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Abstract

We introduce and study a k-producer problem which is an extension of

the monopolist’s problem in economic theory. This models a market with

several different monopolist’s producing complementary goods. We show that

the problem of finding an equilibrium in the k-producer problem can be trans-

formed into a system of k monopolist’s problems with effective preference

functions derived from the original preference function. We find sufficient con-

ditions on the preference function so that the effective preference functions

satisfy the generalized single crossing (GSC) property. Analytical and numer-

ical results are discussed for the uni-dimensional case, as well as the economic

properties of the model.
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Chapter 1

Introduction

Industries, such as rail road transportation and electricity production and dis-

tribution are often dominated by single producers, e.g. monopolists. A similar

setting can be found in government procurement and optimal taxation. It is

common that in such industries the prices set by the corresponding monopo-

list’s are non-linear. Non-linear pricing is often necessary for efficiency. This

is the case when the firm’s cost per unit of filling or shipping an order varies

with the size of the order. Also, non-linear pricing is used as a means of price

discrimination that enables a firm with monopoly power to increase its profits

by market segmentation where the company would cater towards the high end

customers. For example consider a product line of printers, that appeal to dif-

ferent customer segments because more expensive machines have higher rates

of output and lower marginal costs. This monopolist’s problem of pricing his

goods in an optimal way is known as a screening problem.

The monopolist’s pricing problem is as follows. He wants to sell goods

from a set Y to a set of X consumers and uses the preference b(x, y) that a

consumers of type x ∈ X has for good of type y ∈ Y , the density f(x) of
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the consumer types and the cost c(y) to set pricing schedules to maximize his

profits. The first such problems were formulated and handled by Mussa and

Rosen [12]. These models were uni-dimensional, meaning that the monopolist’s

product types y is one dimensional and the consumer’s type x has just one

characteristic. Non durable goods such as fuel can be modelled using a uni-

dimensional model.

The monopolist’s problem is well understood when X and Y are discrete

or uni-dimensional [12, 1]. However, uni-dimensional and discrete models do

not cover many situations of practical interest. In most cases, pricing of a

good depends on more than one characteristic. For example, if we consider a

producer of cars, the cars the monopolist produces may differ by qualities such

as fuel efficiency, safety, handling, eco-friendliness, etc. Also the consumer’s of

cars may vary according to their age, income, family size, commuting needs,

etc. Therefore, it is natural to study models where the respective dimensions

m and n of X and Y are greater than 1. This gives rise to multidimen-

sional screening problems. Some notable publications about multidimensional

screening are published by Wilson [17], Armstrong [2], Rochet and Chone [15]

and Basov [4].

There are three approaches to the screening problems : direct, dual and

Hamiltonian. A detailed review of these approaches can be found in [6]. All

three approaches work for the uni-dimensional case, but the direct approach

is hard to generalize for multidimensional problems. Rochet and Chone [15]

developed the dual approach for multidimensional screening problems. They

assumed that m = n and the preference b(x, y) of consumers is linear in type.

Basov [4] generalized the dual approach for the case when n > m retaining

the linearity assumption. Basov also presented the Hamiltonian approach for
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the above cases. In general no method is known for solving the case m > n.

Not much is known when the linearity assumption on b is dropped. Carlier [7]

showed there exists a solution to this problem for more general preference func-

tions. However, absence of convexity for general preference functions makes it

extremely difficult to characterize a solution for this problem.

We are interested in a situation where there are several monopolist’s in the

market who are producing complementary goods; these are goods whose use is

interrelated with the use of an associated product such that a demand for one

(tires, for example) generates demand for the other (gasoline, for example).

If the price of one good falls and people buy more of it, they will usually

buy more of the complementary good also, whether or not its price also falls.

When considering complimentary goods the consumer’s preference towards

each good is not independent of the other goods, instead it is coupled. Then

we can expect that the profit maximizing prices are affected by the prices of

the other goods. Then the pricing schedules implemented by all the firms

depend on the other product’s pricing schedules. For example, consider two

firms; one produces cars and the other issues insurance packages, and the

consumer is interested in either buying one product or a bundle of both. The

producers objective is to maximize his profit, which depends on the bundle

that each consumer chooses. Because of the fact that the goods are inter

related with each other, we can expect that the profit maximizing prices are

going to be affected by the prices of these associated goods. Therefore, the

pricing schedules implemented by all the firms depend on the other product’s

pricing schedules.

The above mentioned problem, which we will call the k-producer problem,

has not been widely studied. The main topic of interest here is an equilibrium
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pricing schedule and its properties. In this thesis we use the framework of the

monopolist problem to model the general k-producer problem and to derive an

explicit equilibrium for some special cases of the k-producer uni-dimensional

problem. The simplest form of this problem is the case where k = 2 (here k

is the number of producers). For example, consider two firms; one produces

cars (Y1) and the other issues insurance packages (Y2) and the consumer (X)

is interested in either buying one product or a bundle of both, so the con-

sumers’ preference function will be of the type b(x, y1, y2) and the respective

cost functions of the products will be c1(y1) and c2(y2). Now, we are con-

sidering a 2- product problem and the approach that we are proposing breaks

this problem into two coupled monopolist’s problems, with effective preference

functions b1(x, y1) and b2(x, y2). Then, the 2-product pricing problem comes

down to solving a system of two ordinary differential equations. The method

can be extended for solving the k-producer case. In this thesis, after devel-

oping the model, we first establish the required conditions for converting the

k-producer problem into k coupled monopolist’s problems in Proposition 3.A.1

and then Proposition 3.A.2 gives the conditions that our preference function

b(·) needs to follow in order for effective preference functions bi to satisfy the

GSC property. (The definition of GSC property is given in chapter 2. For

our problem to be tractable, our preference function is required to satisfy this

property.) We therefore reduce the problem of finding equilibria to the rel-

atively simple problem of k coupled monopolist’s problems. This approach

is further exploited in the uni- dimensional case, along with tools of optimal

control, to derive a system of ODEs governing the equilibria. We solve these

ODEs explicitly (either analytically or numerically) in some special cases.
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1.A Review of literature

In this section we will present a summary of the previous works done in this

field.

First, we will briefly introduce the Mussa and Rosen [12] model for a single

product (uni-dimensional continuous model) and then present the results of

their model.

Assume a monopolist who faces a continuum of consumers produces a good

of quality y ∈ Y . Larger values of y corresponds to a better quality product.

The cost of production is assumed to be given by a strictly increasing, convex,

twice differentiable function, c(·). Each consumer is interested in consuming

at most one unit of the good and has a utility u(x, y, p(y)). The consumers

also have an outside option of value u0(x). It is assumed that the consumer’s

utilities are quasi-linear with respect to p(y):

u(x, y, p(y)) = b(x, y)− p(y), (1.1)

where p(y) is the price for good of quality y. It’s assumed that the con-

sumer’s type x is distributed on an open, bounded convex set according to

a strictly positive, continuous density function f(.) : X → R+. Now, to

maximize her profits (Profit = p(y(x)) − c(y(x)) the monopolist selects a

continuous p to solve :
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max
p(·)

∫
X

[p(y(x))− c(y(x))]f(x) dx (1.2)

s.t. y(x) ∈ arg maxu(x, y, p(y)) (1.3)

max
x

u(x, y, p(y)) ≥ u0(x) (1.4)

It has been shown that for the above model that its better for the monop-

olist to discriminate against the low end customers and to focus more on the

high end customers. (Exclusion property)

Bunching (grouping consumers of different types and treating them identi-

cally) is required sometimes to satisfy the implementability conditions given by

1.3-1.4. However, in most problems bunching is not required if the distribution

of types is not too irregular.

Armstrong [2] extended uni-dimensional model proposed by Mussa and

Rosen to a multi-dimensional setting. He showed in the multi dimensional

model that in general, it’s optimal to exclude the low end customers from

the market. Armstrong also developed an approach (known as the direct

approach) to solve the problem for a class of cases where the implementability

conditions were ignored. This method involved following the procedure of the

single product case with the use of integration along rays from the origin. An

example of the direct approach can be found in [6].

Rochet and Chone [15] showed that the multi dimensional (m = n) mo-

nopolist’s problem for a linear preference function b(x, y) has a unique solution

for both the relaxed (Implementability condition is dropped) and the complete

case. They also showed bunching is robust in multi dimensional setting unlike
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in the single product case where bunching could be removed.

Basov [2001] generalized the Rochet and Chone approach for the case when

n ≥ m retaining the linearity assumption of utilities.

Most of the research in the multi dimensional setting has been done with

the assumption that the preference function b(x, y) is linear in types. Carlier

[7] formulated the problem for more general set of preference functions, which

he defined as b − convex (the definition is given in chapter 3) functions. He

also showed there exist a solution for this problem.

b− convex functions generally form a compact but not necessarily convex

set. Figalli, Kim and McCann [10] found necessary and sufficient conditions for

this set of functions to be convex and make the profit maximization problem

faced by the monopolist’s into a convex program when n = m. They also

proved the uniqueness and the stability of the solution.

Pass [13] extended the Figalli, Kim and McCann results for the case n 6= m.

He showed the necessary condition for the set of b-convex functions to be

convex for general values of m and n. This condition is known as b-convexity of

Y (Product space). He then proved that when m > n b-convexity of Y implies

that the dimensions cannot differ in a meaningful way. The arguments of

Carlier, Figalli, Kim and McCann and Pass used tools from optimal transport

theory.

Champsaur and Rochet [8] paper studies a market where two firms compete

by offering intervals of qualities to the consumers. They made the assumption

that there is no bunching. Under that assumption they were able to show an

existence of an unique price equilibrium for the duopoly case.

Barelli, Basov, Bugarin and King [3] extended Armstrong’s (1996) result

on exclusion in multi-dimensional screening models. They made two impor-
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tant contributions in their paper. First they relaxed the strong assumptions

Armstrong imposed on preference and consumer types and showed that exclu-

sion is still generic in a less restrictive setting. They also managed to extend

the results beyond a monopolistic market in to an oligopoly setting.

