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(1)

ABSTRACT

A class of nonlinear systems, which can be represented
by a feedback system with one or two linear plants, and one
single-valued time-invariant nonlinearity, is studied. The Volterra
series describing such a system, where the nonlinearity can be
represented as a power series, 18 shown to be unique. Initial
conditions on the linear plants are incorporated into the Volterra
series in a simple manner. Using this initial condition method,
the convergence of the series is assured for inputs containing a
step type function. The convergence of the series is investigated,
and it is shown that for first and second order systems the series
converges, and bounded-input bounded-output stability conditions are
obtained for a nonlinearity whose slope lies in the Hurwitz sector.
For higher order systems without zeros in their linear plants, it is
shown that a contraction can be obtained by use of another norm,
which also gives a hound on the output, for a nonlinearity whose

slope lies in the Hurwitz sector.
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CHAPTER 1

INTRODUCTION

Nonlinear systems play an important part in the practical
physical world. Every transducer or amplifier which is used to make
up a system has some inherent nonlinearity especially when the signal
{t is called upon to handle reaches a sufficiently large magnitude.
It would seem that systems could not be analyzed without congidering
the nonlinearities but fortunately the usual practice is to run the
elements of the system such that they approximate linear devices very
closely. Then it is possible to analyze and synthesize systems using
linear devices recognizing the contraints on the signals which the devices
will be called upon to process. However some systems, such as a phase
locked loop [11][25]*or a demodulator [29) base their operation upon a
nonlinear Aevice and in fact although designers of systems try to avoid
using nonlinear devices due to the difficulty in estimating their effect,
it may be that the use of such a device would enhance the properties of
the system under design. There are also the cases of devices which are
linear at small signals for which it is not practical to prevent the
device from receiving a large enough signal to drive it into its non-
linear region. A simple case of this type would be an audio amplifier
(131(7].

The ability to analyse and even synthesize a nonlinear system
would be a valuable asset to the systems design engineer. This ideal 1s

far from being reached due to the complexities involved in even the

+ Numbers placed within square brackets denote references.



simplest of nonlinear systems.

A nonlinear system is defined as any system for which super-
position does not hold. As such it can be a system with a time varying
nonlinear element, a time invariant single valued nonlinear element,
an element with hysteresis, or any combination of these types of non-
linearity. Ideally, a theory for the analysis of nonlinear systems
would be afle to handle any nonlinearity, and the linear case would be
just a special limiting case in this theory. This ideal too is far
from fruition.

There are two areas of interest to the systems engineer about
the system under consideration. The first one is whether the system is
gtable, either asymptotically stable or bounded-input bounded output stable.
If the system is stable, then a measure of the performance of the system
may be desired. For example, the rise time in response to a step input,
or the steady state error of the system, may be important. Usually these
two areas are treated by different methods, and there have been quite a few
methods developed for different types of systems and different types of non-
linearities. Gibson [12] in his book gives a good introduction to a
variety of methods, most of which are limited to systems which can be
described by first or second order nonlinear differential equations.

The problem of asymptotic stability has been treated by
Liapunov's second method (see [12]) and by Popov ([see [{1]). These
methods give sufficient conditions for stability and in some special
cases give necessary conditions too. FPor these methods the nonlinear
function is single valued and contained in a sector [kl,kzl, and gives

a zero output for a zero input (see (n.



For nonlinear systems asymptotic stability does not guarantee
stabiiity with an input (see [12]) so the concept of bounded-input
bounded-output stability is investigated. Although other methods such
as describing function methods [12] have been used to investigate
stability of systems with inputs, it appears that a functional analysis
approach to this problem gives very general results quite easily. Also,
using a functional series solution to the system equation, called the
Volterra series, the system can be represented in terms of its parameters
and the input function, for a large class of systems.

V. Volterra [26] introduced the concept of a functional early in
this century, and also introduced the type of integral equation with which
most engineering systems are described. There have been many mathematicians
working on this topic since then, but it was not until N. Wiener in
1942 (27) applied the functional series to the study of a nonlinear elec-
trical circuit problem that engineers saw the possibilities of the theory
in the analysis of nonlinear systems. Since then Barrett [2], Brilliant
(3], George [11], Zames [29], Parente [18], Christensen (4], Sandberg [22]
and Holtzman [14] to mention just a few have investigated the stability of
systems (to inputs) and considered the requirements for convergence of
the Volterra series. In most cases it _is found that the stability limits
are very congervative compared to other methods although Zames {30}, (31]
has proposed a circle theorem which with some restrictions on the non-
linearity gives a condition similar to that for the Popov criterion.
However, a system which is bounded-input bounded-output gtable may
exhibit limit cycle oscillation when the input returns to zero.

All these methods give only sufficient conditions for stability

whereas in the linear systems necessary and sufficient conditione follow



from the application of the Nyquist or other similar criterion. This
has led to the speculation that if the nonlinear function f(y) was
replaced by a linear gain ky, and the range of k for which this linear
system is stable [kl’kZ] (the Hurwitz sector) is determined, then the
system may be stable for all nonlinear functions f(y) lying in the
sector [kl’kZ] in the (y,f(y)) plane. This conjecture was originally
put forward by M. Aizerman [1]. It has been shown to be true for a
range of systems, but not true for many others. In fact Willems [28]
has found that a counter example to the Aizerman conjecture can be
found for almost any sufficiently smooth nonlinearity. However the
Hurwitz ;ector gives an upper bound on the region over which a non-
iinearity may be expected to give a stable system.

A more limiting criterion which will be used here is that the
slope of the nonlinearity (where it exists) should lie within the range
of [kl,kzl, as defined by the Hurwitz sector for the system.

The second area of interest to the engineer, namely the per-
formance of the system when subjected to different inputs, can be
approximated by using the Volterra series. Also the response of the
system toO initial conditions can be approximated using the same method.

In this thesis a class of systems will be examined using
operator notation, where an operator will be signified by an underlined
capital letter. The class of systems will be the class of feedback
systems that can be represented by up to two linear plants with a single
valued time invariant nonlinearity which passes through the origin, and
which can be represented arbitrarily accurately by a finite power series.
It will be shown with such a system that the Volterra series is a unique

series expansion and that there is convergence of the series for non-



linearities whose slopes are within the Hurwitz sector. It will also
be shown that for first and second order systems that bounded-input
bounded-output stability exists for such nonlinearities. A method of
incorporating initial conditions into the series is also discussed, and
using this method a means of getting better convergence of the series
with step inputs is introduced.

Chapter II introduces the notation and mathematics to be used.
Operator algebra is discussed and the general system to be analysed is
introduced. The space in which the inputs and outputs belong is then
described, along with a weighted norm which is used in the convergence
proofs. Some norms of operators are examined and the basic contraction
mapping theorem is stated.

Chapter III demonstrates the solution of the system equation
using the Volterra series by two different methods,and then a proof is
offered to show that these two methods give identical series in the
limit. Then a simple way of evaluating the series using transform
theory is developed for the general system under study followed by an
example.

In Chapter IV the convergence of the series is proved for
functions belonging to the ., space. The first and second order systems
are shown to give bounded-input bounded~-output stability for nonlinear-
ities as mentioned above and for higher order systems the output is shown
to be exponentially bounded. There are examples given to show the im-
provement over some of the other methods.

Non-zero initial conditions are treated in Chapter V. It is

shown how these become equivalent to an additional input function, and



can easily be incorporated into the Volterra series. Using these results
the case of a step input is re-examined and a solution obtained by trans-
lation of the equation which gives a better convergence than than given

by the straight equation. There are examples worked out and a compari-

son made.



- CHAPTER 11

MATHEMATICAL PRELIMINARIES

2.1 Introduction.

In this chapter certain mathematical tools which are used in
later chapters will be outlined. The object is not to give the rigorous
mathematics behind these tools, but rather to introduce them in a
descriptive fashion so that when they are used later there will be no
loss of continuity. |

Firstly the algebra of working with operators is discussed.
This is important in order to express a feedback system in terms of its
constituent parts (plants), and is also very necessary to simplify
the ménipulation of terms of the Volterra series. Then single input
feedhack systems with one nonlinearity are considered, and a general
system is used which can be reduced to several types of system;; The
operator equation of this general system is the one that will be
analysed in the remainder of the thesis.

Norms play a large role in the functional analysis approach
to the stability analysis of nonlinear systems, and the choice of the
best norm to use for a particular system is an area of research that
has not been looked at very deeply. Two norms are discussed and will be
used later along with various methods of describing the size of the

effect an operator will have on a function. This is called the gain of

the operator but has also been called the norm of the operator. Several



examples which will he important are introduced.

Finally the special class of operators which are contraction
mappings are introduced and a fixed point theorem js stated along with

some boundedness properties of this class.

2.2 Operator Notation.

A physical system which has inputs as functions of time and
gives outputs as functions of time will be mathematically modelled as
an operator. In this context an operator is a transformation or
mapping from a space of functions of time into another such space. For
this thesis only operators mapping a space into itself will be dealt
with and the space in particular will be a normed linear complete space
(a Banach space).

Operators will be denoted by underlined capitals, such as H,
while the funciions will be denoted by lower case letters such as x(t),
y(t). Laplace transforms of operators and functions will be denoted
by capitals which are not underlined such as H(s), X(8), Y(s). The

fact that H operates on x to give y will be written as
y = Hx(t) = H(x) = Hx (2.1)

As in the case of functions,the set of all functions x for
which the operator is valid is the domain of H, while the set of all
y which H(x) assumes is called the range of H.

A numerical subscript to an operator denotes the order of
the operator. For example, an operator of order n obeys the

following rule where a is a scalar number.

