountain coded packets. Depending on the users’ trans-

mission strategy, a set of users simultaneously send their fountain coded packets to the relay

in each of theseL time slots. A users’ transmission strategy is determined bythe transmis-

sion matrixA = [al,i]L×N . According toA, ui transmits inlth uplink slot if al,i = 1.

Otherwise,ui stays silent and does not transmit.

In thelth uplink slot, the relay’s received signal is

yr,l =

N
∑

i=1

al,i bl,i xi. (7.2)

In (7.2), bl,i is a Bernoulli random variable representing the erasure status ofxi in the lth

uplink slot. Here,bl,i = 0 with probability ǫui
and bl,i = 1 with probability 1 − ǫui

.

Defining x = [xi]N×1 andyr = [yr,l]L×1, (7.2) can be rewritten in the following matrix

form

yr = (A ⊙ B)x = Arx. (7.3)

In (7.3), B = [bl,i]L×N and⊙ represents the Hadamard product. Also,Ar is the relay’s

received matrix.

In this work, we consider three different users’ transmission strategies: conventional

one-way relaying and our proposed pairwise transmission strategies.

One-Way Relaying (OWR)

In this scheme,L=N , and the data of each user is solely sent to the relay in one of the

uplink slots. For OWR, the uplink transmission matrixA is anN×N identity matrix, i.e.

A = I(N).

Minimal Pairwise Relaying (MPWR)

The scheme divides the uplink and downlink intoL=N−1 transmissions. A sequential

pairwise data communication to the relay is used in MPWR. In particular, in time slotl of

the uplink,ul andul+1 transmit to the relay. The scheme is shown to be capacity achieving
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when the links are binary symmetric [29]. The MPWR’s uplink transmission matrix is

A =











1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
...
0 . . . 1 1











(N−1)×N

. (7.4)

One-Level Protected Pairwise Relaying (OPPWR)

By using one extra uplink time slot compared to MPWR and sending a pairwise combina-

tion of the first and the last users, OPPWR has an extra protection against erasure compared

to MPWR. More specifically, it can tolerate at least one erasure either in uplink or in down-

link transmissions, which does not hold for the MPWR scheme.For this scheme,

A =















1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
...
0 . . . 1 1
1 0 . . . 0 1















N×N

. (7.5)

7.3.3 Relay’s Transmission Strategy

After receivingyr in the uplink phase, relay forms its messagexr = [xr,l]L×1 based onyr.

Then,xr is sent to the users inL downlink transmissions. As mentioned before, we like to

sustain a low-latency and simple relaying. To this end, we consider two different scenarios

for the relay to form its message,xr.

In the first scenario, relay simply forwards its received signal, i.e. xr,l = yr,l, in each

time slot. In this case, relay does not need to buffer the received signals in the uplink slots

and has the minimum relaying latency.

In the second case, relay has a buffer with lengthL for its received signal and is capable

of performing simple elementary matrix operations. By buffering the received signals in

the uplink slots and knowing which packets have been erased,the relay formsAr. Now,

if any erasure has happened in the uplink, relay performs elementary matrix operations

on Ar and tries to retrieve the original transmitted matrixA or at least some of its erased

elements. The result of the matrix operations onAr is calledÃ. Relay then performs the

same matrix operations onyr to form xr. In other words,xr = Ãx. We call this method

matrix reconstruction. Since relay may be able to retrieve some of the erased elements of

A, doing matrix reconstruction can lower the effective uplink erasure rate. Note that no

fountain decoding is needed at the relay and the low-latencyrequirements are still met.
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Example 7.1 Consider an EMWRC withN = 3 users and OPPWR is used as the users’

transmission strategy. In this case,

A =





1 1 0
0 1 1
1 0 1



 . (7.6)

Now, assume that in the third uplink transmission,u3’s data has been erased. Thus

Ar =





1 1 0
0 1 1
1 0 0



 . (7.7)

If the relay does the modulo-2 sum of the first and second rows of Ar, it can retrieveA.

Thus, in this casẽA = A. Note that if the relay does not perform reconstruction andxr,2 is

erased in the downlink,x3 will be lost, but with reconstruction, it can be retrieved.

7.3.4 Data Separation

After receiving the downlink signal from the relay and knowing its own transmitted packet,

each user first separates the data of users before proceedingwith the fountain decoding. If

the data separation is not done, the user should treat all data from all other users as a large

stream of fountain coded packets. This can result in the failure of fountain decoding due

to not receiving enough degree-one packets. After separating data packets, the user stores

them to proceed with the fountain decoding.

Here, it is assumed that the users know matrixÃ. This can be achieved in practice by

adding an overhead of size2N to each packet. For practical cases, this extra overhead is

negligible compared to the size of the packets.

Let yi = [yl,i]L×1 be the received vector atui after one round of communication. Here,

eitheryl,i = xr,l or yl,i = E. The received downlink signal atui can be written in the

following matrix form

yi = Arix (7.8)

whereAri is the received matrix atui. Here, the rows ofAri are equal to the rows of̃A

except that some rows are erased.

Without loss of generality, we consider the data separationatu1. Knowing its own data

packet,u1 tries to find other users’ transmitted data by solving the following system of

linear equations

A1x = [x1 y1]
T (7.9)
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where

A1 =

(

1 0 . . . 0 0
Ar1

)

. (7.10)

The transmitted packet of userj, xj, is erased atu1 when it cannot be retrieved by solving

(7.9). From (7.10), it is seen thatL should be at leastN−1 to make data separation feasible.

After separating the data packets of each user,u1 waits until receiving enough packets to

proceed with the fountain decoding.

Example 7.2 Consider an EMWRC withN = 4 users. In this EMWRC, MPWR is used

and the relay simply forwards its received messages withoutdoing reconstruction. In this

case,

A =





1 1 0 0
0 1 1 0
0 0 1 1



 . (7.11)

Now, assume thatx2 is erased in the second uplink transmission. Also,xr,3 has been erased

in the downlink and the received signal atu1 is y1 = [0 1E]T . Assumingx1 = 1, u1 forms

the following system of linear equations to findx2, x3 andx4:








1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 0

















x1
x2
x3
x4









=









1
0
1
E









. (7.12)

From (7.12),u1 finds thatx2 = x3 = 1 whilex4 is declared as erasure.

