NumMmeEriCc TENSOR FRAMEWORK:
TowarD A NEw ParapicM IN TECHNICAL COMPUTING

by

Adam P. Harrison

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Signal and Image Processing

Department of Electrical and Computer Engineering

University of Alberta

(©) Adam P. Harrison, 2016

Abstract

Technical computing is a cornerstone of modern scientific practice. Within technical com-
puting, the matrix-vector (MV) framework, composed of MV algebra and MV software,
dominates the discipline in representing and manipulating linear mappings applied to vec-
tors. Indeed, prominent techmical computing packages, e.g., MATLAB, revolve around
the MV framework. Applying Thomas 5. Kuhn's theory of paradigms, the MV frame-
work is technical computing’s paradigm. One may then reasonably ask whether the MV
paradigm imposes significant restrictions on technical computing’s practice. This ques-
tion may be answered by synthesising the literature on widespread and disparate research
efforts on frameworks beyond the MV paradigm. Two categories of anomalous practice
emerge, namely special linear mappings, i.e., high-dimensional and entrywise linear map-
pings, and mappings beyond linear, i.e., polynomial and multilinear mappings. To tackle
these anomalies, a framework for numeric tensors (NTs), i.e., high-dimensional data in-
vested with arithmetic operations, proves well-equipped. The proposed NT framework uses
an NT algebra that exploits and extends the storied Einstein notation, offering unmatched
capabilities, e.g., N-dimensional operators, associativity, commutativity, entrywise prod-
ucts, and linear invertibility, complemented by distinct ease-of-use. This expressiveness is
comprehensively supported by innovative NT software, embodied by open-source C4++ and
MATLARB libraries. Nowvelties include a lattice data structure, which can execute or invert
any NT product, of any dimensions, using optimised algorithms. Regarding sparse NT com-
putations, which are essential to address the curse of dimensionality, the software takes new
approaches for data storage, rearrangement, and multiplication. Moreover, the software
performs competitively on representative benchmarks, matching or surpassing leading com-
petitors, including the MATLAB Tensor Toolbox, NumPy, FTensor, and Blitz4++, while
providing a more general set of arithmetic operations. To illustrate these contributions,
two original problems from computer vision are solved using the N'T framework. The se-
lected exemplars, concerning image segmentation and depth-map estimation, involve high-

dimensional differential operators, linking them to the partial-differential equations found

in countless other disciplines. Returning to Kuhn, the contributions of this thesis, literature
review included, help make a case that technical computing is experiencing a revisionary
period. As such, the NT framework, with its expressive algebra and innovative software,

represents a timely and significant contribution to the evolution of technical computing's

paradigm.

Preface

Chapter 6 highlights three exemplars of the numeric tensor framework. Portions of the
chapter text and figures have been previously published as follows:

o A. P. Harrison, N. Birkbeck, and M. Sofka, “IntellEditS: Intelligent Learning-Based
Editor of Segmentations,” in Medical Image Computing and Computer-A ssisted Inter-
vention - MICCAI 2013, ser. Lecture Notes in Computer Science, K. Mori, 1. Sakuma,
Y. Sato, C. Barillot, and N. Navab, Eds. Springer Berlin Heidelberg, 2013, vol. 8151,
Pp. 235-242:

o A. P. Harrison and D. Joseph, “Maximum Likelihood Estimation of Depth Maps
Using Photometric Stereo,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 7, pp. 1368-1380, 2012;

o A. P. Harrison and D. Joseph, “Depth-Map and Albedo Estimation with Superior
Information-Theoretic Performance,” in Image Processing: Machine Vision Applica-
tions VIII, ser. Proceedings of the SPIE, E. Y. Lam and K. 5. Niel, Eds. SPIE, 2015,
vol. 9405, pp. 94050C-94050C15.

For all published contributions, I was responsible for the manuscript composition, writ-
ing, and editing, as well as the software development, data collection, and data analy-
sis. For the IntellEditS paper, N. Birkbeck contributed toward software development, and
manuscript composition and editing. M. Sofka was the supervisory author and contributed
to concept formation, manuscript composition and editing, and data analysis. For the
depth-map estimation papers, D. Joseph was the supervisory author and contributed to

concept formation, manuscript composition and editing, and data analysis.

iv

Acknowledgements

I am indebted to many people, but foremost among them is my supervisor, Dr. Dileepan
Joseph. With my MSc included, Dil and I have been working together, off and on, for 8
years running, a total that I think sneaked up on both of us. Dil is never daunted by any
scientific question and approaches its resolution with creativity and aplomb. In tackling
a problem, Dil typically begins from first principles, giving him a deep and firm base of
understanding that he can use to launch into new explorations. Dil has allowed me to
join these explorations, providing tutelage, encouragement, and, when necessary, prodding.
To Dil I owe the idea of framing the numeric tensor framework using Kuhn's theory of
paradigms, which, apart from its insightful value, has been great fun articulating. On an
interpersonal level, Dil always treats all his students and employees with great respect,
drawing upon an astonishing reserve of patience and goodwill. These are just a few of Dil's
great qualities that I hope to emulate going forward. Thank you Dil for making me a fellow
traveller in your research and for being such a great role model.

I have also been blessed with some other fantastic mentors. In particular, I've relied on
Dr. Martin Jigersand and Dr. Dana Cobzas for advice, encouragement, and the occasional
ski. Martin and Dana also ran several reading groups in computer vision and medical
imaging, and I cannot emphasise enough how grateful I am, as it gave me much valued
exposure to topics outside the confines of my PhD work. I also want to thank Dr. Pierre
Boulanger for being incredibly generous with his time, offering me advice and insight, despite
his own busy schedule, regarding my PhD work and on research opportunities post-PhD.

I must also mention Dr. Neil Birkbeck, who has been another role model, although he
would probably scoff at being labelled as such. Neil, who is also my very good friend,
urged me to apply for an internship in medical imaging analysis at Siemens Corporation,
Corporate Technology, where he was working at the time. The experience altered the
course of my professional life. I appreciated learning from his example, relished our many
conversations on subjects ranging from fixed-gear bicycles to discriminative learning, and
also enjoyed trying to keep up with him and his wife, Leslie, on the bike (but never on the
skateboard).

While at Siemens, I worked under Dr. Michal Sofka, in the Image Analytics & Informat-
ics group. Michal gave me the opportunity to conduct medical imaging research, opening
the door to exciting new career prospects and teaching me a ton along the way. He also

trusted me enough to explore my own solutions to some of the complex problems being
tackled at Siemens. For that I am indebted, and I look forward to finally grabbing that
beer in Prague. I am also grateful to all the other research scientists and interns in the
Princeton office who helped make my time there such a blast.

Within the Electronic Imaging Lab at the University of Alberta, I want to thank Orit,
Ali, Kamal, Cindy, Jing, Erika, and Maikon for all the coffee, laughs, and tasty potluck
contributions during my time there. Many of you have helped mentor me throughout the
years, particularly when I was completely new to graduate studies. For those who have
graduated and/or moved on, it’s been wonderful to see you all find success in your varied
and exciting careers.

Outside of academia, my friends have helped make Edmonton and the great province
of Alberta a cherished part of my life. In particular, I want to stress how important all the
shared outdoors pursuits have been to my time here. Finishing my PhD and moving on from
Edmonton is bittersweet because it means we’'ll have to say good-bye. To all my friends, you
have taken me to vistas, mountainsides, locales, and occasionally levels of exposure I never
dreamed of reaching. And thank you for keeping the friendship alive while I was cloistered
in a lab, library, or coffeeshop these last few, I mean numerous, months. To many more
adventures!

I want to also thank my parents for all their support. Dad, thank you for sharing the
drive from Ottawa to Edmonton with me, and for all the planned and unplanned camping
experiences we've had. Thank you also for instilling a love of history, which has kept
me grounded throughout the years, despite our select discussions of who borrowed what
book from whom. Mom, thank you for your constant belief and confidence in my own
research abilities, and for always being ready with much-needed advice drawn from your
own experiences as a highly successful academic researcher. It was you who got me started
on this track, and ves, I do promise to always think about knowledge translation going
forward. Thank you also to my grandmother, my siblings and their spouses, and my nieces
and nephews. We may be living apart, but you are always in my heart. It was visits with
you that gave me much-needed boosts of energy and motivation to keep chipping away at
my PhD.

I will end by acknowledging Kara, my stalwart and beautiful companion. You've been
my rock. It was your support, encouragement, and well-placed kicks in the rear, to either
keep working or to take a break and go for a run, that got me through this last long push.
In so many ways, you set an example for me to live by. Thank you for that, and for so

much more.

Contents

1 A Paradigm Examined

1.1

1.2

1.3

14

Scientific Paradigms e
111 Kubn's Thesis i
1.1.2 Third Pillar of Seienceo Lo
History and Structure 0 e e e e e
1.21 Algebra and Software
1.2.2 Matrix-Vector Paradigm
Anomaly Categories 0 i e e e e
1.3.1 Special Linear Mappings
1.3.2 Beyond Linear Mappings

SUMIMATY . . . 0 o o i ot ot e et e e e e e e e e e e e e e e e e e e

2 A Growing Crowd

21

22

2.3

24

Algebraic Characteristics 0 0 o 0 i i it i e
211 N-degree e e e e e e e e e
212 Associative L. L e e e
213 Commutative L e e e e e e e
214 Entrywise 0 . L e e e e e e e e e e e e
215 Linearly Invertible
2.1.6 Unification - NT Algebra,
Software Characteristics o
221 Comprehensiveness i i i i ittt e e
2.22 Bparse Support L L L L e e e e e e e e
2.2.3 Programming Efficiency
2.24 Computational Efficiency
2,25 Unification - NT Software
Exemplar Categories e
2.3.1 BSpecial Linear Mappings
2.3.2 Beyond Linear Mappings

SUMIMATY . . . 0 o o i ot ot e et e e e e e e e e e e e e e e e e e e

[T T R JC RS

3 Extending Einstein Notation 42

3.1 Einstein Notation e 42
3.2 Extensions L e e e e e e e e e e 44
3.21 Multiplication L . e e e e 45
3.22 Unary Operations 0 i i i it i it et e e e e e 49
3.2.3 BSolution of Linear Equations &0
3.24 Symbolic Differentiation L. 52
3.25 Nonlinear Functions 54
326 Vector and Matrix NTs, 54

3.3 Selected Exemplars L e e e 67
3.3.1 Temsor Decomposition 67
3.3.2 Parameter Estimation 50
3.3.3 BSeparable Nonlinear Least Squares 61

34 BUMIIATY v it e i e e e e e e e e e e e e e e e e e e 63
4 A Dense Foundation 65
4.1 NT Software Overview 0 . 0 it it ittt 65
4.1.1 Design Principles e 66
412 Lattice Products e 68
4.1.3 BSupporting NT Algebra 70

4.2 Demse Algorithms e e 75
4.21 Abelian Operations. it i 75
422 Dense Permutations 76
4.2.3 Avoiding Index Calculations 7
4.24 BSpecial Products e 78

4.3 Dense Performance 70
4.3.1 Small-Dimensionality Benchmarks 70
4.3.2 Generalised Benchmarks L0 83

44 BUMIIATY 0 v it e i e 86
5 Exploiting Sparsity 88
5.1 Data Representation i 89
511 ComceDPts 0 i i e e e e e e e e e e e e e e 89

512 Results e e e 02

5.2 Rearrangement Algorithms 000 ... 93
521 SOTHIE .« o o o o ot e e e e 04
522 Permuting e e e e e e 96
523 Lazy Approach e 99

5.3 Multiplication L. L e e e e e 100
53.1 Poly-Algorithm e 101

5.3.2 Regular Sparsity e e 104

533 Wide Times Tall 105

634 Tall Times Wide o it i e e e 107

65.3.5 Index Sparsity e e 108

5.4 Comparative Performance e 110
5.4.1 BSparse Tensor Decomposition 111

5.4.2 Hyper-Sparse Multiplication 112

5.5 BUIMIMATY v it o i e 113

6 Differential Operators 116
6.1 Finite-Difference Operators i 117
6.2 Random Walker Image Segmentation 119
6.21 Formulation 120

6.22 Solution e e 122

6.23 Extensions 123

624 Results 124

6.3 Depth-Map & Albedo Estimation 127
6.3.1 Linearised Maximum Likelihood 128

6.3.2 Nonlinear Maximum Likelihood 135

B.4 BSUMIIATY ot i e i e 142

7 Toward a New Paradigm 144
7.1 Contributions L e e 144
TA.1 Symthesis 0 . L e e e e e e e 145

T1.2 Algebra e e e e e e e 146

713 Software L e e e 148

T4 Exemplars. 0 . . . L e e e e e e e e 150

7.2 Future Work L e e 152
721 Algebra e e e e e e e 152

T.22 Software L e e e e e 154

723 Exemplars. e e e e e e 156

7.3 Final Remarks 150
7.3.1 Evidence of “Crisis” 150

7.3.2 Resolution of “Crisis” 161
References 165
Appendices 186

A Details on Sparse Software 187

A1 Fast Linearised Index Caleulations 18T
A2 Borting e e e e e e e e e e e e 190
A21 Imtrospective Sort e e e 191
A22 TIMSOTE o o o e e e e e e e e e e e e 101
A23 LSDRadix Sort 192
A24 MSDRadix Sort e 192

A3 Abelian Operations 0 i i i e e e 193
A4 Mixed Dense/Sparse Operations 196
B Software and Testing 198
B.l CH411 Features L 0ttt e e e e e e e e e e e 198
B.2 Benchmark Details 1908

List of Figures

1.1
1.2

21

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5

Venn diagram of technical computing. 4
Entrywise nature of image masking. 13
Sparsity pattern of the O(h?) Laplacian stencil. 30
Mapping inner and outer products to a matrix product. 68
Mapping inner, entrywise, and outer products to a lattice product. 69
LibNT code for executing CP tensor decomposition operations. 71
NTToolbox code for executing CP tensor decomposition operations. Tl
Example auto-sequence and cross-sequence checks of NT expressions. T2
Comparison of out-of-place vs. in-place permutation times. 78
Benchmarks for small-dimensionality addition and subtraction. 81
Benchmarks for small-dimensionality inner and outer products. 83

Benchmarks for multiplications needed for dense CP tensor decomposition. 86

MNumber of possible NT products vs. degree. 90
Sorting times of the LCO and CO sparse formats. 93
Comparison of different sorting algorithms. 95
Mlustration of sparse numeric tensor (NT) permutation. 97
Sparse NT permutation benchmark results. 99
Hyper-sparsity of amatricised NT. 101
Three different column-by-column MDTs and algorithms. 104
Benchmarks of the sub-algorithms for sparse N'T multiplication. 107
The outer-product multiplication algorithm. 108
Benchmarks for performing sparse Khatri-Rao-type products. 112
Benchmarks for hyper-sparse products. 113
The high-degree nature of imaging poses challenges for FD operators. . . . 118
Foreground and background labelling for 2D BEW image segmentation. . . . 119
At least four indices are required for 2D RW segmentation. 120
Medical-imaging application of using the BW method with a data prior. . . 123
Runtime comparison of the MV paradigm and the NT framework in perform-

ing 2D BW image segmentation. e e 126

6.6
6.7

6.8
6.9
6.10
6.11

6.12
6.13
6.14

7.1
7.2
7.3

Al
A2
A3
Ad

A5
A
AT
AB

Mlustration of depth-map & albedo estimation.
Using photometric stereo to generate unseen images from arbitrary light di-

The four indices of photometricstereo.
Five indices are required for LML depth-map estimation.
Visual improvements of the LML method over the state-of-the-art.

Runtime comparison of the MV paradigm and the NT framework in perform-
ing LML depth-map & albedo estimation.

The six indices involved for NML estimation.
The benefits of the NML method for image generation.
The benefits of the NML method for depth-map estimation.

The growing crowd of work on high-degree algebras and softwares.
Variety of NT framework exemplars explored in this thesis.
Estimating the variance of depth-map estimates.

Expanding an LI into its constituent parts.
Computing an LI from its expanded indices.
Recomputing an LI from an old to new lexicographical order.
Recomputing an LI from an old to new lexicographical order without inter-
mediate arTays. 0 o v b b e e e e e e e e e e e e e e e e
Flow chart of execution of sparse NT abelian operations.
Performing sparse non-destructive N'T addition using a combined sort. . . .
Performing sparse non-destructive N'T addition using a merger.
Code example demonstrating how to override LibN'T’s data-representation

choices during an NT product.

128
130
132
133

135
137
140
141

146
153
158

187
185
185

189
194
195
196

List of Tables

1.1
1.2

21
22

3.1
3.2
3.3
3.4

4.1

5.1
5.2
5.3
5.4
5.5
5.6

7.1

Al
A2
A3

Frequency of entrywise and N-degree operations in MATLAB toolboxes. . . 14
Techniques to solve various categories of equations. 15
Comparing the capabilities of formalisms alternative to MV algebra. 21
Comparing the capabilities of alternative software solutions for high-degree

algebra. L e e e e e e e e e 28
Factoring out common NT terms. 49
Linear mappings and inverse representations using N'T algebra. 61
Partial derivatives of NT expressions. 53
Linear and nonlinear N'T expressions and their partial derivatives. 55
Lattice operations and prerequisites. 70
The CO and LCO sparse formats. 91
Possible lexicographical orders after an assignment. 100
Multiplication possibilities based on sparse characteristics of operands. . . . 102
NMNotation used to describe multiplication poly-algorithm. 103
Synthetic dataset used to test the sparse multiplication poly-algorithm. . . 104

Asymptotic characteristics of the column-by-column multiplication algorithms. 105

The characteristics of the computer vision exemplars of Chapter 6. 151
Speed improvements garnered by fast LI calculations. 189
Sorting algorithms and their characteristics. 191
LibNT’s data representation rules for mixed dense/sparse NT products. . . 197

List of Abbreviations

ALS

APL

BEP

co

CcP

CRTP

CscC

CSCNA

CSE

Cs5L

CSR

CSRNA

CTF

DCsSC

DCSR

DSEL

DsL

EMV

FD

GLS

GP

alternating least squares

A Programming Language

base edge probahility

coordinate

canonical-polyadic

curiously reoccurring template pattern
compressed sparse-column

compressed sparse-column no-accumulator
computational science and engineering
C++ Standard Library

compressed sparse-row

compressed sparse-row no-accumulator
Cyclops Tensor Framework
doubly-compressed sparse-column
doubly-compressed sparse-row
domain-specific embedded language
domain-specific language

extended matrix-vector
finite-difference

generalised least-squares

generic programming

GuUI graphical user interface
HOSVD high-order SVD

1D independent and identically distributed
LCO linearised coordinate

LI linearised index

LML linearised maximum likelihood
LSD least-significant digit

MDT multiplication datatype

ML maximum likelihood

MP Moaore-Penrose

MSD most-significant digit

MTT MATLAB Tensor Toolbox
MV matrix-vector

NML nonlinear maximum likelihood

NNZ number of non-zeros

NT numeric tensor

oopP object-oriented programming
PDE partial-differential equation

PITAC President’s Information Technology Advisory Committee
P5CP parametric subclass pattern

RP radix permutation

RW random walker

SIAM Society for Industrial and Applied Mathematics

SNLS separable nonlinear least squares

SOP simple outer-product

SSE sum-squared error

SSKC Steeb and Shi's Kronecker classes

S5vD singular value decomposition
TCE Tensor Contraction Engine
TMP template metaprogramming

Chapter 1

A Paradigm Examined

The advancement of technical computing’s role in science and engineering can follow many
different avenues, including improving the capacities of current modes of theory and practice.
But any serious examination of the state of technical computing should also be willing to
investigate the fundamental and perhaps unspoken assumptions, rules, and methodologies
employed in the discipline. Doing so requires stepping back and leveraging the insights of
those who offer serious commentary on the nature of science and its development. This helps
to bring into relief the structure of technical computing. A proper study of the discipline’s
structure entails an examination of anomalies, or limitations, aiding the investigator to

hazard how the field could, and arguably should, progress.

1.1 Scientific Paradigms

The focus of this work is on critically examining some fundamentals of technical computing,
with the purpose of outlining promising work and ideas that run counter to the established
mode of theory and practice. To do so, we draw upon the views of Thomas 5. Kuhn and
his notion of paradigms, using them to discuss technical computing and how it fits within

the larger scientific and engineering world.

1.1.1 Kuhn’s Thesis

Thomas S. Kuhn's book, The Structure of Scientific Revolutions [1], hereafter called Struc-
ture, has arguably had the greatest influence out of any other tract on the current under-
standing of scientific progress. Even without accepting Kuhn's views on incommensurability
and world change, as has been done by his critics [2,3], his seminal work provides invaluable
analysis on how science is practised. Most importantly, Kuhn's explanation of paradigms
illuminates how scientific communities elevate certain questions as priorities to solve, while
overlooking or even disregarding others.

Kuhn also differentiated between two modes of science. The typical mode he called

normal science, which essentially sets out to solve, clarify, or improve solutions to scientific

questions the community has deemed important. The atypical mode he called extraordinary
science; however, we prefer the term revisionary science. This mode can be considered a
period of transition triggered by some form of scientific tension or crisis, which causes prac-
titioners to question some of their previously accepted assumptions and tenets. As this crisis
is resolved, new scientific questions begin to supplant the old ones. These new questions
are accompanied by new theories, techniques, instruments, and experimental methods.

According to Kuhn's early writings, periods of normal science are defined by what
type of exemplar problems are used to illustrate the theory and practice of the discipline.
Kuhn viewed exemplars as the fundamental means by which scientific communities coalesce
around a set of questions to solve. When a crisis occurs, it is resolved through a scientific
revolution, whereby new exemplars are chosen as representative of the discipline’s mode of
practice. While these views enjoved longstanding impact, Kuhn later amended his thinking
of scientific practice and change for several reasons. These are worth outlining as they make
clear in what sense we use Kuhn's terminology for our own purposes.

For one, as Kuhn himself admits, his use of the word “paradigm” in Structure was
ambiguous and engendered confusion [4]. In addition to using the word paradigm in the
same sense as eremplar, Kuhn employed another more general meaning of paradigm, which
he defined as “disciplinary matrix” [4]. A disciplinary matrix includes all the techniques,
instruments, theories, questions, and exemplars that a scientific community employs in its
practice. We believe this latter definition is more in line with current popular understanding
of the meaning of paradigm. As a result, despite Kuhn's later preference, we intend the
reader to understand disciplinary matrix when we refer to paradigm.

In addition to changes surrounding the definitions of exemplar vs. paradigm, the role of
the former underwent an important amendment. Kuhn deemphasised the role of exemplars
by revising his definition of scientific revolutions to mean changes in lexicon or taxonomy [5].
By taxonomy, Kuhn refers to how a scientific discipline categorises objects, theories, and
phenomena. Thus, taxonomy, and not exemplars, assumed the mantle of defining the
bounds and limits of a scientific discipline. With a different taxonomy in place, crucial
aspects of scientific practice, including what questions are important to answer, fall into
place. Exemplars then play a diminished, albeit still foundational, role within a paradigm.

A final important amendment by Kuhn is related to the concept of scientific change
expressed as revolution. For one, both the graphic terminology and dramatic historical
examples Kuhn used to illustrate his point can obscure his oft-repeated assertion that
paradigm shifts may be slow moving processes confined to a small community of specialists.
As well, Kuhn's later writings outlined another important response to scientific crises—
that of scientific specialisation [5]. In this type of response, only a subset of the scientific
discipline in question adopts a new taxonomy. Even so, a new lexicon is still adopted by a
group of scientists, meaning that regardless of how a crisis is resolved, taxonomic changes,
along with corresponding paradigm changes, will result. Thus, for both notational and

definitional reasons, we prefer paradigm shift over revolution, where the former can refer to
the results of both revolutions and specialisations.

Kuhn's reexamination of scientific structure and change were crucial in addressing logical
and historical problems in Structure. Nevertheless, the implications of Kuhn's arguments
to practicing scientists have remained remarkably constant. By illuminating the social as-
pects of scientific practice, Kuhn's work can guide practitioners toward critically examining
their own disciplines. In particular, Kuhn's works emphasise that one should examine the
questions a discipline deems appropriate and also what it considers anomalous based on its
taxonomy. This focus is the result of Kuhn's insight that paradigm shifts are not necessarily
predicated on solving existing unanswered questions, rather they are predicated on present-
ing new important questions to consider, which often arise by re-categorising anomalies
in the old lexicon as kernels in the new one. As well, a new paradigm must offer enough
promise that these new questions can be answered. Importantly, since Kuhn disavowed
the cumulative view of scientific progress, this means that individual practitioners must
choose to adopt a different paradigm, elevating the influence of persuasion toward effecting
change. Thus, practitioners must also be convinced that these new questions are significant
and worth pursuing.

Consequently, if one wishes to advocate for a change of theory and practice, one must
identify the prevailing paradigm or disciplinary matrix, and just as importantly its anoma-
lies. These anomalies must be shown to have serious impact, and their resolution must
be shown to promise significant benefit. Finally, a new disciplinary matrix, or components

thereof, must be shown to have great promise in tackling these anomalies.

1.1.2 Third Pillar of Science

Computing continues to exert an increasingly greater role in science and engineering, which
has led to the creation of new fields and terms and also the redefinition of old ones. Some
of these terms include numerical methods, numerical analysis, applied mathematics, com-
putational science and engineering (CSE), and of course, the subject of this work, technical
computing. These terms are used in different manners and their exact definitions and
boundaries are not settled. To avoid confusion, we offer our own views on these fields and
their place in today’s science and engineering community.

The ubiquity of computers in science and engineering has progressed to a point where a
new field called CSE has emerged at the forefront of scientific policy. In a 2005 US Report
to the Executive [6], the President’s Information Technology Advisory Committee (PITAC)
defined CSE as “a rapidly growing multidisciplinary field that uses advanced computing
capabilities to understand and solve complex problems.” The PITAC report was motivated
by the increasing importance of CSE in all realms of science, spurring the committee to
label CSE as the “third pillar of science,” alongside theory and experimentation.

The PITAC's definition of CSE is very broad, as the committee included algorithms and

Figure 1.1: Venn diagram of technical computing. Technical computing employs the con-
cepts, theory, and techniques of applied mathematics and numerical methods.

modelling, advanced computer infrastructure, and the information technology expertise to
manage and optimise said infrastructure [6]. We define technical computing as embodying
the first element of the PITAC’s definition, i.e., algorithms and modelling for the purposes
of CSE. We use the term technical computing instead of scientific computing as we feel
industrial applications deserve their place alongside their scientific counterparts, and the
term technical encompasses both types of applications. This reflects the large contribution
of industrial giants, like IBM, toward the development of computing [7] and also the fact that
industrial and engineering applications are major drivers in advancing technical computing,.

Examining the algorithmic and modelling purview of technical computing more closely,
we view the discipline as encompassing all of numerical methods and parts of applied math-
ematics. The former focuses on developing and applying algorithms in a environment that
is inherently faced with approximation errors, finite resources, and noisy data input. This
describes the environment and challenges that technical computing must operate under.
Equally important to algorithms, especially in a scientific or engineering setting, one must
have the mathematical tools and methods to model and solve problems. Thus, the tools
and methods of applied mathematics represent an integral aspect of technical computing,.
Technical computing also encompasses other aspects of computing not found in applied
math or numerical methods, such as programmatic control structures, graphical user inter-
faces (GUls), optimisation techniques, and memory management. The general makeup of
technical computing is depicted in Figure 1.1.

The prominence of computing in science and engineering has not been welcomed in all
quarters. For instance, when CSE was still an emerging trend, the influential applied math-
ematician Clifford Truesdell offered a viewpoint encapsulated by the title, “The Computer:
Ruin of Science and Threat to Mankind” [8]. While Truesdell’s essay can verge into the
polemic (in one paragraph, he applies a metaphor comparing the coming predominance of
computers in science to the Third Reich), he does provide a valuable and prescient cri-

tique of CSE. In particular, Truesdell warns that computers present a great temptation
toward blindly applying and accepting computational techniques to problems. Several of
these warnings are echoed in more recent publications. For instance, a 2010 article in Na-
ture provides a modern account of problems arising due to the use of CSE by scientists
lacking in requisite expertise [9]. Many of these dangers are accepted and recognised by
proponents of CSE, who themselves emphasise the importance of both computational and
domain expertise in order to avoid the dangerous pitfalls Truesdell mentions [6,10,11,12].

As the importance of CSE increases, there is an impetus to advance the tools and
techniques used in the discipline. Since technical computing represents a major component
of a push toward better and more intelligent use of computing in science and engineering, the
continued effort must include examining how problems are modelled and solved numerically.
This aligns well with the PITAC’s observation that:

“,..our preoccupation with peak performance and computing hardware, vital
though they are, masks the deeply troubling reality that the most serious tech-
nical problems in computational science lie in software, usability, and trained

personnel.” [6].

If one takes concerns like Truesdell's seriously, then one accepts that technical computing
practitioners should be continually on guard against the blind application of their art.
Thus, critical examinations of the field should be considered important activities in the
advancement of technical computing’s role in science and engineering. Kuhn's commentaries
on scientific progress can provide valuable insights for such an examination. But first, it
is essential to address whether Kuhn's views apply to computing. This is important, as
Kuhn's writings typically focused on the physical sciences [13], and do not specifically
discuss computing.

Mirroring Kuhn himself, authors in computing have used the word paradigm in different
and ambiguous ways. In some instances, authors use the word paradigm somewhat casually,
without relating their use to Kuhn's conceptions of exemplars, world-view, or taxonomy.
For instance, programming styles and practices have been labelled paradigms with little
to no reference to whether any of the criteria of being a paradigm are met, ¢f. Tsai [14]
and Colburn [15,16]. However, Floyd provides a laudable exception to this, using Kuhn's
writings to examine how “programming paradigms” propagate and affect how practitioners
view computer science problems [17].

Outside of programming practice, authors have identified several paradigms within com-
puting. For instance, Tedre and Sutinen have outlined the stored-program paradigm as the
major defining characteristic of modern computing [18]. Denning and Freeman offer their
modern and more general notion of computing’s paradigm based on information process-
ing [19], which aligns well with Colburn’s take on computer science progressing from data
processing to a more information-oriented approach [15]. Finally, Tedre points out that the

master-apprentice relationship common in computer science epitomises the use of exemplar

[]

as a tool for knowledge translation [20].

Authors have also used paradigms to frame the debate on whether computer science
is a branch of mathematics [15,16,21]. This framing is informative as it affects one'’s
viewpoint on the role of computer science and which questions to pursue. For instance, the
pursuit of formal verification tools looms large to those that subscribe to the mathematical
paradigm of computer science [15,16,21,22|, but it is largely a neglected question to those
that do not. Moreover, the debates between practitioners within the mathematical or
non-mathematical paradigm have oftentimes been acrimonious, e.g., the caustic back-and-
forth between Fetzer and the formal verification community [23], indicating that paradigms
in computer science, just as with other disciplines, come imbued with the passions and
investments of its adherents.

Apart from the identification of paradigms in computing, it is also useful to point out
instances where new developments were met with resistance, but ultimately led to a fun-
damental change in practice. Doing so suggests that progress in computing is not always
cumulative, just as with the scientific disciplines of Kuhn’s focus. For an early example,
in the 1940s most computing machines were electro-mechanical and the dominant voices
in the field opposed the first fully-electronic computer [18]. As evidenced by the architec-
ture of modern computers, eventually practitioners completely accepted the fully-electronic
architecture. A later example in terms of software can be found in Backus’ reminiscences
of the resistance or indifference of machine-code programmers toward the development of
algebraic programming languages like FORTRAN [24]. Contrast this with today’s program-
ming practices, where it is now common to program microcontrollers without resorting to
assembly languages.

In addition, it is important to highlight that progress in computing, just as with the
larger scientific world, can often pivot on the human element and may rely on elements of
persuasion. For instance, when discussing FORTRAN, Knuth and Pardo describe the arrival
of “a language description that was carefully written and beautifully typeset, neatly bound
with a glossy cover”, as a major first in the history of programming and an important
agent of change [25]. Narrowing the focus to techmical computing, Parlett asserts that
Wilkinson's undeniable impact to techmical computing was due in part on his ability to
make error analysis accessible and interesting [26]. These examples indicate that Kuhn's

insights are capable of shining a light on the structure of computing-focused disciplines,
which includes technical computing.

1.2 History and Structure

Kuhn's insights into scientific progress derived from his chosen practice of examining sci-
entific history and deriving conclusions from this study [5]. When investigating technical
computing, its history also provides insights. In particular, the development of technical

computing helps illuminate two features that have served as cornerstones within technical

computing’s disciplinary matrix—algebra and software. This recognition leads to the ar-
gument that matrix-vector (MV) algebra and software constitute a paradigm in technical

computing today.

1.2.1 Algebra and Software

Formalism and constructivism take on prominent roles within practical applications of math-
ematics. Technical computing is no exception, and we identify algebra and software as the
technical computing embodiments of formalism and constructivism, respectively. The verac-
ity of this description can be revealed through a brief examination of technical computing's
history.

Unlike more modern times, where computers enjoy ubiquity in innumerable end uses,
from mission-critical to social-media applications, the early history of computing is essen-
tially synonymous with the early history of technical computing [27]. The US Army's
demand for faster ballistic calculations spurred the first fully-electronic Turing-complete
computer [18]. The need to numerically solve physical problems that did not lend them-
selves to closed-form solutions, e.q., turbulent flow, local weather predictions, and most
(in)famously physical problems related to the atomic bomb, encouraged further develop-
ment of computing [28].

The notion of computability was a topic borne out of the constructivist school of math-
ematics. Those within this school only accept mathematical objects that they can logically
construct [29]. Even though their work focused on logic and commenced prior to the advent
of computers, emerging from the constructivist camp were hugely influential figures, such
as Gidel, Turing, and Church, who contributed to efforts in defining computatability and
formalising the concept of algorithms [29,30]. These discussions on the nature of algorithms
and computability were particularly influential in the realm of computer science.

Despite the impact of heroic constructivist fizures to the development of computer
science, today constructivists remain small in number [29,30,31]. Gurevich argues that
constructivists created their own type of pure mathematics, losing sight of the important
questions of efficiency and feasibility [31]. Or in other words, constructivists were not “suf-
ficiently constructive” [31]. This echoes arguments of those who hold the engineering view
of computer science, as opposed to the mathematical or scientific view, that practical and
tangible results are the reasons for the discipline’s extraordinary impact [32]. Eriksson et al.
have deemed computer science and numerical analysis the inheritors of the constructivist
tradition [30].

These discussions on the impact of mathematical constructivism on early computing
reflect two different recurrent and symbiotic threads in computing. First, is the need to
formalise computing algorithms for the purposes of “expressiveness, program readability,
and algorithm provability” [33]. Second, one must have a means to constructively perform
the algorithm using finite computations that are feasible and practical [31]. These two needs

can be called formalism and constructivism.

May, the mathematical historian, has described the two needs of formalism and construc-
tivism as being part of a larger mathematical tradition, stating that “there are two great
traditions in mathematics: the scientific tradition and the technological tradition, mathe-
matical science and mathematical technology” [34]. May argues that the development of
mathematical technology has been ignored by scholars. May continues by contending that
the computer has now turned mathematical technology into a recognised discipline. Ulam
echoes this sentiment, maintaining that the development of computers was made possible
by the merging of formal logical systems and technological development [28].

A major milestone in the evolution of programming was the first algebraic compiler.
Programming now had a much more mathematical Havour. This was met with indifference
at the time, but the efforts culminated in the development of the FORTRAN language [24].
FORTRAN was developed to skirt the common trade off at the time between easy coding
and efficient programs. Its notation was designed to be mathematical and independent
of machines. Interestingly, it is the first to allow variable names longer than one letter,
breaking mathematical convention [25], but illustrating the unavoidable fact that mathe-
matical technology often has needs separate from those of mathematical science. Control
statements, which predated FORTRAN, are another prominent example of this. However,
despite making “programming an activity akin in rigour and beauty to that of proving
mathematical theorems” [35], these so-called algebraic langnages only gained acceptance
after demonstrating performance comparable to the status quo of low-level assembly lan-
guages [24].

Thus, formalism and constructivism each play their own crucial role in the progress of
computing technology. Today, in the larger computer science world that has broken free from
the confines of technical computing, formalisms, i.e., programming languages and coding
idioms, are still the subject of passionate debate, as the choice affects practical aspects such
as programming efficiency, computational efficiency, readability, and maintainability. Of
course, constructivism continues to play a dominant role in computer science, as witnessed,
for instance, by the huge efforts undertaken to optimise compiled programs, parallelise
areas of bottleneck, and vectorise machine code. The modern state of computer science
synchronises well with Denning and Freeman’s view of computing’s paradigm consisting of
“expressions that do work” [19)].

Returning to technical computing, while these considerations also apply, the discipline
must also meet the needs of scientific and engineering problems. As mentioned in Sec-
tion 1.1.2, technical computing comprises both modelling and algorithms, which are ad-
dressed by formalism and constructivism, respectively. Thus, technical computing provides
its own unique context for the interplay between formalism and constructivism. Reflecting
this unique interplay, within technical computing algebra and software take on the role of
formalism and constructivism, respectively. A technical computing algebra should align

well with the scientific notation used to model the problem(s) under question. The algebra
should also be conceptually efficient, i.e., requires minimum time and effort for a practi-
tioner to conceptualise a problem and express its solution. However, it should also foster
programming efficiency, i.e., requires minimum coding time, effort, and chance of error. As
well, the supporting software must be able execute the operations demanded by the algebra
with large-scale and numeric data. Issues like efficiency, numerical stability, and sensitivity
affect the feasibility and reliability of the implementation.

The crosstalk between formalism and constructivism is so potent that Ahlander et al. ad-
vocate choosing technical computing mathematical abstractions through the lens of software
engineering considerations [36]. This argument is echoed by Eriksson et al., at Chalmers
University of Technology, and Estep, at Colorado State University, who argue that con-
structivism and formalism inform each other [30,37,38]. These researchers use the metaphor
“body and soul” to describe the makeup of applied math—formalism represents the soul
while constructivism serves as the body. We adopt the same metaphor in describing the
makeup of technical computing, where formalism and constructivism manifest as algebra
and software, respectively.

Establishing the role of algebra and software provides a valuable stepping stone from
Kuhn's work to techmical computing. This is important because Kuhn never specifically
addressed computing [13]. In Structure, Kuhn emphasised the role of theories, instrumen-
tation, laws, and applications within a paradigm [1]. From this nomenclature, an analogy
can be made from Kuhn's terminology of theory and instrumentation to Eriksson et al’s
terminology of formalism and constructivism, respectively. The analogy can be extended
to also describe algebra and software within technical computing.

While allowing us to link Kuhn's terminology to technical computing, this analogy does
reveal an important difference from Structure. Kuhn mostly focused on theoretical traditions
of science and seemed to view theory as playing a primary role within a paradigm [13].
However, this may not be an accurate view for instrumental-heavy domains like technical
computing. In particular, we do not view software as subordinate to algebra within the
discipline. Non-theoretical innovations, e.q., improved algorithms, play an enormous role
in the progression of the discipline. If we use Kuhn's terminology, this means that within
technical computing we explicitly place instrumentation, e.g., software, on an equal footing
with theory, e.q., algebra. This explicit designation is an important distinction from the
description of science found within Structure.

1.2.2 Matrix-Vector Paradigm

When discussing the partnership between algebra and software, the combined solution may
be called a framework. Since, practitioners use a framework to cast scientific problems
in a mathematical language and perform computations within that context, if technical
computing has a paradigm then it will be identified by answering whether practitioners have

predominantly chosen one framework. With this in mind, an examination of the impact of
MV algebra and software, from technical computing’s formative years to its present state,
reveals the crucial role the MV framework exerts.

Underscoring the formative role of the MV framework, the publication of von Neumann
and Goldstine'’s 1947 paper [39], “Numerical Inverting of Matrices of High Order”, is often
credited as the starting point of modern numerical analysis [26]. As Goldstine put it,
“One of the first and most likely topics to be discussed [during the early years of technical
computing] was the solution of large systems of linear equations, since they arise almost
everywhere in numerical work™ [40].

Many of the initial pushes were toward fast and efficient softwares for MV compu-
tations. One of the first efforts to produce reliable and reusable mathematical software
routines was Bell Telephone Laboratories’ Numerical Mathematics Program Library [41].
Its initial submission focused on a key MV problem, providing code to produce eigenvalues
of nonsymmetric matrices [42]. In the mid 1970’s LINPACK and EISPACK were arguably
the successors of this work [43], offering reliable and fast MV computations that formed
the core to many technical computing applications. Equally impactful, the low-level BLAS
subroutines for MV multiplications have been the bedrock for innumerable computing rou-
tines. In the 1990°s, LAPACK emerged onto the scene, effectively supplanting LINPACK
and EISPACK [44].

Along with pushes toward better MV software, practitioners were also consciously think-
ing of the benefits of integrating mathematical algebra into programming practice [25]. As
early as the 1950s, pioneers of the programming art were pushing for this. In fact, Backus
and Herrick even advocated for matriz-multiplication-like operations in programming lan-
guages, but interestingly chose to express it using summations: “to go a step further [the
programmer| would like to write 3 a;; - bji instead of the fairly involved set of instructions
corresponding to this expression” [45]. Modern languages that support operator overload-
ing, e.g., C++, have been able to provide an environment that supports MV algebra, with
underlying routines hidden to the software user.

Backus and Herrick's forward thinking even went so far as to express the wish that, one
day, “a programmer might not be considered too unreasonable if he were willing only to
produce the formulas for the numerical solution of his problem and perhaps a plan showing
how the data was to be moved from one storage hierarchy to another and then demand that
the machine produce the results for his problem” [45]. Arguably, the advent of very high-
level languages for technical computing, such as MATLAB, have come close to fulfilling this
vision. Such modern computational packages have embedded MV capabilities within their
key datatypes. This allows implementations to be programmed using the natural language
of a wide variety of problems, expediting the process of transforming theory into practice,
as the coding process resembles the symbolic formulation to a great degree. As well, given

sound underlying routines, it allows scientists and engineers to employ technical-computing

10

techniques without being experts in the highly specialised field of MV computations. This
reduces implementation errors. The influence of MATLAB has grown to the point where
it can boast of over one million users [46], leading some authors to maintain it is the most
popular computing environment for technical computing [47, 48].

As MATLARB, and technical-computing softwares like it, continue to solidify their place
in the field, the importance of the MV framework has only increased. In fact, the abilities
and popularity of the MV framework have even led authors to reframe well known and
established techniques. For instance, the Society for Industrial and Applied Mathemat-
ics (SIAM) has published books that reframe the Fast Fourier Transform [49] and graph
algorithms [50] using MV algebra. Much of the motivation behind recasting these tech-
niques lies in the ubiquity and expressive power of MV formalism. However, constructivist
considerations also apply. For instance, employing the MV framework to model and solve
graph algorithm problems was only made practical by the advent of efficient sparse matrix
computations and data structures [51]. Thus, both the algebraic and software components
of the MV framework are major players in technical computing today.

In viewing the influence of the MV framework and the evolution of its use in technical
computing, it is also striking to consider how much has remained constant. In his 1967
survey of the role of linear algebra in technical computing, George E. Forsythe makes
several statements that could have been said today. His views on the predominant use of
MV algebra for modelling scientific and engineering equations still rings true. As well, his
statement that the “the amount of literature on matrix computations is staggering” has
only become more accurate. Most importantly, Forsythe's survey outlined the crucial (and
sometimes unrecognised) role MV software fills in its partnership with MV algebra [52].

Due to the influence of the MV framework, it is valid to ask whether it defines technical
computing’s paradigm. For certain, the MV framework remains a linchpin in the disci-
plinary matrix of technical computing. However, the MV framework plays an even greater
role than that. Since it is the dominant means by which practitioners model and solve
problems, the MV framework is key in defining what sort of scientific questions technical
computing can tackle, i.e., linear mappings applied to vectors®. In doing so, it also defines
the anomalies technical computing faces today, i.e., phenomena not easy or impossible to
incorporate within the MV framework. As such, the MV framework plays a crucial role in
defining the taxonomy of technical computing. Thus, even though technical computing con-
tains components outside the MV framework, e.q., programmatic control structures, GUISs,
and data input/output, we label the current paradigm in technical computing as the MV
paradigrm.

!0ne apparent exception are the well-worn linear algebra factorisations, which are solutions to quadratic
equations, e.g., QR, LU, and SVD. However, the purpose of these factorisations is still to characterise or
manipulate linear mappings.

11

1.3 Anomaly Categories

Kuhn's view was that any scientific paradigm faces anomalies. Indeed, the MV paradigm
faces a number of them, which we consider significant. These can be identified by first
starting from the MV paradigm’s bastion of strength. As Rauhala notes, “the tools of
linear algebra have been centered in solving for a linear system... where the parameters...
and observed values are only one-dimensional vectors” [53]. In short, with the exception of
bilinear or quadratic forms, MV algebra is largely used to solve equations that arise from a

basic linear mapping:
¥ = Ax, (1.1)

where both x and y are one-dimensional vectors. Nonetheless, the MV paradigm’s narrow
but powerful focus works against it when one confronts equations that arise from other
mappings. Key areas outside its strengths include certain types of linear mappings, e.q.,
N-degree (N-dimensional)? and entrywise mappings, and mappings beyond the linear type,
e.g., polynomial and multilinear mappings.

1.3.1 Special Linear Mappings

MV algebra’s natural strengths include its ability to model linear relationships. However,
important types of linear relationships fall outside its natural scope. These include N-
degree and entrywise mappings. Both categories of linear mappings play significant roles in
technical computing.

For instance, high-degree structures naturally arise when representing in the discrete do-
main physical phenomena that naturally occur over a space of two or more dimensions [54].
MV algebra cannot naturally represent third-degree or higher phenomena. Even when the
phenomena in question is only second-degree, representing all possible linear mappings of
such phenomena requires a fourth-degree structure. Image processing and computer vision
provide excellent examples of this, as practitioners are often interested in solving linear
systems applied to second or third-degree data, e.g., depth-map estimation [55] or image
segmentation [56].

As Ahlander notes, “Multidimensional arrays are used extensively in scientific comput-
ing” [54]. Even introductory books on numerical methods, ¢f. Chapter 10 of Heath [47],
Chapter 29 of Chapra and Canale [57], and Chapter 9 of Schilling and Harris [58], discuss
how to construct linear mappings of second-degree partial-differential equation (PDE) do-
mains. Hence there is a need for methods that can handle N-degree data, even when one
is only interested in working with linear mappings.

In order to continue working within the MV paradigm, practitioners employ vectori-
sation operations, which flatten an N-degree structure into a first-degree one. Prominent

?Owur reasoning for this terminology is given in Section 2.1.6.

12

*

-

KN

Figure 1.2: Entrywise nature of image masking. Image masking represents one of many
comimon programmatic operations that are inherently entrywise. The mask shown is gen-
erated using Grady’s random-walker method [56].

uses of such operations include casting the high-degree linear PDEs mentioned above into
the MV paradigm. Vectorization possesses strong links with Kronecker algebra [59], which
impart tensor product operations to MV algebra. While the Kronecker product can be used
to describe bilinear operators, it can also be used to construct a linear operator acting upon
a flattened second-degree tensor, as highlighted by several anthors [53, 60, 61,62]. When
working within the MV paradigm, flattening N-degree data is necessary because “The tech-
nique of transferring to the vector domain in order to operate on the two-dimensional data...
is the only way in Kronecker algebra to represent all the possible linear operations of an im-
age” [60]. In addition to images, mappings of any other N-degree structure can be included
within this statement, e.q., linear high-degree PDEs and high-degree differentials.

While some authors [63] consider Kronecker algebra part of the MV paradigm, the
former is not very well known outside of statistics and econometrics [64]. Should one
consider Kronecker algebra part of the MV paradigm, it is typically used to work with
second-degree, and not N-degree, data. Even in this case, data must be flattened into a
different form. The need for algebra and software that can naturally work with N-degree
linear mappings has led authors [53, 60, 61,65, 66,67, 68] to develop and advocate for tools
and techniques outside of the MV paradigm.

Alongside the issue of N-degree linear mappings, another important category of linear
mappings not traditionally supported by the MV paradigm are entrywise operations. Such
operations hold a particularly crucial role in imaging processing and computer vision, as
the data is made up of individual pixels composing an aggregate whole. This means that
entrywise operations are often executed, either alone or in combination with image, row, or
column-wise operations. For example, as Fig. 1.2 illustrates, applying an image mask is a
purely entrywise operation.

Entrywise products are well used in many other fields and in technical computing in
general. For instance, MATLAB supports entrywise multiplication with its .#* operation.
However, the operation is not formalised within MV algebra. Entrywise operations can also
be found in tensor calculus [69] or applications that use tensor notation [68,70]. n-ary inner

products, which Chapter 3 will show has links with entrywise products, have appeared in

13

Table 1.1: Frequency of entrywise and N-degree operations in MATLAB toolboxes. An
analysis scanned 30 MATLAB toolboxes (2014a release) for arithmetic operations that fall
outside of the traditional MV paradigm. Fully commented lines were excluded from the
analysis.

Operation Frequency
All lines 4469192
Arithmetic lines 1633 504
repmat 5246
() 14899
L 12 280
Nor ./ 10466
diag or spdiag 8205
permute or ipermute T26
reshape 3993
kron 279
Subtotal 56004
% Arithmetic lines 3.4%

works on analytical dynamics [69], geophysics [71], and signal processing [72].

Due to their utility and prevalence, entrywise operations have been introduced as exten-
sions to MV algebra [73]. Such specialised operations are often included with descriptions
of Kronecker algebra, which is discussed above. Thus, whether these operations are part
of the MV paradigm is questionable. In any case, such operations do not all generalise to
N-degree structures. In addition, apart from .#, which is constructively similar but not
identical to the Hadamard product, these operations are not supported in major technical
computing packages [73].

Multiplying vectors or matrices by a diagonal matrix is another means to incorporate
entrywise products within the MV paradigm. While common, diagonal matrix multiplica-
tion can only effect a specific type of entrywise product, i.e., entrywise multiplication of a
vector, and relies on embedding a first-degree structure into a second-degree one. Thus, the
structure of first-degree data must be altered in order to fit entrywise products within the
MV paradigm.

To further underscore the role of N-degree and entrywise mappings in technical comput-
ing today, one can investigate how frequently arithmetic operations outside of the standard
view of the MV paradigm are used in a technical computing context. A good sample of this
can be found by examining the MATLAB toolboxes for occurrences of N-degree and entry-
wise operations. Table 1.1 presents such an analysis, using the MATLAB 2014a release. As
the table demonstrates, these operations play a significant role, being involved in 3.4% of
all arithmetic statements. Consequently, there are important and well-used arithmetic op-
erations in technical computing that the MV paradigm does not support. The role of these

14

Table 1.2: Techniques to solve various categories of equations. For the most part, the
technical computing paradigm is in agreement on how practitioners should formulate and
solve the different cases. The exception to this rule are multivariate polynomial equations.

Univariate Multivariate
Linear ar =b Ax=b
Trivial Gaussian elimination*
} ag+ 4T ...+ a,r" =
Polynomial Cmnlpanion —— No consensus
Nonlinear and flz)=0 f(x) =0
NGH—PG]]JI]DITHE.] Root-finding methods Newton’s method*

*and derivatives

operations is further magnified when considering the considerable scientific and industrial
end-user base of MATLAB. As a consequence, Table 1.1 supports the notion that N-degree
and entrywise linear mappings represent significant anomalies to the MV paradigm.

1.3.2 Beyond Linear Mappings

There is a large swath of mathematical relations beyond linear mappings. Some of these
mappings possess a global structure that can be used in solving equations or in data decom-
position. We consider polynomial systems and tensor decomposition in particular, which

can be seen as occupying the next level in complexity beyond linear equations.

Polynomial Systems

When considering the categories of equations that are tackled by technical computing, they
are typically classified by whether the equations are univariate or multivariate and also
whether the equations are linear or nonlinear. Table 1.2 illustrates this visually, depicting
the categories of equations and also the common approaches toward their solution.

The categorisation of equations into ‘linear’ and ‘nonlinear’ is quite broad, reminding
us of the well known but unattributed quote: “Classification of mathematical problems
as linear and nonlinear is like classification of the Universe as bananas and non-bananas.”
Polynomial equations, in particular, are an important subclass of nonlinear equations.

As shown in Table 1.2, univariate polynomial equations can boast of their own specialised
means of solution, which are classically performed using companion matrices. Stetter argues
that this exception is the one case where “algebra and numerical analysis joined ranks to

develop efficient and reliable black-box software for the—necessarily approximate—solution

15

of this task” [74]. However, when moving to the multivariate case, there remains no stan-
dard way to formulate and solve systems of polynomial equations numerically. The numeric
caveat to this statement is important to emphasise, as computational algebra has developed
powerful Grobner basis methods [75] toward characterising and solving polynomial equa-
tions. Yet, as Stetter notes, the methods of computational algebra are not equipped by
themselves to robustly and numerically solve systems of polynomial equations whose inputs
are inexact. Nonetheless, polynomial equations possess their own global structure, which is
something computational algebra does tackle head-on [74].

In a technical computing context, numerical systems of polynomial equations are tackled
in different ways. A common approach is to simply apply standard nonlinear methods,
determining a local solution given a good-enough initial guess. Solving polynomial equations
this way is epistemologically equivalent to lumping polynomial equations together with
more general nonlinear equations. For engineers and scientists wishing to consider the
special structure of polynomial equations, there is still no consensus. Practical applications
may be solved using one or more of Newton's methods, homotopy, exclusion, eliminant,
or Grébner methods [76]. This state has led researchers like Stetter [74], examining the
success of numerical linear algebra, to push for numeric variants of computational algebraic
methods of solving polynomial equations. In fact, the Defense Advanced Research Projects
Agency in the US has included the following in their list of mathematical challenges [77]:
“Beyond Convex Optimization: Can linear algebra be replaced by algebraic geometry in a
systematic way?" To us, we read systematic to include numeric and stable implementations
for technical computing applications.

Since the only class of polynomials, outside of linear ones, that MV algebra can model
are quadratic or bilinear forms, i.e., xAx = b or xAy = b, the current paradigm is not
equipped to naturally handle this important problem. The challenges the MV paradigm
faces with polynomials are further underscored by the known connection between homoge-
nous polynomials and symmetric tensors [78,79, 80, 81|, which suggest structure outside of
matrices and vectors are needed for this problem. Moreover, as Stetter notes, the numeric
constructivism for solving such problems requires considerable further development [74].

In Stetter’s analysis of the field he remarks that, “most surprisingly—this challenge of pi-
oneering a ‘numerical nonlinear algebra’ remained practically unnoticed by the many young
mathematicians hungry for success, even by those working in the immediate neighborhood
of the glaring white spot” [74]. We disagree in one respect. This is not surprising when
considering the field through Kuhn's viewpoints. In fact, Stetter’s observation fits Kuhn's
model very well, where phenomena deemed anomalous in a paradigm are not included in
the questions “worth asking,” lending weight to the argument of polynomial systems as
anomalies in the current technical computing paradigm.

16

Tensor Decomposition

Matrices, which are second-degree constructs, enjoy a legion of mature and well-known
decompositions. However, when considering high-degree data, the decomposition options
are not so clear cut and are much more difficult problems [82]. The field that focuses on
such problems is called tensor decomposition. Despite having its origins in the 1920s, tensor
decomposition is a topic that has only received widespread attention in recent years [83].
While the term tensor is used, in actuality the field is concerned with the decomposition of
general high-degree data, which may or may not satisfy the conditions of being a tensor in
the mathematical or physical sense [84].

Tensor decomposition has applications in many domains, including signal processing,
graph analysis, neuroscience, computational biology, computer graphics, and computer vi-
sion, amongst others [82, 83]. Much of the benefits and promise of tensor decomposition
ties in with its ability to provide a natural context for multilinear mappings [80,83,84]. Ad-
ditionally, tensor decomposition can be viewed as a high-degree generalisation of singular
value decomposition (SVD) [81]. Reflecting on the huge impact of SVD gives a sense of the
promise behind tensor decomposition. For this reason, tensor decomposition is increasingly
solidifying its place within technical computing. Underscoring this, the latest edition of
Golub and Van Loan’s very influential book, Matriz Computations, now includes sections
devoted to this topic [85].

However, like systems of polynomial equations, there are many fundamental and open
questions within tensor decomposition. For instance, there are several different decompo-
sition options. The two most prominent options are canonical-polyadic (CP) and Tucker
decomposition, which provide rank-R and orthogonal decompositions, respectively [83]. In
contrast, the SVD provides both gualities, suggesting that a generalisation to higher-degrees
is not clear cut. Moreover, there is also no universally reliable means to compute CP and
low-rank Tucker decompositions. Instead, current approaches are typically variations of
optimisation approaches, e.g., the alternating least squares (ALS) algorithm, whose final
solution depends on initial conditions and other factors.

