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ABSTRACT

The report describes an environment for performing experiments in
distributed processing. It replaces an earlier (1985) report, reflecting
changes in the system and terminology. Our system offers researchers an
easy way to design, implement, and test parallel algorithms. It provides
software tools which make possible a variety of connection structures
between processes. These process structures are said to form a "Network
Multiprocessor" (implemented on a local area network of VAX 11/780’s,
Sun workstations, dedicated MC68000 processor boards, and a MIPS
M/1000). We show how these tools have been used both to aid parallel
algorithm development and to explore different computer interconnection
methods.
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1. Introduction

Parallelism may be applied in several ways to increase the processing power avail-
able to the execution of a program. These approaches can be broadly categorized into two
groups: use of closely coupled or synchronized processors, and loosely coupled or distri-
buted systems. Closely coupled systems have traditionally been more popular since they
can be used to speed existing algorithms and programs. For example, powerful vector
processors are now well established and most contemporary systems use some degree of
pipelining.

One reason for limited progress in experimental computer science is the cost and
special purpose nature of the equipment. Specifically, in early distributed systems
researchers managed with a collection of connected processors, each with little or no I/O
capability, rudimentary operating system support and a small memory. On such systems
experiment management was often difficult and the lack of flexibility restricted experi-
ment design. With the widespread use of local area networks, experimenters have taken
advantage of existing computing facilities, have drawn on the services of a powerful
operating system (with such capabilities as virtual memory management) at each node,
and have designed their distributed algorithms in high-level programming languages.
Debugging and monitoring the execution of a distributed program can be improved by
using the services provided by the operating system, such as its drivers for various
display equipment and its file system. Naturally, all this places certain restrictions on the
experiment design and forces careful interpretation of the results, but often these restric-
tions are not serious and are offset by the advantages.

Another problem with parallel processing in general is the tradeoff between com-
munication speed and the complexity of the connection structure [BuH84]. Tree-
structured and hypercube topologies have been proposed to reduce the connections
between processors in distributed systems [Bro80]. The advantage of a tree structure is
that the number of links only increases logarithmically with the number of processors,
thus making possible the construction of systems with thousands of processors without a
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prohibitively expensive interconnection network [MRC84]. Another advantage of this
architecture is that many problems map naturally into a tree or cube structure. These
include NP-complete problems such as various combinatorial methods requiring exhaus-
tive search [LDAS82] and tree-searching algorithms [MaC82] [Lin83].

2. The Network Multiprocessor

This report describes an environment designed and built to do experiments in distri-
buted processing, using standard equipment and the services of a contemporary operating
system to reduce hardware and software costs and to simplify experiment management.
We call this environment a Network Multiprocessor (NMP). It is installed on a network
of VAX-11/780’s, Sun workstations, and a MIPS M/1000 machine. They each run a
4 .3BSD based version of the UNIX{ operating system [RiT74], see Figure 1. In addition,
the system includes ten dedicated Motorola 68000’s, without operating system support
for use when critical timing measurements must be made. Since these processors support
the activities of only one application process they are collectively referred to as the dedi-
cated processor machine (DPM). The only portion of the UNIX kernel that was ported to
these processors was the networking support. The dedicated machines possess no pro-
cess management and therefore serve only one application process per physical proces-
sor. However, since most of the UNIX run-time library is available, identical code can be
run both on the DPM and the UNIX based machines.

sunken seibert sputina  sunshine sundance  sundre

Sun-3 Sun-3 Sun-3 Sun-2 Sun-2 Sun-2|

e 10 Mbit ETHERNET >
C68000
M/1000 11/780 11/780 11/780
boards
manning cadomin cavell pembina DPM

Figure 1. Computing Facilities

The experimenter views the system as a collection of processing elements—each
with ample memory, disks and other I/O devices, and arbitrary communication paths with
other processing elements. In reality, an NMP is a collection of procedures callable from

1 Registered trademark of AT&T in the USA and other countries.
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ordinary user programs and a collection of node-servers, one on each physical machine.
These node-servers receive requests to create nodes of the NMP according to the descrip-
tion provided by the user. During development the whole NMP might reside on one phy-
sical processor before being distributed over the selected physical machines for produc-
tion use.

The interface to the NMP is a collection of user procedures, written in C [KeR78]
and callable from application programs. These procedures handle connection establish-
ment, connection initialization, exchange of messages, interrupt handling as well as pro-
viding information on the configuration and layout of the NMP being used.

