INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

UMI

NOTE TO USERS

This reproduction is the best copy available.

University of Alberta

PARALLEL FASTLSA: A PARALLEL ALGORITHM FOR PAIRWISE SEQUENCE ALIGNMENT

by

Adrian Radu Driga @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2002

vl

National Library Bibliotheque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, Waellington
Ottawa ON K1A ON4 Ollm:!:. ON K1A ON4
Canada Canada
Your Sl Votre rélérence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-69700-2

Canadi

University of Alberta

Library Release Form

Name of Author: Adrian Radu Driga
Title of Thesis: Parallel FastLSA: A Parallel Algorithm for Pairwise Sequence Alignment
Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

Apt. 201, 10745 - 83 Ave
Edmonton, Alberta
Canada, T6E 2E5

Date: bfc 21} 200'/

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Parallel FastLSA: A Parallel
Algorithm for Pairwise Sequence Alignment submitted by Adrian Radu Driga in
partial fulfillment of the requirements for the degree of Master of Science.

Abstract

We introduce a novel parallel algorithm for optimal pairwise sequence alignment, called Par-
allel FastLSA. Parallel FastLSA is the parallel version of an existing algorithm, FastLSA,
whose name is an abbreviation for Fast Linear Space Alignment. FastLSA finds an opti-
mal alignment for two biological sequences using linear space, and it is proven to be em-
pirically faster than two other frequently used alignment algorithms: Needleman-Wunsch
and Hirschberg. Parallel FastLSA is designed to further improve the time performance of
FastLSA, while still using only linear space.

We describe in detail the Parallel FastLSA algorithm and how the algorithm is imple-
mented. We also analyze the effectiveness of Parallel FastLSA and give detailed accounts
of its theoretical and empirical performance. Our experimental results show that Parallel
FastLSA exhibits good speedups, almost linear for 8 processors or less, and also that the
efficiency of Parallel FastLSA increases with the size of the sequences that are aligned.

Acknowledgements

Many thanks to

Paul Lu for being a great supervisor and for the help provided throughout my Master’s
program;

Jonathan Schaeffer and Duane Szafron for the insigthful discussions on sequence align-
ment and FastLSA;

MACI and the Research Support Group at CNS for making their facilities and exper-
tise available for my research;

Anne Nield for proof-reading this thesis;

University of Alberta and the Department of Computing Science for giving me the
opportunity to study under their banners.

Contents

1 Introduction

1.1 Notions of Biochemistry

1.L1.1 Proteins e e e e e e e

1.1.2 NucleicAcids e
1.2 Biological Sequence Alignment - Motivation
1.3 Aligning TwoSequences
1.4 Thesis Contributions L L o Lo
1.5 ConcludingRemarks o 0.

2 Related Work

2.1 The Needleman-Wunsch Algorithm
2.2 The Hirschberg Algorithm
2.3 The Fast Linear Space Alignment Algorithm
2.4 Other Pairwise Sequence Alignment Algorithms
2.5 ConcludingRemarks o oo,

3 Parallel FastLSA

3.1 Description of the Parallel FastLSA Algorithm
3.2 Implementation Details
3.2.1 Dynamic Distributionof Work
3.2.2 Static Distributionof Work o L.
3.3 Space and Time Complexity
3.3.1 FastLSA RecursionPattern
3.32 Space Complexity
3.33 TimeComplexity o i
34 ConcludingRemarks L 0oL

4 Experimental results for Pagrallel FastLSA
4.1 Experimental Methodology
4.2 General Observationso
4.3 Descriptionof Graph Types,

N W NN = e

oo

13
17
23

26
26
31
31
32
33
33

37
40

4.3.1 Subproblem Count Graph

4.3.2 Execution Time Graphs
433 SpeedupGraphs,
434 BarrierTimeGraphs.
44 XRCCI e e e e e e
4.5 Myosin e e e e e e e e e
46 TCR e e e e e e e

4.7 DBase Case Subproblems: Sequential Approach versus Parallel Approach

48 ConcludingRemarks,

5 Future Work and Conclusions

5.1 Future Work e e e e e
5.2 Conclusions L e e e e e e e e e

Bibliography

77
4
o

79

List of Tables

1.1 The Twenty Amino Acids Commonly Found in Proteins

4.1 The Parameters which Influence the FastLSA algorithms
4.2 Empirically Optimal k, Execution Times, and Speedups

...........

...........

...........

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6

4.3

4.4

4.5

4.6

4.7

4.8

Optimal Paths through the Full Matrix for ATAGTC and ATTAGGC 10
Pseudo-code for Needleman-Wunsch's Algorithm 12
Pseudo-code for the LastRow Algorithm 14
Pseudo-code for Hirschberg’s Algorithm 15
Pseudo-Code for FastLSA 18
Execution Stagesof FastLSA 20
Parallel Space-Saving Algorithm, 24
Pseudo-Code for Parallel FastLSA 27
Data Partitioning for Parallel Base Case Subproblems 28
Data Partitioning for Parallel Fill Cache Subproblems 29
FastLSA Grid Cache and Tile Cache for Parallel Fill Cache Subproblems . 30
Parallel FastLSA: Static Distributionof Work 32
The Three Phases of a Parallel Fill Cache Subproblem 38
Best Speedups for XRCC1, Myosin,and TCR 45

FastLSA Subproblem Count: Parallel FastLSA Alignment for Human XRCC1
versus Mouse XRCC! (Breakdown Based on the Type/Size of the FastLSA
Subproblems) e 50
Execution Time: Parallel FastLSA Alignment for Human XRCC1! versus
Mouse XRCC! (Breakdown Based on the Type of the FastLSA Subproblems) 52
Execution Time: Parallel FastLSA Alignment for Human XRCC! versus
Mouse XRCC! (Breakdown Based on the Size of the FastLSA Subproblems) 53
Speedup: Parallel FastLSA Alignment for Human XRCC! versus Mouse

XRCC1 (Breakdown Based on the Type of the FastLSA Subproblems) . . . 54
Speedup: Parallel FastLSA Alignment for Human XRCC! versus Mouse
XRCC1 (Breakdown Based on the Size of the FastLSA Subproblems) ... 355
Barrier Time: Parallel FastLSA Alignment for Human XRCC! versus Mouse
XRCC1 (Breakdown Based on the Type of the FastLSA Subproblems) . . . 56

Barrier Time: Parallel FastLSA Alignment for Human XRCC1 versus Mouse
XRCC1 (Breakdown Based on the Size of the FastLSA Subproblems) ... 57

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

FastLSA Subproblem Count: Parallel FastLSA Alignment for Human Myosin
versus Hamster Myosin (Breakdown Based on the Type/Size of the FastLSA
Subproblems) o
Execution Time: Parallel FastLSA Alignment for Human Myosin versus

Hamster Myosin (Breakdown Based on the Type of the FastLSA Subproblems) 60

Execution Time: Parallel FastLSA Alignment for Human Myosin versus
Hamster Myosin (Breakdown Based on the Size of the FastLSA Subprob-
lems) e e e
Speedup: Parallel FastLSA Alignment for Human Myosin versus Hamster
Myosin (Breakdown Based on the Type of the FastLSA Subproblems) . . .
Speedup: Parallel FastLSA Alignment for Human Myosin versus Hamster
Mpyosin (Breakdown Based on the Size of the FastLSA Subproblems)
Barrier Time: Parallel FastLSA Alignment for Human Myosin versus Ham-
ster Myosin (Breakdown Based on the Type of the FastLSA Subproblems) .
Barrier Time: Parallel FastLSA Alignment for Human Myosin versus Ham-
ster Myosin (Breakdown Based on the Size of the FastLSA Subproblems) .
FastLSA Subproblem Count: Parallel FastLSA Alignment for Human TCR
versus Mouse TCR (Breakdown Based on the Type/Size of the FastLSA
Subproblems)
Execution Time: Parallel FastLSA Alignment for Human TCR versus Mouse
TCR (Breakdown Based on the Type of the FastLSA Subproblems)

Execution Time: Parallel FastLSA Alignment for Human TCR versus Mouse
TCR (Breakdown Based on the Size of the FastLSA Subproblems)
Speedup: Parallel FastLSA Alignment for Human TCR versus Mouse TCR
(Breakdown Based on the Type of the FastLSA Subproblems)
Speedup: Parallel FastLSA Alignment for Human TCR versus Mouse TCR
(Breakdown Based on the Size of the FastLSA Subproblems)
Barrier Time: Parallel FastLSA Alignment for Human TCR versus Mouse
TCR (Breakdown Based on the Type of the FastLSA Subproblems)

Barrier Time: Parallel FastLSA Alignment for Human TCR versus Mouse
TCR (Breakdown Based on the Size of the FastLSA Subproblems)
Comparison of the overall speedups for the two versions of Parallel FastLSA

61

62

63

64

65

66

68

69

71

72

73
76

List of Symbols

m,n lengths of sequences
e k number of Grid Cache rows and columns

BM size of Base Case buffer

RM number of memory units available

P number of processors

u number of rows of tiles between consecutive Grid Cache rows

e v number of columns of tiles between consecutive Grid Cache columns

R total number of rows of tiles

C total number of columns of tiles

optimal (:;) an optimal alignment between the sequences z and y

+> the equivalence relation

List of Abbreviations

e BLAST Basic Local Alignment Search Tool

¢ bp base pair

e ccNUMA cache-coherent nonuniform memory access
e DCBDS Divide & Conquer Bidirectional Search

e DCFS Divide-and-Conquer Frontier Search

e DINA deoxyribonucleic acid

e d.p. matrix dynamic programming matrix

e FastLSA Fast Linear Sequence Alignment

e PSI-BLAST Position-Specific Iterated BLAST

e RNA ribonucleic acid

Chapter 1

Introduction

We introduce a novel parallel algorithm for optimal pairwise sequence alignment, called
Parallel FastLSA. This algorithm is the parallel version of an existing algorithm, FastLSA
[Charter et al., 2000], whose name is a contracted form for Fast Linear Space Alignment.
As its name suggests, FastLSA finds an optimal alignment for two biological sequences
using linear space, and it is proven to be empirically faster than two other frequently used
alignment algorithms: Needleman-Wunsch [Needleman and Wunsch, 1970] and Hirschberg
[Hirschberg, 1975]. Parallel FastLSA aims to further improve the time performance of
FastLSA, while still using linear space. Our experimental results show that Parallel FastLSA
exhibits good speedups. and its efficiency increases with the size of the sequences that are
aligned.

This chapter introduces the basic concepts of molecular biology that are required in
order to understand the biological background of the thesis. Because this is a thesis in
computing science, the description of the biological concepts is not detailed to the extent
that would be necessary in the field of molecular biology. Also, this introduction covers
neither the mechanisms of molecular genetics nor the techniques used for studying genomes.
A molecular biology textbook (e.g., [Campbell, 1999]) can provide a complete and insightful
picture concerning these subjects.

1.1 Notions of Biochemistry

Modern research has shown that all living organisms have a similar molecular chemistry.
The most important molecules involved in bio-chemistry are proteins and nucleic acids.
Proteins are responsible for the physical life of an organism through regulating its metabolism.
Nucleic acids encode the information necessary to produce proteins, and are also responsible
for passing this information to subsequent generations.

Research in molecular biology is mainly devoted to the study of the structure and
function of proteins and nucleic acids. The remainder of this section gives brief descriptions
of these important actors in the chemistry of life.

One-letter code Three-letter code Name
1 A Ala Alanine
2 C Cys Cysteine
3 D Asp Aspartic Acid
4 E Glu Glutamic Acid
3 F Phe Phenylalanine
6 G Gly Glycine
7 H His Histidine
8 I Dle Isoleucine
9 K Lys Lysine
10 L Leu Leucine
11 M Met Methionine
12 N Asn Aspargine
13 P Pro Proline
14 Q Gln Glutamine
15 R Arg Arginine
16 S Ser Serine
17 T Thr Threonine
18 \Y% Val Valine
19 w Trp Tryptophan
20 Y Tyr Tyrosine

Table 1.1: The Twenty Amino Acids Commonly Found in Proteins

1.1.1 Proteins

A protein is a macromolecule formed by chaining together simpler molecules called amino
acids. Table 1.1 lists the most common 20 amino acids found in proteins. The protein
molecules are represented as strings of letters over the twenty-letter alphabet created by
the amino-acid letters.

Proteins constitute the majority of the substance types present in living organisms.
For example, structural proteins are the building blocks of tissues, while enzymes act as
catalysts for biochemical reactions. Other proteins are used for the transport of oxygen, or
act as antibodies for the immune system.

To be precise, it should be mentioned that only residues of the original amino acids
are present in the molecular chain. For this reason, the length of a protein is measured
in residues rather than in amino acids, although often the latter term is used. Typical
proteins are 300-residues long [Setubal and Meidanis, 1997}, but there are proteins with as
few as 100 or as many as 5,000 residues.

1.1.2 Nucleic Acids

There are two different types of nucleic acids: deozyribonucleic acid (DNA) and ribonucleic
acid (RNA). Similar to the proteins, DNA molecules are formed by the chaining together
of simpler molecules. DNA, however, contains two such chains, referred to as strands. The
molecules that make up each strand are called nucleotides. A DNA nucleotide consists of

a deoxyribose, a phosphate residue, and a nitrogenated base. There are four types of DNA
nucleotides corresponding to four distinct bases: adenine (A), guanine (G), cytosine (C), and
thymine (T). Bases A and G belong to the group of purines, while C and T belong to the
group of pyrimidines. A single-stranded DNA sequence has a canonical direction, and its
length is measured in bases or nucleotides.