Because tensor decomposition is concerned with N-degree data, the MV framework is
not in general equipped to represent such data, mappings, or any factorizations applied to
them. As Richard A. Harshman, one of the pioneers of the field, put it, “A single two-way
array (i.e., a matrix) cannot directly represent a three-way ‘cubical’ array of data, nor can
any sum of matrix products directly produce a three-way latent structural object” [86].
Hence, from the MV paradigm’s vantage point, tensor decomposition remains anomalous.
Unless other algebras and softwares gain widespread acceptance beyond researchers focused
on tensor decomposition, the consequences of this field being anomalous will begin to loom
large over the discipline of technical computing.

17

1.4 Summary

Technical computing plays a crucial role in science and engineering today, to the point
where some label CSE the third pillar of science. Since technical computing plays such
a large role within CSE, it is critical that its capabilities are continually examined. By
using the terminology and insights of Kuhn's seminal work, Structure, we argue that the
dominant MV algebra and software, which we call the MV framework, represents a paradigm
in technical computing.

One of the key observations of Kuhn's work is that paradigms possess a taxonomy,
by which certain phenomena act as the linchpin of the scientific theory and practice and
other phenomena act as anomalies. Identifying both sets of phenomena is key in outlining
the strengths, but also limitations, of the current paradigm. This chapter outlined several
anomalies facing the current MV paradigm. Broadly speaking, they can be categorised as
specialised linear mappings. i.e., N-degree and entrywise products, and specific nonlinear
mappings, i.e., polynomial and multilinear mappings. Both types of anomalies are playing
an increasingly important role in CSE.

Kuhn also pointed out that as practitioners increasingly strive to pursue scientific ques-
tions touching upon a paradigm’s anomalies, they will employ workarounds commensurate
with the existing taxonomy or they will develop techniques and tools that imply changes to
the taxonomy. These efforts will often be disparate. In the context of technical computing,
this means alterations related to the dominant algebra and software. As we will discuss in
Chapter 2, this is indeed the case in technical computing, as researchers and practitioners
have developed or argued for a host of different algebra and software to tackle the anomalies
outlined in this chapter.

18

Chapter 2

A Growing Crowd

Milgram et al. famously demonstrated how the size of a crowd looking up from a street
corner influences the likelihood that passersby will join in [87]. Given that Kuhn's writ-
ings emphasise the social aspect of scientific progress, we use Milgram et al.’s crowd as
metaphor for those engaged in revisionary science. Like the crowd at the street corner, as
greater numbers of researchers and practitioners look beyond an established paradigm, the
likelihood that other scientists and engineers will join this effort will only increase.

Focusing on technical computing, there is a healthy body of researchers employing and
often advocating for scientific algebra or software that lie beyond the matrix-vector (MV)
paradigm. These researchers come from backgrounds that include numerical analysis [54,
67], applied mathematics [88, 89, 90|, computational chemistry [91,92, 93,94, 95|, image
processing [60], computer vision [96,97, 98|, systems and control theory [65,99], signal
processing [66,72,80,100], physics [101], geodesy [53,61,62], econometrics [64,102,103,104],
database and information systems [105], psychometrics [86] and statistics [84, 106, 107].
Exemplars represent crucial illustrative and persuasive elements within this body of work.

In our view, there is a growing crowd. By reviewing its efforts and arguments, we artic-
ulate the salient characteristics that alternative algebras, software, and related exemplars,
encapsulate. In doing so, numeric tensors (NTs) are identified as an integral concept that
binds many of these efforts together. This insight moulds and informs our own efforts at
contributing to this growing crowd.

2.1 Algebraic Characteristics

Practitioners have introduced or advocated for various algebras outside of traditional MV
algebra. How far researchers venture outside of MV algebra can range from scientists who
only use other algebras when their need (or taste) dictates, to others, like Papastavridis,
who contend that “[matrix algebra] is not a daily working tool for the exploration and
mastery of new and rugged terrain” [69].

Kronecker algebra represents a major player in technical computing formalisms different
than traditional MV algebra. The algebra furnishes MV formalism with a direct or tensor

19

product and typically operates in tandem with vectorising operations, which flatten matri-
ces into vectors [59]. Practitioners have employed Kronecker algebra in signal processing,
image processing, mechanics, quantum theory, statistics and econometrics [63, 108, 109].
Apart from formalising the concepts of direct products, practitioners extend MV algebra
in other ways. In particular, notions of entrywise products have been applied in the form
of Hadamard and Khatri-Rao products. Like Liu and Trenkler [73], we group these en-
trywise matrix products together with Kronecker algebra, using our own label of extended
matrix-vector (EMV) algebra.

Other algebras depart more completely from MV formalism. The n-mode product no-
tation, which works directly with N-degree constructs, represents a popular example and
is often used in the tensor decomposition field [81,83,110]. Eldén and Savas introduced a
similar notation [111], which has also seen use, ¢f. Lim’s chapter [84] in the Handbook of
Linear Algebra. For operations common in tensor decomposition, e.q., multiplying a ten-
sor with a matrix, the algebra supplies dedicated notation that uses numerals to designate
which NT index is undergoing an inner product. Less-prevalent conventions exist to express
general tensor-times-tensor products [97,98,112], again using numerals, e.g., in Bader and
Kolda’s convention [112] {1, 3;4,2} would specify that the first and third indices must be
contracted together with the fourth and second indices of the first and second operands,
respectively. We label this augmented version n-mode*t notation.

Practitioners from other fields have introduced algebras with similar characteristics. R-
matrix notation [53,61,62], which was articulated for geodesy applications, represents one
prominent example. Predating n-mode product notation, its algebra expresses products in
a similar manner using numerical designations. Suzuki and Shimizu's array algebra [65],
introduced for the purposes of systems and control, provides another example that offers a
similar set of characteristics and abilities as n-mode product notation.

Einstein notation represents the final high-degree algebra. Enjoying deep roots in
physics, the notation can boast of an enviable pedigree with a long and fruitful history [69)].
The notation can be grouped within the larger category of index notations, which include
Tait’s array algebra [113] and Antzoulatos and Sawchuck’s hypermatrix algebra [60], which
apart from aesthetics are very close to Einstein notation. We omit modern index-free nota-
tions for tensor calculus from consideration, as our focus is on technical computing algebras
for numeric high-degree data. For interested readers, Papastavridis provides an excellent
and lively summary of the virtues of indicial notation over index-free notation for concrete
science and engineering applications [69].

The algebras advocated by different researchers embody various algebraic characteristics
that have proven beneficial. These are summarised in Table 2.1. In describing an algebra,
authors often cite its capabilities vis-a-vis the characteristics in Table 2.1. The rationale and
benefits behind such algebraic characteristics are outlined below underneath their specific
subheadings. With these algebras introduced, the arguments advocating the benefits of

Table 2.1: Comparing the capabilities of formalisms alternative to MV algebra. A “vv"
and *v"’ designate supported and partially supported capabilities, respectively.

Formalism N- Agsociative Commutative Entryv-Wise Linearly
Degree Invertible

EMV algebra |73, 108] v v v v el

n-modet [112] v v v

R-Matrix Notation [114] v v v i

Array Algebra [65] v v v v

Einstein Notation [69] s v el

NT Algebra | s v el v el

the characteristics outlined in Table 2.1 can be summarised and some unifying concepts
discussed.

2.1.1 N-degree

MV algebra is unable to naturally represent N-degree linear mappings and multilinear map-
pings outside of bilinear forms. The introduction of Kronecker products and vectorisation
operations blurs this boundary somewhat as, in principle, these two operations provide a
means to incorporate multilinear and N-degree linear mappings into the MV framework.
Nonetheless, proponents of other algebras, such as R-matrix notation [61,62], array alge-
bra [65], Einstein notation [60,86], and n-mode notation [81,84], have argued for a more
complete departure from MV formalism toward an algebra that can more naturally represent
N-degree data structures and inner and outer products between them.

Many of these arguments rest upon the complexities involved when casting high-degree
problems into the MV domain. For instance, both Kronecker products and vectorisation
operations require settling on a lexicographic order. Including lexicographic considerations
within an algebra elevates a consideration normally confined to constructivism into the
realm of formalism. This can increase the burdens upon an algebra. For instance, while
there are only two ways to lexicographically vectorise a matrix, i.e., row or column-major,
in the general N-degree case there are N! vectorising options.

Even when data structures are confined to second-degree, mappings between them can
produce important lexicographic confusion. As an extreme example, Eisele and Mason felt it
necessary to describe 24 different means to represent the direct product of two matrices [115].
The Kronecker product itself has two different definitions—the common representation seen
in Van Loan’s paper [108] as well as Regalia and Mitra's representation [116]. In addition,
there are competing views on how to best lexicographically lay out the partial derivatives
of vector or matrix-valued functions [117].

Authors from signal processing [66], systems and control [65,113], image processing [60],
and numerical methods [54,67,68] have explicitly made a case against casting N-degree prob-

lems into the MV domain, describing some of the requisite identities, rearrangements, and

21

manipulations as “troublesome” [65], “cumbersome” [60], and “awkward” [54]. Harshman
and Hong [118], after summarising the many conventions and complications in tensor de-
composition that accrue from casting multilinear models into the MV framework, note such
complications can be avoided “if one is willing to abandon matrix notation” [118]. Thus,
for applications and fields that express mappings outside of MV's natural purview, there is
an acute need for algebras that can innately work with N-degree data and mappings.

As noted, EMV algebra, with its intimate connections with the Kronecker product and
vectorisations, can represent N-degree data and mappings. but not in a natural manner.
R-matrix notation limits itself to matrices multiplied onto high-degree constructs, similar
to the multilinear product described by Lim [84]. For this reason, Rauhala, who invented
R-matrix notation, has seen cause to employ a more natural N-degree algebra when mod-
elling high-order derivatives [114]. All the other featured algebras are designed to naturally
accommodate N-degree data structures and mappings, allowing them to straightforwardly
represent multilinear and high-degree linear mappings.

2.1.2 Associative

Associativity is a fundamental characteristic that eases algebraic manipulation. The as-
sociativity of matrix products is a classic example, providing MV algebra with group-like
algebraic properties. As Meyer puts it, without associativity using MV algebra would be
“unbearable” [119]. Constructive reasons also intrude, as associativity allows an implemen-
tation to choose how exactly to break up expressions into separate binary operations. Thus,
a software implementation is free to choose the most efficient option.

EMYV algebra exhibits some associative capabilities. For instance, a Kronecker product
is associative with other Kronecker products. However, by remaining within the MV frame-
work, how the algebra uses indices is tightly governed, i.e.. column and row indices of the left
and right operand, respectively, always undergo an inner product within a standard matrix
product. As a result, mixtures of different products are not always associative. As an exam-
ple, matrix products and Kronecker products do not associate. This specific instance was
highlighted by Snay [61] in his advocation of R-matrix algebra, which is associative for that
case. Snay argues that key efficiencies are better revealed with an associative framework.
MNonetheless, R-matrix notation is not completely associative in other situations.

The algebra of n-mode® products is also not easily associative, as associating may
require switching the numerical designation of inner-product indices. This is highlighted by
Suzuki and Shimizu, whose array algebra follows similar laws as n-mode* products. The
authors outline the notational updates required to associate, stating that “the associative
law for array multiplication is not so simple as that for the matrix multiplication” [65]. The
requisite notational updates involved in associating complicates further when more than one
operand is involved, as the ramifications of switching numeric index designations cascades

throughout the entire algebraic expression. For this reason, n-mode™ and array algebra are

only given one checkmark for associativity.

The variation of n-mode product notation used by Brazell et al. [120] is unique in
that it is associative. However, associativity comes at the cost of restricting the types of
products that can be expressed, e.g., inner product indices must be positioned at the end
and beginning of the left and right operands, respectively. In contrast, like MV algebra,
associativity is a bedrock for Einstein notation, to the point where practitioners will prohibit
certain types of operations if they do break associativity [54]. In addition, Einstein notation

can remain associative without imposing restrictions on the types of products it can express.

2.1.3 Commutative

Unlike associativity, commutativity is a characteristic not enjoyed by MV algebra. The
restrictions imposed by non-commutativity are often highlighted by champions of Einstein
notation, which is completely commutative. To provide a particularly pugnacious quote,
Papastavridis writes that “whatever cosmetic or aesthetic advantages that [MV] notation
may have, they are far outweighed by the merciless straightjacket of noncommutativity
[emphasis original]” [69]. With a more positive viewpoint of MV algebra (and more in line
with ours), Ahlander [54] and Harshman [86] also both highlight commutativity in their
promotion of Einstein notation.

In fact, commutativity has proven important enough that practitioners of non-commutative
algebras have developed commutation operators or expounded on instances where their for-
malism does commute. As an example of a commutation operator, Kronecker products can
commmute, provided one pre- and post-multiplies the expression with a “perfect shuffle” ma-
trix [108]. For an example of showcasing isolated instances, both Eldén and Savas [111] and
Blaha [62] highlight the limited cases where their algebras do commute, drawing attention
to ensuing algebraic benefits. Nonetheless, their algebras do not commute in general.

When citing the benefits of commutativity, authors often highlight the accompanying
algebraic conveniences. Yet, there are also important reasons related to how we write
or typeset mathematical notation. Because notation is arranged on a line, a mathematical
symbol can only be adjoined by other symbols on its left or right. Hence, non-commutativity
is often acceptable for MV notation, as a matrix can only pre- or post-multiply anyway.
However, for an algebra designed to express N-degree relationships, e.g., a trilinear mapping,
not every operator can adjoin its operand. Commutativity, combined with associativity,
allows practitioners to rearrange, group, and substitute algebraic elements as needed.

This can also aid computations, as it is easier to modify the order of execution, allowing
for more efficient options to be discovered and chosen. For a compelling example of these
benefits, the Tensor Contraction Engine (T'CE) uses associativity and commutativity to
optimise the order of execution of Einstein-notation expressions involving tens to hundreds
of terms [91].

In general most of the described algebras do not commute easily. For n-mode® products,

23

R-matrix notation, and Suzuki and Shimizu’s array algebra, commuting is similar to asso-
ciating, in that the numerical inner product designations must be updated, and if necessary
cascaded throughout the entire expression in question. And like associating, this hinders the
commuting action. These difficulties are also reflected in Bader and Kolda's careful expla-
nation of n-mode* algebra’s commutation rules [112] outside of the core n-mode product.

In contrast, Einstein notation is unique in its complete support for commutativity.

2.1.4 Entrywise

Supporting the notion of entrywise products represents another important thrust in the
development of algebraic characteristics not embodied by MV formalism. To this end, EMV
algebra has served as an important standard bearer in this push. By providing a formal
framework for entrywise products, EMV algebra satisfies important expressive needs. As
Liu and Trenkler note, entrywise matrix products have been receiving increased attention
in several fields [73], reflecting the usefulness of these types of operations.

In fact, there is a reoccurring need for entrywise products or operations in general.
For instance, in his monograph on linear structures, Magnus devotes space to Hadamard
products, diagonal selection matrices, and other related operations [121]. Tensor decom-
position also has need for entrywise operations, particulary in its canonical-polyadic (CP)
decompositions or derivatives thereof. This need is significant enough for practitioners to
use expressions outside of n-mode products. For instance, in Kolda and Bader’s review [83],
the CP decomposition is expressed using either matricisations and Khatri-Rao products or
by using explicit summation symbols.

Tensor calculus occasionally requires entrywise products [69], requiring various workarounds
from conventional Einstein notation. The more recent field of computational chemistry also
needs entrywise extensions to Einstein notation [94,95]. Some conventions are to distinguish,
by a parenthesis [69], an underline [68], an assignment [54,60,67,94,95], or a subscripted
parenthesis [70], the indices whose summation is suppressed.

The repeated manifestation of entrywise products within these varied algebras indicate
that these types of operations fill an important need. Formalising entrywise products are

thus an important initiative in advancing technical computing’s expressive capabilities.

2.1.5 Linearly Invertible

Inversion, either explicit or implicit through the solution of equations, represents a bedrock
of MV algebra. In fact, the notion of determinants was studied and applied to the solu-
tion of linear equations long before Arthur Cayley formalised matrix multiplication [119].
Reflecting this, linear inversion is a major facet within technical computing. As mentioned
in Section 1.2.2, the starting point of modern numerical analysis is marked as the publica-
tion of von Neumann and Goldstine’s paper [39], “Numerical Inverting of Matrices of High
Order”. This prominent focus on inversion is also shared by EMV algebra. As van Loan

24

notes, one of the most well-known uses of the Kronecker product lies in solving the Sylvester
matrix equation [108]. As well, Lev-Ari’s exposition of the benefits of certain EMV algebra
operations rests on efficiently solving a set of entrywise linear equations [72].

Proponents of other N-degree algebras have also emphasised aspects regarding inver-
sion. For instance, Snay’s description of R-matrix notation concentrates on the efficiencies
gained in solving a specific high-degree linear equation vs. Kronecker algebra [61]. Suzuki
and Shimizu's exposition of array algebra also focuses on solving high-degree linear map-
pings, articulating some important qualitative differences compared to MV equations [65].
In the context of tensor decomposition, Brazell et al. [120] and Braman [122] have also
discussed inversion and decompositions, respectively, of high-degree linear mappings. Iter-
ative methods to solve the fourth-degree linear mappings discussed by Brazell et al. were
also earlier discussed by Otto [68] and Ahlander and Otto [67] in the context of Einstein
notation. Proponents of Einstein notation, like Harshman, have noted that inversion is “an
area for further development” [86], calling for further consolidation and articulation.

These developments suggest that linear inversion occupies a prominent role in the minds
of practitioners of these disparate algebras. For this reason, should an algebra lack clear
notation and rules for solving equations, its widespread adoption would likely be hampered.

2.1.6 Unification — NT Algebra

Table 2.1 summarises the capabilities of several different algebras outside of MV formalism.
In reviewing the literature on alternative algebras, a recurring thread epitomises much of
the work, namely the need to describe N-degree data and mappings. Even the nominally
independent characteristics of associativity and commutativity are affected by this, as these
algebraic features become even more important once one enters into an N-degree context.
The need for explicit description of entrywise products is also made more acute in an N-
degree context as one is less able to resort to the simple diagonal-matrix strategies seen
in the MV paradigm. Finally, linear invertibility also fits within this argument, as it is
the complexities surrounding N-degree linear inversion that motivates select discussion on
alternative algebras. Thus, N-degree data provides an important linking concept between
the needs of the many different featured formalisms.

Unsurprisingly, there is no consensus on what name to give N-degree data. When
advancing the case for the numerical and symbolic analysis of high-degree structures, au-
thors use terms such as arrays [61,62,123], tensors [68, 80, 83,112, 124], multidimensional
arrays [54], multi-way or N-way arrays [83,112,124], multidimensional matrices [88,99], and
hypermatrices [60,65].

If there were no historical context in play, we would opt to use none of the above terms,
for the following reasons. Matrices are well known to engineers and scientists, which lends
familiarity to the terms multidimensional matrices and hypermatrices. However, matrices

imply rigid non-commutative rules, which argues against their use to describe N-degree

25

data and operations. Moreover, due the multi-definitional use of dimensionality, where in
some works it indicates the number of indices needed to specify a component and in others
it refers to the size or range of indices, using the adjective multidimensional to describe
N-degree data is problematic. To avoid this confusion, we opt to use “degree” for the
former definition and “dimensionality” for the latter, aligning ourselves with tensor calcu-
lus terminology!. The adjective multi-way is not well-recognised outside of psychometric,
chemometric, and certain tensor decomposition literature. While tensors can be represented
by N-degree data structures, not all such data structures are tensors [54]. In addition, N-
degree data structures are perfectly capable of describing physical phenomena outside of
tensors. With no adjective, array is a good candidate, as it avoids much of the definitional
baggage associated with other terms. However, in the context of programming, a discipline
highly relevant to technical computing, the term array is widely used to describe a data
structure that is not necessarily numerical. For these reasons, our ideal term would be
multi-index arrays, to describe N-degree data.

MNonetheless, today the term “tensor” is ubiquitously used to describe N-degree data,
regardless whether it is or is not a geometric tensor [84]. As this is more or less a fait
accompli, we opt not to quarrel with this convention. However, we use the term numeric
tensor (NT) to describe such data, emphasising that the salient characteristic consists of
numeric N-degree data invested with a set of arithmetic operations, and de-emphasising
any geometric considerations.

While the concept of an NT, as the fundamental data structure, can link together
different research efforts associated with alternative algebras, an even stronger link can be
forged by a formalism able to meet all their algebraic needs, meaning satisfying all the
characteristics in Table 2.1. There are likely several different avenues to pursue toward
developing such an algebra. In Chapter 3 we detail an NT algebra built off of Einstein
notation that acts as a powerful formalism beyond MV algebra. As will be discussed in the
chapter, there are good reasons to base an NT algebra off of Einstein notation. The last
row of Table 2.1 illustrates N'T algebra’s expressive capabilities compared to the featured
algebras. Because it embodies all the characteristics outlined in Table 2.1, the NT algebra
we develop provides a foundation for an NT framework aspiring to tackle head-on certain
of the MV paradigm’s anomalies.

2.2 Software Characteristics

As discussed in Chapter 1. software acts as a partner to algebra in a technical computing
framework. Thus, should an NT algebra be considered a desirable development, it is also
important to articulate desired characteristics for NT software. Effective guidance can

Yu0yrder” is another accepted term to describe the number of indices. However, when discussing sparse
NTs, “order” will frequently be used to discuss how non-zero data is arranged, similar to the row- or
column-major order found in MV software. For this reason, we avoid “order” as well.

be found by examining current efforts to develop software libraries tailored to support
expressions and computations demanded by algebras different from MV algebra. As well,
by surveying current software efforts, insight can be gained on how well NT-algebraic needs
are met already. Together with an NT algebra, a compatible NT software would define an
NT framework.

We focus on libraries designed for numeric computations involving high-degree data. As
a result, we omit discussion of A Programming Language (APL) and derivatives, which use
generalised and possibly heterogeneous multidimensional arrays as their central datatype.
While APL has influenced subsequent technical computing languages, e.g., MATLAB [46],
the language allows arrays to be collections of any datatype, and even other arrays, meaning
its focus is not numeric caleulations.

Of the software libraries featured in this survey, most support N-degree data and op-
erations. An important exception is Steeb and Shi's Kronecker classes (SSKC), which is a
C++ library implementing Kronecker algebra operations.

Many of the N-degree libraries focus specifically on minimising abstraction penalties as
much as possible. A prominent example is Blitz++ [125], a trailblazing library that has
pushed the abstraction capabilities of the C++ language itself [126]. Although Blitz++ is
designed to be a general array manipulation library, it provides partial support for Einstein
notation. Following up on Blitz++'s success, FTensor [101] further optimised Einstein
notation expressions in C++4. Like Blitz4++, FTensor has also been cited as a driving force
behind C++'s abstraction capabilities [126]. LTensor [127] is a similar library to FTensor,
but offers better support for large-dimension data than FTensor.

Other software libraries also support Einstein notation, but place more focus on tech-
niques for large-dimension problems, particularly partial-differential equations (PDEs). Two
prominent examples are the EinSum [54,67] and POOMA [128] libraries, both implemented
in C++4. Reflecting their focus on large-dimension problems, both libraries offer support
for efficient description of stencil operators, e.g., finite differences.

The field of computational chemistry provides an additional important thrust in sup-
porting large-dimension Einstein-notation calculations. Due to the massive computational
burden of the chemistry calculations, researchers have developed solutions for massively-
parallel and distributed-memory environments, which include the TCE [91,92,93] and the
Cyclops Tensor Framework (CTF) [95]. The TCE is also able to automatically generate
optimised low-level FORTRAN loops given highly complex Einstein-notation expressions
with many operands, revealing another important thrust of high-degree software research.
Libtensor represents another example within computational chemistry, which focuses on
optimised block NT computations on shared-memory architectures [94].

Researchers have also designed softwares for dynamic languages. A good example is
NumPy [129], which is a general purpose technical computing library implemented in
Python that also provides excellent support for Einstein notation. The MATLAB Ten-

27

Table 2.2: Comparing the capabilities of alternative software solutions for high-degree alge-
bra. A ‘¥ v" and ‘v designate supported and partially supported capabilities, respectively.

Comprehensiveness* Sparse Programming Computational
Support Efficiency Efficiency

SSKC [130] v v v
Blitz++ [125] v W v s
FTensor [101] v v s
LTensor [127] v v v
EinSum [54, 67] v ¥ v

POOMA [128] v ¥ v s
TCE [91] v v s
CTF [95] v v s
Libtensor [94] v ¥ v s
NumPy [124] v .y v
MTT [112,124] v s s v
LibNT el s v s
NTToolbox el s s v

*w.r.t. support for N-degree data, entrywise products, and linear inversion

sor Toolbox (MTT) [112,124], a highly influential library, is a MATLAB library providing
comprehensive support for tensor decomposition operations. As part of this, MTT supplies
routines implementing n-mode* notation and Khatri-Rao products.

To support N'T algebra, we focus on four software characteristics, illustrated in Table 2.2.
It should be noted that the table does not include two qualities that are regularly emphasised
in computational chemistry: massively-parallel computations and support for symmetric
and anti-symmetric NTs. As our aim is to first break ground on general-purpose software
supporting the NT-algebraic needs of Table 2.1, we do not investigate parallel and symmetric
computations within this thesis. Nonetheless, parallel and symmetric computations are an
important aspect of future work that we discuss in more detail in Chapter 7.

Returning to the four characteristics of Table 2.2, the capabilities of these software
libraries with regard to these characteristics can differ markedly from each other. An
explanation of the importance of these capabilities to NT software are outlined below,
along with summaries of the functionality of the featured libraries based on these factors.

2.2.1 Comprehensiveness

Comprehensiveness refers to how well a software library satisfies the needs of algebraic op-
erations for high-degree data, which are outlined in Table 2.1. Out of these, the focus is
on support for N-degree data and operations, entrywise operations, and linear invertibil-
ity. Associativity and commutativity remain important, but those characteristics are more
specific to algebra, lying somewhat orthogonal to software considerations.

In using this criterion, we acknowledge that we are often assessing software libraries
on capabilities that can lie outside designer intent. For instance, SSKC, which is designed
to support Kronecker algebra, should not be expected to fully support features outside of
its formalist scope. It should also be noted that many libraries can boast of varied and

28

important capabilities not listed in Table 2.1. As such, judging that a software does not
comprehensively support N'T algebra is not necessarily a criticism of the implementation per
se. Instead, our examination of the literature concludes that the capabilities in Table 2.1 are
important in tackling MV paradigm anomalies, and we are surveying the field to examine
in what way these capabilities are already met by the state of the art.

When considering N-degree data and operations, software library designers have empha-
sised the design choices necessary to offer complete support. For instance, when outlining
their complete N-degree support, the authors of MTT emphasise that algorithms and data
structures often must differ from their common MV counterparts. The authors of EinSum
do the same, discussing how C44 expression templates allow one to support the more
numerous mapping options in N-degree space. NumPy's design has also been carefully
tailored to support N-degree data, operations, and indexing [131]. The TCE, CTF, and
Libtensor packages also offer N-degree support, which is crucial for computational chemistry
calculations.

Other libraries focus more heavily on offering zero or close-to-zero abstraction penal-
ties, sometimes at the cost of only providing partial support for N-degree operations. For
instance, the designers of both FTensor and LTensor manually coded the different index
matchings between binary addition, subtraction, and multiplication operations, limiting
the libraries to general second and fourth-degree operations, respectively. Blitz++ and
POOMA accept some degree of abstraction penalties, but still only allow up to 11- and
T-order data, respectively. These limits suffice for many applications. Finally, by focusing
on Kronecker algebra, SSKCs do not support N-degree operations.

In addition to N-degree operations, entrywise operations have also been the focus of
certain software offerings. The EinSum authors devote space to discussing how entrywise
operations can be rigourously supported in Einstein notation by using a summation suppres-
sion scheme. NumPy, CTF, TCE, and Libtensor also offer support for entrywise products
using a similar scheme. MTT provides partial support for entrywise products by furnishing
operations to matricise high-degree data, which can then be supplied to its Khatri-Rao
product routines.

Inversion also enjoys varied support among constructivisms. SSKC offers inversion by
virtue of remaining within the MV framework. NumPy is unique in providing linear solving
routines directly in high-degree space. However, NumPy does not allow full freedom for how
indices can be matched together in the expression to invert. MTT offers implicit support
for inversion through its matricisation routines. Inversion does not occupy a place in the

other featured software libraries.

2.2.2 Sparse Support

The “curse of dimensionality”, coined by Bellman [132], refers to the fact that as the number
of dimensions increases, the volume of a hypercube grows exponentially. Of relevance to NT

T [Tx

Figure 2.1: Sparsity pattern of the O(h?) Laplacian stencil. If the range of each index is n,
the fill factor for first, second, and third-degree domains is 3/n, 5;'?121 and Tf-na_, respectively.

data and operations, this means that working with dense data quickly becomes infeasible
as the degree increases. Provided the underlying data has mostly zero-valued entries, using
a sparse representation is one way to overcome this problem.

Even if the underlying data is not sparse, often the operations performed on it are
sparse. For instance, a dense linear mapping of an n x n image to another n x n image
would require an operator having n? elements. However, in many cases mappings are local
in nature, forestalling the need for dense representation. For instance, finite-difference
(FD) approximations to partial derivatives are typically only defined using the immediate
neighbours of the location in question.

A prominent example is the Laplacian operator, which is typically approximated by an
D{hgj FD scheme. As Figure 2.1 demonstrates, if N is the domain degree, the Laplacian
stencil consumes 1 4+ 2N non-zero entries. Thus, since the number of non-zeros increases
linearly, the sparsity of such operators increases exponentially with degree. These con-
siderations are also just as applicable, if not more so, for mappings beyond linear. For
instance, polynomial systems are often extraordinarily sparse [74]. This means that proper
and reliable sparse support is highly important for high-degree operations.

Despite the importance of sparsity for NT data, it is not commonly supported. MTT
represents an important exception, as its developers have devoted considerable effort to-
ward advancing the understanding of how to treat sparse NT data [124]. As the authors
explain, many of the strategies appropriate for sparse MV data no longer hold in high-
degree contexts. These observations emphasise that computational techniques designed for
the second-degree environment of MV constructivisms do not always generalise.

Libtensor’s block-tensor data representation is able to avoid explicitly storing non-zero
blocks. However, because metadata for each nonzero block still must be stored, this repre-
sentation is not designed for highly-sparse NTs. Blitz++, POOMA, and EinSum have also
contributed to the state of sparse high-degree data by providing means to implicitly describe
banded high-degree operators, e.g., the Laplacian stencil illustrated in Fig. 2.1. Apart from

these instances, most software libraries focus predominantly on dense calculations.

30

2.2.3 Programming Efficiency

In his take on modern programming, John Ousterhout, the creator of the Tel scripting lan-
guage, argues that programming tasks can be roughly divided into creating computationally-
heavy algorithmic components or writing applications that plug and glue said components
together [133]. For tasks in the latter camp, any heavy computational burden is already
offloaded to pre-existing components, leading Ousterhout to argue that programming effi-
ciency, i.e., how quickly can programmers create quality software, is paramount. Qusterhout
argues that much of programming tasks today can be characterised as gluing and systems
integration rather than algorithmic or data-structure development.

As a field practised and advanced by both end users and computing experts, technical
computing has a foot firmly planted in both camps. Nonetheless, much of the field con-
sists of plugging together gold-standard algorithms, e.q., MATLAB programs essentially
glue together components from LAPACK and other highly-optimised algorithms. This is
particularly true for scientists and engineers within the application domain, leading au-
thors to elevate programming efficiency to a primary consideration within technical com-
puting [134,135]. This emphasis on programming efficiency can be seen as part of a larger
trend in general-purpose programming [133,136]. When discussing an NT framework, the
unavoidable operational complexity that accompanies working with N-degree data, i.e.,
the different ways that indices between operands can match-up, places its own impetus on
programming efficiency, as it becomes even more incumbent to minimise implementation
barriers.

Programming efficiency can be realised in different ways. One important means is the
structure of the language chosen for development. More specifically, dynamic or script-
ing languages can offer an environment particulary amenable to programming efficiency.
Such languages are often characterised by interpreters, dynamic type-checking, automatic
memory management, and/or command-line interfaces. In the realm of general-purpose
programming, the frequent priority placed on programming efficiency has been cited as
the driving force behind the increasing popularity of such languages [133,136]. The ar-
gument that dynamic languages lead to programming efficiency is strengthened by case
studies [133] and empirical evidence [137]. In the realm of technical computing, authors
have echoed these assertions, arguing that dynamic languages, accompanied by mature
graphical user interface (GUI) tools and interactive environments, lead to programming
efficiency [135,138]. These authors include the original anthor of NumPy [134]. The im-
portance of programming efficiency to technical computing is also supported by analytics
on language popularity. For instance RedMonk’s 2014 Q1 analysis [139] and the TIOBE's
software popularity index [140] both demonstrate MATLARB's increasing popularity over
the years, now placing in the top 20 for both metrics.

The demands of technical computing impose another means toward programming effi-
ciency that is not always encountered in general-purpose programming. Namely, in technical

31

computing how faithfully a software supports an algebra significantly impacts programming
efficiency. This is an important factor, as it affects how easily a solution on paper can be
translated to an implementation on a computer. When general-purpose computing does
encounter similar needs, it is framed as requiring a domain-specific language (DSL). In
short, a DSL is a programming language that offers notation and expressive power for a
specific problem domain [141]. As van Deursen et al. note, “DSLs allow solutions to be
expressed in the idiom and at the level of abstraction of the problem domain. Consequently,
domain experts themselves can understand, validate, modify, and often even develop DSL
programs” [141]. This description is especially apt for technical computing, where the di-
rect support of MV algebra in packages like MATLAB acts as a DSL, affording scientists
and engineers greater opportunity to develop their own computational solutions and easing
programming burdens.

For these reasons, in examining programming efficiency of the featured software libraries,
the assessment in Table 2.2 is based upon whether the software provides a dynamic- G
interface and also whether it offers a DSL for its associated algebra. Using this criteria, all
of the featured constructivisms do offer some form of a DSL. Nonetheless, the translation
effort between a software library’s associated algebra and its offered DSL can vary. For
instance, MTT and SSKC offer free-function interfaces, which differ significantly from their
modelled algebras and introduce obstacles toward composing larger expressions. When
considering whether the featured software libraries offer a dynamic language interface, only
two languages, NumPy and MTT, meet that criterion. All other libraries require using a
compiled language.

2.2.4 Computational Efficiency

By its nature, technical computing relies upon computationally intensive numerical meth-
ods. For this reason, technical computing can be susceptible to debilitating bottlenecks,
making computational efficiency a primary concern. As well, because of their potentially
large sizes and complex mapping possibilities, NTs possess their own particular brand of
computational complexity. Important factors in computational efficiency include whether a
software library employs gold-standard algorithms and whether it minimises computational
overhead. Oftentimes the latter factor is at cross purposes with programming efficiency,
while the former is not.

As noted in Section 2.2.3. technical computing’s practice involves both the development
of computationally-intensive algorithms and the gluing together of such components. As ad-
vocates of scripting in technical computing argue [134,135,138|, as long as highly-optimised
implementations of algorithmically-intensive components are used, gluing together com-
ponents using dynamic languages does not always significantly impact computational effi-
ciency. For this reason, a major factor in computational efficiency is whether a construc-
tivism employs gold-standard algorithms and routines, such as LAPACK and BLAS.

32

While heavily-optimised algorithmic components can be leveraged by all manners of
software implementations, the overhead in gluing together said routines can significantly
differ. Even advocates of scripting languages in technical computing do admit that, come
deployment, the demands of computational efficiency can make it necessary to use com-
piled languages to reduce overhead [138]. Despite efforts at reducing this overhead, e.g.,
the vectorisation techniques in MATLAB, avoiding constructs like explicit loops or other
heavily interpreted statements is not always possible. Yet, overhead is not only a feature
of scripting languages. Even when one uses compiled languages, design choices can seri-
ously drive down computational efficiency. For instance, in C4++ dynamic polymorphism,
or classes with virtual functions, can produce highly significant bottlenecks [142]. As a
result, regardless of the implementation language, minimising overhead remains an impor-
tant aspect of computational efficiency, and constitutes our second criterion in assessing
computational efficiency. [t should be noted that a dynamic language implementation,
which cannot avoid this overhead, represents one of our programming efficiency criteria. As
a result, computational efficiency can conflict with programming efficiency, reflecting the
commonly encountered tension between programming and computational efficiency in more
general-purpose programming.

When considering whether software libraries are built upon well-optimised algorithms,
most of the featured examples use such components. Important exceptions include FTensor
and LTensor. However, these libraries are primarily designed for a series of small-dimension
tensor operations. For such scenarios, their lazy and in-place evaluation schemes can pro-
duce excellent computational efficiency. Thus, they are not considered inefficient, with the
important caveat that their efforts at computational efficiency do not always apply to more
general situations. On the other hand, EinSum and SSKC, which are meant to be used
with large-dimension data structures, do not use optimised linear algebra numerical meth-
ods. Depending on the number of operands within an expression, NumPy will also forego
using optimised numerical routines. All other featured constructivisms use highly optimised
numerical methods.

Apart from gold-standard algorithms, the other criterion is level of overhead. As both
MTT and NumPy are dynamic-language implementations they are unable to avoid impacts
on runtime performance for tasks that cannot be offloaded to compiled-language compo-
nents. Examining compiled-language implementations, EinSum does come with overhead
through its use of dynamic polymorphism to resolve data access calls during inner /outer
product multiplications. As multiplication can involve frequent data access, the overhead
caused by numerous virtual table lookups can seriously impact performance [142].

The TCE, CTF, and Libtensor libraries for computational chemistry also come with
relatively high-levels of overhead, but this is due to their need to distribute massively large
computations across different nodes and cores. Thus, for the dimensionalities they are
designed for, their overhead adds to, rather than detracts from, computational efficiency.

33

For most compiled-language libraries, great efforts were made to reduce or even elim-
inate abstraction penalties. In fact, the authors of both FTensor and Blitz+4 have pio-
neered template metaprogramming (TMP) techniques for the express purpose of reducing
or even eliminating abstraction overhead. These efforts have impacted the larger C++4 pro-
gramming community [126], attesting to the importance of computational efficiency when

implementing N'T software.

2.2.5 Unification — NT Software

From surveying the state of software libraries outside the MV paradigm, it is clear that
both programming efficiency and computational efficiency each play important roles. As a
result, in order to ease the acceptance of NT frameworks distinct from the MV paradigm,
supporting software should not neglect the needs of those seeking high programming ef-
ficiency or those wishing for high computational efficiency. However, fully satisfying one
criterion often means that some aspect of the other is not fully realised. Thus, to satisfy
both needs, an N'T software suite should be built off of a common core of routines, and offer
a choice of interfaces that either bias toward programming or computational efficiency.

Of course, an interface should still attempt to simultaneously satisfy both needs as much
as possible. Along those lines, the C4++ lanpguage provides an excellent foundation for tech-
nical computing software. As Abraham and Gurtovoy outline, C+4 provides an excellent
host language to implement the constructivism of all manners of formalisms [126]. It in-
herently supports object-oriented programming (OOP) with static-type checking, meaning
operations and relationships can be explicitly controlled and defined in a type-safe and ef-
ficient manner. In addition, C++ supports 48 different operators [126], all of which can
be overloaded. Finally, these features are complemented by excellent gemeric program-
ming (GP) capabilities [126,143].

The low-overhead abstraction capabilities of C++ make it an excellent environment for
the development of domain-specific embedded languages (DSELs). which are DSLs built
on top of a standard host language. These abstraction abilities also engender high levels
of programming efficiency, as a formalism can be faithfully reproduced in a programming
environment, allowing a practitioner to conceptualise and program her solution ideas with
minimal translational burdens. These reasons have allowed existing C4++ DSELs for MV
and high-degree data structures to flourish. These include Armadillo [144] and Eigen [145]
for the former and Blitz++ [125,142] and FTensor [101, 146] for the latter.

Despite these enviable abstraction capabilities, the compiled and static-typing nature
of C++ means that programming efficiency cannot always reach the level found within
dynamic-language implementations. Fortunately, any core C4++4 algorithmic routines can
be interfaced to dynamic languages. For instance, MATLAB provides its MEX interface
and Python enjoys a myriad of its own C++ interfaces, e.g., Boost.Python [147]. A con-
structivism offering both compiled-language and dynamic-language interfaces allows practi-

tioners themselves to use their own programming vs. computational efficiency cost-benefit
analysis. As well, should a practitioner wish to translate a dynamic-language prototype to
a native-language deployment, having similar styles of interfaces helps to reduce program-
ming effort. Finally, since both interfaces would use the same algorithmic routines, worries
related to differences in numerical stability, convergence, or performance are minimised.

These arguments have shaped the development of LibNT and NTToolbox, which rep-
resent our own NT software offerings for C++ and MATLAB, respectively. Both libraries
are designed to support the NT algebra we develop, which as Section 2.1.6 explained is an
extended form of Einstein notation. However, they each place a different emphasis on pro-
grammatic vs. computational efficiency. For instance, primarily focusing on computational
efficiency, LibN'T provides a native DSEL interface to NT algebra, incorporating innovative
high-performance algorithms and data structures for N-degree, entrywise, and inversion
operations. As well, LibNT places heavy emphasis on sparse data structures and computa-
tions appropriate for high-degree data. N'TToolbox, on the other hand, offers a MATLAB
interface to LibNT’s fundamental computing routines. Like LibNT, NTToolbox offers a
DSEL for NT algebra, but implemented within the interpreted environment of MATLAB.

By placing different emphases on computational and programmatic efficiency, LibNT
and NTToolbox complement each other. As such, they represent an effective embodiment
of the key principles identified as important for NT software, making them a productive
contributor to an NT framework. These NT software libraries will be discussed in detail in
Chapters 4 and 5.

2.3 Exemplar Categories

Kuhn noted that anomalies in a paradigm can act as catalyst in galvanizing practitioners
into performing revisionary science [1]. The successful treatment, or more frequently the
promise of successful treatment, of these anomalies serves as motivation toward the adoption
of tools, techniques, and theories outside the accepted paradigm. These anomalies may then
serve as exemplars for a new paradigm. As such, exemplars are concrete embodiments of
certain principles, enabling them to define and shape scientific practice. Kuhn emphasised
that the successful redefinition of an anomaly to an exemplar is dependant on whether this
taxonomic change fosters enough new problems, pregnant with potential, for a scientific
discipline to pursue. The persuasive role of new and promising questions is reflective of the
role and desire of scientists to act as investigators.

Unsurprisingly, for those advocating technical computing algebra and software outside
the MV paradigm, exemplars have served as crucial persuasive tools. Like the identified
anomalies, the two broad categories that these exemplars often fall into are either special
linear mappings or mappings beyond linear. NTs are a key element of both exemplar
categories.

35

2.3.1 Special Linear Mappings

Kuhn observed that anomalies are a constant reality for any paradigm. Anomalies may arise
due to the discovery of new facts, but just as often as not, “the problems that are responsible
for the anomalous data are not necessarily new problems that arose after consensus but may
have been present all along” [148]. Or in Kuhn's words, in some cases anomalies “without
apparent fundamental importance may evoke a crisis if the applications that it inhibits have
a particular practical importance” [1]. This description applies very well to the problem of
high-degree linear and entrywise mappings. Using fattening operations for the former and
diagonal matrices for the latter, it is in principle possible to frame such linear mappings
using the MV paradigm. However, such an approach can be burdened with significant
complexities, suffer from inefficiencies, and may even hide solution avenues. The detriments
in overlooking the anomalous nature of such mappings move in lockstep with the significance
of their applications.

Researchers have used exemplars to highlight certain benefits that alternative algebra
and software offer for special linear mappings. Practical concerns represent a prominent
theme behind much of this work. For instance, Suzuki and Shimizu [65] and Antzoulatos
and Sawchuck [60] argue that their natural N-degree algebras eases the implementation
of high-degree linear operators in systems-and-control and image processing applications,
respectively. In terms of entrywise operations, Liu and Trenkler [73] showcase several in-
stances where linear regression and covariance problems gain from the explicit entrywise
products of EMV algebra. Of particular note, the authors show how explicit entrywise
product operations can reveal more efficient solutions. As another example, researchers
within computational chemistry have used major quantum chemistry models to highlight
how fully associative and commutative N-degree algebras can help derive massive gains
in computational efficiency [91]. Moreover, the pursuit of solutions to quantum chemistry
exemplar problems have driven innovations in symmetric representation [94,95], amongst
other advancements within high-degree software.

Many of the same practical concerns drive work on differential operators applied to high-
degree domains. These are an important set of exemplars, as they are a core component
of high-degree PDEs, which in turn act as the core elements of myriad scientific models.
In addition, as explained in Section 2.2.2, when manifested as FD operators, or other
approximations, differential operators exhibit high sparsity, making them practical even in
high-degree contexts. This has been well-recognised in the literature. For instance, Ahlander
and Otto maintain that Finstein notation avoids significant problems arising when using
the MV paradigm to implement and program high-degree finite-difference operators [67].
Differential operators are also specifically highlighted by the developers of POOMA [128]
as a motivating reason for prospective users to use their library.

Seeking a rigourous means to express derivatives of high-degree functions also motivates
much work on alternative frameworks. In the MV paradigm, such situations are referred

36

to as vector or matrix-valued functions, and the involved derivatives are referred to as
Jacobians or Hessians, where the former is actually a linear map. Systems and control
provides many motivating examples, e.g., “Modern control theory is based on the vector-
matrix theory... Hence it is often necessary to differentiate vectors (matrices) with respect
to vectors (matrices)” [65]. Suzuki and Shimizu cite the difficulties of performing differential
calculus in the MV paradigm to motivate the development of their array algebra [65]. Milov
also discusses this need for the purposes of sensitivity analysis [99], calling for greater rigour
and formalisation, which he develops in his multidimensional matrix concepts. The need for
derivatives of matrix-valued functions is also acute for many of the statistical methods used
by econometricians [63,117], which partly motivates the field’s use of Kronecker algebra.

Rauhala also cites derivatives of high-degree functions as crucial for optimising nonlinear
functions in geodesy and photogrammetry [114]. In fact, optimisation problems in general
often require derivatives. Algebraic complications and confusion can increase drastically
with each increase in degree, making the expression of derivatives a particularly prominent
COnCern.

Another recurring discussion involves the frequent need to perform decompositions to
make intractable problems tractable. Researchers note that these situations often arise
amongst high-degree linear mappings, where the curse of dimensionality can quickly bal-
loon a problem’s computational and memory demands. In these cases, researchers argue
that algebra and software designed to handle high-degree data and mappings can reveal de-
composition strategies that would otherwise be well hidden. For example, Rauhala, Snay,
and Blaha motivate R-matrix notation by demonstrating how certain high-degree linear and
least squares systems can be decomposed into separable mappings, stressing that seeking
out such opportunities can produce massive computational savings [53,61,62,114]. The
need to actively seek out separable high-degree solutions was more recently highlishted by
Belykin and Mohlenkamp [89], where the authors advocate working with approximate, but
separable, linear mappings. Separahility is also a frequent motivator for Kronecker algebra.
In fact, the Sylvester equation, which is one of Kronecker algebra’s most common exem-
plars [108], can be framed as a separable linear system. Specific applications of these cited
works have included interpolation and signal processing transforms [53,114], regression [61],
and physics-based mappings [89)].

Thus, chosen exemplars in the literature often emphasise one or more of the challenges
in implementing special linear mappings, the need for rigourous derivative expressions, and
the importance in executing separability. These characteristics have proven themselves
significant enough to spur pursuits of alternative frameworks in technical computing. What
is important to note is that N'T's play a significant role in all such motivations. To be more
specific, these topics are concerned with seeking out optimal means to express, manipulate,
and compute with mappings applied to NTs.

To this end, we showcase important exemplars, drawn from the author’s computer vi-

37

sion work, that are driven by high-degree differential mappings. The exemplars are based
on two computer vision problems, called interactive image segmentation and depth-map
estimation. As the differential mappings exhibit anisotropic properties, entrywise products
also come into play, providing an excellent venue to illustrate both the challenges involved
from remaining with the MV paradigm and also the benefits accrued from employing an
NT framework. Using differential mappings links our exposition to PDEs, connecting the
exemplars to the work of practitioners in many other fields. Depending on the exemplar,
optimisation is involved, meaning derivatives of high-degree functions come into play. Ad-
ditionally, we highlight separability, but of the separable nonlinear least squares (SNLS)
kind [149], an important type of separability that has not yet received as much attention
from advocates of high-degree frameworks. Finally, sparsity plays a crucial role in all the
exemplars, along with other concepts such as linear N'T inversion. Thus, interactive image
segmentation and depth-map estimation serve as an excellent source of exemplars for spe-
cial linear mappings. Chapter 6 is devoted to these computer vision exemplars, outlining
how an NT framework is particularly well suited to them and similar exemplars involving

high-degree differential operators.

2.3.2 Beyond Linear Mappings

Kuhn wrote that “To be accepted as a paradigm a theory must seem better than its com-
petitors, but it need not, and in fact never does, explain all the facts with which it can be
confronted” [1]. Continuing on this theme, Kuhn emphasised that a successful paradigm
must be “sufficiently open-ended to leave all sorts of problems for the redefined group of
practitioners to solve” [1]. In other words, paradigms do not only offer a set of solved
exemplars, they also offer up a body of exemplar problems.

For instance, the MV paradigm. by its very nature, helps delineate what type of expres-
sions are desirable to compute. This defined the questions investigated early on in technical
computing, e.g., how to stably and numerically invert a matrix [39], and continues to define
research pursuits today. However, the MV paradigm is ill equipped to naturally represent
major open problems in technical computing that involve mappings beyond linear. Here, we
focus on decomposing high-degree data and numerical approaches to solve and manipulate
multilinear and polynomial systems.

The first problem is the focus of the tensor decomposition field. As the field is explicitly
concerned with N'T data, the need for alternative frameworks is acute. Since non-symmetric
NTs naturally describe multilinear mappings, the field is indeed concerned with mappings
beyond linear and its literature often elucidates this link. Symmetric NTs, in turn, are
bijectively related to homogeneous polynomials, which are also beyond linear.

From the outset, exemplars have driven the pursuit of decompositions of high-degree
data, as it was researchers from the application-driven fields of psychometrics and chemo-
metrics that pioneered much of the theory and algorithms [83]. To tackle these exem-

plars, researchers have developed algebra and software to naturally represent NT data.
These efforts occupy a valued place within the field. Requiring capabilities outside the
MV paradigm, researchers have proposed n-mode notation and variants [83,110,111], n-
mode* notation [97,98,112], EMV algebra [83,118], and Einstein notation [86] as for-
malisms. Tensor decomposition researchers have also trail-blazed new approaches to com-
pute with high-degree data. For instance, practitioners have emphasised that sparse com-
putations for high-degree data must take a different approach than those found within the
MV paradigm [124,150,151,152]. Similar arguments have been articulated for symmetric
representations of high-degree data [153].

As such, the problem of decomposing high-degree data drives a great deal of work be-
yond the MV paradigm. Like the singular value decomposition (SVD) decomposition, tensor
decomposition impacts countless fields. Interest in the field has exploded in recent years,
and currently tensor decomposition plays an enormous role within technical computing [83].
Reflecting this importance, throughout our description of NT algebra and software we fre-
quently focus on CP tensor decomposition as an exemplar, highlighting its unique algebraic
and software challenges.

In contrast to the popular focus on tensor decomposition, the question of solving and
manipulating multilinear and polynomial systems does not enjoy the same degree of at-
tention within technical computing. We view this as an important gap within technical
computing, as in principle an NT framework can represent multilinear and polynomial
mappings naturally, expanding the bounds of what sort of operations one could compute or
wishes to compute. Like Stetter [74], we believe a numerical approach to solving polynomial
systems to be a “no man’s land”, or we would say major anomaly, in technical computing's
state of the art. We also include multilinear systems within this anomaly. Considering that
technical computing caters both to its own specialists but also to domain experts wishing to
apply its techniques and tools, the problem cannot be judged fully resolved until any new
knowledge is framed in a form palatable for the general science and engineering community.
By naturally expressing and computing both polynomial and multilinear operations, an NT
framework cannot but help increase the scope of technical computing investigations. This
motivation is distinct from the objective of solving existing problems better.

While we view this as an important exemplar to pursue, it falls outside the scope of this
thesis. However, we return to this argument in the conclusion, where we argue that future
work should articulate the links between high-degree frameworks and systems of multilinear
and polynomial equations. Because they can naturally represent such equations, we make
the case that high-degree frameworks, like the NT framework, can play a crucial role in
expanding the bounds of technical computing to include these crucial exemplar problems.
Should this happen, the taxonomy of technical computing would be irrecoverably altered.

39

2.4 Summary

A growing crowd of researchers are investigating algebras and software beyond the MV
paradigm, encapsulating a variety of desired algebraic and computational capabilities and
characteristics. Exemplars feature prominently in many of these efforts, serving as impor-
tant illustrative and persuasive applications. From this survey of algebras, software, and
exemplars, NTs are identified as a recurring theme. The viewpoints, techniques, and tools
offered by the reviewed research informs our own contributions to this growing crowd.

The algebras surveyed in this chapter satisfy one or more of the following attributes: N-
degree, associativity, commutativity, entrywise, and linearly invertible. Each of these play
important roles in applications and research pursuits. Broadly speaking, the demand to
express N-degree data and mappings amplifies the need for these algebraic considerations.
We argued that an algebra alternative to MV algebra should embody all such characteristics,
increasing its impact and relevance to the disparate fields advocating alternative formalisms.
Chapter 3 details the NT algebra we develop, discussing its expressive capabilities.

After identifying NTs as a unifying concept for alternative algebras, the chapter then
investigated the characteristics important for any N'T software. As a partner to an NT alge-
bra in a technical computing framework, an N'T software library must support all formalist
characteristics outlined above. As well, to help circumvent the “curse of dimensionality”,
often present in an N'T context, efficient representation and computations of sparse data is of
particular importance. Finally, both programming and computational efficiency represent
crucial, if occasionally conflicting, considerations. This assay of constructivist developments
shapes our own NT software work. Qutlined in Chapters 4 and 5, our own NT software,
called LibNT and NTToolbox, is designed to meet the computational demands of a frame-
work beyond the MV paradigm.

Kuhn maintains, as also evidenced by the work of those advancing alternatives to the
MV paradigm, that exemplars are fundamental in articulating the promise lurking beyond
the boundaries of a scientific discipline. As this chapter emphasised, two exemplar cat-
egories epitomise pushes for technical computing frameworks different than the MV one.
We focus These exemplar categories are further articulated within this thesis. For the first
category, i.e., special linear mappings, we identify two prominent computer vision problems
to showcase how an N'T framework can meet demands frequently raised by such mappings.
These exemplars are pursued in Chapter 6. For the second category, i.e., mappings beyond
linear, we frequently highlight CP tensor decomposition throughout our elucidation of NT
algebra and software. Finally, articulating the links between N'T frameworks and polyno-
mial /multlinear systems of equations remains an important aspect of future work that we
discuss further in Chapter 7.

Returning to our analogy of Milgram et al’s famous experiment, the crowd of re-
searchers we noticed, who were looking at algebras, software, and exemplars beyond the

MV paradigm, was large enough to motivate our own investigations. Examining their work

40

helps us craft our own contributions, meaning we now consider ourselves part of this growing
crowd. NT's serve as a unifying concept for much of these research efforts. For this reason,
articulating the features, capabilities, considerations, and benefits of NTs serves as a focal
point for our own work. In the following chapters, we will focus on our own contributions,
which can be summarised as introducing a specific NT framework, composed of an algebra
and software, and using it to advance selected exemplars.

41

Chapter 3

Extending Einstein Notation

‘We begin this chapter by making the case that exploiting Einstein notation leads to a solid
foundation for an numeric tensor (NT) algebra. This argument is made concrete through
the introduction of an N'T algebra notation that extends Einstein notation. Afterwards, we
outline the advantages of NT algebra in tackling three exemplars, contrasting it with other
high-degree algebras.