2.1. Standard NMP Routines

The execution environment consists of a collection of virtual processors (UNIX
processes) whose interconnections (UNIX stream-socket connections over an Ethernet)
are created on initialization. To get started a node (process) initialization function must
be invoked, as follows:

neighbours = NodeInit(Type, ConfigFile)

NodeInit initializes the node by reading a ConfigFile and creating other nodes
(processes) as specified in that file. There are two types of node initializations, the first
Type=0 is used in the node that interacts with the user. All other nodes are of Type=1
and receive the interconnection information from their creator. The configuration file
consists of two parts. The first part is an ordered set of descriptor lines, one per node,
naming the host process, execution file name and so on, the second part is a connection
matrix, showing how the ordered nodes are connected. A node descriptor has the form

host name; bits; executable file name; sin; sout; serr;
where  host_name is the physical host on which the node is to run;
executable file name is the name of the binary for the node;

bits is an integer constant whose bits mean the following:

Bit #

0 if set, message tracing is on for this node
1 if set, remote debug is on for this node

2 if set, the node runs on the DPM

The three last fields contain the names of files to be opened as the node’s standard input,
standard output and standard error (full path name, or relative to the directory containing
the executable file).

The second part of the file is the connection specification. It is a triangular matrix
of 0’s and 1’s, where 1 represents a connection. The full rectangular matrix can be given
for clarity, but the top right half will be ignored, since the connections must be bi-
directional. For discussion of standard configuration file layout and an example, see
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Sections 2.2 and 3. NodeInit creates the remaining nodes from the interconnection
description received from it’s creator. Since the user defined communication paths are
used by NMP to "bootstrap" itself, any unconnected portions of the configuration will be
connected to the root automatically. Once all communication paths have been created,
control returns to the user’s application.

At each node, neighbours specifies the number of neighbouring (connected)
nodes. Each node in the NMP system 1is assigned an integer NodeId, which is actually
its position in the configuration file. The following functions provide a node with its
NodeId and information about the interconnections.

MyId = GetMyId()
nodes = GetNodes()
conn = IsConnected(NodeId)

GetNodes returns the number of nodes configured in the current NMP, and IsCon-
nected returns non-zero if the node given in NodeId is connected to the calling node.

Nodes may communicate with other connected nodes via the following functions:

len
len

SendNode (NodeId, Message, Length, Interrupt)
RecvNode (NodeId, Message, Length)

NodeId is the node id of the source or destination. The Message is the address of a
buffer containing the bytes to be sent, or a space into which to put the received message.
These functions return the number of bytes sent or received. Note that normally
RecvNode waits until all length bytes have arrived.

Facilities also exist for managing internode signals. These include routines to
enable and disable the reception of signals, hold and release signals and to specify the
signal handler, as follows:

SetHandler (Handler)
EnableInt()
DisableInt()
HoldInt ()
ReleaseInt ()

where Handler is the address of an interrupt handling procedure that is invoked when-
ever an interrupt message arrives.

Although interrupt driven message management can work well, there are always
cases when interrupts may be lost (e.g. occur nearly simultaneously) and so extended
waits for response may occur. One way to protect against such a problem is for one pro-
cess to poll another for pending messages. For this reason, two routines are provided to
check the status of messages from neighboring nodes:



PollAll (Nodes, Block)
PollNode (NodeId, Block)

The nodes that have outstanding messages are returned in the array of node id’s, Nodes.
Normally, these routines return O if no message is waiting to be received. Setting Block
to 1 instructs the routine to wait for the next message to arrive.

There are cases where one would like to change the size of the NMP after the appli-
cation has started. This could be useful for load-balancing, e.g. deleting a node on a
heavily loaded machine and recreating it on a machine with a lighter load. Also, if a
node fails for some reason, a new node can be created in it’s place thus increasing the
fault-tolerance of the whole system. The configuration of the NMP may be changed
dynamically by using the following:

AddNode (Host, FileName, Sin, Sout, Serr, Bits)
AddConnect (Type, NodeId)

where Host is the name of the physical machine on which the new child is to reside, and
FileName is the new node’s executable file. If file names are given with Sin, Sout,
and Serr, they will be opened as the new node’s standard I/O streams. AddConnect
creates a connection between two existing nodes. Note that only one connection may
exist between two nodes and therefore AddConnect cannot be used to provide an addi-
tional connection between nodes when one already exists. Further details on the standard
NMP routines are contained in NMP Applications Development [Bre89].