DNA molecules are much longer than the proteins. For example, the DNA molecules
can be millions of nucleotides long, while the proteins can be at most thousands of residues
long. It should also be noted that each amino acid is encoded by triplets of nucleotides of
DNA, and these triplets are called codons [Waterman, 1995].

The two strands of a DNA molecule are tied together in a helical structure. This is the
famous double helix structure discovered by James Watson and Francis Crick in 1953. The
structure holds because each base in one strand bonds to a base in the other strand. Pairs
are always formed between the bases A and T, and between G and C. These pairs are known
as Watson-Crick base pairs, and their bases are referred to as complementary bases. Most
often, base pairs (bp) are used as the unit of length for the DNA molecules.

RNA molecules are similar to the DNA molecules, with small differences in composition
and structure. In RNA, the sugar is ribose instead of deoxyribose, and uracil (U) bases
are present instead of thymine (T). Like thymine (T), uracil (U) binds with adenine (A).
The most significant difference is that RNA does not form a double helix, although hybrid
RNA-DNA helices are frequent. Also, parts of an RNA molecule may bind to other parts
of the same molecule through complementarity. In terms of functionality, while DNA is
used only for encoding information, there are multiple types of RNAs in a cell, performing
different expression functions.

Both types of nucleic acids, DNA and RNA, are represented as strings of letters over
the four-letter alphabet created by the letters corresponding to the nucleotides from which
they are made.

1.2 Biological Sequence Alignment — Motivation

Since the structure of DNA was uncovered in 1953, molecular biology research has advanced
tremendously. The techniques used in biological laboratories have improved considerably,
allowing a large amount of data to be generated. The size and complexity of the data make
their manipulation a challenging task. Some of the problems that appear in the process of
studying the collected data belong to the fields of mathematical and computing sciences.
For example, databases are used to store all the information that is generated. Complex
statistical knowledge is required for the efficient querying of these databases. Understanding
the molecular sequences requires algorithms and pattern recognition expertise. The need
for efficient solutions for these problems led to the emergence of a new scientific field:
computational molecular biology, also known as bioinformatics.

The topic of this thesis is “the most important primitive operation in computational

molecular biology” [Setubal and Meidanis, 1997]: sequence comparison. Informally stated,
sequence comparison gives the degree of similarity between two biomolecular sequences.
Comparison tests between two sequences are performed in a variety of situations, some
of which are listed below. Furthermore, sequence comparison serves as a basis for other
complex manipulations of the biological sequences (e.g., multiple sequence alignment).

The result of the sequence comparison operation applied to a pair of biological sequences
can be visualized as the alignment of the two sequences. The alignment is obtained by
putting one sequence above the other in order to emphasize the correspondence between
similar characters or substrings of the two sequences.

Setubal and Meidanis [Setubal and Meidanis, 1997] identify a list of problems that are
related to sequence comparison and appear frequently in computational biology research.
A summary of these problems follows:

1. Two sequences over the same alphabet are almost equal, except for a few isolated
insertions, deletions, and substitutions of characters. The average frequency of these
differences is very low; however, their exact positions must be found. This problem
occurs when a gene is sequenced by two different labs and the results are compared.

o

Two sequences over the same alphabet, with a few hundred characters each, are given.
The problem is to decide whether there is a prefix of one sequence that is similar to
a suffix of the other. If the answer is yes, the matching prefix and suffix must be
produced. This problem appears when small DNA fragments are assembled into a
longer sequence in the process of large-scale DNA sequencing. Often, this problem
must be applied pairwise to several hundred sequences, most of which are unrelated.

3. Two sequences over the same alphabet, with a few hundred characters each, are given.
The problem is to decide whether there are two substrings, one from each sequence,
that are similar. This problem appears when searching for local similarities in large
sequence databases. In this context, a sequence must be compared against thousands
of others.

All these problems can be solved using the same basic algorithmic idea that is used for
solving the sequence comparison problem. The following section gives the formal details of
the pairwise sequence alignment problem. Computers are needed to perform the sequence
comparison operation because enormous amounts of data are involved, especially when
querying biosequence databases. Using a computer to do these operations is less error-
prone and more convenient.

1.3 Aligning Two Sequences

Consider the following pair of DNA sequences: ATAGTC and ATTAGGC. At a glance, they look
very much alike, and this becomes more obvious when they are aligned one above the other:

4

A-TAGTC
ATTAGGC

The only differences are an extra T in the second sequence and a change from T to G in
the second to last position. Note that a gap, marked with a “-”, is introduced in the first
sequence in order to allow the bases before and after the gap to align perfectly. This is a
sample alignment of the two sequences.

Formally, the alignment of two sequences is obtained from the original sequences by
inserting gaps until the resulting sequences are of the same size. They also must obey the
restriction that gaps cannot appear in the same position in both sequences. The example
above satisfies the definition of an alignment.

The goal of the sequence comparison operation is to find an optimal alignment of two
sequences relative to a cost function. One type of cost function is obtained by assigning a
score to an alignment in the following manner: each column of the alignment is given a value
based on the two characters forming the column, and the total score of the alignment is the
sum of all the values assigned to its columns. If a column has two identical characters, it is
valued with +2 (i.e., a match). Different characters are valued with —1 (i.e., a mismatch).
Finally, if a gap is present, the column is valued with -2 (i.e., a gap penalty). An optimal
alignment is one with maximal total score among the total scores of all possible alignments
between the two sequences. In general, there may be many optimal alignments between
two sequences.

For the alignment in the example above, there are five columns with identical characters,
one column with distinct characters, and one column with a gap, giving a total score of

5x2+1x(—=1)+1x(=2)=7 (1.1)

The particular values +2, —1, and —2 were chosen because they constitute a simple
implementation of the policy of rewarding matches, and penalizing mismatches and gaps.
In practice, the value which is assigned to a column depends on the probability with which
the character from the first row can transform itself into the character from the second
row after a certain number of evolutionary steps. With regard to proteins, the amino
acids have biochemical properties that influence the way they replace each other during
the evolution of a protein [Setubal and Meidanis, 1997]. For example, it is more likely
that amino acids of similar sizes will be substituted for one another than those of widely
different sizes. The tendency to bind with water molecules also influences the probability
of mutual substitution. Because protein comparisons are usually performed to establish an
evolutionary relation between sequences, it is important to use scoring functions that reflect
these probabilities accurately.

Often, the best method to derive similarity scores for pairs of residues is to empirically
observe the actual substitution rates; doing so is advisable because it is difficult to account

for all the factors that influence the probability of mutual substitution of amino acids.
A standard procedure for achieving this goal is based on an important family of scoring
matrices, known as the PAM matrices. The acronym PAM stands for Point Accepted
Mutations, or Percent of Accepted Mutations, a reference to the fact that “the basic PAM-1
matrix reflects an amount of evolution producing on average one mutation per hundred
amino acids” [Setubal and Meidanis. 1997]. The PAM matrices were introduced by Dayhoff
et al. [Dayhoff et al., 1978].

Before two sequences are aligned, the evolutionary distance at which to compare them
must be chosen. The PAM matrices are functions of this distance. For instance, a PAM-
250 matrix is suitable for comparing sequences that are 250 units of evolution apart. If no
information on the true evolutionary distance between the two sequences is available, the
recommended approach is to align the sequences using several PAM matrices that cover a
wide range - for example, PAM-40, PAM-120, and PAM-250. In general, low PAM numbers
are good for finding short, strong, local similarities, while high PAM numbers detect long,
weak ones [Setubal and Meidanis, 1997]. It should also be noted that PAM matrices consider
the mutations at the amino acid level only, without involving the DNA level.

1.4 Thesis Contributions

The main contribution of this thesis is a new parallel algorithm for optimal pairwise sequence
alignment, called Parallel FastLSA. We developed and implemented Parallel FastLSA and
ran extensive experiments with the algorithm. The thesis describes in detail the algorithm
and how it can be implemented. We also give detailed accounts of the theoretical and
empirical performance of Parallel FastLSA.

Parallel FastLSA is the parallel version of an existing algorithm, FastLSA [Charter et al.,
2000]. FastLSA finds an optimal alignment for two biological sequences using linear space,
and it is shown [Charter et al., 2002] to be empirically faster than two other frequently used
alignment algorithms: Needleman-Wunsch [Needleman and Wunsch, 1970] and Hirschberg
[Hirschberg, 1975]. Parallel FastLSA aims to further improve the time performance of
FastLSA., while still using linear space. The space linearity of Parallel FastLSA and its
quadratic time complexity are guaranteed by two theoretical results that we state and
prove.

Our experiments show that Parallel FastLSA exhibits good speedups, and its efficiency
increases with the size of the sequences that are aligned. For example, the speedup on
16 processors is 9.03 for the alignment of two sequences of size 37,785 bp and 37,349 bp.
The speedup then increases to 10.83 for the alignment of two sequences of size 55,820 bp
and 66.315 bp. When two much longer sequences of length 319,030 bp and 305,636 bp are
aligned, the speedup for 16 processors goes up to 13.62. The remainder of this section is an
overview of the material presented in this thesis.

Following this introductory chapter, Chapter 2 focuses on the existing work related to

the sequence alignment problem. We discuss the algorithms of Needleman-Wunsch and
Hirschberg because they are the most widely used algorithms for optimal pairwise sequence
alignment. FastLSA was developed as a generalization of the Hirschberg algorithm and,
because it is the base for Parallel FastLSA, it is also discussed in Chapter 2. These three
sequential algorithms for sequence alignment are described in detail, and a commentary on
their space and time requirements follows the description of each algorithm.

Chapter 3 introduces the Parallel FastLSA algorithm. We start with a description of the
parallel algorithm and then give further details about the two versions of Parallel FastLSA
that we have implemented. The last section of this chapter gives a detailed account of the
theoretical space and time complexity of Parallel FastLSA.

The empirical analysis of Parallel FastLSA is presented in Chapter 4. We explain
the setup for the experiments that we performed with Parallel FastLSA and comment
extensively on the results of the benchmarks that we ran. For each of the three pairs of real
life sequences that we align using Parallel FastLSA, we present performance graphs that
show consistently the effectiveness of the algorithm.

Chapter 5 lists the three most important aspects of Parallel FastLSA that we would
like to investigate as future work. We conclude this chapter and the thesis with a short
summary of the contributions and the results presented in this thesis.

1.5 Concluding Remarks

In this chapter we introduce the pairwise sequence alignment operation, and the most
relevant notions of bio-chemistry related to it. We argue the importance of this operation
and the importance of having an efficient algorithm to perform it. We also present an
example of pairwise alignment of two sequences and briefly introduce the framework in
which the alignment operation will be discussed in the following chapters. This chapter
also features a summary of the contributions of the thesis and an overview of the work
presented.

Chapter 2

Related Work

A naive approach for finding the best alignment between two biological sequences would be
to generate all the possible alignments between the two sequences and then pick the best
one, relative to the specified cost function. However, because the number of possible align-
ments between the two sequences is exponential in the size of the sequences, the resulting
algorithm would be awkwardly slow. Fortunately, more efficient algorithms exist, and they
are described in the following sections. Because the main goal of this thesis is to introduce
a new, faster algorithm for sequence alignment, emphasis is placed on explaining the space
and time complexity of each algorithm presented.

2.1 The Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm is based on dynamic programming. Given two sequences,
a and b, the score for an optimal alignment between them is computed by considering the
scores of the best alignments between their prefizes of arbitrary length. The algorithm
starts by finding the score for an optimal alignment for short prefixes of the two sequences.
It then uses these results to solve the problem for larger prefixes. After the score for an
optimal alignment between a and b is found, one or all optimal alignments are built during
a post-processing phase. Details of this algorithm, which is an example of a full matriz
algorithm, follow.

Suppose that a is m characters long, and b is n characters long. The string @ has m + 1
prefixes denoted by a[l..1], with i ranging from 0 to m. When i = 0, a[l1..0] denotes the
empty prefix of a. Similarly, the n + 1 prefixes of b are denoted by b[1..5], with j ranging
from 0 to n. Needleman-Wunsch’s algorithin computes the score for an optimal alignment
of all pairs of prefixes of a and b. The score for an optimal alignment between qa[1..i] and
b[1..7] is stored in the position (1, j) of the (m +1) x (n+1) matrix S. The value of the entry
(,7) in the matrix S is referred to as S[i, j]. The goal of the first phase of the algorithm is
to compute S[m,n]. To achieve this goal, all the entries of the matrix S must be computed.

The dynamic programming paradigm is suitable for solving the sequence alignment
problem across a wide range of cost function types, including the match/mismatch and PAM

matrix cost functions discussed in Section 1.3. Suppose that the sequences a and b are to be
aligned using a scoring system that penalizes a gap with Gap_Penalty, usually a negative
number, and adds align(X,Y) to the alignment score when a column of the alignment
consists of the characters X and Y. An example of possible values for Gap_Penalty and
align(X,Y) is shown below, but for now consider them as literal variables. For this scoring
system, Needleman-Wunsch’s algorithm initializes the first row and the first column of the
matrix S with multiples of Gap_Penalty, i.e.,

S[i,0] =1 x Gap_Penalty,vi,0 <i<m (2.1)
S[0,7] = 7 x Gap_Penalty,¥vj,0<j<n (2.2)

This is consistent with the definition of S{i, 0] and S[0, j] because there is only one possible
alignment if one of the sequences is empty: a gap is to be added for each character in the
other sequence.