While the algebra outlined in this chapter differs considerably from matrix-vector (MV)
algebra, taught to most computer engineers and scientists, the formalism does not discard
the concepts of matrices and vectors. In fact, MV algebra occupies a valued place within
NT algebra, reflecting our belief that the considerable strengths of the former should be
leveraged in the appropriate circumstances. Moreover, N'T algebra builds upon a heavy body
of prior work. For instance, N'T algebra is deeply rooted in index or Einstein notation, which
is excellently outlined by Papastavridis [69]. Many of the notations and identities, such as
entrywise products, that make N'T algebra unique from typical Einstein notation has already
been outlined by Joseph [123] and to a lesser extent by Barr [70]. However, the notation of
vector and matrix N'Ts and concepts surrounding the solution of linear N'T equations still
require more development. As well, important aspects, including differentiation, nonlinear
functions, and factoring out common terms, have not received treatment within an NT
algebra context.

This chapter both reviews already developed material and fills in some of the afore-
mentioned gaps. In performing the former, the chapter also provides many of its own

justifications and explanations.

3.1 FEinstein Notation

Section 2.1 identified five algebraic characteristics considered important for algebraic work
beyond the MV paradigm. The section argued that an algebra alternative to MV formalism
should embody all these characteristics. Since no prospective algebra in the literature meets
this criterion, none of them qualify, motivating the development of the NT algebra we
develop. Nonetheless, an NT algebra should use aspects of these alternative algebras as

42

foundation, allowing it to leverage their considerable beneficial qualities. Along those lines,
the NT algebra we outline is built off of Einstein notation, which already enjoys enviable
expressive capacities.

Several of Einstein notation’s qualities serve to make it an excellent foundation for an
NT algebra. As Ahlander argues, the Einstein summation of Einstein notation offers a great
deal of versatility, as it can represent any combination of inner and outer products [54], which
means it can represent all manner of linear, bilinear, or multilinear operations. Because of
Einstein notation’s associative and commutative products, accompanying this capability is
a fundamental ease of algebraic manipulation. Moreover, Einstein notation is amendable
to extensions that allow it to fully support entrywise products and inversions.

In contrast, it is not so clear how to extend some of the other featured formalisms without
fundamentally altering their makeup. For instance, by remaining in the MV framework,
there is no natural means to generally commute products or express N-degree mappings
using extended matrix-vector (EMV) algebra. Similarly, it is not clear how to extend some
of the other featured algebras without altering them entirely. As an example, developing a
fully associative and commutative framework for n-mode* notation, R-matrix notation, or
array algebra would require abandoning the very means by which such formalisms specify
inner-product indices. This can restrict their applications.

The arguments supporting Einstein notation are strengthened by considerations outside
of those listed in Table 2.1. For one, Einstein notation enjoys a compactness in notation. For
example, in Einstein notation an N'T's degree is implicity specified by the number of indices.
In comparison, n-mode* product notation requires additional notational markers, or tasks
the reader with remembering the degree of each NT in question. Additionally, Einstein no-
tation expresses products with an almost spartan amount of symbology. This contrasts with
some other algebras. As an example, Lev-Ari’s [72] demonstration of the usefulness of EMV
algebra relies on 5 and 4 separate operators and identities, respectively. These symbolic
burdens are magnified by notational differences in the literature. For instance Steeb and
Hardy [109], Liu and Trenkler [73], and Lev-Ari [72] each provide different notations for the
Hadamard product. This situation is mirrored in other operations, e.g., Magnus [121] and
Lev-Ari [72] employ differing notations for diagonal selection. Compounding this problem,
extra symbols required by other algebras are not always alphanumeric. Because standard
keyboards do not support many symbols outside of alphanumeric ones, notational compact-
ness eases the transitional burden of implementing a solution on a computer. Since software
plays such an important role in technical computing, this consideration looms large.

Apart from its minimal symbology, authors have also noted that Einstein notation aligns
well with thinking in terms of computation. For instance, Pollock argues that Einstein no-
tation strongly resembles the programming practice of indexed loops [154]. This is echoed
by Vetter [66]. McCullagh outlines the merits of this computational focus for statistics
applications [107]. Ahlander argues that Einstein notation enjoys both a compactness and

43

a resemblance to the natural language of the problem, minimising programming errors [54].
This strong link likely explains why even in 1954 Backus and Herrick used an index nota-
tion as an example of how programmers could one day employ an algebra directly within
code [45].

Einstein notation’s appeal is broad enough that practitioners of some of the other fea-
tured algebras have advocated for its use. For instance, Pollock, a major figure in the
econometrics field, asserts that identities seen in Kronecker algebra can be difficult, arguing
that an index-based notation can better reveal key results [64,154]. As another example,
Vetter, who published papers describing and employing Kronecker algebra [155, 156], has
also advocated for an index-based notation in certain contexts [66]. In the field of tensor
decomposition, Harshman, one of the field's pioneers [83], published work advocating for
Einstein notation [86] over the commonly used stretch or slice-wise matricisations seen in
his field. In their explanation of n-mode notation, even de Lauthauwer et al. concede that
Einstein notation is the most “versatile” [81] means to express multilinear operations.

The utility of Einstein notation has led practitioners from disparate fields, such as com-
puter graphics [70], statistics [107], econometrics [154], psychometrics [86], numerical meth-
ods [54,67,68], computational chemistry [91,92,93,94, 95|, image processing [60], systems
and control [113], and signal processing [66] to promote its use within their own fields. As
such, Einstein notation enjoys a broad appeal that is not always enjoyed by other algebras.

Considered together with its excellent algebraic characteristics, such as associativity,
commutativity, and compactness, the virtues of Einstein notation conspire to make an
excellent case toward its use for applications beyvond the natural purview of MV algebra.
MNonetheless, as Table 2.1 makes clear, Einstein notation lacks key conventions on how
it expresses entrywise products and inversions. By extending Einstein notation, one can
formalise a powerful and versatile NT algebra.

3.2 Extensions

While the NT algebra we describe does build off of Einstein notation, not every concept in
the notation’s arsenal is employed. The origins of Einstein notation lie in tensor calculus,
which means that its notation can be overly complex for many applications outside of
physics or dynamics. Traditional Einstein notation expresses summation using an inner
product by repeated indices—but one must lie in the upper index or contravariant position,
and one must lie in the lower or covariant position. While covariant and contravariant
indices are fundamental in tensor calculus, not all applications of NTs require the concept
of contravariance and covariance. Thus, this work uses a simpler single-index-type notation,
similar to that advocated by champions of Cartesian tensors [70, 157,158, 159]. By default
all indices lie in the lower position.

Elements in this convention are called NTs. Scalar NTs, N-degree collections of scalar
values, represent the simplest elements in the algebra. Restricting attention for now to the

44

scalar case, an N'T a; is indexed by a sequence of natural numbers, 1 = {iy,i2,...iy}. The
range of each indexcils specified by the dimension sequence d = {di,ds,...dy}. The degree
of a is N, while the dimensionality of a is the product of each of its index dimensions,
[T, di, which can also be denoted dim(a).

Context often allows an array to be expressed as a;, suppressing dimensions. Depending
on context, indices can be represented by the sequence i, as in a;, or by individual indices,
as in aijp. Operations are specified based on how operand indices match up. For instance,
NTs can be added or subtracted entrywise provided matching indices have the same range:

Cijk = Or; + by . (3.1)
MxPxR FPxMxR NxPxR
The set of all NTs of a certain dimension sequence can constitute a vector space with respect
to entrywise addition and scalar multiplication [78].

The following subsections are dedicated to outlining some of the salient aspects of NT
algebra, which include multiplication, unary operations, linear inversion, differentiation,
and finally vector and matrix NTs.

3.2.1 Multiplication

NT algebra can represent inner, outer, and also entrywise products across arbitrary indices.
This section will first outline the more well-known inner and outer product notation. After-
wards, the notation and some implications for the accommodation of entrywise products are
discussed, including how to express ternary or higher inner products, which can be called
n-ary inner products. The subsection concludes with a discussion of factoring N'T products
over addition and subtraction.

Restricting attention to first-degree N'Ts for now, an inner product, y. between two
NTs a; and x;, each of dimension n, is the summation of the products of all corresponding

elements:
Y= Z a4 T;. (3.2)
i=1

Einstein notation uses a repeated index to represent an inner product, where the dimen-

sionality is understood from the context:
Y = a;T;. (3.3)

Einstein notation also provides a concise convention for outer products. An outer prod-
uct, ¥, of a; and z;, with dimensions {M, N}, is defined as the ordered product of all

45

possible combinations of elements within the two NTs!:

ajry ajra ... Q1IN
axry azra ... Q2N

Uiz = : . - : . {34}
Ty dpgra ... dpgIy

Einstein notation simply uses differing indices to represent an outer product, where again
the dimensionality is understood from the context:

Yij = GiTj. (3.5)

The analogues in classic MV algebra of the inner product and outer product of two
vectors, a and b, are well known:

c=a'b, (3.6)
C =ab'. (3.7)

For general N-degree NT's, Einstein notation can express any combination of outer and
inner products. Thus, any linear mapping, L : 4™ _ R4™¥) can be represented by the
product:

U = G4§T;- (3.8)

Einstein notation can be readily extended to support entrywise, i.e., element-wise, prod-
ucts. This operation can occasionally be found in tensor calculus, where it is described as
summation suppression [69]. Some conventions are to distinguish, by a parenthesis [69,123],
an underline [68], or a subscripted parenthesis [70], the indices whose summation is sup-
pressed.

Using the underline convention, the entrywise product of two first-degree N'Ts is:

Wi = a4T;. (39}

Underlines corresponding to erecuted entrywise products are understood to be removed
after a product grouping has been executed. Product groupings are separated by addition,
subtraction, or parentheses, e.q., the following expressions are equivalent:

y; = agx;b; = Eﬂgﬁﬁ’r (3.10)

Another convention to support entrywise products is based on assignment [54, 95],
whereby all repeated indices are assumed to be entrywise products unless they do not
appear on the left-hand side of an assignment. This implicit scheme mean products are am-
biguous without assignments, making it burdensome to perform substitutions or to parse
long expressions. For this reason, we prefer explicitly designating entrywise products.

1{3.4] displays the elements of y; using the standard row/column matrix convention, but this is an
arbitrary layout choice that is not a part of NT algebra.

46

There are both symbolic and computational advantages of incorporating an entrywise
product. Without it, artificial constructs must be used. For example, consider the following
expression which incorporates an entrywise product between two first-degree NTs:

Without an entrywise product notation, the expression in (3.11) would have to be repre-
sented by composing one of the operands into a diagonal second-degree N'T:

c; = &ijbj + a;, EE]E}

where d;; is a second-degree N'T with entries in its main diagonal consisting of elements of

ij
i1;:

ap 0 0
0 ee. d
ay=| . (3.13)
U R | |
o ... 0 an

A well-known example of such a construction in MV algebra is the diagonal matrix seen in
singular value decomposition (SVD) computations.

One key problem with the formulation in (3.12) is that two different constructions of
the same underlying values are used. In addition, in (3.11) all elements are indexed by
i, which correctly represents that in the expression all elements correspond to the same
index. However, in (3.12), a different index is used for b, which is an artificial distinction
introduced in order to represent entrywise products using a combination of inner and outer
products. Finally, transforming a first-degree N'T into an ‘equivalent’ second-degree NT in
order to provide entrywise operations is an unnatural representation of the underlying data.

In addition, there is an important computational rationale in using entrywise products.
Assuming the dimension of a and b is n, the entrywise product in (3.9) should consume O(n)
arithmetic operations. In contrast, using the construction in (3.13) to execute the product
is O(n?) in computational complexity if dense NTs are used. If a sparse implementation is
used then the computational complexity would remain O(n) in either case. However, sparse
representations are accompanied by overhead, which adds to the computational cost even if
the order of complexity remains (n). These computational differences are magnified when
high-degree NTs are considered.

Entrywise products hold an important relationship to summations over more than two

indices, such as ternary inner products:
aibic; = Z a;bie;. (3.14)
i=1
While not always framed as n-ary inner products, operations like (3.14) are key operations
for canonical-polyadic (CP) decomposition, e.g., equation (3.1) of Kolda and Bader [83]; lin-
ear estimation problems, e.g., example (4.3) of Liu and Trenkler [73]; differential geometry,

47

e.g., equation (3) of Bolton [71]; support vector machines, e.g., equation (14) of Burges [160];
and tensor optimisation methods, e.g., equation (3.6) of Schnabel and Frank [161]. Tradi-
tional tensor caleulus also encounters this need [69].

Such products are challenging to work with, as they break associativity [123]. For in-
stance, the following two expressions are not equivalent to each other, nor are they equivalent
to (3.14):

ai(bics) # (aibi)e;. (3.15)

For this reason, many Einstein-notation conventions forbid a summation over more than one
index or make special notational exceptions [54]. The assignment convention for implicit
entrywise products [54] also allows n-ary inner products, but not in a way that enables them
to be broken into a sequence of binary operations, which is often desirable for subsequent
implementations on a computer. This convention would also make parentheses meaningless
in (3.15), which despite Ahlander’s assertions [54], does break associativity.

Explicit entrywise products can express n-ary inner products and, combined with a
simple association identity, can retain associativity [123]. In short, given a ternary inner

product, such as (3.14), isolating operands can be accomplished using:
asbic; = (aibi)e; = ai(bic;) = (azci)bs. (3.16)

With the entrywise product defined, an NT product can consist of any combination of
N-degree inner, entrywise, and outer products.
As mentioned, Einstein notation, and thus NT algebra, is strongly associated with

computation [107]. Supporting this, the computational complexity of any product of dense
NTs, e.q.,

Yi = QT jei (3.17)

can be read by simply multiplying the ranges of each distinct index. If the range of each
index in (3.17) is N, then the complexity of the product is N 4, This can be extended to
more complicated expressions involving many operands, further illustrating NT algebra’s
affinity for computation.

Like MV algebra, NT multiplication distributes over addition. NT algebra expressions
can also be decomposed using common factors, provided the indices in the common array

are multiplied in identical manners, e.q., such as the following expressions:

@ik Thj + DeigTei = (Qyjh + brig) Tuj, (3.18)

where the index £ has been changed to k on the right hand side, since both are dummy
indices whose symbols can be changed.
If the indices of the common array are not multiplied in the same manner in each

subexpression, this can be due to one or a combination of three possibilities. Table 3.1

48

Table 3.1: Factoring out common NT terms. To factor out common terms between ex-
pressions, the type of NT product must be identical. When they are not identical common
terms can still be factored using three rules.

Scenario

Solution

Example

An index undergoes an
outer product in one subex-
pression and an inner prod-
uct in another.

Change the outer product
to an inner product by
multiplying by a Kronecker
delta array (e.g., dir;).

ﬂ-j-ﬂ.‘ij_ + b,-_.,-k:rk
= ﬂ.jﬂ.‘kéﬁ + bﬁjk.’rk
= ﬂ.jékixk + El‘i_jk.'rk

Eﬂjéh + bijk:l;rk‘

An index undergoes an
entrywise product in one
subexpression and an inner
product in another.

Change the entrywise prod-
uct to an inner product by
multiplying by a Kronecker
delta array (e.g., dir;).

a;T; + by;T;

= (a;2;)d5 + byjz;
= (a;0ji)z; + bijz;
= (a;jdji + bij)z;.

An index undergoes an
outer product in one subex-
pression and an entrywise
product in another.

Change the outer product
to an entrywise product by
multiplying by a unit array
(e.g., 1;).

a;%i + bjiT;
= a;7il; + bjizi

= aj1iz; + bjizi

|:ﬂ.j 1; + E'.l‘jﬂ.’l.‘;.

outlines each scenario and the approach to factor such expressions. All of the profiled
scenarios rely on the Kronecker delta NT, i.e., §;;, which is defined as:

1,
"5:'.:'.' = { 0,

Just as with identity matrices in MV algebra, Kronecker delta NTs serve a fundamental
purpose in NT algebra. The first scenario has also been described within the MV paradigm
by Brewer [162], who also provides an efficient means to solve an analogous system of

i=1

otherwise (3.19)

equations involving second-degree parameters and independent variables.

3.2.2 Unary Operations

As with MV algebra and tensor calculus, NT algebra accommodates unary operations. One
common such operation is contraction, which is the summation of corresponding elements

across two N'T indices:
b=az=ai +am+...d;n. (3.20)
This operation can also be expressed as a binary operation using the Kronecker delta N'T:
b= a; = azpdiy. (3.21)

In MV algebra, the equivalent to contraction is the trace operation, expressed as trace(A4)
in MATLAB. However, unlike trace, contraction can be applied to arbitrary indices of NTs
of arbitrary degree.

49

While contraction also holds an important place in tensor calculus, the ability to repre-
sent entrywise products provides N'T algebra with an additional unary operation. Joseph
coined the term attraction to describe the operation [123]. Restricting attention to a second-
degree N'T, attraction is defined as selecting the diagonal elements from two indices in the
NT. In MATLAB notation, this corresponds to the operation diag(A). Despite its useful-
ness, this is not a well-recognised operation within standard MV algebra, but it has been
treated within EMV [72,102,103,121]. This extension expresses attraction using a matrix
product between a very large and sparse selection matrix and a vectorised form of the
matrix or by using a non-algebraic operation similar to diag(A).

Using the entrywise-product underline symbol, the unary operation of attraction can be
represented as:

b, = ay. (3.22)

The attraction operation generalises to an N-degree N'T, and can also be easily combined

with the more familiar unary contraction operation:
bjk = Qigikk- (3.23)
As with the contraction operator, attraction can be expressed as a binary operation:

bl'. =y = ﬂiirﬁiir. |:3.24}

Explicitly accommodating entrywise operations avoids having to use the non-intuitive
selection matrices seen in EMV algebra and does not require flattening second-degree data.
Moreover, unlike the EMV algebra approach, which is difficult to generalise to higher de-
grees, attraction can be applied across NTs of arbitrary degree.

The operations of contraction and attraction can also be used to provide a relationship
between outer products and inner or entrywise products [123]. An outer product followed
by contraction is equivalent to an inner product, while following an outer product with
attraction is equivalent to an entrywise product. This can be expressed using binary op-
erations, which has already been demonstrated above in the explanation on how to factor

out common terms.

3.2.3 Solution of Linear Equations

An NT product can represent a single linear mapping or, if entrywise products are involved,
it can represent a sequence of linear mappings. Like MV algebra, inverting these linear
mappings is a fundamental concept. Unlike MV algebra, there may be multiple inverses for
an arbitrary NT, as an NT on its own does not define a unique linear mapping [65, 86, 123].

If one wishes to denote the inverse of an N'T, one must also specify which linear mapping
it represents. Omitting entrywise products from consideration, an N'T represents a linear

mapping by grouping one subsequence of indices as dummy indices, and the remaining as

50

Table 3.2: Linear mappings and inverse representations using N'T algebra. All examples
assume no collinearity in the linear mappings.

Example NT Product Solving for + Inverse Representation

_ = Qg [g
1 ijkeThe = Vi The = Qzheliy “M J“ ;;j [k
Hkg = OpprOgpr [A 100
—1
- ;g = Ot Opre fa;
2 QijktTie = Yik Tje = ﬂij_lﬁ;,fyik ikt = OOkt [a5kt

-1
ﬂ'i'-jkf = Jjjr Jffl' fﬂ.éjrﬂr

-1 _

| a i'i fﬂ-: ik
3 QiR Tk = Ui Tk = QWi ijk bui/ 2 !
@k = 8O [asyae
4 QT = Yis :r..:ﬂ_ly.. ﬂ,_]':]_..fa..
AT "-7 1 i ¥4 if R

—1
— a1 .. =45,-,-:1b{'a.;rj-k

QikTik = Yik Tjk = Qplie 9F 5ol -
Ak = 05 1a/ sk

[]

free indices. Like matrix inverses, a composition of an N'T and one of its inverses results in

an identity mapping. This remains true if the roles of dummy and free indices are reversed.
This is illustrated by the following expressions:

a aga; = Gjiz; =z, (3.25)

ai_,j}ﬂ@j-:r,- = Qj1jIj = Iyjr. |:326}

Here, the identity mapping is represented by the Kronecker delta NT. In (3.25) and (3.26),
the dummy indices switch, differing from MV algebra, which typically restricts second, or
column indices, to act as summation indices?. As a result, there are two possible identities,
i.e., d;; and dy;, even though there is only one possible way to divide two indices into two
proper subsequences.

In the high-degree case, there can be more than one way to create two proper subse-
quences, so inverses must be represented by specifying a corresponding identity mapping.
However, like the second-degree case, there are two possible, and equivalent, identity map-
pings for each specified inverse. These notational issues can be avoided if the inverse is
specified in the context of a solution of equations, which removes all ambiguity.

Tahle 3.2 illustrates this, providing several high-degree examples. The first two examples

2 An exception is post-multiplication, but even in this case it is commonly performed using a transposed
matrix, e.g., SVD or Lyapunov equations.

illustrate different mappings and inverse representations originating from the same fourth-
degree NT. As is also demonstrated, the context of a solution of equations implicitly specifies
the division between dummy and free indices. The third example demonstrates that an
inverse may be executed across an asymmetric sequence of indices. For this to happen, the
dimensionality of the two subsequences must be identical and, like the symmetric case, there
must be no collinearity. The fourth example introduces the identity mapping for entrywise
products—an NT of all ones, i.e., 1;;. As the example also illustrates, should a linear
mapping only consist of entrywise products there is only one possible identity mapping.
The fifth example demonstrates a scenario involving all three types of products.

NT algebra also supports Moore-Penrose (MP) inverses for the solution of over and
under-determined sets of linear equations [63]. Like N'T inverses, when possible it is better
to represent the MP inverse as part of an expression. Assuming one of the subsequences
is fully-ranked, this can be easily done, as in MV algebra, by replacing the —1 superscript
with a + symboaol.

The MP inverse can also be represented in isolation. Unlike N'T inverses, the roles
of dummy and free indices are not so trivially reversed because they are entangled with
matters of under or over-determinedness. Instead of the two possibilities seen in Table 3.2,
the Kronecker delta arrays should only correspond to the fully-ranked indices. In cases
where neither subsequence is fully-ranked, the MP inverse can be realised using singular
value decomposition [63], but a differing representation would be required.

3.2.4 Symbolic Differentiation

Differentiating expressions is an important concept for work involving high-degree data.
For instance, gradients are a common element within tensor decomposition algorithms [83].
Matrix calculus [63], the setting of much of EMV algebra, is concerned with derivatives
of vector- or matrix-valued functions. Differentiation using N'T algebra closely aligns with
Einstein notation conventions, except that entrywise products can come into play and coor-
dinate basis vectors are often not necessary since the data is typically numeric rather than
geometric.

Consider a first-degree NT, z;. The derivative of each element of z; with respect to
every element in the same NT can be expressed as:

3.'1!1'

" — §.. 3.27
E:Ilii i l: }

must be specified in the partial
derivative. This convention readily gemeralises to high-degree NTs, as in the following

MNote that under this convention, the index label, i.e., &

1

example:

Emﬁ

i'j' = ﬁrﬂjjr. |:3.28}

Tahble 3.3: Partial derivatives of NT expressions.

Expression Derivative

Yktij = QkeTij ?;r—j:t: = apedir by
Ykj = OkiTij gj :::' = Qpyrdjjr
Vij = @ijTij ;:r y:j - = a3 05t Ot

'j
U= 045 % = @y

Such a convention is useful when taking derivatives of expressions that include an outer,
entrywise, or inner product of an array. Table 3.3 provides examples of partial derivatives of
high-degree NT expressions. In the examples involving an entrywise product, corresponding
indices in the Kronecker delta array are also underlined.

Many of the expressions in Table 3.3 are unawvailable in traditional matrix algebra,
particularly those incorporating high-degree NT's or entrywise products. This can be prob-
lematic for many formulations, such as Taylor series, that require partial-derivatives. Even
when working with lower-degree data, such as vector-valued functions, MV algebra cannot
naturally represent any Taylor polynomials beyond the linear term.

For certain expressions, such as the last row of Table 3.3, the use of a different index,
i.e., i instead of i, may seem needless. However, their importance becomes clear when
they are incorporated into larger expressions. A good example of this is computing the
sum-squared error (SSE) of a linear regression estimate. Using a first-degree system for
simplicity’s sake, this can be expressed as:

SSE = (b; — a;;x;)(b; — az;x;). (3.29)

37

Using the product rule in calculus, the partial derivative of the SS5E with respect to zy is:

BgiE = {ﬂijﬁj!}{bi - ﬂ,-_.,-:r:_.-:l + {b; — ﬂijirj}l:ﬂ-;jéjf}, [3.3['}
= 2(a;05¢) (b — aiyz;), (3.31)
= 2a;(b; — asz5), (3.32)

The expressions in (3.63) and (3.66) correspond to the well-known MV algebra expressions:

SSE = (b— Ax)"(b — Ax), (3.33)
% =2AT(b— Ax). (3.34)

By explicitly denoting the partial derivative index, which is different than the original
expression index, products between identically-valued NTs, i.e., aj;, can be correctly eval-

53

uated. This bookkeeping is particularly important when working with expressions incor-
porating N-degree N'Ts, as properly matching up indices in these cases is not trivial and

conventional MV algebra does not provide its own version.

3.2.5 Nonlinear Functions

MNonlinear functions serve important roles in scientific computing. For this reason, MV
algebra supports notation for nonlinear functions, e.g., matriz-valued functions. Analogous
notation is also important for NT algebra. This work will assume nonlinear functions act
on NTs entrywise, e.q.,

flzr) = vk, (3.35)

where the square root operation acts entrywise on xp.

Taking the derivative of nonlinear N'T functions is very similar to taking the derivative
of linear NT functions. To see this, first consider the partial differentiation of a first-degree
NT with itself,

g: : (3.36)
In Section 3.2.4, this derivative was evaluated as

B (3.37)
In actuality, the derivative could be evaluated as

1,0, (3.38)

which is equivalent to (3.37). When nonlinear functions come into play, a generalisation of
the formulation in (3.38) can be used, e.g.,

az; 1 _1
o, = 3@ . (3.39)

where 1; has been replaced by %{:rl}_%r As can be seen, due to the entrywise nature of the

non-linear functions treated here, entrywise products play a key role in differentiation.
Tahle 3.4 illustrates examples on how to evaluate the partial derivative of larger NT

expressions that incorporate non-linear functions and linear inner, entrywise, or outer prod-

ucts. As can be seen by comparison the rules are very similar to their linear analogues.

3.2.6 Vector and Matrix NTs

So far attention has been focused on scalar NTs. However, equally valid are vector and
matrix NTs, which are denoted using lower-case and upper-case boldface roman letters,
respectively. Examples of each are given below:
al, (3.40)
MxN
Aj * (3.41)

1

54

Tahle 3.4: Linear and nonlinear NT expressions and their partial derivatives.

| Scenario | Expression | Partial Derivative |
da;;x
Inner Product @i T3 3&,3 = aij(10;50) = aijdjj = aiye
dagyT; 1 1 1 1
ijy/Tj "oz, = Eﬂ-éj(-'ri To5) = 5&,-_-:;1.'2,“
daijz;
Entrywise Product FiTi 3‘.1;,_ = 315055 = aijd;5
daij /T7 1 1
”“iiv“TE T = Eﬂ.éi:ri 2{513,
Bﬂiﬂ.‘j—
Outer Product %L dry ail;0;5 = aidjz
Er‘a,-.l ,.f.-r_.,- 1 _1
ﬂ'i-‘\u"fm__'il Tji = Eﬂiﬂ.‘i E‘Eij‘r

where the dimensions of the row and column indices, not to be confused with the NT indices,
are given as superscripts. The convention of column vectors are used for this work, but it
is equally possible to use a row-vector convention. For the purposes of this work, MV NTs
are kept homogenous, meaning each MV within the NT has the same dimensions. Context
often allows the superscripts to be dropped.

Such NTs follow the same rules as their scalar cousins, with the caveat that arithmetic
operations performed on the elements must follow standard MV algebra rules. For instance,
in the following product,

MxN _ g MxPRPxN
Cije " = A Bip s (3.42)

in addition to the constraint that the k and ¢ indices in each operand hold the same range,
the product between matrices of Ay and By must be legal, i.e., the number of columns
of A, must equal the number of rows of By;,. Unless the matrix NTs are square, the
commuted version,

_mFPxN s MxP
Cye = BL VAL

5 (3.43)

1

is not legal, and typically not equivalent, meaning that matrix NTs do not share the same
care-free commutativity of scalar NTs. Analogous implications apply with vector NTs or
mixtures of the two.

Being able to express MV NTs means that using NT algebra does in no way bar the
use of MV algebra when suitable. Thus, when appropriate the benefits of MV algebra, e.q.,
minimal bookkeeping, notational simplicity, and other conveniences, can be enjoyed.

To really be able to use MV algebra, NT algebra, or a mixture of the two whenever one
wishes, a mapping between scalar NT's and MV NTs is needed. The key to these mappings

]

are vector basis arrays, denoted e, which is an ordered sequence of the standard-basis

vectors for RY: "
1 0 0 0
1 0 0
el = o I N OO A I . (3.44)
N 0 0 1 0
0 0 0 1

The underset and superscript is usually suppressed for e;.

Focusing momentarily on vectors, one can map any scalar NT to a vector N'T using e;:

8ij = GijkCk, (3.45)
T
= { i1 ... QiGN) . |:346}

The reverse mapping is expressed as,
o —alg.
Qijk = € Aij. (3.47)
The basis vectors can also map more than one index into a vector and back again:

i = QyjkCjk, (3.48)

Aijk = e_;-'}ca,,- . (3.49)

If M and N represent the range of j and & respectively, then the basis vectors are composed
of the standard basis for RF, where P = M x N. Individual vectors within e are ordered
using any valid, but fixed, lexicographical ordering of j and k. Each vector within a; is a
‘flattened’ representation of a;j.

Vector N'T's enjoy important notational conveniences, such as the capability to concate-
nate. For example, in MV algebra, one can combine two vectors into a third using the

simple expression c = {aT bT]T. Two vector-valued N'Ts can be similarly combined,
T
cy=(a} b) . (3.50)
= (@51 ... RijM b;jl bijhr)T, |:351}

where M and N denote the size of the vectors in a;; and b;; respectively.
Mappings between scalar NTs and their matrix-valued cousins follow the same process
as vector N'Ts, except that two basis vector NTs are needed, one for row indices and one

for the column indices:

Aij = a; _-;'I.:EEI:EL (3.52)
21l .- QN

Ay = e : . (3.53)
TigM1 -« Qi MN

56

The reverse mapping is expressed as,
Aiike = EIA"}'EE. |:354}

Analogous to (3.48) and (3.49), basis NTs can also map more than one index to the
rows or columns. As well, matrix NTs can also be concatenated together provided matrix
dimensions appropriately match, e.g.,

Agf}(” Bg_:l’xP

Bs=| v oer |- (3.55)
cPN pg

3.3 Selected Exemplars

The extensions to Einstein notation discussed in the previous section proffers algebraic
capabilities key to several exemplars. In Chapter 6, the merits of NT algebra vis-a-vis
prominent computer vision exemplars, falling under the category of special linear mappings,
are examined in detail. To broaden the scope of this discussion beyond computer vision,
this section discusses three additional important exemplars.

Section 3.3.1 begins this exposition by focusing on tensor decomposition, an important
exemplar falling within the mappings beyond linear category and a topic that has emerged
as a major research focus in technical computing [83]. This is followed by Section 3.3.2,
which highlights the difficulties surrounding parameter estimation involving entrywise prod-
ucts, and the opportunities for NT algebra to stake a claim for such exemplars. Finally,
Section 3.3.3 discusses separable nonlinear least squares (SNLS), a major technique in op-
timisation that involves high-degree data, and one that is featured in the author’s own

computer vision work [163, 164].

3.3.1 Tensor Decomposition

Tensor decomposition provides instructive instances where entrywise products, n-ary inner
products, linear inversion, and differentiation all play a role. This can be seen by considering
the representation and the computation of high-degree versions of the SVD.

As mentioned, entrywise products and ternary inner products arise often in MV algebra,
but in the form of diagonal matrices. The SVD is probably the most well-known example,
which is expressed commonly as

A=UzVT, (3.56)

where I is understood to be diagonal. A ternary inner product can express the SVD without
embedding the singular values within a matrix,

Qi = Ol Vk;. (3.57)

57

The benefits of framing SVD using N'T algebra manifest most strongly when generalising
(3.57) to higher degrees, where it takes on the form of CP decomposition, one of the two
major forms of tensor decompositions [83]. For instance, the expression in (3.57) can be
easily extended to third-degree data:

Bifeg = O Ui Vp; W - (3.58)

In tensor decomposition literature, (3.58) is often expressed by flattening high-degree
data into matrices in order to use Khatri-Rao matrix products or by using explicit summa-
tion symbols [83]. The former approach removes the data from its natural domain, while
the latter approach does not lend itself well to algebraic manipulation. As will be outlined,
with the entrywise product and the association identity in hand, n-ary products are readily
manipulated algebraically, allowing practitioners to explore efficiencies or derive solutions
to NT problems. Moreover, unlike the Khatri-Rao matricisation approach, these benefits
can be extended to expressions other than (3.58).

The alternating least squares (ALS) algorithm, a workhorse in tensor decomposition [83],
showcases how n-ary inner products can be manipulated within N'T algebra. In the third-
degree case, the ALS algorithm aims to compute wu;;, vgj, we;, and o;. It does so by
alternately solving for each of the factors while keeping the others constant. For instance,

to solve for u;;, one can easily isolate the factor,

Qikf = Usj {Ukiwfil (3.59)
where o; has been absorbed within the factors. Solving for u;; is straightforward:

Uz = {t’kiwfi}"'ﬂm- (3.60)
Similarly, linear least-squares solutions for the other factors can be formulated:

Ukj = {ﬂiiwfi}+ﬂ~a;k£1 (3.61)

wey = {ﬂiiuki}-l-ﬂﬂ:fa (3.62)

The ALS algorithm alternates between executing the three linear least-squares solutions
above. Once the algorithm converges, the o; factor can be computed by normalizing the
three second-degree factors [83].

While this is algebraically correct, there are more efficient means to arrive at the same

solution. The NT differentiation notation, along with the associated bookkeeping, can
reveal such efficiencies. To see this, the third-degree ALS algorithm in CP decomposition

can be framed as minimising the following expression:

SSE = Eﬂ-@kf —_ ﬂ;jﬂkjwfj}{ﬂikf — uij Ukjtﬂfj}_, |:3'63}

= (@ike — w;(vijwe;)) (Bike — wij(Vkjwes))- (3.64)

58

As mentioned, the ALS algorithm minimises (3.64) by alternating between solving for one
of the three NT factors while keeping the remaining constant, e.g., solving for u;; takes the
following form:
aSSE
O jr N

—2(Biir 050 (Vigws)) (@ine — wij (Vigwes)), (3.65)
= —Evkiw,fil:ﬂ-;rm — Uil {Uklwfl}} Egﬁﬁ}

Setting (3.66) to zero and solving for w;; leads to,

Ukejr Wejt (Vi Wiy)ity = Vpt Wegr Qe (3.67)
((Viegr Ok) (e wez) tyrj = Vpegr@yogeptwigye, (3.68)
gy = ((Vigrvng) (weyrwe)) ' (vrgronewey), (3.69)

where the rearrangement on the left-hand side in (3.68) produces the commonly used iden-
tity to efficiently calculate the pseudo-inverse of the Khatri-Rao product of two or more
matrices as a natural matter of course. See Kolda and Bader for more details on the ap-
plication of this identity to CP decomposition [83]. This result is produced by using the
associativity and commutativity of NT algebra to rearrange operands so that inner products
are executed with higher priority than entrywise or outer products. This can be contrasted
with Lev-Ari’s 3-page proof using Khatri-Rao products [72] that involves the auxiliary op-
erations of vectorisation, selection matrices, diagonal extractions, and requisite identities
involving these operations. The contrast between the two approaches is dealt with in more
detail in the next subsection.

3.3.2 Parameter Estimation

As Liu and Trenkler [73] note, entrywise products have been receiving increased atten-
tion in several fields. As MV algebra is not inherently equipped to accommodate entrywise
products, these types of operations are introduced within EMV algebra. Despite notable ap-
plications, EMV algebra has not enjoyed widespread adoption in technical computing pack-
ages [73]. Some of these extended operations include generalised Kronecker products [116],
Katri-Rao products [162], and Hadamard products [73]. However, each operation requires a
dedicated symbol, which complicates the algebra and makes it difficult to manipulate. Al-
gebraically, commuting or associating these products often involves nonintuitive identities.

The following example provides a good comparison between the respective strengths of
EMYV algebra and NT algebra. It has similar attributes to the ALS algorithm described
in the previous subsection, but its motivation stems from special linear mappings and not
mappings beyond linear.

As described by Liu and Trenkler [73], Lev-Ari [72] outlines a scenario in antenna signal
processing where scattering coefficients must be estimated from observations. This problem

can be expressed using N'T algebra and a ternary inner product:

h’ij = QLT bjk: [3.?'[!}

59

where x;, represents the set of coefficients to estimate. Assuming the system is fully ranked
for the k index, this can be solved using the association identity of (3.16):

(aikbik) e = hij., (3.71)
o = (asgbk) . (3.72)

This pseudo-inverse is very similar to those found in the ALS technique explained in Sec-
tion 3.3.1. Like the ALS technique, efficiencies can be gained. In Section 3.3.1 these
efficiencies were gained by differentiating the SSE. They can also be revealed by expanding

the expression for the MP inverse:

ok = (asgbirasebse) " (aubichis), (3.73)
2k = (@) (kb)) (aighszbse)- (3.74)

As mentioned in the previous subsection, Lev-Ari arrives at an identical solution, but
does so using EMV algebra operations [72]. This involves using 5 and 4 separate operators
and identities respectively. As well, the first-degree data is represented by embedding it
within a matrix. Having to remember these extra operations, and their accompanying
identities places additional burdens on the researcher. Making matters worse, there seems
to be no agreement on symbology. Lev-Ari [72] and Liu and Trenkler 73] use different
symbols to represent the same operations in their exposition of the same solution.

When the problem is formulated using NT algebra, the only identity required is the
association identity—all other operations flow naturally from the algebra, including rear-
ranging operands. To contrast the two approaches, the solution provided by Lev-Ari [72] is
given below. Here, &, &, and o represent the Kronecker, Khatri-Rao, and Hadamard matrix
products, respectively. The two other symbols used are the vec and vecd operations, which
serve as flattening and diagonal selection operations, respectively. The definitions of these
operations are given by Liu and Trenkler [73]. Even without knowing the definitions, the
following derivation provides insight into the complexity of EMV compared to NT algebra:

AXBT =H, (
vec(AXBT) = vec(H), (

(B @ A)vec(X) = vec(H), (

(B ® A)vecd(X) = vec(H), (3.78)
veed(X) = [(BO A)T(Bo A)| /(B © A) vec(H), (
veed(X) = [(BT o B)(AT 0 A)] /(B ® A)Tvec(H), (
veed(X) = [(BT o B)(AT 0 A)] " !vecd(ATHB). (

This example demonstrates that NT algebra can provide a simpler and more natural
formalism even when only second-degree N'Ts and first-degree parameters come into play.

Moreover, the EMV algebra approach is less efficient, as it requires matrix products to be

60

computed, followed by diagonal selection, which involves extra computation that is later
discarded. NT algebra can also naturally accommodate high-degree data, a characteristic
not shared by EMV algebra.

3.3.3 Separable Nonlinear Least Squares

SNLS problems are a category of problems that describes models where one set of param-
eters, x, expresses a linear relationship provided another set of parameters, z, is known.
More formally, the model can be expressed as:

¥ = A(z)x, (3.82)

where A(z) is typically over-determined. A least-squares formulation can be used to deter-
mine the parameters that best fit the model:

. 2
min [[r(x,)|, (3:83)

rix,z) =y — A(z)x (3.84)

However, if z is known, x can be calculated using A(z)*y. This fact can be used to
reduce the number of parameters to be estimated. First, denote the projection operator
onto the column space of A(z) by P(z) = A(z)A(z)*. The complement of P(z) is P(z)- =
I — P(z). Using these formulations, Golub and Pereyra [165] proved in 1973 that the
following residual is equivalent to minimising (3.83):

min ||rz(z)|%, (3.85)
ro(z) = P(z)y. (3.86)

Thus, the problem is reduced to finding only the nonlinear parameters z and determining
the linear parameters x after the fact. As Golub and Pereyra subsequently note in a
retrospective, this observation can lead to faster convergence to solutions and better abilities
to avoid local minima [149]. For this reason, the SNLS technique has been applied to
legions of applications, including the author's work on image alignment [163] and depth-
map estimation [164].

In order to solve for 2, many nonlinear optimisation methods require the Jacobian of
(3.86), which involves the derivative of the projection operator, which will produce a third-
degree NT dependant on z. This is not trivial to formulate, as the projection operator is
partly composed of an inverse. Golub and Pereyra demonstrated how to formulate this
derivative [165], but used a matrix notation that hid the third-degree data from the reader,
relying on the reader to understand exactly where the third-degree data comes into play
and on how to multiply it with first and second-degree data. Golub and Pereyra freely
acknowledge the context-specific nature of their notation and justify its use based on relative
simplicity. However, it is instructive to formulate the problem using NT algebra. This

61

has the added advantage of being easily extensible to high-degree parameters, e.q., those
encountered in electronic imaging or other high-degree domains. As Chapter 6 will outline,
generalising the SNLS approach to high-degree domains is particularly useful for depth-map
estimation, amongst other applications.

To start, one must express the Jacobian of (3.86) using NT algebra. Let a;j;, ﬂ;;,
Ui, Pij. and pij_; denote the NT equivalents of A, A*, z, y, P, and P, respectively, where

2,
dependencies on zy have been dropped for simplicity. Note that the projection operators
are symmetric and idempotent, i.e., p;; = p;; and p;; = papy;-
The crux of formulating the derivative lies in a clever reformulation that avoids explicitly
taking the derivative of an inverse. First, note the following relationship:
1
aﬁj Opij

azf == —B—ZEJ EE.S?}

which takes advantage of the fact that the derivative of the constant-valued Kronecker delta
NT, or identity matrix when using the MV paradigm, is zero. Using the idempotence of

projection operators and the product rule, the partial derivative of p;; can be expressed as

Ipi; OPikPrj
= (3.88)
P Opk;
= —— . - . 3.59
B2 Pij + Pik B2 ()

On its own this does not seem helpful. But when expressing the Jacobian of a;; a
relationship to (3.89) can be derived. Again, using the properties of the projection operator,
note that a;; = psrar;. Thus, the partial derivative of a;; with respect to z; leads to the

following set of expressions:

3ﬂi;.-‘ Bpikﬂkj
B2 0z (3.90)
_Opa | Oy
= e ks + Pk (3.91)
Rearranging (3.91) leads to
Opa. Day; day;
5‘25 ﬂ'-k."-' - 32f — Pik azt 1 [3.92}
dag;
= pﬁa—;. (3.93)
The expression in (3.93) can be multiplied on both sides with ﬂjm_, resulting in
Opi Ea;ﬂ at
Brg O3 jm ijr _-;r.r.ﬂ |:394}
5‘
'?a e a‘” at, (3.95)

With the above expression in hand, one can turn to formulating the derivative of p;;.

62

The first term of (3.89) corresponds to (3.95). The second term of (3.89) can also be
formulated, but by observing that the symmetry of p;; and its derivative means that it
is simply a permuted version of the first term, where the positions of i and j have been
reversed. This leads to a complete expression for the partial derivative of the projection
operator:

Bt ph (3.96)
With (3.96) in hand, the partial derivative of the reduced residuals can be reformulated,
allowing the separable representation to be employed within gradient-based optimisation al-
gorithms. In Golub and Pereyra’s exposition, the symmetry is expressed using a transpose
operator that the reader must know only applies to the “slices” of the partial derivative of
@m. Unlike the context-specific notation used in the seminal paper [165], the derivation
of this result here can also be extended to incorporate high-degree operands and entry-
wise products, which will prove useful for the depth-map estimation problem discussed in
Chapter 6.

3.4 Summary

The need to perform arithmetic upon high-degree data is a wide-ranging need, arising in
myriad scientific disciplines. However, existing algebras for high-degree data do not satisfy
the disparate requirements expressed by this body of work. Viewing a universal formalism
as a positive development, we outline an N'T algebra, grounded in Einstein notation, whose
capabilities imbue it with a unifying capacity for work upon high-degree data.

NT algebra supports commutative and associative inner, entrywise, and outer products
across arbitrary indices of N-degree data. With an association identity in hand, N'T algebra
also provides an associative framework for n-ary inner products, an operation crucial to
many applications, but not typically dealt with head-on by previous algebras. Completing
the picture, NT algebra also supports linear inversion of NT equations. As outlined by
Chapter 2, these capabilities are necessary features for a universal algebra for high-degree
data.

These capabilities are rounded out by unary operations, including the entrywise ana-
logue of contraction called attraction. Differentiation, non-linear functions, and vector and
matrix NTs are also supported, yielding an algebra with singular expressibility. Three ex-
emplars, drawn from CP tensor decomposition, linear parameter estimation, and the SNLS
formulation, showcase the abilities of NT algebra within varied and impactful settings.

NT algebra represents an important step forward toward the prospect of a universal
technical computing framework for high-degree data—one that would unite divergent work
beyond the MV paradigm. Yet, these algebraic innovations are orphaned without supporting
software. N'T algebra, and other high-degree algebras, may describe operations we would
like to perform, but NT software, and kindred contributions, must aim to expand the scope

63

of what operations we can perform. Since computational approaches for high-degree data
are still being established, developing software for NT algebra requires its own innovations.
The rich topic of NT software is explored in the following two chapters.

Chapter 4

A Dense Foundation

To perform numeric tensor (N'T) operations for high-degree applications, software libraries
must be available for the formalism of NT algebra. This is the first of two chapters which
overview the NT software designed to provide this functionality. As highlighted in Sec-
tion 2.2.5, this software is composed of two components. The first, called LibNT, is a C4++4
library that encompasses the high-performance algorithmic kernels needed for NT com-
putations. In addition, LibNT is designed to support N'T algebra programmatically in a
compiled-language environment. The second component, called NTToolbox is a MATLAB
interface to LibN'T's fast NT algorithms, offering a flexible interpreted language environ-
ment for NT computations. Both libraries are open source and shared online!. Reflecting
their great translational importance, these libraries are licensed using the highly permissive
three-clause BSD license [166]. Moreover, the libraries are documented using Doxygen [167]
and are accompanied by extensive unit tests.

We first provide an outline on how LibNT and NTToolbox support and implement
NT algebra. Following this we delve into the design choices and implementation details
of the dense algorithms for NT computations. Finally we provide benchmarks comparing
the performance of LibNT and NTToolbox’s dense algorithms to those of other high-degree
software packages. Since the high-performance algorithms are implemented using LibNT’s
C++ code, for simplicity when discussing these kernels we will refer to them as being part
of LibNT, with the understanding that NTToolbox offers an interface to these routines.

4.1 NT Software Overview

The following sections provide an overview of LibNT and NTToolbox. Section 4.1.1 be-
gins by discussing the design principles guiding the development of these libraries. Sec-
tion 4.1.2 then discusses how to constructively represent any NT product. This is followed
by Section 4.1.3 which discusses how LibNT and NTToolbox resolve and check NT algebra

exXpressions.

lhttps:l.-" Jeithub.com/extragoya,/LibNT

65

4.1.1 Design Principles

In its outline of software for high-degree data, Section 2.2 explained that important qualities
are comprehensive support for NT algebra, support for sparse data, and programming and
computational efficiency. Both LibNT and NTToolbox offer full comprehensive support of
NT algebra and sparse NTs. However, completely satisfying programmatic and computa-
tional efficiency simultaneously is not always possible. Thus, when faced between the choice
of the two, LibNT and NTToolbox take opposite paths, leaning toward computational and
programming efficiency, respectively. Yet, when considered together, the two libraries com-
bine to offer a suite of NT software that allows users to prioritise for programmatic or
computational efficiency as their needs demand.

The design principles used to implement LibNT and NTToolbox follow from their re-
spective emphases on computational or programmatic efficiency. These are detailed below.

LibNT

When faced with the choice between programmatic efficiency and computational efficiency,
LibNT is designed to lean toward the latter consideration. Nonetheless, LibNT is still
meant to provide an easy-to-use programmatic environment for N'T algebra. Because C4++
is a language with enormous breadth, there are many design choices toward implement-
ing a library for NT computations. In LibNT’s case, we choose to employ both generic
programming (GP) and object-oriented programming (OOP), which are two programming
idioms that can sometimes conflict, as they are typically connected with static and dynamic
polymorphism, respectively [126]. The former is associated with templates and fast running
times while the latter is a much more rigid idiom, where functions are constrained to only
operate on a certain set of classes or sub-classes.

For numerical libraries run-time speed is often paramount. As LibNT falls into this
category, it cannot afford the virtual look-up times of traditional OOP inheritance and
when possible it errs on using the compile-time resolution capabilities of GP. Nonetheless,
NTs are accompanied by specific algebraic and computational structures, whose need for
operations, inheritance structures, and overload sets make them amenable to certain OOP
concepts.

A programming idiom that offers an excellent mix of O0OP and GP functionality is
the curiously reoccurring template pattern (CRTP) [126]. A more descriptive, yet less-
used, name for this idiom is the parametric subclass pattern (PSCP), a term coined by the
makers of Boost’s Phoenix library [168]. The static inheritance used in the PSCP is often
contrasted with the virtual functions seen in OOP, as it offers much (but not all) of the
same dispatching capabilities but without the same costs to efficiency. As inheritance is
the cornerstone of the PSCP, the idiom provides an explicit structure, which is desirable
for implementing N'T classes with specific operations. For these reasons, all NT classes
within LibNT are designed to follow the PSCP idiom, mirroring the route of other fast and

66

successful numerical libraries [144, 145].

To further decrease running time as much as possible, LibNT resolves the grammar of
NT algebra during compile time using template metaprogramming (TMP). In effect TMP
can commandeer standard compilers to check N'T expressions and perform static dispatches.
This allows C++ to act as a domain-specific embedded language (DSEL) for NT algebra.
These techniques have helped other numerical libraries with complex grammars match the
run-time speeds of hand-written code seen in FORTRAN-style scientific computing rou-
tines [101,126]. Importantly, TMP allows programming efficiency to remain high without
sacrificing computational efficiency, allowing users to program directly using N'T algebra.

In addition to these advanced programming techniques, LibN'T also employs many new
features of the C4+411 standard. For instance, unlike many other NT libraries, there is
no upper limit to NT degree. Implementing a library general enough to handle arbitrary
degrees during compile time, with the accompanying arbitrary number of indices in the
NT algebra grammar, required using variadic templates, which are a feature unique to
the C4++11 standard. This and other features of the standard has allowed C++ to enjoy a
generalisability unique among statically-typed languages, which serves it well for supporting
NT algebra.

While LibNT is kept as self-contained as possible, it does rely on other code bases.
For instance, its TMP capabilities were implemented using Boost’s metaprogramming li-
brary [169]. As well, LibNT is heavily reliant on matrix-computation routines in order to
implement certain N'T operations. For these cases, LibNT uses the Eigen [145] library. To
ease barriers to adoption, LibNT follows a header-only principle in its own C+4 code base.
This also extends to the libraries it depends on, as only the header-only components of both

Boost and Eigen are mandatory.

NTToolbox

While C4++ is a powerful, portable, and accessible language, it is not always the most con-
venient choice for prototyping and other scientific applications. Acting as an environment
for NT computations within the MATLAB environment, NTToolbox is designed to embody
programming efficiency.

NTToolbox uses MATLAB’s OOP capabhilities to represent N'Ts and their operations.
Unlike LibNT, all aspects of an NT, including its degree, datatype, and its sparsity are
resolved dynamically at runtime. To ease programming burdens, all NT expressions are
supported using string processing. Correctness is checked at runtime. Thus, as much as
possible, the burdens to program using N'T algebra are removed. Nonetheless, these features
mean dispatching is performed dynamically, which adds to runtime costs.

Even so, these abstraction penalties are often very small compared to the costs of ac-
tually performing NT computations. To keep computational efficiency as high as possible,
NTToolbox always relies heavily on MEX interfaces to LibNT’'s C+4 algorithmic kernels.

67

Rijgh bghra = AB

A= ﬂ'ijgheije;'l; B= ghrseghe;ra
[a1111 ... epwn @111z ... @pINN | [Bri1r .. by Bz L. buww
A— GN.111 . ﬂnim ﬂN.i'lE . ﬂm-NN B-— f"N:ut . bm.m f'N-uz . bN'l.NN
ai211 ... @qaN1 0 91212 ... G13NN bizin ... bppya Bmz ... bionn
L ﬂuﬁn GN]';INI ﬂm.nz BN};NN] L f"m:ni E"ND:INI f"m:n: E"N]:INN]

Figure 4.1: Mapping inner and outer products to a matrix product. This figure depicts one
possible mapping of the NT product a;;,,bzh,s to the product of two matrices. End users
need not know the exact mapping. Here the range is assumed to be N for all indices of @ and
b. Also depicted are the algebraic mappings to matrix NTs as described in Section 3.2.6.

Thus, even though NTToolbox leans toward programming efficiency, it still offers a highly

computationally efficient environment for NT computations.

4.1.2 Lattice Products

With the general design principles elucidated, the computational strategies behind the NT
libraries can be explored. For instance, executing or inverting N'T products is a core aspect
of any library aiming to support NT computations. NT products also epitomise many of the
challenges inherent in NT computations, as they can consist of any combination of inner,
entrywise, and outer products executed across operands of arbitrary degree. Moreover, to be
effective, an N'T software should execute NT products with high efficiency. This subsection
outlines a constructive platform, called the lattice data structure, that provides a means to
quickly execute or invert any N'T product.

A binary NT product can be boiled down to a sequence of linear mappings over multiple
indices. Entrywise products define multiple linear mappings, which in turn are defined
by the makeup of inner and outer products. Matrix products are the typical symbolic
representations of linear mappings [170].

Any inner /outer product combination can be mapped to a matrix product [112]. Fig-
ure 4.1 depicts one possible mapping of an NT product consisting only of inner and outer
products. As the figure demonstrates, the indices of a and b undergoing an inner product
are mapped to the columns and rows of the matrices A and B, respectively. The remaining
indices undergoing an outer product are mapped to the rows and columns of A and B,
respectively. Mapping inner and outer products to matrix products is a powerful approach,
as it provides a ready means to exploit established and gold-standard algorithms for matrix
computations.

An analogous mapping when entrywise products come into play is not as well recog-
nised. In such scenarios, any N'T product can be mapped to a sequence of matrix products,
which Joseph calls a lattice [123]. Indices undergoing an entrywise product are mapped to

63

Cike = QijeDjke

Ce = AB;
0
C=AxB
Ag = a\ijge,-e;r Bg = bjkfejel Ciky = ;-I-Cgek

Figure 4.2: Mapping inner, entrywise, and outer products to a lattice product. This figure
depicts one possible mapping of the product of two third-degree NTs: a;;sb;.,. Each set
of inner and outer products must also use a mapping, analogous to the one used in Fig-
ure 4.1. Also depicted are the mappings to matrix N'Ts using the convention described in
Section 3.2.6.

correspond to the depth or tabs of the lattice. The number of tabs must be the same for
each operand and the same multiplication rules used in matrix-vector (MV) algebra apply.
Figure 4.2 depicts the mapping of a product of two NTs into a sequence of matrix products.

Figure 4.2 also demonstrates that lattice mappings can be framed as mapping scalar NTs
to matrix NTs. Nonetheless, lattices differ from general matrix NTs, in that they do not
possess arbitrary N'T indices that allow a variety of operations. Instead, they possess rows,
columns, and tabs, which follow tightly constrained behaviour. For instance, their third
index can only be multiplied entrywise. For this reason, lattices are denoted symbaolically
using calligraphic script, which helps differentiate them from the more free-wheeling matrix
NTs. This also helps emphasise that lattices are entities designed for a purely constructivist
role, being implemented in software as a datatype different than NTs. Examples of binary
lattice operations are summarised in Table 4.1.

As Table 4.1 illustrates, in addition to providing an equivalent constructivist represen-
tation for NT multiplication, lattices play an equivalent role when it comes to solving linear
NT equations. Since fast and efficient matrix computations enjoy a long pedigree, mapping
any NT product into a lattice product allows the seamless integration of gold-standard MV
algorithms. Moreover, tabs can be multiplied independently, providing a parallel framework
for any general entrywise product. Thus, the lattice forms a core datatype for both LibNT

69

Table 4.1: Lattice operations and prerequisites. Dimension prerequisites are specified by
the dimension sequences.