Deneckere and Severinov studied a special case of the screening problem,

where m=2 and n=1 in their 2004 paper [9]. They managed to reduce the

multi-dimensional screening problem to a one-dimensional optimal control

problem, whose solution is governed by an ordinary differential equation. They

were able to explicitly solve an example of this problem type. The solution to

their problem showed that exclusion is not necessary.

The thesis is structured as follows:

In Chapter 2, we discuss the general mathematical background which is

needed later, including optimal control theory and multidimensional screening

and some of the previous models. In Chapter 3, we introduce the continuous

model and the derivation of the model. Here we will derive the multidimen-

sional problem also. In chapter 4, we will solve the problem for k = 2 for both

discrete and continuous cases. Chapter 5, will be a look at solving k-producer

case numerically. Chapter 6 is a discussion about the summary of results we

obtained and economic aspects of the model.

8



Chapter 2

Preliminaries

2.A Optimal Control Problem

Definition 2.A.1: State Variable

A state variable is one of the set of variables that are used to describe the

mathematical ”state” of a dynamical system. Intuitively, the state of a sys-

tem describes enough about the system to determine its future behaviour.

Definition 2.A.2: Control Variable

A variable qualifies as a control variable if, the variable is subject to the

optimizer’s choice and the variable will have an effect on the value of the

state variable of interest.

An optimal control problem is the generalization of a calculus of variations

problem. It can be used on a problem for which the classical calculus of

variations is not applicable. It is an important tool in solving continuous
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optimization problem of the form:

max
y(x),u(x)

T∫
0

L(y(x), u(x), x) dx

s.t. y′i(x) = fi(y(x), u(x), x), i = 1, ..., n

u(x) ∈ U

where L : Rn × Rm × R → R , fi : Rn × Rm × R → R and y′i(x) de-

notes the derivative of the function yi(x). In the above problem y(x) =

(y1(x), ..., yn(x)) ∈ Rn and u(x) = (u1(x), ..., um(x)) ∈ Rm represent the state

and control variables respectively, and x ∈ [0,∞) and U is a given set in

Rm. Assume that L, fi,
∂L

∂yj
and

∂fi
∂yj

are continuous with respect to all their

arguments for all i = 1, ..., n and j = 1, ..., n. The following theorem gives

necessary optimality conditions for the optimal control problem.

Theorem 2.A.1: Pontryagin’s Maximum Principle ([14])

Let (y∗(x), u∗(x)) be optimal for the problem. There exist absolute continu-

ous functions λ(x) = (λ1(x), ..., λn(x)), 0 ≤ x ≤ T , such that

• for all u ∈ U

H(y∗(x), u, λ(x), x) ≤ H(y∗(x), u∗(x), λ(x), x)

where the Hamiltonian function H is defined as

H(y, u, λ, x) = L(y, u, x) +
n∑

i=1

λifi(y, u, x).
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• except at the points of discontinuity of u∗,

∂H

∂yi
(x, y∗(x), u∗(x), λ(x)) = λ′i(x) i = 1, ..., n.

• transversality conditions are satisfied, i.e.,

λ(T ) = λ(0) = 0

Moreover if H is a concave function in x and u, then the above Pontryagin’s

Maximum Principle is also sufficient for optimality.

2.B Screening Problem

Screening is a contracting problem with hidden information (asymmetric in-

formation). The uninformed party (principal) offers a contract to the informed

party (agent). Some examples of screening problems are :

• Insurance

Insuree knows her risk, insurer does not and insurer offers several pack-

ages with different premiums and deductibles.

• Pricing

Buyer knows her valuation of the product, seller does not and seller offers

different qualities at different prices, or quantity discounts.

When there is asymmetric information in the market, screening can involve

incentives that encourage the better informed to self-select or self-reveal.
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2.C The Monopolist’s Screening Model

Consider a situation where a monopolist produces a good with n quality di-

mensions, which can be captured by a vector y = (y1, y2, ..., yn) ∈ Y ⊂ Rn.

For example if the monopolist produces cars, then y1 could be the maximal

speed, y2 the safety ratings, y3 the engine efficiency and so on. Furthermore,

assume that the consumers who are interested in consuming the monopolist’s

product have an unobservable type x = (x1, x2, ..., xn) ∈ X ⊂ Rm. The con-

sumer types x are differentiated by qualities such as x1, which could be the

income, x2 the age, x3 the social status and so on. It is assumed that each

consumer is interested in consuming at most one good the monopolist has to

offer.

By purchasing a good of quality y a consumer receives a utility of

u(x, y, p(y))

where p : Y → R denotes the price a consumer has to pay for the good,

note here that p(·) is the monopolist’s control mechanism and, in fact depends

only on x through y. The consumers also have an outside option of value

u0(x) which is also known as the reservation utility : utility that the consumer

obtains if he decides to opt out and pursue other opportunities. For example,

buyer of a car has the outside option of buying a non-luxury car and he will

only buy a luxury car only if the utility value of a luxury car is greater than the

outside option value. The consumers’ strive to maximize their utility. Denote

by y(x) ∈ arg max
x

(u(x, y, p(y))) the good that maximizes the consumer’s (of

type x) utility.
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We assume that the consumer’s type x is distributed according to an open,

bounded continuous density function f(.) : X → R+ and that u is a continuous

function, strictly increasing on both x and y and strictly decreasing in p.

Moreover, we assume that u(x, y, p) is twice continuously differentiable in y

and x and both u(x, y, .) and ∇u(x, y, .) are analytic.

Denote by c(y) : Y → R the amount the monopolist has to pay to produce

a good with quality characteristics y. The consumer has the option of not

buying a good; we represent this with a null good y0 ∈ Y , which is a good the

monopolist offers at cost (i.e. p(y0) = c(y0)).

Now, to maximize her profits the monopolist selects a continuous p to solve

max
p(·)

∫
X

[p(y(x))− c(y(x))]f(x) dx (2.1)

s.t. y(x) ∈ arg maxu(x, y, p(y)) (2.2)

max
y
u(x, y, p(y)) ≥ u0(x) (2.3)

Usually it is assumed that the consumer’s utilities are quasi-linear with

respect to p(y):

u(x, y, p(y)) = b(x, y)− p(y) (2.4)

Where b(x, y) is the preference function a consumer x has for good y. Then

u0(x) (utility of the null good) is:

u0(x) = b(x, y0)− c(y0)
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which is the utility consumer x derives from opting out of good y (recall

that p(y0) = c(y0)).

From now on this form of the consumer utility is assumed. We will also

assume for simplicity that m = n, although most of the results presented later

can be generalized to cases where n ≥ m.

The problem given by (2.1)-(2-3) is very difficult to work with, as y(x)

in the functional depends indirectly on the control p(y) and it is not clear

at this point that p(y) determines y(x) uniquely. Now to proceed with the

analysis of the model, we wish to change the variables in order to get rid of

the uncomfortable constraints. Therefore, we introduce the indirect utility

function, the consumer’s surplus S(x):

S(x) = max
y∈Y

(b(x, y)− p(y)) (2.5)

Thus, S(x)(≥ u0(x)) is the surplus of a consumer type x who chooses the

bundle y that maximizes his utility. Using this on some y that maximizes

consumer’s utility one can solve,

p(y(x)) = b(x, y(x))− S(x) (2.6)

It is shown in Carlier (2001) [7] that S is continuous, almost everywhere

differentiable and satisfies the envelope conditions:

∇S(x) = ∇xb(x, y(x))

The continuity of S implies that the optimal tariff will be continuous, proof

can be found in [7].
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Our reformulation will also require the following definitions.

Definition 2.C.1: An allocation y(·) : X → Y is called implementable if

there exists a continuous function p(·) : Y → R such that

y(x) ∈ arg max
x∈Rn

+

b(x, y)− p(y)

for any x ∈ X.

The question whether or not an allocation is implementable can be an-

swered with the Theorem 2.C.1 below, for which we need some definitions.

Definition 2.C.2: The function Sb(y) defined by

Sb(y) = max
x∈X

(b(x, y)− S(x))

is called the b-conjugate of S(x).

Definition 2.C.3: The function Sbb(x) defined by

Sbb(x) = max
y∈Y

(b(x, y)− Sb(y))

is called the b-bi conjugate of S(x).

Functions of the form given by Definition 2.C.3 are known as b-convex

functions.

Definition 2.C.4: b(x, y) is said to satisfy the generalized single-crossing

(GSC) property for all x ∈ X if,

∇xb(x, y1) = ∇xb(x, y2)⇒ y1 = y2
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Theorem 2.C.1: Assume b(x, y) is continuous in both arguments continuously

differentiable in x and satisfies GSC. An allocation y(x) and surplus S(x)

are implementable if and only if the following conditions hold.

• S(x) is continuous and a.e. differentiable.

• y(x) is upper hemicontinuous1 and the envelope condition holds a.e.

• S(x) = Sbb(x).

For the proof see [7]. We can now reformulate the original problem given

by (2.1)-(2.3) (with quasi-linear utilities) using S rather than p.

The profit of the monopolist is :

p(y(x))− c(y(x)) (2.7)

for an allocation y(x) which maximizes utility of consumers of type x. Then

using surplus function S(x) given by (2.5) and (2.6) we can rewrite (2.7) as:

b(x, y)− S(x)− c(y(x)) (2.8)

Now we can rewrite (2.1) as:

max
y

∫
X

[(b(x, y)− S(x)− c(y(x)))]f(x) dx (2.9)

and by noting that the implementability condition (given by (2.2)) of y(x)

can be replaced by an envelope condition of S(x) and the condition three of

1A correspondence f : X ⇒ Y is upper hemicontinuous if it has a closed graph and the
image of f is compact.
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Theorem 2.C.1. Furthermore, a function S0(x) can be defined by S0(x) =

b0(x, y
0)− p0(y0(x))2 where b0− p0 represents the utility of the outside option

to the consumer and thus the multidimensional screening problem takes the

form:

max
y(·)

∫
X

[(b(x, y(x))− S(x)− c(y(x)))]f(x) dx (2.10)

s.t.∇S(x) = ∇xb(x, y(x)) (2.11)

S(x) = Sbb(x) (2.12)

S(x) ≥ S0(x) (2.13)

Here we are maximizing over the set of b-convex functions and y(x) is

uniquely determined by condition (2.11) in terms of S(x). Carlier [7] proved the

existence of at least one solution to the above problem. By dropping constraint

(2.12) in the complete problem, it boils down to a problem of calculus of

variations with inequality constraints and this is known as the relaxed problem.