In order to compute the other entries of the dynamic programming (d.p.) matrix S, the
algorithm takes advantage of the fact that an alignment for a[l..i] and b[1..j] is obtained
only through one of the following three methods:

e align a[l.. — 1] with b[1..5 — 1] and align afz] with b[j], or
e align a[l..7] with b[1..5 — 1] and align a gap with b{j], or
e align a[l..i — 1] with b[1..5] and align a[z] with a gap.

These possibilities are exhaustive because the last column of the alignment cannot contain
two gaps. As a consequence, the score for an optimal alignment between a[1..7] and b[1..j]
can be determined using the formula:

STi = 1,5 — 1] + align(alil b3
S[i, j] = max { S[i,j — 1] + Gap-Penalty (2.3)
S[i = 1, 7] + Gap_Penalty.

It should be noted that the value of the entry (i,;) depends only on the values of the
entries (z — 1,7 — 1), (2,5 — 1), and (¢ — 1,7). Therefore, these last three values must
be available when S{i, j] is computed. For example, this can be done by computing the
d.p. matrix S row by row, and left to right on each row.

Figure 2.1 shows the dynamic programming matrix S corresponding to @ = ATAGTC and
b = ATTAGGC. Sequence a is placed vertically along the left margin of the matrix, while b is
placed horizontally along the top. The entries of S are computed using the scoring function

Gap_Penalty = -2, (2.4)
and
. +2 if X = Y (match)
align(X,Y) = 2.5
(X, Y) {—1 if X # Y (mismatch), (2:3)

-l 0 2 4 -6 -8 -10 -12 -14
: nsert Gap in a before T :
A2 2 0) 4 -6 -8 -10|:
T| -4 0 4 P12 0 2 4 -6
EAl-6 2 2 3 4 2 0 2
Align G with G
G| s 4 0 1 2 6 4 2
' Align T with G
T |-10 -6 2 2 0 4 5 3
Cl12 -8 4 0 1 2 3 7

Figure 2.1: Optimal Paths through the Full Matrix for ATAGTC and ATTAGGC

which is the scoring function introduced in Section 1.3. The score for an optimal alignment
between a and b is given by the entry (m,n) = (6,7) in the matrix S. Its value, 7, is equal
to that computed by Formuia 1.1 in Section 1.3.

Needleman-Wunsch’s algorithm not only produces the score for an optimal alignment
of a and b, but also gives the opportunity to find one or all optimal alignments between
the two sequences. The idea is to build a path through S that starts at (m,n), ends at
(0,0), and satisfies the following property: if (i, j) belongs to the path, then an entry that
supplied the maximum value in Formula 2.3 also telongs to the path. Such a path is called
an optimal path because it corresponds uniquely to an optimal alignment between a and b.
Given an optimal path. the corresponding optimal alignment is built following the rules:

e if (1,7) - (1 — 1,7 — 1) is an arc on the optimal path (diagonal arrow), then afi] is
aligned with bj];

e if (1,7) - (¢,7 —1) is an arc on the optimal path (horizontal arrow), then “-” is aligned
with b[5];

e if (i.j) - (— 1,7) is an arc on the optimal path (vertical arrow), then ali] is aligned
with “-7.

An optimal path is built by applying a procedure that traces back an optimal path after

10

the d.p. matrix is filled. If the links between each entry in S and the neighboring entries that
supplied the maximum for its computation are stored during the filling of S, this traceback
procedure simply builds a path from (m,n) to (0,0) following the links. Otherwise, the
traceback procedure starts with (m,n) and finds the next entry in the path by applying a
test based on Formula 2.3. Note that the maximum value in Formula 2.3 can be reached
by more than one branch. This situation leads to multiple optimal paths in the dynamic
programming matrix. Through the use of a stack, the traceback procedure can produce all
optimal paths.

Figure 2.1 shows two distinct optimal paths through the d.p. matrix S. The continuous
path corresponds to the alignment

A-TAGTC
ATTAGGC

and the alternate path corresponds to the alignment

AT-AGTC
ATTAGGC

These are the only paths that are optimal for the strings a = ATAGTC and b = ATTAGGC.

Figure 2.2 presents the algorithm that computes the d.p. matrix S for two given se-
quences. a and b. This algorithm also fills the matrix of links L, which is used to produce
an optimal alignment of a and b. Specifically, L[z, j] points to one of the positions (i—1,j-1),
(2,7 —1) or (i—1,7) depending on which entry supplied the maximum in Formula 2.3. Note
that the pseudo-code uses the construct (i.j) as a reference to the position of S[i,j] in
the matrix S. Function maz_supply in Figure 2.2 determines which of the three adjacent
entries has supplied the maximum for the computation of S[i, j]. In case of a tie, the order
in which the positions are listed above dictates their precedence. As a result, the optimal
alignment returned by this algorithm has the characteristic that whenever there is a tie, a
column with two letters has precedence over a column with a gap in a, which in turn has
precedence over a column with a gap in b.

The Needleman-Wunsch algorithm shown in Figure 2.2 returns an optimal alignment
in the pair of global vectors align_a and align_b. These vectors contain the len aligned
characters, which can be either gaps or letters from the sequences. The optimal score is
also returned.

It is easy to analyze the time and space complexity of the algorithm Needleman-Wunsch.
The first two loops are initialization loops which consume O(m) and O(n) time. The two
nested loops of the algorithm fill the dynamic programming matrix in a time proportional
to the size of the matrix, i.e., O(mn). The construction of the alignment in the last loop is
done in O(len) time, where len is the size of the returned alignment. Because max(|a|, [b]) <
len < m + n, the last phase of the algorithm actually takes O(m + n) time. Overall, the

11

Algorithm Needleman-Wunsch
input: sequences a and b
output: optimal alignment in align_a, aliga b,
and the score of the alignment

= = lal
n = [bl
sf0,0] =0

for i =1 to m do
S{i,0] = i x Gap_Penalty
Lfi,0] = (i-1,0)
for j =1 ton do
S[0,j] = j x Gap_Penalty
L[0,3] = (0,j-1)
for i = 1 to m do
for j =1 to n do
S[i,j] = max(S[i-1,j-1] + align(alil,b(j1).
S{i, j-1] + Gap_Penalty,
S(i-1, j] + Gap_Penalty)
Lli,j) = max_supply((i-1,j-1), (i, j-1), (i-1, j))
i
i
len o}
vhile 1 > O or j > 0
if L(i,j] == (i-1,j-1) then
align_a(len] = a(i]
align_b[len] = b[j]
else if L[i,j] == (i,j-1) then
align_aflen] = '-’
align_b{len] = b[j]

=
n

else
align_a(len] = a[i]
align_b(len] = '-°*
len = len + 1
(i,j) = L[i.j]

reverse(align_a)
reverse(align d)
return S(m,n]

Figure 2.2: Pseudo-code for Needleman-Wunsch’s Algorithm

time complexity of the alignment is O(mn) because this is the dominant term of the time
complexity expression.

The space used by the algorithm is shared between the d.p. matrix space, O(mn), and
the alignment vectors space, O(len) = O(m + n). Overall, the space complexity of the
algorithm is O(mn) because this is the dominant term of the space complexity expression.
Hence, the complexity of the algorithm is O(mn) for both time and space. When the input
sequences are of equal length, n, the complexity of the algorithm is O(n2).

On a historical note, the paper by Needleman and Wunsch [Needleman and Wunsch,
1970] is generally accepted as the first important contribution in sequence comparison from
the point of view of biologists. The algorithm described by Needleman and Wunsch has a
fixed penalty for a gap, independent of its length. In this paper, no complexity analysis
is given. Later analysis has shown that the algorithm, as presented, required cubic time
to run [Setubal and Meidanis, 1997]. Today, quadratic time algorithms are available for
a whole range of scoring functions, including affine gap penalty functions [Setubal and

12

Meidanis, 1997]. A constant function such as the Gap_Penalty used in this thesis is only a
particular case of affine function. Despite the imperfections of the algorithm introduced in
[Needleman and Wunsch, 1970], the name “Needleman-Wunsch algorithm” is often used to
designate any kind of global alignment algorithm based on dynamic programming [Setubal
and Meidanis, 1997].

A global alignment algorithm is one that finds an optimal alignment between the whole
sequences a and b. The algorithm described in this section is for global alignment, and this
thesis deals only with pairwise global alignment algorithms. Two other types of alignment
are also popular with molecular biology researchers: local alignment, which is an alignment
between a substring of a and a substring of b, and semi-global alignment, which is a global
alignment that does not penalize the gaps inserted at the beginning or at the end of the
aligned sequences. The goal of a local alignment algorithm is to find the highest scoring local
alignment between the two sequences. Smith and Waterman [Smith and Waterman, 1981]
were the first to produce a local alignment algorithm, leading to a situation where the
name “Smith-Waterman algorithm” designates almost any local alignment algorithm based
on dynamic programming. It should be noted that algorithms for finding the best local
alignment, or the best semi-global alignment of two sequences, are small variations of the
basic global alignment algorithms.

2.2 The Hirschberg Algorithm

The quadratic space complexity of the Needleman—Wunsch algorithm makes it unattractive
for applications involving very long sequences. For example, aligning two DNA sequences of
100,000 base pairs requires at least 40 Gigabytes, assuming that each entry of the d.p. matrix
is stored as a 4 Byte integer. This amount of memory is prohibitive for most commodity
computers of today. Even if the dynamic programming matrix of this alignment fit in the
main memory of a computer. the performance of the alignment operation would be inferior to
the expected time of O(10'%) because of the cache misses the Needleman-Wunsch algorithm
would incur. To date, no algorithm is known that uses asymptotically less time than O(mn)
and keeps the same generality as Needleman-Wunsch’s algorithm. However, with respect
to space. the complexity can be improved from quadratic, O(mn), to linear, O(m + n),
without losing any generality.

Hirschberg was the first to present a linear space algorithm capable of producing an
optimal alignment of two sequences [Hirschberg, 1975]. Although Hirschberg made his
observations in the context of the problem of finding a longest common subsequence of two
strings, the results also apply to the sequence alignment problem. Myers and Miller are
credited with developing the first linear space algorithm for optimal sequence alignment
based on Hirschberg’s algorithm [Myers and Miller, 1988].

An important observation is that, in Needleman-Wunsch’s algorithm, the derivation of
the row i requires only the row i — 1 of the matrix to be known. Figure 2.3 presents an

13

Algorithm LastRow
input: sequences a and b
output: vector LL

m = lal
n = |bi
for j = 0 to n do
LL{jl = j x Gap_Penalty
for i =1 to m do
old = LL(0]
LL{0] = i x Gap_Penalty
for j =1 ton do
temp = LL[j]
LL(j] = max(old + align(a(il,b{jl).
LL(j-1] + Gap_Penalty,
LL(j] + Gap_Penalty)
old = temp

Figure 2.3: Pseudo-code for the LastRow Algorithm

algorithm that computes the score for an optimal alignment using linear space. Algorithm
LastRow takes as input the strings a[l..m] and b[1..n], and produces as output the vector
LL. This vector consists of the same values as the last row, m, of the dynamic programming
matrix computed by the Needleman-Wunsch algorithm. However, the LastRow algorithm
requires only n + 1 locations of memory to compute the vector LL; hence, it is space linear
in the size of the sequences.

The correctness of LastRow is supported by the following invariant assertions:

e at the beginning of step i of the outer loop, LL holds the values of the row ¢ — 1 of
the d.p. matrix;

e in the inner loop, at the beginning of step j, LL[0..; — 1] holds the values of the row
i, while LL[j..n] holds the values of the row ¢ — 1;

e at step j,old=S[i—1,5—1].

The computations done by the Needleman-Wunsch algorithm are mimicked using only the
vector LL, and two temporary variables. Because of the two loops, the time complexity of
the LastRow algorithm is O(mn).

LastRow computes the similarity of the two sequences in LL[n]. However, finding
an optimal alignment of the two sequences is not trivial since the d.p. matrix used in
Needleman-Wunsch’s algorithm to retrieve an alignment is not available here. The key re-
sult of Hirschberg (Hirschberg, 1975] is a linear space algorithm which accepts as input the
sequences a and b, and outputs an optimal alignment of them. The algorithm LinearSpace,
which is shown in Figure 2.4, is not the original algorithm, but a version customized for the
sequence alignment problem [Setubal and Meidanis, 1997].