Operation Requirements on each tab of 4
C = A + B
MxN=FP MxN=FP MxN=FP
A = A - B
MxN=FP MxN=FP MxN=FP
C = A #* B
MxQ=P MxN=P NxQ=P
C =(A)1 = B Non-singular
MxN=FP MxM=xF MxN=FP
C =(A) = B Fully column-ranked
QrN=P MxQ=P MxN=xP

and N'TToolbox, acting as cornerstone for NT computations.

For dense N'Ts, mapping to a lattice is accomplished by permuting data to keep mem-
ory accesses across inner products contignous. Once done, fast dense matrix routines can
execute or invert the product. Both libraries use the Eigen library’s [145] routines for this
purpose. Performing the same operation efficiently in the sparse case is more complex,
which is a topic explored in Chapter 5.

4.1.3 Supporting NT Algebra

To seamlessly support NT algebra, NT software should emulate as close as possible the
written notation. The capabilities of LibNT and NTToolbox in supporting N'T algebra can
be best showcased using an exemplar. With an exemplar presented, the mechanics by which
the libraries support the unary, binary, and assignment operations of NT algebra can be
explained.

The alternating least squares (ALS) algorithm, featured in Section 3.3.1 for canonical-
polyadic (CP) tensor decomposition, provides an excellent exemplar to demonstrate LibNT
and NTToolbox’s capabilities. For instance, (3.69) combines entrywise products and pseudo-

inverses together. The expression in question is repeated here:

Uit = ((Vkg Vkm) (Wey Wem)) (Vg agrewyyr). (4.1)

Focusing on LibNT for now and supposing the dimensions of a;y are mi x ns x ng and
the number of factors in the CP decomposition r, Figure 4.3 depicts how (3.69) would be
expressed.

In a practical application the code snippet of Figure 4.3 would be a component of a larger
routine. Even so. the example illustrates several important facets. For one, since LibNT
uses TMP to check the validity of NT expressions, the matchings between NT indices are
examined at compile-time. Since TMP can only differentiate between types, and not values,
each declared index must be a different type. The NTINDEX macro fulfills this purpose.

In terms of algebraic expressions, LibN'T faithfully represents N'T algebra, with small but
important variations. First, exclamation points, instead of underlines, designate entrywise

T0

DenzeNT <double ,3> al(nl,n2,n3); /Scould elsc be sparse
DenseNT <double ,2> y, u, v{n2,r), wind,r);

NTINDEX i; NTINDEL ji;

NTINDEX k; NTINDEX 1;

Sfinitialise values of a, v, w
yij,ml=C(wik,'jlevi{k,'m))*{w(l, ' ji*w(l,!m));
w{i,mi=y(j,m) | " (wl{k,'jl*ali,k,ll*xv{1,150);

Figure 4.3: LibNT code for executing CP tensor decomposition operations. The code
snippet provides a programmatic implementation of (3.69). Syntax errors are detected at
compilation.

DenseNT al(nl,n2,n3); /Scould also be sparse

DenseNT af(nl, n2, n3), v(n2,r}, wind,r), ¥, u;
Sfinitialise values of a, v, w
yO3,m)=(vOk, 1) *v 0k, te? D)+ (w(?1, 15)+ (1, 1m?)};
w{?i,m?)=y (?j,m? N " (w(k,'j?)2a(i, k17)*xv(?1,05%));

Figure 4.4: NTToolbox code for executing CP tensor decomposition operations. The code
snippet provides a programmatic implementation of (3.69). Syntax errors are detected at
runtime.

products. Second, similar to MATLAR's backslash operator, the | operator, which is the
closest C++-supported operator to the former, is used to perform an inversion or pseudo-
inversion depending on the dimensionality and determinedness of the linear mapping being
inverted.

The final important alteration concerns n-ary inner products. Unlike NT algebra, LibN'T
only supports binary operations. Thus, to execute an n-ary inner product, the association
identity should be used to break it up into binary operations. However, as discussed in
Section 3.2.1, NT algebra uses an implicit convention whereby surrounding an erecuted
entrywise product with parentheses removes the corresponding underlines, enabling the
expression of n-ary inner products. Since the C4++ language does not provide a means
to detect when expressions are surrounded by parentheses, an explicit convention is used
instead, whereby the ~ operator removes any underlines from any erecuted entrywise prod-
ucts within a parenthesis. The last line of Figure 4.3 depicts this operation. The expression
resolution capabilities of LibN'T are intelligent enough to also handle situations where an

index may be underlined but not used in an entrywise product, such as:
x(3,K) = ~(a('i, 13, k) # (14, 1)) * (1, 13, k),

where the exclamation point for k is not removed within the parenthesis because it was not
involved in the entrywise product executed therein.

As Figure 4.4 demonstrates, NTToolbox provides similar functionality, except in the
MATLAB interpreted environment. As demonstrated, the code is very similar to LibNTs
version, except that string processing is used to resolve NT expressions. Using string pro-
cessing means that unlike LibN'T, no declaration of NT indices is needed within NTToolbox

71

a(li,j,j,k,i)
id predicate full predicate

|41 § j k i [3 3 k i
i - XX XK i) - X X X X
J - - XX] . - KX
J - XX] - XX
k - X k X
i . i .

(a) (b)

a(1i,j,k)*x(j,1,i)

id predicate full predicate
| 1i j |11 § x
j| X v X il X v X
1| x X X 1| x X X
il X X i) x X X

(c) (d)
Figure 4.5: Example auto-sequence and cross-sequence checks of NT expressions. (a) and
(b) depict an auto-sequence check while (c) an (d) depict a cross-sequence check. Example
originating N'T expressions for each is also illustrated. The left column depicts the checks

using the id predicate while the right uses the full predicate. A " denotes a match, while
an X denotes no match.

. In addition, the \ operator is used to perform the solution of linear equations.

While important to consider, the slight alterations to N'T algebra necessary for LibN'T
and NTToolbox's functionality do not seriously alter their ability to replicate the formalism.
Expression resolution for both libraries is powered by an identical set of rules. How these
rules are implemented do differ. In LibNT’s case, TMP resolves expressions. As TMP is a
stateless and functional language, recursion is fundamental to LibNT"s grammar checking.
On the other hand, NTToolbox uses the comparatively simpler approach of string process-
ing. which can be performed procedurally at runtime. These distinctions will not be dwelled
upon here. Regardless of any differences in implementation, the two libraries rely on the
same set of rules for resolving N'T expressions. These are detailed below. Any code snippets
will be drawn from LibNT.

Unary Operations
Whenever an NT datatype is subscripted by NT indices, the first step is to always check

and perform any expressed unary operations. Apart from resolving any unary operations,
this also acts as the first level of checking N'T expression legality for any subsequent binary
operations. An auto-sequence check, where the indices of an operand are matched against
each other, powers the grammar checking rules of unary operations.

Figure 4.5(a) and (b) demonstrate an auto-sequence check using two different types of
predicates. The first, called the id predicate, only examines the index letter when deter-
mining a match, ignoring any exclamation marks. The second, called the full predicate,

T2

considers both the index letter and number of exclamations when declaring a match.

These two types of auto-sequence checks are performed to first confirm that if two indices
share the same letter, they also also share the same number of exclamation marks. If this
rule is violated, the code will not compile in LibNT’s case and C4411's std: :assert is
used to provide a meaningful compilation error message. In NTToolbox’s case, a runtime
error will trigger if the code is run.

After the expression legality is confirmed, a second check observes if a contraction and for
attraction is expressed. If so, any corresponding unary expressions are executed. For

instance the following expression,
a(li,j,j.k,'i),

will execute a contraction and attraction across the j and i indices, respectively. This will
produce a second-degree NT indexed by i and k. Since a new index sequence has been
calculated, the expression can be chained together with other expressions to create a larger
NT equation, e.g.,

a(!i, j, j,k 1) *b(i,1),

Binary Operations

Binary operations between two N'Ts can involve any manner of matching between operand
indices. A cross-sequence check between index sequences of two operands is used to resolve
binary operations. Figure 4.5(c) and (d) depict an example cross-sequence check using the
id and full predicates, respectively.

Binary expressions fall into two major categories—simpler entrywise operations, such as
addition and subtraction, and more involved operations, such as multiplication and solution
of equations. The former category can be denoted as abelian operations, which is a term
drawn from abstract algebra that refers to operations, such as addition and subtraction,
that are commutative but not distributive.

For these types of operations, the expression legality is checked by ensuring that every
index is matched with another index. In addition, each index must have the same number of
exclamation points. Legality is verified using a cross-sequence check with the full predicate.
Some legal and illegal LibNT expressions are given below.

a(i, j, k) +b(j,k1i);: \\will compile,

a(i, j, k) +b(j, 'k, i); \\will not compile,
a(i, j,'k) +b(j.k i); \\will not compile,
a(li, j, k) +b('i,k 1); \\will not compile,
a(i, j,k,1)+b(j,k.i); \will not compile.

T3

Instances that do not compile under LibNT will report a runtime error under NTToolbox.
Since abelian operations can also express a re-ordering of index sequences between the two
operands, expression resolution also computes the re-ordering of the right-operand indices
with respect to the left operand’s.

The rules for multiplication and the solution of equations differ from abelian operations.
In these cases, expression checking must treat entrywise product indices different than
indices without exclamation marks. A cross-sequence check uses the full predicate to verify
that the binary expression follows two rules: a standard index can have none or one match
whereas an entrywise index must match up once. Standard indices that have a match
correspond to inner-product indices, otherwise they are outer-product indices.

Provided the expression passed the check, the re-ordering of indices used in inner, outer,
and entrywise products is calculated for each operand. These are then used to flatten each
NT into a lattice. After execution of the multiplication or solution of equations, the resulting
lattice is expanded back into an NT and returned along with a new index sequence. For

instance, the following expression:
a(i,!j, k) =b(k 1,'3),

will return an NT parameterised by an index sequence of 1,1,!j.

Assignment
Assipnment in N'T expressions may involve a re-ordering of indices. Take for instance the
following expression:

a(i,3,k) = b(j, k,1);,
which involves a re-ordering of all indices. Thus, in executing assignment, the matching
between index sequences on each side of the equal sign must be examined.

Similar to abelian operations, a cross-sequence check examines expression legality by
ensuring that every index of the left operand is matched with an index of the right operand.
However, in assignment’s case only the id predicate is used, meaning the occurrence of excla-
mation marks is ignored in matching indices. Some invalid and valid assignment expressions
are listed below:

a(i,j,k) =b(j,k 1); \\will compile,
a(i,j,k) =b(j, k,1);\\will compile,
a(i,j, k) =b(j,k,1);\\will compile,
a(!i, j,k) =b('i,k,1);\\will not compile,
a(i,j,k,1) =b(j, k 1i);\\will not compile.

Like abelian operations, a key component of the matching consists of calculating the ordering
of the right-operand indices when matched to the left-operand indices.

T4

4.2 Dense Algorithms

Dense NTs are represented using a contiguous array of data elements, which also allows
random-access. A fixed lexicographical order was chosen where data elements are arrayed
with the most significant index as the last index, followed by the second-last index and so
on. For a second-degree N'T this lexicographical order is equivalent to column-major order
in matrices. The speed of multiple random accesses is dependant on the contiguity of the
data elements being accessed, which is largely dependant on which indices vary between
consecutive data accesses. Lattice multiplication and the solution of linear NT equations
are performed using Eigen’s routines [145)].

This section details some additional considerations that help speed up the execution of
dense NT computations. Reflecting LibN'T"s focus on speed, these improvements have been
implemented therein. Several, but not all, of the same enhancements could be extended to
NTToolbox, but this is an aspect of future work.

First, Section 4.2.1 explains how LibNT performs abelian operations without creating
extra temporaries. This is followed by Section 4.2.2, which outlines how LibNT permutes
dense data based on an index rearrangement or shuffle. Section 4.2.3 discusses how index
re-ordering calculations can be avoided. Finally, Section 4.2.4 briefly outlines instances
where an NT product need not be executed using a lattice product.

4.2.1 Abelian Operations

C++ is an eager programming langnage which means that expressions are evaluated im-
mediately. As a result, n-ary expressions composed of many operands may produce a large

number of temporary objects. For instance, in an eager language the following expression,
y(i) = a(i) + b(i) + (i), (4.2)

produces a first temporary, the result of a(i)+b(i), which is then added to c(1i), creating
another temporary. This results in two separate loop traversals over the index range of 1,
in addition to any added memory consumed by the temporaries.

If one was coding (4.2) by hand, the most efficient implementation would be to loop
through all NTs simultaneously, and perform a ternary addition across each of the three
operands, assigning the result to y(i). This not only saves on memory costs, but it also
means that only one traversal through the elements is needed rather than the two traversals
needed in the eager scheme. This latter benefit also enjoys the added advantage of reducing
cache misses should the NTs in question be small enough.

Expression templates provide a means to realise the benefits of hand-coding expressions
like (4.2). By combining static dispatch with lazy evaluation, expression templates often
produce code that is comparable to or even faster than hand-coded solutions [101,127,142].
‘While expression templates mean one can avoid hand-coding every possible n-ary operation,

using them still requires coding every possible binary expression. When using indicial

7o

notation, e.g., Einstein or NT algebra, this means coding every possible index matching
for every type of arithmetic operation. For N-degree operands, there are N! possible index
matchings just for abelian operations alone, a quickly unworkable number. This perhaps
explains why FTensor and LTensor, two expression-template libraries for high-degree data,
only support general NTs up to degree two [101] and four [127]2, respectively. Blitz4+,
which supports high-degree Einstein notation, evaluates expressions eagerly.

While it is possible to use C4++11"s incredibly flexible std: :function object to per-
form lazy evaluation. this would be accompanied by virtual function calls, which are to
be avoided for repeated calls in numerical libraries [142]. For this reason, LibNT does
not evaluate abelian, or any other operations, lazily. This means LibNT would perform
two loop traversals to evaluate (4.2). Nonetheless, even though it eschews lazy evaluation,
LibNT still manages to avoid creating unnecessary temporaries. For instance in evaluating
(4.2), LibNT first creates a temporary NT that holds the result of a(i)+b(i). Afterwards,
when ¢(i) is added to the temporary NT, LibNT will recognise its temporary nature and
change the + operation to a += one. Upon assignment to y(i) std: :move semantics are
employed, avoiding a needless copy. Thus, LibNT avoids creating any extra temporary
memory locations when performing abelian operations.

This process is invisible to the user and is dispatched statically during compilation,
meaning this overhead does not impact runtimes. In terms of execution time, avoiding
additional memory provides significant boosts in runtime speed, especially when NTs are
of large dimensionality.

4.2.2 Dense Permutations

Permutation of data elements based on an index shuffle represents a key operation in LibNT
that underlies many dense arithmetic operations. For N-degree data, these permutations
can be considered generalisations of the familiar transposition operation in the MV frame-
work. One operation that frequently requires permutations is assignment. For instance, the

following expression illustrates a third-degree assignment requiring a permutation,
bjﬂ: = Qijk- (43}

Since the contents of a;;; are being written to a new NT, (4.3) is best executed using an
out-of-place permutation, provided a;;. is not a temporary object.

On the other hand, if a,;;. is designated as temporary, e.g., an rvalue reference in C4+4-11,
then an in-place permutation could also be a good option. This can occur frequently, as
the execution of NT arithmetic expressions, especially n-ary ones with many operands,
will produce temporary objects that often must be subsequently permutated before being
assigned or used in subsequent operations.

? Although we were unable to compile certain third or fourth-degree expressions with the LTensor code
base.

TG

In the MV paradigm, permutations are limited to the familiar two-index transposition.
Even the best in-place transposition algorithms cannot match the out-of-place versions in
running time [171], relegating in-place transposition to only those situations where memory
use is absolutely paramount. However, when working within the N-degree context of the
NT framework, pinning down the merits of in-place vs. out-of-place permutations is not
s0 black-and-white, as running times are affected by the NT degree, absolute sizes of index
ranges, relative sizes of index ranges, and the specific permutation in question.

Very limited work on in-place high-degree permutations can be found in the literature.
For instance, Ding [172] discussed an in-place permutation algorithm for NTs, but the
posted results only considered one particular permutation of third-degree N'Ts. For this
reason, the relative speeds between the two options remains very much unclear and more
experiments are needed to gain a better picture of the merits of in-place vs. out-of-place
dense permutations.

To help fill in this picture, an in-place permutation algorithm was implemented in
LibNT. The routine is based on the vacancy-tracking cycles algorithm of Ding [172] along
with the improvement suggested in Sec. III A of Jie et al’s work [173]. In the simplest
version, a bit array is used to keep track of which data locations have been touched or not.
Various anthors have published means to avoid the storage of this bit array [171,172,174],
but when implemented none of these were able to match the running times when the bit
array is included. For this reason, LibN'T takes the bit-array approach, along with its added
memory consumption.

Experiments performed permutations on third, fourth, and fifth-degree NTs. The run-
ning times of in-place vs. out-of-place permutations for different dimensionalities are plotted
in Figure 4.6. For the specific dimensionalities, degrees, and permutations in question, the
results indicate that in-place permutation can post running times competitive with its out-
of-place version. Thus, LibNT opts for in-place permutations of temporary dense N'Ts of
third-degree or higher, because runtime compares favourably with the out-of-place versions
and there is no extra memory consumption.

These results only shed light on a sliver on the different permutation possibilities LibN'T
may encounter, and more work is needed to characterise the relative merits of each permu-
tation type. This should include approaches found within computational chemistry, where
tuned [93] and multi-threaded [95] approaches to dense permutations have been shown
to yield significant performance gains. Similar strategies should be explored for the NT

software.

4.2.3 Avoiding Index Calculations

LibNT can support any manner of matching between indices for any of the supported

arithmetic operations or assignments. For instance, in the expression,

C(i,j?k} = a-(k: 1:.]} +b{jak7i}1

T

=== i = @ik
ol e B ; = @ikt
—— hk-t’m'ij = Qijkfm /'

na
na
T

[—
o o
T T

1

—
na
T

Ratio of In—Place to
Out—of-Place Permutation Time
E:! —
=] o

25 ZID EIIS 22[! 225
NT Dimensionality
Figure 4.6: Comparison of out-of-place vs. in-place permutation times. The ratio of in-
place to out-of-place permutations of the same NT is plotted for increasing dimensionalities,
where the executed permutation is indicated in the legend. 10 trials were performed at
different dimensionalities with trend lines indicating median values. Dimensionalities were

dim = n x 2n = 3n, dim = 3n x 2n x 3n x n, and dim = 2n x n x 2n x 3n x n for the third,
fourth, and fifth-degree N'T results, respectively. The x-axis plots the dim values.

each element of b(j,k,i) must be added to a matching element in a(k,i,j) whose lo-
cation is based on how operand indices match up. A similar process is involved with the
resulting assignment. This necessary matching involves calculating equivalent index loca-
tions, which may consume significant computational cycles relative to the arithmetic or
assignment operation in question.

Nevertheless, some N'T calculations do not express an index shuffle, such as the following:

c(i,j.k) =a(i,j, k) +b(i,].k).

LibNT is intelligent enough to recognise such situations at compile time and will statically
dispatch to specialised and simpler operations when needed. For instance, if the NTs are
dense the addition operation will simply add the elements of b to a without any index calcu-
lations. Dispatching at compile-time can provide significant boosts for low-dimensionality
dense-N'T calculations where the impact of any runtime overhead is disproportionately large.

Similarly, when mapping N'Ts to lattices, LiIbNT will statically detect cases where data
permutations can be avoided. In these cases LibNT will wrap the existing NT data with a
lattice data structure and use it directly within a lattice product or inversion.

4.2.4 Special Products

Computational and/or memory costs accompany the process of mapping NTs to lattices.

For dense NTs, the mapping can involve a significant amount of data permutation. The

T8

associated costs are usually justified as the rearrangement of data elements ensures high
memory locality during the execution of an inner product.

However, when only outer or entrywise products are involved the costs of the lattice
mapping become harder to justify. For instance, for dense N'Ts a pure outer product can
simply be computed by multiplying every element in one NT with every other element in
the second NT. Thus, if only outer products are involved N'T indices need not be matched
together and there is no need to place data elements in some specific order. In fact, while
not addressed here, the same conclusion applies for sparse N'Ts, except only the non-zeros
of the two N'Ts need be multiplied.

When entrywise products come into play, with or without outer products, dense N'T's can
be multiplied by simply using the random-access ability of contiguous data to multiply NT
elements with the same entrywise product indices. Thus, when an NT product expresses
no inner products, there is no need to map dense NTs to lattices. LibNT detects these
instances at compile time and statically dispatches to a multiplication routine specialised
to only handle entrywise and outer products.

4.3 Dense Performance

To gauge the effectiveness of LibNT and NTToolbox, we measure their performance against
other leading high-degree libraries. We focus on publicly accessible implementations that
have a focus on arithmetic calculations with high-degree data [101,112,124, 125,127, 175].
We also do not compare against computational chemistry packages designed for massively
parallel systems, e.g., the Tensor Contraction Engine (TCE) [91,92,93] and the Cyclops
Tensor Framework (CTF) [95], or many-core shared-memory solutions, e.g., Libtensor [94].

It should be noted that all these libraries. benchmarked or not, offer rich functional-
ity outside that of pure high-degree arithmetic, much of which is trailblazing. The fact
that these libraries focus on different domains demonstrates the widespread utility of high-
performance N'T arithmetic. As such we view LibNT and NTToolbox as complementary to
these efforts.

The topic of small-dimensionality computations is explored first, a focus of NT computa-
tional work that places heavy emphasis on reducing runtime abstraction penalties [101,125,
127]. This is followed by more generalised benchmarks incorporating entrywise products
needed in CP tensor decomposition. Since the data involved can range from small- to large-
dimensionality N'Ts, the latter benchmarks measure performance across a wide spectrum of

conditions. Details on the test platform and compiler can be found in Appendix B.

4.3.1 Small-Dimensionality Benchmarks

Fast small-dimensionality NT computations are important for general relativity [101], computer-
graphics [70], and computational mechanics [127]. In small-dimensionality settings, reducing
abstraction penalties is paramount, as their relative impact on performance can be high.

Ta

It is for these reasons that the developers of libraries like Blitz++ [125], FTensor [101],
and LTensor [127] have expended considerable effort toward using C++ TMP to support
Einstein notation with little to no runtime abstraction penalties. Since LibNT also aims to
support its N'T algebra with minimal runtime abstraction penalties, comparison to leading
small-dimensionality libraries are illuminating. Once the capabilities of these libraries are
explained, two benchmarks measure their comparative performance.

FTensor is a powerful library primarily focused on physics computations and has been
lauded for its ability to match hand-crafted code speeds while still providing a flexible
Einstein-notation interface [126]. To achieve these impressive running times, FTensor eval-
uates every operation lazily. Uniquely FTensor requires users to specify dimensionality
at compile time. This latter aspect allows FTensor to take advantage of loop unrolling
optimisations. Unfortunately, this also means that one can quickly reach the template in-
stantiation depth of the compiler, restricting FTensor’s use to only small dimensionality
NTs. As well, FTensor uses expression templates for each different matching of indices that
it supports. Since the number of possible index matchings increases factorially with degree,
only general NTs up to second degree are supported. These limitations are not actually
negatives for the physics applications FTensor was designed for, but they do restrict its
applicability to other types of problems.

Providing a more general interface, LTensor relaxes some of the restrictions of FTensor,
by providing dynamically sized N'Ts in addition to statically-sized versions. Like FTensor,
LTensor evaluates expressions lazily and uses expression templates to account for every
possible index matching. As the authors note, this required considerable amount of “tedious
work” [127]. Despite the authors’ claims to support up to fourth-degree NT's, during testing
we were unable to successfully compile expressions that included N'Ts greater than second
degree.

Acting as the most general of the three libraries, Blitz4++ is considered an exemplar in
efficient dense array calculations, trail-blazing many of the TMP and expression template
techniques that now see prevalent use [126]. Blitz++ supports Einstein notation, except
that it does not allow indices on the left-hand side of expressions and requires a free function
call to perform inner products. Unlike FTensor and LTensor, Blitz4++ supports entrywise
products. As well, Blitz4+ evaluates all Einstein notation expressions eagerly, avoiding the
limitations on N'T degree seen in FTensor and LTensor.

All three of the detailed libraries implement multiplication by accessing N'T elements
without permuting the data. This is in contrast to LibNT, which physically permutes
data into lattice or matrix form. Since extremely fast small-dimensionality computations
are an important driver for high-degree computations, it is important to measure LibNT’s
performance compared to these libraries. The primary overlapping functionality of the
cited libraries with LibNT are addition/subtraction and inner/outer products. For this

reason, benchmarks only consisted of those operations. To isolate differences in operation

Repetitions
EQQGU 50000 10000 3000 3000 3000 1000 500 200 50 10

" == o m Bljiz 4+
g AN ——— FTensor
g ~ = == | Tensor

B2, N

5] NN
S I\,

22,0 NN

- 2

j'; \“\-_‘ '\- ___..---.-..____.__.--

35 1 T = TN
27 [b N N
2' 22 23 24 25 N 26 2’? 28 29 2|‘I] 2I1

Figure 4.7: Benchmarks for small-dimensionality addition and subtraction. Tests executed
the expression in (4.4). All dimensionalities were always N x N. The ratio of running times
of LibNT to each library is plotted, where the bottom axis denotes N and the top x-axis
displays the number of trials for each N.

performance, each of these operation categories were tested independently, minimising the
effect of confounding factors. Since F'Tensor only supports general NTs up to second degree
and we were also unable to compile third or fourth-degree LTensor code, benchmarks only
consist of operations on second-degree data. As well, since Blitz4++ does not support
Einstein notation on the left-hand side of equations, operations were chosen that did not
involve a permutation during assignment.

The first benchmark focuses on addition /subtraction of second-degree NTs. Specifically,
given three operands, z;;, yi;, and n;;, the following expression is calculated:

Mij = Yij — Tig — Y — Tji + Ysi — Tij — Yji — Tji, (4.4)

where (4.4) includes all possible matching of indices between y;; and x5, highlighting per-
formance when data must be accessed in a non-contiguous manner. This expression plays to
many of the strengths of FTensor and LTensor, as these libraries use manually programmed
expression templates for each of the different index matchings, avoiding any runtime calcu-
lations of permuted index offsets. The n-ary expression of (4.4) is also highly amenable to
the lazy evaluation scheme of the two libraries, which can calculate the entire expression
using only one loop traversal and no temporaries.

Tests executed (4.4) N x N dense NTs with increasing values of N. Since running
times for a single execution of (4.4) at the lowest dimensionalities can be smaller than
the resolution of C4++4's timers, the running time for repeated executions was measured.
Figure 4.7 illustrates the running times of the three libraries compared to LibNT for values
of N ranging from 2 to 2048. Unsurprisingly, LTensor and Blitz4++ highly outperform
LibNT at lower dimensionalities, as the index matching calculations that LibNT executes
are relatively more expensive at such low dimensionalities. Surprisingly, FTensor did not

81

perform well at any dimensionality. This may stem from the test platform and compiler we
used, which may not be favourable to FTensor’s complete static unrolling of loops. However,
without a thorough investigation of FTensor's complete code base and assembly output this
speculation cannot be confirmed. Since FTensor uses statically defined dimensionalities,
the template instantiation depth limit was reached fairly early on at N = 32.

At higher dimensionalities the computational costs begin to be dominated by the actual
arithmetic operations, mitigating the cost of LibNT's calculation of permuted index off-
sets. Somewhat surprisingly, despite its eager evaluation scheme Blitz++ is able to almost
match LTensor's performance throughout the entire benchmark. Blitz4+4's performance
becomes less surprising when considering the considerable efforts and expertise the devel-
opers applied in optimising the library for different platforms, including issues related to
memory alignment and vectorised code. This is also reflected in the need to configure and
build Blitz++, optimising the library for different platforms. This is in contrast to the
header-only principle of LibNT, LTensor, and FTensor.

In terms of LibNT’s performance, the most important conclusions to draw are that
despite using a benchmark highly favouring the other libraries, LibNT can still perform
competitively. In fact, at dimensionalities of 8 x 8, LibNT's performance begins to become
competitive with that of Blitz4++4 and LTensor. Ewventually, LibNT matches or exceeds
the other two libraries in runtime performance. LibNT realises this performance, despite
offering a more general-purpose environment for calculations with high-degree data with a
greater set of operations and better support for large-scale operations.

The second benchmark focuses on inner and outer products by evaluating the following

expressions with dense NTs:

Nk = Yij T ik, (4.5)
Nk = Yij Tkjs (4.6)
Nik = YjiTjk, (4.7)
Nik = YjiTkj, (4.8)

where the different index placements test the performance of the libraries in performing
inner products in concert with index permutations. Like the previous benchmark, NT
dimensionalities were N x N, and performance tested speed for increasing values of N.
Figure 4.8 depicts the results of this benchmark. As the figure demonstrates, all three
competitor libraries outperform LibNT at small NT dimensionalities, with the exception of
Blitz+4 at the very smallest dimensionality. As expected, FTensor and LTensor performed
best with small NTs, reflecting the advantage of avoiding permutations and simply accessing
data non-contiguously at low dimensionalities. However, at higher dimensionalities these
libraries are quickly outmatched by LibNT. This performance dropoff is likely the result
of greater numbers of cache misses from non-contiguous data access during inner products.

As Blitz++4 also accesses data non-contignously its performance closely matches that of

82

Repetitions
50000 50000 10000 1000 200 200 50 20

o nm Blit7+4+
——— FTensor
= == | Tensor

LibNT Tiume
Relative to Competitors
=

Figure 4.8: Benchmarks for small-dimensionality inner and outer products. Tests executed
the expressions from (4.5) to (4.8). Dimensionality of all NTs is always N x N. The ratio
of running times of LibNT to each library is plotted, where the bottom axis denotes N and
the top x-axis displays the number of trials for each N.

LTensor, except at low dimensionalities where Blitz+-+'s calculations of index permutation
offsets takes a greater toll on execution speed.

In general, permuting data beforehand helps increase locality for the repeated element
accesses involved in an inner product, but as seen in Figure 4.8 at low dimensionalities the
cost of permutation will outweigh any benefits. Hence, for the very lowest of dimension-
alities, accessing data non-contiguously is best. Nonetheless, by the time dimensionalities
have reached 32 x 32 to 64 = 64, the benefits of permutation begin to bear fruit. At the
highest dimensionalities of 512 » 512 LibNT outperforms both LTensor and Blitz++ by
almost a factor of 8. These results indicate that dimensionalities need only reach 32 = 32
before LibN'T becomes competitive, and very soon afterwards LibNT far outpaces the other
libraries. Consequently, dimensionalities need not reach high magnitudes before LibNT can
begin to compete with or outperform these leading libraries.

4.3.2 Generalised Benchmarks

While blazing fast small-dimensionality computations remain important, in actuality practi-
cal calculations with high-degree data can run the gamut from small- to large-dimensionalities.
For many of these cases, in particular large-dimensionality computations, runtime abstrac-
tion penalties can be less of a concern. Moreover, many applications, e.q., tensor decompo-
sition, require operations outside of the second-degree inner and outer products of FTensor
and LTensor. Thus, it is important to characterise performance of more generalised oper-
ations that veer into the domain of large-scale computations and entrywise products. We
begin by outlining three leadings libraries designed to support generalised N'T operations
and contrast them with LibNT and NTToolbox. Afterwards, we detail a benchmark, drawn

83

from CP decomposition, that measures performance in executing generalised N'T operations.

In terms of libraries that can support generalised large-scale operations, Blitz++. pro-
filed in the previous subsection for small-dimensionality computations, is a prominent ex-
ample [125]. As noted, Blitz++'s Einstein-notation functionality supports dense inner and
entrywise products, with the latter executed by default. Free-function calls are required
to perform inner products. The library does not support assignments or inversions using
Einstein notation.

Moving to interpreted solutions, NumPy [175] offers similar Einstein notation function-
ality as Blitz++4, but for the Python environment. NumPy offers a free-function Einstein-
notation interface that supports entrywise products using the assignment convention dis-
cussed in Section 3.2.1. It also provides full support for additions and subtractions, but only
limited support for linear inversion. As well, NumPy strives to avoid allocation of tempo-
rary memory, implementing n-ary expressions using one large computation. However, this
can produce its own slowdowns, and in our experience NumPy code runs faster when code
is manually broken line-by-line into binary expressions, which can often be inconvenient
and verbose.

Unlike LibNT and NTToolbox, NumPy and Blitz4++ do not map NT products to lattice
products. Instead they access data without permutes. As outlined in Section 4.3.1, this
strategy can be fast for small-dimensionality NTs. However, by foregoing the use of gold-
standard matrix-multiplication routines and not ensuring data contiguity, performance with
large-dimensionality N'Ts may suffer as a result.

The MATLAB Tensor Toolbox (MTT) [112,124] is another interpreted solution, de-
signed to support n-mode* notation in the MATLAB environment. As such, it does offer
routines for general inner and outer products across NT indices. However, these come in
the form of binary free-function calls, meaning multi-operand expressions must be realised
using nested function calls or must be broken into separate code lines, which can be verbose
and difficult to parse. Nonetheless, the MTT maps its NT products to matrix products,
leveraging MATLAB’s LAPACK routines and resulting in fast execution times for inner
and outer products. However, the MTT only provides limited support for entrywise prod-
ucts, in the form of pure entrywise products and Khatri-Rao products of flattened NTs.
The provided Khatri-Rao implementations are fast, but rely on specialised implementations
that do not generalise. As well, the MTT does not support linear inversion and general NT
addition and subtraction.

Thus, in general NumPy and, to a lesser extent, Blitz++4 provide a greater and more
flexible set of N'T algebraic operations than the MTT, but without exploiting gold-standard
matrix computation algorithms. The MTT, on the other hand, relies heavily on tried-and-
tested matrix computation algorithms, but only offers a limited set of operations outside
of inner and outer NT products. The N'T software we describe, with lattice products form-
ing its computational backbone, aims to provide the MTT’s high computational efficiency

while offering an environment for general-purpose N'T arithmetic even more complete than
NumPy.

A pood way to gauge success in this regard is to measure performance in executing
functionality corresponding to the MTT’s specialised code. Ideally, performance should be
as good, or better, than the MTT. However, this performance would be realised using
the general-purpose lattice data structure, which can execute NT products outside of any
specialised routine. To this end, the following computations, found within the third-degree
CP decomposition, provide excellent benchmarks:

Qg5 Uky s (4.9)
Qe Ui Wy (4.10)
ﬂ-ﬂ;fﬂkiw,fi. |:411}

Like LibNT and NTToolbox, Blitz4++ and NumPy can execute (4.9)-(4.11) algebraically.
The MTT, on the other hand, employs its specialised and non-algebraic mttkrp routine to
execute each of (4.9)-(4.11). Efficient means to execute this routine, which stands for matri-
cised tensor times Khatri-Rao product, is a common topic within the tensor decomposition
field [176,177].

Comparing the performance of Blitz++4 and LibNT in executing this benchmark allows
the impact of using lattices to be measured. The potential confounding issues of runtime
abstraction penalties should not be an issue, since both libraries use similar TMP strategies
to support their algebras. The running time to perform (4.9)-(4.11) was measured using
dimensions of N x N = N for age and N = 5 for each second-degree NT factor. This was
performed for values of N ranging from 50 to 300 and repeated 10 times for each value of
N.

Figure 4.9(a) depicts the result of this benchmark. As the figure illustrates, at all dimen-
sionalities LibNT outperforms Blitz+4. As N increases, the performance gap increases, to
the point of LibNT running over 10 times faster than Blitz44, demonstrating the merits
of using the lattice as the core computational data structure for NT products.

Using the same experimental setup, but with N values ranging as high as 500, exper-
iments measured the performance of NTToolbox vs the MTT and NumPy in executing
(4.9)-(4.11). To ensure good speed for NumPy, the code was broken into one binary ex-
pression per line. Figure 4.9(b) depicts these results. As the figure illustrates, at low values
of N, NumPy's implementation, which does not permute data, is able to match MTT's
hand-crafted mttkrp routine. However, as N increases, the merits of exploiting fast matrix-
multiplication algorithms begin to tell, with the MTT eventually performing over 3 seconds
faster.

Focusing on NTToolbox, it matches or exceeds the performance of the MTT at almost
all values of N. The exception is at low values of N, where profiling reveals the time spent
is dominated by MATLAB’s built-in string-matching functions for parsing NT algebra.

835

10" ¢ ' ' ' L

-.-F
-l
0 P
10 ¢ A
o - " =
P " ..-".-.-. Y
£o) S :
L/ 27"
“]_E']l’ -
= == = Blitzs+
| = = LjhNT

50 100 150 200 250 300
N
(a)

Figure 4.9: Benchmarks for multiplications needed for dense CP tensor decomposition.
Tests executed the expressions in (4.9)-(4.11). Trend lines represent median of 10 trials
and error bars designate quartiles. (a) depicts performance of LibNT vs Blitz++ while (b)
depicts NTToolbox vs the MTT and NumPy.

Supporting this assessment, LibN'T, which has almost no runtime abstraction penalties and
uses the same lattice-product algorithms, executes at the highest speed at low values of N.
However, once runtime becomes dominated by the actual NT products within the mttkrp
operation, the advantages of the lattice product begin to manifest, eventually outperforming
the MTT by roughly 35%. Importantly, unlike the MTT’s hand-crafted functions, these
capabilities can be extended to any N'T algebraic operation.

These results demonstrate that armed with the lattice data structure, LibNT and NT-
Toolbox can efficiently execute a wide-range of N'T algebraic expressions, while matching
the performance of more specialised and non-generalisable routines. Thus, these results

bolster the case for using the lattice as a core computational platform for NT products.

4.4 Summary

A powerful and effective software forms the body of any effective framework within technical
computing. Reflecting this, NT software is a central thrust within the development of the
NT framework. This chapter is the first of two devoted to NT software, providing a dense
foundation for computing NT algebra operations. The LibNT and NTToolbox libraries
are introduced, which are open-source libraries for NT algebra implemented in C44 and
MATLAB, respectively.

We first provide a general overview of the N'T software libraries. To start, we outline the
design principles animating LibNT and NTToolbox, which both offer a environment where
users can program directly using N'T algebra. LibNT is designed to be as computationally
efficient as possible, reflected in its use of GP, TMP, and the PSCP idiom to minimise the

56

runtime overhead needed to resolve NT algebraic expressions. N'TToolbox, on the other
hand, is designed to be as programmatically efficient as possible, resolving NT algebraic
expressions entirely at runtime.

Even though both libraries balance programming and computational efficiency differ-
ently, they use the same core kernels. The most prominent of which is the lattice data
structure, which provides a computational platform to efficiently execute or invert any
combination of inner, entrywise, and outer products between N-degree NTs. Importantly,
the lattice data structure provides a ready means to interface to tried-and-tested MV com-
putational algorithms. Apart from the lattice data structure, both libraries also share the
same rules for checking N'T algebra grammar, providing a consistent and almost seamless
interface to NT algebra.

These general principles are made concrete through a suite of dense N'T algorithms. We
detail strategies to reduce superfluous memory consumption in n-ary expressions and shed
light on the merits of in-place vs. out-of-place dense permutations. As well, we outline how
LibNT can discover efficiencies at compile time to avoid unnecessary index calculations and
needless permutations.

Two benchmarks demonstrate the excellent performance of LibNT and NTToolbox.
First, small-dimensionality benchmarks test LibN'T’s success in reducing abstraction penal-
ties compared to the leading Blitz+4, FTensor, and LTensor C+4+ libraries. Results high-
light LibN'T"s competitiveness to these libraries, which is realised despite offering a greater
set of arithmetic operations. Second, generalised benchmarks illustrate the merits of the
lattice data structure in executing small- to large-scale NT products. These tests reveal
that LibNT and NTToolbox, which rely on the lattice data structure, offer a highly general
environment for NT computations at speeds competitive to or exceeding that of Blitz++,
the MTT, and NumPy.

The principles, algorithms, and data structures outlined in this chapter form a solid
foundation for an N'T software implementation. Embodied by the open-source implemen-
tations of LibNT and NTToolbox, NT software serves as an integral component of the NT
framework. Expanding the scope of the N'T software further can take several forms. In the
next chapter we focus on one such important elaboration, discussing the topic of sparse NT

computations.

BT

Chapter 5

Exploiting Sparsity

Efficient sparse-matrix data structures and algorithms have had an unquestionably massive
impact on the field of technical computing. This is due to an increasingly greater need
to work with large datasets. As Section 2.2.2 highlights, “the curse of dimensionality”
magnifies this need within numeric tensor (NT) contexts. Thus, just as was done with
matrix-vector (MV) computations, sparse NT data structures and algorithms can provide
practitioners with the tools to tackle otherwise intractable large-scale problems. For these
reasons, effective sparse data structures and algorithms form an essential component of the
NT framework. While many of the principles behind sparse-matrix computations can be
employed in a sparse N'T context, core data structures and algorithms still must be tailored
for this unique and demanding setting.

Apart from work into low-parametric representations [89, 178, 179, 180] and implicit
representations of high-degree operators 54,67, 128], researchers have also focused on how
to explicitly represent sparse NTs [124,150,151, 152,176,177, 181]. Tensor decomposition
drives a great deal of this work [124,150,151,152,176,177|, but applications involving high-
degree linear operators [54,67,128] and high-degree partial derivatives [181] also see need
for sparse NTs. Additionally, the known link between symmetric NTs and polynomial
equations [78] introduces further impetus for sparse NT computations. Considering the
high-sparsity of real-world polynomial equations [74], if NTs are used to manipulate such
equations, efficient sparse algorithms will be needed (likely along with symmetric-specific
optimisations [153]).

The topic of data structures and algorithms for general sparse N'T operations has been
broached previously by Bader and Kolda [124] as part of their MATLAB Tensor Toolbox
(MTT). Yet, since the MTT does not provide high-performance kernels of its own [153],
there is considerable opportunity to further develop the state of sparse NT computations.
As Bader and Kolda themselves note, continued development of sparse-tensor computations
is welcome [124].

With this vision in mind, we detail a set of core kernels for sparse computations for
the NT framework. Sharing Bader and Kolda's [124] design philosophy of not favouring

any particular index over another, we outline a flexible data structure that is related to,
but different from, the one seen in the MTT. This flexibility comes at the cost of heavily
relying on sorts and permutes. For this reason, we describe high-performance rearrangement
algorithms specifically tailored for sparse N'Ts, benefiting all sparse NT computations as
a whole. Finally, we outline a multiplication poly-algorithm that can effectively compute
the products between any N'Ts exhibiting any manner of hyper-sparsity. Other aspects of
sparse N'T computations are detailed in Appendix A. Detailed benchmarks demonstrate
the high performance of these algorithms, which are embodied within LibNT. NTToolbox
offers a MATLAB interface to LibNT’s C4+ algorithms. As such we will discuss the kernels
as belonging to LibNT, with the understanding that NTToolbox also has access to them.
Details on the test platform and compiler can be found in Appendix B.

5.1 Data Representation

This section first outlines considerations for sparse NT representation, highlighting the
data format used in LibNT. Afterwards, comparative results demonstrate the data format’s
effectiveness.

5.1.1 Concepts

Sparse MV computations rely on compressed formats [182,183], e.g., the compressed sparse-
column (CSC) format, which allows efficient column-centred operations at the expense of
inefficient row-centred operations. The compressed sparse-row (CSR) format is identical,
with the roles of rows and columns switched. However, Bader and Kolda [124] convincingly
argue against compressed formats for NTs, pointing out that it requires categorising an
index, or set of indices, differently from others, which becomes less meaningful as the degree
of an NT increases.

These arguments are bolstered by considering the operational complexity of NT compu-
tations, i.e., the enormous number of ways that N'T indices can match up differently for the
same arithmetic operation. For instance, enumerating all possible inner /outer product pos-
sibilities between two N-degree N'Ts requires calculating all possible partial permutations
of the N indices. Partial permutations [184] can be calculated using,

P= ét!(;:r)ﬂ (5.1)

which grows factorially with degree. The same fisure can be used to calculate the number
of entrywise /outer products.
When moving to the inner/inter case, enumerating all products entails an even larger

sum, as both types of products require a matching of indices. This number can be expressed

80

-—&—- Inner—Outer/Entrywise—Outer
— - — Inner—Entrywise
—&— Inner—Entrywise—Outer

Number of Le gal
Products

Tensor Degree

Figure 5.1: Number of possible NT products vs. degree. This figure graphs the number
of different possible multiplications between two N-degree tensors, assuming index ranges
match up appropriately for inner products. The rate of growth is factorial.

P=§?(3%N—gh (5.2)

where i would represent the number of indices undergoing an inner (entrywise) product and
the trailing factorial would account for the possible entrywise (inner) product permutations
of the remaining indices. Considering all three products together means needing to enumer-
ate all possible partial permutations of any inter (entrywise) product indices leftover after
the first inner (entrywise) product partial permutation has been accounted for,

N i n 2 N —i 2
P= i! ! . 5.3
2:24() (")) 6
i=0 §=0
This sum is much larger than even the inner/entrywise inter case.

Figure 5.1 visually illustrates the scale of this rate of growth, with the number of pos-
sibilities of inner /outer, inner /entrywise, and inner /entrywise/outer products at 5 degrees
totalling 1546, 3840, and 19091 respectively. Similar conclusions are drawn when consid-
ering addition and subtraction, as the number of possible such operations also increases
factorially with degree,

P=N1!. (5.4)

This operational complexity indicates that general-purpose data structures for sparse
NTs should be as flexible as possible, meaning they should not favour any particular index
over another. As each different index matching requires a particular lexicographical order,
data structures should be amenable to changing lexicographical orders. Even so, several au-
thors have adapted the compressed approach to work with NT's [150,151,152,181]. Typically,

a0

Table 5.1: The CO and LCO sparse formats. Example zero-based indices, from a 4 = 4 = 4
sparse NT with a lexicographical order of {0,1, 2}, illustrates the two formats. The CO
format uses an expanded list of index values whereas the LCO format uses an LI scheme.

CO Indices: | {L0,0} | {2.0,1} | 10,1,1} | 13.2.2} | {1.0,3} | {2.2.3}
LCO Indices: 1 18 20 3 1 58

these approaches embed CSC- or CSR-type structures within a high-degree scheme [150,181]
or flatten an NT into a compressed-format matrix [151,152]. These solutions would strug-
gle to accommodate the operational complexity inherent in general-purpose computations.
Compression schemes would need to be re-computed or there would have to be different
code implementations depending on what tasks are performed on what indices. These two
approaches become less viable with each increase in degree. This is not to say that com-
pressed formats for NTs have no place, but general-purpose N'T computations should rely
on different data structures.

Bader and Kolda make the case for concurrent and simple lists of non-zero data and index
values. When an operation demands a different lexicographical order a re-sort or permute
is required. Thus, no indices are favoured over others in terms of operational efficiency.
This comes at the cost of relying heavily on rearrangements, i.e., sorts or permutes. As
well, since non-zero data is not indexed in any way, non-compressed formats rely heavily
on comparisons between index values.

The coordinate (CO) and linearised coordinate (LCO) sparse formats are the two main
non-compressed choices that store their non-zeros using straightforward lists. The CO
format stores expanded indices, i.e., for an N-degree tensor each of the N non-zero indices.
In contrast, the LCO format stores linearised indices (Lls), i.e., N indices represented by
a single integer value. For instance, the zero-based Lls for a third-degree NT, a;;i, can be
calculated using

LI=i+ ﬂ,‘,{j + ﬂjk}, {5.5}

where n) denotes the range of the corresponding index. Such a lexicographical order places
greatest significance on the third index, followed by the second and first indices, which we
designate numerically as {0,1,2}. Any permutation of the {0,1,2} sequence is also valid,
and this scheme is trivially extended to higher degrees. Table 5.1 illustrates the differences
between the two formats. Of note is that the sparse formats are identical for first-degree
NTs.

Both formats rely on a lexicographical order to arrange non-zero values. For the CO
format, {0, 1,2} indicates that when comparing values, the third index must be considered
first, followed by the second and first indices. Altering the lexicographical order requires
changing the sequence in which expanded indices are compared. In contrast, for the LCO
format, the lexicographical order governs the linearisation scheme used to compute index
values. Altering the lexicographical order requires recomputing the LIs. A straightforward

01

integer comparison then suffices to compare indices.

Bader and Kolda opt for the CO sparse format for their MTT library [124]. The CO
format has also been used by Parkhill and Head-Gordon for sparse computational chemistry
calculations [185]. While Bader and Kolda do not specifically discuss the LCO format, they
do mention concerns with linearisation schemes in general, arguing that LIs may overflow
integer datatypes. However, their justification uses an example consisting of 32-bit precision
integers [124], which is increasingly out-dated considering the current prevalence of 64-bit
computers. As well, for cases where LIs do exceed standard integer limits, high-precision
libraries [186,187] offer fast and efficient very-large integer datatypes. For this reason, we
do not view integer overflow issues a deciding factor in choosing between CO and LCO
formats.

Nevertheless, we place importance on certain other factors. For instance, compared to
the CO format, the LCO format is more memory efficient for N'T degrees greater than one.
Moreover, there is an increased cost of fundamental operations when using the CO format.
For instance, comparison operations in the CO format requires up to N individual numerical
comparisons for an N-degree tensor. Apart from the increased complexity, the increased
memory requirements degrade locality between consecutive non-zero indices, resulting in
more cache misses, which can be the deciding factor in sorting performance [188]. This
also impacts arithmetic operations. These considerations all add up to the CO format
placing greater demands on memory bandwidth, which is often the limiting factor in modern
computer architectures [189].

On the other hand, for the LCO format changing the lexicographical order necessitates
recomputing LI values. In contrast, the CO format needs to only alter the sequence in
which expanded indices are compared. Thus, putting memory storage requirements aside,
choosing between the two can come down to comparing the impact of increased comparison,
read, and write costs of the CO format vs. the O(nnz) LI re-computation step of the LCO
format. This can be judged using benchmark tests.

5.1.2 Results

Since rearrangements of non-zero data forms a linchpin of both data formats, their com-
parative sorting performance can reveal advantages and disadvantages. As recomputing
LIs must often be performed prior to rearranging LCO data, this cost must also consid-
ered. If executed naively, recomputing Lls can be very expensive as it requires integer
division. However, using fast division libraries, e.g., libdivide [190], can help mitigate this
cost. Appendix A.1 details some additional strategies to reduce the cost of re-computing
Lls.

To compare the two formats, tests measured the running-time to sort the indices of a
fourth-degree sparse N'T stored in the CO and LCO formats. As integer division operations

are extraordinarily fast when divisors are a power of two, index ranges were chosen to

02

1.4

——Co
1.2t -~ LCO -]
LCO+LI Shuffle| _. —

Time (5)

Figure 5.2: Sorting times of the LCO and CO sparse formats. A fourth-degree N = N =
N x N NT, with N = 29 _ 1 and 5N? non-zeros was represented in the two formats
and sorted. Experiments also measured the time taken to sort and re-compute LI values
when the NT was fattened to lesser degrees. All tests used the same introspective sorting
algorithm [191]. Experiments were run 10 times and median values are shown.

be 210 _ 1 to avoid providing the LCO format with an unfair advantage. To maximise
memory locality, the CO format did not store expanded indices in separate arrays (as done
by the MTT), rather the format used a single large array and packed the expanded indices
consecutively one after each other in groups of four. To judge the impact of NT degrees,
the same indices were also “Hattened” into first-, second-, and third-degree LCO and CO
formats. Thus the impact of increasing NT degree, with its increased demands on memory
bandwidth and LI computations, was measured under identical conditions. All tests used
the same introspective sorting algorithm [191], which was also tailored to sort CO indices.

Figure 5.2 outlines the results of this experiment. As the table demonstrates, recom-
puting LI values comes with a non-trivial running-time cost, which increases with degree.
However, the cost of sorting the CO format increases at a much greater rate, meaning that
even with an LI recomputation step included, sorting LCO indices is still much faster than
sorting second-degree or higher CO indices. These results indicate that the LCO format is
better able to manage the demands of increasing NT degrees. Coupled with the fact that
the LCO format uses much less memory at high degrees, these performance metrics lead us
to prefer the LCO sparse format over the CO format.

5.2 Rearrangement Algorithms

As noted, one of the major consequences of opting for a non-compressed sparse format is a
heavy demand on rearranging non-zero data. The operational complexity of N'T operations
makes it likely that a sparse N'T"s lexicographical order would be altered at some point in its
lifetime, making rearrangements a frequent first step in many NT operations. Consequently,

93

fast and efficient sparse NT computations can hinge on the algorithmic choices made for
these operations.

When discussing rearrangements there are two primary categories. The first category
is sorting unsorted non-zero data into a desired lexicographical order. For instance, the
creation of a sparse NT or insertion of non-zero data could produce an unsorted N'T. The
second category is re-sorting already sorted data into a different lexicographical order. In
the MV paradigm such tasks are called transposition. In an NT context we call such tasks
permutations. Despite residing in simple LCO lists, sorted non-zeros possess structure,

which can be exploited, calling for dedicated routines different than general-purpose sorting.

5.2.1 Sorting

In a sparse N'T context, general-purpose sorting algorithms are well-equipped to tackle sort-
ing NTs. However, unlike many general sorting tasks, when sorting LIs, another array, i.e.,
the data array, must be sorted alongside it. LibNT’s approach, ensuring fast and optimised
execution, is use existing and effective sorting algorithms, but adapt them to swap or move
the data array based on how the LI array is sorted. Since sorting plays such an integral role
for the sparse LCO format, testing the capabilities of different algorithms is an important
investment toward developing efficient software. While there is an almost overwhelming
amount of literature on sorting techniques, benchmarks and tests involving cases where a
second array is sorted based on the first are almost nonexistent. As the demands on mem-
ory bandwidth are different than typical sorting applications, it is important to gauge how
sorting algorithms fare under a sparse N'T setting,.

We tested and adapted several different algorithms. The leading comparison-based
sorting algorithms that were tested include the highly prominent introspective sort [191]
and Timsort [192] algorithms. Integer sorting algorithms were also tested, including a
least-significant digit (LSD) radix sort [193] and an in-place version of most-significant
digit (MSD) radix sort [194] that uses no extra memory. All of the tested algorithms were
adapted to sort the LCO data array alongside any movements of the LCO LI array. In
addition, effort was taken to optimise their implementations, including using hybrid and
adaptive approaches, in order to achieve fast running times. More details on the considered
algorithms can be found in Appendix A.2.

Two different types of tests were performed. The first type of test, depicted in Fig-
ure 5.3(a), measures the sorting time on a randomly-generated NT matching the fill-factor
of a fourth-degree Laplacian operator, e.g., one that can act on an image. The Laplacian
operator’s fill factor decreases quadratically with dimensionality, providing a highly-sparse
test setting. While it is important to measure performance in highly-sparse settings, it
is also worthwhile to test under settings where sparsity does not grow quadratically with
dimensionality. Along those lines, Figure 5.3(b) depicts sorting times of fourth-degree NTs
with 5% fill factors.

04

------ Timsort
| == == IntroSort [
| = === LSD Radix Sort - ' et
: MSD Radix Sort N 1._1 UL

N b1

=2}
T

g -] \L'—-—I"""—-
-
o
."‘ h-—--"'.] HI_-__-__--_._____-
e o R P 1
\l_I.—l"-l-'-
1 1 1 ﬂ .. 1 1 1
2’? 23 N 29 21'|] 21I 25 2& ZﬁN 2’? 2’?
(a) (b)

Figure 5.3: Comparison of different sorting algorithms. Benchmarks measured the perfor-
mance to sort sparse fourth-degree NTs. (a) and (b) depict results from randomly generated
N x N x N x N sparse NTs, with a fill factor of a fourth-degree Laplacian and a 5% fill
factor, respectively. Tests were run on increasing values of N and repeated 10 times. Trend
lines represent median values and error bars represent quartiles.

Time Relative to
MSD Radix Sort
o

]

As the figure makes clear, both radix sorts beat out the two comparison sorts in a
highly-sparse setting, posting 2 to 4 times faster speeds for most of the range of dimen-
sionalities. These results are more striking when considering that the benchmark setup
is directly unfavourable to radix sorts. Since a fourth-degree Laplacian’s fill factor de-
creases quadratically, the maximum magnitude of the LI values increases at an quadratic
rate compared to the number of non-zeros (NNZ). Since the number of O(nnz) passes
radix sort must perform is proportional to the magnitude of the Lls, these results indicate
that radix sort can perform extremely well even in the demanding setting of highly-sparse
NTs. Similar results were produced when the algorithms were tested on sparse NTs with
5% fill factor, with the radix sorts outperforming their comparison counterparts by highly
significant margins.