7.4 End-to-end Erasure Rate

To study the performance of the three aformentioned schemes, we introduce a useful con-

cept called end-to-end erasure rate (EEER). This concept ishelpful in: i) finding the achiev-

able rates of the schemes, and ii) calculating their transmission overhead. Consider an ar-

bitrary user,ui. For anyj 6= i, if we are able to identify the erasure rate ofuj ’s packets

at ui, denoted byǫi,j, we can simply model the communication between this pair of users

with an erasure channel with the erasure probability ofǫi,j. The achievable data rate over

this channel is then1 − ǫi,j. Also, the transmission overhead of an ideal fountain code for

data transmission fromuj to ui over this channel is

Oi,j =
ǫi,j

1− ǫi,j
. (7.13)

Based on the above discussion, we define pairwise EEER which is the erasure rate between

a pair of users where one of them serves as the data source and the other one as destina-

tion. HavingN users in the systems results inN(N−1)
2 pairwise EEERs. Now, we define
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maximum EEER, which we simply call EEER and denote it byǫf , as the maximum erasure

rate over all pairs of users. In other words,ǫf = max
i,j

ǫi,j. Since the achievable common

data rate,R, is determined by the data transmission rate between the users experiencing

the worst erasure, we haveR = 1 − ǫf . With a similar argument, the overall transmission

overhead is

O =
ǫf

1− ǫf
. (7.14)

Please note that in practice, the transmission overhead is larger than (7.14) due to using

non-ideal fountain codes.

7.4.1 EEER Calculation for OWR

Using OWR, a packet sent from useri is received by userj if it is not erased neither in

the uplink nor in the downlink. Thus, definingǫui
= 1 − ǫui

andǫdj = 1 − ǫdj , we have

ǫi,j = 1− ǫui
ǫdj . Now, EEER is

ǫOWR
f = max

i,j
ǫi,j = 1−min

i,j
ǫui

ǫdj . (7.15)

Note that the reconstruction process at the relay is not helpful when OWR is used since

the relay receives the data of a specific user in only one uplink channel use. Further, for a

symmetric EMRWC where for alli, ǫui
= ǫu andǫdi = ǫd, pairwise EEERs are all equal

for any pair of users.

7.4.2 EEER Calculation for MPWR

For MPWR, the relay receives the data of each user (except thefirst and the last ones) in

two uplink time slots. Thus, it may be able to employ data reconstruction foru2 to uN−1 in

order to retrieve their data if it is erased in only one uplinktransmission. In the following,

we study EEER for both cases when the relay does not perform data reconstruction and

when it does.

MPWR without Reconstruction:First, we studyǫi,1, the pairwise EEER ofui, i =

2, . . . , N , atu1. Then we extend the analysis to other users. For decoding atu1, let us call

the probability of findingxi at ith or (i+ 1)th rows ofA1 byP 1
1 (i) andP 1

2 (i) respectively.

First, we calculateP 1
1 (i). Notice thatP 1

1 (1) = 1 sincex1 is always known atu1. For

i > 1, xi is found in rowi when this row is not erased in the downlink phase and : (i) No

erasure has happened in rowi during the uplink phase and the value ofxi−1 has been found

from row i− 1 or (ii) In the ith row,xi−1 was erased in the uplink phase, whilexi has been
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perfectly received (onlyxi exists in this row). Hence,

P 1
1 (i) = ǫd1(ǫui

ǫui−1P1(i− 1) + ǫui
ǫui−1). (7.16)

HavingP 1
1 (1) = 1, by solving the above recursive equation fori = 2, . . . , N , all P 1

1 (i)’s

are found.

Now, we calculateP 1
2 (i). SincexN appears just once in (7.9) when MPWR is used,

P 1
2 (N) = 0. Also P 1

2 (1) = 1. By a logic similar to the one used for the calculation of

P 1
1 (i), for i = 2, . . . , N − 1, we have

P 1
2 (i) = ǫd1(ǫui

ǫui+1P2(i+ 1) + ǫui
ǫui+1). (7.17)

Now, to complete the pairwise EEER calculation, we just needto findP 1
c (i) represent-

ing the probability of findingxi at u1 in both i and(i + 1)th equations. Here,xi can be

retrieved from bothith and(i + 1)th rows if none of these rows is erased in the downlink

andxi does exist in both rows. Also, one of these situations shouldhappen: (i)xi−1 in row

i andxi+1 in row i+1 are both erased in the uplink phase, (ii) Eitherxi−1 or xi+1 is erased

in the uplink phase and the other one was found before solvingthe corresponding equation,

(iii) Nothing is erased in the uplink phase andxi−1 andxi+1 have been previously found.

Thus, fori = 2, . . . , N , we have

P 1
c (i)=ǫ2d1ǫ

2
ui

[

ǫui−1ǫui+1+ǫui+1ǫui−1P
1
1 (i−1)+ ǫui−1ǫui+1P

1
2 (i+1) (7.18)

+ǫui+1ǫui+1P
1
1 (i−1)P 1

2 (i+1)
]

.

Now, the probability of findingxi atu1 is

P 1(i) = P 1
1 (i) + P 1

2 (i)− P 1
c (i) (7.19)

andǫi,1 = 1− P 1(i).

Let us derive the probability of findingxi at userj, calledP j(i). Sincexj is known

at userj, finding the values ofxj−1, xj−2, . . . , x1 can be seen as findingx2, x3, . . . , xj

at u1 when there are onlyj users in the system trying to exchange their data. Thus, for

i = 1, 2, . . . , j − 1, P j(i) = P 1(j − i + 1) whereP 1(·) is calculated when there arej

users in the system. Similarly, fori = j+1, j +2, . . . , N , we haveP j(i) = P 1(i− j+1)

when onlyN − j + 1 users exchange their data. Hence,ǫi,j is derived. Similar to OWR,

ǫMPWR
f = max

i,j
ǫi,j. Furthermore, the average erasure rate that each user experiences is

ǫMPWR
ave = 1−

N
∑

j=1

N
∑

i=1,i 6=j

P j(i)

N(N − 1)
. (7.20)
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The importance ofǫMPWR
ave is later discussed in Subsection 7.4.4.

Remark 7.1 Assume a symmetric EMWRC whereǫui
= ǫu and ǫdi = ǫd for all i. In this

case, unlike OWR, pairwise EEERs are not necessarily equal when MPWR is used. Further,

it can be shown that

min
j,i

P j(i) = P 1(N) = PN (1). (7.21)

Thus,ǫMPWR
f = max

i,j
ǫi,j = 1− P 1(N).