LinearSpace is based on the divide and conquer paradigm. The vertical sequence a is
split into two subsequences at the index i = |m/2]. The goal is to find a column pos
of the d.p. matrix such that the entry (i, pos) belongs to an optimal path. The fact that

14

Algorithm LinearSpace
input: sequences a and b, indices r, s, u, v, and start
output: optimal alignment betveen alr..s] and b(u..v]
placed in align_a and align b,
begins at position start,
ends at position end

if a(r..s] empty or blu.v] empty then
// BASE CASE
Align the non-empty sequence vith spaces
end = start + max(s-r, v-u)
else
// GENERAL CASE
i= [(res)/2]
LastRow(a, r, i~-1, b, u, v, LLpref)
LastRouReverse(a, i+, s, b, u, v, LLsuff)

pos = u-l
type = GAP
vmax = LLpref{u-1] + Gap_Penalty + LLsuff[u-1]
for j = u to v do
tempmax = LLpref[j-1] + match(alil, b(j]) + LLsuff[j]
if tempmax > vmax then
pos = j
type = CHAR
vmax = tempmax

tempmax = LLpref[j] + Gap_Penalty + LLsuff([j]
if tempmax > vmax then

pos = j

type = GAP

vmax = tempmax

if type == GAP then // Equation 2.7
LinearSpace(a, r, i-1, b, u, pos, start, middle)
align_a(middle] = a(i]
align_b[middle] = *-’
LinearSpace(a, i+*1l, s, b, pos+l, v, middle+l, end)
else // type == CHAR, Equation 2.6
LinearSpace(a, r, i-1, b, u, pos-1, start, middle)
align_almiddie] = a[i]
align_b(middle] = b[pos}
LinearSpace(a, i+l, s, b, pos+l, v, middle+l, end)

Figure 2.4: Pseudo-code for Hirschberg’s Algorithm

any optimal path stretches from the lower right corner to the upper left corner of the
d.p. matrix guarantees that the optimal path intersects the row i. Once pos is found, the
original problem reduces to finding the optimal alignment for two pairs of smaller sequences:
a[l..7] and b[1..pos], and afi + 1..m] and b[pos + 1..n]. These two new problems are solved
recursively using the LinearSpace algorithm. The resulting optimal paths are concatenated
to obtain an optimal path for the original problem. The following paragraphs explain in
detail how the value of pos is determined for a given problem.
In an optimal alignment, a[i] is aligned with either

1. a character b[j], with 1 < j <n,or

2. a gap that lays between b[j] and b[j + 1], with0 < j < n.

15

In the second alternative, j = 0 accommodates the case when the gap is before the first
character of b, while j = n accommodates the case when the gap is after the last character.

Let optimal (;) denote an optimal alignment between the sequences z and y, and '+’

denote concatenation of alignments. If optimal (Z) satisfies alternative 1, then
. a\ _ . afl..i - 1] alf] . afi + 1..m]
optimal (b) = optimal (b[l..j _ 1]) + bij] + optimal bj+ L])" (2.6)
If it satisfies alternative 2, then
. a\ _ .. afl..i - 1] al] . afi + 1..m]
optimal (b) = optimal (B[1..j]) + | + optimal bj +1.n]) (2.7)

In both alternatives, the alignments of the subsequences are, in turn, optimal. Otherwise,

‘; could be built.

Equations 2.6 and 2.7 show how to compute an optimal alignment recursively provided
that, for any given ¢, it can be determined which of the two cases apply and what is the
corresponding value of j. This problem can be solved by computing the optimal score
between a[l..i — 1] and all the prefixes of b, and between a[i + 1..m] and all the suffixes of
b. These scores correspond to the n alignments from the right hand side of Formula 2.6
(1 £ 7 < n), and the n + 1 alignments from the right hand side of Formula 2.7 (0 < j < n).
From the 2n + 1 scores computed by Formula 2.6 and Formula 2.7, a maximal score is
identified and the index j that generated this score is chosen as the splitting point for
recursion.

an alignment strictly better than optimal

The algorithm LastRow is used to compute the optimal scores between a[l..i — 1] and
all the prefixes of b in linear space. A slightly modified version of the LastRow algorithm,
called LastRowReverse, computes the optimal scores between afi + 1..m] and all the suffixes
of b. The algorithm LinearSpace (Figure 2.4) is invoked by the call

LinearSpace(a,l,m,b,1,n,1,len),

which returns an optimal alignment in the global variables align_a and align_b. The length
of this alignment is returned in len. LinearSpace can be easily modified to also return the
score of the optimal alignment.

Hirschberg’s algorithm saves space at the expense of recomputing some regions of the
dynamic programming matrix. In fact, for the same input sequences, Hirschberg’s algorithm
could compute as many as double the number of entries computed by Needleman-Wunsch's
algorithm. This theoretical result is proven in the remainder of this section.

Let T(m,n) be the number of d.p. matrix entries computed following a call to

LinearSpace(a,r, s, b, u,v, start, end),

16

where m = s—r+1and n = v —u + 1. It should be noted that d.p. matrix entries
are computed only inside LastRow and LastRowReverse. The computation of an entry
consists of a maz operation with three operands. Because LinearSpace spends most of its
time computing d.p. matrix entries, it safe to assume that the total execution time of the
algorithm is proportional to T'(m,n). Setubal and Meidanis [Setubal and Meidanis, 1997]
give an upper bound for T(m,n) by showing that

T(m,n) < 2mn.

The proof is based on mathematical induction on m. For m = 1, LinearSpace enters the
base case section (i.e., BASE CASE in Figure 2.4), and no entry is computed. Obviously,
T(1,n) =0 < 2n is true. For an m > 1, it is assumed by induction that the inequality holds
for all values less than m. The induction step requires proving that the inequality is true
for m. For the considered m, the call to LastRow incurs no more than Z'n computations
of d.p. entries. The same is true for the call to LastRowReverse. The two recursive calls to
LinearSpace involve at most T'(7,j) and T (%3, n — j) computations of entries. After adding

everything, and using the induction hypothesis, we conclude that

T(m.n) <+ 5 +T(F,5)+T(F,n—7)
<mn+mj+m(n - j) (2.8)

< 2mn,

which confirms the claim [Setubal and Meidanis, 1997].

Finally, it should be noted that the above upper bound for T(m,n) can be reached in
a worst case scenario. It happens if, at every recursion level inside LinearSpace, the second
sequence is also split in halves by the algorithm, i.e., always j = 3.

2.3 The Fast Linear Space Alignment Algorithm

Needleman-Wunsch’s algorithm finds an optimal alignment of two sequences without having
to recompute any entry in the dynamic programming matrix. This is accomplished at the
expense of using quadratic space, which is unacceptable for the alignment of long sequences.
Hirschberg’s algorithm uses only linear space to find an optimal alignment. To achieve this
goal, the algorithm must recompute some entries of the d.p. matrix. The total number
of re-computations is close to, but not greater than, the total number of entries in the
d.p. matrix for the two sequences.

The Fast Linear Space Alignment (FastLSA) algorithm [Charter et al., 2000} builds
on the observation that Hirschberg's approach of reducing the space requirements for the
sequence alignment operation is too inflexible. In today’s computers, more memory is
available than the 2n d.p. matrix entries’ worth of storage that are needed by Hirschberg’s
algorithm in order to produce an optimal alignment for two sequences of lengths m and
n. FastLSA takes advantage of the extra memory by caching the values of some entries of

17

Algorithm FastlSA
input : logical-d.p.-matrix flsaProblem,
cached-values cacheRow and cacheColumn,
solution-path flsaPath
cutput: optimal path corresponding to flsaProblem prepended to flsaPath

/e Figure 2.6 (a) s/
1 if flsaProblem fits in allocated buffer then
// BASE CASE
/e Figure 2.6 (b) o/
2 return solveFullMatrix(flsaProblem, cacheRow, cacheColumn, flsaPath)

// GENERAL CASE
3 flsaGrid = allocateGrid(flsaProblem)
4 initializeGrid(flsaGrid, cacheRow, cacheColumn)

/% Figure 2.6 (c) s/
S £illGridCache(flsaProblem, flsaGrid)

6 newCacheRow = CachedRou(flsaGrid, flsaProblem.bottomRight)
7 newCacheColumn = CachedColumn(flsaGrid, flsaProblem.bottomRight)

/® Figure 2.6 (d) =/
8 flsaPathExt = FastLSA(flsaProblem.bottomRight, nevCacheRow, newCacheColumn, flsaPath)

9 vwhile flsaPathExt not fully extended

10 flsaSubProblem = UpLeft(flsaGrid, flsaPathExt)
11 nevCacheRow = CachedRow(flsaGrid, flsaSubProblem)
12 nevCacheColumn = CachedColumn(flsaGrid, flsaSubProblem)
/* Figure 2.6 (e) o/
13 flsaPathExt = FastLSA(flsaSubProblem, newCacheRow, neuCacheColumn, flsaPathExt)

14 deallocateCrid(flsaGrid)

/% Figure 2.6 (£) e/
15 return flsaPathExt

Figure 2.5: Pseudo-Code for FastLSA

the d.p. matrix, with the goal of reducing the number of re-computations that are needed
to retrieve an optimal alignment. FastLSA still uses linear space, and its re-computation
time is shown to be smaller than that of Hirschberg’s algorithm. Details of the FastLSA
algorithm follow.

Suppose that a{l..m] and b[1..n] are the two biological sequences that must be aligned.
Let RM denote the number of memory units (e.g., words) available for solving the sequence
alignment problem. If RM > m x n, then a full matrix algorithm (e.g., Needleman-
Wunsch) can be used to solve the problem because the d.p. matrix can be stored in the
available memory. Otherwise, FastLSA or Hirschberg's algorithm can be used. The authors
of FastLSA argue that their algorithm should be the choice [Charter et al., 2000] .

FastLSA is a recursive algorithm based on the divide and conquer paradigm. A call
to FastLSA takes as input a logical d.p. matrix corresponding to a pair of sequences and
an optimal solution path that ends at the bottom-right entry of this logical d.p. matrix.
FastLSA prepends to the input path an optimal path which traverses the input matrix

18

from the bottom-right entry to the top or the left boundary. The resulting optimal path
constitutes the output of FastLSA. A row and a column of cached d.p. matrix entry values
are also passed in with each call to FastLSA. The pseudo-code for the FastLSA algorithm
is shown in Figure 2.5.

For the initial call to FastLSA, the logical d.p. matrix used as input - flsalnitialProblem
- corresponds to the input sequences ¢ and b. The attribute “logical” is used because
only the shape of the matrix is known initially. This initial logical d.p. matrix has (m +
1) x (n + 1) entries whose values must be computed. The values of the initial cache row,
cacheRow, and cache column, cacheColumn, are computed as in Equation 2.1 and Equation
2.2, respectively. The initial optimal path, flse/nitialPath, is formed from a single point,
(m,n), the bottom-right entry of the original logical d.p. matrix. FastLSA is invoked by
the call

solPath = FastLSA(flsalInitial Problem,cache Row, cacheColumn, flsalInitial Path)

which will return a partial optimal path in solPath. This partial optimal path can then be
extended to the top-left entry of the logical d.p. matrix to form a complete optimal path.

Prior to running FastLSA, BM units of memory are reserved from the RM units avail-
able. These reserved units are subsequently referred to as the Base Case buffer. If the
d.p. matrix corresponding to the input problem can be allocated in the Base Case buffer,
then an optimal path for the input problem is built using a full matrix algorithm. This
corresponds to the BASE CASE section of the algorithm (lines 1-2 in Figure 2.5).

The full matrix algorithm uses the input values cacheRow and cacheColumn as the first
row and column of the d.p. matrix it must compute (Figure 2.6 (a)). After all entries of
the d.p. matrix have been computed, an optimal path through the matrix is built. Figure
2.6 (b) shows the computed and stored d.p. matrix entries of a sample base case. In this
figure, an optimal path is found to extend from the bottom-right corner entry, A, to the
top boundary entry, B.

If the size of the d.p. matrix for the input problem is bigger than BM, the GENERAL
CASE of the algorithm is followed (Figure 2.5). In this case, FastLSA splits the input
problem into smaller subproblems. These subproblems are solved recursively using calls to
FastLSA. The solution paths for these subproblems, if concatenated, form a solution path
for the input problem.

The general case of FastLSA starts by dividing each dimension of the logical d.p. matrix
into k equal segments, £ > 2. As a result, the d.p. matrix for the input problem is partitioned
into k2 logical sub-matrices of size approximately = x ¢ (Figure 2.6 (c)). These sub-matrices
are laid out in k rows, each row haviug k columns.

The first goal of the general case is to find the values of the entries of the d.p. matrix
which lie on the left and upper border of the k2 logical sub-matrices, and save them. These
interesting values lie exactly along k rows and k columns of the logical d.p. matrix. The
grid flsaGrid is allocated in order to store these values once they are computed (line 3 of

19

(a) Layout of the input (b) Base case: full matrix (c) General case: grid of
caches at the start of algorithm is used to find an caches (for k = 4) allocated
FastLSA() optimal path but not filled yet

B

TOTTTTIITINIY

MLEHLALALILLLRALALARLLALLALLNANY

LAALTELLALLALLRALUAALNA

(d) General case: grid of (e) General case: after (f) General case: extend
caches filled before recursion on bottom-right path to top boundary via
recursion on bottom-right block, with partial solution successive recursion on
block path sub-problems
| H
» 4 £ p =1

g B B
: N : 2 : : F E
H z z H z z z
‘N i b c F_§ <
2 z : H z 2 H H o :
2 2 Z H 2 H : : : :
: 2 z : 2 2 H H 2

— >3 Sub-probiem

2222 Known score values D Unknown score values AR (for recursion) e Solution path

Figure 2.6: Execution Stages of FastLSA

the pseudo-code). flsaGrid consists of k rows of size n and k columns of size m. The grid
rows and columns can be seen as overlapping the rows and column of the d.p. matrix.
The uppermost row and the leftmost column of flsaGrid will hold the values passed in
with the row cacheRow and the column cacheColumn. This initialization of the grid is done
in initializeGrid (line 4 in Figure 2.5). Figure 2.6 (c) shows this stage of the computation.
In order to fill the remaining & — 1 rows and k£ — 1 columns of the grid flsaGrid, all
the entries of the d.p. matrix are computed, except for those forming the bottom-right
sub-matrix. This is accomplished with the call to fillGridCache (line 6 in Figure 2.5). The
algorithm that is used to compute the entries of the d.p. matrix is similar to the algorithm
LastRow from Figure 2.3, Section 2.2. The only difference is that the values of the entries
lying on the right-most column and the bottom-most row of a sub-matrix are stored in
flsaGrid, as soon as they are computed. These entries are saved in the portions of flsaGrid
that they overlap. However, there are two exceptions: only the right-most column is saved
from the sub-matrices of the kth row of sub-matrices, and only the bottom-most row is

20

saved from the sub-matrices of the kth column of sub-matrices. The entries corresponding
to the bottom-right sub-matrix are not yet computed.