Apart from illustrating the high-performance of radix sorts, these results demonstrate
the significant impact of algorithm choice in sorting sparse NTs. Depending on the choice
of algorithm, sorting times vary by factors of roughly 2 to 4, which is of high consequence
when considering the importance of rearrangement operations to sparse N'T computations.
In terms of whether the L5D or M5D variant is preferable, the latter generally outperformed
the former, particularly at very-large values of N. Moreover, the MSD version used here is
inplace. For these reasons, LIbNT uses MSD radix sort as its sort routine for sparse NTs.

95

5.2.2 Permuting

Apart from sorting, permuting already sorted data into a new lexicographical order is
another major rearrangement task. Due to the operational complexity highlighted in Sec-
tion 5.1, data permutation is a frequent requirement within NT computations, especially if
the same NT is used for a series of different operations. While permutation operations are
tasked with the same goal as sorting, i.e., rearranging data into a desired lexicographical
order, their starting points differ. By taking advantage of the existing structure of already
sorted non-zero data, faster means to permutation can be realised. These speedups can be
quantified using benchmarks.

Optimising Rearrangement

When permuting data the first step is to recompute the Lls into the new lexicographical
order. The scale of the subsequent rearrangement task hinges on the relationship between
the starting and ending lexicographical orders. For instance, intuitively it should be simpler
to permute sparse NT data from the {0, 1,2, 3,4} lexicographical order to the {1,0,2, 3, 4}
lexicographical order than it would be to permute it to the {4, 3,2, 1, 0} lexicographical or-
der. This intuition stems from the fact that regardless of the starting-ending lexicographical
orders, new LI values will always be arrayed in sorted sublists. The characteristics of these
sublists can be exploited, taking advantage of any efficiencies that a specific permutation
may offer up.

A permutation essentially divides NT indices into two sets—those that require rear-
ranging and those that do not. Figure 5.4 illustrates how this can be determined, with
a third-degree NT a;;;, and an example permutation. The top of the figure illustrates the
bipartite graph of the starting and ending arrangements of i,j.k. Because the i index crosses
an index that originally had a higher significance, i.e., j, the new LIs must be rearranged
according to the 7 index. We call such indices rearrangement indices. The other two indices
do not meet this criterion and thus, the new Lls do not need to be rearranged according to
j and k. These indices we call resting indices.

Categorising the indices this way breaks the permutation task into a recursive hierar-
chy of steps. For instance, working from highest-to-lowest significance of the new Lls in
Figure 5.4's example, k is a resting index. As a result, rearrangements need not consider
k., meaning regions where k is constant can each be independently sorted. Each of these
independent regions can then be stably sorted based solely on the i index, which is a rear-
rangement index. Stahbility means the original relative ordering is used to break ties between
equal values. The next resting index j is also the final index, so there is no more work to
do. However, if j was not the final index, then the process would have to continue, where
each sub-region where j is constant would be independently sorted. This process can be
generalised to arbitrary degrees and starting/ending lexicographical orders. An important
aspect to note is that the final index is always a resting index.

06

Original lexicographical order: {0,1,2} i

T —

New lexicographical order: {1,0,2} J i

0]5]6]811]15/1925/2728/30131)42}47/5358/50)
ol5/6]8l1]59]5]7]8]0]1]2]7]3]8]9

Original Lls:
i+ 10(j7 + 3k)

j 0lojojoj1l1l1l2]2]2]0/0[1]1]2]2]2]
k |oelojojojojojojofojola]ala]1]1]1]1]

Re-compute Lls in new lexicographical order

MNew Unsorted Lls:
7+ 3(i+ 10k)

0[151824 4 16281?23‘23631]333?|5241|565£I

For each region where k is constant, stable sort using ¢ index
1
I

New Sorted Lls:
i+ 3(i + 10k) 0] 4 [15(16{17/182324]26/28/30[33(3 41|52|55|55|

=]

Figure 5.4: Hlustration of sparse NT permutation. Using a 10 x 3 x 2 third-degree NT,
a;ji, the figure depicts the original and new LIs corresponding to starting and ending
lexicographical orders of {0,1,2} and {1,0,2}, respectively. In this particular case, the
index of highest significance in the new Lls, i.e., k, is a resting index, so regions where k is
constant can be sorted independently. Each such independent region must be stably sorted
based on the index of second-highest significance, i.e., the rearrangement index i. The final
resting index j can be ignored.

o7

Returning to Figure 5.4's example, identifving regions in the new LIs where k is constant
can be done by integer dividing LIs by n;jn; = 30. Separating the LI values into independent
parts benefits all sorting algorithms. For comparison sorts, the asymptotic bounds may be
lowered. However, for radix sorts, within each region of constant k. each LI can be examined
modulo 30, reducing the maximum possible integer magnitude to accommodate. Depending
on the radix digit size, this can reduce the key length, thereby reducing the number of passes
a radix sort need perform. Moreover, when sorting each independent region of constant k,
the LIs modulo 30 need only be stably sorted using the rearrangement index i. Thus each LI
modulo 30 can be reduced even further by integer dividing by n; = 3. In the general case,
this aggressive shaving off of irrelevant portions of the LIs can drastically reduce the key
length for radix sorts, significantly reducing the number of passes the sort must perform.

As Section 5.2.1 demonstrated, radix sort is well-equipped to sort sparse LCO data.
However, key modifications are needed to tailor it to take advantage of the distinct nature of
sparse NT permutations. LibNT includes such an algorithm, called radix permutation (RP).
Given a starting and ending lexicographical order, a preprocessing step determines which
indices are rearrangement or resting indices. The RP routine then employs a stable, but not
inplace, variant of the MSD radix sort algorithm. Since shaving off irrelevant portions of the
Lls relies on integer division, libdivide [190] is used to to minimise slowdowns. Nonetheless,
even when using a fast integer-division library, shaving off LIs comes with a computational
cost, which can only be justified if the number of radix sort passes can be reduced. This
is typically the case when both the NNZ and magnitude of reductions in LI magnitude are
large. Taking this into account, LibN'T’s RP algorithm is adaptive and will switch to the
standard MSD radix sort of Section 5.2.1 depending on conditions.

There are theoretically interesting implications of permuting sparse N'T data this way.
As Sedgewick explains, radix sorts are often sublinear in the information content of the
keys being sorted [193], meaning they can often arrange data without examining every bit.
However, this is only an average-case result based on random conditions. Yet, in the context
of sparse-N'T permutations, by always having at least one index a resting index, it is always
possible to permute without examining every bit in the LIs. Whether these theoretical gains
translate to practical ones is a matter revealed by benchmarks.

Results

Tests measured the permutation performance of RP using fourth-degree N'Ts sharing the
same characteristics as those used in Section 5.2.1. The performance was compared against
the MSD radix sort algorithm described in Section 5.2.1. While other algorithms were also
tested, including those well suited to sorting already sorted sublists, e.q., natural mergesort,
only the MSD radix sort algorithm proved competitive to RP. Figure 5.5 outlines the
performance of these algorithms using all 4! — 1 = 23 permutations of a fourth-degree NT.

As the figure demonstrates, at the median case, RP performs almost identically with

08

——————
= s A

10

Running Time (s)

107"},

I R e SR e
(a) (b)

Figure 5.5: Sparse NT permutation benchmark results. Using the same scheme as Fig-
ure 5.3, (a) and (b) depict the time taken to permute N x N = N x N fourth-degree Lapla-
cian and 5% fill factor NTs, respectively. All 23 possible permutations were performed,

with trend lines displaying median running times and error bars representing minimum and
maximum values.

MSD radix sort, indicating that certain permutations do not provide much opportunity for
further optimisation. On the other hand, certain permutations do provide such opportuni-
ties, with the RP algorithm running at significantly faster speeds. It should be noted that
RP occasionally ran slightly slower than MSD radix sort depending on the permutation and
sparsity characteristics in question. Future work can isolate and remove these instances.

Even so, considering that the MSD radix sort already represents one of the fastest means
to sort LCO data, the improvements demonstrated by RP attest to the value of using
specialised permutation algorithms. The highly demanding setting of NT computations
makes it necessary to exploit whatever efficiencies are offered. The RP algorithm is a
successful embodiment of this principle. It is expected that these gains would only increase
with higher degrees, larger fill factors, and greater NINZs. Moreover, since rearrangements
are a frequent requirement in sparse NT computations, the improvements garnered here
will enhance the speed and usability of all sparse NT computations.

5.2.3 Lazy Approach

The above two subsections detailed the careful development of algorithmic approaches to
both sorting and permuting, with the aim of minimising their impact on sparse N'T arith-
metic operations. However, the best means to minimise the impact of sorting and permuting
is to avoid performing them altogether when possible. To this end, LibNT takes a lazy ap-
proach, e.g., only opting to sort unsorted data when necessary. As some operations do
not require sorted data, e.g., a pure outer product [124], a lazy sorting approach can avoid

costly and superfluous rearrangements.

Table 5.2: Possible lexicographical orders after an assignment. This table illustrates possible
output lexicographical orders stemming from a sparse ar;; = bj;jr assignment operation. The
result depends on the input lexicographical order and the index permutation from {i, j, k}
to {k,i,j}. Only three of the 3! possible input-output lexicographical orders are shown.

bi;ji lexicographical order ag;; lexicographical order

{0,1,2} {1,2,0}
{2,1,0} {0,2,1}
{1,2,0} {2,0,1}

In a similar vein to sorting, a flexible approach to permuting can produce gains in
sparse computation time. For instance, one can reduce needless computations by being
agnostic about lexicographical order, i.e., not restricting Lls to a certain lexicographical
order. Under this scheme, sparse N'T operands can manifest any legal lexicographical order.
This does add to bookkeeping as arithmetic operations must take into account both of
the operands’ lexicographical orders and also how their NT indices match up. Table 5.2
illustrates this for an example assignment operation. By allowing any legal lexicographical
order, simple copies and an appropriate designation of the new lexicographical order suffice
for any sparse NT assignments. This applies even for assignments, like that of Table 5.2,
nominally involving a permutation. The extra bookkeeping involved is justified by the
avoldance of permutations and LI re-computations. Similar considerations apply for other
arithmetic operations like addition and subtraction. Appendix A.3 discusses how LibNT

minimises sorting and permutation for such operations.

5.3 Multiplication

Multiplying two sparse N'Ts together epitomises the unique demands of sparse NT compu-
tations. As outlined in Section 4.1.2 any NT multiplication, involving inner, entrywise, and
outer products, can be represented as a lattice product, i.e., a sequence of matrix products.
Thus, sparse-matrix products play a fundamental role in executing sparse-NT products.

However, sparse N'Ts often exhibit hyper-sparsity. Typically raised in an MV con-
text, hyper-sparsity refers to matrices where the numbers of rows and columns exceed the
NNZ [195,196]. Applied to an NT context, this meaning implies a dimension that exceeds
the NINZ. While comparatively rare in linear algebra, graph algorithm applications, which
see uses for NTs [197], encounter hyper-sparsity frequently [195, 196].

In addition, even when NTs are not hyper-sparse on their own, they can exhibit hyper-
sparsity when they are mapped to lattices during multiplication. For instance, as Fig-
ure 5.6(a) demonstrates, flattening a purely diagonal NT can produce index-sparse matrices,
meaning both row and column ranges exceed the NNZ. In addition, as Figure 5.6(b) and
(c) demonstrate, fattening operations can also produce row- and column-sparse matrices,

often manifesting as very-tall and very-wide matrices, respectively, in which only one of the

100

. O
200 o 200 20
.
40 . 400 40
L] 500 1000
B0 &0
L] n 10 800
a0 . 0
™ nr) 800
100 - 10 1000
0 50 100 0 &0 100 1000 01z
=10 nz=1 nz =10 nzr=1

(a) (b) (c)

Figure 5.6: Hyper-sparsity of a matricised NT. A fourth-degree diagonal NT a;;z¢, meaning
all-zero except for when i = j = k& = £, can produce hyper-sparse matrices when flattened:
(a) depicts the hyper-sparsity patten when a 10 x 10 x 10 x 10 diagonal NT is matricised so
that two of its indices are mapped to rows while the remaining are mapped to columns; (b)
depicts the same N'T, except that is it matricised by mapping one index to rows, while the
remaining are mapped to columns; (c) depicts the same as (b) except that the role of rows
and columns are reversed. The two figures of (b) and (c) depict column- and row-sparsity,
respectively, while (a) depicts index-sparsity.

dimensions exceeds the NNZ. Thus, any routine executing sparse NT products must be
able to handle hyper-sparsity.

Hyper-sparsity is not well-handled by typical techniques found within the MV paradigm.
We address these difficulties by developing an effective multiplication poly-algorithm de-
signed to handle operands exhibiting any manner of hyper-sparsity. We first overview the
poly-algorithm, followed by a description of the specific approaches used to handle the
different types of hyper-sparsity that NT operands manifest.

5.3.1 Poly-Algorithm

To establish the workings and motivation behind the sparse N'T multiplication poly-algorithm,
we first provide an overview of its operation. In addition, we introduce notation necessary
to understand the poly-algorithm and the different sub-algorithms it dispatches to. Follow-
ing this we provide details on the synthetic dataset used to characterise the sub-algorithms
used by the poly-algorithm.

Overview
Sparse-N'T multiplication can be executed in three steps:
1. map sparse-N'T LCO data to lattice form using a permute or sort;

2. convert each LCO lattice tab to an appropriate multiplication datatype (MDT), e.g.,
C5C, and multiply;

3. map lattice back to a sparse NT.

101

Table 5.3: Multiplication possibilities based on sparse characteristics of operands. Table
entries indicate the sub-algorithm LibNT employs, along with the subsection number de-

scribing it, for each sparse-characteristic combination.

N Sparse Row-Sparse Column-Sparse Index-Sparse
Sparse CSC/CSR [CsC CsC
(Section 5.3.2) {Section 5.3.2) {Section 5.3.2) (Section 5.3.2)
Column-Sparse CS5R DCEC/DCSR E_ICSC [?CSC.'
(Section 5.3.2) {Section 5.3.3) {Section 5.3.3) (Section 5.3.3)
Row-Sparse CS5R DCSR CSCN{L;’ CSRNA C&CNE
(Section 5.3.2) {Section 5.3.3) {Section 5.3.4) (Section 5.3.4)
Index_Sparse CS5R DCSR CEH_NA _SDF
(Section 5.3.2) {Section 5.3.3) {Section 5.3.4) (Section 5.3.5)

This is similar to the scheme used by the MTT. However, the MTT uses the same MDT and
algorithm regardless of whether operands are hyper-sparse or not. To handle hyper-sparsity,
the MTT excises all-zero columns and rows before performing standard CSC multiplication.
This excision is an expensive operation requiring extra sorts and additional book keeping,
but is necessary because the CSC algorithm is not equipped to handle hyper-sparsity [195,
196].

An alternative is to avoid the cost of excising rows and columns and instead employ
algorithms that can naturally handle hyper-sparsity. These will naturally require their own
respective MD'Ts. This is not a disadvantage in sparse NT contexts where conversions to
the MDT must happen anyway. Thus, there is considerable freedom in choosing the mul-
tiplication algorithm and its MDT. This freedom is not enjoyed within the MV paradigm,
in which matrices, once constructed, are typically locked into a single datatype and lex-
icographical order. The extra flexibility means that a poly-algorithm can be an effective
approach, as it there is no detriment, and many benefits, in dispatching to specific mul-
tiplication sub-algorithms and MDTs depending on whether the Hattened N'Ts are sparse,
row-sparse, column-sparse, or index-sparse.

Tahle 5.3 outlines the 16 different possible sparsity combinations. In addition, it details
the algorithmic choices used by LibNT. Two considerations animated these choices. The
primary consideration was on ensuring memory use and running time were not dependant
on any hyper-sparse dimension sizes. As Bulu¢ and Gilbert [195, 196] warn, algorithms,
e.g., the CSC, whose running time and memory use depend on the dimensionalities of the
matrix can consume inordinate amounts of memory or exhibit impractical running times
under hyper-sparse conditions. With the first consideration satisfied, the second goal was
to gain the fastest running time and/or the lowest memory use. Unlike MV computations,
performance metrics of sparse-N'T multiplication must include the cost of converting to the
MDT. The specific algorithms are discussed in detail within Sections 5.3.2 to 5.3.5.

102

Tahble 5.4: Notation used to describe multiplication poly-algorithm.

First Operand A Second Operand B
Rows and Columns of A m and k Rows and Columns of B kand n
MNumber of Columns of A with nzca MNumber of Rows of B with one nerg
ONE O IMNOTE NON-ZEr0s Or IMOTE NON-SET0s

MNotation

In describing the different multiplication sub-algorithms, we will use a set of common no-
tation outlined in Table 5.4. Since the presence of entrywise products only means that the
same type of product is repeated, it does not change the basic approach of sparse-N'T mul-
tiplication. Thus, for simplicity only inner/outer products will be considered, explaining
why the first and second operands of Table 5.4 are matrices, and not lattices. Apart from
the notation of Table 5.4, we will use f to refer to the number of floating-point operations
in a multiplication, which is the same for all algorithms. C will denote the matrix product
of A and B. To make the exposition simpler, we will focus mostly on column-by-column
versions of the algorithms, e.g., C5C. Assuch, f(i) will denote the number of Hoating-point
operations to compute the ith column of C and nnzc(i) will denote the resulting NNZ of
the column. LibNT tests for hyper-sparsity by measuring the ratio of NNZ to the dimen-
sion in question. For example, the row-sparsity of A can be tested by measuring whether

m/nnza > 1.

Dataset

Datasets used for testing can consist of real-world examples or synthetic datasets, the latter
of which are parameterised and /or randomly generated. While authors have used real-world
networks represented as sparse NTs to characterise decomposition techniques [198, 199],
these datasets do not consist of many examples. Thus, to characterise sparse-multiplication
algorithms under different conditions, e.q., NNZs, hyper-sparsities, and dimension sizes,
this work uses a synthetic dataset.

The dataset consists of a third-degree N'T generalisation of the R-MAT recursive graph
model [200], which can control for dimension size, fill factor, and fill pattern. In the original
R-MAT model, the recursive base edge probabilitys (BEPs) are specified for each quadrant.
To generalise to a third-degree R-TENSOR. the BEPs must be specified for each octant.
Table 5.5 outlines the probabilities used for this work. The symbol r;;; will be used to denote
R-TENSORs. R-TENSORs can manifest column- or row-sparsity depending on their fill
factor and how they are multiplied. Moreover, R-TENSORs can also present complete

index-sparsity.

103

Table 5.5: Synthetic dataset used to test the sparse multiplication poly-algorithm. Tests
used a dataset consisting of the R-TENSOR model, whose BEP are given with their octant
specified in parentheses. To add variability into experiment trials, the probabilities were
adjusted by additive values drawn from a uniform distribution of [—.1 .1] and renormalised
so that they all sum to 1.

Octant: | (L1,1) | (LL2) | (LZ1) | (1L,2.2) | (&.L1) | (ZL2) [(2.2.1) | (2.2.9)
BEP: 3 5/6 5/6 5/6 5/6 5/6 5/6 2
A B
1
2
3 2l X
1
CSC CSC No Accum.
§ 0112121214 O[112[2[2]4]
m []]«—1%]1
EQn N 216] [0[1] [0]1
5 <—2*3+]*25 a1 1216 (28
g = 202] 212
< L E Row Sorted Sum
g Indices by Duplicates
- + Data Row

Figure 5.7: Three different column-by-column MDTs and algorithms. A column-by-column
algorithm only need represent the left operand, i.e., A, using the MDT. Underneath each
MDT label, the dense arrays used to index columns of A are depicted. Red and blue entries
in A and B, respectively, correspond to entries needed to compute the first column of the
resulting matrix. The data structures used to collect entries of the first column are also
illustrated.

5.3.2 Regular Sparsity

The standard column-by-column CSC algorithm is a tried-and-tested algorithm that enjoys
widespread use. To ensure fast execution, the CSC algorithm relies on a dense, size k. singly-
compressed index array to quickly access columns. Moreover, a dense, size m, accumulator
array is used to quickly collect non-zeros as each column of C is constructed. Similar
considerations apply for the C5R algorithm, with the roles of columns and rows reversed.
Davis [182] and Bulug et al. [183] provide excellent descriptions of these algorithms.
Figure 5.7 includes a visual depiction of the how the CSC algorithm would compute
the first column of C during its column-by-column run, illustrating the dense index and
accumulator arrays. Dense indexing assures fast indexing of columns, while the accumu-
lator ensures contributions to non-zero entries can be quickly added together. The salient
characteristics of the CSC algorithm, along with other column-by-column algorithms, can
be found in Table 5.6. The final summation term in the runtime originates from the need
to sort each column of C after each is constructed. Importantly, both runtime and memory

104

Table 5.6: Asymptotic characteristics of the column-by-column multiplication algorithms.
Runtimes include the cost to convert to the MDT from column-major LCO data. Memory
use only includes temporary data structures used for multiplication.

. Sparse Column . i
Algorithm Ace lator Indexing Runtime Memory Use
gingly- Om+k+nnzy +nnzg + 1+
CSC yes compressed 30 nnze(i) log nnz (i) O(m + k)
doubly- Oim + nnzy +nnzg + f+
DCSC yes comp I ™" nnzc (i) log nnz (1)) O(m + nzca)
gingly- Nk + nnz s + nnzg + .
CECNA no S . O{max f(i) + &k
compressed 30 fili) log f(i)) (1@)

use are dependant upon the dimensionality of A, precluding its use when A exhibits any
hyper-sparsity.

Since the traditional CSC and CSR algorithms are tried-and-tested for standard sparse
contexts, LibNT opts for these algorithms when both operands present no hyper-sparsity.
LibNT gains additional efficiency by converting only one of the matrices to compressed
form. For instance, the CSC algorithm only requires fast indexing of the columns of A,
meaning it suffices if B is simply stored in column-major LCO format.

Unlike the MV context, the poly-algorithm can choose between the two formats on-
the-fly. The runtime the CSC and CSR algorithms is almost identical, except for the final
summation term, where the latter must sort each row of C instead of each column. Assuming
somewhat uniform distribution of non-zeros across rows and columns, the runtime for the
sort should be smaller if the task is broken into a greater number of pieces. Thus, LibNT
opts for the CSC format when n > m, otherwise it chooses CSR.

Finally, by avoiding converting one of the matrices to compressed form, the applicability
of the standard algorithms can be extended to greater numbers of cases. For instance, as
long as A has no hyper-sparsity, the standard CSC algorithm can be applied. regardless
whether B is row-, column-, or index-sparse. Thus, the CSC and CSR algorithms can be
employed beyond the sparse-sparse case, explaining the first column and row of Table 5.3.

5.3.3 Wide Times Tall

Hyper-sparsity challenges the CSC/CSR algorithms in two manners. The first corresponds

to cases where using singly-compressed index arrays are no longer tenable. For instance,
should two N x N x N cubic R-TENSORS be multiplied using

1 @
ridri), (5.6)

T,

the left and right operands would be mapped to very-wide and very-tall matrices, respec-
tively. In this case, the CSC and CSR datatypes would require a size N2 dense array to
index the columns and rows of A and B, respectively. Consequently, when nnz << N2
using the CSC or CSR datatypes is prohibitive or even intractable.

105

A solution is offered by Bulug and Gilbert [195], who introduced the doubly-compressed
sparse-column (DCSC) and doubly-compressed sparse-row (DCSR) formats. Originally
used as a means to tackle the fully index-sparse case, these data structures are just as
applicable when faced with column-sparsity or row-sparsity. Figure 5.7 depicts the DCSC
format, where two-stage indexing replaces the simpler CSC column indexing. Apart from
this change, the same column-by-column approach to multiplication can be employed. As
Table 5.6 highlights, the DCSC format’s doubly-compressed scheme removes runtime and
memory-use dependance on k. Thus, the column-by-column DCSC multiplication algorithm
can be executed even when A is column-sparse. Similarly, the row-by-row DCSR algorithm
can handle cases when B exhibits row sparsity. Yet, despite enjoying identical asymptotic
running times as their CSC/CSR counterparts, both options come at the cost of additional
memory accesses, which can produce a decisive degree of slowdown.

MNonetheless, under the right situations, opting for the doubly-compressed data struc-
tures over the singly-compressed versions can avoid possibly catastrophic levels of memory
use. As well, even when k fits comfortably within memory capacities, the doubly-compressed
scheme can still produce highly significant speedups. To demonstrate this, experiments used
the CSC and DCSC algorithms to compute (5.6). The tests used cubic R-TENSORs gen-
erated with NNZs ranging from 4e5 to 1e6 in increments of 1e5. Column- and row-sparsity
of A and B respectively, ranged from 1, i.e., no hyper-sparsity, to 500, i.e., 1 non-zero
per 500 columns or rows, in logl(-scale increments. This was performed 3 times for each
NNZ /hyper-sparsity combination. Finally, two different types of runs were performed. The
first run used two different R-TENSORs within (5.6) and the second used the same R-
TENSOR. for each operand.

The results are depicted in Figure 5.8(a) using a scatter plot based on hyper-sparsity.
As the figure demonstrates, the performance of the DCSC algorithm compared to the CSC
algorithm is highly dependant on hyper-sparsity, i.e., the column- and row-sparsity of A
and B respectively. A hyper-sparsity value of 10 separates the point at which the DCSC
algorithm outperforms the latter. As hyper-sparsity increases, the DCSC algorithm’s run-
ning time is on average roughly 20 times faster than the CSC approach. demonstrating a
tremendous amount of speedup.

For the purposes of LibNT"s poly-algorithm, the library opts for the DCSC or DCSR
algorithms whenever column-sparsity and row-sparsity of A and B exceeds 3. While lower
than the threshold indicated by Figure 5.8(a), this satisfies the primary consideration of
keeping memory use reasonably close to the NNZs. LibNT uses the same criteria explained
in Section 5.3.2 to choose between the DCSC and DCSR variants. As well, and indicated
in Table 5.3, LibNT uses the DCSC algorithm whenever A is column-sparse and for all
cases of B, except when the latter presents no hyper-sparsity. The reverse holds true for
the DCSR algorithm.

106

R
ha
-

S 10 é 107 10
8 9 o, o CSC
0 (=] # CombBLAS |
s = w o
2 10 " E 107 |
E= =
3 d E 1o° § ol 0ol 2
0 = 2,0
: o'l il :]
= = 9 o E o
2 7 e © +
<10’ o X P 8m'_Ecll X P 10_20 X P
10 10 10 10 10 10 10 10 10
Hyper—Sparsity Hyper—Sparsity Index—Sparsity

(a) (b) ()

Figure 5.8: Benchmarks of the sub-algorithms for sparse NT multiplication. (a) graphs the
ratio of running-times of the CSC vs. the DCSC algorithm under different levels of column-
and row-sparsity of A and B, respectively. (b) graphs the ratio of the CSC vs. the CSCNA
algorithms under different levels of row- and column-sparsity of A and B, respectively. (c)
graphs the ratio of the CSC and CombBLAS algorithms to LibNT"s SOP algorithm under
different levels of inder-sparsity.

5.3.4 Tall Times Wide

Section 5.3.3 outlined a multiplication strategy to handle cases when using the dense CSC
and CSR indexing arrays becomes untenable, i.e., when multiplying a very-wide matrix
with a very-tall one. In the opposite scenario, i.e., multiplying a very-tall matrix with a
very-wide one, the dense indexing of the CSC and CSR data structures poses no problems

and it is the accumulator array that can become untenable. For example, this situation
would manifest should two R-TENSORs be multiplied using

1) (2
T (5.7)

In this situation, the standard CSC and CSR algorithms can be modified to forego the ac-
cumulator array, resulting in the compressed sparse-column no-accumulator (CSCNA) and
compressed sparse-row no-accumulator (CSRNA) algorithms, respectively. As Figure 5.7
illustrates, in the column-by-column case, jettisoning the accumulator array means that
as each column of A is constructed the non-zeros are not collected and summed together
in one step. Instead for each column i, f(i) values are computed and stored in a simple
LCO list. These f(i) values must then be sorted and any data values with the same row
index are then summed together. As Table 5.6 indicates, this results in increased sorting
burdens, but comes at the benefit of not having memory use and runtime be dependant on
the potentially huge number of rows of A.

As with the DCSC algorithm, improvements can be garnered even when hyper-sparse
dimensions fit comfortably in memory. To test this, the R-TENSOR experiments in Sec-
tion 5.3.3 were repeated, except that (5.7) was computed. As well, NNZs ranged from

107

X' 4] 1+ X2 + X[12 +| | X! + [X (111 3]

N

021517 Lls
121316 Data
151718
$-12 LU Sort by Lis
3516 ? Sum Duplicates

Lh

=
-]

—le —e Moo
e S S e

Figure 5.9: The outer-product multiplication algorithm. Using the same example matrix
as Figure 5.7, the top of the figure demonstrates how the outer-product algorithm would
multiply each column of A with each row of B. Below, the SOP algorithm used by LibNT
to sum each of the k rank-1 matrices is illustrated.

1e5 to 3e5 in increments of 5e4. Apart from this change, all other test settings were kept
identical. Figure 5.8(b) depicts the results of this test, graphing the ratio of running times
of the CSC algorithm to the CSCNA algorithm under different levels of row- and column-
sparsity of A and B, respectively. As the figure demonstrates, apart from some outliers
at low-levels of hyper-sparsity, the CSCNA algorithm is able to match or exceed the CSC
algorithm. At hyper-sparsity values of roughly 3 or higher the CSCNA algorithm begins
to exhibit faster execution speeds than the CSC algorithm, eventually running on average
6 times faster. Nonetheless, in isolated instances the CSCNA algorithm performed consid-
erably worse. Characterising when these situations occur is an important area for further
investigation. Even so, as the CSCNA algorithm posts excellent performance for the far
majority of trials and avoids having memory use and runtime depend on m, LibNT opts
for the CSCNA approach whenever row- and column-sparsity of A and B, respectively, is
greater than 3.

As before, LibNT uses the same criteria explained in Section 5.3.2 to choose between the
CSCNA and CSRNA variants. LibNT also opts for the CSCNA algorithm whenever A is
row-sparse and B is index-sparse while the CSRNA is chosen whenever B is column-sparse

and A is index-sparse.

5.3.5 Index Sparsity

The final case to consider is when both A and B are index-sparse. Bulug and Gilbert [195,
196] have demonstrated that the outer-product approach is a fast and memory efficient
option for this scenario. Under this approach, A and B must be sorted in different lexico-
graphical orders—column- and row-major, respectively. As the top of Figure 5.9 demon-
strates, each column of A is multiplied with each row of B, producing £ m = n rank-1
matrices. To produce the final result, these rank-1 matrices must be summed together.
Under an index-sparse setting, both nzca and nzrp are each less than k. As well, not all

108

non-zero columns of A have a matching non-zero row of B. Thus, the number of rank-1
matrices to sum together is always less than k and often less than min(nzca , nzrg).

Different outer-product algorithms will differ in how the intermediate rank-1 matrices
are summed together. As part of their CombhBLAS library, Bulug and Gilbert use their
DCSC and DCSR formats in combination with a heap-like data structure to merge the
rank-1 matrices [196]. Designed to act as a component of their large-scale parallel matrix
multiplication algorithm, Bulug and Gilbert's motivating problem has different demands
than those stemming from sparse N'Ts. For instance, the authors correctly did not account
for the time to construct doubly-compressed matrices in their performance metrics, because
their parallel algorithm amortises these costs across sub-tasks. In contrast, the conversion
costs to the MD'T must be considered in a sparse-N'T setting.

As a result, approaches with minimal conversion costs should also be considered. As the
bottom of Figure 5.9 illustrates, one approach, which we call the simple outer-product (SOP)
algorithm, is to simply concatenate all the intermediate rank-1 matrices together into a
length f LCO data-structure. This LCO array can then be sorted based on the Lls, with
duplicate entries being summed together. The downside is the O(f) memory use and a
O(f log f) sort, which dominates the complexity. However, unlike in regular sparse settings,
f can often be small compared to the NNZ of A and B. Moreover, the ratio of f to the
nnzg of the final result can also be close to 1, meaning strategies to efficiently add duplicate
entries do not always justify their overhead.

These conclusions are borne out when multiplying R-TENSORs using a very similar
setup as the experiments in Section 5.3.3. However, instead of cubic R-TENSORs, M =
N x N NTs are used instead, where M = N2. Thus, when flattening the R-TENSORs to
compute (5.6), the resulting matrices exhibit square dimension sizes of N 2 % N2, providing
appropriate conditions to vary the row- and column-sparsity together. Additionally, the
NNZs varied from 5e4 to 1e5 in increments of le4 and the time taken for the CSC, SOP,
and CombBLAS’ [201] C++ index-sparse algorithm, including setup costs, was measured.
All other conditions were kept the same.

The results of this test are depicted in Figure 5.8(c). As the figure demonstrates, the
SOP algorithm outperformed the CSC algorithm at levels of index-sparsity greater than 6,
with the performance gap increasing to roughly 35 times faster execution at the highest levels
of index-sparsity. This emphasises the value of using specialised algorithms in index-sparse
scenarios. Compared to the CombBLAS algorithm, the SOP outperformed it on average by
a factor of 2 at all levels of index-sparsity, demonstrating the value of a simplified approach
in sparse N'T settings. However, in several instances the CombBLAS outperformed the SOP
algorithm, indicating that certain scenarios call for a more sophisticated merging approach.
Further work should focus on identifying these scenarios a priori. Even so, the SOP executed
the fastest, by significant margins, on almost all test instances.

As aresult, LibNT opts for the SOP algorithm whenever both A and B are index-sparse.

109

For the purposes of satisfying the primary consideration of avoiding highly excessive memory
use, the SOP algorithm is applied whenever both row- and column-sparsity exceed 3.

5.4 Comparative Performance

So far, this work has highlighted the comparative performance of different algorithmic
choices. What has not been discussed is the impact of using such high-performance kernels
in a general sparse-NT setting. To unearth some of the significance of using this work’s
techniques, we compare the performance of the MTT with NTToolbox's MATLAB routines,
with the latter consisting of MATLAB classes employing MEX interfaces to LibNT's C4++4
algorithms.

At the time of writing, the MTT represents the only other software library supporting
general-purpose sparse-IN'T operations. Reflecting the designers’ intent, the MTT’s focus
on tensor decomposition endows it with a suite of routines and data structures that go
beyond basic arithmetic operations. With regard to sparse arithmetic operations, it does
not support generalised entrywise products, solutions of equations, addition-subtraction
with arbitrary index matchings, and operations between dense and sparse data.

In comparing runtime performance, the question should be addressed whether it is
fair to compare the MTT's code with NTToolbox, as the latter relies on LibNT’s C4++4
code. First, the developers of the MTT made successful efforts to offload functionality
onto MATLAB’s built-in and compiled subroutines, minimising the number of commands
executed by MATLAB’s interpreter. Even so, minimisation is not the same as elimination,
and interpreted commands could still hamper performance to varying degrees. However, this
does not invalidate comparisons with NTToolbox, as it touches upon the points brought
up by Ousterhout [133], and discussed in Sections 2.2.3 and 2.2.4, on programming vs.
computational efficiency. As Ousterhout argued, programming tasks are typically either
computationally heavy algorithmic development or plugging and gluing these optimised
algorithms together. Along these lines, if the MATLAB interpreter is causing significant
slowdowns, then this is an argument for offloading certain tasks to a compiled-language
implementation. This is the approach taken by NTToolbox.

Two different types of tests were performed. The first benchmarked the performance
of LibNT in performing NT products crucial for canonical-polyadic (CP) decomposition.
The MTT's specialised routines to compute these products form a core of its sparse CP
decomposition routines. The first benchmark touches upon a highly important application,
but does not reveal any insights into the impact of LibN'T’s strategies for handling hyper-
sparsity. A second benchmark focuses specifically on this matter, with an emphasis on

hyper-sparse multiplication combined with permutations.

110

5.4.1 Sparse Tensor Decomposition

While the MTT does not explicitly support entrywise multiplication across arbitrary in-
dices, specific instances of these types of products still play an important role in tensor
decomposition. For instance the Khatri-Rao product is a crucial kernel in the classic alter-
nating least squares (ALS) algorithm for CP decomposition [83] and remains an important
operation in more recent CP decomposition strategies [202].

In the language of NT formalism, the Khatri-Rao product is expressed as

ik = Wiglk - (5.8)

As also detailed in the dense benchmarks of Section 4.3.2, the Khatri-Rao product is impor-
tant enough for tensor decomposition applications that the MTT offers dedicated routines to

multiply the product in (5.8) with another tensor, without forming the Khatri-Rao product
explicitly. In NT algebra, this is expressed as

ﬁ'rfk = Eijtuikvjk Y {5.9}

and in the MTT library a specific function, mttkrp, executes the entirety of (5.9) given an
N-degree tensor and N — 1 appropriately sized matrices.

Since the MTT supplies a specific function designed to efficiently execute (5.9), it is
worthwhile to measure how NTToolbox fares using its general NT product routines. To
recap the ALS algorithm for the reader, z;;; represents the sparse NT to be decomposed,
whereas ug and vjp and wy represent the current estimates of the three dense factor
matrices the algorithm is attempting to compute. The hat accent on g in (5.9) reflects
the fact that further processing is required before obtaining the updated wy;, estimate. The
alternating aspect of ALS comes from the fact that the algorithm cycles through each factor
matrix, estimating it, while leaving the other two constant. Thus, for each iteration, the
algorithm computes (5.9) plus the following two calculations:

Djle = TijeUikWek , (5.10)

ﬁik = TV Wek - |:51 1}

Based on profiling, computing these three equations consumes roughly 75% of the running
time when calling MTT’s CP ALS algorithm.

To compare the performance of NTToolbox vs. the MTT in computing these Khatri-
Rao-type products, N = N x N sparse NTs were randomly generated using the MTT's
create_problem function. This function constructs a randomly generated sparse N'T cor-
responding to a desired fill factor and number of CP factors. Once the sparse NT was gen-
erated, the experiment used MTT's create_guess function to generate three initial dense
factor matrices. Then the time required to compute (5.9), (5.10), and (5.11) was measured.
This was repeated for different tensor sizes, fill factors, and number of CP factors.

111

=]

o

B

5 Factors 5% Sparsity
=== == 5 Factors 10% Sparsity
10 Factors 5% Sparsity
------ 10 Factors 10% Sparsity

I

MTT Running Time Relative to NTToolbox
w

150 200 250 300 350
N

Figure 5.10: Benchmarks for performing sparse Khatri-Rao-type products. Third-degree
sparse tensors with cubic sizes were randomly generated using the MTT’s create_problem
function. The ratio of the MTT’s running time to NTToolbox’s in computing (5.9), (5.10),
and (5.11) is graphed for different dimensionalities and the indicated sparsity fill factor and
CP factors. For each tensor size, fill factor, and CP factor number, 10 trails were performed.
Trend lines depict median ratios and error bars represent quartiles.

—
:::E
=

The results of this experiment are graphed in Figure 5.10. As can be seen, NTTool-
box produced much faster running times than the MTT. For all experiment conditions,
NTToolbox’s relative performance improved as the size of the CP problem increased. As
well, as the number of CP factors and fill factor increased, the performance gap between
NTToolbox and the MTT grew to almost a factor of 5. Considering that NTToolbox exe-
cuted its computations using its own basic functions, and not a specialised function like the
MTT, these results demonstrate that the sparse design principles outlined in this chapter
can significantly benefit tensor decomposition applications.

5.4.2 Hyper-Sparse Multiplication

The CP decomposition example highlighted performance improvements on an important
high-degree exemplar. However, the hyper-sparse poly-algorithm did not come into play.
As well, any sparse permutations were of a third-degree N'T, which does give the RP algo-
rithm the best opportunity to showcase its performance improvements. To help measure
the impact of these innovations, a second benchmark focuses specifically on hyper-sparse
multiplication.

Three fourth-degree N x N = N x N NTs were created using the MTT s sptenrand
routine, with a 5% fill factor. These three NTs were then multiplied using the following

112

102 E T T T T E
b '.._,.--*"".'—
-

10 ¢ ...-""'f E
= i -~ -
§ I """# ..--""""—f 1
= 1 L .-"'f ..---""#F =
g : f"'f ...-"'"F‘ E
. - -

Pl P _

m_lz' "', _:n--"-'--f E

o ol — — MTT _
-]
- = = = NTToolbox |

]0_2 T 1 1 1
10 15 N 20 25

Figure 5.11: Benchmarks for hyper-sparse products. The performance of NTToolbox and
the MTT in executing (5.12), an expression incorporating permutations and column- and
row-sparse matrix multiplications, was measured using increasing sizes of N. Trend lines
depict median values and error bars represent quartiles.

expression:

(@ijkebpmnk) Crplr, (5.12)

which requires both permutations and the multiplication of highly column- and row-sparse
matrices'. As such, (5.12) is well-suited to highlight the impact of the permutation al-
gorithm and multiplication poly-algorithm discussed in this work. The running time to
execute (5.12) was measured across different values of N.

As Figure 5.11 demonstrates, NTToolbox outperforms the MTT by very-wide margins,
running at minimum 4.5 times faster. At the highest value of N this margin increases,
with NTToolbox completing the task at roughly 3.8 s while the MTT requires roughly 58 s.
These performance gaps are large enough to mean the difference between practical and
non-practical running-times.

These results highlight the importance of high-performance kernels even under proto-
typing settings. As well, they confirm that the principles animating the RP algorithm and
the multiplication poly-algorithm can accelerate sparse NT computations. For this reason,

they represent important advancements to the state of the art.

5.5 Summary

As means to overcome the curse of dimensionality, sparse computations play a pivotal role

for high-degree computations. For this reason, sparse data structures and algorithms play a

To execute using the MTT, (5.12) was translated into n-mode’ notation.

113

central role within the NT software of the NT framework. Along with the MTT [112,124],
LibNT and NTToolbox stand alone in offering a general-purpose environment for sparse N'T
computations. The NT software is differentiated by several novel high-performance kernels,
implemented as C4++4 routines within LibNT. NTToolbox interfaces to these algorithms
through MATLAB. While researchers have published high-performance arithmetic algo-
rithms tackling specific tasks [176,177,181], LibNT"s high-performance routines are tailored
for general-purpose sparse NT arithmetic, meaning addition, subtraction, multiplication,
and the solution of equations incorporating dense, sparse, or dense/spase N'T mixtures.

We focus on three core aspects of LibN'T's sparse functionality. First, like Bader and
Kolda [124], we believe a general library should not place an a priori precedence on certain
NT indices over others. However, we argue for the LCO format over Bader and Kolda's CO
format, based on its faster sorting performance and lower memory consumption.

Secondly, we emphasise the importance of high-performance rearrangement algorithms
when using list-like data structures like the CO and LCO formats. Such algorithms are
necessary to realise a high-performance sparse NT library. We outline the impact of using
radix sort, which is specialised to sort integer datatypes, over more general-purpose sort-
ing algorithms. As well, we are the first to outline how the rearrangement task faced by
permutations can be optimised by exploiting the structure inherent in permuted data. The
resulting algorithm can rearrange data faster than the best sorting option, underscoring the
importance of employing routines tailored for sparse NTs.

Finally, we address the topic of sparse-times-sparse N'T multiplication, which faces dif-
ficulties distinct from those found within the MV paradigm. In particular, a general NT
library could encounter any combination of sparse, index-sparse, column-sparse, or row-
sparse data, which all demand their own specialised approaches. Apart from highlighting
this unique characteristic, we also outlined a multiplication poly-algorithm that can choose
appropriate algorithms accordingly. This poly-algorithm ensures that excessive memory
use is avoided, a potentially catastrophic event. Moreover, the poly-algorithm produces
highly-significant reductions in running time over the common CSC/CSR approach. While
the MTT can also handle hyper-sparsity, its one-size-fits-all algorithm does not exploit the
very distinct features of the different sparsity types.

Compared to the MTT, the outlined kernels contributed to considerable improvements
in running time on benchmarks focusing on arithmetic operations stemming from CP de-
composition and hyper-sparse multiplication. These performance gains demonstrate the
value of the outlined high-performance kernels, which are tailored to the unique challenges
of sparse NT computations. All of the discussed high-performance kernels are accessible
through LibNT and NTToolbox, acting as a backbone to the NT framework. However, as
with any innovations regarding N'T computations, we view these sparse kernels as a con-
tribution to the general field of high-degree software. As such, the data structures and
algorithms described here, or variants thereof, are also well suited to any other package

114

incorporating sparse N'T's. Thus, these kernels represent an important contribution to the
burgeoning field of NT software.

In concert with N'T algebra and the dense software foundation, these sparse innovations
help complete the NT framework. With the NT framework described, exemplar prob-
lems can be tackled, illuminating aspects of technical computing practice beyond the MV
paradigm. This is the focus of the following chapter.

115

Chapter 6

Differential Operators

Special linear mappings, typified by high-degree linear mappings and entrywise products, are
an exemplar category not well-handled by the matrix-vector (MV) paradigm. In contrast,
a numeric tensor (NT) framework easily expresses and computes such mappings. Differen-
tial operators are a recurring source of special linear mappings. Applied to gridded data,
e.g., an image, often as part of a partial-differential equation (PDE), differential operators
commonly take the form of finite-difference (FD) operators. The need for effective solutions
for high-degree differential operators has driven a great deal of work on high-degree algebra
and software. This includes the EinSum [54,67] and POOMA [128] software libraries, which
provide implicit representations of common high-degree FD operations. Complementary to
these efforts, the N'T software uses explicit sparse representations, which are necessary in
order to construct linear systems which must be later solved. The widespread need for high-
degree differential operators means they are an excellent source of exemplars that showcase
the merits of the NT framework.

This chapter illustrates three differential-operator exemplars taken from two computer
vision problems, called interactive image segmentation and depth-map estimation. To-
gether, these exemplars involve high-degree mappings, entrywise products, linear inversion,
non-linear functions, separable representation, and differentiation, capturing many of the
features highlighted in current pushes for frameworks beyond the MV paradigm. Moreover,
the chapter emphasises aspects not easily implemented using the MV paradigm. As the
exemplars can be framed as PDEs, the demonstrated benefits are relevant to many fields
outside of computer vision.

The selected exemplars have also been important aspects of the author’s work in com-
puter vision, having been featured in three different publications [55,164,203]. The inherent
challenges of working on such exemplars has motivated much of the NT framework’s devel-
opment. This influence goes both ways, as the NT framework has impacted the approach
used to tackle these problems, e.q., the author’s latest work on depth-map estimation, which
incorporates a high-degree generalisation of separable nonlinear least squares (SNLS). This
aligns with Kuhn's assertion that the need to address anomalies stemming from impor-

116

tant problems motivates the pursuit of models, tools, and techniques beyond a scientific
paradigm. Moreover, when these anomalies are viewed as key components of new exemplars,
they can begin to demarcate the possibilities and boundaries of an alternative paradigm.
The chapter begins with a discussion on the importance and challenges of FD operators
in high-degree domains, such as image processing and computer vision. Afterwards, the
chapter outlines how the NT framework can benefit random walker (RW) segmentation, a
prominent image segmentation algorithm. This is followed up by a discussion on how the

NT framework's capabilities can aid depth-map estimation problems.

6.1 Finite-Difference Operators

Differential operators are a bedrock of scientific and engineering modelling. The most no-
table manifestation of differential operators is within PDEs, whose importance to scientific
and engineering practice is hard to overstate. PDEs are just as crucial for image pro-
cessing and computer vision, where techniques, such as depth-map estimation [55], image-
segmentation [56,204], denoising [205], and image enhancement [204,206,207), are frequently
cast as PDEs.

In digital imaging, which is typically characterised by gridded pixels, differential oper-
ators frequently take on the form of FD operators. Apart from PDEs, FD operators are
also useful for computing image gradients, e.g., for the purposes of edge-detection [208],
optical flow [209], or object-recognition features [210]. Whether used for PDEs or other
purposes, as Figure 6.1 emphasises, FD operators must meet the challenges inherent within
high-degree data.

For instance, in digital imaging, it is often of interest to explicitly formulate the FD
operator acting upon an image. If applied as part of a PDE, the FD operator can be used as
part of a design matrix. If this is done using MV algebra, the digital image must be flattened
into a vector. The FD operator must then be created using the same lexicographical order,
which typically involves using a large offset to index rows or columns. This process is
burdensome and error prone [67]. Digital imaging is not unique in needing to work with
FD operators applied to high-degree domains, as witnessed by the discussion of flattening
schemes in prominent texts on numerical methods and technical computing [47,57, 58].

In one degree, on the other hand, FD matrix operators are relatively easy to construct.
For example, should O(h?) central differencing be required, the FD matrix can be con-
structed using

. 0 00 000 34 -1 0 0 0 0
D= I o0o0|+{0o0I)+[0 0 0 0 0 0 0O . (6.1)
0 00 000 00 0 0 -1 4 -3

where the first and last rows of D are filled using O(h?) forward and backward-differencing
operators. Each 0 is a sub-matrix of appropriate dimensions.

117

(a) (b)

Figure 6.1: The high-degree nature of imaging poses challenges for FD operators. Natural
images are 2D or 3D if colour is taken into account, e.g., (a). Medical images are often
3D, e.g., the CT scan in (b). When a time series is taken, medical images can even be 4D.
Volume rendered using the Medical Imaging Interaction Toolkit [211].

Unlike MV algebra, NT algebra can just as easily express FD operators for higher
degrees. First, the D operator should be converted to a second-degree NT, ie., diw =
e;rDeé:, designed to operate on first-degree data. In N'T algebra, this operator can be easily
applied to any of the indices of an NT. For instance, if a 3D image is represented using a
third-degree NT, Iz, then the three possible gradients can be represented as

Iy = dgp Tvji, (6.2)
ke = Gl (6.3)
I%k = dppelijue, (6.4)

where the ranges of indices undergoing an inner product are assumed to match.

It may also be desired to combine gradient values together, e.g.,

Figie = T + I + I (6.5)
= diLuji + djline + digo Lii. (6.6)

While (6.6) is an unlikely formulation, versions very similar to it, e.g., incorporating second-
order derivatives, are common when problems are formulated as Poisson or Laplacian PDEs.
To isolate I;;, the associativity and distributivity of NT products over addition can be used.

For instance, using the factoring rules of Table 3.1, (6.6) can be reexpressed as
fije = d B0 Oppr Lyt jrar + d_:;jrﬁ;;rﬁkkr Tirjrpr + dipidsir b L, (6.7)

115

(b)

Figure 6.2: Foreground and background labelling for 2D BW image segmentation. Inter-
active segmentation requires that the user designates a set of foreground and background
seed labels. In this case, the user has painted (a) with red and green brush strokes to label
selected pixels as foreground and background, respectively. Interactive segmentation algo-
rithms then propagate seed labels to the entire image, resulting in a masked image, e.q.,
(b). The segmentation in this example was performed using the RW algorithm, executed
using NTToolbox.

where the right-hand side can be collected together to form a design NT:

ik’ §' k' = dﬁraﬁ‘éﬁk‘ + d_:;jfﬂii'ékk' + dikfﬂii'ﬂjj': (6.8)

forming a high-degree linear system to solve:
fi;.-'k = ﬂijkifjfkff ikt . (59}

Doing the same in the MV paradigm requires flattening operations based on the lex-
icographical order. Moreover, as Sections 6.2 and 6.3 will demonstrate, FD operators for
computer-vision problems must often work in concert with entrywise products, non-linear
functions, and linear inversion of high-degree equations, posing additional challenges. These
can be met by the NT framework.

6.2 Random Walker Image Segmentation

Image segmentation is one of the fundamental aims of computer vision and medical-imaging
analysis [212]. Roughly speaking, the goal of image segmentation is to isolate region(s) of
interest from a 2D or 3D image. Interactive image segmentation is a major approach to
this problem, where the result is guided by user input. Figure 6.2(a) illustrates a common
manifestation of interactive image segmentation where virtual brush strokes designate sets
of seed points. These seed points specify foreground and background regions. Based on
these seed points, the segmentation algorithm propagates the seed-point labelling to all
unseeded pixels or voxels in the image. Figure 6.2(b) depicts an example of how the seed-
point labelling in Figure 6.2(a) could be propagated. More than two label types are also
possible.

119

D

Figure 6.3: At least four indices are required for 2D RW segmentation. Affinity between
neighbouring pixels is calculated using image gradients, p;; and g¢;;. Based on the seed
points and these affinities, a labelling potential, ¢g,. is calculated. This potential can be
thresholded to produce a segmentation mask. Depending on how the seed-point constraints
are incorporated, a fifth index, i.e., m, could index the seeded pixels. Another index which
is not shown, would index the unseeded pixels.

The RW algorithm [56] is one of the most popular and influential approaches to inter-
active image segmentation. Pertinent to this discussion, the BW algorithm relies heavily on
high-degree differential operators, the challenges of which the NT framework can address.
‘We omit explaining the RW algorithm using the MV paradigm, as such an exposition can
be found in Grady’s original paper [56].

Section 6.2.1 begins by describing the RW formulation using NT algebra. This is followed
by Section 6.2.2, which outlines how the RW can be solved. Afterwards, Section 6.2.3
outlines some important extensions to the RW algorithm that are easily accommodated by
the NT framework but which challenge the MV paradigm even further. Finally, Section 6.2.4
contrasts the computational and programming efficiency of MV paradigm vs. NT framework
implementations of the RW algorithm.

6.2.1 Formulation

As Grady explains in his original paper, the BW algorithm can be motivated through
several analogies, including diffusion equations and circuit analysis [56]. Regardless of how
it is motivated, the formulation boils down to determining a pixel labelling that minimises
differences across neighbouring and similar pixels. As Figure 6.3 illustrates, in the 2D
segmentation case the RW algorithm must contend with at least four indices. Moreover, as
will be shown, entrywise products play an important role. Thus, the MV paradigm is not
naturally equipped to model this image-segmentation task.

To see this, consider first that the RW algorithm attempts to determine a labelling for
all pixels or voxels in an image. In a 2D setting ¢ps designates the labelling, which is a soft
floating-point valued labelling often called the potential. In the case of Figure 6.2(a) user-
defined virtual brush strokes designate sets of seed points, 5; and S, that are constrained
to be in the foreground and background, respectively. To propagate the seed-point labelling

120

to the rest of the image, a natural approach is to make it easier to propagate labels when
neighbouring pixels are alike and harder when neighbouring pixels are dissimilar.

There are many ways to compute pixel similarity, but the most common is to use
intensity differences between neighbours, e.g., Grady’s use of a Gaussian kernel [56]. Using
a 4-connected grid, intensity differences can be computed using the 2D analogues of the
gradient calculations in (6.2)-(6.4). The x and y gradients can be represented as p;; and gy;
respectively. These gradients can be incorporated into a Gaussian kernel to produce two
sets of similarity weights,

w?; = exp (_g"j) , (6.10)
w!, = exp (_Tq“) , (6.11)

where 7 is an algorithm parameter.

Each weight value is used to penalise any differences in potential values across neigh-
bouring pixels, where penalty values are greatest for neighbouring pixels of similar intensity.
The goal then is to minimise the penalties. This task can be formulated as determining the

labelling potential that minimises the following energy functional:

f{(b} = {dgirgbi'j}(di;?bifj}w; + Ed;jr?b;ji}(d;jr(ﬁiji}ﬂfa, EE]E}
= (@05 (dyfu0%) + (A Bi50) (b5, (6.13)
@i =1, {1,7} € 5

where dj; and d’;"j denote one-dimensional FD operators with appropriate dimensions for
the = and y directions, respectively. This formulation can be understood as minimising the
weighted squared difference between pixel labels.

The formulation in (6.12) expresses a ternary inner product between the FD operators
and the weightings, resulting in an anisotropic Laplacian operator. The subsequent expres-
sion in (6.13) uses the association identity to isolate one of the ¢ operands. In the original
formulation, Grady described these products as a weighted inner product, which resulted in
a combinatorial Laplacian matrix. To describe the energy term of (6.12) Grady predomi-
nantly used MV notation, but resorted to a mix of diagonal matrices, implicit vectorisations,
and isolated instances of Einstein notation. In contrast, (6.12) expresses all operations al-
gebraically. Additionally, (6.12) can be easily extended to 3 or more dimensions.