MPWR with Reconstruction:Reconstruction at the relay is performed onAr and gives

Ã. Its purpose is to reduce the uplink erasure rate without affecting the downlink. In the

following, we find the equivalent uplink erasure rate when MPWR along with relay recon-

struction is used. The equivalent uplink erasure probability of xi in jth pairwise transmis-

sion is the probability of not being able to retrieve it atjth equation even after reconstruction

at the relay. Notice thatxi appears in(i− 1)th andith equations ofA. Thus,j ∈ {i− 1, i}.

First of all, if x1 or xN is erased in its associated transmission, it never can be retrieved

since these data packets appear in only one row ofA. Now, assume thatxi, 2 ≤ i ≤ N − 1,

is erased in(i − 1)th equation. To findxi from the rest of equations, one of these cases

should happen: i)xi+1 is erased inith equation whilexi exists there, ii) Bothxi andxi+1

exist inith equation, and onlyxi+1 is received by the relay in(i+1)th equation, and so on.

This continues until the case where allxi’s in theith to (N −2)th equations exist andxN is

erased from the(N − 1)th row of A while xN−1 exists. Thus, the probability of retrieving

xi in the(i − 1)th row of Ar when it has been originally erased in the uplink transmission

is

P i,i−1
c =ǫui

ǫui+1+ǫui
ǫ2ui+1

ǫui+2+. . .+ ǫui
ǫ2ui+1

· · · ǫ2uN−1
ǫuN

= ǫui

N
∑

j=i+1

{ǫuj

j−1
∏

k=i+1

ǫ2uk
}.

(7.22)

HavingP i,i−1
c , the equivalent uplink erasure rate ofxi in (i− 1)th equation is

ǫi,i−1
u = ǫui

(1− P i,i−1
c ). (7.23)

Now, assume thatxi is erased inith equation. It can be found if: i)xi appears in(i−1)th

equation whilexi−1 is erased, ii) Bothxi andxi−1 appear in(i − 1)th equation and only

xi−1 is received by relay in(i−2)th equation, and so on. The last possible situation is when

x1 is erased in the first equation whilex2 exists and none ofxj ’s in the second to(i− 1)th
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equations is erased. Thus, the probability of erasure correction forxi at equationi is

P i,i
c =ǫui

ǫui−1+ǫui
ǫ2ui−1

ǫui−2+. . .+ ǫui
ǫ2ui−1

· · · ǫ2u2
ǫu1 = ǫui

i−1
∑

j=1

{ǫuj

i−1
∏

k=j+1

ǫ2uk
}.

(7.24)

Similarly, the equivalent uplink erasure rate ofui when it experiences erasure inith uplink

transmission is

ǫi,iu = ǫui
(1− P i,i

c ). (7.25)

Notice thatP 1,1
c = PN,N−1

c = 0. To apply the effect of reconstruction on EEER calcula-

tion, we should properly replaceǫui
with eitherǫi,i−1

u or ǫi,iu . In other words,xi experiences

erasure in theith row ofA1 with ǫi,i−1
u and withǫi,iu in the(i+ 1)th row.

Remark 7.2 For a symmetric EMWRC with MPWR, it can be shown that in the limit of

N → ∞, we have

E(P i,i−1
c ) =

ǫu
1 + ǫu

, (7.26)

E(P i,i
c ) =

ǫu
1 + ǫu

, (7.27)

whereǫu = 1 − ǫu andE(·) is the expected value. As a consequence, bothǫi,i−1
u and ǫi,iu

approach ǫu
2−ǫu

.

7.4.3 EEER Calculation for OPPWR

OPPWR without Reconstruction:Consider one round of communication for OPPWR which

consists ofN pairwise user transmissions. Since for OPPWR,A is a circulant matrix,

without loss of generality, we findǫi,1 for i = 2, 3, . . . , N . Other pairwise EEERs are

similarly found by proper circulation ofǫi,1.

Havingx1 (the first row ofA1 in (7.10)),u1 can findxi either in rowi or i+ 1 of (7.9)

for i = 2, 3, . . . , N . Let us denote the probability of findingxi in row i andi+ 1 by P1(i)

andP2(i) respectively. Thus, the probability of retrievingxi in u1, P (i), is

P (i) = P1(i) + P2(i) − Pc(i) (7.28)

wherePc(i) is the probability of being able to retrievexi in bothith and(i + 1)th rows of

A1.

P1(i) is found similar to (7.16). Further, due to the cyclic structure of A, it can be

shown thatP2(i) = P1(N − i+ 2) for i = 2, 3, . . . , N . Derivation ofPc(i) is also similar
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to (7.18). To calculatePc(i) in (7.18), we should substituteP2(i + 1) by P2(1) = 1 when

i = N . This is becausex1 appears withxN for the second time and is always known atu1.

Having all terms in (7.28),ǫi,1 = 1 − P (i). Further, using the circulant structure ofA, it

can be shown thatǫi,j = ǫi−j+1,1. Having the pairwise EEERs,ǫOPPWR
f = max

i,j
ǫi,j and

users’ average erasure rate,ǫOPPWR
ave , is simply calculated similar to (7.20).

Remark 7.3 For a symmetric EMWRC, pairwise EEERs are not equal when OPPWR is

used. In this case, it can be shown thatǫOPPWR
f = ǫ⌊N/2⌋+1,1.

OPPWR with Reconstruction:Similar to MPWR, we calculateǫi,i−1
u andǫi,iu to derive

the uplink equivalent erasure rate. With a similar logic, itcan be shown that for OPW

P i,i−1
c =ǫui

ǫui+1+ǫui
ǫ2ui+1

ǫui+2+. . .+ ǫui
ǫ2ui+1

· · · ǫ2uN
ǫ2u1

· · · ǫ2ui−2
ǫui−1 (7.29)

= ǫui

N+i−2
∑

j=i

{ǫum(j)+1

j−1
∏

k=i

ǫ2um(k)+1
}. (7.30)

and

P i,i
c =ǫui

ǫui−1+ǫui
ǫ2ui−1

ǫui−2+. . .+ ǫui
ǫ2ui−1

· · · ǫ2u1
ǫ2uN

· · · ǫ2ui+2
ǫui+1 (7.31)

= ǫui

N−1
∑

j=1

{ǫum(i−j)

j−1
∏

k=1

ǫ2um(i−k)
} (7.32)

wherem(·) represents modulo-N operation. Other stages of EEER calculation are similar

to what described for MPWR.