Figure 2.6 (d) shows flsaGrid completely filled before the FastLSA is applied recursively
to the bottom-right sub-matrix. The portions from flsaGrid that border the bottom-right
sub-matrix are passed with the recursive call to FastLSA as the new caches newCacheRow
and newCacheColumn (line 8 of the pseudo-code). When this recursive call to FastLSA
returns, the optimal path for the initial problem has been extended from the bottom-right
entry to the entry C (Figure 2.6 (e)). Note that C could also have been on the left boundary
of the bottom-right sub-matrix.

The next step of the general case is to extend the optimal path from the entry C to
an entry on the left or upper boundary of the initial logical d.p. matrix. This step is
accomplished through successive recursive calls to FastLSA in the while-loop of lines 9-13
in Figure 2.5.

Note that during this latter step, calls to FastLSA are not necessarily applied to entire
sub-matrices. Every time the optimal path extends into a new sub-matrix, the next sub-
problem to be solved by FastLSA is identified through a call to UpLeft (line 10 in Figure
2.5). The coordinates of this new logical d.p. matrix are computed by UpLeft as follows:

e the top-left corner of the new logical matrix is given by the top-left corner of the
sub-matrix that is to be entered next by the optimal path;

e the bottom-right corner of the new logical matrix is given by the head of the current
optimal path.

Figure 2.6 (e) shows the logical d.p. matrix found by UpLeft when first called in the
vhile-loop. The top-left corner of the new logical matrix is C2, with C, the head of the
current optimal path, being the bottom-right corner. Then, the portions from flsaGrid
which border this new logical d.p. matrix to North and West are identified. These are the
new caches which are passed with the recursive call to FastLSA as newCacheRow and new-
CacheColumn. When this recursive call returns, the optimal path for the original problem
has been extended from C to the entry D (Figure 2.6 (f)). At the end of the second cycle
of the while-loop, the optimal path has been further extended to the entry E.

In the remaining cycles of the while-loop, the optimal path is further extended through
the sub-matrices of the input matrix until the head of the path intersects the first row or
the first column of the grid. Figure 2.6 (f) shows the optimal path being extended through
entries E, F, G, and H. The vhile-loop stops when H becomes the head of the current
optimal path because H lies on the first row of flsaGrid. Next, the grid of caches flsaGrid
is deallocated, and the initial call to FastLSA returns. The optimal path corresponding to
the input logical d.p. matrix is returned to the initial caller. The returned path extends
from the bottom-right corner of the original input matrix to the entry H.

After the initial invocation of FastLSA returns, the partial optimal path solPath is fur-
ther extended to the top-left corner along the first row or the first column of the d.p. matrix.

21

Figure 2.6 (f) shows the partial optimal path being extended to the top-left corner I along
the first row of the d.p. matrix. The resulting optimal path corresponds uniquely to an
optimal alignment between the input sequences a and b. This correspondence is introduced
in Section 2.1. page 10.

It is useful to observe that FastLSA solves a succession of rectangular problems, called
FastLSA subproblems, using either a Base Case approach for the small subproblems, or a
Fill Cache approach for the subproblems that do not fit in the Base Case buffer. The sub-
problems solved as Base Cases are referred to as Base Case subproblems. The subproblems
solved in the General Case are referred to as Fill Cache subproblems.

FastLSA uses more space than Hirschberg’s algorithm. This gives FastLSA the advan-
tage of recomputing fewer entries in the d.p. matrix, thus improving the time performance
of the sequence alignment operation. The space required by FastLSA is still linear in the
size of the input sequences as will be shown next, based on the results presented in [Charter
et al., 2000] and [Charter et al., 2002]. Furthermore, FastLSA can be adjusted to use all
RM units of memory that are available.

Let S(m,n, k) be the maximum number of d.p. matrix entries that need to be stored in
order to align the sequences a{l..m] and b(1..n], using a grid cache of k rows and k& columns.
If the General Case of the algorithm is followed for the initial call to FastLSA, k — 1 rows
of length n and k - 1 columns of length m must be allocated for the grid cache. The initial
cache row and cache column which are passed as arguments to the FastLSA call are used as
the top-most row and the left-most column of the grid. They have already been allocated
by the caller function, and this is why they are not counted as part of S(m, n, k). The cache
in the first call to FastLSA uses (kK — 1) x (m + n) entries in total.

The recursive call to the bottom-right sub-problem uses at most S(%, #, k) space. Be-
cause all the subproblems solved inside the while-loop are equal to or smaller than the
bottom-right sub-problem, S(, ,k) is a good upper bound for the space used by the
recursive calls to FastLSA generated by the initial call. After putting everything together,
we get

S(m.n,k) =(k—1) x (m+n)+ S(Z. %, k) (2.9)

The recursive relation for space becomes

S(m.nk) = (k—1) x (m+n)+ (k=1) x (B + 2) + S(3, .k

=(k-1)x(m+n)x(1+3) +S(&E &k (2.10)

=(k-1)x(m+n)x (1+ ¢+ + @=r) + S(Z, &.k).

Because the space for Base Case subproblems is allocated in the Base Case buffer, it is true

22

that S(%, E“,,-, k) € BM, and Equation 2.10 becomes

1
S(m.n,k) < (k—1) x (m +n) x ‘T‘-k{-+BM
“k

=kx(m+n)x(1- &) +BM (2.11)

<kx(m+n)+BM.

Equation 2.11 shows that FastLSA uses linear space. It also provides the means to compute
k and BM when the space utilization is to be maximized.

With regard to the time complexity, let T(m, n, k) be the number of d.p. matrix entries
computed by FastLSA when the sequences a and b are aligned using a grid cache with &
rows and k columns. It can be proven ([Charter et al., 2000], [Charter et al., 2002]) that,
in the worst case scenario,

s

T(m,n,k) =m x n x £, (2-12)

It should be noted that the total execution time of FastLSA is proportional to T(m,n, k).

As mentioned throughout this section, FastLSA trades space for performance. For
example, when k£ = 5, T(m,n,5) = 1.5 x m x n. This is theoretically a lower upper bound
for time complexity than the upper bound obtained for Hirschberg’s algorithm (Equation
2.8). The upper bound provided by FastLSA decreases when the value of k increases.

2.4 Other Pairwise Sequence Alignment Algorithms

In the previous sections, we focus on algorithms that produce an optimal alignment for
a pair of sequences. We describe these algorithms in detail because Parallel FastLSA is
directly related to FastLSA and draws on the techniques used in Hirschberg’s algorithm
and Needleman-Wunsch’s algorithm.

All three algorithms presented so far compute the entries of a d.p. matrix in order to
find an optimal solution to the alignment problem. However, there are algorithms that use
A*-type search to find an optimal alignment between two sequences. For example, DCFS
(Divide-and-Conquer Frontier Search) [Korf and Zhang, 2000] finds an optimal path from
the upper-left corner of the d.p. matrix to the bottom-right corner using A* unidirectional
search. This algorithm is “more efficient in both time and space than the bidirectional
version”, DCBDS (Divide & Conquer Bidirectional Search) [Korf, 1999].

Other algorithms, such as BLAST (Basic Local Alignment Search Tool) [Altschul et
al., 1990], sacrifice the optimality of the results for improved performance. BLAST is a
rapid heuristic algorithm which produces biologically significant alignments through direct
approximation of alignments that “optimize a measure of local similarity, the maximal
segment pair (MSP) score” [Altschul et al., 1990]. Based on the analysis presented by
Altschul et al., BLAST was deemed to be “an order of magnitude faster than existing
" sequence comparison tools of comparable sensitivity” [Altschul et al., 1990]. BLAST is

23

Figure 2.7: Parallel Space-Saving Algorithm

primarily used for finding biological similarities between a query sequence and a database,
which is a large collection of sequences.

The last generation of BLAST programs includes two popular tools: Gapped BLAST
and PSI-BLAST [Altschul et al., 1997]. Gapped BLAST is an improved version of BLAST
that uses a heuristic for generating gapped alignments. PSI-BLAST (Position-Specific
Iterated BLAST) automatically combines the alignments that are produced by BLAST,
and are statistically significant, into a position-specific score matrix. It then searches the
database using this matrix. PSI-BLAST is deemed to be much more sensitive to weak, but
biologically relevant, similarities than Gapped BLAST. Because of the added features, these
algorithms are approximately three times slower than the original BLAST.

To our knowledge, there is not a great deal of literature on parallel algorithms for
pairwise biological sequence alignment. Aluru et al. [Aluru et al., 1999] suggest an em-
barrassingly parallel algorithm for sequence alignment, which they refer to as the Parallel
Space-Saving algorithm. Embarrassingly parallel algorithms achieve good speedups because
the processors are kept busy with useful computation, and little synchronization is required.

The Parallel Space-Saving algorithm is a straight-forward generalization of Hirschberg’s
algorithm. One of the sequences to be aligned is divided into p sub-sequences of equal length.
The idea is to find p sub-sequences of the other sequence so that the total alignment is
obtained by aligning the p pairs of smaller sub-sequences and concatenating their solutions.
To find the corresponding pairs, all the entries in the d.p. matrix for the two sequences
are computed using a linear space algorithm. During the computation of these entries, the
intersections of an optimal path with p equidistant cache columns are identified (Figure
2.7). The original problem is then split into p subproblems that will be solved sequentially
on each of the p processors. For p = 2, the original Hirschberg’s algorithm is obtained.

The drawback of this parallel algorithm is the lack of control on the granularity of the p
subproblems it generates. To achieve good speedups, the p subproblems, depicted as grayed
rectangles in Figure 2.7, should have similar sizes. Because one sequence is divided in p

24

equally sized sub-sequences, the corresponding sub-sequences in the other sequence should
be equally sized as well. This is unlikely to happen in practice because of the irregular nature
of the biological sequences to be aligned. Our analysis indicates that, while of theoretical
interest, the algorithm suggested in Section 5 of [Aluru et al., 1999] may not be useful in
practice.

A parallel version of the Needleman-Wunsch algorithm is introduced in [Martins et
al., 2001]. The d.p. matrix is divided into equally sized blocks, and the algorithm statically
preassigns rows of blocks to each processor. This algorithm suffers from the same major
drawback as the original Needleman-Wunsch algorithm: the space required is quadratic in
the size of the sequences. The particular implementation considered in [Martins et al., 2001]
is based on EARTH, “a fine-grain event-driven multi-threaded execution and architecture
model” [Martins et al., 2001]. The performance numbers presented, although impressive,
are obtained through simulation, and the largest d.p. matrix computed for their benchmarks
has only 4,000 x 10,000 entries.

2.5 Concluding Remarks

In this chapter we present three algorithms that are closely related to Parallel FastLSA.
In fact, FastLSA is the sequential version of Parallel FastLSA, and constitutes the starting
point in the development of Parallel FastLSA. The algorithms of Needleman-Wunsch and
Hirschberg are considered classic algorithms for optimal pairwise sequence alignment, and
are the most widely used algorithms among those based on dynamic programming.

In summary, Needleman-Wunsch’s algorithm computes and stores all the entries of the
d.p. matrix; therefore, it has quadratic time and space complexity. Hirschberg’s algorithm
uses only linear space, but this dramatic reduction in space comes at the expense of its time
complexity: in the worst case scenario, the total number of d.p. matrix entries computed by
Hirschberg’s algorithm is double that of the d.p. matrix entries computed by Needleman-
Wunsch’s algorithm. Hirschberg’s algorithm must recompute the value of some entries
because it uses only as much memory as needed to store one of the sequences, even if more
memory is available.

FastLSA improves on Hirschberg’s algorithm by taking advantage of the extra memory
available and storing some of the computed d.p. matrix entries in a Grid Cache. The benefit
of having a Grid Cache is that a smaller number of entries are recomputed than in the case
of Hirschberg’s algorithm. Consequently, FastLSA is faster than Hirschberg’s algorithm,
both theoretically and empirically [Charter et al., 2002].

25

Chapter 3

Parallel FastLSA

We performed extensive experiments with the three algorithms discussed in the previous
chapter, and concluded that FastLSA4 is the most effective when used to align very long
sequences. FastLSA outperforms its closest competitor, Hirschberg's algorithm, when DNA
sequences as short as 10 Kbp are aligned [Charter et al., 2002]. However, the theoretical
time of FastLSA still has quadratic complexity and the real turnaround time increases
dramatically with the increase in size of the sequences. In order to alleviate this problem,
we have developed a parallel version of the FastLSA algorithm, subsequently referred to
as the Parallel FastLSA algorithm. The main contribution of the thesis is the design,
implementation. and evaluation of Parallel FastLSA.

3.1 Description of the Parallel FastLSA Algorithm

Parallel FastLSA improves the execution time of the original FastLSA algorithm by paral-
lelizing its two major time-consuming components:

1. Base Case: the full matrix algorithm used for solving Base Case subproblems (line 2
of the pseudo-code from Figure 2.5), and

2. General Case: the computation of the FastLSA Grid Cache for the Fill Cache sub-
problems (line 5 of the pseudo-code from Figure 2.5).