2.2. NMP Superstructures

To eliminate the tedium and risk of making mistakes in constructing standard
configuration files for applications where a more regular interconnection structure is
used, the NMP Tree and Cube routines are provided. Instead of NodeInit, the user may
call TreeInit or CubeInit, which read simplified configuration files, generate the
connection matrix, and transparently build a standard configuration file. They in turn
invoke NodeInit. Each of the initialization functions has corresponding communica-
tion, polling, interrupt, and utility primitives. Thus, although users can use the standard
routines directly to create virtual multi-processors with arbitrary interconnections, for
regular structures like those for Tree and Cube machines, a simplified form of the
configuration file can be used with the TreeInit and CubeInit primitives. Note that
the standard NMP primitives allow for other special case interconnection topologies to be
implemented if desired.

In early versions of the system, the NMP was called the Virtual Tree Machine
(VIM) [OIM85a] [OIM85b], because the first implementation was limited to tree struc-
tures. The original primitives have been re-written, but for compatibility the NMP Tree
configuration file (identical to the old VIM configuration file) consists of processor
description lines only, as follows:



-6 -

host name; #children; bits; file name; sin; sout; serr

The #children field specifies how many child processes are attached to the node.
These children are identified by the implicit "in order" nature of the entries in the Con-
figFile, as illustrated by Figure 4a. Note that the NMP Tree node ids are relative: the
parent is always O and children are numbered from 1.

Similarly, CubeInit simulates a hypercube processor environment [Sei85] and
manages without a connection matrix. Instead, the node descriptor lines are preceded by
a number that specifies the dimension of the cube desired. The Applications Develop-
ment Report gives more details on the NMP Cube and Tree superstructures, and examples
of their use [Bre89].

Arbitrary NMP NMP
Connection Tree Hyper-cube

Tree Hyper-cube
Support

Basic
Support Routines

Figure 2. Hierarchy of Network Multiprocessor Implementation

2.3. Implementation of Network Multiprocessors

The NMP environment is implemented using a set of standard NMP routines that
allow the creation of virtual multiprocessors with arbitrary interconnection structures, see
Figure 2. These standard routines are in turn built onto the UNIX networking primitives.
Those primitives allow processes to communicate with a variety of protocols and connec-
tion strategies [Sec86]. The current implementation of the support routines uses reliable
two-way communication channels (called stream-sockets). Stream-sockets are similar to
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UNIX pipes [RiT74], except that the communicating processes need not reside on the
same physical machine. There are two main aspects of the UNIX networking primitives
that make them a good basis for implementing a virtual processor system. First, the
UNIX inter-process communication model is internally consistent; communication
between processes is indistinguishable from communication between processors. That is,
the communicating processes use the same mechanisms, irrespective of whether they
both reside on the same processor or not. Secondly, the client/server model cleanly incor-
porates the node server so that it needs no special administrative consideration over other
servers on a particular machine.

3. Mapping of a Processor Tree

As an example, consider the creation of an NMP Tree to execute the configuration of
processes depicted in Figure 3.

Figure 3. Process Tree

First this configuration must be mapped onto the hardware. There are no restrictions on
the number of physical machines that must be available, but for clarity here we map the
nodes, one per physical machine:

R on sunshine
N, on cavell
N, on pembina
Ny, on sputina
N, on seibert
N, on sundre

That is, the root resides on a Sun-2 processor, called sunshine, the interior nodes are on
VAX-11/780 processors and the leaf nodes on Suns. The mapping between the virtual
machine and the physical hardware is described in the configuration file. To produce a
tree machine one can use a simplified form of the standard configuration file, one that
omits the connection matrix, as Figure 4a shows. Each line in the tree machine
configuration represents a node and contains seven fields separated by semicolons. The
first four fields are: the name of the physical machine on which the node is to run (the
host); the number of descendants of the node; an integer whose bits provide information
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to individual nodes (e.g. debug specifications); and the name of the file containing the
node’s executable code. In this example it is assumed that incompatible processors have
different home directories for the user. In a network filesystem with identical home
directories on incompatible processors (for example, a Sun workstation and a VAX), the
executable filenames would have to reflect the type of binary required for each processor
in the configuration. The last three fields of Figure 4a contain the names of files to be
opened as the node’s standard input, standard output, and standard error streams.