ﬂn(ax) = a?ﬂn(x) (2.2)



A linear operator has an order 1. However, when the order of a
system is mentioned this will refer to the order of the differential

equation which describes (or can describe) the system.

2.3 Operator Algebra [29], [11].

In order to handle interconnections of operators with relative
ease, it is useful to look at the properties of the sum, product and
cascade of operators. This helps in relating the behaviour of inter-

connections of subsystems (such as in feedback systems) to those of the

components.
A
+

o— L = O—1 A+B
B
A +

o—o X : o— AB|—o
B +

o— & B o : o— B [©

Fig. 2.1 Sum, Product and Cascade of Systems.

The properties of the sum or product of two operators are

obvious from Fig. 2.1.

A+B) +C=A+ (B+O (2.3)
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The cascade of B following A is denoted by B*A.

commutative operation but it is associative.

(A*B)*C = A*(B*O)

The special cases of linear time invariant operators are

commutative in the cascade operation.

A c A
+
o] c L z
+
)] c B
A c A
+
o c X z
1 c 3

Fig. 2.2 Combination of Cascade with Sum and Product.

The sum and product are distributive wit

as the sum or product follow the cascade as shown in Fig. 2.2.

A+B*C=A*O + B*O
(A B*C = (A%0) (B*O)

10

(2.4)

It is not a

(2.5)

h the cascade as long

(2.6)
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The sum operation has a zero operator 0 which corresponds

to the open circuit system whose output is. zero whatever the input.

A+ (-A) =0 (2.7)

(-A) is called the negative of A.

The cascade operation has an identity operator 1 which
corresponds to the short circuit system whose output always equals
the input.

I(x) = x

1% = A¥L = A (2.8)

Provided it exists, the inverse of an operator when

cascaded before or after the operator gives the identity operator.
AYA ~ = A TKA = 1 (2.9)

The operators used in this thesis can be expressed as a

sum of operators of various orders. For example:

A= A
A

(2.10)
where some of the.ﬁj may be the zero operator 0. 1t will be
convenient to consider that the zero operator can have any order.

Consider now the effect of operations on the order of an operator.



Clearly addition has no effect on the order. Now if

c (ax) = Ay(ax) B, (ax)

- ujéj(x)uggk(x)

= aj+kA (%) gk(x)

g

- uj”‘gp (x)

with a a scalar number, then for products
p = Jj+k

Similarly,

Cp(ax) = A,*B, (ax)

- .Aﬂ *akgk(x)

- (a“)’gp(x)

and so for cascades,
p = ki

So it can be seen that the effect of multiplication is to

sum the two orders while that of cascade is to multiply the two

orders.

12

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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2.4 Feedback Systems.

r(t) + e(t) x(t) g(t) y(t)

Lr"
|=
Ca

Fig. 2.3 The General Feedback System.

The feedback system of Fig. 2.3 must simultaneously satisfy

the following equations.

(e)

B!l"

g = N(x)

y= .l_.b(g)

2

=r -y (2.17)

This is the general system which will be considered for the
rest of the thesis containing a single nonlinearity N which is single valued

and time 1invariant. and Lb are linear plants either one of

L
L

which could be equal to kI a linear gain.

Eliminating y, g and e from equations (2.17) gives

x =L (r- L&) (2.18)



Now assume that x and r are related by an operator
x = H(r)
then substituting equation (2.19) into equation (2.18) gives

H() = L (r - Ly QED))

Since this equation holds for all r it may be written in operator

form as

= * - AN*
Ho=L*( - L AN

Now suppose La-l exists. Then,

-1
Ly *H + Ly*N*H =1

(La—l + Lb*ﬂ)*ﬂ =1

-1
= * . kNX
Ho=L %@+ L *NAL))
provided (L + Lb*!fka)_l exists. Compare equation (2.24) with th
feedback equation of linear transform theory for the similar syst

H(s) = L,(s)
T+ L, ()N()L, (8)

assuning N to be a linear time invariant operator.

14

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

em.

(2.25)
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So equation (2.21) is the operator equation of the general

system under consideration. The output function could be any of e(t),
x(t), g(t) or y(t) which can be obtained from equation (2.21) by using

the necessary operators. For example if y(t) was the output and it is

desired to express y(t) as

y = G(r) (2.26)

then it follows that

T = ANK
C = L, *NH (2.27)

2.5 Functional Representation.

The solution and stability of linear time invariant systems
can easily be determined by examination of the roots of the characteristic
equation of the system. This method gives necessary and sufficient
conditions for stability for such systems. In the case of nonlinear
systems, the ideal would be to develop a theory which would enable the
solution and stability of the system to be determined for any system.

In this theory the linear systems would be a special limiting case.
1t is thought that using functional analysis techniques offers the
best chance of achieving such a general theory.

In engineering it is important to have some way of determining
the size of errors or functions. This is taken care of mathematically
bv introducing norms [19). The norm of x is written asllxlland must

satisfy 3 properties.

1. lIx)l 20 ; Ixll= 0 1ff x=0 almost everywhere.
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2. |le x|l = la] ||x||; where a is a real or complex number.

3. Jx+y lexli+llyll (2.28)

There are no restrictions on how to choose a norm as long as
it satisfies the 3 properties above, and so by judicious choice of a

norm various properties of a function can be emphasized.

For example, consider the problem of matching an analytic
curve to a set of empirical points. If the error is considered to be
the distance di from the curve to the point i, and a measure of the

closeness of the fit is to minimize max | dil’ then there would usually
i

be a different matching of the curve than if (Zl dilzf& was minimized.
i

One of the more useful norms for functions used most

frequently in engineering is the uniform norm [46].

x|l = sup| x(t)] (2.29)
t

The space Cla,b] of continuous functions on the interval [a,b] with
the uniform norm becomes a normed linear complete space and so a
Banach space. The space C[a,b] will be the one used throughout this
thesis. When the uniform norm is used it will be used without sub-
script.

Now consider the linear space Cla,b] and the norm (see [6]))

hxfl, =suwp e*lx0)] (2.30)

te[a,b)

This norm is equivalent to the uniform norm in that

Yl <l xllee™ (x|l s tefa,b]  (2.31)
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Since the norms are equivalent, sequences converge in the A-norm
if and only if they converge in the uniform norm. Thus the space C[a,b]
with A-norm is complete and so is a Banach space which will be called

CA[a,b]. Whenever the xnorm is specifically used it will have the

subscript A-,

2.6 Gains of Operators.

A system which is bounded-input bounded-output stable has
a bounded output for every finite input. If the system is represented
by an operator H, then for the system to be bounded-input bounded-
output stable implies that the gain of H is finite for all finite

inputs. So if H maps functions x<C[a,b] into y<C[a,b] then
y = Hx (2.32)
Ih ol = Taxll (2.33)

where for this discussion either norm can be considered.

Consider the Lipschitz norm of an operator [19j.

Definition: The maximum incremental gain of an operator H over a
set S ¢ D where D is the domain of the operator is defined to be

the Lipschitz norm of the operator.

el 11l sup{lcey) - wGepll/llxy = gl s 5y 4 xgS)

(2.34)
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Definition: The slope of the operator H is defined to be

& = 1n (Hx) - BX))/ (xg - %) (2.35)

dx xI+ x

provided the limit exists.

Clearly it can be seen that for time-invariant operators

inc|| H|j= sup

dx (2.36)
Now if it is assumed that
H () =0 (2.37)
then setting X, = 0 in definition (2.34) gives
Ir] = supfluexl/llx, B : %) # Oes} (2.38)

and this will be called the maximum gain of the system.
Since equation (2.38) was derived from equation (2.34) by
fixing X0 then the supremum in equation (2.38) is less than that in

equation (2.34), as it is taken over a smaller range. Thus,

tnc|l ufl 2J &1 (2.39)
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From equation (2.38) it can be seen that

laxfl < | &I ]l ¥ xeS (2.40)

Substituting this in equation (2.33) gives

Nyl < Nall =l (2.41)

and using equation (2.39) a coarser estimate is obtained
Hyll < nclB] | x| (2.42)

2.7 Examples of Operators.

(1) Linear Time-invariant Operators.
For this broad class of operators the following applies
inc ||L1| = sup { “&(xl) -_L(xz)l /|| X - x2||; X, $ X2 es}
= sup {|LL(x1 =x) ] % - x5 % - % $#0esS }
(2.43)

inc MLl = I Ll (2.44)

Consider the case of a linear convolution operator, which
is the linear operator to be used here
y(&) = L(x) = f° h(e-1) x()dr (2.45)

with

x(t) = h(t) =0 <O (2.46)
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ly] < S0 |Ixt)|dr

suply(t)l f_sup|x(t)| supoft|h(r)|dr
t t t

Iyll < Uxll S InG)|de (2.47)
It has been shown {15], that for these linear operators
ILll = ST Iheo) e (2.48)

Thus this class of linear systems is stable for all operators which obey

the following.

NG _ (2.49)

Using the A-norm, the following ig obtained from equation

(2.45).

ly(o)] < o}‘|h(c-r)||x(r)|e'*‘ T dr (2.50)

< sup |x(1)|e-XT sup lh(t-r)loft A

1¢[0,T]) (t-1)e[0,T]
ext-l
< Ixl| sup  In®)| =5 (2.51)

te{0,T]

ly(oy|e™"

iA

Ixll sup  InCO] 3
h te[0,T) A

Then taking the supremum of the left hand side over te[0,T] gives,

iyl < Nxll sup [nCo)| ! (2.52)
te(0,T]
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(2) Nonlinear no-memory Time-invariant Operators.