The relaxed problem is an optimal control problem with a state variable S

and a vector of control variables x. Basov [6] proved that under certain quite

general assumptions the relaxed problem has a unique solution. The relaxed

version of the multidimensional screening problem was first introduced by

Wilson [17] and Armstrong [2].

The complete problem is very difficult to work with and to solve. A full

solution to the complete problem is known for the uni-dimensional case (i.e.

m = n = 1) [6]. Rochet and Chone [15] presented an approach (for linear

2p(y0)) represents the price of the outside option.
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b(x, y) = xy) when m = n > 1 and their approach was generalized for the case

n ≥ m by Basov [4]. In general no method is known for the case m > n.

2.D Solving the problem in 1-dimension (Hamil-

tonian Approach)

The Hamiltonian approach for the monopolist’s problem was first developed

by Basov for the special case considered by Rochet and Chone, i.e. the case

when the utilities are linear in types:

b(x, y) =< x, y >=
m∑
i=1

xiyi

Basov later generalized the approach to handle more general b() [5] . Inter-

preting the relaxed problem as a problem of control theory, we can define the

Hamiltonian for the problem given by (2.10),(2.11),(2.12) and (2.13).

H(S, y, x, λ) = (b(x, y)−S(x)−c(y))f(x)+ < λ,∇xb(x, y) > +η(S(x)−S0(x))

Now the first order optimality conditions for the relaxed problem can be stated

as,

Theorem 2.D.1: Suppose the surplus function S∗(·) solves the relaxed prob-

lem. Then there exists continuously differentiable vector function λ : X →

Rm and continuous function η : X → R+ and continuous a.e. differentiable

function S(·) such that S∗(x) = max(S(x), S0(x)) and the following first
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order conditions hold:

∇·λ = −∂H
∂S

a.e.onΩ (2.14)

< λ, b >= 0a.e.on∂Ω (2.15)

η ≥ 0, S(x) ≥ S0(x) (2.16)

η(S(x)− S0(x)) = 0 (2.17)

x ∈ arg maxH(S, y, x, λ) (2.18)

The first equation in the theorem governs the evolution of the co state vec-

tor. The next equation is a straightforward generalization of the transversal-

ity condition, the third and fourth equations are the complementary slackness

condition and the fifth equation is Pontryagin’s maximum principle.

We will end this chapter by presenting a solved example of the monop-

olist’s problem in the uni-dimensional case [6]. Assume that the consumer’s

preference is given by :

b(x, y) = xy

where x is distributed uniformly on (0, 1) and the monopolist’s cost is given

by :

c(y) =
y2

2

and the value of the outside option is zero (i.e. u0(x) = 0). Then the problem

is of the following form.
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max

1∫
0

xy(x)− S(x)− y2(x)

2
dx

s.t.S ′(x) = y(x)

S(0) = 0

S(x) is convex

Note that convexity is equivalent to y′(x) = S ′′(x) ≥ 0.

The Hamiltonian for the problem is :

H(S, y, x, λ) = xy − S(x)− y2

2
+ λy

The first order conditions are :

λ′(x) = −∂H
∂x

= 1 (2.19)

λ(1) = 0 (2.20)

∂H

∂y
= x− y + λ(x) = 0 (2.21)

and it can be shown using (2.19) and (2.20) that λ(x) = x− 1. Then y(x)

is given by

y(x) = 2x− 1

y(x) =


2x− 1 if x ≥ 1

2

0 if x ≤ 1

2

y(x) is increasing in x and therefore implementable. To find p(y) we will
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integrate the envelope condition S ′(x) = y.

S(x) =


x2 − x+ c if x ≥ 1

2

c− 1
4

if x ≤ 1

2

where constant c is found using S(0) = 0, which implies c = 1
4
. Therefore,

p(y(x)) = xy(x)− S(x) = x2 − 1

4

Using y(x) we can obtain price in terms of y.

p(y) =
1

4
(y2 + 2y)
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Chapter 3

The Model

We are interested in a situation where there are several monopolists in the

market who are producing complementary goods. A complementary good is a

good whose use is inter related with the use of an associated good such that a

demand for one (tires, for example) generates demand for the other (gasoline,

for example). In the model that we are considering each consumer’s preference

depends on the bundle of goods he assembles, one from each producer. The

consumer’s objective is to find the best bundle that maximizes his utility3 and

each producer’s objective is to maximize his profit depending on the bundle

that the consumer’s choose. Because of the fact that the goods are inter related

with each other, we can expect that the profit maximizing prices are going to

be affected by the prices of these associated goods. Then the pricing schedules

implemented by all the firms depend on the other product’s pricing schedules.

3If the consumer’s preference is given by b(x, y1, ..., yk) , where consumer types x ∈ X ⊆
Rn and product type yi ∈ Yi ⊆ Rmi . Also the prices for product i is given by pi(yi), then
the utility function u(x, y1, ..., yk, p1, ..., pk) is equal to :

u(x, y1, ..., yk, p1, ..., pk) = b(x, y1, ..., yk)−
k∑

i=1

pi(yi)
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For example, consider two firms, one producing cars and the other issuing

insurance packages. The consumer is interested in either buying one product

or a bundle of both. If the consumer decides to buy a high end car he will

look for an insurance package with more coverage and if he decides to buy a

low end car he might go for a low end insurance package, so the consumer’s

preference towards one good is affected by the associated good.

What we are interested in is to see whether the above mentioned problem

can be modelled in a similar way to the monopolist model. In this chapter we

will introduce our model for the k-producer problem. First we will look at the

general model for the multi-dimensional case.

3.A Multi-dimensional case

Suppose there are k - producers in the market where, the ith producer produces

a good with mi quality dimensions, which can be captured by a vector Yi ⊆

Rmi , and the consumer’s type x is distributed on X ⊆ Rn according to a

positive, continuous density function f(·). Now we will define some functions

that are required to set up the model.

The cost for producer i to produce good i is given by ci(yi), where ci : Yi →

R is a increasing and differentiable function.

Producer i has the ability to choose a pricing function pi : Yi → R for his

product. Here pi(yi) represents the price that the producer charges for the

good yi.

In our problem consumer’s are going to buy a bundle of the k goods that

are offered and we will define b : X × Y1 × · · · × Yk → R as the consumer’s

preference function. Here b(x, y1, y2, ..., yk) represents the preference that a
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consumer’s of type x has towards a bundle of goods (y1, y2, ..., yk) (or set of

allocations of the k goods).

The consumer’s objective is to find the bundle that maximizes his utility.

The utility of a consumer of type x is given by function u : X×Y1×· · ·×Yk →

R,

u(x, y1, y2, ..., yk, p1, ..., pk) = b(x, y1, y2, ..., yk)−
k∑

i=1

pi(yi)

That is, consumer’s choose to buy the bundle of goods (y1, y2, ..., yk) with

yi(x) ∈ arg maxu(x, y1, y2, ..., yk, p1, ..., pk). Now each producer’s goal is to

maximize his profit according to the bundle that the consumer’s choose. We

will call Profiti the resulting profits for the ith producer when each of the

k producer’s have set their prices. Profiti depend on the set of (p1, ..., pk)

prices. We now introduce y0i , which is the null good for good of type yi. We

assume c(y0i ) = p(y0i ) = 0. This represents the consumers option not to buy a

good, and the monopolist’s obligation not to charge him if he does so.

The profit that the ith producer gains from customer type x is given by :

pi(yi(x))− ci(yi(x))

yi(x) ∈ arg maxu(x, y1, y2, ..., yk, p1, ..., pk)

Then, the total profit of the ith producer gains from all the customer types

x ∈ X is :

Profiti =

∫
X

[pi(yi(x))− Ci(yi(x))]f(x)dx (3.1)
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We can write k total profit functions of the form (3.1) for the k producers.

Then our problem boils down to finding the k set of pricing functions that

would maximize each producer’s total profit. This set of pricing functions are

an equilibrium in our model. An equilibrium in our model is a situation where

none of the producer’s has an incentive to change his prices. We now present

the definition of an equilibrium in the model in a formal way.

Definition 3.A.1: An equilibrium set of prices (p1, ..., pk) is such that, for all

i, pi → Profiti(p1, ..., pi−1, pi, pi+1, ..., pk) is maximized at pi = pi.

Therefore, it’s not beneficial for any producer to move away from the equi-

librium prices.

Next, we will define the surplus function which we are going to use in

Proposition 3.A.1.

Definition 3.A.2: The function S(x) is defined by,

S(x) = max
y1,...,yk

{b(x, y1, y2, ..., yk)−
k∑

i=1

pi(yi)}

is called the surplus function.

The consumers also has the choice of opting out of buying any one of

the goods yi in the bundle. We will represent the opt out option using

S0(x; p1, ..., pk) which is defined as follows :

S0(x; p1, ..., pk) = max
y1,...,yk

{b(x, y1, ..., y0i , ..., yk)−
∑
j 6=i

pj(yj)},

where y0i represents that the consumer decided to opt out of buying product

yi. S0 represents the best surplus consumer x can obtain without buying
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good of type yi.

The surplus value of consumer’s choice will be greater than the value of

the opt out surplus. i.e.

S(x) ≥ S0(x)

Proposition 3.A.1: Suppose the producer’s j fix their prices pj(yj) for all j 6=

i. Then the ith monopolist’s problem of maximizing his profits is equivalent

to the classical monopolist problem with an effective preference :

vp1,p2,...,pk(x, yi) = max
y1,...,yi−1,yi+1,...,yk

{b(x, y1, y2..., yk)−
∑
j 6=i

pj(yj)}

Proof. We want to maximize the ith producers profit for the allocation set

(y1(x), y2(x), ..., yk(x)), which maximizes the consumers utility. Then our

problem is to maximize :

Profiti =

∫
X

[pi(yi(x))− ci(yi(x))]f(x)dx (3.2)

s.t. (y1(x), y2(x), ..., yk(x)) ∈ arg max
y1,y2,...,yk

{b(x, y1, y2..., yk)−
k∑

j=1

pj(yj)} (3.3)

for i = 1, 2, ..., k

subject to pi(y
0
i ) = 0, which is the opt out condition.