Remark 7.4 In a symmetric EMWRC with OPPWR, it can be shown that for alli, P i,i−1
c =

P i,i
c = Pc. Further, in the limit ofN → ∞,

Pc =
ǫu

1 + ǫu
. (7.33)

As a consequence, similar to MPWR,ǫi−1,i
u = ǫi,iu = ǫu

2−ǫu
.

7.4.4 Numerical Examples

Here, we present some numerical examples for EEER of proposed schemes. Further, we

discuss how EEER can be decreased by modifying the users’ transmission scheduling and

employing a shuffled transmission schedule for users. The following cases are for a sym-

metric EMWRC with uplink and downlink erasure probabilities ǫu andǫd respectively.

Figure 7.1 depicts EEER (maximum pairwise EEER), average pairwise EEER and the

minimum pairwise EEER among the users when MPWR is used. As seen, there is a signif-

icantly large gap between EEER and average pairwise EEER. Similar results are presented
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in Figure 7.2 when OPPWR is used. Having such a large variancebetween pairwise EEERs

noticeably limits the achievable rate of the system. Pleasenote that for OWR, all pairwise

EEERs are equal, thus, numerical results are omitted here.
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Figure 7.1: EEER, average pairwise EEER and minimum EEER forMPWR.

To improve the system’s achievable rate, it is desired to decrease EEER. For this pur-

pose, we suggest using a shuffled (random) transmission scheduling to narrow the gap be-

tween the EEER and the average pairwise EEER. In this approach, all users have psuedoran-

dom number generators with the same initial seeds. Thus, theoutput of number generators

are equal at all users. For each round of communication, psuedorandom number genera-

tors give a random permutation of numbers from 1 toN . We denote this psuedorandom

sequence by{S1, S2, . . . , SN}. This random sequence specifies the order of transmission

by users. For our proposed pairwise schemes, in the first uplink transmission, userS1 and

userS2 transmit, in the second uplink transmission, userS2 and userS3 transmit and so on.

For OPPWR, userSN and userS1 also transmit together in the last uplink slot.

In the abovementioned shuffled scheduling,ith row of A is assigned to the pairwise

transmission ofuSi
anduSi+1 for each round of communication. Note thatuSi

anduSi+1

77



2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of users (N)

E
ra

su
re

 p
ro

ba
bi

lit
y

 

 
Minimum erasure rate: ε

u
 = ε

d
 = 0.1

Maximum erasure rate: ε
u
 = ε

d
 = 0.1

Average erasure rate: ε
u
 = ε

d
 = 0.1

Minimum erasure rate: ε
u
 = ε

d
 = 0.05

Maximum erasure rate: ε
u
 = ε

d
 = 0.05

Average erasure rate: ε
u
 = ε

d
 = 0.05

Figure 7.2: EEER, average pairwise EEER and minimum EEER forOPPWR.

can be any arbitrary two users fromu1 to uN in each round. Thus, by doing shuffled

scheduling over large number of communication rounds, we expect EEER and minimum

pairwise EEER to converge to the average pairwise EEER. As a consequence, shuffled

transmission scheduling significantly evens out the pairwise erasure rates resulting in a

lower overall EEER.

Effect of the reconstruction on the equivalent uplink erasure probability is presented in

Figure 7.3 and Figure 7.4 for MPWR and OPPWR, respectively. In these figures, the aver-

age equivalent uplink erasure probability over all users isdepicted versus the uplink erasure

probability and the number of users. As seen, for smallN , reconstruction is not much

helpful when MPWR is used. For instance, ifN = 2, reconstruction does not improve

the performance at all since the data of each user (here, two users) exist in only one uplink

transmission. Hence, there is no redundancy for retrievingthe users’ data from other uplink

transmissions if it is erased. On the other hand, reconstruction causes the best improvement

in terms of erasure rate for OPPWR whenN = 2. This is due to the repetitive transmis-

sion of users’ data (each user’s data packet is sent twice). As number of users increases,
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performance improvement by reconstruction increases for MPWR while it decreases for

OPPWR. However, generally speaking, reconstruction at therelay has a more significant

improvement for OPPWR.

0

0.05

0.1

0.15

0.2

2

4

6

8

10
0

0.05

0.1

0.15

0.2

Uplink erasure probabilityNumber of users (N)

R
ec

on
st

ru
ct

ed
 e

qu
iv

al
en

t u
pl

in
k 

er
as

ur
e 

pr
ob

ab
ili

ty

Figure 7.3: Equivalent Uplink erasure probability for MPWR.

7.5 Rate Upper bound

In this section, we derive an upper bound on the achievable common data rate,R, for the

described EMWRC. This bound is later used to evaluate the performance of the proposed

data-sharing schemes. To find the rate bound, we apply cut-set theorem [37].

To start, we first consider data transmission from other users toui and derive the rate

upper bound in this case. For this user, two cuts are considered (Figure C.1): the cut

considering the relay andui as receivers of a multiple-access channel interested in decoding

the data of otherN−1 users, and the cut considering the relay as the transmitter to ui. For

the first cut, the data rate is limited by the user with the worst uplink erasure rate as well as

the sum-rate condition. Using similar arguments as [61], itis easy to show that the sum-rate

for the first cut is bounded by1−∏N
j=1,j 6=i ǫuj

. Thus, by denoting the transmitted common
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Figure 7.4: Equivalent Uplink erasure for probability OPPWR.

data rate from other users toui by Ri, we have

Ri ≤ min{ min
j=1,j 6=i

{1− ǫui
}, 1

(N − 1)
(1−

N
∏

j=1,j 6=i

ǫuj
)}. (7.34)

The second cut is a simple single user erasure channel. Thus,

Ri ≤
1

N − 1
(1− ǫdi). (7.35)

Now, if we repeat the cut-set discussion for allui’s, the achievable common rate isR =

min
i

Ri.

7.6 Performance Analysis

In this section, we study the performance of the three aformentioned schemes (i.e. OWR,

MPWR and OPPWR) in terms of their achievable rate and the transmission overhead for

the data exchange between the users. Here, we assume a symmetric EMWRC with uplink

and downlink erasure probabilitiesǫu andǫd.

The achievable rate of the schemes is determined by the worsterasure rate between

a pair of users which is reflected in EEER. In addition to EEER,the number of consumed
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Figure 7.5: Cut-sets used to find the rate upper bound

uplink and downlink slots (number of channel uses) for data exchange between users is also

important for to make a fair comparison between the schemes.To this end, we consider the

normalized achievable rate which is the carried data over one uplink and downlink time

slots. According to this definition, the normalized achievable rate for OWR, MPWR and

OPPWR areRc
OWR = (1− ǫOWR

f )/N , Rc
MPWR = (1− ǫMPWR

f )/(N −1) andRc
OPPWR =

(1− ǫOPPWR
f )/N respectively.