For these cases, the operators can be described by a graph,
and the maximum incremental gain is the largest absolute value of the

slope of the graph. For example, consider the nonlinearity

P
N(x) = | nj(x)j (2.53)
i=1

Then using equation (2.35), it can be seen that

dN P -1
o -=-j§-:1njj(x)j (2.54)

and so from equation (2.36)

? -1
tnc ||N|| = sup | ) njj(x)j \ (2.55)
xeS Fj=1

From equation (2.38)

P P
TR BNt P RIETY PRNC o \|
j=1 xeS "j=1
P -1
Inxh 7 fixll < sup | 1 ng@0 (2.56)
xeS "j=1 )

(3) Nonlinear Convolution Operators of Order n.

These 5re of the form

t t
ﬂ“(x) = oI "'oI hn(t—rl,...,t—rn)x(tl)...x(rn)dtl...dxn

(2.57)
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It can easily be seen from this equation that ﬂ“has order n.

Consider now a bound on ﬂn(x).
|ﬂn(x)| 5__oft...oftlhn(t-Tl,..,t-tn)||x(11)|...|x(rn)|drl...dtn
< llxllnoj”...oj”|hn(rl,. T ) ldryedry (2.58)
Taking the supremum over t of each side gives
“ﬂn(x)n g."x“nofm...ofm|hn(rl....,Tn)ldrl...drn (2.59)

Thus for absolute convergence of the series given by

HGO = ) H, (%) (2.60)
j=1 9

it follows that

Inook < § a0l

ijglnxn’of”...Of”lhj(rl....,rj)ldrl...drj (2.61)

A sufficient condition that the series in equation (2.61)

should converge, is that Ix“ be small enough, as long as

o[‘”...of"’lhn(rl.....xn)ldxl...dxn <Q<w (2.62)

The computation of the gains of these operators is more
difficult than for the other types of operators considered, and it is
better to try and find the gain of the total operator H by some other

means.
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2.8 Contraction Mapping

Let E be a Banach space and let H be an operator mapping an
open subset U of E into U; suppose there is a constant a , o<a<l, such

that for every X;.,X, in U
B ) - Be)ll <o x,=%, |l (2.63)

or using the notation used here

inc ||H|| =« (2.64)

then H is called a contraction operator on U.

1f it can be shown that an operator is a contraction then
there are many theorems available [20}{21] to estimate the fixed point of

the operator,and the error bound of the solution obtained by iteration,as

well as a bound on the solution.

Theorem [21] Let H be a contraction on U in a Banach space E with
inc ”ﬂ" = a, Suppose there is a sphere S:{" x-xu_g a} that is contained
in U and that

laex) - xJl < (1-o)a (2.65)
Then there is a unique fixed point x“ in S, that is, a function x° for

which
H(x?) = x~ (2.66)

and x~ is the limit of the sequence { xn] generated by

x - B(x) (2.67)

ntl
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and the estimate of error is given by

[ %" = x || < a" @) xy - x| (2.68)

Proof : (See [21] p.37).

Comment: If the operator is a contraction over the whole space E then
clearly a 1s as large as needed and so the condition given in equation
(2.65) does not give any restriction. Also equation (2.65) can be
satisfied by choosing x, such that the left hand side is small enough.
This condition makes sure that during the iteration, the iterands are

always contained in U.

1f the operator H is in an equation such as

x(t) = y(t) + H (x) (2.69)

then it is possible to bound x provided H is a contraction.

Nxl <yl + 1| £x]

by the triangle inequality of norms,

=l < liyl + 1 BU = (2.70)
by the use of equation (2.40). Then rearranging equation (2.70) gives

-1
lxll <l v Q-] 8] (2.71)
provided

el <1 (2.72)



25

But since H is a contraction it follows that

| Bl < inc|| H| = a<1 (2.73)

h as (2.69) where the operator H has been

So for an equation suc

shown to be a contraction in a particular norm and over a space then

a bounded function y(t) implies a bounded solution x(t). This then is the

basis for the bounded-input bounded-output type of stability.



CHAPTER III1

UNIQUENESS OF THE VOLTERRA SERIES

3.1 Introduction.

The Volterra series is a part way solution to the problem
of finding an explicit relationship between the output and input of
a nonlinear system. It does give such a relationship but in the form
of a (usually) infinite series whose terms are in general rather
difficult to evaluate. Also the series is able to be formed only for
a class of nonlinearities which can be expressed as a power series.
There are two properties of the series which are important; does the
series converge and is it bounded ?

Firstly, two methods of calculating the series are examined
and it is proved that these two methods give the same series. Then
methods are shown for evaluating the terms of the series and an example
used to illustrate the computations and also to introduce the next chapters
which will deal with the convergence and boundedness problems for the

general class of systems under consideration.

3.2 The Volterra Series by Iteration.

Consider the system equation (2.21) with

* =
L*L =L (3.1)
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(3.2)

This equation can be solved by iteration, assuming for the moment that

the series converges and is bounded.
Let

i° = L
- -a

be the starting approximation. Then

ut = L - LANAL
= Za =="a
2
= - *N* - SN X
W2 = L - LAWHQ, - LAAL)
3
= - *N* - ANX - *NK
3 = L - LA, LA LANAL))
R R 1
H L, - LAN*H

where ﬁ? is the nth iterate. Now let

M
o= 1 a0l

3
3=2

then substituting in the starting approximation gives

M M
Boe L 1o, @)’ -1 it
where the Eﬂl are given by
B ot L
B - w0y @) 2§ M

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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Substituting equations (3.7) into equation (3.4)
2

M M M
2 1,3 2
w? o= L -L# o CLHD =IR (3.8)
3 Tya2 4 =1 j=1

M
Now ( 2 ﬂi)j can be written in ascending order of operators,
i=1
where Ej denotes the operator of order 3[16].

M M MJ
1,3 1(3) 1

(TH) = LH + ) z (3.9)
1=1 1 1-1-1 1 1M+

where gi(j) {s of order i + 3 -1 and is given by

i Py-1 Py
1 1,1 1
gi(j) = ) )1_ H

H H
- - T P R T
Py-1 1 Py-2 1 P 1 . 1 271 j-1
(3.10)
This expansion gives all the combinations of gi 's which when
multiplied together give the gi of order i+j-1. The Li of equation
(3.9) are operators of higher order of the expansion which cannot be

expressed in the form of equation (3.10). Substituting equation (3.9)

into equation (3.8) gives

2
M M M Mj
2 1(3) 1
T H « L -Lt)n (LH + 2. ) (3.11)
M M M M
1(9) 1
= L -1n ] L*H - L* In Y Z (3.12)
T8 Tyipdim T Y yu2 damey
wo- L, (3.13)

1,2 2
H, - ol = - nk* L,) (3.14)
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2 _ _ 1.1, 1.1 1,3
- 20, @) )R Lr Ly’ (3.15)
2 _ _ 1(k)
_lij = kiz“k‘:*ﬂj-m 2<i<M (3.16)

There are Hz of the §§ terms and by the nth iteration there
would be M terms. Some of these terms cease to change after a certain

number of iterations, and so just add to the work without providing any
additional information. For example, in the case above the terms ﬂ&
and ﬂi are equal as are ﬂ; and ﬂ§ but the third order terms differ as

shown in equation (3.15) where another factor has been introduced over

that for ﬂ;.

3.3 The Volterra Series by Substitution.

Consider the same equation (3.2) with N as defined in

equation (3.5). Then
M i
Ho= L - Lﬁz n, @) (3.17)
Now let H be a Volterra gseries of the form

H =1 H (3.18)
gm1 3

where gj {s the nonlinear convolution operator of order § as defined

in Section 2.7. Then substituting equation (3.18) into equation

(3.17) gives

@ M ™
1
jilll.j L, - L:Zz "iﬁf‘ﬂ’ (3.19)
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Now using equation (3.10) to express the sum raised to a power

o i 1)
JH) =1 H (3.20)
j=1 3 371 4

0o
where ﬂg ) has order i+j-1. Using equation (3.20) to simplify the

notation in equation (3.19), gives

® M )
(1)
H, =L - L* H (3.21)
jzl—j e 122 M jzl_j
o M
(1)
=L - 2 n, L*H
e 321 =2 &3
© win(M,J)
=L -} ) LK) (3.22)
2 yi2 k=2 e -kt

by rearranging the terms and changing the order of summation. Now using
the rules for cascade sum and product as outlined in Section 2.3 and

equating orders on each side of equation (3.22).

LS
B, = - LA’ (3.24)
PR RTIUNUTURL DELREL ARl (3.25)

By comparing equations (3.25 and (3.15) it is seen that they
are equal. However will they remain equal through more iterations? This

{s answered in the next gection.
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Evaulation of the terms of equation (3.23) give as many terms

of the Volterra series as is desired.

3.4 The Uniqueness of the Volterra Series [23]

Consider now what has been done in the previous two se

ctions.

For the iteration case an jnitial estimate was chosen for the solution.

Let
x = H(r)

and then

x = L (r) - L*N(x)
Now take the initial estimate to be

x, = La(r)

Then from equation (3.27) using iteration
= - L%
Xy L () -L N(x )

= - *
X 41 L, (r) - L E_(xn)
So that the limit of the sequence {xn }

x- = 1im x_ =L (r) - lim L*N(x )
n -a = n
e o

For the substitution case it was assumed that

n
x* = 1lim § H.(Y)
n—mj-]_-—j

assuming the limit exists. Substituting in equation (3.27)

n
x° = L (r) - L*R( lim H,.(D))

- L (r) - L*N(x")

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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So it is necessary to show there exists a unique solution to

equation (3.27) so that

lim L*N(x ) = L*N(lim x) (3.35)
n»® n me n

Now if L*N obeys a Lipschitz condition that is

L) - wanex Dl <kl x - x| (3.36)

where K is a real positive constant, and if K<l over a region U, then the
contraction mapping theorem of Section 2.8 can be applied to the system,
So there exists a unique solution to equation (3.17) if the

conditions of the theorem hold, and consequently equation (3.35) is true.