The pseudo-code for Parallel FastLSA is shown in Figure 3.1. The only changes from the
sequential version are the replacement of the sequential solveFullMatriz() with a parallel
version, parallelSolveFullMatriz(), in line 2, and the replacement of the sequential fillGrid-
Cache() with a parallel version, parallelFillGridCache(). in line 5. No other component of
the algorithm is executed concurrently.

In our experiments with Parallel FastLSA, we discovered that parallelism benefits only
the Fill Cache subproblems. In all the experiments we performed with our choice of param-
eter values, the Base Case subproblems took longer to solve in parallel than sequentially.
For this reason, in the following chapter we analyze the performance of an implementation

26

Algorithm Parallel FastLSA
input : logical-d.p.-matrix flsaProblem,
cached-values cacheRow and cacheColumn,
sclution-path flsaPath
output: optimal path corresponding to flsaProblem prepended to flsaPath

/* Figure 2.6 (a) ¢/
1 if flsaProblem fits in allocated buffer then
// BASE CASE
/e Figure 2.6 (b) =/
2 return parallelSclveFullMatrix(flsaProblem, cacheRow, cacheColumn, flsaPath)

// GENERAL CASE
3 flsaGrid = allocateGrid(flsaProblem)
4 initializeGrid(flsaGrid, cacheRow, cacheColumn)

/e Figure 2.6 (c) ¢/
§ parallelFillGridCache(flsaProblem, flsaGrid)

6 nevCacheRow = CachedRow(flsaGrid, flsaProblem.bottomRight)
7 nevCacheColumn = CachedColumn(flsaGrid, flsaProblem.bottomRight)

/% Figure 2.6 (d) =/
8 flsaPathExt = ParallelFastLSA(flsaProblem.bottomRight, neuCacheRow, neuCacheColumn, flsaPath)

9 while flsaPathExt not fully extended

10 f1saSubProblem = UpLeft(flsaGrid, flsaPathExt)
11 nevCacheRov = CachedRow(flsaGrid, flsaSubProblem)
12 nevCacheColumn = CachedColumn(flsaGrid, flsaSubProblem)
/® Figure 2.6 (e) ¢/
13 f1saPathExt = ParallelFastLSA(flsaSubProblem, newCacheRow, neuCacheColumn, flsaPathExt)

14 deallocateGrid(flsaGrid)

/e Figure 2.6 (f) =/
1S5 return flsaPathExt

Figure 3.1: Pseudo-Code for Parallel FastLSA

of Parallel FastLSA that solves all Base Case subproblems sequentially. However, we still
explain how the Base Case subproblems can be solved in parallel, because a different choice
of parameter values can potentially make their implementation in parallel efficient. In the
remainder of this section, we describe how the parallel work is organized, first for the Base
Case subproblems, and then for the Fill Cache subproblems.

As explained in Section 2.3, FastLSA stops recursing when the input logical d.p. matrix
flsaProblem can be allocated in the Base Case buffer (line 1 in Figure 3.1). The optimal path
corresponding to this matrix is determined using a full matrix algorithm (e.g., Needleman-
Wunsch). For the parallel version of the full matrix algorithm, the dynamic programming
matrix is allocated in shared memory. As in the sequential version of FastLSA, the initial
values for the d.p. matrix are provided by the calling function. They are passed in as the
cache row cacheRow and the cache column cacheColumn. These initial values are also stored
in shared memory, and they are essential for starting the computation of the d.p. matrix.
In order to compute the value of a d.p. matrix entry, the values of the adjacent entries from

27

Wavefront parallelism

]

< cacheRow
g4 112
L
]
2| 3
‘
s
H 3
]
© G
I
>
’
H - Tiles
[
1
s -1
z
=12
cacheColumn C=12

Figure 3.2: Data Partitioning for Parallel Base Case Subproblems

North, West, and North-West must be available as required by Formula 2.3.

The d.p. matrix is logically partitioned in R x C equally sized rectangular regions, with
R > 1 and C > 1. Note that in Figure 3.2, R = 8 and C = 12 are just examples. These
regions, subsequently referred to as tiles, are laid out along R rows, each row having C
columns. At any moment during the parallel processing of the d.p. matrix, a processor is
either idle, or it is working on only one tile. Furthermore, only one processor can work on
a tile. Once the processing of a tile ends, no processor will work on that tile again.

The parallel processing starts with one processor computing the entries of the top-left
tile, using a Full Matrix algorithm. The top-left tile is labelled 1 in Figure 3.2. The
computation of the top-left tile is possible because the initial row and column values for
this tile are available. In fact, the top-left tile is the only tile that has all its initial values
available. These initial values come from the entries of cacheRow and cacheColumn which
border the top-left tile. All the other processors are idle during this first step. After the
top-left tile is processed, all the values of its corresponding entries can be found in shared
memory.

After the first step, there is enough information available to start computing the entries
in the tiles which neighbor the top-left tile to East and South. For example, for the tile
placed East from the top-left tile (i.e., in row 1 and column 2 of the array of tiles), the
initial row values come from the entries of cacheRow that border the tile, while the initial
column values come from the entries of the right-most column of the top-left tile. The two
tiles neighboring the top-left tile can be computed in parallel on two different processors.

The processing of the tiles advances on a diagonal-like front. In Figure 3.2, each diagonal
of tiles labeled with the same number forms a wavefront line. At the P* step, all the P
processors can work in parallel because the wavefront line consists of exactly P tiles. The

28

Wavefront parallelism

z — 1 e ~“_ cacheRow
1] 2]3 2 z
7213 z :

ALY MRAY
N w
4\
h
\
»
[t}
&

o0
- Tiles

o = Zcmf/
','(

~—7 C=12

v=3
cacheColumn

Figure 3.3: Data Partitioning for Parallel Fill Cache Subproblems

parallel computation ends when all the R x C tiles have been computed. More details on
how the parallel work is organized are provided in the next section.

When the parallel phase ends, all the d.p. matrix entries are available in shared memory.
As in the sequential version of the full matrix algorithm, one of the processors builds an
optimal path which extends from the bottom-right corner of the d.p. matrix to its left or
upper boundary.

For each Fill Cache subproblem, the logical dynamic programming matrix is already
split in k% smaller matrices, the logical sub-matrices introduced in Section 2.3. However,
the Fill Cache subproblems are much bigger than the Base Case subproblems and, in order
to control the granularity of the parallel work, each of the k2 — 1 sub-matrices that need
to be computed in this phase is further divided into u x v equally sized tiles (Figure 3.3).
The result is a grid of finer granularity than the FastLSA grid. This new grid partitions
the d.p. matrix in (k%2 — 1) x u x v tiles that are to be processed in parallel. These tiles are
placed along R = k x u rows and C = k x v columns. In Figure 3.3, k =4, u=2,andv =3
are examples of possible values for these parameters. Because of this choice of parameter
values, the tiles are laid out as an array of R = 8 rows and C = 12 columns.

The parallel processing starts with one processor computing the entries of the top-left
tile. The algorithm used to compute the entries corresponding to a tile is similar to the
algorithm LastRow from Figure 2.3, Section 2.2. This algorithm computes the entries of
the tile using linear space. The values of the entries forming the right-most column and the
bottom-most row of the tile are saved in a special cache, referred to as Tile Cache (Figure
3.4). The Tile Cache and the Grid Cache are both allocated in shared memory.

The Tile Cache is needed in order to allow the parallel computation to progress. For
example, after the right-most column and the bottom-most row of the top-left tile are saved

29

Wavefront parallelism

WA P o O kL
H 1] 2|3 Z Z
[1 1 .
] - e Gnd Cache
1 2| 3] ‘ -
L -z P e 7 o~ e
b1 -1 &
H 3 z Z S
z 2 =1~ Tile Cache
o —
bt
g[
= A
Recursion

Figure 3.4: FastLSA Grid Cache and Tile Cache for Parallel Fill Cache Subproblems

in the Tile Cache, step 2 of the parallel processing can start. At step 2, two processors
can start processing in parallel the two tiles which neighbor the top-left tile (i.e., the tiles
labeled with 2 in Figure 3.4). For each of the two tiles, the initial row values and the initial
column values are available from the Tile Cache. At the P*" step, all the P processors
can work in parallel because the wavefront line consists of exactly P tiles. The parallel
computation ends when all the (k? — 1) x u x v tiles have been computed. More details on
how the parallel work is organized are provided in the next section.

Figure 3.4 shows the Grid Cache delimiting the FastLSA sub-matrices and the Tile
Cache delimiting the tiles. The bottom-right sub-matrix is not partitioned into tiles in this
phase because it will be solved through a recursive call to Parallel FastLSA.

As can be seen in Figure 3.4, the Grid Cache always overlaps a subset of the Tile
Cache, except for the boundaries of the bottom-right sub-matrix. The left-most column
and the upper-most row of the two caches are initialized using the cache values received as
input in cacheColumn and cacheRow, respectively. As mentioned above, the processor that
computes the entries corresponding to a tile saves the entries from the right-most column
and bottom-most row in the Tile Cache. These entries are also saved in the Grid Cache if
they are overlapped by a Grid Cache column or a Grid Cache row. Note that the tiles in
the bottom-most row (i.e., the R** row) and those in the right-most column (i.e., the Ct*
column) form degenerate cases where only the right-most column or the bottom-most row
is saved.

After all the tiles have been processed, the FastLSA Grid Cache has been filled and
the Tile Cache can be deallocated. Then, Parallel FastLSA is applied recursively to the
bottom-right sub-matrix (Figure 3.4). Note that new caches of each type, FastLSA Grid
Cache and Tile Cache, are allocated in shared memory for each Fill Cache subproblem
solved.

3.2 Implementation Details

As mentioned in the previous section, tiles cannot be processed in an arbitrary order. A tile
can be processed only if the entries of the row preceding its top-most row, and the entries
of the column preceding its left-most column are already in the Tile Cache. This means
that the tile directly above a tile X, and the one immediately to the left of X, must have
already been processed before X can be processed. This strict dependency is present for
both the parallel full matrix algorithm and the parallel computation of the FastLSA Grid
Cache. For this reason, the two types of parallel regions used by Parallel FastLSA can be
implemented using the same strategy for the distribution of parallel tasks.

We have investigated two solutions to the problem of assigning the tiles that are ready
to be processed to the processors that are available. In the first solution, the tiles that
are ready to be processed are placed in a work queue, and a processor that needs work
dynamically dequeues a tile from the queue. In the second solution, entire rows of tiles are
preassigned to the processors, and each tile is processed as soon as it becomes ready. These
two approaches are explained in detail in the following subsections.

3.2.1 Dynamic Distribution of Work

Initially. only the top-left tile, which is labelled 1 in Figure 3.4, can be processed because it
is the only tile for which both the initial row and the initial column values are known. The
top-left tile is placed in the work queue, which is allocated in shared memory. Every time
parallel computation is performed, this queue contains references to the tiles that are ready
to be processed. Inside parallelFillGridCache() and parallelSolve FullMatriz(). all processors
try to grab a tile from the work queue and execute the task associated with it. For a Fill
Cache subproblem, the task is to fill the cache entries adjacent to the tile and not known
previously. For a Base Case subproblem, the task is to compute the values of the tile entries.

A processor that finds the queue empty is blocked until a tile becomes available for
that processor. A reservation mechanism is used in order to avoid the starvation of certain
processors, and to reduce the contention for the queue access. In essence, a monitor is
associated to each queue slot.

After finishing working on its assigned tile, a processor checks to see if it can place in
the queue the adjacent tile to the right, or the adjacent tile below. For example, a tile X,
neighboring the current tile to the right, can be placed in the work queue if and only if the
tile above X has also been processed. This condition ensures that both the initial row and
the initial column values are known for X.

The condition stated above can be implemented by associating a counter to each tile.
The counter of a tile X is incremented by the processor which processed the tile above
or to the left of X. The processor which increments the value of the counter to 2 is also
responsible for placing X in the work queue. Note that the tiles from the first row and
the first column have their counters set to 1 initially, because some of the initial values for

31

Wavefront parallelism

- 2 2 .
p=0 =>4 2)3 Grid Cache
p=1 d 2| 3] / o
: H 3 '~~~
. Tile Cache
p=P-1
p= __ ! =t /Tiles
P %

Figure 3.5: Paruallel FastLSA: Static Distribution of Work

these tiles are already available. The counter of the top-left tile is set to 2 initially, while
the counters of all the other tiles start at 0.

After the tile labelled 1 is computed, the tiles labelled 2 in Figure 3.4 can be placed in
the work queue. After those tiles have been processed, more tiles (labelled 3) can be placed
in the queue, in a pattern known as wavefront parallelism. Note that the tiles labelled 3
need not be placed in the work queue all at the same time. They become available for
processing as soon as the tiles labelled 2 have been computed.

The parallel processing region ends when all the designated tiles have been computed.
Filling the Grid Cache in parallel requires the processing of

(k2 -1)xuxv=RxC-uxuv tiles,

while the parallel full matrix algorithm computes the values of R x C tiles. Note that
the values of R and C need not be the same for both the full matrix and cache filling
computations. Furthermore, some of the tiles can be empty when R and C are bigger than
the dimensions of the input d.p. matrix.

3.2.2 Static Distribution of Work

This is another solution to the problem of allocating the tiles, which are dependent in a
wavefront manner, to the P processors available. As shown in Figure 3.5, each of the R
rows of tiles is assigned to a processor in a circular fashion. The first processor (i.e., p = 0)
starts by solving the top-left tile, which is the only one with initial row values and initial
column values available. After the top left tile has been solved, the tiles labelled 2 in Figure
3.5 can also be computed. The first processor computes the second tile in the first row,
while the second processor computes the first tile in the second row. As soon as the second

processor finishes its first tile, the third processor can start working on its first tile, and so
on.