Figure 7.6 depicts the comparison between the normalized achievable rates of OWR,

MPWR, OPPWR, and the rate upper bound (derived in Section 4.2) for an ideal channel

with no erasure, i.eǫd = ǫu = 0. As seen, MPWR can actually achieve the upper bound

for such an ideal channel since its division factor,N − 1, is equal to the division factor of

the upper bound. Also, OPPWR and OWR provide equal rates which always fall under the

upper bound and the achievable rates of MPWR.

By increasing the erasure rate of channels, MPWR is no longerthe best approach. The

results are shown for a more realistic channel withǫu = 0.1 andǫd = 0.1 in Figure 7.7. As

seen, forN ≤ 4, 5 ≤ N ≤ 8, and9 ≤ N , MPWR, OPPWR, and OWR achieve the highest

normalized rate. To investigate the effect of reconstruction at the relay as well as the shuffled

transmission scheduling, numerical results for symmetricchannels withǫu = ǫd = 0.1

are presented in Figure 7.8. Using reconstruction and shuffled scheduling improves the

achievable rates of proposed pairwise scheme, specially MPWR.

To better illustrate the performance improvement of randomshuffling and relay recon-

struction, a comparison between EEER for MPWR, OPPWR and OWRis presented in

Figure 7.9 whenN = 6. Without reconstruction or shuffled transmission, EEER of OWR

resides under the EEER of MPWR. However, using these two techniques significantly re-
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Figure 7.6: Achievable rates whenǫu = ǫd = 0.

duces MPWR’s EEER and for some erasure probabilities, MPWR’s EEER is less than

OWR’s EEER. Similar behavior is observed for OPPWR where using reconstruction and

shuffled scheduling results in outperforming OWR by OPPWR over all erasure probabili-

ties.

Figure 7.10 depicts the simulation and analytical results for the transmission overhead

of different schemes whenǫu = ǫd = 0.1. Transmission overhead can be considered as a

notion of delay in EMWRC. Similar to the achievable rates, here, the transmission overhead

for different schemes are normalized due to the difference in the number of uplink transmis-

sions for different schemes. It means that to fairly comparethe overhead of MPWR with

OPPWR and OWR, the MPWR’s transmission overhead is scaled byN−1
N . For simulation,

a Raptor code with information length 14000 and an outer code(LDPC) of rate 0.9872 has

been used for fountain coding. Also, in the simulation setup, a shuffled transmission sched-

ule is used and the relay performs reconstruction to reduce the effective uplink erasure rate.

The analytical results are calculated using EEER as explained in Section 7.4. Note that there

is a gap between the analytical and simulation results due toassuming ideal fountain code
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Figure 7.7: Achievable rates whenǫu = ǫd = 0.1.

in the analytical overhead calculation. However, using EEER, the transmission overhead of

the schemes can be evaluated well without the need for tedious computer simulations.

7.7 Conclusion

In this chapter, we studied low-latency data sharing schemes for EMWRCs. To this end,

we first mentioned the challenges confronting the use of fountain coding for EMWRCs.

Then, we proposed two simple and low-latency data sharing schemes, namely MPWR and

OPPWR, based on fountain coding. We also showed that by performing simple matrix

operations at the relay and shuffling the order of users’ transmissions, the performance of

MPWR and OPPWR can be further enhanced. To find the achievablerate and transmission

overhead of our solutions, we introduced EEER and calculated it analytically for our strate-

gies. In addition, an upper bound on the achievable rate of EMWRCs was derived. The

achievable rates of MPWR and OPPWR were then compared with this bound as well as the

achievable rates of OWR. This comparison along with comparing the transmission overhead

of MPWR, OPPWR and OWR revealed that for smallN , MPWR has the best performance.
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Figure 7.8: Achievable rates whenǫu = ǫd = 0.1 and reconstruction and shuffled schedul-
ing are applied.

By increasingN , first OPPWR and then OWR outperform the other two schemes. Seeking

methods to improve the performance of data sharing schemes over EMWRCs, for instance

through smarter users’ and relay transmission strategy, isconsidered to future research di-

rections.
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Chapter 8

Conclusion and Future Work

In this chapter, we first summarize the contributions of thisdissertation and conclude our

work. Then, new problems are described for future research directions.

8.1 Conclusion and Summary of the Contributions

The main focus of this thesis was studying the achievable rates of MWRCs for differ-

ent channel types including symmetric channels with AWGN, asymmetric channels with

AWGN, and erasure channels. We compared the performance of different relaying schemes

and also tried to improve the system’s achievable rate.

Designing a new constellation mapping for PSK modulation inTWRCs and pairwise

MWRCs was the focus of Chapter 3. First, we addressed the issue regarding possible am-

biguity points in the received constellation. For this purpose, we found the necessary and

sufficient condition on a user bit mapping which removes thisambiguity. Further, we in-

troduced the concept of semi-Gray mapping which improves the system BER performance

and achievable rate. The necessary and sufficient conditionof having a semi-Gray mapping

was also found. Interestingly, the widely used binary reflected Gray mapping does not sat-

isfy the semi-Gray mapping condition resulting in a poorer performance compared to our

proposed semi-Gray scheme.

In Chapter 4, we studied the achievable rates of memoryless TWRCs. More specifically,

we studied AF and DMF in terms of their achievable data exchange rates and showed that

unlike memoryless one-way relaying, increasing users’ SNRbenefits AF more than DMF.

Another interesting observation was that while with DMF a higher data rate is provided for

the user whose channel condition is better, with AF the situation is the reverse. That is, the

user with a worse channel condition can receive at a higher data rate. Further, we found that

for a TWRC with asymmetric users’ channels, AF can take advantage of power back-off
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at the users, without degrading the data rate, to save energywhile power back-off is not

beneficial for DMF.

Assuming an MWRC withN users, OWR and MWR were compared in Chapter 5 in

terms of their achievable rates. First, we proved that for MWR, FDF ensures a gap less

than 1
2(N−1) bit from the capacity upper bound while MWR based on DF or AF isunable

to guarantee this rate gap. For DF and AF, we identified situations where they also have a

rate gap less than 1
2(N−1) bit. Later, we showed that although MWR has higher relaying

complexity, surprisingly, it can be outperformed by OWR depending onN and the system

SNR. Summarily speaking, for largeN and small users’ transmit power, OWR usually

provides higher rates than MWR.