It has been shown that the first few terms of the two series
calculated by the two methods are in fact identical and it is found that
ag the iteration is carried on further,more terms do equal those calculated
by substitution. The problem with the iteration method is the large number
of terms which must be carried through each iteration. The easiest method
of evaluating the series is to use the substitution method to get terms

up to a certain order and then perhaps do one iteration.

3.5 Evaluation of the Kernels of the Volterra Series

There are two main methods of evaluating the kernels of the
series. The first uses time domain analysis by using the integral
expression for the general convolution operator. Then the evaluation
of the kernels involves integrations. For example consider equations
(3.24), (3.25) with

L (r) = NARICR NG (3.37)
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L(r) = oft g(t-1) r(t)dr (3.38)

and

£(t) = g(t) =r(t) =0 for t <0 (3.39)

as is found in all practical systems. Then it can be seen that

B (@ = fF £ x(@)d = J© he-tr(ny)dy

(3.40)

iy (r) = 5 of" yle-ty,to1y) r(x)r(r,)dr,dt,

(3.41)
= -n, oft é(t-T)dT (OIT f(t—rl) r(rl)d11)2

(3.42)
= -n, oftofroft g(t-1) f(r-rl)f(r-tz)r(tl)

r(rz)dtldrzdt

Now using equation (3.39) the integrals can be expanded

Hy(r) = cn, J5 S5 B e EGmTy)dT r(r (T )dr dr, (3.43)

Thus it can be seen that

hz(t-rl, t—12) = -n, oftg(c-r)f(r-tl)f(t-rz)dt (3.44)

and similar integrations can be used to evaluate the higher order

kernels. However, as in the linear case, the integrations become some-

what easier if they are done in a transform domain.
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The Laplace transform in the linear case changes convolution
integrals into algebraic multiplications. For the rnonlinear case,
multidimensional transforms have been introduced [11], which allow the
nth order convolution to become an algebraic multiplication. These
multidimensional transforms are defined in a similar way to the Laplace
transform [8]. If f(tl,....tn) is an nth order kernel or function and

F(sl,..,sn) is its multidimensional transform, then

' T 7 - ve.-8_t
F(sl,sz,....,sn) = _£..;£ f(tl,...,tn)e sltl %n ndtl"dtn
(3.45)
f(cl’...tn) = (‘E'G' UI-i;. .of-jm F(sl’oou,sn)e
1 n
..+sncn
dal...dsn (3.46)
g = 711

Many of the properties of the Laplace transform have similar
properties in the multidimensional transforms. A few of the more useful

properties to the present application will be listed.

Convolution: In a linear system, convolution in the time
domain corresponds to multiplication in the transform domain. This also
holds in the case of a multidimensional convolution. Such a convolution
would be given by

A

X(E,eenet)) _[.

{mhn(tl-tl....,tn—rn)r(tl)..r(tn)dtl..drn

(3.47)



35
For this case it can easily be seen by taking transforms that

Qs smeersy) * H (8], 0087 R(s)) .. -R(s) (3. 48)
This is not quite what is required as x should really be a function only
of t but this can be accomplished in equation (3.47) by letting
t1=t2=t3-.....=tn=t (3.49)

This is known as agsocliation of variables, and for rational
transform functions it is rossible to perform the operation in the transform

domain by inspection, with the help of a table of examples {111(25].

cascades of Systems: Two types of cascades will be used:
a) A linear system Ll(s) followed by an n-dimensional system with

transform Hn(sl""‘sn)' The transform of the cascade is
* —
ﬂ“ Ll <=> Hn(sl,....,sn)Ll(sl)....Ll(sn) (3.50)

b) An n-dimensional system Hn(sl,....,sn) followed by a linear system

Ll(s).

* —_
Ly*H < 1.1(31 + 8, +....+sn) Rn(sl....,sn) (3.51)

Now consider equations (3.23) again

min(M, )
0, Lf§§51+1 (3.52)

J_:

k=2
Let the transforms of L and L be La(a) and L(s) respectively. Let the

transform of gj be “j(sl""‘sj)' Then it follows from the above that

Bl(s) - La(s) (3.53)
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Hz(sl,sz) = -n, L(si+92) La(sl) La(SZ) (3.54)
H3(31,92,s3) - ~2n2 L(81+S2+S3)H1(81)H2(82,83) -

n3L(s1+82+s3)H1(sl)Hl(sz)Hl(s3)

(3.55)
= L(s *s,+8,) (203 Ly (8))L(8 348301, (8,01, (5)-
n3La(8i)La(82)La(s3))

Hy(s)18,8,) = L(s +s 48 )L, (s))L, (5L, (s5) (2n22L(82+83)-n3)

(3.56)

The expressions become quite lengthy as the order of the kernel
increases although the basic simplicity remains. However, the association
of variables where required, although only needing simple steps, becomes
quite cumbersome.

Once the transforms of the kernels are calculated then many
types of inputs can be treated including classes of random inputs [25].
This method is a generalization of the method of Poincare(see [12] p.198)
and also that used by Doetsch [8], in which the solution is found for a
particular input. For sinusoidal inputs the transforms of the kernels
can be used to give the steady state sinusoidal output of the system and
the harmonics [11]. This can be useful for distortion analysis of systems.
Obtaining the response to a step inpuf of some magnitude can give the
speed of response of the system and the series is quite accurate for the

first transient response of the systenm.



1.6 Example of Volterra Series Calculation

Consider the general system of Fig. 2.3 with zero initial

conditions and

37

L =1 (3. 57
N = e’ (3.58)
L= Lo =f" 2T, (1) dr (3.59)

Then the operator equatiot of the system becomes

<(t) = L(r) - eL(x>) (3.60)

Now using equationms (3.57), (3.58), (3.59)with equations (3.23) gives

H =L
o e |
Yy e LM, 75 322 (3.61)

Now assuming that

H = 0

o

and grouping like terms together for convenience it follows that

H, = 0 (3.62)
uy, = - - - ar@p’ - - @ (.69
=0 (3.64)

3) 2
- -l .- s,

J.:!:

- - aslieor’

- 3ch [@)2&*@)3)1 (3.65)
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e = 9 (3.66)
- - 3 _ _ 2 2
H, eL*H ¢ eL*[3(H,)) "By + 3, Uy )

B, = -3 Sl o) L’ G

Expressing these operators in their transforms gives

1
Hl(s) = —+a (3.68)
Hzn(sl,...,82n)= 0 (3.69)
Hy(s),50089) = = A +)(1+ - (3.70)
3 3 8y 8, 84 a 8 ta 8y a)(s3 a)
362 1
HS(SI'SZ’SS'S&'SS) = (s]+82+s3+34+55+a){(sl+a)(52+a)(s3+34+95+a)
y )
(s3+a)(sa+a)(ss+a)
3 52 5
St (L g -
(§§131)+a) 1=1(81+a) (83+84+85+8)
-3¢ 7
1 3
Ho(8,y000489) = 7 { TT. }[ +
71 7 (({ si)+a) {=1 (si+a) s3+sa+35+a6+s7+a)(85+s6+s7+a)
i=]
+8.+ +1)( +8 + +)] (3.72)
(s2 1+8,, a) (sgts¢ s ta

L.et r(t) be a step function, and let Qn(tl,...,tn) bhe the

inverse of the transform Qn(sl.....sn). Then
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r(t) = k u(t) (3.73)
k
R(s) = (3.74)
ﬁn(sl,...,sn)= Hn(sl,...,sn)R(sl)....R(sn) (3.75)
Now using equations (3.55) to (3.59)
k. k11
Q1(8) = g(s+a) a (s s+a) (3.76)
A k -at
x, (&) = 3 (u(t)-e ") 3.77)
This is the linear approximation to the system.
8 e k3 a Ao lyd 1
3(81’82’53) " T a (a) (s +8 +s +a) 8, - al+a)c;; 52+a)
1 1
(33 - s3+a)
T L ek 1
al ) (s +32+s3+a)[ 8,8, - sl(sz+a)

1 + 1 ]Ql- _
82(51+a) (31+a)(sz+a) 8, s.+a

Now using the inspection technique to associate variables,

first 81 and s? are assoclated.

1 2
—=+ G - =)
+s3+a 8) sl+a s,+2a 84 83+8

e k.3
ﬁ3(51992c93) I 81®52 - - ;(-8.)
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Associating 8y and 8, now gives

k.3, a 1 3+3 1

E (& — - —
93(31’53” 5 ®s3 " T a (a) (sl+a) (81 s;ta s t2a sl-l-Ba)
(3.80)
- _E 432 __3a_ 3 1/2
QB(S) a (a) ( s+a (s+a)‘ s+2a s+3a)
(3.81)
Q3(t) = —'—6-) () + e atc— - 3at)-3e 28t+%e'3at)
(3.82)
In a similar fashion,
R (s sy = 3025 —E— it T - =L
5175 a’ ‘a g.+8,+8 +a s, 8,+a
374 5 =1 "4 i
(2 31)+a
i=1
(3.83)
and associating variables gives
2k S5a [1_12__3a __5 6a
ﬁ5(8) 3(-) G ) s+a { s sta (s+a)® s+2a (s+28)7 +
8 la 4 1/2
s+3a -(s+3a)2 " s+ha + g+5a } (3.84)

20 = 2> [ 3u(e) + L 61251 Samd. 5(at)?) -

288 (341 8ac)-e 37t (9,754, Sat J+he O -

0.375¢ 2t} (3.85)
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and similarly for 97 except that here the expression must be split into
a sum of two simpler parts in order that the association of variables

may be carried out by inspection.