The following configuration file is used to map the virtual processor tree in Figure 3
to specific hardware. The indentation is not required, but helps readability by grouping
children with their parents.

sunshine;2;0
cavell;2;0; branch -pl;; outl; errl;
seibert;0;0; leaf -pll;; outll; errll;
sputina;0;0; leaf -pl2;; outl2; errl2;
pembina;1;0; branch -p2;; out2; err2;
sundre;0;0; leaf -p22;; out22; err22;

Figure 4a. Sample NMP Tree Configuration File

When the root process is invoked by the user on sunshine, it calls TreeInit to read the
above configuration file and translate it to the standard configuration file format as fol-
lows:

sunshine ; 0

cavell ; 0; branch -pl;; outl ; errl;
seibert ; 0; leaf -pll;; outll; errll;
sputina ; 0; leaf -pl2;; outl2; errl2;
pembina ; 0; branch -p2;; out2 ; err2;
sundre ; 0; leaf -p22;; out22; err22;
0

10

010

0100

10000

000010

Figure 4b. Standard Configuration File

The standard configuration is written to a temporary file. That file is read by NodeInit
(which is an embedded call in TreeInit) on sunshine, which then creates the specified
virtual machine and sends a service request to the node server on cavell. The server exe-
cutes the file branch (the third field in the configuration entry for the process on cavell),
gives it the execution parameters specified (here -p1l), and returns to listen for additional
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service requests. It is important to remember that branch represents the full path name
of the executable file, relative to the user’s home directory. The branch process on cavell
receives the configuration from sunshine and notes that it has two children. It therefore
transmits two requests, one to the server on seibert and another to the server on sputina.
Both nodes see that they have no children and so respond that they were successfully
started. The interior node on cavell then tells the root that all went well. The root now
knows that the left branch is complete and transmits a request to the node-server on pem-
bina to start up the right branch. Finally, TreeInit returns and the application is ready
to start work, since all communication paths have now been established.

Note that for some applications it is easier to use the same executable files for all
nodes in the NMP, although in this example they have been given different names for
clarity. The status of the node may be given by the user when the root is invoked, or may
inserted as parameters for children nodes in the configuration file. Examples showing
how to develop applications are given in a separate report [Bre89].

The NMP created is shown in Figure 5. With NMP and a typical distributed comput-
ing system of Unix based computers on a local area network, several different experi-
ments can be performed at the same time. The Ethernet serves as a shared communica-
tion path and processes from different applications may share the same processor.

sunken seibert sputina  sunshine sundance  sundre
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Communication paths

Node processes

Figure 5. Mapping of Processor Tree onto Selected Hardware Configuration

To illustrate the communication and connection establishment features provided in
the NMP environment, the following skeletal C-code segment from an arbitrary interior
node is presented in Figure 6. The process containing the code segment is invoked by the
node-server on its host machine. After invocation, TreeInit waits for the parent to
send the configuration of its tree branch. Once received, TreeInit transmits requests to
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start this node’s children (if any). When TreelInit returns, communication has been
established with the parent (from which the node receives its work via
TreeRecvParent) and its children (to which it sends some units of work via
TreeSendChild). When the interior node has finished its work, it receives the results
from its descendants (via TreeRecvChild) and finally transmits its results to the parent
(via TreeSendParent). The parameter NOINTS specifies that no interrupts are gen-
erated.

The code excerpt of Figure 6 is identical on all nodes in the NMP (except the root
where communication with the parent would be replaced with user interaction). Thus,
every call to TreeRecvParent has a corresponding TreeSendChild call in its parent
node, and every call to TreeSendParent corresponds to a TreeRecvChild call in its
parent.

# include <nmp/nmpdefs.h>
int i, n, fanout, length, len;
char *buf;

fanout = TreeInit(0); /* connection to ‘fanout’ children */
len = TreeRecvParent(buf, n); /* receive from parent */

for(i=1; i<=fanout; i++) {
TreeSendChild(i, buf, length, NOINTS); /* send to children */

for(i=1; i<=fanout; i++) {
TreeRecvChild(i, buf, length);/ * receive from children */

}
TreeSendParent (buf, length, NOINTS); /* reply to parent */

.

Figure 6. Sample communications code.

4. Communication Speed

Table 1 shows the effective communication times using the NMP primitives. These
results were obtained by measuring the average transit times for messages of varying
lengths. DPM/DPM represents two different processor boards (in the DPM) exchanging
messages (note that the old 4.2BSD networking was used for these results). Sun Local
means two processes on the same Sun machine exchanging messages (i.e. the messages
do not leave the machine but do go through the software layers down to the network
interface and then loopback up through the software layers to the other process).
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VAX/VAX are two independent VAX machines communicating and Sun/Sun two indepen-
dent Sun workstations. Also, Sun/MIPS represents a Sun 3 and an M/1000 communica-
tion, and Sun/VAX means a Sun communicating with a VAX. In addition, these results are
averaged over several trials to factor out any peculiar conditions on the network.