Instead of tackling problem given by (3.2)-(3.3), where we are considering

all k allocations, we can simplify it into k-monopolist problems by fixing the

prices pj(yj) for all j 6= i and by introducing vp1,p2,...,pk :
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vp1,p2,...,pk(x, yi) = max
y1,...,yi−1,yi+1,...,yk

{b(x, y1, y2..., yk)−
∑
j 6=i

pj(yj)}

The corresponding monopolist’s problem is :

Profiti =

∫
X

[pi(yi(x))− ci(yi(x))]f(x)dx (3.4)

s.t. yi(x) ∈ arg max
yi

{vp1,p2,...,pk(x, yi)− pi(yi)} (3.5)

The opt out condition is pi(y
0
i ) = 0, so it’s clear that the opt out condition

is the same for both problems.

Now the transformed problem given by (3.4)-(3.5) is of the form of the

classical problem. We can write k such problems for the k producers.

Note that the functions to be maximized (3.2) and (3.4) are the same for

both the classical model and the k-producer model. If we can show that the

constraints (3.3) and (3.5) are equivalent, then the reduction is possible.

First lets suppose (3.5) is true.

We need to find yj(x) for j 6= i that satisfies (3.3).

Choose yj(x), j 6= i. So that

vp1,p2,...,pk(x, yi(x)) = b(x, y1(x), y2(x)..., yk(x))−
∑
j 6=i

pj(yj(x))

By assumption yi(x) ∈ arg max
yi

{vp1,p2,...,pk(x, yi(x))− pi(yi(x))}. So,
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b(x, y1(x), y2(x)..., yk(x))−
∑

pj(yj(x)) = vp1,p2,...,pk(x, yi(x))− pi(yi(x))

and

vp1,p2,...,pk(x, yi(x))− pi(yi(x)) ≥ vp1,p2,...,pk(x, zi)− pi(zi)

for any zi. Note that,

vp1,p2,...,pk(x, zi)− pi(zi) ≥ b(x, z1, z2..., zk)−
∑

pj(zj) (∗)

for any zj, j 6= i. Therefore by (∗), we get that (3.5) implies (3.3).

Now suppose (3.3) is true. For an allocation {y1(x), y2(x)..., yk(x)} we will

show yi(x) ∈ arg max
yi

{vp1,p2,...,pk(x, yi)− pi(yi)}. We have,

b(x, y1(x), y2(x)..., yk(x))−
∑

pj(yj(x)) ≥ b(x, z1, z2..., zk)−
∑

pj(zj) (∗∗)

for all z1, z2..., zk. Then rewriting b(x, y1(x), y2(x)..., yk(x)) −
∑
pj(yj(x))

as vp1,p2,...,pk(x, yi(x))− pi(yi(x)) and using equation (∗∗), we get the following

equation maximizing (∗∗) over zj, j 6= i,

b(x, y1(x), y2(x)..., yk(x))−
∑
j 6=i

pj(yj(x))− pi(yi(x)) = vp1,p2,...,pk(x, yi(x))− pi(yi(x))

vp1,p2,...,pk(x, yi(x))− pi(yi(x)) ≥ vp1,p2,...,pk(x, zi(x))− pi(zi(x))

for all zi. This completes the proof.
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Now we can define effective surplus function using vp1,p2,...,pk .

Definition 3.A.3: The effective surplus function Sv(x) is defined by,

Sv(x) = max
yi
{vp1,p2,...,pk(x, yi)− pi(yi)}

where,

vp1,p2,...,pk(x, yi) = max
y1,...,yi−1,yi+1,...,yk

{b(x, y1, y2..., yk)−
∑
j 6=i

pj(yj)}

We are only going to consider special set of preference functions in our

model. Proposition 3.A.2 give the properties those functions need to have to

satisfy the GSC property. The GSC property is important because it uniquely

determines yi(x) in terms of S(x).

Proposition 3.A.2: Suppose X, Yi ⊆ Rn for i = 1, 2, ..., k, b : X × Y1 × · · · ×

Yk → R and b(x, y1, y2..., yk) = h(x+y1+y2+ · · ·+yk) , where h : Rn → R is

a smooth, strictly convex function. Then vp1,p2,...,pk(x, yi) = vp1,p2,...,pk(x+yi)

is strictly convex and satisfies the generalized single crossing property.

Proof.

vp1,p2,...,pk(x, yi) = max
y1,...,yi−1,yi+1,...,yk

{b(x, y1, y2..., yk)−
∑
j 6=i

pj(yj)} (3.6)

= max
y1,...,yi−1,yi+1,...,yk

{h(x+ y1 + y2 + · · ·+ yk)−
∑
j 6=i

pj(yj)}

(3.7)

= vp1,p2,...,pk(x+ yi) (3.8)

Because h(x+y1+y2+· · ·+yk) is strictly convex, it implies that vp1,p2,...,pk(x, yi) =
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vp1,p2,...,pk(x+yi) is also strictly convex, as a maximum of convex functions [16].

To show that vp1,p2,...,pk(x, yi) = vp1,p2,...,pk(x+yi) satisfies the GSC property

(Definition 2.C.4), we use the fact that a gradient of a convex function, z →

∇v(z) is one to one [16]. Now if we consider (x+ y∗) and (x+ y∗∗), we have

∇xvp1,p2,...,pk(x+ y∗) = ∇xvp1,p2,...,pk(x+ y∗∗)⇒ x+ y∗ = x+ y∗∗

Then we can simply cancel out the x to get the required result.

x+ y∗ = x+ y∗∗ ⇒ y∗ = y∗∗

Therefore vp1,p2,...,pk(x, yi) satisfies the GSC property.

Let’s consider a preference function b(·) of the form in Proposition 3.A.2.

Then the effective preference function satisfies the GSC property. The use of

an effective surplus function converts this problem into k identical monopolist

problems as stated in Proposition 3.A.1. Let us look at the problem in terms

of product i.

The profit function of product i is calculated as follows,

Profiti =

∫
X

[pi(yi(x))− ci(yi(x))]f(x)dx (3.9)

Now, using the definition of effective consumer surplus function we can

write an expression for pi(yi), for an allocation yi(·) which maximizes the

utility of consumer’s of type x as:
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pi(yi) = vp1,p2,...,pk(x, yi)− Sv(x) (3.10)

We can rewrite equation (3.9) using (3.10) as:

Profiti =

∫
X

[vp1,p2,...,pk(x, yi(x))− Sv(x)− Ci(yi(x))]f(x)dx

Similarly, we can get k such profit functions for the k producer’s.

We know that the effective preference function vp1,p2,...,pk(x, yi) satisfies the

GSC property, therefore we can use the theorem 2.C.1 to set the required

implementability conditions for the allocations. Then the general k-producer

model (KPM) takes the form :

Profiti =

∫
X

[vp1,p2,...,pk(x, yi)− Sv(x)− Ci(yi(x))]f(x)dx (3.11)

s.t. ∇Sv(x) = ∇xvp1,p2,...,pk(x, yi(x)) (3.12)

Sv(x) ≥ S0(x; p1, ...pk) (3.13)

where i = 1, ..., k. The results in Carlier [7] then ensures existence of an

optimal S for each fixed p1, ..., pk.

The equations of type (3.11) is much easier to analyse than (3.2) be-

cause (3.11) can become a convex problem under some assumptions for the

vp1,p2,...,pk(x, yi). The conditions that vp1,p2,...,pk(x, yi) need to satisfy for the

profit problem to be convex is given in Figalli, Kim and McCann (2011) [10].

If one could impose conditions on b() which ensure vp1,p2,...,pk satisfies the con-
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ditions given by [10], for any p1, ..., pk, one might hope to apply fixed point

theorems to deduce existence of an equilibrium. This seems difficult. The

analysis of the k−producer problem is very difficult for the multi-dimensional

case. It’s significantly easier in the 1-dimensional case and in the next section

we discuss the method to solve the k − producer problem in 1-dimension.

3.B 1-dimensional case

We present a proposition below that we will use to model the 1-dimensional

case. Take Yi, X = [0, 1].

Proposition 3.B.1: If,

∂2b
∂x ∂yi

> 0 for all i

∂2b
∂yi ∂yj

> 0 for all i 6= j

Then,

∂2vp1,p2,...,pk

∂x ∂yi
> 0 for all i

Proof.

vp1,p2,...,pk(x, yi) = max
y1,...,yi−1,yi+1,...,yk

{b(x, y1, y2..., yk)−
∑
j 6=i

pj(yj)} (3.14)

For j 6= i, choose yj(x, yi) ∈ arg max{b(x, y1, y2..., yk) −
∑

j 6=i pj(yj)}. Now,

taking the derivative of vp1,p2,...,pk w.r.t x and yi,

∂vp1,p2,...,pk(x, yi)

∂x
=
∂b(x, y1(x, yi), ..., yk(x, yi))

∂x
(3.15)
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by the well known envelope condition. Differentiating and using the chain rule,

we obtain,

∂2vp1,p2,...,pk(x, yi)

∂x ∂yi
=

∂2b

∂x ∂yi
+
∑
j 6=i

∂2b

∂x ∂yj

∂yj
∂yi

(3.16)

By assumption both ∂2b
∂x ∂yi

and ∂2b
∂yi ∂yj

are positive, so if we can show
∂yj
∂yi

is also

positive then our proof is complete. By maximality of the yj(x, yi),

∂b(x, y1(x, yi), ..., yk(x, yi))

∂yj
− ∂pj(yj(x, yi))

∂yj
= 0 (3.17)

Differentiating with respect to yi yields,

∂2b

∂yj ∂yi
+
∂2b

∂y2j

∂yj
∂yi
− ∂2pj
∂y2j

∂yj
∂yi

= 0⇒ ∂yj
∂yi

=
− ∂2b

∂yj ∂yi

∂2b
∂y2

j
− ∂2pj

∂y2
j

(3.18)

The denominator is negative because of maximality, therefore
∂yj
∂yi

is positive.