121

6.2.2 Solution

With the energy functional constructed, solving for the energy potential requires finding its
minimum. This requires taking the derivative of f(¢) with respect to ¢p,

3o = (Wb (Byoguly) + (Eybasbpe) Gpd), (615)
= dyp (dip w050) Gur; + dir (dfrwisdge)iy (6.16)
= dip (A5 wipOee) bre + dor (A6 Wiy Ok) Dkt (6.17)
= Qe Pl (6.18)

where the association identity was used in (6.16) to isolate ¢. In (6.17), the dummy indices
for ¢ were changed to k and £, aligning with Figure 6.3’s conventions. The NT aprpe, de-
fined by (6.17) and (6.18), forms the combinatorial Laplacian operator discussed by Grady.
The next step consists of setting the product in (6.18) to zero, forming a Laplacian-like
elliptic PDE. and solving the resulting equation for ¢p;. However, such a problem is under-
determined without constraints. The seed values fill this role, acting as non-boundary
Dirichlet constraints.

There are several means to incorporate the seed-value constraints. One approach, used
by Grady [56], reduces the problem size by decomposing the labelling potentials into un-
seeded and seeded components. For instance, a sequence of seed labels can be placed into
their respective pixel coordinates via a selection N'T:

Ot = Thtrn S (6.19)

where s, denotes the list of known seed labels that are either 0 or 1 valued, ¢, is a second-
degree NT of all-zero values except for 1-valued seed points, and =, = represents a selection
NT that places seed labels into their matching image coordinates. A similar formulation is
possible for unseeded labels:

Pkt = Thenlin, (6.20)

where u,, denotes the list of unseeded labels whose values must be determined and w}}, is
the corresponding selection N'T. Thus, the complete labelling can be expressed as the sum
of seeded and unseeded labels:

Bre = Big + Pe- (6.21)

Since the unseeded labels are the unknowns, they must be solved for. The derivative of dgs

with respect to un is simply

= T (6.22)

122

(a) (b) © (@ (e)

Figure 6.4: Medical-imaging application of using the RW method with a data prior. The
IntellEditS tool [203] used data prior terms, based on interactive discriminative learning,
to intelligently propagate a user’s 2D edits to the larger 3D volume of a medical scan. For
instance, in (a) the user wishes to correct a segmentation to remove the vena cava from a
liver mesh (red). The user chooses an interaction plane and draws a corrected boundary
(green). (b) The mesh is updated in the plane. (c) Using the RW and a data prior based
on the learned features of the edited region, the mesh boundary is accurately propagated in
3D. (d)-(e) The 3D propagation can also be viewed by comparing before and after surfaces
in (d) and (e), respectively. Figures taken from Harrison et al. [203].

The expression in (6.22) can be multiplied with (6.18) to form an expression of the
derivative of f(¢) with respect to u,:
a
ﬁ = Tfﬂifrnrakigrkg(?rzmsm + TTE,E“H“:I EEEE}

Ay
Setting the above to zero leads to a final expression, which can be solved for w,:

ﬂzirﬂrﬂkfﬂk,fﬂ'ﬁfﬂun = —Wﬂffnfﬂkfﬂkﬂfﬁmnsm- (6.24)
The selection NT's can be seen as selecting certain sub-regions of the apppe NT.

6.2.3 Extensions

Extending the energy functional in (6.12) to 3 or more dimensions, which involves adding
terms incorporating FD differences in the additional directions, is notationally straight-
forward under the NT framework. Additionally, the NT framework is particularly well-
equipped to model an important refinement to the RW formulation, which adds a prior term
that biases the solution based on some pre-existing knowledge. This was first discussed by
Grady [213], leading to several other important works employing the RW-with-prior formu-
lation [203,214,215]. This includes a tool developed by the author called intelligent editor
of segmentations (IntellEditS) that uses the RW method coupled with two data-prior terms
to edit pre-existing medical-imaging segmentations [203]. Figure 6.4 visually demonstrates
the functionality of the tool.

The data prior’s influence on the final solution is controlled by a set of weights. Nota-

123

tionally, this alters the formulation in (6.12) to include an additional additive term,

F(8) = (dipdw;) (dgdwjwiy) + (d5p bigr) (d5jeduyws;) + Vi (S5 — vis) (b5 — wis), (6.25)
=1, {i,j} eS8

s.t.{ (fb:. o "{{i!ﬁ c Si , (6.26)

where y;; represents the data prior terms and ;; represents the weighting that controls

the data-prior’s influence. The energy functional in (6.25) can be understood as penalizing

both pixel labels that deviate from the data prior and pixel labels that deviate from their

neighbours. For the IntellEditS tool, data prior terms were calculated based on learning
the features that discriminate between foreground and background seed values [203].

Like the original EW method, the energy functional can be minimised by taking the

derivative with respect to @;;,

195(9)

L) _p, e o+ B o+ By —), (62D
=dg, (dgwipdee)Pre + 2d5p (A5} 0k) Dre (6.28)

+ (VaeOrr Oger)bre — 27¥i50ik 0o Ui,
=appedpe + fre, (6.29)

where ¢'s dummy indices for the data-prior term in (6.28) were changed to k and £. As
(6.28) demonstrates, the data-prior adds weighted Kronecker delta NTs to the final ag gy
NT. In addition, a constant term, fie, is included within the formulation, which, when
(6.29) is set to zero, turns the original Laplacian elliptic PDE into a Poisson-like PDE.
With a formulation for (6.29) in hand, solving for unseeded labels follows the same process
as before. Grady's original exposition, using the MV paradigm, relied on diagonal matrices
to express entrywise products [213]. In addition, the steps involved to construct the final
formulation of (6.29) is left to the reader. In contrast, using NT formalism, the solution to
(6.25) is algebraically constructed, making the translation to a programmed solution much
more seamless.

6.2.4 Results

Despite having to deal with fourth-degree data, entrywise products, ternary inner products,
and high-degree linear inversions, it is possible to implement the RW method using the MV
paradigm. In fact, Grady’s original RW implementation uses MATLAB’s MV routines [56].
For this reason it is possible to compare the computational and programming efficiency of
a standard MV-paradigm MATLAB implementation vs. that of an NTToolbox implemen-
tation. For simplicity, hereafter the standard MV-paradigm MATLAB implementation will
be referred to as the standard MATLAB implementation. The comparison will focus on the
original RW formulation, and not the extensions discussed in Section 6.2.3.

Focusing first on programming efficiency, to implement the RW algorithm using a MAT-
LAB implementation requires several hand-crafted workarounds, which mirrors the alge-

124

braic workarounds encountered in Grady’s original exposition [56]. These include needing
to flatten fourth-degree and second-degree data into matrix and vector form, respectively.
Moreover, entrywise products must be executed using diagonal matrices. These operations
introduce programming difficulties that are not inherent to the problem-at-hand. Ahlander
et al. have emphasised that such workarounds can be a significant source of error [54, 67,
which largely stem from the need to manually bookkeep the mappings from high-degree to
low-degree form.

Apart from adding additional opportunities for errors, the flattening scheme itself intro-
duces an arbitrary element to the solution. The programmer must settle upon one of several
flattening schemes and ensure that the implications of this are understood and communi-
cated to anyone viewing the code. In addition, by shoehorning the RW algorithm into the
MV paradigm, the programmer cannot use algebraic operations. Instead her only recourse
is to use hand-crafted workarounds, which come predominantly in the form of MATLAB-
specific operations. These do not generalise to other technical computing environments,
introducing obstacles to knowledge translation and uptake.

The end result of these issues is that the resulting MATLAB implementation is opaque
to someone not already well-versed in MATLAB workarounds and the implications of these
actions. In contrast, using N'T algebra to express the W algorithm allows all steps to be
algebraically described. In addition to its expositional value, explicitly describing all steps
eases translating the RW concepts to code, as the N'T software can mimic N'T algebra. This
avolds introducing difficulties that are not inherent to the BEW algorithm. Most impor-
tantly, the solution on paper aligns with the programmatic solution, resulting in a highly
transparent implementation. Thus, the NTToolbox solution enjoys highly significant gains
in programming efficiency.

Switching focus to computational efficiency, the RW method comprises two main steps.
The first step constructs a high-degree linear system to solve. The second step solves it.
Focusing on the second step first, the time taken by the MATLAB and NTToolbox imple-
mentations to solve the KW linear system is illustrated by Figure 6.5(b). These performance
metrics compare the performance of Eigen's open-source sparse solver [145], used by NT-
Toolbox, vs. MATLAB's sparse solver. As such, they are not measuring the impact of the
NT algebra and software innovations detailed in this thesis, but instead the choice of the
third-party sparse solver. From Figure 6.5(b), it can be seen that MATLARB’s sparse solver
outperforms Eigen's by considerable margins, highlighting the effectiveness of the former’s
routines. Future work should link to or include faster third-party sparse solvers, possibly
replicating MATLAB’s poly-algorithmic approach. Because effective open-source solutions
exist, e.g., the routines used in Octave's sparse solver [216], the performance gap seen in
Figure 6.5(b) can be closed.

In contrast to the solution step, setting up the BW linear system involves the NT opera-
tions outlined in this thesis. Figure 6.5(a) illustrates the performance of the MATLAB and

125

10 - - - - 10 : : . .
=— =— ' MV Paradigm 1
= e w e NT Framework ,..-""#
1 - -
— .
10" | et 10" | Y el
';c" _',-"'-' __..I ';c" " _'..a--'...
= e = S
_q ./‘ - Al s
,
V/ Y
107 . 107 .
100 200 300 400 500 600 100 200 300 400 500 600
N N

(a) (b)

Figure 6.5: Runtime comparison of the MV paradigm and the NT framework in performing
2D BW image segmentation. The RW method was executed on randomly generated N = N
images using foreground and background seed points corresponding to the first and last
columns, respectively. Runtimes of a MATLAB MV paradigm implementation and of a
NTToolbox implementation were measured across increasing values of N. Ten trials were
executed for each value of N. Trend lines depict median values while error bars depict
quartiles. The time taken to construct the RW linear system and then solve it are depicted
in (a) and (b), respectively.

NTToolbox implementations. As can be seen, the MATLAB solution is significantly faster
than NTToolbox. Profiling reveals that the gap between the two can be reduced by offload-
ing some of NTToolbox's resolution of NT algebra to C4++4+ MEX functions. Nonetheless,
even with these changes, performance gaps will likely remain.

When assessing the performance results of Figure 6.5(a) one fact should be considered:
using a standard MATLAB MYV implementation forces programmers to use hand-crafted
code in order to meet the high-degree and entrywise needs of the RW algorithm. The con-
siderable disadvantages of hand-crafted code were documented above. Nonetheless, because
abstraction penalties are avoided, hand-crafted code, if done well, typically results in highly
efficient code. Indeed, the struggle to provide improved expressive capabilities while trying
to match the performance of hand-crafted code is a reoccurring thread within technical
computing. Two examples include the efforts of the developers of FORTRAN to match the
performance of hand-crafted assembly code [24] and the later trail-blazing innovations of
Landry's FTensor library, which is designed to provide support for Einstein notation while
matching the performance of hand-crafted FORTRAN-style code [101]. Each step forward
in programming efficiency typically results in a sacrifice in computational efficiency. So
it is no surprise then that a hand-crafted MATLAB implementation performs faster than
NTToolbox's algebraic solution. Likewise, a hand-crafted lower-level solution would be
faster than a hand-crafted MATLAB implementation. Yet, this latter fact has not arrested

126

Figure 6.6: Illustration of depth-map & albedo estimation. Four images of a single-view
image sequence are displayed. Each image corresponds to a distinct principal light direction,
with its own shading characteristics. From the image sequence, an estimate of the depth of
the subject’s face, along with the albedo, can be produced. Image data obtained from the
Extended Yale Face Database B [217].

MATLAB's rise in popularity as a technical computing platform.

Thus, these results reflect the frequent tension between programmatic and computa-
tional efficiency, which transcends the scope of NT computations. Should one accept that
forcing practitioners to hand-craft technical computing code is a deleterious practice, then
the faster speed of MATLAB's EW implementation compared to NTToolbox's should not
be surprising or disturbing. A belief otherwise would not only undermine the rationale
behind the NT software, but to varying extents, it would also undermine the rationale for
FORTRAN all the way up to very high-level languages like MATLAB.

Moreover, the RW runtime is dominated not by the time needed to construct the linear
system, but by the time needed to solve it. Interfacing to improved third-party sparse
solvers will more closely align the overall performance of NTToolbox to that of a standard
MATLAB implementation. Any remaining performance gaps will be a consequence of
significantly higher, and frequently more impactful, programming efficiency.

6.3 Depth-Map & Albedo Estimation

Depth-map estimation is a seminal computer vision technique whose goal is to estimate the
height field of an object from a sequence of 2D images captured from the same viewpoint,
but each under a different light direction. Estimating depth this way cannot be done without
also considering the object’s reflectance characteristics. Assuming Lambertian reflectance,
i.e., a perfectly diffuse surface material, an object’s reflectance is fully described by its
albedo, or colour. Figure 6.6 visually illustrates depth-map & albedo estimation.

Closely related to depth-map & albedo estimation, and a method important for this

127

(a) (b) (c)

Figure 6.7: Using photometric stereo to generate unseen images from arbitrary light direc-
tions. Photometric stereo was performed on an image sequence of a microfossil specimen.
The estimates were used to generate new images of the specimen. (a) and (b) depict new
images under spot-light illumination, from a zenith angle of 30° and azimuths of 90° (north)
and 270° (south) respectively. (c) depicts the same microfossil, illuminated with a ring light
at a zenith angle of 30°. Figures taken from Harrison et al. [218].

exposition, is photometric stereo. Unlike the former, photometric stereo does not aim for
an explicit estimate of an object’s depth map, but rather a map of its surface normals.
Photometric stereo is relevant to depth-map & albedo estimation, as if often acts as a
first step for many of the latter’s techniques. Amongst other applications, depth-map &
albedo estimation and photometric stereo act as crucial components of the author's work on
virtual reflected-light microscopy [218]. Both techniques can be used for image generation
purposes, i.e., generating new images of an object under arbitrary lighting conditions. The
image-generation process of virtual reflected-light microscopy is illustrated by Figure 6.7.

Depth-map estimation is intimately connected to differential operations. As the problem
is also characterised by high-degree mappings, entrywise products, linear inversions, and
analytical derivatives, depth-map & albedo estimation serves as a compelling exemplar
for the NT framework. We outline two exemplars stemming from depth-map & albedo
estimation. Section 6.3.1 first outlines the traditional two-step approach to depth-map &
albedo estimation, which requires accommodating five different indices. This is followed by
Section 6.3.2, which outlines a direct, one-step, approach to depth-map & albedo estimation.
This approach has superior information theoretic performance, but requires accommodating
six different indices, further challenging the MV paradigm. When a separable representation
for estimation is added to the mix, a seventh index comes into play.

6.3.1 Linearised Maximum Likelihood

Directly relating image observations to depth-map estimates requires a large-scale and non-
linear generative model. As this poses many challenges, the traditional approach is to use

a two-step process of first executing photometric stereo and then executing depth-map esti-

128

mation from photometric stereo’s surface-normal output. Classic two-step approaches enjoy
a long pedigree and are recognised for their high efficiency. Yet, classic methods can fail
catastrophically under noisy, real-world, conditions. Since there are good models of image
noise, maximum likelihood (ML) approaches can in principle solve this problem.

However, it is not obvious how to obtain an ML estimate using the two-step approach,
leading many practical methods to use non-robust heuristics to address image noise. Harri-
son and Joseph [55] solved this problem by modelling the propagation of noise distribution
throughout the two steps. Since the method relies on linearised estimates of gradient noise,
this two-step formulation can be called linearised maximum likelihood (LML) depth-map
estimation.

The exposition will begin by explaining the initial photometric-stereo step. This is
followed by an outline of the final depth-map estimation step. Finally, results will be given
comparing an implementation using the MV paradigm vs. that of the NT framework. Effort
will be taken to only highlight the details most salient to the N'T framework. For details
that are not related. such as the particulars of the image and gradient noise distributions,
readers are encouraged to consult Harrison and Joseph [55].

Photometric Stereo

The first step in the LML method is to perform photometric stereo, which estimates the
surface normals and the albedo of the object being imaged, but not the explicit depth. As
this subsection will explain, the photometric-stereo model of image formation is used to
perform this task. The output of photometric stereo can be used to generate images of the
object under arbitrary lighting conditions. When the goal is to produce an ML estimate of
the depth, a model of the noise distribution of surface gradients must be formulated. This
model is expressed using high-degree matrix NTs and entrywise products.

When estimating surface normals and albedo, these parameters can be represented to-
gether as one vector called the weighted normals, n = (g%, 7%, 77)T. This vector is composed
of the unit-vector surface normals multiplied by the albedo, a gray-level intensity. Using
this representation, Lambertian image formation for a known and single point light source,
plus other important assumptions [55], is captured by a near-linear relationship, expressed
as

I=u(f™n)fTn +e (6.30)

where [is the pixel intensity and £ represents the light direction. In essence the pixel inten-
sity is directly related to the cosine of the angle between surface normals and the direction
of the principle light source. The unit step function, u(.), models attached shadows, setting
image intensity to zero when the corresponding surface patch faces away from the light
source. Image noise is represented by e, which is modelled as an additive independent and

identically distributed (IID) zero-mean Gaussian contribution, a reasonable assumption for

129

Figure 6.8: The four indices of photometric stereo. In the image sequence, I3;;, each image
corresponds to a light direction. The light directions are indexed by E. Light directions and
weighted normals are represented by a vector NT, adding another index. Since photometric
stereo is executed independently for each pixel location, i.e., i and 7. these last indices do
not play an important role, practically limiting the number of indices to two.

image noise [219]. Since (6.30) only concerns one surface location, estimating the weighted
normals can be executed independently for each pixel. Thus, each pixel location will be
considered in isolation. This model of image formation can be called the photometric-stereo
model.

Given N images, each illuminated under known directions, image formation of all ob-
servations can be expressed together as

I = u(£in) £in + e, (6.31)

where k indexes the different images and light directions. Figure 6.8 illustrates the indices
needed for photometric stereo. A vector index is needed to represent the 3D light directions
and surface normals. Technically, the pixel locations, i and j, also come into play. However,
since photometric stereo can be executed independently for each pixel, for practical purposes
there are are only two indices to contend with at one time.

Returning to the image formation model, if one can filter out the shadowed pixels the

generative model reduces to a smaller linear one:
- T
I =€ n+ e, (6.32)

where I} and ;. only constitute the non-shadowed pixels and light directions, respectively.
The weighted normals can then be estimated by solving (6.32) in the least-squares sense for
each pixel. More details can be found in Harrison and Joseph’s paper, including a discussion
of filtering tactics and how using the reduced linear regression form of (6.32) still keeps the
result an ML estimate [55]. From this an estimate of the albedo, 5, can be obtained by taking
the norm of . With an estimate of the weighted normals in hand, images of the object
from arbitrary light directions can be generated, e.g., the virtual reflected-light microscopy

images of Figure 6.7.

130

However, often the purpose is to explicitly estimate an object’s depth map. While the
surface normals do describe an object’s shape, explicitly estimating the depth map requires
computing the surface gradients. The surface-gradient estimates can be calculated from the
weighted-normal estimates using the following relationship:

B= (5.0 (6.33)
~ - T
- (—?,—%) _, (6.34)
= 4

where p and g denote the surface gradients in the x and y direction, respectively.

To obtain an ML estimate, the noise distribution of the gradients must also be modelled.
The error in the gradient estimates can be modelled based on the noise model of the original
image observations. However, modelling this behaviour is challenging as its distribution is
governed in part by the nonlinear operations within (6.34). Solving this problem, Harri-
son and Joseph demonstrated that one can model the gradient noise using an anisotropic
Gaussian distribution, provided regularity assumptions and asymptotic approximations are
used [55].

Harrison and Joseph also outlined how the covariance of the gradient estimates can be
computed. These details will not be given here, but interested readers are encouraged to
consult their paper [55]. Regardless of how the covariance is computed, since gradients
are estimated independently for each pixel, they can be modelled as being independent
from estimates stemming from other pixel locations. Thus, the covariance of the gradient

estimates can be represented using a sequence of 2 x 2 matrices for each pixel location:
FE — ML (6.35)

‘When all pixels locations are considered together, the gradient covariance can be expressed
as

P8 = Myl (6.36)
where i and j denote pixel locations and the use of § NTs reflects that covariance between
gradient estimates is nonzero only when they share the same pixel location. If the inverse
of (6.36) need be obtained, it can be calculated relatively inexpensively using:
2 —1
—1
b =Mg'owisy. (6.37)
Depth-Map Estimation

With photometric stereo explained, depth-map estimation can be outlined, a setting where
the NT framework can play a highly useful role. A depth map, 2. is related to surface
gradients through the following formulation:

5‘2,-_.,- 5‘2,_., T

131

Figure 6.9: Five indices are required for LML depth-map estimation. Surface gradients for
each pixel location are represented by a vector NT, By;, constituting three indices when the
vector index is included. Two other indices are needed to represent zmn.

The relationship can be approximated using FD operators:
T T
Bij = (dfnzin, i 2ms) (6.39)

where as explained in Section 6.1, the d;j; and d.

i+ NT's represent FD operators in the x
and y directions, respectively. Since FD operators use a neighbourhood of values in their
calculations, an estimate for z,,,, must be calculated for all pixel locations simultaneously.
Figure 6.9 visually illustrates the indices needed for LML depth-map estimation.

When using an ML approach, estimating the depth map is framed as a regression prob-

df, Zin Pij B
(&)= (o) < c40

lem:

which simplifies to

dijmﬂzmﬂ = ﬂij + E:‘.ﬂj‘-‘ |:'ﬁ41}
where
daz_b;
A, = (Jnrtm)»_. 6.42
! d‘fméjﬂ l: }

and ef ~ N'(0,£P%) describes the gradient noise. In (6.41) and (6.42) z,p, is isolated
using the factoring rules explained in Section 3.2.1. The expression in (6.41) incorporates
the five indices outlined in Figure 6.9.

Since the gradient noise terms are not IID, (6.41) expresses a generalised least-squares
(GLS) problem [220]. As explained by Harrison and Joseph [55], solving this large and

sparse GLS problem directly is best accomplished using the least-squares normal equations:

T BB
di'j'm‘n' (E :

B) digmnimn = A (Z50)7 B, (6.43)

F
which, when (6.37) is substituted in, equates to

: L w&aﬁiaﬂydijmzm - d}j;m,n;(miaﬁ,ﬁﬁ}ﬂﬁ, (6.44)

132

Poisson AD LML

Figure 6.10: Visual improvements of the LML method over the state-of-the-art. The depth
map estimates of the LML method is compared against the Poisson and anisotropic diffu-
sion (AD) methods [221], which represent classic and more modern heuristic approaches,
respectively. Image-sequence data used to estimate the depth-map & albedo corresponds to
subject 24 from the Extended Yale Face Database B [217]. More details on the experiment
setup can be found in Harrison and Joseph [55]

and simplifies to
d;l;j'm'ﬂ'M;j!Fdi'jImémﬂ = d;l;j’m’n’Mi_’jl’ Ei}jr . EE45}

The substitution of (6.37) into (6.44) introduces ternary inner products into the formula-
tion. This also paves the way toward expressing the computationally simpler formulation
of (6.45), as the § NTs can be multiplied out, incorporating both FD operators into the
ternary inner products.

The final formulation in (6.44) can be viewed as expressing a combinatorial Laplacian,
which is identical in structure to, but different in value from, the RW formulation. Thus,
depth-map estimation can be cast as an anisotropic Poisson elliptic PDE. As can be seen,
LML depth-map estimation involves fourth-degree vector and matrix N'Ts, entrywise prod-
ucts, and ternary inner products. Even when resorting to flattening operations and using
diagonal matrices to represent entrywise products, there is no obvious way to cast (6.45)
into the MV paradigm, which is reflected by Harrison and Joseph’s reliance on textual
descriptions of the underlying algebraic operations [55]. For this reason, it is a problem
well-suited to both N'T algebra and N'T software.

As Figure 6.10 illustrates, the effort taken to model the propagation of image noise
throughout the two steps of LML estimation pays dividends. Significant visual improve-
ments can be garnered and usable depth-map estimates are produced even when state-of-
the-art methods fail. These qualitative observations are supported by extensive quantitative

experiments [55].

133

Results

Like BW image segmentation, it is possible to implement LML estimation using stan-
dard MATLAB code. In fact, originally, the LML method was formulated using the MV
paradigm [55] and the frustrations involved served as one of the motivations for our foray
into NT algebra and software. As a result, just like with the RW algorithm, the pro-
gramming and computational efficiency of the standard MATLAB implementation vs. an
NTToolbox implementation can be gauged.

In our original exposition using MV algebra, steps had to be explained in words or by
implicit flattening. Just like the KW method, these non-algebraic workarounds negatively
impacted the programmatic implementation. Because the LML formulation is very similar
to the RW formulation, the consequences to programming efficiency closely match. For
instance, a standard MATLAB implementation required keeping track of lexicographical
offsets and implementing ternary inner products by manually constructing a very-large and
sparse diagonal matrix.

On the other hand, NT algebra can naturally formulate all steps. As a result, the
NTToolbox implementation is able to mirror the solution on paper. Thus, the programmatic

solution is expressed algebraically, providing a much more transparent implementation free
of MATLAB-specific workarounds or other difficulties not inherent to the actual problem-
at-hand.

Focusing on computational efficiency, like the RW algorithm, the LML method can be
roughly divided into the two steps of first constructing a high-degree linear system and then
solving it. Figure 6.11 illustrates the performance of the standard MATLAB and NTToolbox
implementations for these two steps across increasing scales of data. Considering the time
taken to solve the high-degree linear system first, as Figure 6.11(b) indicates, the MATLAB
sparse solver proved much faster than Eigen’s [145] sparse solver used by NTToolbox. As
this mirrors the performance of the BW algorithm. this is not a surprising result. As
mentioned in Section 6.2.4, interfacing to faster third-party sparse solvers will close this
gap.

However, as Figure 6.11(b) illustrates, to construct the high-degree linear system, the
NTToolbox implementation outperforms the standard MATLAB implementation by signif-
icant margins. The differences in performance are caused by the expression in (6.37), which
calculates inverse entrywise covariance values. Because of the entrywise nature of (6.37),
there are no fast MATLAB workarounds, forcing a standard implementation to resort to
explicit for loops, which are a well-known bottleneck. In contrast, because the operation
can be expressed algebraically using NT algebra, NTToolbox can offload the computation
to LibNT"s high-performance kernels, gaining considerable performance improvements.

Thus, unlike the RW algorithm, the LML method provides a scenario where even hand-
crafted MATLAB code offers no high-performance workarounds. This allows the NTToolbox
code to construct the LML linear system much faster than the standard MATLAB imple-

134

10 10 ; ' oy
— _,--""f
- —
. =
o .--"f.‘ — 0 .f -
107 ¢ -~ — 3 107 ¢ - _— 3
- -7 = -~ -
~ ~ — . -
" e -
: b : |-
- '.-"" - e -
= » = af -~
10 ¢ : 10 L
= = MV Paradigm
== = = NT Framework
107 : : 107 : :
100 200 300 400 100 200 300 400
N N

(a) (b)

Figure 6.11: Runtime comparison of the MV paradigm and the NT framework in performing
LML depth-map & albedo estimation. The LML method was executed on N = N images
generated from Durou et al’s vase surface [222]. Six images were used, each generated
from its own light direction. Runtimes of a MATLAB MV paradigm implementation and
of an NTToolbox implementation were measured across increasing values of N. Ten trials
were executed for each value of N. Trend lines depict median values while error bars depict
quartiles. The time taken to construct the LML linear system and then solve it are depicted
in (a) and (b), respectively.

mentation. As these gains are accompanied by high programming efficiency, these results

help demonstrate the power and utility of NT algebra and software.

6.3.2 Nonlinear Maximum Likelihood

Section 6.3.1 described how to produce an ML estimate using the two-step LML method.
‘While this model demonstrates impressive robustness, even under very noisy conditions, im-
provements are possible. Realising these improvements is the topic of the author’s followup
work, embodied by a method called nonlinear maximum likelihood (NML) estimation [164].
This approach to depth-map & albedo estimation involves a large-scale and nonlinear for-
mulation. The subsection begins by sketching the rationale for pursuing the NML approach.
Afterwards, the process by which this problem can be solved, and the NT framework’s role
within the process, is explained.

Conceptual Overview

The LML method can be improved in several important ways. This subsection will highlight

the possible improvements, motivating the use of a more parsimonious model of image
formation called the depth-map & albedo model. The merits and challenges associated
with this model are emphasised, underscoring the benefits of using the NT framework.

135

The motivation for pursuing improvements to the LML method stem from several is-
sues. First, the two-step approach decouples albedo and depth-map estimates from each
other. Ideally, reflectance should be not decoupled from depth-map estimation. Secondly,
the LML method used asymptotic approximations to model gradient behaviour. These
approximations are only valid under very stringent regularity conditions [223]. Moreover,
even if the problem satisfies these conditions, sample sizes must typically be very large for
these asymptotic approximations to take hold [223].

The third, and perhaps most important limitation, is due to overfitting. As the number
of images approaches photometric stereo’s three-image minimum, the propensities to overfit
to image noise will increase. Moreover, it becomes less and less possible to filter out attached
shadows. Once shadowed pixels are excluded in the linear regression sub-problem of (6.32),
photometric stereo may no longer produce an ML estimate and may exhibit major errors.
When the goal is to generate images of the object from arbitrary light directions, e.q., for
virtual reflected-light microscopy [218], overfitting will reduce accuracy. Moreover, these
errors will propagate to the LML method’s depth-map estimates, which rely directly on the
photometric stereo output.

This last issue touches directly upon the concept of model parsimony. Simply put, the
“best” model is not necessarily the one that maximises likelihood, but instead one that best
balances the tradeoff between goodness of fit and complexity [224, 225]. Complexity can
be thought of in many ways, but an important component is the number of parameters in
the model. This is an information-theoretic approach to model selection, which can be seen
as an extension to likelihood theory [224] and is exemplified most famously by the Akaike
framework [226]. Incorporating parsimony within model selection helps address the issue
of overfitting.

Thus, a more parsimonious model of image formation may well outperform the photometric-
stereo model of (6.30), especially when observation counts are low. Such a model, called the
depth-map & albedo model, is readily available. The model employs an augmented version
of the vector NT B seen in the LML method,

B=(pa1), (6.46)
T
- (%, %, 1) : (6.47)

Lambertian image formation can then be expressed as

__F

18|

which is composed of two parameters, p and z. The parameter count is a third less than
the 3 x 1 weighted-normals vector, 1, seen in the photometric-stereo model of (6.30).

In practical applications, modelling the partial derivatives of the depth map requires

u(E"BIETR + ¢, (6.48)

employing FD operators. This connects neighbouring values of z together, meaning that

136

Figure 6.12: The six indices involved for NML estimation. Directly estimating the depth-
map and albedo from image observations combines the indices seen in Figure 6.8 and Fig-
ure 6.9 into one formulation. As before k indexes each light direction and image observation
and 7 and j index individual pixels. The vector needed to represent light directions and the
fi,-_.,- vector N'T accounts for an additional index. Finally, m and n index individual locations
within the depth map.

one cannot consider instances of B in isolation. Instead, one must capture a neighbourhood
of z values corresponding to the FD stencil:

I T

Bij = {d';j,zij:, dgi,zi;j? 1“} 1 EE.-‘ig}
where d;:'j, and d7, are the same FD operators used in the previous sections. Thus, the
challenge of the depth-map & albedo model is that all values of @ must be considered at
the same time, turning the estimation task into a large-scale nonlinear problem. When tied

together with the sequence of image observations, the complete model can be expressed as

Pij -~ -
Iii; = —;,Ti—,u{fgﬁg}flﬁg+ €kij, (6.50)
= @ Zmn)kijPij + €kij- (6.51)

The challenges associated with the depth-map & albedo model are intensified by the
large number of indices involved, which as revealed by (6.50) totals six, when vector indices
and the dependance on zp,, are included. Figure 6.12 visually illustrates the indices involved.

Direct Estimation

Estimating the depth-map and albedo directly from image observations can be labelled
nonlinear maximum likelihood (NML) estimation. The theoretical benefits of estimating
depth maps directly has been recognised with varying levels of rigour in the literature [227,
228,229,230,231], but Harrison and Joseph were the first to motivate the approach based on
the information-theoretic principles of the Akaike framework [164]. Moreover, no method in

137

the state of the art successfully coupled depth-map with albedo estimation. Harrison and
Joseph demonstrated how this can be done, casting the problem as an SNLS problem. This
subsection will outline the NML estimation process using the NT framework. As part of
this outline, the complexities of managing the myriad indices will be stressed. The benefits
of executing NML will be qualitatively demonstrated using visual examples.

Based on the IID Gaussian noise used in the generative model, the ML estimates of

pij and zg,, correspond to the values that minimise the sum-squared error (SSE) of the
residuals:

SSE = rpiiThis, (6.52)

Thij = Lijk — OkijPijs (6.53)
where aj; depends on zm,,. This estimation task can be reduced by observing that the
generative model in (6.51) expresses the fact that the formulation can be broken up into
linear and nonlinear portions, where znn, must be estimated nonlinearly. Given a zmn

estimate, the albedo estimate can always be recovered independently for each pixel location
by solving an independent sequence of very small linear least-squares problems:

pii = ag; T, (6.54)

As such, this is an SNLS problem, and (6.54) can be substituted into (6.53) to produce
a residual dependant upon only zmn:

Prij = Tiig — Qigagy; Toss, (6.55)
= Irij — ay,; 1655, (6.56)
= {Jk-flﬂ_ ﬂifij}ffﬂr EEEI?}
= aji; e, (6.58)

where ﬂ""mj and ﬂf;ﬁj denote the projection operator of ag;; and its complement, respectively.
Note that the SNLS formulation throws an additional index, i.e., £ in (6.58), into the mix.
Eliminating p;; from the residual reduces the estimation task to one that minimises an SS5E
that only depends on zmn, i.e.,

Since the residual is nonlinear, minimising the SSE requires an initial estimate and a
large-scale nonlinear least-squares routine. The former requirement can be satisfied with
robust two-stage linear techniques, such as the LML method [55]. For the latter requirement,
typical optimisation methods require partial derivatives of the residual with every free
parameter. Using MV formalism would make this is a particularly onerous and error-
prone task for several reasons. For one, the residual itself incorporates both high-degree
data and entrywise products. Additionally, the residual incorporates a projection operator.

135

As explained in Section 3.3.3, even when the projection operator is a simple second-degree
construct, its partial derivative is complex and involves third-degree N'Ts. In the NML
case, the operator in (6.58) is a fourth-degree NT dependant on a second-degree NT, whose
projection action involves entrywise products. Consequently, the N'T framework is especially
helpful in expressing and computing the partial derivatives of (6.58).
Formally, the partial derivative of (6.58) is
e O;

i_ _
L (6.60)

where the partial derivative of the projection operator can be expressed using Golub and
Pereyra’s technique for differentiation of psendo-inverses [165], which Section 3.3.3 outlined
using N'T algebra. Note that in this case, the formulation includes entrywise products and
results in a sixth-degree NT:

da i 5'11,-1 3&,.
ke ij ij j
Byeri @y ta By ‘ ﬂ'_ibg. EE'EI}
azm j 5‘ "j lj 5‘ j

The crux of (6.61) is calculating the partial derivative of a,;;. As (6.50) indicates, a,i;
incorporates a unit-step function to model attached shadows. The derivative of a unit-step
function is an impulse function, which is only non-zero when its argument is eractly zero.
As this is unlikely, and for the sake of simplicity, when calculating the partial derivatives of
a,;; the derivative of the unit step will not be considered. With this simplification in place,
the first step toward formulating the partial derivative of a,; is to formulate the partial

derivative of ﬂ;:_.- .

- —d=.,8; -:'5
OBy _ (s,) _, (6.62)
2mn 0
—d% din
Y (6.63)
1]
= Bijmn, (6.64)

which is a fourth-degree vector N'T.
The partial derivative of a,;; can then be formulated using the product rule

1

Ea,..,-,j- ﬂ;l; ﬁijl?m -.
= =————— 33t |: 'E;r Bi; + —— fTﬁ"l_‘il 'ETBI.jmﬂ., I:E.ﬁﬁ}
a. -~ 32 r P
Zmn (ﬁéﬂii) \/ |3T;.I3
OBy - :
- _ﬁﬁj— J EI f;‘rﬁ"lj Bl}mﬂ- (6.66)
(BZPs)

139

Generated Using
Generated Using LML Depth-Map &
PS Albedo
Estimates [55]

Figure 6.13: The benefits of the NML method for image generation. The output of the

photometric-stereo, LML, and NML methods was used to generate an image from an unseen
light direction under conditions with low observation counts. The generated images can be
compared with the ideal and noiseless version. with the NML method exhibiting the best
results. More details on the constructions of these figures can be found in Harrison and
Joseph [164].

Generated Using
NML Depth-Map &
Albedo Estimates

Ideal Tmage

With an expression for the partial derivative of a,;; in hand, the partial derivative of the
projection operator in (6.61) can be formulated. This can then be substituted into (6.60)
to produce the partial derivative of the reduced residuals.

The NML method was able to successfully estimate depth map and albedos from simu-
lated images. Using extensive quantitative experiments Harrison and Joseph demonstrated
significant improvements in image generation and depth-map estimation [164]. These im-
provements can be visually demonstrated.

For instance, Figure 6.13 depicts an illustrative example involving image generation.
The Lambertian image formation model was used to generate four noisy images of Zhang et
al.’s Mozart surface [232] along with a checkerboard albedo. After images were generated,
photometric stereo was then executed to estimate the weighted normals from the noisy
images. As the second column of Figure 6.13 demonstrates, when generating an image
originating from a light direction net used in the observations, photometric stereo produces
a very noisy result that suffers from speckling. As well, image details, such as the border
between Mozart and the background, are ohscured. The fact that photometric stereo faces
difficulties is not surprising, as the four observation images used in the example do not allow
photometric stereo very much leeway to mitigate noise effects and detect attached shadows.

A natural question is whether the more parsimonious depth-map & albedo model can

140

(a) True Depth (b) LML Depth (c) NML Depth
Map Map Map

Figure 6.14: The benefits of the NML method for depth-map estimation. Using the ex-
perimental conditions of Figure 6.13, both LML and NML estimation were performed.
Differences in depth-map quality between the LML and NML methods can be significant.
Figures taken from Harrison and Joseph [164].

generate superior images. However, if the means to produce the depth-map estimate relies
solely on the photometric-stereo output, image generation will face continued problems. As
the third column of Figure 6.13 demonstrates, which depicts images generated using LML
method, this is indeed the case. In general, while the LML method is able to generate
images with less noise than photometric stereo, it is still unable to capture certain fine
details. For instance, the extent of the raised ridge in the inset, corresponding to a wrinkle
in Mozarts shirt, is made clear in the ideal image by lighter-coloured highlights. This is
not captured by the LML method. On the other hand, the NML method can produce
image reconstructions that capture these details, while still enjoying the benefits of a more
parsimonious model, i.e., exhibiting less susceptibility to noise. This illustrates the merits
of the NML method for image generation tasks.

The NML method can also provide benefits to depth-map estimation. Figure 6.14(h)
illustrates how the errors inherent in photometric stereo can affect LML depth-map esti-
mation. As the figure demonstrates, the LML method suffers from localised noisy effects.
Moreover, the depth map suffers from global distortions, including a flattened look. Thus,
if the goal is depth-map estimation, a technique other than one based on photometric stereo
should be adopted in these conditions. As Figure 6.14(c) demonstrates, the NML technique
can fill this role, producing a depth-map estimate higher in quality than the LML method.

The NML method in Harrison and Joseph’s publication [164] was implemented within
the NT framework using the NTToolbox. The residuals and their partial derivatives were
calculated using the N'T framework and inputted into MATLAB’s nonlinear least-squares
routines. Implementing this using the MV paradigm was not even attempted, due to the
plethora of indices, entrywise products, and complicated linear inversions involved. As such,

141

the N'T framework acted as a crucial tool in tackling this exemplar that lies beyond the MV
paradigm.

6.4 Summary

Differential operators are an important concept within science and engineering. In computer
vision contexts, differential operators manifest commonly as FD operators. The high-degree
nature of FD operators acting upon images, combined with frequent needs to incorporate
entrywise operators, differentiations, and linear inversions, contributes to the complexity
of related computer vision tasks. Tackling this complexity head-on demands sophisticated
tools.

As demonstrated by three exemplars arising from two computer vision exemplars, the
NT framework excels in such settings. The RW algorithm represented one exemplar, whose
formulation can be framed as a high-degree anisotropic Laplacian or Poisson elliptic PDE
over a 2D or 3D domain. Formulating the fourth-degree anisotropic Laplacian operator
requires entrywise products and ternary inner products. Important extensions to the RW
algorithm, e.g.. adding a data prior, add further complications involving entrywise products.
Unlike the MV paradigm, the NT framework can naturally model these challenging aspects
of the RW algorithm.

Depth-map & albedo estimation represented the source of the other two exemplars.
First, the LML method, which follows the traditional two-step approach, was outlined. Like
the BW algorithm, the LML method can be modelled as an anisotropic elliptic PDE applied
over a 2D domain, underscoring the frequent commonalities between computer vision work
involving differential operators. The chapter also examined a recent enhancement, called the
NML method, that eschews the two-step approach and instead nonlinearly estimates depth-
map and albedos from image observations. This involved non-linear high-degree equations,
partial derivatives, linear inversions, and separable representations. All told, this involves six
natural indices to keep track of, with a seventh added when the separable representation is
included. The NT framework’s natural abilities to accommodate high-degree data, entrywise
products, and linear inversions are integral toward a ready formulation and implementation
of the NML method.

Both the BW and LML methods were programmed using a standard MV MATLAB im-
plementation and an N'TToolbox implementation. Comparisons between the two revealed
that the N'T software should incorporate a faster third-party linear sparse solver that can
match the performance of MATLAB's equivalent routines. Once faster linear sparse solvers
are included within the N'T software suite, overall computational efficiency will be signifi-
cantly improved. When comparing the computational efficiency of constructing the linear
system, which incorporates the NT algebra and software innovations described in this thesis,
performance metrics revealed that the NTToolbox was slower for the BW method but faster
for the LML method. Moreover, regardless of any differences in computational efficiency,

142

the NTToolbox implementations revealed considerable improvements in programming effi-
ciency, as the hand-crafted and error-prone workarounds needed for the standard MATLAB
implementation were avoided. Considering the heavy emphasis placed on programming ef-
ficiency within general-purpose [133,136] and technical computing [134,135] settings, these
outcomes demonstrate the benefits of the N'T software in tackling these exemplars.

The exemplars highlighted by this chapter serve as important vehicles to showcase and
disseminate the merits of the NT framework for computer vision applications involving
differential operators, of which there are legion. Moreover, the arguments outlined here are
not limited to computer vision. As differential operators, and PDEs, play an enormous role
within multitudinous other scientific and engineering fields, these exemplars can also act as

persuasive agents in translating the gains realised by computer vision to other domains.

143

Chapter 7

Toward a New Paradigm

The impact of technical computing can be felt in almost every corner of modern scientific
and engineering practice. Yet, technical computing is a scientific and engineering discipline
in its own right, deserving of serious analysis regarding its structure, limitations, and pro-
gression. Such an analysis is especially topical today, where there is an increasing amount
of research into decompositions, computations, equation solving, data analysis, and scien-
tific problems that do not fit into the traditional matrix-vector (MV) mould that has so
dominated technical computing’s history and practice up to this point.

Considered together, these research thrusts signify that technical computing’s prevailing
mode of practice is being challenged by new research questions. This work is a serious
articulation of this argument, using Kuhn's theory of paradigms as the kernel by which
to understand the structure of technical computing and the increasing number of research
efforts that are breaking the MV mould. This analysis informs our own contribution to this
research movement, represented by the numeric tensor (NT) framework of this thesis.

Here, we summarise the contributions of this work, which encompass a highly diverse set
of topics, ranging from the structure of technical computing to algebra to software and finally
to exemplar problems. These contributions, which are significant to the ongoing evolution
of technical computing, also lead to additional exciting research questions. We focus on
many of these as promising avenues of future work. Stepping back, final remarks provide a
reflection on the state of technical computing, arguing that the discipline is undergoing a
revisionary period, as defined by Kuhn. We then conclude by offering our own speculations

on how the discipline will evolve and share our own vision for technical computing’s future.

7.1 Contributions

According to Kuhn, fully understanding the scope and limits of a domain’s practice re-
quires identifying the prevailing paradigm. Doing so reveals a taxonomy of exemplars and
anomalies. Advocating for change requires developing components of a new disciplinary
matrix that demonstrate enough promise to resolve current anomalies. These are the aims
of this work, which provides a unique and timely interpretation of the discipline of technical

144

computing and offers fundamental algebraic and software innovations, represented by the
NT framework, for work beyond the prevailing paradigm. To highlight and emphasise the
merits of the NT framework, we also discuss and advance several exemplar problems, with

particular focus on problems drawn from computer vision.

7.1.1 Synthesis

There is a growing crowd of researchers developing, advocating for, or employing algebra and
software beyond MV formalism and computations. We view these efforts as fundamental
challenges to technical computing’s prevailing mode of practice. To properly articulate this
argument, it is incumbent to draw upon the views of those who have examined what exactly
defines a fundamental change within a scientific domain. To the best of our knowledge, we
are the first to apply Kuhn's theory of paradigms to the discipline of technical computing.

Concepts originating from Kuhn's writings, such as paradigm and terms that follow
in its orbit, e.g., revolution and crisis, are occasionally used carelessly. However, when
used with care, Kuhn's writings offer a powerful lens by which to view the structure of a
scientific domain. For our purposes, critically examining technical computing illuminates
the discipline and also the current push for new algebra and software.

The structure of technical computing can be clarified by recognising that a paradigm
defines the scientific questions a discipline investigates. Technical computing, made up of
mathematical and computational ingredients, is a mix of the practical and analytical. These
two aspects can be likened to the body and soul of technical computing. Algebra acts as its
soul, serving as the language by which scientific problems are modelled and solutions to them
are developed. As such, they are not just a component of the disciplinary matrix. Instead,
algebras are integral in defining technical computing’s exemplars and anomalies. Software
acts as its body, defining what ecan be practically computed and whether prospective solu-
tions are even possible. As such, software also defines the limits of technical-computing’s
practice. Thus, on their own neither body nor soul fully defines the taxonomy of scientific
computing. However, together algebra and software can form a framework that does.

As we argue, the dominant framework within technical computing, currently the MV
framework, defines its paradigm. These arguments are bolstered through our examination
of the history of technical computing, where the MV framework plays a dominant role in the
development of the discipline. Since the natural capabilities of the MV paradigm are well-
defined, i.e., linear mappings applied to vectors, its anomalies can be articulated. We focus
on the two anomaly categories of special linear mappings, e.g., high-degree linear mappings
and entrywise products, and mappings beyond linear, e.g., multilinear and polynomial
mappings. Both these categories can be linked together by recognising that they each
involve expressions and computations with high-degree data, i.e., high-dimensional data.

Categorising anomalies together unifies significant prior work on high-degree algebras
and softwares that previously have not engaged in much crosstalk. As Figure 7.1 illustrates,

145

Econometrics Image Processing Chemometrics

Tensor DECDmDOSIUOH Systems and

Computer Vision

Signal Processing Control Theory

Computational Chemistry Geodesy Statistics

Database and

Information Systems Computer graphics

Psychometrics

Figure 7.1: The growing crowd of work on high-degree algebras and softwares. Research
efforts to address the MV paradigm’s anomalies originates from a wide range of fields. In
many cases, these are isolated and independent efforts.

these efforts stem from a diverse range of fields. We place these diverse efforts within a larger
and combined context, in which we argue that these efforts all endeavour to address anoma-
lies to the MV paradigm. We therefore link this varied body of work together and are the
first to compile their algebraic and software characteristics together in one place. A techni-
cal computing framework able to unify work beyond the MV paradigm must capture these
characteristics. This synthesis informs our subsequent efforts in developing and detailing
the NT framework.

Finally Kuhn asserts that the pursuit of anomalies gives rise to new investigatory ques-
tions. Indeed, those pioneering frameworks beyond the MV paradigm have posed and
investigated numerous algebraic and software questions. In developing the NT framework,
we have also encountered new questions. These include algebraic ones, e.g., what is the best
way to represent the rich possibilities of arithmetic operations upon high-degree data with-
out sacrificing ease of use? They also include new software questions, e.g., how to efficiently
execute or invert arbitrary products across high-degree data. how to best permute dense
and sparse high-degree data, and what is the best means to manage hyper-sparsity inherent
in sparse products? We offer answers to these questions, summarised in the sections below.
However, like Kuhn, we emphasise the inherent value of raising these questions in the first

place and welcome different answers, or, even better, additional questions.

7.1.2 Algebra

Sir Alfred North Whitehead, the nineteenth and twentieth-century mathematician and
philosopher, offers a poignant argument for the importance of developing appropriate no-

tation for any mathematical endeavour:

“By relieving the brain of all necessary work, a good notation sets it free to
concentrate on more advanced problems, and in effect, increases the mental

power of the race” [233].

146

At the risk of saturating the reader with Whitehead's prose, it is worthwhile to consider
his further elaboration:

“It is a profoundly erroneous truism, repeated by all copy-books and by emi-
nent people when they are making speeches, that we should cultivate the habit of
thinking of what we are doing. The precise opposite is the case. Civilization ad-
vances by extending the number of important operations which we can perform
without thinking about them. Operations of thought are like cavalry charges
in a battle—they are strictly limited in number, they require fresh horses, and
must only be made at decisive moments” [233].

Within technical computing, this is best exemplified today by MV algebra, which “takes
the slog out of nailing equations” [234]. To be more specific it takes the slog out of nailing
linear mappings applied to vectors. A notation offered up to model phenomena not fitting
within this category, e.g., special linear mappings and mappings beyond linear, should
emulate MV algebra’s superb abilities in setting the mind free from notational distractions.

The NT algebra we describe, which is built upon the rooted foundation of Einstein no-
tation, sets itself apart from other high-degree algebras in this regard. For instance. it offers
practitioners an unmatched set of operations for high-degree data. Compared to the state-
of-the-art, only Joseph [123], Barr [70], and Ahlander [54] offer notation able to represent
inner, entrywise, and outer products across arbitrary indices of N-degree data. By intro-
ducing an association identity, inverse notation, and attraction operator, Joseph's notation
is even more comprehensive. NT algebra expands on Joseph's work by offering notation
for factoring, pseudo-inverses, partial derivatives, nonlinear N'T functions, and vector and
matrix NTs. Thus NT algebra offers unmatched expressibility, providing practitioners with
greater freedom to model and capture interactions involving high-degree data.

The universality of NT algebra eases use in another important manner. Without a
universal algebra, practitioners must switch between notations depending on need. This
is a common exercise, for instance, in the tensor decomposition field, where expositions
frequently switch between n-mode and extended matrix-vector (EMV) notation. Switching
between notations diverts practitioners from the problem at hand and superadds mental
effort over and above any inherent difficulties of the problem. The comprehensive nature of
NT algebra eliminates or at the very least minimises these interruptions.

Uniquely, NT algebra offers these capabilities without sacrificing ease of use. For exam-
ple, the virtues of complete associativity and commutativity have long been recognised by
proponents of Einstein notation. N'T algebra retains these characteristics, except in the case
of n-ary inner products where complete associativity is replaced by the association identity.
Practitioners can group or isolate operands with minimal notational updates. Contrast this
with EMV algebra, which requires vectorisation and specialised operators or identities to
fully commute and associate. Or consider R-matrix, array algebra, and n-mode* notation,

which requires updating numeral inner-product designations. In contrast, with N'T algebra

147

in hand, practitioners can trivially perform operations that would normally be complex in
other formalisms.

These highlighted aspects all focus on purely algebraic considerations. However, within
technical computing, an algebra’s affinity to software represents an additional and highly
important factor affecting ease-of-use. NT algebra enjoys many advantages within this
regard. For instance, NT algebra is only composed of alphanumeric characters, allowing it
to be readily employed within programming environments. Moreover, NT algebra shares
Einstein notation’s well-recognised compatability with computation, where connections to
indexed loops, the workhorse of computation, are highly apparent [54,66,107,154].

Thus, we view N'T algebra as living up to the spirit of Whitehead’s criteria for a good
notation. With the vision of an accepted and widespread techmical computing framework
beyond the MV paradigm in mind, the NT algebra represents an important contribution
toward this aim.

7.1.3 Software

Within technical computing, an algebra can reveal avenues toward solving scientific prob-
lems. But reaching those solutions requires fast and stable software able to work with
large-scale numeric data. As we identify, NT software should comprehensively support NT
algebraic operations, should offer complete dense and sparse functionality, and should aim
to be as programmatically and computationally efficient as possible.

The open-source NT software we develop meets these criteria. Embodied by LibNT
and NTToolbox, built for C4++4 and MATLAB respectively, our NT software allows users
to program directly using NT algebra. In this way, one of the most notable strengths of
the MV paradigm is replicated—users can conceptualise and implement scientific solutions
using the same language on computer as they do on paper.

The LibNT library, whose primary consideration is computational efficiency, supports
NT algebra at compile-time using C4++'s template metaprogramming (TMP), keeping run-
time abstraction penalties to the absolute minimum. This allows LibNT to support NT
operations that in other libraries produce runtime penalties. As such, it is the first to pro-
vide compile-time resolution of an index notation with no limit on degree. LibNT is also
the only library to statically resolve all of inner, entrywise, and outer products combined
with assignments, n-ary inner products, and linear inversion of equations.

NTToolbox, whose primary consideration is programming efficiency, relies on the same
core algorithmic kernels as LibN'T, but resolves N'T algebra at runtime within the MATLAB
environment. Hence, NTToolbox offers a highly programmatically-efficient environment for
NT algebra, while ensuring major computations are off-loaded to LibNT’s high-performance
routines. NTToolbox is the first to allow users to program directly with an index notation
of any kind within the MATLAB environment.

Both libraries use the lattice as a computational data structure, a distinction from other

148

high-degree software. The lattice data structure provides a common constructive platform
by which any combination of inner, entrywise, and outer products across NTs of arbitrary
degree can be executed or inverted efficiently using optimised gold-standard algorithms.

We also outline efficiencies for dense algorithms, explaining strategies to minimise tem-
porary memory allocation and shedding light on the merits of in-place vs. out-of-place dense
high-degree permutations. Moreover, scenarios where index calculations and mappings to
lattices can be skirted are explained, further adding to efficiency gains. Despite offering a
more generalised set of arithmetic operations, the dense performance of the N'T software is
competitive with or exceeds the performance of leading high-degree libraries, including the
MATLAB Tensor Toolbox (MTT), FTensor, LTensor, NumPy, and Blitz++.

These advancements within dense settings are complemented by considerable innova-
tions for sparse NT computations. The linearised coordinate (LCO) datatype and its merits
over the predominant coordinate (CO) datatype are outlined, demonstrating that it enables
faster execution of sorting operations while also having a smaller memory footprint. Sec-
ondly, reflecting their importance toward realising a high-performance sparse N'T library,
we develop several innovations for rearranging non-zero data. For instance, we are the first
to outline how permuted sparse data contains inherent structure, which can be exploited
to reduce permutation times. An algorithm exploiting these underlying characteristics was
developed, outperforming the fastest sorting options. Finally, we address how to implement
sparse-times-sparse N'T multiplication, an arithmetic operation that exemplifies the unique
requirements of sparse NT computations. A novel multiplication poly-algorithm was devel-
oped that chooses algorithms tailored to the hyper-sparsity characteristics presented by the
sparse NTs. Benchmarks illustrate significant performance improvements over the MTT,
the current leader in sparse NT computations.

Mo other high-degree software library offers as extensive a set of fundamental arithmetic
operations as LibNT and NTToolbox. Moreover, LibNT and NTToolbox both support
operations on dense, sparse, or mixtures of dense and sparse NTs. This unmatched ex-
pressibility is realised while matching or exceeding the performance of other high-degree
libraries.

By considerably increasing the performance and efficacy of core operations, e.q., mul-
tiplication, the building blocks crucial for higher-level algorithms can be made solid. This
will benefit any application involving high-degree computations, e.g., the high-level tensor
decomposition routines of the MTT or the high-degree exemplars discussed in this the-
sis. Thus, the NT software we develop significantly expands the boundaries of practical
and efficient high-degree computations, making it an effective and powerful partner to NT

algebra.

149

7.1.4 Exemplars

Exemplars are frequently a decisive means to convey scientific concepts and arguments.
Work on high-degree algebra and software are no exception. When cast as anomalies in the
state of the art, exemplar problems shed light on the limits of the MV paradigm. Moreover,
they reveal opportunities for technical computing frameworks beyond the MV paradigm.
We focus on the exemplar categories of special linear mappings and mappings beyond lin-
ear. Reflecting the importance of exemplars in highlighting and advancing frameworks
beyond the MV paradigm. we use several to explain and demonstrate the merits of the NT
framework.