32

The solution described above is a round-robin mechanism for work distribution, similar
to that presented in [Martins et al., 2001]. The static distribution of work solution deals
with the dependency between tiles without using a queue or system locks. Each processor
p busy waits until the tile above its current tile is solved by the processor p — 1 (mod P).
At this point, p can start working on its current tile. When p finishes the last tile on its
current row, T, it moves to the next row that was preassigned to it, r+ P. If r + P > R,
the row r is the last row on which the processor p worked. The entire computation finishes
when all the tiles have been processed.

The busy waiting mechanism relies heavily on the capacity of each processor to refresh
its cache quickly. Each time the processor p finishes solving a tile, an index is incremented,
and the processor p + 1 (mod P) must be notified of the new value of the index. This is
why each processor not working on a tile, continuously probes the index associated with
the previous row.

3.3 Space and Time Complexity

We argue that Parallel FastLSA still uses linear space and that the time complexity of the
algorithm is still quadratic. We prove this claim by finding a linear upper bound for the
space complexity of Parallel FastLSA and by finding a quadratic upper bound for its time
complexity. This section focuses on the derivation of the space and time expressions that
are upper bounds for the space and time complexity of Parallel FastLSA.

3.3.1 FastLSA Recursion Pattern

In order to compute the amount of space and time required by Parallel FastLSA to align
a sequence of size m against a sequence of size n using a FastLSA Grid Cache of size k,
one needs to know the trace of the FastLSA algorithm. A trace of FastLSA is a series of
FastLSA subproblems solved by the recursive calls to FastLSA, and which are listed in the
exact order in which they are solved. A typical series for PFastLSA(m,n,k) is:

PFastLSA(m,n, k) = PFillCache(m,n,k), PFastLSA(%, &.k),

(3.1
PFastLSA(my.ny,k),..., PFastLSA(m;,n.,k);)

where PFillCache(m,n, k) is the initial Fill Cache subproblem, PFastLSA(E, },k) is the
recursive call to the bottom-right subproblem, and PFastLSA(m;, n;, k), i = 1,z are the
subproblems solved recursively inside the while-loop of the algorithm (i.e., the call in line
13 from Figure 3.1). Depending on the configuration of the optimal alignment path that is
followed by the FastLSA algorithm, z can take values between & — 1 and 2k — 2. Details
about the values of z in the best case and worst case scenarios can be found in [Charter
et al., 2000]. Comprehensive analysis of the time and space complexity of the sequential
FastLSA algorithm is presented in [Charter et al., 2002].

33

Given a Base Case buffer of size BM, the deepest level of recursion reached by FastLSA
is a positive integer, a, with

mx B < BM < By ox B (3.2)
This is equivalent to
log mxn log mXn
o-1<EE <o 5] o (33)

3.3.2 Space Complexity

Definition 1 Let S(m,n, k) be the mazimum number of d.p. matriz entries that need to be
stored in order to align a sequence of size m against a sequence of size n using a grid cache

with k rows and k columns.
The following result shows that S(m,n, k) is linear in m and n.

Theorem 2 Let S(m,n, k) be defined as in Definition 1. If the tiles for each Fill Cache
subproblem are laid out in R rows and C columns, then

S(m.n,k) < Bk-1)x(m+n)+Exn+RxC—-uxv+BM. (3.4)

Proof. For an algorithm trace such as that in Equation 3.1,
S(m,n, k) = maxSpace(PFastLSA(m,n,k))
= max (maxSpace(PFillCache(m, n,k)).

GridSpace(m, n. k) + maxSpace(PFastLSA(%, £, k)), (3.5)
GridSpace(m,n, k) + maxSpace(PFastLSA(m,,n;,k)),...,

GridSpace(m.n,k) + maxSpace(PFastLSA(m.,n., k))) .
Because 2t > m; and § > n;, Vi,1 <1 < z, the following is true:
maxSpace(PFastLSA(T, £.k)) > maxSpace(PFastLSA(m;,n;, k)),Vi,1 <i <z (3.6)
Equation 3.5 becomes
S(m,n,k) = max (maxSpace(PFillCache(m,n, K)),
GridSpace(m,n, k) + maxSpace(PFastLSA(T, ¢, k)))

= max (maxSpace(PFillCache(m, n,k)), GridSpace(m,n, k) + S(, %, k)) .
(3.7)

For the current implementation of the Parallel FastLSA algorithm, PFillCache(m,n, k)
uses (k —1)(m +n) entries to store the local copy of the FastLSA Grid Cache, (k—1)(m+n)
entries to store the global, shared copy of the Grid Cache, m + n entries to store the Tile
Cache, R x C — u x v entries to store the upper-left corner of each tile, and 2 entries on
each processor for computing a tile using a modified version of the LastRow algorithm. In

summary,
maxSpace(PFillCache(m,n,k)) = A(m,n, k) = (k- 1)(m +n)+ (k= 1)(m +n) +
+(m+n)+RxC—-uxv+P3
=(2k—1)(m+n)+RxC—uxv+gn,

(3.8)
and
GridSpace(m,n, k) = (k — 1)(m +n). (3.9)
Using the previous two results, Equation 3.7 becomes
S(m,n, k) = max(A(m,n,k), (k= 1)(m +n) + S(F. %,k))
= max(A(m, n,k), (k- 1)(m +n) +

+ max(A(%, 5E), (k- 1)2E2 + S5, ,ﬁr,k)))

= max(A(m,n,k),max ((k - 1)(m +n) + A(E, 5. k), (3.10)

(k=1)(m+n)+ (k- 1) +S(E, &, k))
= ma.x(max(A(m n.k),(k—1)(m +n) + AR, }, k))
(k - 1)(m+n)(1+§)+5(§,£5,k)).

In order to unwind the recursive formula from Equation 3.10, the result of Lemma 3 is
used. Note that the result and the proof of Lemma 3 are given immediately after the proof
of Theorem 2. Lemma 3 states that if A(m,n,k) is defined as in Equation 3.8, then

A(m,n,k) > (k- 1)(m+n)(1+ ¢+ + g=2) + A2, o221, 4), V5,2 < j <. (3.11)
For example, for j = 2, the inequality of Lemma 3,
A(m,n.k) 2 (k ~ 1)(m +n) + A(Z, 2,k), (3.12)
can be rewritten as

a.x(A(m, n.k), (k- 1)(m +n) + A(R, 3, k)) = A(m,n,k). (3.13)

35

By rewriting the inequalities of Lemma 3 for every value of j, exactly as done for j = 2.
and by using the resulting equalities at every step of the unwinding of the recursive relation,
we obtain:

S(m.n,k) = ma.x(A(m,n,k), (k-1)(m+n)(1+ 7‘;) + S(3=- f_r,k))

1 1 (3.14)
= max(A(m,n,k), (k-1(m+n)(1+¢+---+ kT—T) +5(3, 'E"-”k))

= ma.x(A(m,n,k),k(m +n)(1 - &) + S(&, k%,k)).

Because PFastLSA(fz, z=. k) is a Base Case subproblem, S(i%, 7=,k) < BM; thus,
S(m,n, k) is bounded above by

max(A(m,n,k),k(m +n)(1 - k—l.;) + BM) < A(m,n, k) + k(m +n)(1 - k—f,—) + BM
< A(m,n,k) + k(m +n)+ BM =
=R2k-1)(m+n)+ RxC—-uxv+
+gn+k(m+n)+BM
=@k-1)x(m+n)+En+

+RxC—-uxv+ BM.
(3.15)

Therefore,
S(m.n.k) < (Bk—-1)x(m+n)+Exn+RxC—uxv+BM, (3.16)
which concludes the proof of Theorem 2. ®
Lemma 3 Let A{m,n,k) be defined as in Equation 3.8. Then
A(m,n.k) 2 (k=1)(m+n)(1+ ¢+ + g=2) + A8, 521.k), V5,2 < j <a. (3.17)
Proof. Let j be such that 2 < j < a. The inequality becomes
A(m,n.k) 2 (k= D)(m+n)(1+ 1+ + gt) + A(Er g2r.k) &
A(m,n.k) — AR, g2 k) 2 k(m +n)(1 - gh) & (3.18)
(2k — 1)(m +n)(1 - 5Er) + &n(l = 5h1) 2 k(m +n)(1 —).
1

Because -gn(l — =) 2 0, it is sufficient to prove that

2k —1)(m+n)1-g5)2km+n)(1-) e
2k-1) >k (3.19)
k>1,
which is true. Therefore, the inequality of Lemma 3 is true V4,2 < 7 <a. ®

36

3.3.3 Time Complexity

Definition 4 Let WT(m,n .k, P) be the time spent by the slowest of the P threads involved
in the parallel alignment of two sequences of size m and n, using a grid cache with k rows

and k columns.

The time spent by the slowest thread, WT'(m,n.k, P), is a good upper bound for the time
complexity of Parallel FastLSA. An upper bound for WT'(m, n, k, P) itself is established by
the following result.

Theorem 5 Let WT(m,n, k, P) be defined as in Definition 4. For simplicity, assume that
the tiles processed in a parallel phase are laid out in R rows and C columns for both the Fill
Cache and the Base Case subproblems. Then

WT(m,n,k, P) < B¥% x (1+ 5=8) x (g4)2. (3.20)

Proof. Let PFillCacheT (M, N, k, P) be the time spent by the slowest of the P threads
when solving a Fill Cache subproblem of size M x N. From the definition of WT' (m, n,k, P)
and that of a trace of the FastLSA algorithm (i.e., Equation 3.1), it can be inferred that

WT(m,n.k, P) = PFillCacheT(m,n,k, P) + (2k — 1) x WT (2. £, k, P). (3.21)

The first step of the proof is to find a good approximation for PFillCacheT(M,N,k, P).
As explained in Section 3.1, the d.p. matrix entries that are computed in order to fill the
Grid Cache are partitioned in R x C — u x v tiles. Some of the tiles can be empty, so
this number is actually an upper bound. If the Fill Cache subproblem has M rows and N
columns, each tile has at most % x % entries. Let T be the time spent by one processor to
compute a tile sequentially. Because each tile is solved using the LastRow algorithm from

Figure 2.3, we have T = O(%:g .

As shown in Figure 3.4, the computation of the tiles advances following a diagonal
wavefront pattern. In Figure 3.4, each diagonal of tiles labeled with the same number
forms a wavefront line. A wavefront line is important because the tiles that form it are
independent and can be computed in parallel.

The computation of the tiles for a Fill Cache subproblem can be divided into three
distinct phases. Figure 3.6 shows the three phases corresponding to a Fill Cache subproblem
which is solved on P = 8 processors, using k = 6, u = 2, and v = 3. Each wavefront
line is labeled with the number of tiles that form that particular wavefront line. A good
approximation for PFillCacheT(M,N,k, P) can be found using an upper bound for the
time spent in each phase.

In the first phase, the number of tiles in each wavefront line increases from 1 to P—1. In
this phase, a total of ﬂ%l tiles are computed. In the worst case scenario, each wavefront
line is solved in a parallel stage that lasts a time of T'; thus, the time spent on the first
phase is at most (P — 1)T.

37

First Phase Wavefront Lines Second Fhase Wavefront Lines

. z

v v
& DAVAV. WAV,
2/‘2 //’,
ck WAWAV.:
A S
sy, 7=P-1
SJE 6
7
6 Ly S=zu+vV
P-1= 3
1
N
u=2
7 rd
v=3 Third Phase Wavefront Lines

Figure 3.6: The Three Phases of a Parallel Fill Cache Subproblem

The third phase consists of the wavefront lines that are formed from less than P tiles
and that are not computed in the first phase. An example of wavefront lines forming a third
phase is depicted in Figure 3.6. Some of the wavefront lines of this phase may not consist
of contiguous tiles because the tiles belonging to the bottom-right FastLSA subproblem are
not computed for a Fill Cache subproblem (e.g., the wavefront line labeled 3 in Figure 3.6).

The third phase has at most the same number of wavefront lines as the first phase. i.e.,
P — 1. Because each wavefront line can be solved in a parallel stage of time T, the third
phase cannot last longer than (P —1)T. The number of tiles that are computed in the third
phase is difficult to estimate for general values of P, u, and v, but a lower bound for this

number is ﬂ?l

—uxu.

The second phase is the true parallel phase. Enough tiles are available so that all
processors can work in parallel. An upper bound for the number of tiles computed in this
phase is the total number of tiles, minus the number of tiles computed in the first phase

and the lower bound for the number of tiles computed in the third phase, i.e.,

(RxC-uxv)—E2ED _(BED _ 4y xy)=RxC-P*+P. (3.22)

Because these tiles are computed in parallel, the time spent in the second phase is

ng_c:-FP?_+fl x T. (3.23)

Note that we need a lower bound for the number of tiles computed in the third phase in
order to compute an upper bound for the time spent in the second phase.