The condition ∂2b
∂x ∂yi

> 0 of Proposition 3.B.1 is the equivalent of the GSC

property in the 1-dimensional case and it’s also known as the Spence- Mirrlees

[11] condition.

If ∂2b
∂x ∂yi

> 0, then b(·) is supermodular and b(·) is supermodular if and only

if by increases in x. Using supermodularity we get the following equations for

x > x∗ :

by(x, y) ≥ by(x
∗, y)

b(x, y + ε)− b(x, y) ≥ b(x∗, y + ε)− b(x∗, y) (∗ ∗ ∗)

where ε > 0.
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From the equation (∗∗∗), it’s clear that a higher end consumer has a greater

preference for a high end good over a low end one than lower end consumer

does. Therefore, 1-dimensional Spence- Mirrlees condition implies that higher

end consumers are more likely to go for a high end good rather than a low end

good.

By similar reasoning the new condition ∂2b
∂yi ∂yj

> 0 that we propose in

Proposition 3.B.2 implies that if the consumer buys a one type of high end

good he is more likely to pair it with a high end complimentary good rather

than pairing it with a low end complimentary good. This seems quite natural

economically.

Now, we can present the 1-dimensional model as follows:

Profiti =

∫
X

[vp1,p2,...,pk − Sv(x)− ci(yi(x))]f(x)dx (3.19)

s.t. S ′v(x) =
∂vp1,p2,...,pk(x, yi)

∂x
, Sv(0) = 0 (3.20)

where i = 1, ..., k

We can apply the Hamiltonian approach introduced in setion 2.D of chapter

2 to solve (KPM).

The Hamiltonian for product 1 is :

H = [vp1,p2,...,pk(x, y1)− Sv(x)− c1(y1(x))]f(x) + λ(x)
∂vp1,p2,...,pk(x, y1)

∂x
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The first order conditions are,

λ′(x) = −∂H
∂x

= f(x) (3.21)

λ(1) = 0 (3.22)

∂H

∂y1
= [

∂vp1,p2,...,pk(x, y1)

∂y1
− c′1(y1(x))]f(x) + λ(x)

∂2vp1,p2,...,pk(x, y1)

∂x ∂y1
= 0

(3.23)

We can show that λ(x) = F (x)−1 by using (3.21) and(3.22). Here F (x) is

the cumulative distribution function of f(x). Using the first order conditions

with λ(x) we end up with the following equation :

[
∂vp1,p2,...,pk(x, y1)

∂y1
− c′1(y1(x))]f(x) + λ(x)

∂2vp1,p2,...,pk(x, y1)

∂x ∂y1
= 0 (3.24)

c′1(y1(x)) =
∂vp1,p2,...,pk(x, y1)

∂y1
− [

1− F (x)

f(x)
]
∂2vp1,p2,...,pk(x, y1)

∂x ∂y1
(3.25)

We can similarly get equations of type (3.25) for each producer. Solv-

ing those system of k partial differential equations on any interval where the

monotonicity constraints don’t bind, we can find an equilibrium of allocations

(y1(x) , y2(x),...,yk(x)) for the given model. Generally, its difficult to solve

this problem for general utility and cost functions. We present the steps for a

solution to a special case under certain assumptions. We will present it as a

proposition.

Proposition 3.B.2: Our assumptions are,

• The consumer types and product types are distributed according to density

function f(·).

• The preference function is of the form : b(x, y1, y2, ..., yk) = xy1 + xy2 +
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...+ xyk + y1y2 + y1y3 + ...+ y1yk + ...+ yk−1yk.

Then the equilibrium of allocations (y1(x) , y2(x),...,yk(x)) for the given

model satisfies the following system of k ODEs:

c′j(yj(x)) = x+
∑
i 6=j

yi(x) +
(F (x)− 1)

f(x)
[1 +

∑
i 6=j y

′
i(x)

1 + y′j(x)
] (3.26)

where i = 1, ..., k.

whenever the constraint yi(x) ≥ 0 is non binding.

Proof. The preference function is :

b(x, y1, y2, ..., yk) = xy1 + xy2 + ...+ xyk + y1y2 + y1y3 + ...+ y1yk + ...+ yk−1yk

Then the effective preference function satisfies the Spence - Mirrlees con-

dition [11] (Proposition 3.B.1). Now we can use the Hamiltonian approach to

solve (KPM).

The Hamiltonian for product 1 is:

H = [vp1,p2,...,pk(x, y1)− Sv(x)− c1(y1(x))]f(x) + λ(x)
∂vp1,p2,...,pk(x, y1)

∂x
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The first order conditions are,

∂λ

∂x
= −∂H

∂x
= f(x) (3.27)

λ(1) = 0 (3.28)

∂H

∂y1
= [

∂vp1,p2,...,pk(x, y1)

∂y1
− c′1(y1(x))]f(x) + λ(x)

∂2vp1,p2,...,pk(x, y1)

∂x ∂y1
= 0

(3.29)

Now, we show that all yi’s are functions of (x+ y1) type.

vp1,p2,...,pk(x, y1) = max
y2,...,yk

{b(x, y1, y2, ..., yk)−
∑
j 6=1

pj(yj)}

= max
y2,...,yk

{xy1 + xy2 + ...+ xyk + y1y2 + y1y3 + ...+ y1yk + ...+ yk−1yk −
∑
j 6=1

pj(yj)}

= xy1 + max
y2,...,yk

{xy2 + ...+ xyk + y1y2 + y1y3 + ...+ y1yk + ...+ yk−1yk −
∑
j 6=1

pj(yj)}

= xy1 + max
y2,...,yk

{y2(x+ y1 + y3 + ...+ yk) + · · ·+ yk−1(x+ y1 + yk) + yk(x+ y1)

−
∑
j 6=1

pj(yj)}

Note the function inside the max is a function only of x + y1. Therefore,

the maximizing yj(x, y1), for j ≥ 2, is also a function of x + y1. Therefore,

yj(x, y1) = yj(x+ y1).

Using the envelope condition on v, we can obtain the following derivative,

∂vp1,p2,...,pk

∂x
= y1 +

k∑
i=2

yi(x+ y1)
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Now differentiating with respect to y1 yields,

∂2vp1,p2,...,pk

∂x ∂y1
= 1 +

k∑
i=2

y′i(x+ y1)

and

∂vp1,p2,...,pk

∂y1
= x+

k∑
i=2

yi(x+ y1)

We can show that λ(x) = F (x) − 1 by using (3.27) and(3.28). Using the

first order conditions with λ(x) and above obtained derivatives, we end up

with the following equation :

(c′1(y1(x)))f(x) = [x+
k∑

i=2

yi(x+ y1)]f(x) + (F (x)− 1)[1 +
k∑

i=2

y′i(x+ y1)]

(3.30)

c′1(y1(x)) = x+
k∑

i=2

yi(x+ y1) +
(F (x)− 1)

f(x)
[1 +

k∑
i=2

y′i(x+ y1)]

(3.31)

Suppose equilibrium occurs at (y1(x) , y2(x),...,yk(x)). If the consumer x

chooses y1(x), then this implies that he will choose y2(x + y1(x)) and will be

y2(x+ y1(x)) = y2(x) at equilibrium.

y1(x) = y1(x) (3.32)

yi(x+ y1(x)) = yi(x) (3.33)

differentiating (3.33) we get,
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y′i(x+ y1(x)) =
y′i(x)

1 + y′1(x)
(3.34)

Using the equations (3.32)-(3.34) we can rewrite equation (3.31).

c′1(y1(x)) = x+
k∑

i=2

yi(x) +
(F (x)− 1)

f(x)
[1 +

∑k
i=2 y

′
i(x)

1 + y′1(x)
] (3.35)

Because of the symmetric nature of this problem we can similarly get an-

other (k-1) equations. In general,

c′j(yj(x)) = x+
∑
i 6=j

yi(x) +
(F (x)− 1)

f(x)
[1 +

∑
i 6=j y

′
i(x)

1 + y′j(x)
] (3.36)

where i = 1, ..., k.

If ci(yi) = c1(y1) for all i = 1, ..., k. Then we can assume yi(x) = y1(x) for

i = 2, ..., k. Also let f(x) = 1 on [0, 1]. Then,

c′1(y1(x)) = 2x− 1 + (k − 1)y1(x) + (x− 1)
(k − 1)y′1(x)

1 + y′1(x)
, (3.37)

so finding the k-product equilibrium boils down to solving a ordinary dif-

ferential equation of type (3.37). In general its difficult to find an analytic

solution when k > 2. In chapter 5 we present some numerical results obtained

using Runge-Kutta method for our proposed model.

39



Chapter 4

Analytical Results

4.A Discrete Case

In this section we are going to present the solution for the k=2 case under

certain assumptions.

Our assumptions are as follows,

• The consumer types are distributed uniformly.

• The consumers has only two choices either to buy the product i (rep-

resented by 1) or to refrain from buying the product i (represented by

0).

• The costs are fixed.

4.A.1 Setting up the problem

The consumer types x are distributed uniformly in [0, 1]. The product i’s

allocation type yi can take only two values 0 and 1 (i.e. yi ∈ {0, 1} ). The cost
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function of producer i is of the form, ci(yi) = Ci when yi = 1 and ci(yi) = 0

when yi = 0. Similarly we define the pricing function pi(yi) as pi(yi) = Pi

when yi = 1 and pi(yi) = 0 when yi = 0 , for i = 1, 2.

Here C1, C2, P1, P2 ∈ R+. We are going to consider a special case of the

consumers preference function of type,

b(x, y1, y2) = xy1 + xy2 + y1y2

Then, the utility function u(x, y1, y2) of the consumer is :

u(x, y1, y2) = xy1 + xy2 + y1y2 − p1(y1)− p2(y2)

Depending on the consumers choice, the surplus function S(x) consists of 4

distinct cases.

S(x) = max



2x+ 1− P1 − P2 if consumer buys both products.

x− P1 if consumer buys product 1.

x− P2 if consumer buys product 2.