For instance, we highlight the N'T framework’s capability to naturally capture the entry-
wise products, least-squares solutions, and opportunities for efficiencies in the alternating
least squares (ALS) algorithm for canonical-polyadic (CP) tensor decomposition. The ALS
algorithm is one of the most important algorithms within the tensor decomposition field [83],
which falls under the mappings beyond linear category. In addition, we focus on the ability
of the NT framework to capture similar efficiencies seen in a linear parameter estimation
exemplar, taken from antenna research, involving entrywise products and ternary inner
products. These are two prominent exemplars that have been tackled with n-mode™ and
EMYV algebra in the literature. By highlighting NT algebra’s ease of use and more com-
prehensive set of operations, we argue that NT algebra is the superior formalism for these
exemplars. Moreover, using benchmarks based on arithmetic operations drawn from CP
tensor decomposition, we demonstrate how LibNT and NTToolbox can provide efficiency
and performance gains over competitor libraries, illustrating how NT software can advance
this key exemplar.

Many of the current exemplars in the literature stem from tensor decomposition. While
this is a crucial field, we believe other types of exemplars require further articulation hefore
high-degree frameworks for technical computing gain widespread acceptance. For instance,
this work highlights separable nonlinear least squares (SNLS), a hugely impactful [149]
optimisation technique that relies on partial derivatives of a second-degree NT, producing a
third-degree NT. Prior work on high-degree frameworks had not highlighted this exemplar.

We also focus heavily on high-degree differential operators, whose connection to partial-
differential equations (PDEs) makes them integral to many scientific fields. One such field
is computer vision, which frequently relies on high-degree differential operators. These
often take the form of finite-difference (FD) operators when they act upon its regularly-
gridded imaging data. Considering that entrywise products, ternary inner products, partial
differentiation, and non-linear functions often play a role, computer vision problems can
present formidable obstacles to the MV paradigm, making it fertile ground for the NT
framework.

Inspired by the author’s own computer vision work, we discuss three exemplars from two
computer vision problems, demonstrating the NT framework’s potential for this important

150

High- Entry- Ternary [[;[;5; High- Syvmbaolic MNonlinear
Degree wise Inner Linear Degree Differenti- NT
Mappings Products | Products Inversion Sparsity ation Functions
BEW Image
Segmentation v v v v v v
LML
Depth-Map
& Albedo v v v v v
Estimation
NML
Depth-Map
& Albedo v ¥ v v v v
Estimation

Table 7.1: The characteristics of the computer vision exemplars of Chapter 6. These exem-
plars all challenge the MV paradigm. Nonetheless, these challenges can be met by the NT
framework.

and challenging field. As Table 7.1 outlines, these exemplars involve aspects that challenge
the MV paradigm both algebraically and computationally. As we show, the NT framework
is well-suited to tackle these exemplars.

The first exemplar consists of random walker (RW) image segmentation [56], which is a
seminal interactive image segmentation technique that has heavily impacted the computer
vision and medical-imaging analysis community . This includes the author’s own medical-
imaging analysis work, which is an extension of the RW technique [203]. Regardless of its
elaboration, the BW technique can be cast as a high-degree and anisotropic elliptic PDE.
Formulating the solution to this problem requires fourth-degree NTs, high-degree linear
inversion, ternary inner products, and partial derivatives, which cannot be represented nat-
urally by the MV paradigm. However, as we show, the technique can be readily represented
using NT algebra. Importantly, the problem involves sparsity, reinforcing the need for the
sparse NT computations developed in this work. NTToolbox code implementing the RW
algorithm showcased the ease by which N'T algebraic novelties can be computed.

Depth-map and albedo estimation serves as the source for the two other computer vision
exemplars. Estimating depth and albedo is a seminal computer vision technique, represent-
ing one of the core variants of the so-called Shape-From-X methods. In this work, we
first discuss the linearised maximum likelihood (LML) technique, which is drawn from the
anthor’s work [55] and follows the classic two-step approach toward this problem. We formu-
late the technique using N'T algebra, showcasing the ability of the formalism to handle the
high-degree data and operators involved in the LML method. Like RW segmentation, differ-
ential operators combined with entrywise products, ternary inner products, and high-degree

least-squares solutions result in an anisotropic elliptic PDE, emphasising the links between

1Grad}r has received the Edison Patent Award for developing the RW technique and his original paper
has been cited over 1300 times to date, according to Google Scholar.

151

the two exemplars. The final exemplar is a refinement of the LML method, called nonlin-
ear maximum likelihood (NML) estimation, that uses one single large-scale nonlinear step.
The NT framework was used to develop and implement the NML method, which provides
superior representations of depth-maps and albedos under low-observation counts [164]. As
the problem requires keeping track of 6 different indices and incorporates nonlinear NT
functions, the NML method is particularly unsuited for the MV paradigm. Adding to the
complexity, NML estimation can be formulated as an SNLS problem, which requires yet
another index in addition to a high-degree pseudo-inversion involving entrywise products.
Despite these complications, the NT framework can readily tackle the problem both al-
gebraically and computationally, serving as further illustration of its merits for computer
vision applications.

The exemplars we highlight reflect the diverse origins of work involving high-degree
frameworks. As Figure 7.2 visually illustrates, these exemplars represent a considerable
range of problems relevant to many fields. Prior to this work, these exemplars had not
been discussed together. By using the N'T framework to link these exemplars together, and
by also expanding the stockpile of exemplars to include the ones listed in Table 7.1, this
work consolidates diverse efforts under a unifying framework. Thus, the growing crowd of
researchers pushing for and developing technical computing frameworks beyond the MV
paradigm can be placed within a shared context, magnifying the strength of this important

research movement.

7.2 Future Work

Kuhn emphasised the value of research questions in animating and defining a discipline’s
practice. Technical computing work beyond the MV paradigm is no exception. In terms
of the NT framework of this work, questions still remain on how to further enlarge the
soul and body of the NT framework, i.e., continuing to develop its algebra and software.
Complementary to these efforts, the pursuit of additional notable exemplar problems beyond
the MV paradigm will further establish the impact of the algebraic and software innovations
of the NT framework.

7.2.1 Algebra

NT algebra employs a single type of index, i.e.. the subscripted index. Traditionally, Ein-
stein notation employs two types of indices, i.e., contravariant (superscripted) and covariant
(subscripted) indices. The reasons for this lie in the geometric tensor origins of Einstein no-
tation, where a change of basis within a curvilinear coordinate system requires the concepts
of contravariance and covariance. Naturally, when employing N'T algebra within curvilin-
ear geometric contexts, contravariance and covariance will need to be accommodated. To
accomplish this the implications of supporting dual-index types in concert with entrywise
products, linear inversions, and n-ary inner products need to be better understood.

152

LINEAE

) AREAY P

R e WIRE 1
I

el

-,

MEEDLE
PROZE
. _M-Jﬁ

Figure 7.2: Variety of NT framework exemplars explored in this thesis. We showcase exem-
plars ranging from CP tensor decomposition, shown in (a), to linear parameter estimation
(drawn from antenna signal processing) using entrywise products, shown in (b). The SNLS
approach to discover the minimal SSE, e.g., from the optimisation surface depicted in (c),
was also highlighted. Finally, we devote considerable space detailing how the computer
vision exemplars of image segmentation, shown in (d), and depth-map estimation, shown
in (e), can be tackled using the NT framework. (b) was taken from Prada et al. [235].

153

Interestingly, practitioners from fields not concerned with geometric tensors per se, e.q.,
statistics [107], econometrics [154], and numerical analysis [54], have also advocated for dual-
index-type Einstein notation. As McCullagh [107] and Pollock [154] argue, it may be the
case that partial derivatives are best expressed with dual-index types. On the other hand,
the single-index-type variation has met our needs, so far, and those of other practitioners [70,
86,157]. Researchers, possibly unaware of the single-index-type variant, even cite the dual-
index types of Einstein notation as a reason to avoid the algebra [236]. This indicates that
further work is needed to better understand the advantages and disadvantages of dual-index
types in non-geometric situations. Articulating when exactly single- and dual-index types
should be used would help further extend and disseminate N'T algebra to a wider audience.

Another formalist aspect that should be explored lies in whether the rules for addition

and subtraction can be relaxed. For instance, the following expression,
i + E?_, {?1}

is easily interpreted as adding the scalar b to all elements within a;;. However, strictly
speaking this is not a legal expression within Einstein notation or NT algebra. Nonetheless,
expressions like (7.1) are a frequent and useful practice within programming environments.
For instance, it is common and expedient to add or subtract a scalar from a matrix within
MATLAB, even though this operation is forbidden by MV algebra.

Ideally, if allowed, expressions like (7.1) should be formalised within an improved NT
algebra. This would open up other possibilities, e.g.,

ﬂ-;ji + b" + er {?2}
which can be understood to be identical to

We call expressions like (7.1) and (7.2), including subtractive cases, outer addition. While
the usefulness of outer addition is apparent, the implications of formalising it is not. These
implications should be explored. Should it be prudent to incorporate outer addition within
NT algebra, the notation would align even more closely to programming practice.

7.2.2 Software

As Schatz ef al. state in their 2014 paper, “libraries for dense multilinear algebra (tensor
computations) are in their infancy” [153]. We believe this assessment is just as apt for sparse
NT computations. Both are discussed below. While our contributions have advanced the
state of dense and sparse N'T software, we believe there remains much important work.
For instance, one area that deserves further elucidation is determining the most efficient

order of execution for n-ary N'T products. Consider the following equivalent expressions,

154

assuming all NTs are dense:

a;b;c; = (azh;)e;, (7.4)
= a;(b;c;). (7-5)

By executing the inner product first and eliminating the i index, the order of execution
in the right-hand side of (7.4) is more efficient than the alternative in (7.5). For more
complex expressions, the situation is not so trivially assessed, where the most efficient order
of execution depends on the product type and dimensionalities of the operands in question.
Yet, determining the most efficient execution order can have major consequences.

The ALS algorithm provides a persuasive example where the order of execution has
major implications. A well-used identity reveals a more efficient means to calculate cer-
tain types of pseudo-inverses, significantly reducing the algorithm’s computational com-
plexity [83]. As outlined in Section 3.3.1, this identity is wholly driven by advantageously
altering the order of NT products. A universal and rigorous process to determine efficient
orders of execution would extend these benefits to arbitrary expressions.

In fact, researchers within computational chemistry have been developing solutions to
this problem. The Tensor Contraction Engine (T'CE) automatically generates low-level
FORTRAN code based on an analysis of Einstein-notation expressions involving tens to
hundreds of terms [91,92,93]. In addition to discovering effective pairings of operands, the
TCE performs other optimisations that balance memory-use and computational efficiency.
These innovations should be translated to the more general-purpose setting of the NT
framework, which may not require the same level of sophistication. Should such a process
be incorporated within NT software, n-ary product expressions could be automatically and
seamlessly executed as efficiently as possible. Translating these benefits to the sparse case
would be even more challenging, presenting further opportunities for research developments.

Moving to other directions of future work, to stay cutting edge, N'T software should align
with prevailing trends in technical computing. For one, just like in MV software, effective
strategies to use vector operations, i.e., single-instruction multiple-data operations, within
high-degree computations is an important research thrust. As well, the increasing prevalence
of multi-core, distributed, and heterogeneous computing environments provides impetus to
develop mature parallel NT algorithms. The entrywise product, cast as different tabs within
a lattice product, offers a natural avenue toward parallel implementations. However, parallel
approaches to large-scale dense and hyper-sparse products, dense and sparse permutations,
and other operations specific to high-degree settings should be developed. Insight into both
these considerations can be found within computational chemistry libraries and associated
publications [91,92, 93,94 95]. Implementing some of these breakthroughs within a general-
purpose N'T setting will help disseminate these approaches to a larger technical computing
andience.

The concept of implicit NTs should also be expanded. In the dense case, NT products
that only involve entrywise and outer products can be readily represented implicitly, requir-

155

ing significantly less memory than explicitly computing the products. As a result, implicit
representations could help deal with notable problems within NT computations, such as the
intermediate blowup problem within tensor decomposition [176,177,198]. However, implicit
representations do come with runtime abstraction penalties. Future work should focus on
strategies to minimise these abstraction penalties and in parallel should investigate when
implicit representations should be favoured over explicit computations.

The topic of symmetric NTs is also replete with opportunities for future work. Work
within computational chemistry [91,92,93,94,95] and tensor decomposition [153] has focused
on dense symmetric and anti-symmetric NTs. The NT framework should adapt these
approaches. Commensurate to these developments, effective representations of symmetric
sparse NTs should be developed. Although there has been some prior work [185, 237],
more work is required for this mostly untouched subject. Amongst other applications,
efficiently handling symmetric sparse N'Ts could be an essential component for using N'T's for
polynomial equations. Successful strategies for symmetric sparse NTs would likely depart
from both sparse-MV and dense-NT solutions, meaning new approaches would have be
developed.

Sparse N'T computations provide other promising avenues of future work. For instance,
sparse tensor decompositions represent a highly significant research effort today. High-
performance kernels, such as those outlined in this work, can play an important role in pro-
totyping and developing such techniques. Merging the MTT s considerable suite of tensor-
decomposition data structures and algorithms with LibNT’s arithmetic routines would be
an important direction for future work.

Finally, knowledge translation efforts need to be broadened. For instance, the TMP
innovations of this work require further documentation and dissemination. TMP innovations
and high-degree computations are of interest to practitioners both inside and outside the
academic sphere. While top-down dissemination, e.g., publications, should be an important
focus, online and tutorial-like documentation should be a core component of any knowledge
translation strategy to make an impact within non-academic communities e.g., the open
source software community. The latter should include ready-to-use sample programs based
on high-degree exemplars, such as those of this work., These initiatives would foster the
bottom-up dissemination of NT framework concepts, mirroring the successful approach of
Blitz++ [125], NumPy [129], and FTensor [146] in impacting the wider technical computing
discipline. Together, both top-down and bottom-up knowledge translation efforts will help
ensure that high-degree algebraic and software innovations reach as broad an audience as

possible, maximising the potential for long-lasting impact.

7.2.3 Exemplars

By touching on a varied set of applications, the exemplars we highlichted strengthen the
case for the NT framework. The benefits flow both ways, as high-degree frameworks also

156

play a crucial role in advancing important applications, e.g., the NT framework’s role in
implementing NML depth-map estimation. Yet, essential work remains to be done to both
translate the advantages of the NT framework and to make headway on important appli-
cations.

One promising avenue of future work, which would also highlight the merits of explicitly
accommodating entrywise products, is to develop practical means to describe inter-variance.

For instance, consider a linear regression problem, e.g.,
Yi = i + &, (7.6)

where the additive error, ¢;, is assumed to be independent and identically distributed (11D},
with a mean of zero and a variance of ¢. Should this regression problem be solved using

linear least-squares, the covariance of the estimate is well understood:
E(d585) = olagag) . (7.7)

However, if a;; is large and sparse, calculating the covariance can be intractable as the
inversion is costly and typically produces a dense result. Moreover, what is often of interest
is not the covariance, but what Joseph [123] calls the inter-variance, i.e.,

E(%;25), (7.8)

which describes the entrywise variability of the estimated x;.

If a means to compute (7.8) can be established without completely inverting a large-
and-sparse linear mapping, entrywise confidence intervals may be computed. As Figure 7.3
illustrates, this can be used to calculate the variance of large-scale estimates like depth maps.
This problem is closely linked to work on computing the diagonal of matrix inverses [238,
239,240, 241], where the matrix is sparse though its inverse is dense. When cast using NT
algebra, entrywise products help make the expression of the inter-variance explicit. When
considered together with corresponding sparsity computations, we view the N'T framework
as a promising platform with which to tackle this problem.

Like the differential operator exemplars of Chapter 6, inter-variance exemplars fall under
the special linear-mappings category. However, the category of mappings beyond linear,
especially multilinear and polynomial mappings, is an enormous topic whose challenges
and potential are legion. Tensor decomposition, which falls in this category, is a highly
important area of focus for the NT framework, which we have expanded upon within this
thesis. We also view the field of numerical polynomial algebra, concerned with manipulating
and solving polynomial equations, as another vital source of exemplars.

Currently, the means to symbolically solve polynomial equations are fairly well under-
stood. Yet, reliable numerical approaches are still lacking [74]. Works within numerical
polynomial algebra typically employ MV-based notation [74,242, 243, 244]. Manipulating
such representations, e.g., polynomial multiplication or change of basis, is not trivial and is

157

(b)

Figure 7.3: Estimating the variance of depth-map estimates. Noisy images of the Mozart
surface, seen in (a), were generated and the LML method was used to estimate depth-maps
from this noisy input. This was repeated 10 times, allowing a crude Monte-Carlo estimate
of the depth-map variance to be computed, visually depicted in (b) where whiter pixels
denote higher variance. Developing a means to calculate inter-variance would allow the
variance of the depth-map estimates to be computed using ML principles without resorting
to repeated trials, which may be impractical or inaccurate. The same may be said for other
large-scale regression problems.

dependant on the monomial ordering of coefficients. Additionally, an MV approach ignores
the links between multilinear forms and polynomial equations, which stems from whether
one represents a polynomial in its apolar or polar form [245]. Multilinear forms and equa-
tions are most naturally described within an NT setting.

Because symmetric and non-symmetric NTs can naturally represent polynomial and
multilinear equations, respectively [78], the NT framework, as with other tensor-based
frameworks, can serve as numerical platforms to solve beyond linear-mapping exemplars.
Using N'Ts as such a foundational concept links polynomial and multilinear systems to-
gether. Moreover, the numerical polynomial algebra field also becomes connected to the
tensor decomposition field, benefiting from its tools and techniques. Since practical poly-
nomial equations are typically highly sparse [74], the constructive innovations we and oth-
ers [124,153] detail are expected to play an important role.

Should NTs prove to be the best way to tackle numeric polynomial and multilinear
systems, we view formalisms based off of Einstein notation, e.g., NT algebra, as the most
promising. While n-mode® notation, favoured by the MTT, could conceivably model sys-
tems of polynomial equations, that formalism is strongest when describing the so-called
multilinear product or n-mode product. Many interactions between polynomials, e.q., com-
position, addition, or weighted-sums of polynomial equations, stray from the multilinear
product into areas where n-mode* notation is weaker. Exploring and articulating these
capabilities would elevate the NT framework’s impact toward even more far-reaching levels.

158

7.3 Final Remarks

We conclude this thesis by offering some thoughts on the current state of technical com-
puting and some speculations on how the discipline’s paradigm may evolve. As such, these
represent our opinions and personal assessments. We start by making the case that techni-
cal computing is currently within a revisionary period, which is our preferred terminology
over Kuhn's “crisis”. We follow this up by speculating on how this revisionary period will
be resolved.

7.3.1 Evidence of “Crisis”

Throughout this thesis we have emphasised the significance of the considerable body of
work on algebra and software beyond the MV paradigm, demonstrating that this move-
ment, hitherto unrecognised, is a substantial force within technical computing. Taking this
analysis one step further, we argue that this body of work is evidence of revisionary science,
meaning the current MV paradigm is beset with fundamental challenges. Moreover, these
challenges imply a change of technical computing’s taxonomy is underway, re-categorising
anomalies and exemplars. In Structure, Kuhn describes this period as a crisis, which results
in scientists stepping outside the bounds of normal science to begin practicing extraordinary
science. Keeping with our preference of eschewing the dramatic aspects of Kuhn's langnage,
we avoid the use of crisis and extraordinary science, opting for the terms revisionary period
and revisionary science, respectively.

Kuhn states that a revisionary period is characterised by a “proliferation of competing
articulations, the willingness to try anything, the expression of explicit discontent, the
recourse to philosophy and to debate over fundamentals” [1]. We view this as an apt
description of current work on high-degree algebra and software for technical computing
and we will assess the individual components of Kuhn's statement against the evidence.

In terms of “competing articulations”, Kuhn included attempts to extend the prevailing
paradigm to address new phenomena, blurring the rules of its practice. Kuhn describes these
efforts as often ad hoc responses to anomalies. We consider EMV algebra to be such an ar-
ticulation, which as we have detailed is not a consolidated formalism, expressing competing
notations and conventions for several different operators, including the Kronecker product
itself. Other complications abound. For instance, Harshman and Hong devote an entire
paper comparing two different approaches to use MV algebra to represent third-degree data
and operators upon it [118]. As another example, Magnus discusses the rationale behind
using his preferred EMV representation of derivatives over several competing versions [117].
A frequent source behind these complications is the “unpleasant ordering of indices” [106]
needed in order to use matrices to represent high-degree constructs. Unsurprisingly, it seems
that there is more than one way to blur the rules of the MV paradigm.

Kuhn also maintained that efforts to extend a prevailing paradigm can produce com-

plexity, which may outpace any associated benefits. We subscribe to this view concerning

159

EMYV algebra and so do others. For instance, after outlining competing methods to use
MV notation to describe high-degree data, Harshman and Hong conclude by stating, “If
one is willing to abandon matrix notation, all the complications discussed here can be
avoided” [118]. Their preferred solution is Harshman’s Einstein notation variant [86]. As
we described earlier, adjectives used to describe EMV include “troublesome” [65], “cum-
bersome” [60], “unpleasant” [106], and “awkward” [54]. These statements certainly meet
Kuhn's criterion of “expressions of explicit discontent”.

As per Kuhn, the variety of proffered solutions toward representing high-degree data and
operations suggests a “willingness to try” many approaches. These approaches range from
the aforementioned EMV algebra, to n-mode™ notation, R-matrix notation, array algebra,
and Finstein notation. Even amongst these examples there are differing views, e.q., the dif-
ferent flavours of Einstein notation offered by Tait [113], Antzoulatos and Sawchuck [60], and
Harshman [86]. Or consider the proponents of single-index Einstein notation [70,118,157]
vs. the dualindex variant [54,67,106, 107, 154]. Specific fields even resort to multiple for-
malisms. For example, within tensor decomposition, notation “differs widely over different
papers and disciplines, and so does the terminology practitioners have employed” [110].
Notations used within the field include EMV algebra [83], n-mode notation [83], and Ein-
stein notation [86]. What we call n-mode* notation is represented by independent efforts
to extend the original n-mode notation to describe a greater set of operations [98, 112].
Researchers from other fields also see occasion to use two competing notations. Sometimes
the need for these two notations are expressed by the same person, e.g., Pollock [64, 154]
and Vetter 66,100,155, 156] have both articulated the use of EMV algebra and Einstein
notation for econometrics and signal processing, respectively.

The plethora of competing articulations stem from efforts to describe anomalous phe-
nomena. As Kuhn maintained, these are often independent efforts where practitioners,
discovering that the prevailing paradigm offers no guidance on investigating an important
anomaly, resort to highly varied and creative solutions. This is no better epitomised than
within the tensor decomposition field. As described by Kolda and Bader in their invaluable
review [83], the history of the field is rife with elaborations that were forgotten, re-discovered,
and independently developed by practitioners hailing from fields as distinct as psychomet-
rics to biomedical imaging. Kolda and Bader even offer tables outlining how both CP and
Tucker decomposition have each had five different names depending on the date and do-
main of the literature. The algebraic innovations within tensor decomposition have also
been independently articulated within other fields. For example, n-mode notation shares
many similarities with the R-matrix notation developed by geodesy researchers interested
in describing and decomposing high-degree linear mappings. Many aspects of Bader and
Kolda’s n-mode* notation is shared by Suzuki and Shimizu's array algebra [65], which was
articulated for signal-processing purposes not connected to tensor decomposition.

Competing articulations often represent serious “debates over fundamentals”. We out-

160

lined some of the debate seen over high-degree algebras; yet, the debate is not confined to
formalism, as the discussion enters the realm of software as well. For example, high-degree
software seems to fall into two camps regarding dense computations. There are those, like
LibNT, NTToolbox, and the MTT, that permute data before multiplying [91, 92,93, 94,
95,112] and those that do not [101,125,127,175]. Sparse data formats use compressed in-
dices [150,151,152,181] or uncompressed indices [124,185], the latter being what we favour.
Algorithms to multiply sparse NTs must deal with hyper-sparsity. Approaches include ex-
cising all-zero rows and columus, e.g., as with the MTT [124], or an approach like ours that
applies a poly-algorithm based on the different sparsity properties of operands. All of these
examples are fundamental differences in how to approach the challenging topic of computing
with high-degree data. More than that, the issues being pursued are new questions that
simply do not arise within the MV paradigm, offering further evidence of the revisionary
nature of this work.

(Questions concerning mappings beyond linear are also firmly embroiled in fundamental
debates. For instance, tensor decomposition currently offers two main models of high-order
SVD (HOSVD), i.e., the Tucker and CP decomposition. These are complemented by a
plethora of other types of decompositions [83]. Just as striking as tensor decomposition,
those interested in solving polynomial systems of equations are currently faced with enor-
mously varied and different options [76]. The differences between choices are much more
than a matter of practicality. To pick two options, homotopy and Griibner basis meth-
ods represent entirely different philosophical approaches to solving polynomial systems of
equations.

Returning to Kuhn's analysis of revisionary periods, a “recourse to philosophy™ is the
one criterion that, this thesis aside, seems to be lacking. While McCullagh certainly waxes
philosophical in the preface of his book advocating Einstein notation for statistics applica-
tions [107], he represents an isolated example. Perhaps this is just a product of scientific
writing today, particularly in technical computing, which is less florid than examples found
in the periods of science Kuhn studied. Nonetheless, by pursuing questions outside the
MV paradigm, the body of work on high-degree algebra and software is expanding the
bounds of technical computing, revising the anomalies and exemplars of its scientific prac-
tice. The attempts to articulate modifications to the MV paradigm, and the competing
attempts to, in effect, articulate alternatives to the MV paradigm, align markedly well with
Kuhn's descriptions of revisionary science. Accepting this argument precipitates an impor-
tant question—how will this revisionary period be resolved? We speculate on this topic
below.

7.3.2 Resolution of “Crisis”

The quality and quantity of articulations outside the boundaries of the MV paradigm indi-

cate technical computing is experiencing a period of revisionary science. Based on Kuhn's

161

writings, including his later contributions, a revisionary period can be resolved in three

WAYE:

s the prevailing paradigm endures by satisfactorily dealing with crisis-provoking anoma-

lies;
s a specialisation is established that incorporates its own new paradigm; or
s the entire discipline adopts a new paradigm.

For the topic at hand, we do not subscribe to the first outcome above, i.e., we do
not view efforts to extend the MV paradigm to describe high-degree data or mappings as
sufficient. Hitching oneself to the MV paradigm is approaching the subject obliquely and
fails to do justice to the demands and rewards of work on high-degree data. Moreover, today
the subject of high-degree computations is an entrenched area of research within technical
computing. Current trends, e.q., the proliferation of literature focusing on or incorporating
tensor decomposition, indicate only a continuing increase in importance. Returning to the
analogy of Milgram et al.’s experiment [87], the crowd looking up at the street corner has
grown too large to ignore.

Based on this argument, we expect the current revisionary period to be resolved via a
paradigm shift—either for technical computing as a whole or for a specialisation within the
discipline. Yet, the implications of a new paradigm within technical computing are not clear.
Kuhn, whose writings focused heavily on physics, has little to say about computing [13].
Hence, it is worth pondering the implications of a new paradigm within technical comput-
ing. In Structure, Kuhn maintained that accepting a new paradigm requires rejecting the
worldview of the old one. But he was careful to emphasise that this did not necessarily
involve rejecting the practical basis of the old paradigm. For instance, while Newtonian
mechanics is understood as an approximation even when used in non-relativistic contexts,
its practical use is undeniable. Its inaccuracies are so minute that it is hard to imagine
any other model usefully describing the motion of everyday macroscopic objects within the
planet’s environs.

Returning to technical computing, just like Newtonian mechanics in non-relativistic set-
tings, it is hard to imagine a paradigm better suited than the MV paradigm within its
natural context, i.e., modeling and computing with linear mappings applied to vectors.
Unlike the Newtonian mechanics analogy, we do not expect a new paradigm to reveal sub-
tleties, however minute, regarding vector-based linear mappings that may be unaccounted
for by the MV paradigm. In this sense a paradigm shift within technical computing may
differ from Kuhn's examples in the degree of rejection involved.

We are prepared, however, to conjecture one type of rejection. The MV paradigm
implies a certain range of technical computing’s practice and limitations. A new paradigm

would irrecoverably reject this conception and introduce its own language and taxonomy

162

to describe its anomalies and exemplars. This may be what Kuhn meant as change of
worldview, but he was typically ambiguous. Hacking argues Kuhn had a stronger viewpoint:

“A cautious person may agree that after a revolution in her field, a scientist
may view the world differently, have a different feeling for how it works, notice
different phenomena, be puzzled by new difficulties, and interact with it in new
ways. Kuhn wanted to say more than that” [13].

Regardless of Kuhn's intent, we view a paradigm shift within technical computing to align
with Hacking’s “cautious” summary.

With the features of a paradigm shift within technical computing established, the ques-
tion remains on the scope of this change of worldview. As mentioned, either the MV
paradigm is replaced within the whole of technical computing or a specialisation is estab-
lished that incorporates its own high-degree paradigm. Which of these outcomes takes hold
likely depends on which exemplars seize the field’s imagination.

For instance, today arguably the two most prominent topics of work beyond the MV
paradigm are special linear mappings and tensor decomposition. While incredibly impor-
tant, both such topics are of interest only to researchers needing to explicitly describe
high-degree data or to decompose multilinear interactions between such data. respectively.
Yet, the demands of many technical computing applications do not extend beyond a nota-
tion and software to solve equations for low-degree data. If established techniques to solve
systems of equations remain restricted to linear solvers and non-linear optimisation ap-
proaches, the MV paradigm would remain unassailable. Hence, should novel and significant
exemplars be confined to special linear mappings and tensor decomposition, specialisation
seems most likely, with the MV paradigm comfortably ensconced as a paradigm for those
not needing to explicitly work with high-degree data.

The elevation of multilinear and polynomial systems of equations as a major technical
computing exemplar would alter this outloock. As others have noted [74,243], numeric
approaches to this topic are a major gap within technical computing’s body of knowledge.
Effective means to manipulate and solve numeric multilinear and polynomial systems of
equations would extend the scope of the entire discipline. This far-reaching impact suggests
that adopting this question as an exemplar, and articulating promising avenues toward
its resolution, would engender a paradigm shift affecting the entire technical computing
discipline. Note that this does not mean the MV framework would be discarded, it would
just be incorporated as part of a new paradigm. This may truly be revolutionary, an event
that would be worthy of Kuhn's dramatic terminology.

But what of the NT framework of this thesis? Will its principles influence a new
paradigm? We think they should. We have outlined some of the advantages of the NT
framework over both the MV paradigm and other high-degree frameworks. These include
a simplicity of use and comprehensiveness that allow it to bridge previously disconnected

work on high-degree data. This unifying quality can give the NT framework a powerful

163

edge. Yet, ultimately, the NT framework’s place will be determined by whether its prin-
ciples are widely adopted. As Kuhn argues, there is no purely objective criteria by which
to judge paradigms or alternatives to them. Other persuasive elements like aesthetics and
authority play their role too. For this reason, we are comfortable offering some of our own
opinions in this regard.

For one, we unabashedly appeal to authority. NT algebra is rooted in Einstein nota-
tion, a formalism that enjoys undeniable pedigree and success. Impassioned and modern
arguments, e.g., those of Papastavridis [69] and McCullagh [107], have extolled its virtues,
indicating that the notation has withstood the test of time. Einstein’s name is not attached
to the notation through historical happenstance. He helped develop it, and we happily
appropriate some of his authority for our own purposes. This is not all that we appropriate,
as the N'T framework shares Finstein notation’s aesthetic appeal. Using letters to designate
indices allows them to take on greater purpose than simple placeholders designating the
first, second, or nth index in high-degree data. Instead, indices are prominent actors within
mathematical expressions, describing highly complex matters with deceptive ease, e.g., how
exactly two operands should interact arithmetically and how the result should interact with
other operands. The expressed complexity only becomes apparent when one becomes em-
broiled in the messier numeral-based approaches seen in other high-degree algebras. These
aesthetic and authoritative aspects are important facets of the NT framework.

Whether we have made a persuasive enough case for the NT framework’s principles is
up to the reader. What is harder to challenge is that there exists an increasing body of
work on new algebraic and software approaches outside the MV paradigm, and that this
body of work is making an ever expanding impact. As observers, it seems to us that we
are witnessing a singular moment within technical computing. Even more exciting, current
practitioners, researchers, and scientists are presented with an uncommon opportunity to
shape the discipline as it moves forward from its current crossroads. We hope the reader
will join us by sharing in the vision of a widely-accepted and universal technical computing
framework beyond the MV paradigm.

164

References

(1] T. S. Kuhn, The Structure of Scientific Revolutions: 50th Anniversary Edition. Uni-
versity of Chicago Press, 2012.

[2] L. Scheffler, “Vision and Revolution: A Postscript on Kuhn,” Philosophy of Science,
vol. 39, no. 3, pp. 366—374, 1972,

[3] H. Sankey, The Incommensurability Thesis, ser. Avebury Series in Philosophy. Ave-
bury, 1994.

[4] T. S. Kuhn, The Essential Tension. The University of Chicago Press, 1977, ch.
Second Thoughts on Paradigms, pp. 293-319.

[5] K. B. Wray, Kuhn’s Evolutionary Social Epistemology. Cambridge University Press,
2011.

[6] Presidents Information Technology Advisory Committee, “Computational Science:
Ensuring America’s Competetiveness,” National Coordination Office for Information
Technology Research and Development, Report to the President, 2005.

[7] C. C. Hurd, “Computer Development at IBM,” in A History of Computing in the
Twentieth Century, N. Metropolis, J. Howlett, and G.-C. Rota, Eds. New York,
MNew York: Academic Press, Inc., 1980.

[8] C. Truesdell, “The Computer: Ruin of Science and Threat to Mankind,” in An Idiot’s
Fugitive Esays on Science: Methods, Criticism, Training, Circumstances. Springer-
Verlag, 1984.

[9] Z. Merali, “Computational science: ...Error,” Nature, vol. 467, pp. T75-777, 2010.

[10] SIAM Working Group on CSE Education, “Graduate education in computational
science and engineering,” SIAM Review, vol. 43, no. 1, pp. 163-177, 2001.

[11] R. F. Boisvert, “Mathematical Software: Past, Present, and Future,” Mathematics
and Computers in Simulation, vol. 54, pp. 227-241, 2000.

[12] P. T. Boggs, “Mathematical Software: How to Sell Mathematics,” in Mathematics
Tomorrow, L. A. Steen, Ed. Springer-Verlag, 1981.

165

[13] I. Hacking, “Introductory essay,” in The Structure of Scientific Revolutions. The
University of Chicago Press, 2012,

[14] W. T. Tsai, “Service-oriented system engineering: A new paradigm,” in Proceedings
of the IEEE International Workshop on Service-Oriented System Engineering (SOSE,
2005, pp. 3-6.

[15] T. R. Colburn, Philoshopy and Computer Science, ser. Explorations in Philosophy,
J. H. Fetzer, Ed. Armonk, New York: M. E. Sharpe, Inc., 2000.

[16] ——, “Methodology of computer science,” in The Blackwell Guide to the Philosophy
af Computing and Information, ser. Blackwell Philosophy Guides, L. Floridi, Ed.
Oxford, UK: Blackwell Publishing, 2004.

[17] R. W. Floyd, “The Paradigms of Programming,” Communications of the ACM,
vol. 22, no. 8, pp. 455-460, 1979,

[18] M. Tedre and E. Sutinen, “Crossing the Newton-Maxwell Gap: Convergences and
Contingencies,” Spontaneous Generations: A Journal for the History and Philosophy
af Science, vol. 3, no. 1, pp. 195-212, 2009.

[19] P. J. Denning and P. A. Freeman, “The Profession of IT: Computing’s Paradigm,”
Communications of the ACM, vol. 52, no. 12, pp. 28-30, 2009.

[20] M. Tedre, “Computing as a Science: A Survey of Competing Viewpoints,” Minds and
Machines, vol. 21, no. 3. pp. 361-387, 2011.

[21] J. H. Fetzer, “Philosophical aspects of program verification,” Minds and
Machines, wvol. 1, no. 2, pp. 197-216, 1991. [Online]. Awailable: http:
//dx.doi.org/10.1007 /BF00361037

[22] B. Blum, “Formalism and prototyping in the software process,” in Program Verifica-
tion, ser. Studies in Cognitive Systems, T. Colburn, J. Fetzer, and T. Rankin, Eds.
Springer Netherlands, 1993, vol. 14, pp. 213-238.

[23] D. MacKenzie, Mechanizing Proof: Computing, Risk, and Trust, ser. Inside Technol-
ogy, W. B. C. Wiebe E. Bijker and T. Pinch, Eds. Cambridge, Massachusetts: The
MIT Press, 2001.

[24] J. Backus, “Programming in America in the 1950s,” in 4 History of Computing in
the Twentieth Century, N. Metropolis, J. Howlett, and G.-C. Rota, Eds. New York,
MNew York: Academic Press, Inc., 1980.

[25] D. E. Knuth and L. T. Pardo, “The Early Development of Programming Languages,”
in A History of Computing in the Twentieth Century, N. Metropolis, J. Howlett, and
G.-C. Rota, Eds. New York, New York: Academic Press, Inc., 1980.

166

http://dx.doi.org/10.1007/BF00361037
http://dx.doi.org/10.1007/BF00361037

[26] B. N. Parlett, “The Contribution of J.H. Wilkinson to Numerical Analysis,” in 4
The History of Scientific Computing, ser. ACM Press History Series, 5. G. Nash, Ed.
New York, New York: ACM Press, 1990.

[27] D. Kelly, “A Software Chasm: Software Engineering and Scientific Computing,” Soft-
ware, JEEE, vol. 24, no. 6, pp. 120119, Nov 2007.

[28] S. M. Ulam, “Von Neumann: The Interaction of Mathematics and Computing,” in
A History of Computing in the Twentieth Century, N. Metropolis, J. Howlett, and
G.-C. Rota, Eds. New York, New York: Academic Press, Inc., 1980.

[29] A. Troelstra and D. van Dalen, Constructivism in Mathematics: An Introduction,
ser. Studies in Logic and the Foundations of Mathematics, J. Barwise, D. Kaplan,
H. Keisler, P. Suppes, and A. Troelstra, Eds. North-Holland, 1988, vol. 1.

[30] K. Eriksson, D. Estep, and C. Johnson, Applied Mathematics: Body and Soul
Springer, 2004, vol. 1.

[31] Y. Gurevich, “Platonism, constructivism, and computer proofs vs. proofs by hand.”
in Current Trends in Theoretical Computer Science, 2001, pp. 281-302.

[32] M. Tedre and E. Sutinen, “Three traditions of computing: what educators should
know,” Computer Science Education, vol. 18, no. 3, pp. 153-170, 2008.

[33] M. B. Wells, “Reflections on the Evolution of Algorithmic Language.” in 4 History
af Computing in the Twentieth Century, N. Metropolis, J. Howlett, and G.-C. Rota,
Eds. New York, New York: Academic Press, Inc., 1980.

[34] K. O. May, “Historiography: A Perspective for Computer Scientists,” in A History
af Computing in the Twentieth Century, N. Metropolis, J. Howlett, and G.-C. Rota,
Eds. New York, New York: Academic Press, Inc., 1980.

[35] P. Martin-Lof, “Constructive Mathematics and Computer Programming,” Royal So-
ciety of London Philosophical Transactions Series A, vol. 312, pp. 501-518, 1984,

[36] K. Ahlander, M. Haveraaen, and H. Z. Munthe-Kaas, “On the Role of Mathematical
Abstractions for Scientific Computing,” in The Architecture of Scientific Software,
ser. IFIP Advances in Information and Communication Technology, R. F. Boisvert
and P. T. P. Tang, Eds. Spring, 2001, vol. 60.

[37] J. Hoffman, C. Johnson, and A. Logg, Dreams of Calculus Perspectives on Mathemat-
ics Education. Springer, 2004.

[38] K. Erikkson, D. Estep, P. Hansbo, and C. Johnson, Computational Differential Equa-
tions. Cambridge University Press and Studentlitteratur, 1996.

167

[39] J. von Neumann and H. H. Goldstine, “Numerical Inverting of Matrices of High
Order,” Bulletin of the American Mathematical Society, vol. 53, no. 11, pp. 1021-
1099, 11 1947.

[40] H. H. Goldstine, “Remembrance of Things Past,” in A History of Scientific Comput-
ing, 5. G. Nash, Ed. ACM Press, 1990.

[41] W. M. Gentleman and J. F. Traub, “The Bell Laboratories Numerical Mathematics
Program Library Project,” in Proceedings of the 1968 25rd ACM National Conference,
ser. ACM '68. New York, NY, USA: ACM, 1968, pp. 485-490.

[42] P. A. Businger, “NSEVB - Eigenvalues and Eigenvectors of Nonsymmetrle Matrices,”
Numerical Mathematics Computer Programs, vol. 1, no. 1, 1968,

[43] J. J. Dongarra, “An interview with Jack J. Dongarra,” Retrieved February
10, 2014, from http:/ /history.siam.org/pdfs2 /Dongarra_%20returned_SIAM_copy.pdf,
2004, conducted by Thomas Haigh for the STAM History of Numerical Analysis and
Scientific Computing Project.

[44] “LAPACK-Linear Algebra PACKage Release Notes,” Retrieved February 10, 2014,
from http://www.netlib.org/lapack, 2013.

[45] J. W. Backus and H. Herrick, “IBM 701 Speedcoding and other automatic program-
ming systems,” in Proc. Symp. on Automatic Programming for Digital Computer,
1954.

[46] C. Moler, “The Growth of MATLAB and The MathWorks over Two
Decades,” Retrieved April 8, 2014, from http://www.mathworks.com/tagteam/
T2887_92020v00Cleve_Growth_MATLAB_MathWorks_Two_Decades_Jan_2006.pdf,
MathWorks, Tech. Rep., 2006.

[47] M. T. Heath, Scientific Computing An Introductory Survey, 2nd ed. McGraw Hill,
2002.

[48] S. J. Leon, “MATLAB,” in Handbook of Linear Algebra, ser. Discrete Mathematics
and its Applications, L. Hogben, Ed. Boca Raton, FL: Chapman and Hall /CRC,
2007.

49| C. Van Loan, Computationa meworks for the Fast Fourier nsform. i -
C. Van L C [Fra ks for the Fast Fi Transfi Philadel
phia, PA, USA: Society for Industrial and Applied Mathematics, 1992,

[50] J. Kepner and J. Gilbert, Eds., Graph Algorithms in the Language of Linear Algebra.
SIAM, 2011.

[51] J. Kepner, “Graphs and matrices,” in Graph Algorithms in the Language of Linear
Algebra, J. Kepner and J. Gilbert, Eds. SIAM, 2011.

165

http://history.siam.org/pdfs2/Dongarra_%20returned_SIAM_copy.pdf
http://www.netlib.org/lapack
http://www.mathworks.com/tagteam/72887_92020v00Cleve_Growth_MATLAB_MathWorks_Two_Decades_Jan_2006.pdf
http://www.mathworks.com/tagteam/72887_92020v00Cleve_Growth_MATLAB_MathWorks_Two_Decades_Jan_2006.pdf

[52] G. E. Forsythe, “Today’s Computational Methods of Linear Algebra,” SIAM Review,
vol. 9, no. 3, pp. pp. 489-515, 1967.

[53] U. A. Rauhala, “Introduction to Array Algebra,” Photogrammetric Engineering &
Remote Sensing, vol. 46, no. 2, pp. 177-192, February 1980.

[54] K. Ahlander, “Einstein Summation for Multidimensional Arrays,” Computers and
Mathematics with Applications, vol. 44, pp. 1007-1017, 2002.

[55] A. P. Harrison and D. Joseph, “Maximum Likelihood Estimation of Depth Maps
Using Photometric Steren,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 7, pp. 1368-1380, 2012.

[56] L. Grady, “Random Walks for Image Segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1768-1783, Nov. 2006.

[57] S. C. Chapra and R. Canale, Numerical Methods for Engineers. New York, NY,
USA: McGraw-Hill, Inc., 2006.

[58] R. J. Schilling and S. L. Harris, Applied Numerical Methods for Engineers Using
MATLAB and C. Pacific Grove, CA: Brooks/Cole, 2000.

[59] H. V. Henderson and S. R. Searle, “The vec-permutation matrix, the vec operator
and Kronecker products: a review,” Linear and Multilinear Algebra, vol. 9, no. 4, pp.
271-2858, 1981.

[60] D. G. Antzoulatos and A. A. Sawchuk, “Hypermatrix Algebra: Theory,” CVGIP:
Image Understanding, vol. 57, pp. 2441, January 1993.

[61] R. A. Snay, “Applicability of Array Algebra,” Reviews of Geophysics and Space
Physics, vol. 16, no. 3, pp. 459464, 1978,

[62] G. Blaha, “A Few Basic Principles and Techniques of Array Algebra,” Bulletin God-
sique, vol. 51, no. 3, pp. 177-202, 1977.

[63] J. R. Magnus and H. Neudecker, Matriz Differential Calculus with Applications in
Statistics and Econometrics, 3rd ed., ser. Wiley Series in Probability and Statistics.
Chichester: John Wiley & Sons, 2007.

[64] D. Pollock, “Tensor products and matrix differential calculus,” Linear Algebra and
its Applications, vol. 67, pp. 169-193, 1985.

[65] M. Suzuki and K. Shimizn, “Analysis of distributed systems by array algebra,” Inter-
national Journal of Systems Science, vol. 21, no. 1, pp. 129-155, 1990.

169

[66] W. J. Vetter, “The Array Matrix Generalization for Signal Processing,” in Acous-
tics, Speech, and Signal Processing, IEEE International Conference on ICASSP "86.,
vol. 11, 1986, pp. 207-300.

[67] K. Ahlander and K. Otto, “Software design for finite difference schemes based on
index notation,” Future Gener. Comput. Syst., vol. 22, pp. 102-109, January 2006.

[68] K. Otto, “A unifying framework for preconditioners based on fast transforms,” De-
partment of Scientific Computing, Uppsala University, Tech. Rep., 1999,

[69] J. G. Papastavridis, Tensor Calculus and Analytical Dynamics. CRC Press LLC,
1999,

[70] A. H. Barr, “The Einstein Summation Notation: Introduction to Cartesian Tensors
and Extensions to the Notation,” California Institute of Technology, Tech. Rep., (re-
treived 4/01,/2011).

[71] E. R. Bolton, “A simple notation for differential vector expressions in orthogonal
curvilinear coordinates.” Geophysical Journal International, vol. 115, pp. 654666,
19493.

[72] H. Lev-Ari, “Efficient solution of linear matrix equations with applications to multi-
static antenna array processing,” Communications in Information and Systems, vol. 5,
no. 1, pp. 123-130, 2005.

[73] S. Liu and G. Trenkler, “Hadamard, Khatri-Rao, Kronecker, and Other Matrix Prod-
ucts,” International Journal of Information and Systems Sciences, vol. 4, no. 1, pp.
160-177, 2008.

[T4] H. J. Stetter, Numerical Polynomial Algebra. Philadelphia: Society for Industrial
and Applied Mathematics, 2004.

[75] D. A. Cox, J. Little, and D. O’Shea, Ideals, Varicties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, 3rd ed., ser.
Undergraduate Texts in Mathematics. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2007.

[76] A. Sommese and C. Wampler, The Numerical Solution of Systems of Polynomials

Arising in Engineering and Science. World Scientific, 2005.

[77] “DARPA Mathematical Challenges,” Defense Sciences Office, Defense Advanced Re-
search Projects Agency, Tech. Rep. DARPA-BAA 08-65, 2008.

[78] P. Comon, G. H. Golub, L-H. Lim, and B. Mourrain, “Symmetric tensors and
symmetric tensor rank.” SIAM Journal on Matriz Analysis and Applications, vol. 30,
no. 3, pp. 1254-1279, 2008. [Online|. Available: http://dx.doi.org/10.1137 /060661569

170

http://dx.doi.org/10.1137/060661569

[79] P. Comon and B. Mourrain, “Decomposition of quantics in sums of powers of linear

forms,” Signal Processing, vol. 53, pp. 93-107, 1996.

[80] L. de Lathauwer and B. D. Moor, “From matrix to tensor: Multilinear algebra and sig-
nal processing,” in Mathematics in Signal Processing IV, ser. IMA Conference Series.
Oxford, 1997.

[81] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A Multilinear Singular Value
Decomposition,” SIAM Journal on Matriz Analysis and Applications, vol. 21, no. 4,
pp. 1253-1278, 2000.

[82] C. J. Hillar and L.-H. Lim, “Most Tensor Problems Are NP-Hard,” Journal of the
ACM, vol. 60, no. 6, pp. 1-39, 2013.

[83] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
REVIEW, vol. 51, no. 3, pp. 455-500, 2009.

[84] L-H. Lim, “Tensors and Hypermatices,” in Handbook of Linear Algebra, 2nd ed.,
ser. Discrete Mathematics and Its Applications, L. Hoghen, Ed. Boca Raton, FL:
Chapman and Hall/{CRC, 2013, ch. 15.

[85] G. H. Golub and C. F. Van Loan, Matriz Computations, 4th ed. Baltimore, MD,
USA: The Johns Hopkins University Press, 1996.

[86] R. A. Harshman, “An index formalism that generalises the capabilities of matrix
notation and algebra to n-way arrays,” Jouwrnal of Chemometrics, vol. 15, pp. 680
714, 2001.

[87] S. Milgram, L. Bickman, and L. Berkowitz, “Note on the Drawing Power of Crowds
of Different Size,” Journal of Personality and Social Psychology, vol. 13, no. 2, pp.
79-82, 1960.

[88] R. Brualdi and J. Csima, “Small Matrices of Large Dimension,” Linear Algebra and
its Applications, vol. 150, pp. 227241, 1991.

[89] G. Beylkin and M. J. Mohlenkamp, “Algorithms for Numerical Analysis in High
Dimensions,” SIAM Journal on Scientific Computing, vol. 26, no. 6. pp. 21332159,
2005.

[90] A. Limache and P. R. Fredini, “LTensor: A high performance C++ Tensor Library
based on Index Notation,” Retrieved August 6, 2013, from http://code.google.com/
p/ltensor/, 2013.

[91] G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva,
X. Gao, R. Harrison, S. Hirata, 5. Krishnamoorthy, 5. Krishnan, C. Lam, (}. Lu,

171

http://code.google.com/p/ltensor/
http://code.google.com/p/ltensor/

[92]

[93]

[94]

[96]

[97]

[98]

[99]

M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov, “Synthesis
of high-performance parallel programs for a class of ab initio quantum chemistry
models,” Proceedings of the IEEE, vol. 93, no. 2, pp. 276-292, Feb 2005.

E. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, D. Cociorva, X. Gao,
R. Harrison, 5. Krishnamoorthy, H. Krishnan, C. chung Lam, (). Lu, M. Nooijen,
R. Pitzer, J. Ramanujam, P. Sadayappan, and E. Sibiryakov, “Automatic code gen-
eration for many-body electronic structure methods: The tensor contraction engine,”
Molecular Physics, 2005.

A. Hartono, (). Lu, T. Henretty, S. Krishnamoorthy, H. Zhang, G. Baumgartner, D. E.
Bernholdt, M. Nooijen, R. Pitzer, J. Ramanujam, and P. Sadayappan, “Performance
optimization of tensor contraction expressions for many-body methods in quantum
chemistry,” The Journal of Physical Chemistry A, vol. 113, no. 45, pp. 1271512723,
2009.

E. Epifanovsky, M. Wormit, T. Kus, A. Landau, D. Zuev, K. Khistyaev, P. Manchar,
I. Kaliman, A. Dreuw, and A. I. Krylov, *“New implementation of high-level correlated
methods using a general block tensor library for high-performance electronic structure
calculations.” Journal of Computational Chemistry, vol. 34, no. 26, pp. 22932309,
2013.

E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel, “A
massively parallel tensor contraction framework for coupled-cluster computations,”
Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3176 — 3190,
2014, domain-Specific Languages and High-Level Frameworks for High-Performance
Computing,.

M. A. O. Vasilescu and D. Terzopoulos, “A Tensor Algebraic Approach to Image Syn-
thesis, Analysis and Recognition,” in Proceedings of the Sirth International Confer-
ence on -1 Digital Imaging and Modeling. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 3-12.

——, “Multilinear projection for appearance-based recognition in the tensor frame-
work.” in Proc. FEleventh IEEE International Conference on Computer Vision
(ICCV’07), 2007, pp. 1-8.

M. A. O. Vasilescu, “A multilinear (tensor) algebraic framework for computer graph-
ics, computer vision, and machine learning,” Ph.D. dissertation, University of Toronto,
2009.

L. T. Milov, “*Multidimensional Matrix Derivatives and Sensitivity Analysis of Control
Systems,” Automation and Remote Control, vol. 40, no. 9, pp. 1269-1277, 1979,

172

[100] W. Vetter and M. Porsani, “Extended matrix formulation for the marple algo-
rithm,” in Acoustics, Speech, and Signal Processing, IEEE International Conference
on ICASSP °87., vol. 12, Apr 1987, pp. 340-343.

[101] W. Landry, “Implementating a high performance tensor library,” Scientific Program-
ming. vol. 11, no. 4, pp. 273-290, 2003.

[102] H. Neudecker and S. Liu, “Some statistical properties of Hadamard products of ran-
dom matrices,” Statistical Papers, vol. 42, pp. 475-487, 2001.

[103] ——, “Statistical properties of Hadamard products of random vectors,” Statistical
Papers, vol. 42, pp. 529-533, 2001.

[104] D. Pollock, “On Kronecker Products, Tensor Products And Matrix Differential Cal-
culus,” University of Leicester, Tech. Rep. Working Paper No. 11/34, 2011.

[105] R. De Virgilio and F. Milicchio, “Rfid data management and analysis via tensor
calculus,” in Transactions on Large-Scale Data- and Knowledge-Centered Systems
VII, ser. Lecture Notes in Computer Science, A. Hameurlain, J. Kng, and R. Wagner,
Eds. Springer Berlin Heidelberg, 2012, vol. 7720, pp. 1-30.

[106] A. Takemura, “Tensor analysis of anova decomposition,” Journal of the American
Statistical Association, vol. T8, no. 384, pp. 894-900, 1933.

[107] P. McCullagh, Tensor Methods in Statistics, ser. Monographs on Statistics and Ap-
plied Probahility. London: Chapman and Hill, 1987.

[108] C. F. van Loan, “The ubiquitous Kronecker product,” Journal of Computational and
Applied Mathematics, vol. 123, pp. 85-100, November 2000.

[109] W.-H. Steeb and Y. Hardy, Matriz Calculus and Kronecker Product, 2nd ed. New
Jersey: World Scientific, 2011.

[110] H. A. L. Kiers, “Towards a standardized notation and terminology in multiway anal-
ysis,” Journal of Chemometrics, vol. 14, no. 105-122, 2000.

[111] L. Eldén and B. Savas, “A Newton-Grassmann Method for Computing the Best Multi-
linear Rank-(r; ro r3) Approximation of a Tensor,” SIAM Journal on Matriz Analysis
and Applications, vol. 31, no. 2, pp. 248-271, Mar. 2009.

[112] B. W. Bader and T. G. Kolda, “Algorithm 862: MATLAB Tensor Classes for Fast
Algorithm Prototyping,” ACM Transactions on Mathematical Software, vol. 32, no. 4,
pp. 635-653, 2006.

[113] G. R. Tait, “The Array-Matrix Concept—A New Approach to Multivariate Analysis,”
Ph.D. dissertation, McGill University, Montreal, Canada, 1971.

173

[114] U. A. Rauhala, “Array Algebra Expansion of Matrix and Tensor Calculus: Part 1,”
STAM Journal of Matriz Analysis and Applications, vol. 24, no. 2, pp. 490-508, 2002.

[115] J. A. Eisele and R. M. Mason, Applied Matrir and Tensor Analysis. New York:
Wiley-Interscience, 1970.

116] P. A, ia an . K. Sanjit, ron r products, unitary matrices, and sign
P. A. Regali d M. K. § “Kronecke d d al
processing applications,” STAM Rewview, vol. 31, pp. 586613, December 1989,

[117] J.R. Magnus, “On the concept of matrix derivative,” Journal of Multivariate Analysis,
vol. 101, no. 9, pp. 22002206, 2010.