As expected, longer messages yield better effective speed, and the effective byte rate
increases linearly with message size up to the underlying packet size (1583 bytes). Note
the degradation in performance for the 2048 byte messages. These figures include all the
software cost of constructing the messages all the way down to packet transmission. Also
the cost includes decoding a network packet, reassembling the messages and delivering
the message to the application program.

Table 1. NMP Communication Timing

Effective speed in K-Bytes/sec

Sun 3/50 VAX 11/780 Mips M/1000 DPM

Length | Local Sun VAX | Local VAX | Local Sun DPM
4 1.35 0.76 0.60 047 0.33 3.78 1.38 0.8

8 2.80 1.54 1.30 0.97 0.65 8.06 2.89 1.5

16 5.59 3.16 243 1.90 1.30 16.06 5.56 2.8

32 1091 6.16 5.00 3.86 246 3247 10.82 5.7
64 22.25 11.64 9.58 7.51 4.64 61.06 21.05 10.5
128 40.37 2031 1626 13.84 842 | 113.27 37.69 16.7
256 70.86 3740 2844 2521 1436 | 194.96 62.27 | 249
512 114.36 88.02 53.69 5298 3121 | 285.65 13943 | 338
1024 27061 17440 97.85 9529 5044 | 37102 22141 37.8
2048 31997 173.15 9433 | 10401 5844 | 54784 25040 | 474

From Table 1 one can see that only a fraction of the underlying bandwidth of the
Ethernet is used. This means that the likelihood of saturating the network is low, even
when many virtual nodes communicate at the same time. For a typical message size of
32 bytes say, the NMP could accommodate many pairs of communicating nodes. Since
each pair only uses 0.2-0.4 percent of the Ethernet bandwidth about 200 such pairs could
use the network simultaneously without saturation. However, if needed, higher speed
communications could be achieved by simplifying the communication protocols, thus
reducing the software overhead and bringing the effective speed closer to the bandwidth
of the physical network.
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Figure 7. Timing for typical messages

Figure 7 shows a portion of the timing information in more detail. For short mes-
sages the fastest communications occur between two processes on the same Sun worksta-
tion. Note that DPM/DPM results represent the best from the 1985 report [OIM85a]. The
new results illustrate both the benefits of faster processors, MIPS M/1000 and Sun 3/50,
over the MC68000 and 68010 processor boards, and the better performance of the 4.3BSD
software over the earlier 4.2BSD primitives. Table 1 and Figure 7 show that the dominat-
ing cost of the communications is the CPU time spent in the protocol support, since on
these processors there is no competition for the CPU time. This also explains the poor
speed of the VAX to VAX communications. On the VAXen there was never more than
about 30% of the CPU time available to each communicating node, because of contention
from other users. The timing relationships between the processors changes for longer
messages. This is attributed to the different sizes of the message buffers. The page-size
is 2K bytes on the Suns and there the message buffers are allocated in increments of this
size. On the VAXen the message buffers are 1K and on the DPM boards the message
buffers are currently only 256 bytes. The dashed horizontal line represents effective
speed of 9600 bits/sec and is included for comparison.
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5. Debugging

Debugging parallel programs in a distributed environment is more difficult than
sequential programs running on a conventional machine. The primary source of this
added difficulty is the asynchronous sharing of information in the distributed environ-
ment. This sharing (via message passing) between processors with different clocks intro-
duces a time-dependence into the distributed program. The execution characteristics of
the program are no longer solely decided by its inputs, but are influenced unpredictably
by interactions between autonomous processors, the physical characteristics of the com-
munication medium and by the behavior of other programs sharing these resources. Bugs
manifest themselves sporadically and often are not reproducible. Programs can no longer
be instrumented to collect information on their execution environment, because this now
changes their timing characteristics and thus their behavior.

A typical development cycle of an application in the NMP environment involves
first designing and testing the code with the whole virtual machine residing on one physi-
cal processor. This eases the task of monitoring and keeping track of output from all
nodes, and eliminates most of the timing dependencies mentioned above since the com-
munication is now all driven by the same clock. The code may be instrumented for
debugging without changing its execution behavior. Once the program runs bug-free
under a single clock, it can be distributed over several physical processors. Any
anomalous behavior that is now detected must be caused by timing problems. This
change from a single clock to a truly distributed execution does not usually involve any
recompilation or relinking of the code, but simply a change to the configuration file
describing the mapping of the NMP.