In Chapter 6, we studied an asymmetric MWRCs with AWGN where users have dif-

ferent channel conditions. To enable data communication inthis scenario, we considered

two different strategies: FDF and PDF. For both FDF and PDF, we first showed that due to

unequal channel conditions, the achievable common rate of the pairwise strategy depends

on the order in which the users are paired. This motivated us to find the pairing strategy

maximizing the achievable rate. The maximum achievable rate of each scheme was then

compared with the capacity upper bound and the achievable rate of a random user pairing.

We proposed practical low-latency data sharing strategies, called MPWR and OPPWR,

for EMWRCs based on fountain coding in Chapter 7. To evaluatethe performance of our

proposed schemes, we introduced the notion of end-to-end erasure rate (EEER) which is the

probability of missing the transmitted data of a user in another one. EEER was analytically

derived for MPWR and OPPWR and was later used to derive their achievable rate and trans-

mission overhead. We further showed that by performing simple matrix operations at the

relay and implementing a shuffled users’ transmission scheduling, EEER can be decreased.

We also found an upper bound on the achievable rates of EMWRC and observed that when

the number of users is not large or the channel erasure probability is small, our proposed

schemes operate close to this bound. The results of the comparison between our proposed

schemes and OWR suggested that MPWR and OPPWR can outperformOWR when the

number of users and the links’ erasure rates are not large.

A general conclusion of our work in this thesis is that MWR outperforms OWR when

the error rate as well as the number of users are not large. Note that large error rate is

associated with small SNRs in AWGN channels while it is indicated by large erasure rate

in the erasure channels. To get the best of both worlds, for a practical relayed data sharing

system, users can take a hybrid approach and switch between MWR and OWR depending
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on the systems circumstances.

8.2 Future Research Directions

Since MWRCs are a new field in wireless communications, different aspect of them are still

unexplored. In the following, we define several research problems which can be studied to

extend the scope of our presented work.

8.2.1 Optimal Symbol Mapping for MWRCs with PSK Modulation

Different legitimate mappings have different performancein terms of BER and achievable

rate. Thus, it is desired to find the users’ symbol mapping providing the lowest BER and

highest achievable rate. As we discussed in Chapter 3, depending on the systems SNR, the

effect of second closest points in the constellation becomes important. Thus, depending

on the system SNR, finding a unique optimal mapping for all SNRs may not be possible.

However, one can think of designing an adaptive symbol mapping at the user side. In this

adaptive scheme, the mapping is chosen based on the current system’s SNR such that the

performance is improved.

8.2.2 Generalized FDF for Pairwise MWRCs

In Chapter 6, the focus of the study was on pairwise strategies where the users have (almost)

equal number of transmissions in the uplink phase. It means that almost all users transmit in

two uplink time slots. We are interested to see whether usingunbalanced pairwise strategy

improves the performance or not. To this end, a generalized FDF (GFDF) can be consid-

ered. In a GFDF scheme, users still communicate with the relay in pairs and one round

of communication consists ofN − 1 MAC and BC transmissions. The difference between

GFDF and FDF is the number of transmissions that each user makes. While in FDF each

user has at most two MAC transmissions, it can transmit up toM ≥ 2 times in a GFDF.

However, the total number of users’ uplink transmission is still 2(N − 1), i.e two transmis-

sions in each MAC slot. WhenM = 2, GFDF and FDF are equivalent. Please note that

in GFDF, different users may have different number of uplinktransmissions which leads to

unbalanced power expenditure at users. Thus, GFDF can be an approach for heterogeneous

networks where users in the network have different (power) resources and requirements.

Studying the achievable rates of GFDF and finding its optimaltransmission strategy to

maximize the achievable rate over asymmetric channels is considered for future work.
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8.2.3 Optimal User Pairing to Maximize the Sum-Rate

Another measure to evaluate the data rate performance in a communication system is the

sum-rate. It is usually considered a measure for the overallnetwork data transfer capacity.

First of all, we need to conduct a sum-rate analysis for MWRCs, especially for the asym-

metric case. Then, we are interested to find the optimal transmission strategy to maximize

the network sum-rate over asymmetric channels. The optimalpairing strategy for sum-rate

is expected to be different from the one for common rate.

8.2.4 Improving the Proposed Data Sharing Schemes for EMWRC

In Chapter 7, we improved the performance of our proposed data sharing schemes through

shuffling the users’ transmission order as well as the reconstruction at the relay. However,

the achievable rate of our proposed data sharing schemes still has a gap with the rate upper

bound. Another solution which we did not explore is to designa more effective transmis-

sion matrix,A, in the first place. To design a better transmission matrixA, EEER can be

effectively used. To this end, an optimization problem can be formulated whose goal is

to minimize EEER of a transmission matrixA such that the data separation at the users is

accomplished without difficulty.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Lemma 3.1

C0 can be superimposed withM points, including itself. Also,C1 can be superimposed

with M − 1 constellation points (all constellation points exceptC0) to give new points

on CR. Continuing on the same fashion and noticing that the superimposition of anyM2

opposite pairs gives the central point ofCR at (0, 0), the total number of distinct points on

CR is
M
∑

i=1

i− M

2
+ 1 =

M2

2
+ 1. (A.1)

Now, notice thatC0 + CM
2
−1 andC0 + C0 give (0,0) and (2,0) inCR. Also, for any

0 < i < M
2 − 1, C0 + Ci andC0 + CM−i−1 gives two points inCR which are equally

distanced from the center. Each differenti results in a pair with different distance from the

center. Now, one can show that by producing the rest of the points inCR through rotation,
M
2 circles are formed withM points on each of them.

A.2 Proof of Theorem 3.1

First, we claim that the neighbors of a point ingi are either in the same group, or can be in

one or two groups away from it. Assume this claim is not true. Now take an arbitrary point

P1 in CR whose neighborP2 belongs togi+j (or gi−j if i > 2), such thatj > 2. From the

geometry ofCR, there is a pointP3 on gi+j−2 (gi−j+2) which is on the same line passing

throughP2 and(0, 0). Clearly,P3 is closer thanP2 to P1. This contradicts our assumption

thatP2 is a neighbor ofP1.

Now, to finddmin, we find three types of minimum distances onCR: d1 = minimum

distance between two neighboring points ongi, d2 = minimum distance between two near-

est points ongi andgi+1 andd3 = minimum distance between two nearest points ongi and
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gi+2.