%, (0) = -(§)3(§)7{12u(t)+e_at[26.7375+6.375at—11.25(at:)2

_4.5(at) Y] +e 22 [3-54ac-54(at) 2)-e 22 [36. 5625+

78.7Sat—20.25(at)2]-e—43t[23-4Bat]+e-sat[22.3125

6

-5.625at)-4.8e a:+.31252-7at} (3.86)

These results are plotted in Fig. 3.1 for the following parameters

along with the exact solution
€
a = 6;) =1 (3.87)
k
C;) = 0.5 and 2 (3.88)

It is seen that there is good convergence for small time
intervals and the larger number of terms used the better the convergence.
However for the (% = 2) curve the solutions diverge wildly past a certain
time while for the other curve convergence appears to be for all time.

If the derivatives with respect to time are removed from the system
differential equation, a nonlinear algebraic equation is obtained. Attempting
to solve this algebraic equation by an iterative process such as Newton's
method, will fail for larger (%) (such as %'- 2), and the successive
iterates will diverge in much the same way as the solutions here have. This
explains why the convergence at steady state is so poor in these types of

examples.



CHAPTER IV

A LARGER REGION OF CONTRACTION

4.1 Introduction

One of the major problems in the analysis of nonlinear systems
is to obtain realistic bounds on the nonlinearity to insure that the
system will be stable. Or the other way of tackling the problem is to
find or modify the linear part of the system to give a stable system
with the given nonlinearity {30], [31]. Each of these approaches has

been used and the one to be investigated here is the former.

A method is presented which gives good results for first and
second order systems (meaning systems whose linear plant can be
represented by first or second order differential equationms), but does
not appear to work for higher order systems. For these systems another
norm is introduced which then gives the required contraction but does
not allow any conclusions to be made about the stability of the system.
However it does put a bound on the output for a specified time interval

and so implies convergence of the Volterra series over that time interval.
4.2 First Order Systems
Consider the system of equation (3.2) where

L(s) = -;‘;; (4.1)
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dN(x)
= <B for all x ¢ C[0,=) (4.2)

a <

where aand B are real constant to be determined such that the sector
[a¢,B8] is the largest possible for stability of the system. The system

equation is
x(t) = L, (r) - L*N(x) , (4.3)

L, =L (4.4)

In order to keep the system and analysis as general as possible

let
L (r) = w(t) (4.5)
x(t) = w(t) - L*N(x) (4.6)

Now expressing equation (4.6) in its differential form using equation

(4.1) gives

x + ax = wtaw - bN(x) 4.7)

Add bux to each side of equation (4.7) where u is a real number.

x + (atbu)x = w + aw + b(ux - N(x)) (4.8)

Now returning to the integral operator form of equation (4.8),

x(t) = H(x) = w(t) - uk(w) + K* (ux-N(x)) (4.9)
where
K(s) = oo (4.10)
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The Lipschitz constant of H as defined in equation (4.9), is

obtained as follows.

ﬁ(xl)—ﬁ(x )

291

"ﬂ(x1)~ﬂ(xz)“ = ”Ef(u(xl—xz)-(xl-xz) X =%y

for all x1#x2€C[0,m) (4.11)

—————————

N(x,)-N(x,)
G-t < I gyl v o =
xl#xzeclo,w) 1772
(4.12)
”5“ can easily be evaluated.
Kl = [ & P 0 = 20 (4.13)

From equations (4.12) and (4.13), there exists a contraction

if,

sup u- ———— | £ Y < 1 (4.14)
atbu xl#xch[O.w) *17%

So, by removing the absolute value signs, equation (4.14) becomes,

N(x,)-N(x,)
717 =72
-yu "Y% < -u+ T < Yu ﬂ% H xlf’xch[O,"’)
N(x,)-N(x,)
2+ uien) < L'~ 2 . 34 (1) (4.15)
- xl-x2 - b

If N(x) is assumed to be differentiable, and letting y+1

with the consequential removal of the equality signs, equation (4.15)

hecomes,

a = a
b ix < 2u + Y (4.16)

Since u can be made as large as is needed, the following condition is

obtained.
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dN(x)

a
-t L@ V xcC[0,%) (4.17)

For this system, these limits [—'% ,») define the Hurwitz sector,over
which the system with N(x) being a linear gain, is asymptotically stable.
Since the linear case is to be included within the general nonlinearity,
then this sector is the maximum possible for stability of the system.

Now consider a bound on the output of the nonlinear system.
x(t) = (L - uK)w(t) + K*(ux - N(x)) (4.18)

Taking norms on both sides and rearranging gives,

N(x)
u- =
X

x| < Nlz-ukll 1wl + NIkl o x| 4.19)
X

eC[0,x)

1t has been shown that for N obeying equation (4.17), and

for sufficiently large u, then

E(x 1) _E(x 2)

k]| sup u- — <y<l (4.20)
x,¥#x.,€C[0,») 1 72
1772
and along with the assumption that
N(0) = 0 (4.21)

these imply that

N(xl)

ﬁ(xl)-ﬂ_(xz)
< lIkll  sup u- — <
xlfxzzclo.m) 172

x|l sup
x,#00C(0,)

u-

1

y <1 (4.22)
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Substituting equation (4.22) into equation (4.19)
Nx e lz- okl fHull +v I =l

Nx 1< @ r-wl vl (4.23)

< a7 Mz- el el el (4.20)

- -(atub)t = _ ub
1 - wkll<l+ub[Te dt = 1+ =

_<_ 2 (4.25)

fLll < max (La h,a7b,b) < > (4.26)
—a —
by the definition of the system.

Clearly then equation (4.25) implies bounded-input bounded-output

stability for all first order systems with a single nonlinearity which

obeys
N() =0
a dN(x)
% < T < Q<= ; ¥x € [0, (4.27)

4.3 Second Order Systems
Proposition: Consider the systems which can be described by the

operator equation

x = _L_a(r) - L*N(x) (4.28)

where the Laplace transform of L is given by
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b,stb
L(s) = 1772

s +als+a2

(4.29)

and La is a linear plant of order less than or equal to 2 such that

L lf <= (4.30)

and nonlinearity N(x) is defined by

i 3

Nx) = ] n, (x) (4.31)
i=2

dN M -

where [a,B8] is the Hurwitz sector for the linear system with N(x)

replaced by a linear gain; then equation (4.28) has a unique solution

and is bounded-input bounded-output stable.

The Hurwitz sector for second order systems, with all the
coefficients in equation (4.29) positive, is the sector [a,»), where
a a

a = -min (— , T7)

(4.33)
b, " by

1f some of the coefficients in equation (4.29) are nepative,
then the B of equation (4.32) may be constrained to be less

than infinity.

In the proof of the proposition, complex valued functions will

be introduced. Their absolute value will be taken to be the square

root of the sum of the squares of the real and imaginary parts of

et e el o T
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the function.

Proof: Define w(t) to be

w(t) = -I-‘-a(r) (4.34)
Then equation (4.28) becomes

x(t) = w(t) - L*N(x) . (4.35)
and expressing this equation in its differential form gives,

. . . . d
x+alx+82x = w+a1w+azw - (b1 T +b2)§ﬁx) (4.36)

Now add to both sides (2c-al)§+(2c2-a2)x, where ¢ is a real positive

number.
§+2ci+2c2x = wta,wha.w + 4 [(2c-a,)x~b.N(x)] + (2c2-a )
1" 72 de 1 1- 2
X - bzg(x) (4.37)
Define two new variables.
X = X-v
X, = X, + (2c-a))w - [(2c-a;)x-b,N(x)] (4.39)
then the following matrix equation can be written.
x 0 1 x -b 2c-a
)« (e 2 [ 7]+ (acoyo 20 * acaitay
| o= 2 + TN + 02, | (x=w)
[ X, 2¢” -2¢j{ X%, 2cb1 b2 2ca; 2c -a,
(4.40)

The system matrix can be diagonalized using the Van der

Monde matrix.
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The eigenvalues of the matrix are -c(1tj), where §=/-1.

1 1
i [*c(l-J) -c(1+j)} (4.41)
1
5@1-3) -
e . [i %E] (4.42)
5 (1+3) T
Now transform equation (4.40), using
xl zl |
["2] - P[zz] (4.43)

by (D 0z g(ymiCiby/el-b)
) - () - (3 Juco +
0 —e+ %2 UL ri(b, /el

1
=(2c-a,-3(a,~[a,/c]))
[ 2 1= 02 (x-w) (4.44)
5(26-814'3 (81-[82/c]))
and from equations (4.34), (4.41), and (4.38),
X, = xX-w = zl+z2 (4.45)
dN(x)

Substituting equation (4.45) into the expression for ™

given in equation (4.32),

dN ! -
—;—f‘f-) - ):zjnj(zlﬂzw)j 1 (4.46)
j-
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1t can easily be seen that

dN dN dN
E£X) z = .EQX) z = EiX) (4.47)
1 2 2 1
const. const.

Consider equation (4.44) broken into its two separate

equations, and consider the equation in 2y first.