Problems with timing must still be found and corrected, and for the reasons men-
tioned above, this must be done with minimal effect on the timing characteristics. One
way to do this is to dedicate a separate machine to the task of monitoring all processes.
This machine can be programmed to condense and abstract information from the other
processors in the system, and prepare it for human consumption. This is done by a
"monitor-server" residing on a machine with a graphical display. The user has complete
control over the information that is sent to the monitor as well as how this information is
interpreted and presented. In essence, users write their own monitors using the primitives
provided.

The root node interface may also serve as a monitor, although it may slow down
work that may be required of the root. An example of such an interface, designed to
monitor the execution of a multiprocessor chess program, is shown in Figure 8. In the
lower left corner, next to the clocks, the current configuration is displayed. The horizon-
tal bars to the right show work completed by the named nodes, with grey blocks
representing synchronization points between iterations of the progressive deepening
search. The numbers beside the bars measure how many nodes are searched by each pro-
cessor during the previous iteration. All processors are now in the midst of their 5th
iteration, but the display shows that sunnynook may now be doing less work than the oth-
ers. The rest of the display is then used by the application itself (here ParaBelle
[MaP85]). The use of such visual representation of the execution and communication
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characteristics of distributed programs provides a more intuitive understanding of the
behavior of parallel algorithms, an understanding that is difficult to obtain simply by
analyzing the results.

Chess Interface Tool

M@ move @ move @ undo

select pieces to move.

Hode: Side to move
lgame]
tournament hlack

—

manual
automatic
setup

O debug O record B clocks [ opponent time

File: bitmap

(Display] [ Tree )

Search Depth [5]

[ Hodes ) [Prin¥ar]) [ Game )

|_}sunsh1 ne Sunnynook
m sUnnynook msunwapta sunshine

sundog sunwapta
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5.1. Debugging Aids

One useful technique that has proven useful, is to design timing discrepancy toler-
ance into the algorithms. An example of this is a uniform message format. A node,
expecting a message of a particular type, may receive a message of an unexpected type
because of delays or other timing-related problems. If all messages are tagged, the
receiving node can determine what action to take on receiving the unexpected message.
An example is a message about a piece of work already completed. The parent say, has
not yet noticed that a child has completed its work and sends it some additional informa-
tion. The child is waiting for more work, and if the message is tagged it will simply be
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discarded as opposed to being interpreted as new work.

Polling is another method that should be considered, especially as an alternative to
interrupt-driven code. In the NMP environment polling is used to eliminate the danger of
deadlock because of a lost interrupt. On an interrupt polling must be used to determine
from which of the children (or the parent) the message originated, causing all communi-
cation paths to be polled and all outstanding messages to be read. This eliminates the
danger of deadlock should interrupts be lost when two or more messages arrive simul-
taneously. In some applications, polling can replace interrupts, because polling can be
made less expensive, since no state-change or context-switch is involved. However, one
must poll often enough to minimize communication delays, and yet not so often that
excessive time is spent on the polling function.

6. Applications

The facilities described in this report have been used primarily in experiments with
parallel tree-searching algorithms. One vehicle for these experiments are two chess pro-
grams, ParaBelle [MaP85] and ParaPhoenix [Sch86] [MOS85] [Sch89]. Also parallelisa-
tion of methods to solve the vertex cover problem [BMAS87], and studies of the over-
heads in the system [AMBS88], plus a dynamics of articulated bodies study [AMOS87].

speedup

Pprocessors

Figure 9. ParaBelle Speedup



-16 -

6.1. Case Studies

ParaBelle was used to explore the effect of using local and global memory to share
information about the subtrees seen by different processors. Such information sharing can
reduce the search times substantially. With distributed machines it is common for one
processor to have far more memory than the others, and so is used to hold shared infor-
mation. However, considerable processing time may be lost when several processors
must await access to global tables. Conversely, local tables may become overloaded dur-
ing a search, and so lose their effectiveness. The forerunner of our present NMP system
was used to explore the tradeoffs in local/global memory usage [MaP85]. ParaBelle itself
consisted of a processor tree of depth 1 and fanout f. Thus the trees were searched in a
special way, using the PVsplit algorithm [MaC82], with f processors. One of these pro-
cessors was called the master and had extra duties, such as allocating work to itself and
other processors, and polling them at convenient intervals for their results. Later, Para-
Belle was implemented on the NMP, and was used to explore the power of different pro-
cessor tree configurations (depth and fanout) to determine what control over the syn-
chronization losses may be possible by this means. The speedup achieved for this imple-
mentation of ParaBelle is shown in Figure 9. The tree configurations used to produce
these results for ParaBelle were run on a six processor DPM, except for the root process
which always ran on a UNIX based machine. Similarly, up to three UNIX based worksta-
tions were needed to generate the results for the 8 to 10 processor cases.