For d1, notice that all of the constellation circles inCR haveM points on them. Thus,

the neighboring points ong1 have the smallest distance equal to

d1 = 2

[

1− cos

(

2π

M

)]

= 4 sin2
( π

M

)

. (A.2)

Also, from Lemma 3.2, the distance between two nearest points ongi andgi+1 is

d2 = 2 sin
( π

M

)

. (A.3)

Ford3, let us takeP1 = Cj+CM/2+j−i−1 in gi andP2 = Cj+1+CM/2+j−i−2 in gi+2.

It can be shown thatd(P1, P2) is decreasing withi. For i = M
2 − 2, this distance has its

smallest value

d3 = 2

[

1− cos

(

2π

M

)]

= 4 sin2
( π

M

)

. (A.4)

Now, dmin = min{d1, d2, d3}.

A.3 Proof of Theorem 3.2

First, we assume that the mapping is legitimate and for anyi = 0, 1, . . . ,M−1, Si andSi+2

differ in only one bit. We show that this results in a semi-Gray mapping at the relay. As

mentioned in Theorem 3.1,dmin is the distance between two neighboring points ing1 or a

point fromgM
2
−2 and another fromgM

2
. The mapping of a point ing1 isSi⊕SM

2
+i−1. Now,

we show that the mappings of two arbitrary consecutive points ing1, shown bySi⊕SM
2
+i−1

andSi+1 ⊕ SM
2
+i, differ in just one bit. Assume thatS denotes the mapping of the central

point ofCR. Since the mapping is legitimate, we have

Si+1 = S ⊕ SM
2
+i+1, SM

2
+i = S ⊕ Si. (A.5)

Now, using (A.5),

Si+1 ⊕ SM
2
+i = S ⊕ SM

2
+i+1 ⊕ S ⊕ Si = Si ⊕ SM

2
+i+1. (A.6)

Recall thatSM
2
+i−1 andSM

2
+i+1 differ in just one bit. As a consequence,Si ⊕ SM

2
+i−1

andSi ⊕ SM
2
+i+1 differ in only one bit as well.

On the other hand, all the points ofgM
2

are mapped to the all zero sequence. Also, the

mapping of a point ingM
2
−2 is in the form ofSi ⊕ Si+2. SinceSi andSi+2 differ in just

one bit,Si ⊕ Si+2 has just one non-zero bit. Hence, the mapping generates a semi-Gray

mapping at the relay.
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Now, assume that the mapping is semi-Gray. Thus, all points in gM
2
−2 has only one

non-zero bit. Considering that the points ingM
2
−2 are in the form ofSi ⊕ Si+2, it turns out

that for alli, Si ⊕ Si+2 has just one non-zero bit. This concludes thatSi andSi+2 differ in

just one bit.
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Appendix B

Proofs for Chapter 5

Before presenting proofs, we state the following propositions based on Lemma 2.1, 2.4 and

2.2.

Proposition B.1 If Pr ≤ (K − 1)P , i.e. downlink is the rate bottleneck, we have

Rc
UB =

log (1 + Pr)

2(K − 1)
. (B.1)

Otherwise

Rc
UB =

log (1 + (K − 1)P )

2(K − 1)
. (B.2)

Proposition B.2 In a Gaussian MWRC with FDF MWR, ifPr ≤ K
2 P − 1

2 , then downlink

is the bottleneck resulting in

Rc
FDF =

log (1 + Pr)

2(K − 1)
. (B.3)

If K
2 P − 1

2 ≤ Pr

Rc
FDF =

log
(

1
2 + KP

2

)

2(K − 1)
. (B.4)

Proposition B.3 WhenPr ≤ (1+KP )
K−1
K − 1, downlink constrains the rate of DF MWR

and

Rc
DF =

log (1 + Pr)

2(K − 1)
. (B.5)

Further, when(1 +KP )
K−1
K − 1 < Pr, uplink is the rate bottleneck and

Rc
DF =

log (1 +KP )

2K
. (B.6)

B.1 Proof of Theorem 5.1

We start the proof by partitioning the range ofPr andP using Proposition B.1 and B.2.

Then, the achievable rate of FDF and the rate upper bound are compared in each region in

order to complete the proof. The partitions specify which constraints in (2.4) and (2.12) are
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active. SinceK ≥ 2, we haveK
2 P − 1

2 < (K − 1)P . To this end, the regions of interest

are specified asPr ≤ K
2 P − 1

2 , K
2 P − 1

2 < Pr ≤ (K − 1)P , and(K − 1)P < Pr. These

partitions are denoted byAFDF
1 , AFDF

2 andAFDF
3 respectively.

Capacity Gap onAFDF
1 : The achievable rate of FDF as well as the upper bound is

determined by downlink on this region. Using Proposition B.1 and B.2, we conclude that

Rc
FDF = Rc

UB. In other words, FDF achieves the capacity upper bound and the gap between

Rc
UB andRc

FDF, GU = Rc
UB −Rc

FDF, is 0.

Capacity Gap onAFDF
2 : For this region, the achievable rate of FDF is bounded by

uplink while the rate upper bound is forced by downlink. Thus,

GU =
1

2(K − 1)

[

log(1 + Pr)− log(
1

2
+

K

2
P )

]

=
1

2(K − 1)
log

(

1 + Pr
1
2 + K

2 P

)

. (B.7)

Sincelog(·) is an increasing function, the maximum ofGU happens whenPr has its maxi-

mum value onA2. SincePr < (K − 1)P , it is easy to show that

1 + Pr
1
2 + K

2 P
< 2. (B.8)

As a consequence,GU < 1
2(K−1) .

Capacity Gap onAFDF
3 : Both Rc

FDF andRc
UB are limited by the uplink in this case.

Thus, using Proposition B.1 and B.2

GU =
1

2(K − 1)
log

(

1 + (K − 1)P
1
2 +

K
2 P

)

. (B.9)

Now, it is inferred from (B.9) thatG < 1
2(K−1) . �

B.2 Proof of Theorem 5.2

Similar to FDF, we partition the SNR region and study the capacity gap for DF over different

partitions. First, we point out that(1 + KP )
K−1
K < (K − 1)P . To this end, we define

three SNR regions namelyADF
1 , ADF

2 , andADF
3 denotingPr ≤ (1 +KP )

K−1
K − 1, (1 +

KP )
K−1
K − 1 < Pr ≤ (K − 1)P , and(K − 1)P < Pr respectively.