2 = H2c-a,-1(a - a,/c])) 2,0+ (-a)=1(ay-2e=[a,/eD) 2

1
2(bl-j([bz/cl-bl))g(x) (4.48)
Now define real constants Al’ AZ, AB, AA’ and add (e—jf)z1 to each side
of equation (4.48), where e and f are real numbers, such that
. 1
2 ¥(e-3f)z) = 5(2c-a;- (a,-[a,/c])) (z,~w) + (e—Al—j(f-Az))zl -

OB ING)  (4.49)

and putting equation (4.49) into operator notation gives,

z, = ﬂ(zl) - %(2c-al-j(81-[82/c]))§(22—w) + E([e-kl—j(f-kz)]

zl-(x3-3x4)§ﬁx)) (4.50)

Pinding the Lipschitz constant of the operator H gives,

dN(x)
lice, p-RG I € KN Hzgyzgll  sup  |eny- 2y G2 -
11 12 117712 2,€CAL0, =) 17 73 Tdx)

3(e-2,- 2, l‘%é’—‘)) (4.51)
1
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where C*[0,») is the space of continuous complex functioms. Then using

equation (4.47) and noting that dNGx) is a real function as well as
z
1
the following
g ll= Jlexp -ersf)e de = Texp (-et)at -2 (4.52)

glves

| Bz p) - Bzl = 2 up ((e=2 =2 EE',(TX)' )2 + (82,2, dNG) 20
1

M| (4.53)

For contraction to hold for H, it is required that

1 an(
e 8P (e R S 52 Y v w.sw
1

and this implies that

dN 2 2,2 dN
(_..-h_di")) (A 2, )- 2(—-‘%‘-)-) (A3(e-x1)+x4(£-x2))i *rzcaz-(e-)\l)z-(f-xz)2

for all z, €C*[0,=) (4.55)

Completing the square and taking the square root and rearranging gives

A=) 1)“6“' A)- (¢ 7\324' sz) (Yzez# (e=2) 2-(f- X2)2)+(A 3(e-x1)+xl.(f-),2)) 2)11
« x:cz" *:.2) %(‘5')' Dyl h) +h(E-2) + (“32“:.2)( (2e2-(e "1’2'

2 2y
(£-2)%) +Oyledp 2, (£-2)) 4 (4.56)



53

Letting Y-+l and removing equalities makes‘equation (4.56) of the form

dN(x) - .
ix < B (4.57)

Now if N(x) were a linear gain, then for stability of the

linear system so formed, it would be required that

a
a= - mir\(gL s ™) (4.58)
1

and substituting this in equation (4.56) gives

2 2 2
b= a4 f&cb2+(e-f)6cAklt?(bz-blc)(alc—az-zc )-2a,b,c
2 2 2
2b1 c + bz - 2blb2c
(4.59)
e b)'(f'°+'1'(°*°b’"l:2" 202,41 apa) ? (460
ela; by 2'"1 c 4 a b,+a; .

The equation in z, is just the complex conjugate of that in z)
and so can be treated in like manner to give the same conditions; namely
that contraction holds for all N(x) obeying condition (4.57) with a and B
defined in equations (4.58), (4.59) and (4.60). So by the contraction
mapping theorem there exist unique functions zl* and 22* satiafyiné
equation (4.44) and so there exists a unique x(t) defined by equation

(4.45) which is a solution of equation (4.28).

Define

Nz = (eA3(E2)) 2; = (g7 RO (4.61)
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and then equation (4.50) becomes
= = = *N '
z, = Hz; = v, K (z, w) + K*N (zl) (4.62)
In a similar way

z, = B'z= v, K' (zl-w) +K'#N" (z,) (4.63)

where Vi and v, are complex numbers. From the previous results on

the contraction it is known that

s I < tne | Bt |2 yp< 2 (4.66)

| k'#l| < dne [| RYAN"][ < vy <2 (4.65)
Taking norms in equation (4.62)

P AN T E T R R Y 2, |l (4.66)

-1
2y I <lvy RN a-ypT izl + e 1) (4.67)
Similarly from equation (4.63)

Wz, 1< lv,! Nl a-vp "t Clzgll + el (4.68)
Now substituting equation (4.68) into equation (4.67)
lz < vyl Nzl amvp™ ol @+ vyl el a-v)7h +

lv, v lIRIIE |} G-y ¢ 1"Y2) Ll (4.69)
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Using equation (4.52) and also

lx'll = °fm|exp(—et—jft)ldt = ofmexp(-et)dt -‘% (4.70)
gives

[EX (1-Iv1vzle'zl(l-vl)q-yz)]‘l) < ||wll (4.71)

where D is a finite positive number. Now e can be made as large as

necessary, so that there exists an E, such that e2E implies;
1-Jvyv, 1Ay P Ay )17 &2 2 st 0 (4.72)
Thus equation (4.71) and e;uation (4.72) give
Iz Il < 60 llwll 4.73)
and putting equation (4.73) into equation (4.68) gives
[ENIES Ivzl[e(l-vz)l"l(ucn) l|wl| (4.74)

Equations (4.73) and (4.74) imply bounded-input bounded~-output
stability for the system described in the proposition. It can be seen
from equations (4.59) and (4.60) that the sector [a,B] can be expanded

to the Hurwitz sector by increasing e sufficiently.

Examples of Sector Calculations

a) b,=0 - am - ==
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and this implies

a a a
2 dN(x) 1 2
-2 = < 2—=f -== (4.75)
b2 dx b2 b2
a, a,
and clearly as e, so does (3~ f - =)
2 P2
%
b) b, =0 —> a=- =
2 b
. 1
/22
Let ¢ =Y — then
2
f =/ 2a2
and this implies
a
3 dN (x) 2 4
bl < ax < -‘;'1 e -~ ‘b—l' (4.76)

and this, as before, can be expanded to cover the Hurwitz sector.

4.4 Higher Order Systems [24)

The diagonalization procedure used for the second order systems,
and which was a generalization of the method used for the first order
systems, does not appear to give the larger region for third and higher
order systems. For these cases it is necessary to introduce a new norm,
the M- norm, and the space CA[a.b] of continuous functions on [a,b] will

become the space CA[O,Tl.
Consider the same system equation as before

x = La(r) - L*N(x) (4.77)

with
He fl <= (4.78)



1
m m-1 m:}
s +a.s +...+a
1 m

1]

L.(8)

i 1
N(x) = ] n (x)

1=2
aNx) N 1-1
a<—=— = )] ni(x) <8
dx {=2 i
x(t) = w(t) - L*N(x)
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(4.79)

(4.80)

(4.81)

(4.82)

Add to each side of equation (4.82) (c—am)Lﬁx), where c is a

real positive number.

(I+(c-a )L)x(t) = w(t) + L((c-am)x-y_(x))

(4.83)

x(t) = (1+(c.-am)L)_1w(t) + (L+(c-am)L)'1*L((c-am)x-_ri(X))

(4.84)

Now taking Laplace transforms of (zf(c-am)k)_l gives,

-1 sm+alsm-l+...+am
(1+(c-a_)L) “(8) =
n sm+a sm-1+...+c

1
1
m-1

8 +als +...%+C

- (1+(c-am)L)"1(s)L(s) =

= K(s)

x(6) = H(x) = (L+(c-a IL) w(t) + K((c-a )x-N(x))

The Lipschitz constant in the A-norm is now to be
|§(x1)-_}1(x2)| = [K((c-a ) (x,-x,) - [ﬁ(xl)-ﬁ(xz)]}l

where K is an integral operator with kernel k(t), as given in

(4.86).

(4.85)

(4.86)

(4.87)

determined.

(4.88)

equation
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|ﬂ(x1) - ﬂ(xz)l :_Oftlk(t-r)l|(c—am)(xl-x2)(1) - [Eﬂxl)-gﬂxz)]|d1
(4.89)

< sup k(e | ft sup | (c-a )(x,-%,) - [N(x,)-
t[0,7) S R 1

g(x2)1|dr (4.90)

dN(x)

:_Koft sup |x1-x2 e-XTeXT sup c-a - ~§x

te[0,T] xeCA[O,T]

dt

K %=1, | )
< K [[x,-x sup c-a_ -~ ——
1 72" XECA[O,T] m dx

exc-l
A

(4.91)

where K is defined to be sup |k(t)|. From equation (4.91),

tc[0,T]

rearranging gives the following.

-it -1 dN(x)
|H(x,) - H(x,) e "™ < KA x‘gu?O . c-a -~ "xl-x2||x
x »
. -1 dN(x)
— Hx) - ﬂﬂxz)lk < KA xegu?o . c-a = ~gx “xl-lek (4.92)
A ’

For contraction to hold, the following condition must be

gatisfied.

dN(x)

cra - S| <y <l (4.93)

K\~ sup
chAIO.T]
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. cca - T o NG < g+ XA (4.94)

Let y—1 and remove the equality and set A = cK gives

dN(x)
dx

< 2c-am (4.95)

Now for the inverse operator (lf(c-am)k)-l to exist, such
that 1its norm 1is finite, ¢ is restricted to a range of values such that
the zeros of the polynomial §m+alén-1+...+c are all in the left half of the

s plane. It is found that for equation (4.95) to cover the Hurwitz sector,

¢ does in fact lie in the range to give a bounded inverse operator.

Consider now a bound on the output

-1
Ix 0, <@+ (cmap) O N w L+ tncll gl | =1, (4.96)

It has been shown above that for N satisfying equation (4.95) then

ine [[H I, =v <2 - (4.97)

> il e a Tt e T, v I (4.98)

Equation (4.98) implies bounded-input bounded-output stability
in the space CA[O,T]. However this does not mean that |x(t)| is not an
increasing function of time but that it is increasing no faster than
De X where D is a constant.

By the contraction mapping theorem there exists a unique solution

to the equation (4.77) in the space CA[O.T].4 This solution can be obtained

by the Volterra series which converges on the interval [0,T].
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4.5 Comments and Comparisons

All the previous results hold if the nonlinearity contains a
linear term. Consider the nonlinearity to be of the form n;x + N(x)

where N(x) is as defined previously. Then equation (4.3) becomes

x(t) =L (r) - nL(x) - L*NG) (4.99)
(L + nL)x = L (r) - L*N(x)

x(t) = @+ nlL)'l*La(r) -+ nlL)’lﬁgtg(x) (4.100)

provided (1 + nlL)-1 exists. It can be seen that (4.100) is of the same
form as equation (4.99) with La replaced by (1L + nr&)ﬁka and L replaced
by (I + nrk)-lﬁk. As defined here, this transformation does not increase

the order of the system.