ParaPhoenix, on the other hand, was the first major NMP application. When
installed in 1984, it used the same search tree splitting algorithm and processor tree archi-
tecture as ParaBelle, but a separate process was named the master. Since the master only
managed the other processors it had ample time to measure their activity and effective
CPU speed. Thus ParaPhoenix was used to measure accurately the synchronization
losses in PVsplit, and to identify the serious nature of this overhead [MOS85]. Even so,
the master had little to do, so the NMP facility was used to allocate a tree-search process
to that machine. That project was followed with experiments involving the dynamic re-
allocation of processes [Sch86].

Other applications include a parallel implementation of the branch-and-bound algo-
rithm for the traveling salesman problem, which was used to investigate the tradeoff
between communication overhead and synchronization overhead. The NMP facilities
have also been used for teaching purposes, specifically in parallel processing and operat-
ing systems courses.

Our experiments attempt to measure experimentally some of the costs and over-
heads involved in distributed processing [AMBS88]. Theoretical investigations into paral-
lel algorithms rarely take into account the losses attributed to communications or syn-
chronization overhead. This is understandable, since they are difficult to formulate in the
theoretical model of the computation. It is therefore important to have access to facilities
to measure these and other poorly understood aspects of parallel algorithms, including
losses within the operating system software itself.
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7. Conclusions

With the proliferation of low-cost but powerful processing elements it becomes
increasingly important to address the question of how to best deploy many such proces-
sors in a single system. There is no one correct method of doing so. It is necessary to
evaluate different alternatives, and facilities must exist to experiment with different algo-
rithms and different programming techniques. Although it is easy to build distributed
systems hardware, it is difficult to program and use such a system. This difficulty is often
compounded in research systems by both the lack of operating system support for the
design and development phase, and the lack of run time support.

The facilities described here make it possible to develop and test distributed algo-
rithms under near normal conditions. As long as the results are interpreted correctly, net-
work multiprocessor architectures can provide valuable insight into the behavior of non-
existing, new, or unavailable real machines [MRC84]. Algorithms for execution on these
architectures can be developed, tested and debugged using this facility. While the pri-
mary purpose of the NMP architecture is to apply several processors to a single applica-
tion, it can also be used to model large multi-processor systems and study their processor
synchronization and communication delay properties.

Future plans for expanding this facility include providing more NMP interconnec-
tion paradigms, such as simple bus structures, and providing simpler and faster commun-
ication protocols, thus making the virtual environment competitive with tightly coupled
systems, while retaining all the advantages of operating system support procedures.
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Appendix I
NMP Installation Notes

The NMP consists of three libraries, a server, manual pages and documentation,
include files, and a set of test routines and demonstration programs. These are contained
in the top level directory and various sub-directories. The contents of the top level
directory are:

INSTALL - this file, it explains how to install the NMP software.
copyright - information about redistribution rights

demo/ - three example programs to illustrate the use of NMP: mandel-
brot graphics, the 7-Body problem (sunbody), and a distributed
prime number generator.

doc/ - documentation on NMP including an application manual and a
technical report which gives an overview of the system.

include/ - various constants and structures used in the compilations.
These are only needed for more sophisticated applications.

man/ - the manual pages for the NMP

src/ - the C source files for the basic NMP support.

src.cube/ - the C source files for the hypercube support.
src.tree/ - the C source files for the tree machine support.
test/ - a simple test program to test the basic NMP support.
test.cube/ - simple test for embedded ring in a hypercube.
test.tree/ -asimple test program to test the tree machine support.

Installing the NMP

Since the NMP is intended to be run on heterogeneous distributed processors, the
complete installation at a site can be tedious, although it is simple in principle. There are
two major components of the NMP—the "development platform" consisting of a library
and an include file, and the execution system consisting of a server. These two elements
are independent and need not both exist on any particular processor.

The development platform needs to be installed on those machines where
applications code will be developed or compiled. A development platform must exist for
each type of host in your NMP network.

The execution system must be installed on each host that will execute NMP
applications. The executables for the application code must of course also be installed on
each target host.
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Development Platform Installation

The steps in this section must be performed for each type of host in your NMP
network.

1) Load the Software. The first step is to copy the software sources onto the target
host. This can be done by whatever method is most convenient (tar(1), rcp(1), or
using NFS). To save space one only needs to copy over the src (100kB) and
include (16kB) directories and the Makefile (4kB), although having the
test (36kB) and demo (71kB) directories there would also be useful.