[118] R. A. Harshman and S. Hong, “Stretch’ vs ‘slice’ methods for representing three-way
structure via matrix notation,” Journal of Chemometrics, vol. 16, pp. 198-205, 2002.

[119] C. D. Meyer, Matrir Analysis and Applied Linear Algebra. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2000.

[120] M. Brazell, N. Li, C. Navasca, and C. Tamon, “Solving Multilinear Systems via Tensor
Inversion,” SIAM Journal on Matriz Analysis and Applications, vol. 34, no. 2, pp.
542-570, 2013.

[121] J. R. Magnus, Linear Structures. London: Charles Griffin & Company Limited,
1988.

[122] K. Braman, “Third-order tensors as linear operators on a space of matrices,” Linear
Algebra and its Applications, vol. 433, pp. 1241-1253, 2010.

[123] D. Joseph, “Modelling and calibration of logarithmic CMOS image sensors,” Ph.D.
dissertation, University of Oxford, 2002.

[124] B. W. Bader and T. G. Kolda, “Efficient matlab computations with sparse and fac-
tored tensors,” SIAM Jouwrnal of Scientific Computing, vol. 30, pp. 205231, 2007.

[125] T. Veldhuizen, “Blitz++," Retrieved February 6, 2012, from http://www.
oonumerics.org/blitz/, 2005.

[126] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond, ser. C++4 in Depth Series. Boston, USA:
Addison-Wesley Professional, 2004.

[127] A. Limachea and P. R. Fredinib, “A tensor library for scientific computing,” Mecnica
Computacional, vol. XXVIL, pp. 2007-2925, 2008.

[128] J. C. Cummings, J. A. Crotinger, S. W. Haney, W. F. Humphrey, S. R. Karmesin,
J. V. Reynders, 5. A. Smith, and T. J. Williams, “Rapid Application Development and

174

http:://www.oonumerics.org/blitz/
http:://www.oonumerics.org/blitz/

Enhanced Code Interoperability using the POOMA Framework,” in Object Oriented
Methods for Interoperable Scientific and Engineering Computing: Proceedings of the
1998 SIAM Weorkshop, M. E. Henderson, C. R. Anderson, and S. L. Lyons, Eds.
SIAM, 1999,

[129] “NumPy,” Retrieved March 18, 2014, from http://www.numpy.org,/.

[130] W.-H. Steeb, Matriz Calculus and Kronecker Product with Applications and C++
Programs. World Scientific, 1997.

(131] T. E. Oliphant, Guide to NumPy, 2006.

[132] R. Bellman, Adaptive Control Processes: A Guide Tour. Princeton University Press,
1961.

[133] J. K. Ousterhout, “Scripting: Higher Level Programming for the 21st Century,” Com-
puter, vol. 31, no. 3, pp. 23-30, 1998.

[134] T. E. Oliphant, “Python for Scientific Computing,” Computing in Science & Engi-
neering, vol. 9, no. 3, pp. 10-20, 2007.

[135] H. P. Langtangen, Python Scripting for Computational Science, 3rd ed., ser. Texts in
Computational Science and Engineering. Berlin: Springer, 2008.

[136] L. D. Paulson, “Developers Shift to Dynamic Programming Languages,” Computer,
vol. 40, no. 2, pp. 12-15, 2007.

[137] L. Prechelt, “Are Scripting Languages Any Good? A Validation of Perl, Python,
Rexx, and T¢l against C, C4++4, and Java,” in Information Repositories, ser. Advances
in Computers, M. Zelkowitz, Ed. Academic Press, 2003, vol. 57, pp. 205-270.

[138] D. Garey and S. Lang, “High Performance Development with Python,” Scientific
Computing, pp. 10-14, 2008.

[139] S. O’'Grady, “The RedMonk Programming Language Rankings: January
2014," Retrieved May 4, 2014, from http:/ /redmonk.com/sogrady/2014/01/22/
language-rankings-1-14/, 2014.

[140] “TTIOBE Index for MATLAB,” Retrieved May 4, 2014 from http://www.tiobe.com/
index.php/content /paperinfo/tpei/MATLAB. html, 2014.

[141] A. van Deursen, P. Klint, and J. Visser, “Domain-specific Languages: An Annotated
Bibliography,” ACM SIGPLAN Notices, vol. 35, no. 6, pp. 26-36, Jun. 2000.

[142] T. Veldhuizen, “Techniques for scientific c++,” Retrieved Sept. 1, 2015, from https://
www.cs.indiana.edu /cgi-bin /techreports /TRNNN.cgi?trnum=TR542, Indiana Uni-
versity, Tech. Rep. 542, 2000.

175

http://www.numpy.org/
http://redmonk.com/sogrady/2014/01/22/language-rankings-1-14/
http://redmonk.com/sogrady/2014/01/22/language-rankings-1-14/
http://www.tiobe.com/index.php/content/paperinfo/tpci/MATLAB.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/MATLAB.html
https://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR542
https://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR542

[143] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns
Applied, ser. C4++ in Depth Series. Pearson Education Ine., 2001.

[144] C. Sanderson, “Armadillo: An Open Source C++ Linear Algebra Library for Fast
Prototyping and Computationally Intensive Experiments,” NICTA, Australia, Tech.
Rep., 2010.

[145] “The Eigen Library,” Retrieved Sept. 1, 2015, from http://eigen.tuxfamily.org.

[146] W. Landry, “The FTensor Library,” Retrieved February 6, 2012, from http://www.
gps.caltech.edu /~walter/FTensor/, 2004.

[147] D. Abrahams and R. W. Grosse-Kunstleve, “Building Hybrid Systems with
Boost.Python,” Retrieved April 16, 2014, from http://www.boost.org/doc/libs/1_31_
0/libs/python /doc/PyConDC_2003 /bpl.html, Boost Consulting, Tech. Rep., 2003.

[148] J. Marcum, Thomas Kuhn's Revolution: An Historical Philosophy of Science, ser.
Continuum Studies in American Philosophy Series. Continuum, 2005.

[149] G. Golub and V. Pereyra, “Separable nonlinear least squares: the variable projection
method and its applications,” Inverse Problems, vol. 19, pp. R1-R26, 2003.

[150] R.-G. Chang, T.-R. Chuang, and J. K. Lee, “Parallel Sparse Supports for Array
Intrinsic Functions of Fortran 90.” The Journal of Supercomputing, vol. 18, no. 3, pp.
305-339, 2001.

[151] C.-Y. Lin, J.-S. Liu, and Y.-C. Chung, “Efficient Representation Scheme for Multidi-
mensional Array Operations,” IEEE Transactions on Computers, vol. 51, no. 3, pp.
327-345, Mar. 2002.

[152] C.-Y. Lin, Y.-C. Chung, and J.-S. Liu, “Efficient Data Compression Methods for Mul-
tidimensional Sparse Array Operations Based on the EKMR Scheme,” IEEE Trans-
actions on Computers, vol. 52, no. 12, pp. 1640 — 1646, dec. 2003.

[153] M. D. Schatz, T.-M. Low, R. A. van de Geijn, and T. G. Kolda, “Exploiting Symmetry
in Tensors for High Performance: Multiplication with Symmetric Tensors,” SIAM
Journal on Scientific Computing, vol. 36, no. 5, pp. C453-C479, September 2014.

[154] D. Pollock, “On Kronecker Products, Tensor Products And Matrix Differential Calcu-
lus,” International Journal of Computer Mathematics, vol. 90, no. 11, pp. 24622476,
2013.

[155] W. J. Vetter, “Matrix Calculus Operations and Taylor Expansions,” SIAM Review,
vol. 15, no. 2, pp. 352-369, 1973.

176

http://eigen.tuxfamily.org
http://www.gps.caltech.edu/~walter/FTensor/
http://www.gps.caltech.edu/~walter/FTensor/
http://www.boost.org/doc/libs/1_31_0/libs/python/doc/PyConDC_2003/bpl.html
http://www.boost.org/doc/libs/1_31_0/libs/python/doc/PyConDC_2003/bpl.html

[156] ——, “Vector structures and solutions of linear matrix equations,” Linear Algebra
and its Applications, vol. 10, no. 2, pp. 181-188, 1975.

[157] H. Jeffreys, Cartesian Tensors. London: Cambridge University Press, 1963.

[158] N. O. Myklestad, Cartesian Tensors: The Mathematical Language of Engineering, ser.
University Series in Applied Mechanics. Princeton, New Jersey: D. Van Nostrand
Company, Inc., 1967.

[159] A. M. Goodbody, Cartesian Tensors: With Applications to Mechanics, Fluid Me-
chanics and Elasticity, ser. Ellis Horwood Series in Mathematics and its Applications.
West Sussex. England: Ellis Horwood Limited, 1982.

[160] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,”
Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121-167, Jun. 1998,

[161] R. B. Schnabel and P. D. Frank, “Tensor methods for nonlinear equations,” SI4M
Journal on Numerical Analysis, vol. 21, no. 5, pp. 815-843, 1984.

[162] J. Brewer, “Kronecker Products and Matrix Calculus in System Theory,” Circuits
and Systems, IEEE Transactions on, vol. 25, no. 9, pp. 772 — 781, sep 1973,

[163] A. P. Harrison and D. Joseph, “Translational photometric alignment of single-view
image sequences,” Computer Vision and Image Understanding, vol. 116, no. 6, pp.
T65-TT6, 2012.

[164] ——, “Depth-Map and Albedo Estimation with Superior Information-Theoretic Per-

formance,” in Image Processing: Machine Vision Applications VIII, ser. Proceedings
of the SPIE, E. Y. Lam and K. S. Niel, Eds. SPIE, 2015, vol. 9405, pp. 94050C—
94 050C—-15.

[165] G. Golub and V. Pereyra, “The Differentation of Psendo-Inverses and the Nonlinear
Least Squares Problems Whose Variables Separate,” SIAM Journal on Numerical
Analysis, vol. 10, no. 2. pp. 413-432, 1973.

[166] “Open Source Initiative OSI - The BSD 3-Clause License,” Retrieved May 25, 2012,
from http://www.opensource.orglicenses /bsd-3-clause.

[167] “Doxygen,” Retrieved April 13, 2012, from www.doxygen.org.

[168] J. de Guzman, D. Marsden, and T. Heller, “Phoenix 3.0," Retrieved February
15, 2012, from http://www.boost.org/doc/libs/1_48_0/libs /phoenix /doc /html /index.
html.

[169] “The Boost Library,” Retrieved February 6, 2012, from http://www.boost.org/.

177

http://www.opensource.org/licenses/bsd-3-clause
www.doxygen.org
http://www.boost.org/doc/libs/1_48_0/libs/phoenix/doc/html/index.html
http://www.boost.org/doc/libs/1_48_0/libs/phoenix/doc/html/index.html
http://www.boost.org/

[170] M. A. Akcoglu, P. F. Bartha, and D. M. Ha, Analysis in Vector Spaces. Wiley, 2009.

[171] F. Gustavson and T. Swirszcz, “In-place transposition of rectangular matrices” in
Applied Parallel Computing. State of the Art in Scientific Computing, ser. Lecture
NMNotes in Computer Science, B. Kgstrm, E. Elmroth, J. Dongarra, and J. Wasniewski,
Eds. Springer Berlin Heidelberg, 2007, vol. 4699, pp. 560-569. [Ounline]. Available:
http://dx.doi.org/10.1007 /978-3-540-T5755-9_68

[172] C. H. Ding, “An Optimal Index Reshuffle Algorithm for Multidimensional Arrays
and Its Applications for Parallel Architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 12, no. 3. pp. 306-315, 2001.

[173] Y. Jie, W. Jian-ping, and W. Zheng-hua, “A High Efficient In-place Transposition
Scheme for Multidimensional Arrays,” in 2011 Fourth International Conference on
Infermation and Computing, vol. 1, 2010, pp. 158-161.

[174] N. Brenner, “Algorithm 467: Matrix transposition in place,” Communications of the
ACM, vol. 16, no. 11, pp. 692694, 1973.

[175] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A structure
for efficient numerical computation.” Computing in Science & Engineering, vol. 13,
no. 2, pp. 22-30, March 2011.

[176] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “GigaTensor: Scaling Tensor
Analysis Up by 100 Times - Algorithms and Discoveries,” in Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ser. KDD "12. New York, NY, USA: ACM, 2012, pp. 316-324.

[177] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, “Efficient and Scalable Com-
putations with Sparse Tensors,” in High Performance Ertreme Computing (HPEC),
2012 IEEFE Conference on, Sept 2012, pp. 1-6.

[178] L. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the curse of dimensionality, or how
to use svd in many dimensions,” SIAM J. Scientific Computing, vol. 31, no. 5, pp.
3744-3759, 2009.

[179] 1. V. Oseledets and S. V. Dolgov, “Solution of linear systems and matrix inversion in
the tt-format,” SIAM J. Scientific Computing, vol. 34, no. 5, 2012.

[180] B. N. Khoromskij, “Tensors-structured numerical methods in scientific computing:
Survey on recent advances,” Chemometrics and Intelligent Laboratory Systems. vol.
110, no. 1, pp. 1 — 19, 2012.

181| . Gundersen and T. ihaug, “Sparsity in higher order metho r unconstrain
G. Gund d T. Steih “5 high d thods fo ed
optimization,” Optimization Methods and Software, vol. 27, no. 2, pp. 275-294, 2012.
[Online]. Available: http://dx.doi.org/10.1080,/10556788.2011.597853

178

http://dx.doi.org/10.1007/978-3-540-75755-9_68
http://dx.doi.org/10.1080/10556788.2011.597853

[182] T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms
2). Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2006.

[183] A. Bulug, J. Gilbert, and V. B. Shah, “Implementing Sparse Matrices for Graph
Algorithms,” in Graph Algorithms in the Language of Linear Algebra, J. Kepner and
J. Gilbert, Eds. SIAM, 2011.

[184] E. A. Bender and S. G. Williamson, Foundations of Applied Combinatorics. Addison-
Wesley, 1991.

[185] J. A. Parkhill and M. Head-Gordon, “A sparse framework for the derivation and
implementation of fermion algebra,” Molecular Physics, vol. 108, no. 3-4. pp. 513—
522, 2010.

[186] J. Maddock and C. Kormanyos, “The Boost Multiprecision Library,” Retrieved
Sept. 1, 2015, from http://www.boost.org/doc/libs/1_59_0 /libs /multiprecision /doc/
html/index.html, 2015. [Online|. Available: http://www.boost.org/doc/libs/1_58_0/
libs /multiprecision /doc/html /index.html

[187] GMP.Org, “The GNU Multiple Precision Arithmetic Library,” Retrieved Sept. 1,
2015, from http://gmplib.org/, 2014. [Online]. Available: http://gmplib.org/

[188] A. LaMarca and R. E. Ladner, “The Influence of Caches on the Performance of
Sorting,” Jouwrnal of Algorithms, vol. 3, no. 1, pp. 66-104, 1999,

[189] U. Drepper, “What Every Programmer Should Know About Memory,” Red Hat, Inc.,
Tech. Rep., 2007.

[190] C. Doras, “libdivide,” Retrieved Sept. 1, 2015, from http://libdivide.com/, 2010.
[Online|. Available: http://libdivide.com/

[191] D. Musser, “Introspective Sorting and Selection Algorithms,” Software Practice and
Erperience, vol. 27, pp. 983-993, 1997.

[192] T. Peters, “timsort,” Retrieved August 25, 2014, from http://bugs.python.org/
file4451 /timsort.txt, 2002.

(193] R. Sedgewick, Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting,
Searching, 3rd ed., ser. Algorithms in C++. Pearson Education, 1998, ch. Radix
Sorting.

[194] V. J. Duvanenko, “In-place Hybrid N-bit-Radix Sort,” Dr. Dobb’s, 2009,
retrieved Sept. 22, 2014. [Online]. Available: http://www.drdobbs.com/
architecture-and-design /algorithm-improvement-through-performanc /221600153

179

http://www.boost.org/doc/libs/1_59_0/libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/1_59_0/libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/1_58_0/libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/1_58_0/libs/multiprecision/doc/html/index.html
http://gmplib.org/
http://gmplib.org/
http://libdivide.com/
http://libdivide.com/
http://bugs.python.org/file4451/timsort.txt
http://bugs.python.org/file4451/timsort.txt
http://www.drdobbs.com/architecture-and-design/algorithm-improvement-through-performanc/221600153
http://www.drdobbs.com/architecture-and-design/algorithm-improvement-through-performanc/221600153

[195] A. Bulug and J. Gilbert, “On the Representation and Multiplication of Hypersparse
Matrices,” in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Interna-
tional Symposium on, April 2008, pp. 1-11.

[196] ——, “New Ideas in Sparse Matrix Matrix Multiplication,” in Graph Algorithms in
the Langquage of Linear Algebra, J. Kepner and J. Gilbert, Eds. SIAM, 2011.

[197] D. M. Dunlavy, T. G. Kolda, and W. P. Kegelmeyer, “Multilinear Algebra for Ana-
lyzing Data with Multiple Linkages,” in Graph Algorithms in the Language of Linear
Algebra, J. Kepner and J. Gilbert, Eds. SIAM, 2011.

[198] T. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect data mining,”
in Data Mining, 2008. ICDM °08. FEighth IEEE International Conference on, Dec
2008, pp. 363-372.

[199] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Parcube: Sparse
parallelizable temsor decompositions.” in FCML PKDID'12, ser. Lecture Notes in
Computer Science, P. A. Flach, T. D. Bie, and N. Cristianini, Eds., vol. 7523.
Springer, 2012, pp. 521-536. [Online]. Available: http://dblp.uni-trier.de/db/conf/
pkdd/pkdd2012-1.html#PapalexakisF512

[200] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for graph
mining.” in SIAM International Conference on Data Mining, 2004.

[201] A. Bulug, J. Gilbert, and A. Lugowski, “CombBLAS.” Retrieved April 15, 2015, from
http:/ /gauss.cs.ucsbh.edu /~aydin /CombBLAS /html /.

[202] E. C. Chi and T. G. Kolda, “On Tensors, Sparsity, and Nonnegative Factorizations,”
STAM Journal on Matriz Analysis and Applications, vol. 33, no. 4, pp. 1272-1299,
December 2012.

[203] A. P. Harrison, N. Birkbeck, and M. Sofka, “IntellEditS: Intelligent Learning-Based
Editor of Segmentations,” in Medical Image Computing and Computer- Assisted Inter-
vention MICCAI 2015, ser. Lecture Notes in Computer Science, K. Mori, 1. Sakuma,
Y. Sato, C. Barillot, and N. Navab, Eds. Springer Berlin Heidelberg, 2013, vol. 8151,
pp. 235-242.

[204] G. Sapiro, Geometric Partial Differential Equations and Image Analysis. New York,
NY, USA: Cambridge University Press, 2006.

[205] P. Perona and J. Malik, “Scale-Space and Edge Detection Using Anisotropic
Diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, pp. 620639, Jul.
1990. [Online]. Available: http://dx.doi.org/10.1109 /34.56205

180

http://dblp.uni-trier.de/db/conf/pkdd/pkdd2012-1.html#PapalexakisFS12
http://dblp.uni-trier.de/db/conf/pkdd/pkdd2012-1.html#PapalexakisFS12
http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/
http://dx.doi.org/10.1109/34.56205

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

5. Osher and L. I. Rudin, “Feature-oriented image enhancement using shock filters,”
STAM Journal on Numerical Analysis, vol. 27, no. 4, pp. pp. 919-940, 1990.

5. Bae, 5. Paris, and F. Durand, “Two-scale Tone Management for Photographic
Look,” ACM Trans. Graph., vol. 25, no. 3, pp. 637645, Jul. 2006.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Pearson Prentice
Hall, 2008.

5. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,”
International Journal of Computer Vision, vol. 56, no. 3, pp. 221-255, February
2004. [Online]. Available: http://dx.doi.org/10.1023/B:VISL.0000011205.11775.fd

N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and
FPattern Recognition (CVPR'05) - Volume 1 - Volume 01, ser. CVPR "05. Washing-
ton, DC, USA: IEEE Computer Society, 2005, pp. 886-893.

M. Nolden, S. Zelzer, A. Seitel, D. Wald, M. Mller, A. Franz, D. Maleike,
M. Fangerau, M. Baumhauer, L. Maier-Hein, K. Maier-Hein, H.-P. Meinzer, and
[. Wolf, “The medical imaging interaction toolkit: challenges and advances,”
International Journal of Computer Assisted Radiology and Surgery, vol. 8, no. 4, pp.
607-620, 2013. [Online]. Available: http://dx.doi.org/10.1007 /s11548-013-0840-8

N. R. Pal and 5. K. Pal, “A review on image segmentation techniques”
Pattern Recognition, vol. 26, no. 9, pp. 1277 — 1294, 1993. [Online]. Available:
http:/ /www.sciencedirect.com /science /article /pii /003132039390135J

L. Grady, “Multilabel random walker image segmentation using prior models,” in
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer So-
ciety Conference on, vol. 1, June 2005, pp. 763770 vol. 1.

L. Grady and G. Funka-Lea, “An energy minimization approach to the data
driven editing of presegmented images/volumes,” in Medical Image Computing and
Computer-Assisted Intervention—-MICCAT 2006. Springer, 2006, pp. 888-895.

W. Yang, J. Cai, J. Zheng, and J. Luo, *User-friendly Interactive Image Segmen-
tation Through Unified Combinatorial User Inputs,” IEEE Transactions on Image
Processing, vol. 19, no. 9, pp. 2470 —2479, 2010.

J. W. Eaton, D. Bateman, and 5. Hauberg, GNU Octave Manual Version 3. Network
Theory Ltd., 2008.

A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many: Illumination
cone models for face recognition under variable lighting and pose,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643-660, 2001.

181

http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd
http://dx.doi.org/10.1007/s11548-013-0840-8
http://www.sciencedirect.com/science/article/pii/003132039390135J

[218] A. P. Harrison, C. Wong, and D. Joseph, “Virtual Reflected-Light Microscopy,” Jour-
nal of Microscopy, vol. 244, pp. 203-304, 2011.

[219] C. Boncelet, “Image Noise Models,” in The Essential Guide to Image Processing,
second edition ed., A. Bovik, Ed. Boston: Academic Press, 2009, pp. 143 — 167.

[220] G. A. Seber and C. J. Wild, Linear Regression Analysis, 2nd ed. John Wiley & Sons,
Inc., 2003.

[221] A. K. Agrawal, R. Raskar, and R. Chellappa, “What is the range of surface recon-
structions from a gradient field?” in Proceedings of the 9th European conference on
Computer Vision, ser. ECCV'06, vol. 1. Springer-Verlag, 2006, pp. 578-591.

[222] J.-D. Durou, M. Falcone, and M. Sagona, “Numerical Methods for Shape-from-
shading: A New Survey with Benchmarks,” Computer Vision and Image Under-
standing, vol. 109, no. 1, pp. 22 — 43, 2008.

[223] G. A. Seber and C. J. Wild, Nonlinear Regression. John Wiley & Sons, Inc., 1989.

[224] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference,
2nd ed. New York: Springer-Verlag, 2002.

[225] . “Multimodel Inference: Understanding AIC and BIC in Model Selection,” So-

ciological Methods & Research, vol. 33, no. 2, pp. 261-304, 2004.

[226] E. Sober, “Instrumentalism, Parsimony, and the Akaike Framework,” Philosophy of
Science, vol. 69, pp. S112-5123, 2002.

[227] L. Noakes and R. Kozera, “Nonlinearities and noise reduction in 3-source photometric
steren.” Journal of Mathematical Imaging and Vision, vol. 18, no. 2, pp. 119-127,
2003.

[228] ——, “Denoising images: Non-linear leap-frog for shape and light-source recovery,” in
Geometry, Morphology, and Computational Imaging, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2003, vol. 2616, pp. 143-162.

[229] T. Cameron, R. Kozera, and A. Datta, “A parallel leap-frog algorithm for 3-source
photometric stereo,” in Computer Vision and Graphics: International Conference,
ICCVG 2004, ser. Computational Imaging and Vision. Springer, 2006, pp. 95-102.

[230] O. Ikeda, “Synthetic Shape Reconstruction Combined with the FT-Based Method in
Photometric Stereo,” in ISV 2010, ser. Lecture Notes in Computer Science, . Behis,
R. D. Boyle, B. Parvin, D. Koracin, R. Chung, R. I. Hammoud, M. Hussain, K.-H.
Tan, R. Crawfis, D. Thalmann, D. Kao, and L. Avila, Eds., vol. 6453. Springer,
2010, pp. 678-687.

182

[231] ——, “Photometric Stereo Using Four Surface Normal Approximations and Optimal
MNormalization of Images,” in Signal Processing and Information Technology, 2006
IEEE International Symposium on, 2006, pp. 672-679.

[232] R. Zhang, P-S. Tsai, J. Cryer, and M. Shah, “Shape from Shading: A Survey,
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 21, no. 8, pp.
690-706, Aug 1099,

[233] A. N. Whithead, An Introduction to Mathematics. New York: Henry Holt and
Company, 1911.

[234] M. Schiffer and L. Bowden, The Role of Mathematics in Science, A. Lax, Ed. The
Mathematical Society of America, 1984.

[235] C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decomposition of the time
reversal operator: Detection and selective focusing on two scatterers,” Journal of the
Acoustical Society of America, vol. 99, no. 4, pp. 2067-2076, 1996.

236| L-H. Lim, NS0rs Al ypermatices, triewv arch 12, 2014, m http:
L-H. Li “Te d H " Re ed March from h
/ /www.stat.uchicago.edu/~lekheng /work /tensors.pdf, University of Chicago, Tech.
Rep., 2013.

[237] D. Kats and F. R. Manby, “Sparse tensor framework for implementation of general
local correlation methods,” The Journal of Chemical Physics, vol. 138, no. 14,
2013. [Online]. Awvailable: http://scitation.aip.org/content /aip/journal/jcp/138/14/
10.1063/1.4798940

[238] J. M. Tang and Y. Saad, “Domain-decomposition-type methods for computing the
diagonal of a matrix inverse.” SIAM J. Scientific Computing, vol. 33, no. 5, pp.
2823-2847, 2011. [Online]. Available: http://dblp.uni-trier.de/db/journals/siamsc/
siamsc33d. html# Tang511

[239] S. Li, S. Ahmed, G. Klimeck, and E. Darve, “Computing entries of the inverse
of a sparse matrix using the {FIND} algorithm,” Jouwrnal of Computational
Physics, wvol. 227, no. 22, pp. 9408 - 9427 2008. |[Online]. Awvailable:
http:/ /www.sciencedirect.com /science /article /pii /S0021999108003458

[240] L. Lin, J. Lu, L. Ying, R. Car, and W. E, “Fast algorithm for extracting the
diagonal of the inverse matrix with application to the electronic structure analysis of
metallic systems,” Commun. Math. Sci., vol. 7, no. 3, pp. 755-777, 09 2009. [Online].
Available: http://projecteuclid.org/euclid.cms /1256562822

[241] L. Lin, C. Yang, J. C. Meza, J. Lu, L. Ying, and W. E, “Selinv—an
algorithm for selected inversion of a sparse symmetric matrix,” ACM Trans.

183

http://www.stat.uchicago.edu/~lekheng/work/tensors.pdf
http://www.stat.uchicago.edu/~lekheng/work/tensors.pdf
http://scitation.aip.org/content/aip/journal/jcp/138/14/10.1063/1.4798940
http://scitation.aip.org/content/aip/journal/jcp/138/14/10.1063/1.4798940
http://dblp.uni-trier.de/db/journals/siamsc/siamsc33.html#TangS11
http://dblp.uni-trier.de/db/journals/siamsc/siamsc33.html#TangS11
http://www.sciencedirect.com/science/article/pii/S0021999108003458
http://projecteuclid.org/euclid.cms/1256562822

Math. Seoftw., wvol. 37, no. 4, pp. 40:1-40:19, Feb. 2011. [Online]. Awvailable:
http://doi.acm.org/10.1145/1016461.1016464

[242] K. Batselier, “A Numerical Linear Algebra Framework for Solving Problems with
Multivariate Polynomials,” Ph.D. dissertation, KU Leuven, Leuven, Belgium, 2013.

[243] P. Dreesen, “Back to the Roots: Polynomial Systems Solving Using Linear Algebra,”
Ph.D. dissertation, KU Leuven, Leuven, Belgium, 2013.

[244] P. Dreesen, K. Batselier, and B. L. D. Moor, “Back to the Roots: Polynomial Sys-
tem Solving, Linear Algebra, Systems Theory,” in 16th IFAC Symposium on System
Identification, 2012.

[245] J. Landsberg, Tensors: Geometry and Applications, ser. Graduate studies in mathe-
matics. American Mathematical Society, 2012.

[246] H. S. Warren, Hackers Delight, 2nd ed. Addison-Wesley Professional, 2013.

[247] B. Chandramonli and J. Goldstein, “Patience is a Virtue: Revisiting Merge and Sort
on Modern Processors,” in Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD "14. New York, NY, USA: ACM,
2014, pp. T31-742.

[248] S. Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard
Template Library. Addison-Wesley Professional, 2001.

[249] P. Tsigas and Y. Z. 0004, “A Simple, Fast Parallel Implementation of Quicksort and
its Performance Evaluation on SUN Enterprise 10000," in Proceedings of the 11th
FEuromicro Conference on Parallel Distributed and Network based Processing. IEEE
Computer Society, 2003, pp. 372-384.

250| K. WArZ, n implementation of the introsort rithm, a t hybri

K. Sch A 1 f th algorithm fast hybrid
of quicksort, heapsort, and insertion sort,” 2010. [Online]. Awvailable: http:
[/www . keithschwarz.com /interesting /code /?dir=introsort

[251] R. Sedgewick, “Implementing Quicksort Programs,” Communications of the ACM,
vol. 21, no. 10, pp. 847857, 1978,

[252] A. Martelli, Python in a Nutshell, 2nd ed. Cambridge: O'Reilly Media, Inc., 2006.

[253] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A. Baransi,
5. Kumar, and P. Dubey, “Efficient Implementation of Sorting on Multi-core SIMD
CPU Architecture,” The Proceedings of the VLDEB Endowment, vol. 1, no. 2, pp.
1313-1324, Aug. 2008.

184

http://doi.acm.org/10.1145/1916461.1916464
http://www.keithschwarz.com/interesting/code/?dir=introsort
http://www.keithschwarz.com/interesting/code/?dir=introsort

[254]

[255]

[256]

[257]

M. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey,
“Fast sort on cpus and gpus: A case for bandwidth oblivious simd sort,” in Proceedings
af the 2010 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD '10. New York, NY, USA: ACM, 2010, pp. 351-362.

F. Goro, “A C4++ implementation of timsort,” Retrieved August 25 2014, from
https://github.com/gfx/cpp-TimSort.

J. Wassenberg and P. Sanders, “Engineering a Multi-core Radix Sort,” in Furo-
Par 2011 Parallel Processing, ser. Lecture Notes in Computer Science, E. Jeannot,
R. Namyst, and J. Roman, Eds. Springer Berlin Heidelberg, 2011, vol. 6853, pp.
160-169.

M. Herf, “Radix Tricks,” Retrieved August 26, 2014, from http://stereopsis.com/
radix.html, 2001.

185

https://github.com/gfx/cpp-TimSort
http://stereopsis.com/radix.html
http://stereopsis.com/radix.html

Appendices

186

Appendix A

Details on Sparse Software

In this appendix we provide some additional details regarding sparse numeric tensor (NT)
computations that are not covered in the main body of the thesis. These consist of a
discussion on fast linearised index (LI) calculations, which are highly important for fast
sparse NT computations. We follow this up by providing more detailed descriptions of the
sorting algorithm implementations discussed in Section 5.2.1. A discussion on computing
abelian operations follows. Finally, we outline how LibN'T represents the result of operations
between dense and sparse N'Ts.

A.1 Fast Linearised Index Calculations

While it is advantageous to avoid recomputing Lls as much as possible, they remain an
important and frequent operation within NT computations. For this reason. it is crucial to
make these calculations as fast as possible to minimise their impact on runtime efficiency.
As it turns out, LI calculations can be a significant time sink, making it worthwhile to
exploit fast methods.

A straightforward means to recompute LI values into a new lexicographical precedence
is to first expand the linearised value into its constituent parts using a function like that in

Figure A.1.

EXPAND_LI
Input: LI linearised integer index

DIME array of integer index ranges
Output: INDS array of expanded integer indices
Begin:

for (i=0;i<size (DIMS);i=-i+l)
INDS[i]=mod (LI, DIMS[i])
LI=-LI/DIMS[i] //integer division
end_for

End:

Figure A.1: Expanding an LI into its constituent parts.

187

COMPUTE_LI
Input: INDS array of expanded integer indices
DIME array of integer index ranges
Cutput: LI linearised integer index
Begin:
LI=-D
MULTIFLIER=-1
for (i=0;i<size (DIMS);i=-i+l)
LI-MULTIPLIER«INDS[1]
MULTIPLIER«=DIMS[i]
end_for

End:

Figure A.2: Computing an LI from its expanded indices.

RECOMFUTE_LI
Input: LI linearised integer index in OLD lexicographical order
DIME array of integer index ranges
OLD old lexicographical order, e.g., {0,1,2,3} fer last-to-first
4th-degree lexicographical order
NEW new lexicographical order, e.g., {3,2,1,0} fer first-to-last
4th-degree order precedence
Output: LI linearised integer index in new lexicographical order
Begin:

INDS=EXPAND LI (LI,DIMS(OLD)) //expand indices based on OLD lexicographical order
INDS (OLD)=IRDS; J/Sshuffle indices to default lexicographical order, i.e., {0,1,2,3)
LI=-COMPUTE_LI (INDS (HEW) , DIMS (MEW)) //linearise to NEW lexicographical order

End:

Figure A.3: Recomputing an LI from an old to new lexicographical order.

With the LI expanded, its constituent parts can be rearranged and re-linearised using
a function like that of Figure A.2. Putting it all together, recomputing an LI into a new
lexicographical order can be accomplished using a routine like Figure A.3.

While straightforward, the re-computation scheme in Figure A.3 can consume a signif-
icant amount of time. To illustrate this, Table A.1 displays experiment results measuring
the time taken to recompute the Lls of a large fourth-degree NT. This can be contrasted
with the time taken to sort the non-zero linearised coordinate (LCO) data after LI values
have been recomputed. As can be seen in the experiment, the LI re-computation, which is
an (J){nnz) operation, consumes roughly a third as much time as the O(nnz log(nnz))) sort.
This is clearly an unacceptable amount of time for what should be a preprocessing step.

A major source of the bottleneck in Figure A.3 is the expansion of an LI into an ar-
ray of indices and back again into a new LI value. This bottleneck can be avoided by
recomputing LIs without the intermediate array. This process can be further accelerated
by pre-computing the divisors and multiplicands used to expand and compute Lls respec-
tively. Figure A.4 depicts pseudocode that accomplishes this. As Table A.1 demonstrates,
the speedup of using the direct routine is significant, almost halving the time required
to recompute Lls. Nonetheless, further work is required as the total time taken remains

185

Table A.1: Speed improvements garnered by fast LI calculations. Improvements in execution
times of changing a sparse fourth-degree NTs's lexicographical order from from {0, 1, 2, 3}
to {3,2,1,0}. The fourth-degree NT uses a range of 2'° for all four of its indices and holds
5 * 220 non-zeros, providing it with equivalent sparsity to a fourth-degree O(h?) Jacobian
operator. Optimisations are incrementally added to demonstrate the speed up in execution
times. The time taken to sort the LCO data array using introsort [191] is also shown to
provide context. Experiments were run 10 times and average values are shown.

Routine Time (s) Relative to Introsort
Figure A.3 0.323 0.330
Figure A.4 0.173 0.177
Figure A.4 + static for loop 0.170 0.174
Optimised integer division 0.0375 0.0383
Introsort 0.978 1

RECOMFUTE _LI_DIRECT
Input: LI linearised integer index in
DIVISORS array of divisors corresponding to input lexicographical order,
e.d. {1,n0,nl«nl,nl«nlen3} fer 4th degree {0,1,2,3} lexicographical order
MULTIPLICARDS array of new multiplicands to swikteh from old to new
lexicographical order, e.g. {nd«n3«n2,nd«n3,nd,l} to switch
4th degree {0,1,2,3} lexicographical order to {3,2,1,0}
lexicographical order
Cutput: LI_NEW linearised integer index in new lexicographical order
Begin:

LI_NEW=-0

for (i=size (DIVISORS)-1;iw=0;i=i-1)
Sfuse integer division to get current index
QUOTIENT=LI/DIVISORS[1]
Sfadd index using new lexicographical order
LI_NEW-LI_NEW+QUOTIENT+MULTIPLICANDS[i]
Sfprime LI for next iteration
LI=-LI-QUOTIENT«DIVISORS5([1]

end_for

End:

Figure A.4: Recomputing an LI from an old to new lexicographical order without inter-
mediate arrays. The MULTIPLICANDS input must be designed to switch from old to new
lexicographical orders, i.e., while the individual values in the MULTIPLICANDS array are
dependant only upon the new lexicographical order, the sequence of the values in the array
is based on how indices are shuffled from old-to-new lexicographical orders.

189

unacceptable, taking roughly 18% of time to sort non-zero values.

For languages that support explicit compile-time execution, e.g., template metapro-
gramming (TMP) in C++, one option is turn the run-time for loop in Figure A.4 into
a completely unrolled series of instructions. This is generally possible as the number of
iterations in the for loop is based on the NT degree, which is typically known at compile
time. Thus, the run-time overhead of the for loop can be avoided. To test this, the ex-
periments also executed the routine in Figure A.4 but used a template-metafunction [126]
that generically implements a compile-time for loop. The third row of Table A.1 depicts
the result. As can be seen only very minor improvements in running time are realised.
This suggests that that compiler optimisations on the testbed already optimised the small
run-time for loop in Figure A.4. Thus, using statically unrolled loops provides minimal
improvements in LI computation time for the experimental testbed and other strategies are
needed. Nonetheless, some improvement was established, which may be more substantial
on other machines. As a result, it is worthwhile retaining the static version of a for loop.

Realising faster LI recomputations requires optimising the most expensive arithmetic op-
eration in the calculation, i.e., integer division. One simple optimisation is to ensure that
all integer divisions are conducted with unsigned datatypes. However, greater improve-
ments are possible. As Chapter 10 of Warren's book explains [246], integer division can
be expressed using comparatively inexpensive multiplications and bit shifts. The C/C++
libdivide library has extended these concepts to handle run-time divisors [190]. The author
of libdivide reports substantial run-time improvements. To test this, experiments used lib-
divide's division routines for the calculations in Figure A.4. As Table A.1 demonstrates,
run-time improvements were vast, resulting in roughly 4.5 times improvement over the next
best implementation. With all discussed optimisations combined, the LI re-computations
consume approximately 4% of the time needed for the later sorting step. We judge this an
acceptable amount of time to devote to preprocessing.

The drastic improvements from the initial LI re-computation scheme to the fully opti-
mised approach justifies the attention paid to this topic. These optimisations bolster the
viahility the LCO format for sparse N'Ts.

A.2 Sorting

Since all the sorting algorithms we tested for sparse NTs had to be adapted to an NT
setting, there were many non-trivial modifications. For this reason we supply additional
details on the implementations we used for testing. We also provide some details on their
amenability to parallel implementations, which was not explored in this thesis but will likely
be an important feature going forward. To this end, Table A.2 outlines the four algorithms
that were tested, all custom-adapted to sort an LI array and its accompanying data array.
It should be noted that other algorithms were tested as well, including mergesort, natural
mergesort, and a recent enhancement to patience sort [247], but while competitive, they

190

Table A.2: Sorting algorithms and their characteristics. Performance was tested on sorting
sparse NTs.

Algorithm Tyvpe Hyhbrid Adaptive In-Place
Introspec- Partially, if using
tive Comparison Yes insertion sort as Yes
Sort final step
No, but uses
Timsort Comparison Yes Yes minimal buffer
=ize
i . Partially, if using
LED Radix Yes, with . .
Integer o insertion sort as No
Sort modifications final step
MSD Radix | Yes, with].J“m“!hl’; iﬁ’;ﬁg Yes, depending on
Sort modifications final step implementation

were outperformed by the algorithms outlined above. As such, their performance is not
included in this discussion.

Of the characteristics outlined in Table A.2, the most defining is whether a sort is
comparison-based or integer-based. The former category refers to general-purpose algo-
rithms able to sort a wide array of different objects, while the latter category refers to
algorithms designed specifically for sorting integers, or objects that can be mapped to in-
tegers. An algorithm is designated hybrid if it is an amalgamation of two or more sorting
routines. An algorithm is adaptive if it takes advantage of any pre-existing order, e.q.,
sorted subsequences, within the values being sorted. Finally, inplace refers to whether a
sorting algorithm uses additional memory or not.

A.2.1 Introspective Sort

Introspective [191] sort forms the core of the C++ Standard Library (CSL)’s std: : sort,
which is considered a gold standard of sorting algorithms [248]. As such, it is important
to test. Being a hybrid algorithm, introspective sorting combines quicksort and heap sort
together, with many implementations also using insertion sort as final step. In terms of
parallelism, introspective sorting’s initial quicksort step can be parallelised [249]; however,
heapsort is less obviously parallelizable. The implementation used for these tests is based on
code by Schwarz [250]. In addition, the implementation employs the insertion sort version
described by Sedgewick [251], which uses less reads and writes compared to Schwarz's

VEersion.

A.2.2 Timsort

Tim Peter’s timsort [192] is an adaptive algorithm that now acts as the Python language’s
sorting algorithm [252], making it an important comparison-based algorithm to consider.
In terms of parallelism, with some modifications, it is likely that the merging process can

191

operate in parallel, perhaps in tandem with data-parallel bitonic merge networks seen in
recent works [253,254]. To test timsort’s performance, a C++ version of the algorithm [255]
was modified to sort LI values and their accompanying data values.

A.2.3 LSD Radix Sort

The two previous algorithms are comparison-based sorts. Yet, as LI values are integers,
sorting algorithms, such as radix sort, tailored for such datatypes should also be considered.
HRadix sort can be implemented as either the least-significant digit (LSD) or most-significant
digit (MSD) variant. The former is considered a simpler version to implement with claims
of faster execution [193], and has seen recent attention by researchers in the field [254,
256). While not immediately obvious, LSD radix sort can be task-parallelised, but has
limited potential for data-parallelism [254]. The LSD implementation used for this work
departs from classic implementations in several ways. For one, in the context of sparse NT5s,
the maximum size of the Lls is the NT's dimensionality. Thus, the number of passes to
perform, i.e., the dimensionality divided by the radix size, is known a priori and is often
less than when naively using the LI's datatype size. Additionally, based on Sedgewick’s
suggestion [193], the most significant LSDs is skipped, allowing insertion sort, which is
memory-bandwidth friendly, to perform a final clean up. Finally, the implementation used
Satish et al’s software buffer enhancement [254] in order to decrease cache misses. Based
on performance tests, a radix size of 11 bits, corresponding to Herf’s suggestion [257], and

a software buffer size of 64 bits were chosen.

A.2.4 MSD Radix Sort

In contrast to LSD radix sort, the MSD variant operates by recursively grouping items to-
gether by their MSDs. This recursive nature means that MSD radix sort is more obviously
task-parallelised than the LSD variant. A commonly cited reason that practitioners opt for
LS5D radix sorting over its MSD cousin is the large breadth of the latter’s recursion tree, cf.
Sedgewick [193] and Wassenberg and Sanders [256]. This problem can be avoided by adapt-
ing the algorithm into a hybrid approach that switches to a comparison-sorting algorithm
whenever a sub-list’s size no longer justifies the recursion overhead. As well, unlike the LSD
variant, in-place versions of MSD exist with good algorithmic performance [194]. The imple-
mentation used for these experiments is based off of Duvanenko’s code [194]. However, the
implementation used here switches to the introspective sorting algorithm described above,
minus the insertion sort step, for sub-lists smaller than 3000. This significantly reduced
overhead and recursion depth, resulting in notable performance gains. An insertion sort
execution is then used to clean up the entire LCO data structure as a final step. A radix
size of 11 bits is used.

192

A.3 Abelian Operations

It is possible to just use one routine to execute sparse abelian operations, i.e., addition and
subtraction, for sparse NTs. However, efficiencies can be gained by considering the index
matching, lexicographical orders, and sort status of the two sparse NT operands. We details
these considerations in this section.

Like all NT arithmetic, abelian operations, such as addition and subtraction, are affected

by the matching of operand indices. For instance, in the following two expressions,

a(i,j,K)+b(i,j.k), (A.1)
a(i,j,K)+b(j,k,i), (A.2)

the elements of the two operands in (A.1) match up using the same index sequence. However,
in (A.2) elements are matched-up differently. For example, if a is indexed by {0,1,2}, then
the corresponding element in b would be located in {1,2,0}.

In the dense case, apart from memory contiguity issues, the different access patterns
pose little problem. However, in the sparse case non-zero entries must actually be rear-
ranged using a sort or permute to reflect different access patterns. Since LibN'T allows any
valid lexicographical order for its internal data representation, whether a rearrangement is
required is based solely on whether non-zeros of the operands are arranged properly rela-
tive to each other. This depends on both the expressed index matching and the internal
lexicographical orders.

For instance, take the expression in (A.1), and assume the non-zeros of both operands
are already sorted. Since the operands use the same index sequence, only their internal
lexicographical order affects whether one needs to be permuted prior to addition. Should
their lexicographical orders match they are synchronised and no rearrangement is required.
It is immaterial what actual internal lexicographical order is used. as long as they match.

On the other hand, the situation in (A.2) is more complicated, as both how indices
match-up and the internal lexicographical order determines whether a rearrangment is
needed or not. Thus, in (A.2) because each operand expresses a different index sequence,
matching internal lexicographical orders are actually not synchronised. A rearrangement
can be avoided only if each operand’s internal lexicographical order synchronises based on
the index matching.

Both of the cases considered so far assumed that the operands were already sorted. If
one or both of the operands are not sorted, then a sort will definitely be needed prior to per-
forming any abelian operations regardless of the operands’ choice of internal lexicographical
order. Consequently, whether a sort is required is based on the following three factors:

1. the sort status of operands,

2. the index matching, and

193

e b8 eas form
lexicographi lexicographi combined
precedence an precedence an

Perform
merge

Figure A.5: Flow chart of execution of sparse NT abelian operations.

3. the internal lexicographical order of operands.

The need or lack thereof of a rearrangement in turn affects how a merge is best executed.
Ideally, rearrangements should be avoided or minimised. The flowchart in Fig A.5 illustrates
the decision path taken by LibNT in performing abelian operations.

The sort status is the first factor considered by LibNT. If both operands are unsorted,
then rather than sort each operand individually followed by a merger of LCO arrays, it is
more efficient to simply concatenate both sets of LCO arrays together, sort them, and then
collect any duplicates using the abelian operation in question. If the internal lexicographical
order of one of the operands needs to changed, the operand with the least number of non-
zeros (NINZ) is altered. Figure A.6 illustrates the combined sort process corresponding to
addition with two simple sparse NTs. The figure illustrates non-destructive addition. For
the destructive case, i.e., +=, b’s LCO arrays are concatenated to a's instead of to a new
set of LCO arrays.

As Figure A.5 illustrates, when one or both operands are already sorted, the LCO arrays
of the operands are merged together. If ome of the operands is unsorted, it is permuted

194

aijk + bjki
2m2x2 2x2%2

Indices 5|4 (01| [3]|6|7|4|2
Data |2[8|6]-5] |-7|9[-1/3|5
Recompute a's indices
Indices [6]2(0|4| [3]|6|7|4|2
Data |2[8|6]-5] |-7|9[-1/3|5

Concatentate a and b
Indices (620436742
Data |2|8|6]-5]-7|9|-1|3|5
Sort
Indices [0[2]2|3|4]|4|6]|6|7
Data |6|8|5]-7]-5|3|2|9]-1

Merge Duplicates
Indices [0|2(3[4[6|7
Data |6 |13]-7|-2[11|-1

Figure A.6: Performing sparse non-destructive N'T' addition using a combined sort. Yellow
and cyan designate entries coming from a and b, respectively, while blue indicates entries
that have been added together. Internal lexicographical order of both operands is {0, 1, 2}
at the start. If neither operand is sorted. then the operand with the least NNZ has its
internal lexicographical order changed, if necessary. Here this corresponds to a. The LCO
arrays are then concatenated together and sorted. Duplicates are merged as a final cleanup.

195

aijk + by
2x2x2 2x2x2

a b
Indices |0|1]4]|5 213(4|6|7
Data [6]-5| 8|2 5-713|9 -1
Recompute a's indices
Indices |0|4|2]6 2031467
Data [6]-5| 8|2 5-713|9 -1
Sort a
Indices (02|46 2031467
Data |6|8|-5|2 5-7|3]9|-1
Result

Out-of-place Merge

Indices |0 (2|3 |4]|6|7
Data |6 |13-7|-2]11|-1

Figure A.7: Performing sparse non-destructive NT addition using a merger. Yellow and
cyan designate entries coming from a and b, respectively, while blue indicates entries that
have been added together. Internal lexicographical order of both operands is {0, 1,2} at the
start. Despite being sorted already, the different index sequences between the two operands
occasions a rearrangement of non-zeros. Since both operands are sorted, then the operand
with the least NNZ is permuted to synchronise lexicographical orders. Here this corresponds
to a. The two LCO arrays are then merged out-of-place.

to a synchronised lexicographical order. If both operands are sorted, but their internal
lexicographical orders do not synchronise, then the operand with the least NNZ is permuted.
After permutation, the LCO arrays are merged out-of-place and in-place for non-destructive
operations and destructive abelian operations, respectively. Figure A.7 depicts the merging

process for two simple sparse N'Ts.

A.4 Mixed Dense/Sparse Operations

Since dense and sparse data representations are so distinct, LibNT and NTToolbox must
must also decide on the data representation of the result of any arithmetic operation be-
tween two NTs. For NTToolbox, which uses a runtime resolution of data representation,
this process can be simply done by computing the fill factor and altering data representa-
tion based on the result. However, data representation rules for LibNT must be decided
statically, as whether NTs are dense or sparse is determined at compile-time.

Some choices are trivial. For instance, the product, sum, or difference between any two
dense tensors is also dense. If both operands are sparse, then the result will also be sparse
for these operations. On the other hand, the solution of a series of linear NT equations is
dense regardless of the makeup of the operands.

196

Table A.3: LibNT’s data representation rules for mixed dense/sparse NT products.

Multiplication Type Example Result Data
Representation
Lattice Cij = Qikby; Dense
Ciki = Qiggbyy;
No Lattice cij = azb; Sparse
Ciki = Qiebye;

DenzeNT <double ,3> al4,6,5);
SparzeNT <double ,3> b(5,5,7);
DenseNT <double ,3> dense_c;
SparseNT <double ,3> BpARTEE_C;
NTINDEX i; NTINDEX j;
NTINDEX k; NTINDEX 1;

S#valid assignment of dense product fto dense NT
dense_c(j,k,il=a(i 'k, 1)*b{('k,1,3);

S#also walid, but will convert dense product to sparse NT
sparse_c(j,k,i)=a{i,'k,1)*b{'k,1,3);

Figure A.8: Code example demonstrating how to override LibNT's data-representation
choices during an NT product.

When one operand is dense and the other sparse, the situation can become more com-
plex. For abelian operations, i.e., addition or subtraction, the result between a dense and
sparse N'T is always dense. However, for NT multiplication, the choice depends on whether
or not inner products come into play. As Section 4.2.4 explained, an NT product is only
mapped to a lattice product when an inner product needs to be executed. This also affects
the resulting data representation. For instance, a pure outer product between a dense and
sparse N'T will in general posses a sparse amount of non-zeros. The same holds if entrywise
products are also executed. However, an inner product between a dense and sparse N'T will
in general have a dense amount of non-zeros. As Table A.3 demonstrates, these rules of
thumb are encapsulated by LibNT.

Since datatypes must be specified statically in C4++, LibNT follows the rules of Ta-
ble A.3 by examining how indices between operands match up during compilation. If an
inner product is detected, a dense datatype is chosen for the product. Otherwise, a sparse
datatype is specified. These choices are made during compile time. Regardless of the choice
LibNT makes, the user is still able to override the choice. For example, both expressions on
Line 9 and 11 of Figure A.8 are legal. However, on Line 11 LibNT must convert the dense
product to a sparse N'T, meaning there are additional hidden computations that can only be
justified by examining runtime sparsity patterns. For this reason, if efficiency is paramount
it is on the onus of the user to decide whether or not to override the compile-time choices
of LibNT. The merits of such a choice can only be assessed based on the user’s knowledge

of the problem context.

197

Appendix B

Software and Testing

This appendix provide details on the compiler and test environments used for this thesis.

B.1 C4411 Features

LibNT relies heavily on the C4411 standard. For this reason, only a compiler with near
complete C4++11 support is able to build programs using LibNT. The following C4+411
features are used within the library:

& CONStexpr

s variadic templates
s move semantics

s rvalue references
* 3UTO

e decltype

e std::array

e std::function

¢ lambda functions

s smart pointers

B.2 Benchmark Details

All benchmarks were performed on a Windows workstation using an Intel dual-core E8400
CPU with 4Gb of memory. Benchmarks are compiled using Intel’s C+4 compiler with full
optimisation turned on. OpenMP fHlags were also turned on. The list of flags are provided
below:

195

¢ -[(restrict

¢ —(use-intel-optimised-headers
« 03

e Qipo

¢ —[opt-matmul

¢ —(JxHost
« (Ot
e —0i

o —(Jansi_alias
o —(std=c++11
¢ —(Jopenmp

As well, any benchmarks testing dense multiplication used Eigen’s optional support of the
Intel MKL. This was done to put the numeric tensor (NT) software on an even footing with
the MATLAB Tensor Toolbox (MTT), which relies on MATLAB’s optimised LAPACK
routines.

It should also be noted that many of the benchmarks were tested with all three of
MinGW, Microsoft, and Intel’s C4++ compilers. The choice of compiler did not affect any
of the conclusions drawn from performance tests.

199

	A Paradigm Examined
	Scientific Paradigms
	Kuhn's Thesis
	Third Pillar of Science

	History and Structure
	Algebra and Software
	Matrix-Vector Paradigm

	Anomaly Categories
	Special Linear Mappings
	Beyond Linear Mappings

	Summary

	A Growing Crowd
	Algebraic Characteristics
	N-degree
	Associative
	Commutative
	Entrywise
	Linearly Invertible
	Unification – NT Algebra

	Software Characteristics
	Comprehensiveness
	Sparse Support
	Programming Efficiency
	Computational Efficiency
	Unification – NT Software

	Exemplar Categories
	Special Linear Mappings
	Beyond Linear Mappings

	Summary

	Extending Einstein Notation
	Einstein Notation
	Extensions
	Multiplication
	Unary Operations
	Solution of Linear Equations
	Symbolic Differentiation
	Nonlinear Functions
	Vector and Matrix NTs

	Selected Exemplars
	Tensor Decomposition
	Parameter Estimation
	Separable Nonlinear Least Squares

	Summary

	A Dense Foundation
	NT Software Overview
	Design Principles
	Lattice Products
	Supporting NT Algebra

	Dense Algorithms
	Abelian Operations
	Dense Permutations
	Avoiding Index Calculations
	Special Products

	Dense Performance
	Small-Dimensionality Benchmarks
	Generalised Benchmarks

	Summary

	Exploiting Sparsity
	Data Representation
	Concepts
	Results

	Rearrangement Algorithms
	Sorting
	Permuting
	Lazy Approach

	Multiplication
	Poly-Algorithm
	Regular Sparsity
	Wide Times Tall
	Tall Times Wide
	Index Sparsity

	Comparative Performance
	Sparse Tensor Decomposition
	Hyper-Sparse Multiplication

	Summary

	Differential Operators
	Finite-Difference Operators
	Random Walker Image Segmentation
	Formulation
	Solution
	Extensions
	Results

	Depth-Map & Albedo Estimation
	Linearised Maximum Likelihood
	Nonlinear Maximum Likelihood

	Summary

	Toward a New Paradigm
	Contributions
	Synthesis
	Algebra
	Software
	Exemplars

	Future Work
	Algebra
	Software
	Exemplars

	Final Remarks
	Evidence of ``Crisis''
	Resolution of ``Crisis''

	References
	Appendices
	Details on Sparse Software
	Fast Linearised Index Calculations
	Sorting
	Introspective Sort
	Timsort
	LSD Radix Sort
	MSD Radix Sort

	Abelian Operations
	Mixed Dense/Sparse Operations

	Software and Testing
	C++11 Features
	Benchmark Details