Although the method used for higher order systems does not give
stability of the output of the system, the systems do appear to be bounded-
input bounded-ocutput stable for the conditions imposed on the nonlinearity.
This has been noticed by computing solutions to various systems. Also
systems with zeros could be handled by this method but as stability bounds

are not obtained these systems are not shown here.

For comparison with other results, Barrett (2] consideral the

system

x +agx +ayx+ ex> = y(t) (4.101)

and found a bound on x for which the solution was bounded-input bounded-
output stable.

1
2

x|l < (3eu)” (4.102)
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where

1 1
1 - 2.~ =
;2(1+exp [—al(kaz-alz) 2]1)/ (1-exp [-al(Aaz—al Yy 2])
H = H 812< 4ay

2> 4a, (4.103)

az . 1

From Section 4.3 using equation (4.101)

dN (x) 2
-:T—-— = 3ex
x
a = -a,
8 = Zalf-a2 f as large as needed (4.104)

These results give two bounds, one for a positive € and another for a

negative € .

2a f-a, \¥
c>o - "xH<[ ;c 2] < ™
a, \¥
ceo - Ixle (1] (4.109

The results obtained by Barrett were also obtained by Lepschy,
Marchesini and Picci [17] using a comparison method while a slightly
smaller region was obtained by Christensen [4], using contraction mapping

and fixed point theorems.



CHAPTER V

INITIAL CONDITIONS AND THE VOLTERRA SERIES

5.1 Introduction

All of the examples with the Volterra series used up to here
have assumed zero initial conditions. In this chapter the inclusion
of initial conditions of the differential equation describing the
linear plant will be discussed and a method for incorporating the initial
conditions into the series will be developed. This method, coupled with
the previous method for evaluating the series gives a relatively simple
method of determining the Volterra series for non zero initial conditions.

Using the initial condition method, it is then shown how to

treat a step input to give a quickly converging series. 1In practice,
any input which will tend to a non zero average value can be treated

in this way.

5.2 Inclugion of Initial Conditions in the Volterra Series [5]

Consider the general system in Fig. 5.1.

r(t) + e(t) x(t) g(t) y(t)
; L,

|z
JS"

Fig. 5.1 The Ceneral System
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where La and Lh are linear operators, and N 1is a single-valued time-

invariant nonlinearity. Let

c sp—l+...+c
1 p

L (s) = (5.1)
a sp+a sp-1+...+a
1 P
dlsq’1+. Lot
L (s) = — (5.2)
b e%4b. 80 L. . 4b
1 q
jd {
N(x) = ] n (x) (5.3)

i=2
and let_lia and Lb have initial conditions {x(0+),x(l)(0+),...;x(p-l)(0+)}
and {y(0+),y(l)(0+),...,y(q-l)(0+)} respectively, where y(0+) is the
value of y(t) just after t=0, and y(q)(t) is the q'th derivative of y(t).

Consider first the equation

y(t) = Lb(g) (5.4)

The solution to this equation, including initial conditions, is given in

Laplace transforms by, [8]

q-1 q-i

1 (3-1)
v(s) = 10 jgls R (8)6(s) (5.5
g) = + 8)G(s .5
sq+blsq_l+...+bq “

where the following definitions are made.

b0 =1

y(o)(0+) = y(0+) (5.6)
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Equation (5.5) can be written in the time domain as
y(£) = y (£) + L, (8) ‘ (5.7)
where yo(t) is the initial condition function given by the inverse

transform of the appropriate function in equation (5.5).

In a similar fashion the equation

x(t) = L_(e) ” | (5.8)
can be treated
p-1 p-i
)} sta x371) (o4)
=0 _gm1 P +L_(8)E(s) (5.9)
X(8) =  Pya gPly .. ...+a a
1 P
where similarly
ag = 1and x0 (0r) = x(04) (5.10)
Taking the inverse Laplace transform gives
x(t) = xo(t) + ka(e) (5.11)

Now expressing the system output as x(t) and the input r(t) gives

JONERENON L (x(e) - y (0 - L) (5.12)

x (£) + _1_.8():(:) - yo(t))- LAN(x) (5.13)

where as before

I
| ]

L *L, | (5.14)
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Equation (5.13) is the equation representing the general system
under consideration with initial conditions on the linear plants. The
effect of initial conditions is to modify the input function. Clearly all
the previous results obtained about stability of the system and the
convergence of the Volterra series will also hold in this case for the
modified input function.

In the evaluation of the Volterra series the modified input

function could be expressed as

w(t) = x (t) + L (r) - ¥, () (5.15)

and then the output could be expressed as a function of this new function

w(t).

x(t) = w(t) - LANG) (5.16)

x(t) = ) H W) (5.17)
=1

This appears to gimplify the kernels of the series a little but
i
in effect just removes the factor TT'La(sk) from the expression for each
k=1

“1(31""81)’

The case where N(x) contains a linear term can be treated the

game way as was suggested in Section 4.5.

5.3 Example of Initial Conditions

Example of 1nit282 L——2o="m0=

Consider the system of Fig. 5.1 with

1
La(s) - 3 (5.18)



L) = TSI

N(x) = x+ cx3
and with input and initial conditions of
r(t) = 0
o

x(0+) = x ;3 y(0+) = y°

Then from equations (5.5) and (5.9),

m|*°

XO(S) =
. Y
Yo(s) s+l

o o o o O
W(s) = X _ X 8+X -y

Y
8 s(s+l) = s (s+1)

and substituting N(x) in equation (5.16) gives

x(t) = w(t) - LG - L)

) = @+ N - @+ e

Now evaluating (lfk)-l in Laplace transforms

(1 + 1) )= —&(stD)

sz+s+k
_1 [o] + o - [s]
- (1 + 1) L) W(s)= EHEEE—TE = W'(s)

32 +8 +k

(@ +1) o) Lig), ———— = K(8)
8 +8 +k

66

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)
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Equation (5.27) now becomes

X&) = w'(t) - € K6 (5.31)

and expressing x(t) as a series function of w'(t) gives

x(e) = H') = )} H. (") (5.32)
3=1 3

As before, substituting equation (5.32) into equation (5.31) . _

and equating orders,

B o= 1 (5.33)
B, = - ex* (D)3 (5.34)
H, = 3 kr @ &* D (5.35)

and so on. As before let

Qn(sl....,sn) - Hn(sl,....,sn) H'(s))eeeee W' (8) (5.37)

A
then evaluating the xn(sl....,sn) and associating variables gives

o 1 X o
A xos + x -413, x (sfi) + 2
Xy (8) = T2 = 1.2 1 (5.38)
s +8+ k (s+7) " + k-7
2 4
A - ek 3 xosi+x°-y°
Xy(8,+85185) = M-
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A A (s+30 + A A (s+2) + A
_ 1772 2 3772 4
(8+E) + k - % (s+5) + k -2

3
AS(S"-E') + A6
RS (5.40)
(s+§) + 9(k~z)

where Al’ AZ’ A3, AA’ AS’ A6 are all real numbers depending on

xo, yo and k.

5.4 Modifications of the Series for Step Inputs.

Consider the example worked out in Section 3.6 of a system
with a step input. In this example it was found that with inputs of
a small magnitude there was good convergence of the series for all
time. However, as the input became larger the series converged for
a finite time interval but diverged quite rapidly after that. It is
known from computer studies that this system is quite stable for all
inputs and so the question is raised of whether it is possible to
transform the equation so that the series converges for all inputs.
A method for achieving this is outlined below which uses a transformation
and the initial value method of the previous sections.

The system to be considered is that of Fig. 5.1 .

x(t) = x (£) + L (r(c) -y ()] - L*N(x) (5.41)

with Ea' Lb and N as defined in equations (5.1), (5.2), (5.3).

xo(t) and yo(t) are initial condition functions as defined in Section

5.2 and

L = L*'L'b (5.142)'

-a
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Assume both linear operators are stable, so that the initial condition

functions tend to zero as t increases.

1im xo(t) =0

t >

lim yo(t) =0

t e

lim L_(y (t)) = 0 (5.43)

[ ad

Also assume that for an input function

r(t) = Uu(t) (5.44)

that the output is bounded, and that the output reaches a steady state

value. Then,

=l < ¥y
- finxll < %, (5.45)
tim x(t) = x¢ (5.46)
Let
L) =[5 h()x(e-1dr (5.47)

and from the assumptions of stability of the linear operators, then
In(e)] < Kyexp(-vt) v>0 (5.48)
Consider the limit as t-= of L#N(x).