0 if consumer buys neither.

The surplus of the consumer type x would be the maximum of these four

options.

The profit function of product i is given by the integral,

1∫
x

(pi(yi(x))− ci(yi(x)) dx where i = 1, 2.
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4.A.2 Finding equilibrium candidates

Now, that we have set-up the problem, the next step is to find candidates for

P1 and P2 that will give us an equilibrium. Suppose P2 − 1 ≤ P1 ≤ P2 + 1.

Then, the maximum surplus occurs when the consumer buys both products.

Therefore,

2x+ 1− P1 − P2 ≥ 0⇒ x ≥ P1 + P2 − 1

2

Profit of product 1 =

1∫
P1+P2−1

2

(P1 − C1) dx (4.1)

= (P1 − C1)(
3− P1 − P2

2
) (4.2)

Profit of product 2 =

1∫
P1+P2−1

2

(P2 − C2) dx (4.3)

= (P2 − C2)(
3− P1 − P2

2
) (4.4)

Now, to find the profit maximizing value of P1, we fix the value of P2 and

obtain the first derivative of equation (4.2) with respect to P1. Then, to find

the profit maximizing value of P2, we fix the value of P1 and obtain the first

derivative of equation (4.4) with respect to P2.

d

dP1

((P1 − C1)(
3− P1 − P2

2
)) = 0⇒ P1 =

C1 − P2 + 3

2
(4.5)
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d

dP2

((P2 − C2)(
3− P1 − P2

2
)) = 0⇒ P2 =

C2 − P1 + 3

2
(4.6)

Solving equations (4.5) and (4.6) we find our first set of candidates for an

equilibrium.

P1 =
2C1 − C2 + 3

3
(4.7)

P2 =
2C2 − C1 + 3

3
(4.8)

Now suppose P1 > P2 + 1. Then for values of x between P2 and P1 − 1

the maximum surplus occurs when consumer buys product 2 and for x values

greater than P1 − 1 the maximum surplus occurs when consumer buys both

products. Therefore,

Profit of product 1 =

1∫
P1−1

(P1 − C1) dx (4.9)

= (P1 − C1)(2− P1) (4.10)

Profit of product 2 =

1∫
P2

(P2 − C2) dx (4.11)

= (P2 − C2)(1− P2) (4.12)

To find the profit maximizing values of P1 and P2 we obtain the first deriva-

tive of equations (4.10) and (4.12) with respect to P1 and P2 respectively.
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d

dP1

((P1 − C1)(2− P1)) = 0⇒ P1 =
C1 + 2

2
(4.13)

d

dP2

((P2 − C2)(1− P2)) = 0⇒ P2 =
C2 + 1

2
(4.14)

Equations (4.13) and (4.14) give the second candidate for an equilibrium.

Now suppose P1 < P2 − 1. Then for values of x between P1 and P2 − 1

the maximum surplus occurs when consumer buys product 1 and for x values

greater than P2 − 1 the maximum surplus occurs when the consumer buys

both products. Therefore,

Profit of product 1 =

1∫
P1

(P1 − C1) dx (4.15)

= (P1 − C1)(1− P1) (4.16)

Profit of product 2 =

1∫
P2−1

(P2 − C2) dx (4.17)

= (P2 − C2)(2− P2) (4.18)

to find the profit maximizing values of P1 and P2 we obtain the first deriva-

tive of the equations (4.17) and (4.18) with respect to P1 and P2 respectively.
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d

dP1

((P1 − C1)(1− P1)) = 0⇒ P1 =
C1 + 1

2
(4.19)

d

dP2

((P2 − C2)(2− P2)) = 0⇒ P2 =
C2 + 2

2
(4.20)

The equations (4.19) and (4.20) gives the third candidate for an equilibrium.

The integrals (4.1) , (4.3) , (4.9) , (4.11) , (4.15) and (4.17) are defined when

0 ≤ P1, P2 ≤ 2 and 0 ≤ P1 + P2 ≤ 3

4.A.3 Verifying the equilibrium candidates

The final step is to check whether the candidates we found are actual equilib-

riums or not. First, let’s write the profit function of product 1 fixing the value

of P2 and the profit function of product 2 fixing the value of P1.

Profit1(P1, P2) =


(P1 − C1)(1− P1) if P1 ≤ P2 − 1

(P1 − C1)(
3− P1 − P2

2
) if P2 − 1 ≤ P1 ≤ P2 + 1

(P1 − C1)(2− P1) if P1 ≥ P2 + 1

Profit2(P1, P2) =


(P2 − C2)(2− P2) if P1 ≤ P2 − 1

(P2 − C2)(
3− P1 − P2

2
) if P2 − 1 ≤ P1 ≤ P2 + 1

(P2 − C2)(1− P2) if P1 ≥ P2 + 1

The profit maximizing P1 and P2 values for each case is given below.
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The P1 which maximizes Profit1(P1, P2) =


C1 + 1

2
if P1 ≤ P2 − 1

2C1 − C2 + 3

3
if P2 − 1 ≤ P1 ≤ P2 + 1

C1 + 2

2
if P1 ≥ P2 + 1

The P2 which maximizes Profit2(P1, P2) =


C2 + 2

2
if P1 ≤ P2 − 1

2C2 − C1 + 3

3
if P2 − 1 ≤ P1 ≤ P2 + 1

C2 + 1

2
if P1 ≥ P2 + 1

Now, for any candidate {P ∗1 , P ∗2 } to be an equilibrium, we need to check

whether P ∗1 is the maximizer for Profit1(P1, P
∗
2 ) and vice- versa.

First, we will check the equilibrium given by (4.7) and (4.8) i.e.

{2C1 − C2 + 3

3
,
2C2 − C1 + 3

3
}. Let’s fix the value of P2 as

2C2 − C1 + 3

3
.

Then or all 3 cases we can find a new inequality using the fix P2 value and

the maximizer values of P1 in the respective case.

P1 =
C1 + 1

2
and P1 ≤ P2 − 1⇒ 4C2 − 5C1 ≥ 3 (4.21)

P1 =
2C1 − C2 + 3

3
and P2 − 1 ≤ P1 ≤ P2 + 1⇒ −1 ≤ C1 − C2 ≤ 1 (4.22)

P1 =
C1 + 2

2
and P1 ≥ P2 + 1⇒ 4C2 − 5C1 ≤ −6 (4.23)

from the above three inequalities it’s clear that if (4.21) is true then (4.23) is

false and vice versa. We get the Corresponding P1 value of the equilibrium

candidate when (4.22) is true. Suppose inequality (4.22) is true then (4.21) is

true if C1 ≤ 1 and (4.23) is true if C1 ≥ 2. Therefore when −1 ≤ C1−C2 ≤ 1
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and 1 < C1 < 2 only (4.22) occurs and P1 =
2C1 − C2 + 3

3
.

Now fix the value of P1 as
2C1 − C2 + 3

3
. Then, for all 3 cases we can find

a new inequality using the fix P1 value and the maximizer values of P2 in the

respective case.

P2 =
C2 + 2

2
and P1 ≤ P2 − 1⇒ 4C1 − 5C2 ≤ −6 (4.24)

P2 =
2C2 − C1 + 3

3
and P2 − 1 ≤ P1 ≤ P2 + 1⇒ −1 ≤ C1 − C2 ≤ 1 (4.25)

P2 =
C1 + 1

2
and P1 ≥ P2 + 1⇒ 4C1 − 5C2 ≥ 3 (4.26)

from the above three inequalities it’s clear that if (4.24) is true then (4.26)

is false and vice versa. Suppose inequality (4.25) is true then (4.24) is true if

C2 ≥ 2 and (4.26) is true if C2 ≤ 1. Therefore when −1 ≤ C1 − C2 ≤ 1 and

1 < C2 < 2 only (4.24) occurs and P2 =
2C2 − C1 + 3

3
.

So under the conditions −1 ≤ C1 − C2 ≤ 1 and 1 < C1, C2 < 2, the

first candidate {2C1 − C2 + 3

3
,
2C2 − C1 + 3

3
} is in fact an equilibrium of the

problem.

To verify the second candidate given by (4.13) and (4.14), we fix the value of

P2 as
C2 + 1

2
and apply the same procedure. Then if,
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P1 =
C1 + 1

2
and P1 ≤ P2 − 1⇒ C1 − C2 ≤ −2 (4.27)

P1 =
2C1 − C2 + 3

3
and P2 − 1 ≤ P1 ≤ P2 + 1⇒ −9 ≤ 4C1 − 5C2 ≤ 3

(4.28)

P1 =
C1 + 2

2
and P1 ≥ P2 + 1⇒ C1 − C2 ≥ 1 (4.29)

It’s clear that cases given by (4.27) and (4.29) both will not be satisfied

simultaneously. It can be shown that when C1 − C2 ≥ 1 and C1 < 2 only

(4.29) is true and P1 =
C1 + 2

2
.

Now fix the value of P1 as
C1 + 2

2
. Then if

P2 =
C2 + 2

2
and P1 ≤ P2 − 1⇒ C1 − C2 ≤ −2 (4.30)

P2 =
2C2 − C1 + 3

3
and P2 − 1 ≤ P1 ≤ P2 + 1⇒ −6 ≤ 5C1 − 4C2 ≤ 6

(4.31)

P2 =
C2 + 1

2
and P1 ≥ P2 + 1⇒ C1 − C2 ≥ 1 (4.32)

It can be shown that when C1−C2 ≥ 1 and C1 > 2 only (4.32) is true and

48



P2 =
C2 + 1

2
. Then the second candidate {C1 + 2

2
,
C2 + 1

1
} is an equilibrium

if the following conditions C1 − C2 ≥ 1 , C1 < 2 and C1 > 2 are satisfied.

However, last two conditions presents a contradiction. Therefore second can-

didate is not an equilibrium. Similarly we can show that the third candidate

given by (4.19) and(4.20) is also not an equilibrium of the problem.

So when −1 ≤ C1 − C2 ≤ 1 and 1 < C1, C2 < 2 the first candidate

{2C1 − C2 + 3

3
,
2C2 − C1 + 3

3
} is an equilibrium of the problem. For other

values of C1, C2 we could not find an equilibrium.