Capacity gap onADF
1 : Rc

UB andRc
DF are limited by downlink. Using propositions B.1

and B.3, it is concluded thatGU = Rc
UB −Rc

DF = 0.

Capacity gap onADF
2 : For this partition

GU =
log(1 + Pr)

2(K − 1)
− log(1 +KP )

2K
=

1

2(K − 1)
log

(

1 + Pr

(1 +KP )
K−1
K

)

. (B.10)
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Now, the capacity gap is less than 1
2(K−1) bit if

Pr < 2(1 +KP )
K−1
K − 1. (B.11)

Considering that(1 +KP )
K−1
K ≤ Pr < (K − 1)P , it is easy to show that (B.11) does not

necessarily hold for all values ofPr andP in this region.

Capacity gap onADF
3 : Here, uplink is the rate bottleneck for the upper bound as well

as DF. Thus,

GU =
1

2(K − 1)
log

(

1 + (K − 1)P

(1 +KP )
K−1
K

)

(B.12)

andGU < 1
2(K−1) if (K − 1)P < 2(1 +KP )

K−1
K − 1 which does not necessarily hold for

all P andPr values withinADF
3 . �

B.3 Proof of Theorem 5.3

We again define SNR regions, calledAAF
1 andAAF

2 based on Proposition B.1. The first

region is wherePr ≤ (K − 1)P and the second region includes(K − 1)P < Pr.

Capacity Gap onAAF
1 : In this region, we have

GAF
U = Rc

UB −Rc
AF =

1

2(K − 1)
log

(

(1 + Pr)(1 +KP + Pr)

1 +KP + Pr + (K − 1)PPr

)

(B.13)

Now, from (B.13), one can show thatGAF
U < 1

2(K−1) if P 2
r − (K − 2)PPr < KP.

Capacity Gap onAAF
2 : On this partition,

GAF
U =

1

2(K − 1)
log

(

(1 + (K − 1)P )(1 +KP + Pr)

1 +KP + Pr + (K − 1)PPr

)

(B.14)

Using (B.14), it is easy to conclude that ifK(K− 1)P 2 − (K − 1)PPr < 1+Pr +P then

AF has a capacity gap smaller than1
2(K−1) . �

B.4 Proof of Theorem 5.4

First assumePr < KP . Since

KPPr

1 +KP + Pr
< Pr (B.15)

holds, thenRDFO
> RAFO

. ForKP ≤ Pr,

KPPr

1 +KP + Pr
< KP (B.16)

is always correct. As a consequence, for this SNR regionRDFO
> RAFO

still holds. �
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Appendix C

Proofs for Chapter 6

C.1 Proof of Theorem 6.1

Let us defineU = {u1, u2, . . . , uN ,R}. Now consider Cut 1 in the network separating

Ui = U − {ui,R} from {ui,R}. Assuming that users send data with a common rateRc,

from the cut-set theorem [35], we have

(N − 1)Rc ≤ C(
P
∑

i∈Ui
|hi|2

σ2
). (C.1)

Please notice that to derive (C.1), we use the fact that data flow over Cut 1 is a multiple

access channel fromUi toR. Now, consider Cut 2 separatingU − ui andui. Applying the

cut-set theorem to Cut 2 gives(N − 1)Rc ≤ C(Pr |hi|2
σ2 ). Hence, the upper bound for the

data rate formUi to ui is

Rc
UBi

=
1

N − 1
min

{

C(
P
∑

i∈Ui
|hi|2

σ2
), C(Pr |hi|2

σ2
)

}

. (C.2)

NoticingRc
UB = min

i
Rc

UBi
andh1 < hi, for i > 1, the proof is complete. �

Cut 1 Cut 2u1

u2

ui−1

ui+1

uN−1
uN

ui

Figure C.1: Network cut-sets
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C.2 Proof of Theorem 6.3

If S1 is limited by (6.4), there is no better pairing thanS1 since all pairings will be limited

by the same constraint. If not, from (6.2), the optimal pairing is the one which maxi-

mizesV = mini

{

|hoi|2
|hoi|2+|ho(i+1)|2

}

which is equivalent to finding the pairing that mini-

mizesW = maxi

{ |ho(i+1)|2
|hoi|2

}

. We claim thatS1 minimizesW . Assume thatS1 results in

min{max
i

|ho(i+1)|2/|hoi|2} = |hj+1|2/|hj |2. Recall that inS1, hoi = hi. Now, consider

another pairingS′. To outperformS1, S′ should not have(uj , uj+1). It also should avoid

any other pair resulting in a larger gain ratio. To this end, we make a swap and pairuj+1

with ul wherel > j. This swap results in|hj+1|2/|hl|2 < |hj+1|2/|hj |2, but on the other

hand forms the(uj , ul+1) pair which results in having|hl+1|2/|hj |2 ≥ |hj+1|2/|hj |2. This

contradicts with the assumption thatS′ outperformsS1. If S′ wants to minimizeW by

making more swaps toS1, the pigeonhole principle guarantees thatS′ has always a pair

(hk, hm) such thatk ≤ j andm ≥ j + 1. Thus, it cannot do better thanS1.

C.3 Proof of Theorem 6.5

Assume that the rate ofS2 is limited by (6.10), otherwise any other pairing has the same

rate limit. WithS2, the transmission pairs are in the form of

(u1, uN), (uN , u2), (u2, uN−1), . . . , (uj , uN−j+1), . . . (C.3)

where(uj , uN−j+1) is the pair whose MAC phase limits the rate. To have a strategywith

a higher common rate, we must connectuj with a user having a larger channel gain than

uN−j+1. This change forms the following transmission pairs

(u1, uN),(uN,u2), . . . , (uj ,uN−l+1), . . . , (ul,uN−j+1), . . . (C.4)

Since the channel gain oful is smaller thanuj ’s channel gain, the common rate in (C.4),

due to pair(ul, uN−j+1), is smaller than the rate ofS2 forced by pair(uj , uN−j+1). Thus,

the common rate is degraded by swappinguj andul. Trying to improve the rate by making

more swaps, the pigeonhole principle guarantees that thereis always a pair(um, uN−n+1)

wherem ≤ j andn ≥ j. The rate constraint forced by this pair is surely smaller than or

equal to the rate constraint of(uj , uN−j+1). Hence, no other pairing strategy can have a

higher rate thanS2, and consequentlyS2 is optimal.
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