LG =[5 h(ONG(E-1))de (5.49)
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1t is assumed that both h(t) and x(t) are equal to zero for all t<0, so

that equation (5.49) may be written

L*N(x) = oj"’ h(t)N(x(t-1))dt (5.50)
and then
1im L*N(x) = oj‘” h(t) (lim N(x(t-1)))dt (5.51)
o t-+oo

since bhoth Ih(t)l and Igjx)l are bounded. ﬂxx) is single valued and

continuous, so that using equation (5.46), equation (5.51) becomes

lim L*N(x) = J° h(1)N(xp)dr

t-roo

= N(xp) " h(r)dr (5.52)

Now ofm h(r)dt exists, and so using Laplace transform theory

(8] to evaluate the integral gives,
[" h()dr = Um _[© n()de
(o] v (¢]

= 1im sL(8)/s
g8+0
= 1im L(8) (5.53)
80
Incorporating this result into equation (5.41), and taking the limit

as t»= on both sides, gives

lim x(t) = x, = lm sLa(s)Uls - N(x¢)lim L(8)
e 8+0 8+0
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x. = U lim L (s) - N(x.) lim L(s) (5.54)
f a —7f
s+0 s»0

If the algebraic equation (5.54) has a real solution for Xe then
this is the final value of x(t). So now in equation (5.41) substitute for
x a function z(t) + X Then z(t) is a function whose steady state value

is zero and has an initial value given by

z(0+) = x(0+) - xe = x° - Xg (5.55)

z(0+) = x(0+) (5.56)

and so on for the initial values of the higher derivatives. Making

these substitutions gives

z(t) + Xg = zo(t) + U ::g La(s) - Layo(t) - L*N(z(t) + xf)

(5.57)
= 2 () = L, yo(t) + U lim L (s) - N(x,) 1lim L(s) -

s+0 §+0
L*N' (2)

—> z(t) =z (t) - Layo(t) - L*N'(2) (5.58)

where zo(t) {s the initial condition for x(t) with x(0+) replaced by

2(0+) + xf,and N'(z) can be written as

M 1
M@ =) n 1 c; 2 x, (5.59)
1=2 & 3=1

and where

ct -1 (r-pnt (5.60)
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This new nonlinearity contains a linear term which can be

removed and placed with the linear plant.

M i i-1
= - - L%
2(t) =z (£) - L, y(0) - L I n, Crzx

i=2
M i
-L*x}In ) ct 23 x =3 (s.61)
g=2 1y=2 3 £
t i-1
(yi?;zn1 ix, L) z(t) = z_(t) - Ly (0) - L*N"(2) (5.62)
- z(t) = Ktz (o) - « L)y (0) - K LRLAN" (2) (5.63)
= o = =a’’o = ==
where " N " M
" i} i-] i 3 3-1
N'(z)= ] n Cc, z° x = Jz ] n Cy X (5.64)
i=2 1 jZZ J £ i=2 j=1 31t
M
kK = L+] nd x' L (5.65)
=2

and gfl*k,is now the new linear system. It can be seen from the

expression for N"(z) that the greatest power of the nonlinearity has not

increased but more terms have appeared at lower powers.

z(t) can be calculated from equation (5.63) in the form of a

Volterra series.
2(6) = 1 B (z (0) - L,y (6)) (5.66)
n=1

and then x(t) can be found from

x(t) = x + z(t) = xg + n§1 gn(zo(:) - _Layo(t) ) (5.67)
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and it can be seen that Xe plays the role of a zero order operator.
5.5 Example

Consider the same example as in Section 3.6.

The system was

NGx) = €xo
_Lb(s) = 1
x(0F) = 0
r(t) = k u(t) (5.68)

Equation (5.41) becomes

x(t)

L () - ek (x) (5.69)

Taking the limit as to=.

xe = (k/a) ~(c/a) (xp)’ (5.70)
xf3 + (ale) x -(k/e) =0 (5.71)
From the solution of cubic equations, it is known that
1 3, 2 L 1
xg = (k/e)3 (10.5 + 0.5(1 + 4a>/27k"€)2] 3 + [0.5 - 0.5
3, 2 2 1 o
Q + 4a3/27k°0)213 ) (5.72)

U

which is the only real solution as long as

L + 4a3/27k% > 0 (5.73)
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For stability of the linear system a>o and it then depends on ¢ for

conditions (5.73) to hold. In fact all that is needed is

e > -4a /27" (5.74)
Now let
x(t) = z(t) + Xg {(5.75)
and substituting in equation (5.69) and cancelling terms
z(t)+x, = zo(t)+C§) - C%)xfB - eLa(23+3xfzz+3xfzz)
(5.76)
2 3 2
z(t) = zo(t) - 3exf La(z) - qka (27 + 3xfz )
- 2. -1 _ 2. -1 3 2
z(t) = (L + Jexg _La) zo(t) e(L + Jex, _ga) *}_._a(z +3x 2 )
(5.77)
For this case using equation (5.9)
Xg
zo(s) = ey (5.78)
2 -1 s+a
(T + 3exg La) (8) = 2 (5.79)
s+a+3::xf
Let
2 -1
wit) = (L + 3 ex, ga) zo(t) {5.80)
-X
£ (5.81)

- W(s) = 9+a+3cxfz
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and

2 -1
= *
K L+ 3 x.° L)) *L

1

- K(s)= ;;;;3;;;2 (5.82)

For convenience in notation, let
= 2
a = at 3exf (5.83)

vy = 3£xf2/ a <1 (5.84)

Then solving equation (5.77) for z(t) in the form of a Volterra series

2(t) = | Qj(c) (5.85)

A
zl(t:):= w(t) = - X e

3,(00= -x (1/6) (5e7E-6e"2C + &)

Qﬁn=-%u%num&“qm;m%mu4“4u4“ﬂ6”5

3,(0)= -xs(y3/2160)(1069e’°‘-4320e‘2°‘+6855e’3°t

-sasoe’““°+2115e'5“‘-38Ae“6°‘+25e'7°‘) (5.86)

These results were obtained by methods outlined before but grouping
terms with the same power of x, or Y under the same order of operator. The
results are plotted in Fig. 5.2 where it can be seen that there is good

convergence of the series. Compared to Pig. 3.1 there i{g more error for t
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CHAPTER VI

COMMENTS AND CONCLUSIONS

6.1 The Volterra Series

The Volterra series is a very useful tool for the nonlinear
systems engineer. It can be used for a large plass of systems whose
nonlinearity can be represented with gufficient accuracy as a finite
power series, and some derivatives of this power series, when these
derivatives can be incorporated as zeros of the linear plant. This is
quite a large clags of systems, as physical nonlinearities are usually
not too abrupt, and input signals to systems are usually limited in
magnitude by physical considerations.

The main problem with the geries, as with all types of power
series solutions, is to obtain convergence of the geries. For small
fnputs and the types of systems considered here, the series always
converges but as the signals increase in magnitude, the series begins to
diverge as is shown in the example in Chapter 111. This does not mean
that the system is not stable however, and i1f it can be shown that the
system isin fact stable then the system may be able to be transformed
to a new equivalent system whose Volterra series does converge. This
has been done for the case of the step input in Chapter V.

Another method of evaluating the Volterra series by differen-
tiating the series and substituting into the differential equation has
been used by Flake {10}, which should be able to handle all the types of
nonlinearities that contain sums of powers and products of derivaties.

A special method for including initial conditions is also given but there
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is more work involved in calculating the series for these methods.

Using the kernels of the series, it 1is possible to analyse the
response of the system to quite a few inputs which engineers are interest-
ed in. For sinusoidal inputs the distortion terms are quite readily cal-
culated substituting s = *jw into the transforms of the kernels [11]. For
initial conditions or step inputs then the methods developed here give
good convergence of the series and for impulses the kernels themselves
give the output function.

One way of synthesizing a nonlinear system would be to use a
general nonlinearity and work out several terms of the series. Then the

coefficients of the powers of the nonlinearity could be chosen to give

a desired result or close to it.

6.2 Stability Analysis

The methods of analysis used here to investigate stability
depend on the functional analysis approach using contraction mapping.
This approach combines well with the Volterra series and gives useful
results. For instance, over the region in which the series converges
absolutely, if the initial condition function is an exponentially
damped function then by consideration of the series it cam be seen
that the output will also be exponentially damped and so the system
{s asymptotically stable {5].

For the expanded region of convergence as found here there is
no guarantee of asymptotic stability in general. 1t appears from other
work (see [1]) that all systems of first and second order with non-
linearities as used here which are stable at the origin are asymptotically

stable over the whole region of bounded-input bounded-output stability.
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The problems arise with higher order systems with zeros in the linear
plant. It should be possible to determine the asymptotic stability
bounds using the functional approach with or without the Volterra series

and more work is needed in this area.

6.3 Conclusions

In this thesis a class of nonlinear systems is considered.
1t consists of up to two linear plants and one single-valued time-
invariant nonlinearity which can be represented to a sufficient degree
of accuracy by a finite power geries. With this class of systems the
easiest way to calculate the series was demonstrated with and without
ijnitial conditions and a transformation introduced to guarantee con-
vergence of a stable sfstem with a step input.

The bounded=-input bounded-output stability of this class of
systems was investigated and for first and second order systems a
sufficient condition was found that the slope of the nonlinearity should
be contained in the Hurwitz sector of the system with the nonlinearity
replaced by a linear gain. For higher order systems, a bound was found
on the output from which stability could not be éesumed, but it has been
found from computed results that for nonlinearities with slopes within
the Hurwitz sector, the systems were bouaded-input bounded-output
gtable so that more investigation is needed in this area.

Also some work is needed on the prediction of limit cycles
along with the bounded-input bounded-output stability. If it can be
ghown that a system is bounded-input bounded-output stable and no limit
cycle can exist then the system must also be asymptotically stable., This

is especially important for the higher order systems.
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In summary this thesis shows the use to which the Volterra
series can be put in the analysis of nonlinear systems. The Volterra
series was shown to be unique so that it can be calculated the way that
is easiest and a proposed method of calculation was get out. A simple
way of including initial conditions in the series is introduced and it
is used to give faster convergence for step input functions. The con-
traction region has been expanded for a large class of systems to give
a convergent series for a finite time interval. Then using a diagonal-
ization technique on first and second order systems bounded-input bounded-
output stability is obtained for a nonlinearity whose slope lies in the
Hurwitz sector of the system. Although this has been done by other

methods, it is now possible to find a solution to the system.
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