We were able to show for this example that under the conditions −1 ≤ C1−

C2 ≤ 1 and 1 < C1, C2 < 2 the first candidate {2C1 − C2 + 3

3
,
2C2 − C1 + 3

3
}

is in fact an equilibrium of the problem.

4.B Continuous Case

In this section we present an example for the uni-dimensional k − producer

model for the k = 2 case under certain assumptions. The assumptions are as

follows,

• The consumer types (x) are distributed uniformly.(i.e. f(·) = 1 on [0, 1])

• The set Yi ∈ [0, 1]

• The cost functions of the products are of the form
y2i
2

.

• The preference function is of the form : b(x, y1, y2) = xy1 + xy2 + y1y2.
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4.B.1 Setting up the problem

The cost function of Product i is given by ci(yi) =
y2i
2

and pi(yi) is the

pricing function of Product i.

We are going to consider a special case of the consumers preference function

of type,

b(x, y1, y2) = xy1 + xy2 + y1y2

Let S(x) be the effective surplus function.

S(x) = max
y1

{v(x, y1)− p1(y1)}

where,

v(x, y1) = max
y2

{b(x, y1, y2)− p2(y2)}

= max
y2

{xy1 + xy2 + y1y2 − p2(y2)}

= xy1 + max
y2

{y2(x+ y1)− p2(y2)}

The use of effective surplus functions converts this problem into 2 identical

monopolist problems (by Proposition 3.A.1). First, let’s look at the problem

in terms of product 1.

The profit function of product 1 is calculated as follows,
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Profit of product 1 =

1∫
0

[p1(y1(x))− c1(y1(x))]dx

=

1∫
0

[v(x, y1(x))− S(x)− c1(y(x))]dx

s.t. S ′(x) = vx(x, y1(x)) , S(0) = 0

This problem is of the same type as Proposition 3.B.1, so we will use it to

get the following equations. Suppose an equilibrium occurs at {y1(x) , y2(x)}.

Then from Proposition 3.B.2,

y1(x) = 2x− 1 + y2(x) + (x− 1)
y′2(x)

1 + y′1(x)
(4.33)

y2(x) = 2x− 1 + y1(x) + (x− 1)
y′1(x)

1 + y′2(x)
(4.34)

4.B.2 Finding the equilibrium and pricing schemes

Now, to find {y1(x) , y2(x)} we use the ordinary differential equations given

by (4.33) and (4.34). Because of the symmetric nature of the problem we will

look for a solution the assumption y1(x)= y2(x). Then, both (4.33) and (4.34)

end up been the same equation as,

y1(x) = 2x− 1 + y1(x) + (x− 1)
y′1(x)

1 + y′1(x)

Then, by isolating y′1(x) we end up with the following ODE problem to solve.
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y′1(x) =
1− 2x

3x− 2
, y1(0) = 0 (4.35)

As the solution y′1(x) is negative on (0, 1
2
), the y′1(x) ≥ 0 constraint binds

here. Therefore, we set y1(x) as zero in the interval (0, 1
2
). Now, to find y1(x)

for x > 1
2

we solve the ODE (4.35) with the condition y1(0.5) = 0 , which

results in,

∫
dy1(x) =

∫
1− 2x

3x− 2
dx⇒ y1(x) = −1

9
ln(2− 3x)− 2x

3
+ c,

using the condition y1(0.5) = 0, we can determine the value of c.

c =
1

9
ln(0.5) +

1

3

Then y1(x) is of the form :

y1(x) =


0 if 0 ≤ x ≤ 1

2

−1

9
ln(2− 3x)− 2x

3
+

1

9
ln(0.5) +

1

3
if

1

2
< x < x̂

when x = x̂, y1(x̂) = 1. We can see from the graph below that x̂ is close to

0.66.
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Figure 4.1: Graph of y1(x) on the interval (0.5, 0.66)

Next we find S(x) using the following ODE and y1(x).

S ′(x) = y1(x) + y2(x) = 2y1(x), S(0.5) = 0 (4.36)

Then,

S(x) =


0 if 0 ≤ x ≤ 1

2

−2x2

3
+

8x

9
+

2

9
(x− 1) ln(2− 3x) +

4

27
ln(4− 6x)− 5

18
if

1

2
< x < x̂
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Figure 4.2: Graph of S(x) on the interval (0.5, 0.66)

Because of the symmetric nature of the problem we use p1(y1(x)) = p2(y2(x))

to find the pricing schemes.

p1(y1(x)) = p2(y2(x)) =
1

2
[y1(x)(2x+ y1(x))− S(x)] (4.37)

We can invert the monotone function y1(x) and substitute the inverse func-

tion for x in in (4.37) to find p1(y1). The pricing schemes obtained by (4.37)

is feasible in interval (0, x̂).
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Figure 4.3: Graph of p1(y(x)) on the interval (0.5, 0.66)

It’s clear from the solution that certain group of customer types (x ∈

(0, 0.5)) are excluded from the model. This economically means that the pro-

ducers are not serving the low end customers, instead are focusing on the high

end customers. This property seems to persist in general for any k. We will

discuss more about the exclusion property in Chapter 6.

Now we briefly consider a case where our cost functions are in linear form

instead of quadratic form. Let’s define c1(y1) and c1(y1) as :

c1(y1) = αy1

c2(y2) = βy2

The preference function is the same as the above considered example. Using

(3.36) we can write the following equations :
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α = 2x− 1 + y2(x) + (x− 1)
y′2(x)

1 + y′1(x)
(4.38)

β = 2x− 1 + y1(x) + (x− 1)
y′1(x)

1 + y′2(x)
(4.39)

If we assume α = β and using y1(x) = y2(x), we can rewrite the equations

(4.38) and (4.39) as a single equation.

α(1 + y′1(x)) = (2x− 1)(1 + y′1(x)) + y1(x)(1 + y′1(x)) + (x− 1)y′1(x) (4.40)

Simplifying (4.40) gives us :

(2x+ y1(x)− 1− α) + (3x+ y1(x)− 2− α)y′1(x) = 0 (4.41)

The figure 4.4 represents the numerical form of the solution to equation

(4.41) when α = 0.5.
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Figure 4.4: The graph of y1(x) on the interval (0.75, 1) for α = 0.5

The actual solution should be non decreasing in the interval [0, 1], and will

have the following form,

Figure 4.5: The actual graph of y1(x) on the interval (0.75, 1) for α = 0.5

Therefore, it’s possible to assume that we can extend our approach of the

k-producer model to include general cost functions.
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We end this chapter by considering an example with a different type of the

consumers’ preference function,

b(x, y1, y2) = xy1y2

.

The cost functions are in quadratic form. (i.e. ci(yi) =
y2
1

2
)

This preference function follows the Spence- Mirrlees condition, because

x, yi ∈ [0, 1].

Let S(x) be the effective surplus function.

S(x) = max
y1

{v(x, y1)− p1(y1)}

where,

v(x, y1) = max
y2

{b(x, y1, y2)− p2(y2)}

= max
y2

{xy1y2 − p2(y2)}

max
y2

{y2(xy1)− p2(y2)} (∗)

The use of an effective surplus function converts this problem into 2 identical

monopolist problems (by Proposition 3.A.1). The maximizing y2(x, y1) in (∗)

is a function of the product xy1. First, let’s look at the problem in terms of

product 1.

The profit function of product 1 is calculated as follows,
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Profit of product 1 =

1∫
0

[p1(y1(x))− c1(y1(x))]dx

=

1∫
0

[v(x, y1(x))− S(x)− c1(y(x))]dx

s.t. S ′(x) = vx(x, y1(x)) , S(0) = 0

This problem is again of same type as Proposition 3.B.1, so we will use

it to get the following equations. Suppose an equilibrium occurs at {y1(x) ,

y2(x)}. Then from Proposition 3.B.2, we get the following 1st order equations:

∂λ

∂x
= −∂H

∂x
= 1 (4.42)

λ(1) = 0 (4.43)

∂H

∂y1
= [

∂v(x, y1)

∂y1
− c′1(y1(x))]f(x) + λ(x)

∂2v(x, y1)

∂x ∂y1
= 0 (4.44)

now we will give out the calculations required to get the derivatives in

(4.44).

by the envelope condition,

∂v

∂x
= y1y2(xy1)

now differentiating with respect to y1 yields,

∂2v

∂x ∂y1
= y2(xy1) + y1

∂y2(xy1)

∂y1
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so at the equilibrium,

y1(x) = y1(x)

y2(xy1) = y2(x)

∂y2
∂y1

= y′2(xy1)(y1(x) + xy′1(x))

now we can obtain the required ODE similar to the first example to find

the solution.
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Chapter 5

Numerical Results

When k ≥ 3 it is very difficult to solve the ODEs from chapter 4 analytically, so

we need to use numerical methods in order to get an idea about the form of the

solution. In this chapter we present some numerical results of the k-producer

model using the Runge-Kutta method for the type of problems discussed in

Proposition 3.B.2.

Let’s consider an example when k=3. We will make the following assump-

tions,

• The consumer types are distributed uniformly on X = [0, 1]. (i.e f(·) = 1

on [0, 1] )

• The set Yi = [0, 1].

• The cost functions of the products are of the form
y2i
2

.

• The preference function is of the form : b(x, y1, y2, y3) = xy1 + xy2 +

xy3 + y1y2 + y1y3 + y2y3

This model is of the form of the Proposition 3.B.2. Suppose equilibrium
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occurs at (y1(x),y2(x),y3(x)). Then using Proposition 3.B.2 we end up with

the following equations :

yj(x) = 2x− 1 +
∑
i 6=j

yi(x) + (x− 1)

∑
i 6=j y

′
i(x)

1 + y′j(x)
(5.1)

where j = 1, 2, 3.

Assume yi(x) = y1(x) for i = 2, 3. Then,

y1(x) = 2x− 1 + 2y1(x) + (x− 1)
2y′1(x)

1 + y′1(x)
(5.2)

y′1(x) =
1− 2x− y1(x)

4x− 3 + y1(x)
, y1(0.5) = 0 (5.3)

So finding the 3-product equilibrium boils down to solving the ordinary

differential equation given by (5.3). The reason for setting y1(0.5) = 0 is the

same as we discussed in chapter 4. Now we present a graph of the numerical

solution of (5.3), using the Runge-Kutta method.