2) Compiling. Compile the libraries and servers by executing a
% make

in the top level directory. This will produce a file called libnmp.a (48kB) which
contains the subroutines that support NMP applications. It will also make the server
process (nmpserver) which is used in the execution system.

3) Distributing Libraries and Include Files. The library and include file must be
installed so they will be accessible by all NMP developers. Depending on local
circumstances you may have to copy the files to other file systems. The
Makefile is set up install the necessary files on the local host. Before doing a
"make install" one should check the definitions of ETC, LIBD, and INCD
to see that they are appropriate for your site. You may need special (root) privileges
to do this step, as the default paths require write permission in /usr/include
and /usr/local/{lib,etc}.

If you have to copy the development platform binaries to a different machine it is
best to be guided by a "make -n install" to see what steps are necessary.
There are only a few files so hand-to-hand combat is reasonable.

4) Debugging Support The makefile includes additional capabilities to produce a
profiling version of NMP and a debug version of the library, but these options are
not described here.

Execution Systems

The execution system consists of a server daemon which is used to start NMP user’s
application code. This daemon must be installed on each host that will be used for
executing NMP programs. In addition, the TCP port that the server and applications use
should be registered, and some method of starting the server must be made. Details of
how to do these various chores follows.

First one must install the server binary —nmpserver—in an appropriate place. This
server should have been compiled along with the libraries in the previous step. The top
level Makefile will copy it to /usr/local/etc/nmpserver by default when
one does a "make install". Remember that a separate compilation of nmpserver
will be needed for each different host architecture you have.
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The NMP port must be registered on all the machines you wish to have available for
NMP nodes. The line:

nmp 2000/tcp # Network Multiprocessor Package

goes into /etc/services on these machines. We use 2000 to identify the NMP
service, any user-defined service number can be used instead. If this number is changed,
also change the definition of NMP_ PORT in include/nmpdefs.h, and recompile
the package with a "'make’ from the base directory. This "wired in" definition is only
used when the system call getservbyname fails. If you are using the Yellow Pages
then only install the service on your YP server machines, and do a make in /etc/yp
to propagate it to the secondary YP servers.

The final step is to start the server and to have it restarted if the machine reboots.
The best mechanism for this is to register the server under inetd(8). There are minor
differences in how to do this depending on what kind of system you are on. If you are
using a 4.3BSD system with inetd then use

nmp stream tcp nowait root /usr/local/etc/nmpserver nmpserver
in the file /etc/inetd.conf. On the Suns (or other systems based on 4.2BSD), use:
nmp tcp /usr/local/etc/nmpserver

in the file /etc/servers. You will have to alter the sample lines to point to the
nmpserver if you did not install it in the default directory.

Note that the daemon will not be available until the system reboots or the daemon server
re-reads its configuration file. (The versions of inetd we have cannot expand the
daemon table on re-reading the configuration file.)

If you are not using a daemon server, then you will have to start it up in the system run
command file, /etc/rc.local or /etc/rc (Duplicate a daemon startup command
already in the file, and substitute the file /usr/local/etc/nmpserver). Here,
you will have to make the server with src/OldNmpServer.c instead of the usual
file. See the src README and Makefile. Alternatively the OldNmpServer can
be run manually in the background. This will limit the directory searches and execution
to the UID of the initiator, but may be useful for testing.

Documentation

The manual pages (in the ./man directory) should be installed in your local
manual section (ours is /usr/man/manl). Your local system administrator should be
consulted to determine where to put these. The NMP Application Development paper and
NMP—A Network Multi-Processor, TR88-22 should be installed with the local
documentation (perhaps /usr/doc/local).

Test Software

Now you are ready to run the test software in test, test.tree, and
test.cube. In each directory, the NMP configuration files will have to be modified to
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contain names of your local machines. The configuration files are those that contain a
few lines describing which machines and programs to use in the NMP. There are
example files called config supplied for reference. In addition, there is a "run"
command that will prompt the user for the topology and will generate a configuration file
for that topology and optionally run the test. Remember that the object code image you
specify has to be compiled on (or for) the architecture on which it is to be run. See the
README files in the test directories for more specific instructions. If you encounter any
difficulties, please see the NMP Application Development paper for more details on
compilation and configuration files.

In addition to these test programs there are three demonstration programs supplied
in the ./demo directory. Changing to that directory and doing a make will make all
the binaries for the current architecture. Appropriate changes will have to be made to the
config files before attempting to run the demonstrations. The prime number generation
program is an example application that is described in the NMP Application Development

paper.