Figure 5.1: Graph of (y1(x)) on the interval (0.5, 1) for k = 3

From the graph it’s clear that our allocation is increasing upto 0.7 and
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y1(x) will be equal to 1 near 0.7 ( recall our products yi ∈ [0, 1] ). We want

our allocations to be increasing in the whole interval, so for values x ∈ (0.7, 1]

are set to be equal to the value y1(x) = 1. That would make our allocation

y1(x) increasing in the whole interval, which is what we require. Then the

graph would have the following form.

Figure 5.2: The actual graph of (y1(x)) on the interval (0.5, 1) for k = 3

Next, we look at what happens to y1(x) when we increase the number of

producers (k) in the market.

Figure 5.3: Graph of (y1(x)) on the interval (0.5, 1) for k = 100
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Figure 5.4: Graph of (y1(x)) on the interval (0.5, 1) for k = 10000

It’s clear from the above figures that as the number of producers increase,

the interval where y1(x) is strictly increasing becomes larger as well.

We will conclude this chapter by considering a case where the cost functions

are not identical to each other. Suppose k = 2 and the cost functions are,

c1(y1) =
y21
2

c2(y2) = y22

The preference function is same as the above considered example. Using

(3.36) we can write the following equations :

y1 = 2x− 1 + y2(x) + (x− 1)
y′2(x)

1 + y′1(x)
(5.4)
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2y2 = 2x− 1 + y1(x) + (x− 1)
y′1(x)

1 + y′2(x)
(5.5)

We can solve the ODE system given by (5.4) and (5.5) numerically using

matlab. The resulting solution has the following form :

Figure 5.5: The graph of (y1(x), y2(x)) on the interval (0.5, 1) for k = 2

We want both y1 and y2 to be non decreasing in [0, 1], so for x values greater

than 0.725 (approximate value) we set all y1 values to be equal to y1(0.725).

Now we can use the fact that y1(> 0.725) = constant and equations (5.4) and

(5.5) to find the actual form of the solution.

Then the solution would be of the following form,
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Figure 5.6: The actual solution form graph of (y1(x), y2(x)) on the interval

(0.5, 1) for k = 2
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Chapter 6

Discussion of Economic

Properties and Summary

In this chapter we discuss exclusion and partial exclusion properties of our

model and present an example showing these two properties. We conclude

this chapter by presenting a summary of the thesis.

6.A Exclusion in the model

Consider the model we proposed in Proposition 3.B.2 with any general type

of cost functions ci(·). Let f(·) = 1 on [0, 1]. Then using equation (3.36) we

get the following set of equations :

c′j(yj(x)) = 2x− 1 +
∑
i 6=j

yi(x) + (x− 1)

∑
i 6=j y

′
i(x)

1 + y′j(x)
(6.1)

where i = 1, ..., k.
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When x = 0 , yi(x) = 0 for i = 1, ..., k. Subbing in those values in equation

(6.1) results in :

∑
i 6=j y

′
i(0)

1 + y′j(0)
= −1− c′j(0) (6.2)

where i = 1, ..., k.

The allocations y′i(x)’s need to be increasing ( i.e. y′i(x) ≥ 0). Economically

it’s natural to assume ci(·)’s are increasing functions, in which case the right

hand side of (6.2) is always negative. Therefore the y′i(0)’s can’t all be positive

at the same time. We can see that for small x and all i we must have y′i(x) = 0,

so yi(x) = 0 on a small interval. Because of that we need to set :

yi(x) = 0 for x ∈ [0, a1], (6.3)

we can find the value of a1 by subbing (6.3) in equation (6.1). Then,

a1 =
1 + c′j(0)

2
(6.4)

where j = 1, ..., k.

The equation (6.4) presents us with k such candidates for a1, and the

minimum of those k candidates is the value of a1. For x > a1, some of the

y′i(x) can be positive.

Economically this means that it’s always optimal to exclude low end cus-

tomers from the model (i.e customer types(x) that fall under the range [0, a1]).

We saw from the example we presented at the end of chapter 2 that ex-
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clusion occurs in classical monopolist’s problem also. Exclusion seems to be

generic for higher dimensions, but depends on b in one dimensions (at least

for the classical problem).

Next we introduce a property that is unique to our model.

6.B Partial Exclusion

Suppose the a1 value comes from the rth producers equation. Then, for values

between [a1, a2] (for some a2 to be determined.), the rth producer follows the

following ODE :

c′r(yr(x)) = 2x− 1 (6.5)

yr(a1) = 0 (6.6)

Then, by solving 6.5-6.6 we can find yr(x). Then, to find a2 we solve the

following k − 1 ODE problems.

c′j(yj(a2)) = 2x− 1 + yr(x) + (x− 1)y′r(x) (6.7)

yj(a2) = 0 (6.8)

where j 6= r.

The equations (6.7)-(6.8) presents us with k− 1 such candidates for a, and

the minimum of those k candidates is the value of a2.

This implies that the customer types x that fall in [a1, a2] range will only
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buy product r. If we extend this method we expect that in general that

customer types x that fall in the next interval [a2, a3] will buy the rth product

and another one and so on.

Therefore, in our model certain customer types will buy certain types of

goods only. We call this phenomena partial exclusivity.

In the examples we solve, a positive fraction of consumers always buys the

highest possible quality bundle. The numerical results indicates that as k gets

large, this fraction gets smaller.

Next we will present an example that shows the partial exclusion phenom-

ena.

Suppose k = 3 and cost functions are as follows :

c1(y1) =
y21
2

c2(y2) =
y22
2

+
y2
2

c3(y3) =
y23
2

+
y3
3

Then,

c′1(y1) = y1

c′2(y2) = y2 +
1

2

c′3(y3) = y3 +
1

3

Now, using (6.4), we can find three candidates for the a1. Let ˆpro1, ˆpro2

and ˆpro3 be those values, that respectively coming from product 1, product 2

and product 3.
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ˆpro1 =
1 + c′1(0)

2
=

1

2

ˆpro2 =
1 + c′2(0)

2
=

3

4

ˆpro3 =
1 + c′3(0)

2
=

2

3

Then a1 = min{ ˆpro1, ˆpro2, ˆpro3} = 1
2
. Therefore for yi(x) = 0 for x ∈ [0, 0.5].

Then for some interval, [0.5, a2] customers will only buy product 1. Now we

can find an equation for y1(x) as given below.

y1(x) = 2x− 1 for x ∈ [0.5, a2]

y1(0.5) = 0

Next, we want to find the candidates for values of a2, which are found by

solving the following equations obtained using (6.1).

c′2(0) =
1

2
= 2a2 − 1 + y1(a2) + y′1(a2)(a2 − 1)⇒ 1

2
= 2a2 − 1 + 2a2 − 1 + 2(a2 − 1)

(6.9)

c′3(0) =
1

3
= 2a2 − 1 + y1(a2) + y′1(a2)(a2 − 1)⇒ 1

3
= 2a2 − 1 + 2a2 − 1 + 2(a2 − 1)

(6.10)

Solutions for (6.9) and (6.10) are 3
4

and 13
18

respectively. So a2 is the mini-

mum of those two values, which is 13
18

. This implies that for values of x ∈ [1
2
, 13
18

],

only product 1 is bought. For x > 13
18

, y′3(x) is positive implies that customers

who falls in an interval [13
18
, a3] will buy both product 1 and 3.
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To find value of a3, first we need to find expressions for y1(x) and y3(x) in

x ∈ [1
2
, 13
18

]. We do that by the solving following system of equations:

c′1(y1(x)) = y1(x) = 2x− 1 + y3(x) +
y′3(x)

1 + y′1(x)
(x− 1) (6.11)

c′3(y3(x)) = y3(x) +
1

3
= 2x− 1 + y1(x) +

y′1(x)

1 + y′3(x)
(x− 1) (6.12)

(6.11) and (6.12) are difficult to solve analytically. However, it’s clear that

by following this method we can clearly see the partial exclusion phenomena

in our model.

6.C Summary

In this thesis, we presented the k- producer model, a problem that has not

been widely studied. We were able to model the k-producer model using the

same framework as in the classical monopolist model. First we transformed

the k-producer model into a system of k monopolist problems. This trans-

formation was achieved using an effective preference function vp1,p2,...,pk which

is defined in Proposition 3.A.1. Then we were able to identify the properties

that the preference functions should have to satisfy the GSC property, which

are stated in Proposition 3.A.2.( The preference functions need to satisfy the

GSC property in order to have solution for our problem.)

Using those propositions we were able to form the general k-producer model

as given by (3.11)-(3.12). Even though we were able to model the problem in

a multi-dimensional setting, the analysis of the multi-dimensional model is

extremely difficult to carry out. The 1-dimensional case was more easier to
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handle and we were able to find the system of k ODEs (as stated in Proposition

3.B.2) which give us a set of equilibrium allocations (y1(x) , y2(x),...,yk(x)) .

Generally, for k > 2 it’s difficult to find an analytical solution for the k-

producer model even for the 1-dimensional case, as the system of ODEs is

highly non-linear. The exclusion property of the classical monopolist problem

is preserved in our model also. We were able to discover an interesting eco-

nomic phenomena in our model, which is the partial exclusion of the consumer

types in different ranges. This property is unique to our model.

The main contributions of this thesis were to identify the conditions on

b under which each monopolist’s maximization can be reduced to a classical

monopolist’s problem (which is at least reasonably tractable, as the the GSC

property is satisfied by the preference functions, even though the preference

functions vary depending on the other monopolist’s prices). Finding an equi-

librium is then equivalent to simultaneously solving these problems. In one

dimension, this result is further exploited to derive a system of ODEs governing

the equilibrium.

Our analysis was restricted to some special types of cost and preference

functions. The k-producer model for general cost and utility functions needs to

be further investigated. Also multi-dimensional k-producer model is a largely

open problem that could yield interesting results.
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