38

An approximation for PFillCacheT (M, Nk, P) is obtained through the summation of
the times for the three phases, which gives

PFillCacheT(M,N,k,P) = (P -)T + BxC=PX+P)p (p_ T
— (RxC+P*-P)p

- P
(Rfo:;Rf)Cx MxN (3'24)
=Mx N x (1+P'°P)
=Mx N x a,
where
a=L5(1+E2=E8). (3.25)

Let PBaseCaseT (M, N, P) be the time spent by the slowest of the P threads when solv-
ing a Base Case subproblem of size M x N. An approximation for PBaseCaseT (M, N, P)
is obtained through a reasoning process similar to that used for PFillCacheT (M, N, k, P).
We get

PBaseCaseT(M,N,P)= (P —1)T + (Rx C - BEZ0 _ PE-INT 4 (p_)7
=(P-1)T + &P\ (p_1)T
=MxNx 5(1+ RxC)
=M x N x a.

(3.26)

Using the results of Equation 3.24 and Equation 3.26, Formula 3.21 becomes
WT(m,nk,P)=mxnxa+(2k-1)x WI(Z, %,k P)
=mna+ (2k - 1)(Fra+ (2k - 1)WT(3, &. k. P))
=mna + mna®Ft + (2k - 1)’WT(&, &.k, P)
= mna + 'mn.azz'fc Ly mna("‘ 12 4 (2k - 1)3WT(F;, , k, P)

=mna(l + &t + (B2 + - + (BN + (26 -)WT(E, &. k. P)
=mna(l + 271 + .- + (%51)°7!) + (2k - 1)*PBaseCaseT(E, &, P)
=mna(l + %zl +--- + ()Y + 2k - 1)* B fea

mna(1+!__+ +(2k—1)a— +(°k l)a)

1_(&;_1)@»1
=mno —1
-5

(3.27)

Because (2%71)3+1 > 0, we have

=1)c+l

2k
WT(m,n,k,P) = mna%%— !_1

Tk (3.28)
< mnal—ﬁfl- = mna(k"j)2.
“TkT

39

By replacing a with its value (Equation 3.25), it becomes true that

WT(m.n k, P) < mna(E;)? = X8 x (14 B2=Py x ((£1)2, (3.29)

which concludes the proof of Theorem 5. ®

3.4 Concluding Remarks

This chapter introduces Parallel FastLSA, which is a new parallel algorithm for optimal
pairwise sequence alignment. We present a detailed description of Parallel FastLSA and
explain the wavefront parallelism that is used by the algorithm. The description of Parallel
FastLSA includes details of the logical structures involved in the parallel computation of
each of the two types of FastLSA subproblems, Fill Cache and Base Case.

We also provide details of the two strategies that we use to allocate parallel tasks to
processors. In the first strategy, Dynamic Distribution of Work, the tiles that are ready for
processing are placed in a queue from where the processors dynamically dequeue them. In
the second strategy, Static Distribution of Work, entire rows of tiles are preassigned to pro-
cessors in a round-robin fashion. Each of these strategies leads to a different implementation
for Parallel FastLSA.

We show that Parallel FastLSA still has linear space complexity by deriving a linear
upper bound for the maximum number of d.p. matrix entries that need to be stored at any
time during the execution of the algorithm (Theorem 2). We also derive an upper bound
for the maximum number of d.p. matrix entries that are computed by Parallel FastLSA,
and conclude that its time complexity is still quadratic (Theorem 5).

Chapter 4

Experimental results for Parallel
FastLSA

The previous chapter provides upper bounds for the space and time complexity of Parallel
FastLSA. Although these results show what type of curve the space and time requirements
of Parallel FastLSA follow, they do not show that good speedups can be achieved in practice
when running Parallel FastLSA on P processors.

Because of this drawback of the theoretical analysis, we have run a large number of
experiments in order to assess the empirical efficiency of Parallel FastLSA. Our experiments
with Parallel FastLSA show good speedups, especially when long sequences are aligned.
The speedups are almost linear for 8 processors or less. This chapter describes some of the
experiments performed, and explains in detail the results obtained.

4.1 Experimental Methodology

We present results from the experiments we have performed with Parallel FastLSA on an
SGI Origin 2400 parallel computer. The Origin 2400 has 64 processors (400 MHz R12000
MIPS CPUs), each with a primary data cache of 32 KBytes and a unified 8 MB secondary
cache. The Paruallel FastLSA algorithm is immplemented in C using Irix 6.5 sproc threads
with hardware-based shared memory. The sequential version of the FastLSA algorithm is
an independent, non-commercial implementation based on the original description [Charter
et al., 2000] and discussions with the designers of the algorithm. The FastLSA implemen-
tations that we benchmark find the globally optimal alignment of two sequences using the
straightforward scoring function discussed in Section 1.3 (i.e., Match = 2, Mismatch = -1,
Gap_Penalty = -2).

This chapter discusses in detail the experimental results corresponding to the alignment
of three pairs of DNA sequences which are chosen from a test suite suggested by the bioin-
formatics group at Penn State University [Penn State University, 2001a]. Most of their
examples are comparisons of “some region of the human genome with the synthenic region
from a rodent genome” [Penn State University, 2001c]. We feel that it is important to

41

apply Parallel FastLSA to real life examples. These pairs are considered as a test suite,
not only because of their size, but also because their alignment is biologically meaningful.
Although we have experimented with several more pairs of DNA sequences, we choose to
present results for the pairs of shortest and longest sequences, and another pair of sequences

of medium size.

1. The shortest sequence pair is formed by the XRCC! DNA repair gene from human
beings and mice. The XRCC1 gene encodes an enzyme involved in the repair of X-ray
damage [Penn State University, 2001¢c]. The human sequence is 37,785 bp long, and
the mouse sequence is 37,349 bp long.

)

The medium size sequences are the “cardiac myosin heavy chain genes” (abbreviated
Myosin) [Penn State University, 2001¢] from human beings and hamsters. The human
sequence is 55,820 bp long, and the hamster sequence is 66,315 bp long.

3. The longest sequence pair consists of the human and mouse alpha/delta T-cell receptor
loci (abbreviated TCR). These sequences “show an unusually high level of conserva-
tion” [Penn State University, 20015). The human sequence is 319,030 bp long, and
the mouse sequence is 305,636 bp long.

Throughout the benchmarking process discussed in this chapter, all parameters intro-
duced in Section 3.1 are assigned constant, empirical values. We opt for this solution
because Parallel FastLSA involves eight parameters that can vary, and tuning all of them
is a complicated task. Choosing empirical values for the parameters is justified by the fact
that we are interested in establishing reasonable performance for Parallel FastLSA rather
than optimal performance. In the future, we hope to further explore the parameter space.

Table 4.1 summarizes the parameters involved in the FastLSA algorithms and the values
assigned to them. After running a series of experiments with different values for u, v and
k we restricted ourselves to these empirically validated values. These values are deemed to
provide the FastLSA algorithms with the opportunity to run reasonably fast. In particular,
Parallel FastLSA is run with R = 8, C = 10 for the Base Case subproblems, and u = 3,
v=4 (ie., R=3 x k, C = 4 x k) for the Fill Cache subproblems. These preset values are
used for each FastLSA subproblem, independently of its size or level of the recursion.

The only parameters which vary during the benchmarking process are k and the size of
the sequences aligned. The parameter & iterates from 8 to 12 in order to assess the impact
which the size of the FastLSA Grid Cache has on the performance of the algorithm. The
Base Case bufler size, BM, is assigned the constant value of 1,600,000. Note that these
last parameters influence the performance of both the sequential and the parallel versions
of FastLSA.

The parameter values that we have chosen for u, v, and k are non-optimal for P = 32,
and the explanation of this fact follows. The logical d.p. matrix is divided in 3 x k rows and

42

Parameter Name | Parameter Value | Notes
Constant u 3 | number of rows of tiles
between consecutive
Grid rows;

v 4 | number of columns of
tiles between
consecutive Grid
columns;

BM 1,600,000 | size of Base Case
buffer in integers;

R 8 | total number of rows
of tiles for a Base Case
subproblem;

C 10 | total number of rows
of tiles for a Base Case
subproblem;

Variable P 1, 2, 4, 8, 16, 32 | number of processors;

k 8-12 | number of Grid rows
and columns;

R 3 x k | total number of rows
of tiles for a Fill Cache
subproblem;

o 4 x k | total number of rows
of tiles for a Fill Cache
subproblem;

size of d.p. matrix 37,349 x 37,785 | XRCC1;
55,820 x 66,315 | Myosin;
305,636 x 319,030 | TCR.

Table 4.1: The Parameters which Influence the FastLSA algorithms

4 x k columns of tiles for each Fill Cache subproblem. Because the wavefront line can have
no more tiles than the shortest dimension of the array of tiles, the wavefront line can have
at most 3 x k tiles for our parameter values. When k is less than 11, the wavefront line
consists or less than 32 tiles, which means that 32 processors cannot all work in parallel.
Despite this theoretical disadvantage, we observed that, for P = 32, k = 8 is the empirical
optimum for the alignment of the XRCC1 sequences, while k = 9 is the empirical optimum
for the Myosin sequences.

The performance results for Parallel FastLSA presented in this chapter are obtained us-
ing an implementation based on the Dynamic Distribution of Work strategy. This strategy
of work distribution is introduced in Subsection 3.2.1. We have also benchmarked an im-
plementation based on the Static Distribution of Work strategy, but choose not to present
separate results for it because they are similar to those obtained for the implementation
based on the Dynamic Distribution of Work strategy.

The version of Parallel FastLSA analyzed in this chapter solves the Base Case sub-
problems sequentially. This modified version of Paruallel FastLSA is preferred to the one
described in Section 3.1 because of its better performance. The performance numbers show

43

that solving the Base Case subproblems in parallel is consistently and considerably slower
than solving them sequentially. The comparison is made between the total time spent
on solving Base Case subproblems by Parallel FastLSA and the sequential FastLSA. Our
intuition is that the Base Case subproblems are too small to benefit from parallelism. Sec-
tion 4.7 gives a clear picture that the version of Parallel FastLSA that solves the Base
Case subproblems sequentially outperforms the initial version, which solves the Base Case
subproblems in parallel.

The SGI machine used to benchmark FastLSA, both sequential and parallel, can be
accessed only through a batch queueing and workload management system (Portable Batch
System [Veridian Systems, 2001]). Although the SGI Origin is a multiprogrammed com-
puter, the performance numbers are quite stable from one execution to the other. In order
to remove the small, unpredictable noise generated by the operating system, three consecu-
tive runs are performed for each set of parameter values which is benchmarked. The three
time samples obtained for each run are averaged.

The performance of the FastLSA algorithms is optionally instrumented by recording
relevant trace information during their execution. The total execution time, the total time
spent on each FastLSA subproblem, the type of each subproblem and its coordinates in
the initial d.p. matrix are saved in a trace file created for every combination of P and
sequence pairs. In addition to the above information, for every Fill Cache subproblem,
Parallel FastLSA also records per thread information such as the time for computing a
tile and the time spent at the barrier that follows the parallel region. All the graphs and
tables presented in this chapter are generated by processing the information collected in
the trace files. Because the trace collecting mechanism was always on, the total execution
times shown here may be slightly bigger than in reality.

4.2 General Observations

As mentioned in the previous section, the sequential and parallel versions of FastLSA are
benchmarked for each value of k from 8 to 12, and for each of the three pairs of sequences.
Ideally, we should have devised a simple, reliable heuristic which produces an optimal value
for k, given the size of the sequences and P, the number of processors used. This optimal
value would ensure that the overall alignment time is in a close vicinity of the theoretical
optimal time. However, the relationship between the optimal value of k, P, and the size
of the sequences is not straightforward, and this makes the development of such a heuristic
challenging. We note from the results obtained that, in most of the cases, there is a small
number of neighboring values that can be chosen as empirically optimal values for k. The
values outside this small interval, when assigned to k, worsen the time performance of
the algorithm. The 8 to 12 interval for k was chosen after repeated probing for optimal
values. This interval includes an empirical optimal value for k in most of the combinations
benchmarked.

44

XRCC1 —e—
Myosin ——
TCR —-—

2| L:pear =]

Speedup

16

12 4 8 16 32
Processors

Figure 4.1: Best Speedups for XRCC1, Myosin, and TCR

In order to simulate the effect of such a heuristic on the time performance of Parallel
FastLSA and to provide a quick first look into the results of our experiments, we have
selected for each pair of sequences and each number of processors the best execution time
across the five values of k that were considered, and then computed the speedups. The
resulting speedup curves are shown in Figure 4.1. Table 4.2 shows the empirically optimal
execution time for each sequence alignment performed and the corresponding empirically
optimal value for k.

For the pair of short sequences, XRCC!, the speedup is linear for 2 and 4 processors,
but starts deteriorating when 8 or more processors are used. The slowdown from 16 and 32
processors occurs because the granularity of the work assigned to each processor decreases,
leading to a situation where the processors spend more time trying to get a tile on which
to work rather than actually working on it.

The speedup curve for the alignment of the Myosin sequences ascends almost linearly
for up to 8 processors, increases slowly for 16 processors, and almost flattens for 32 proces-
sors. This noticeable improvement of the performance of Parallel FastLSA happens because
the d.p. matrix computed for the Myosin sequences has 2.6 times more entries than the
d.p. matrix computed for the XRCC1 sequences. The larger Myosin d.p. matrix provides
better granularity for the parallel tasks, but not enough to satisfy 32 processors.

The best speedup curve is obtained for the largest sequences that are aligned. As
mentioned above, both TCR sequences are over 300,000 base pairs in length. Because of
the large problem, the granularity of work is reasonable and the speedup becomes slightly

45

Sequences Number of | Time (sec.) Speedup Optimal &
Processors

XRCC! 1 71.71 12
2 33.44 2.14 11

4 18.05 3.97 10

8 10.44 6.87 9

16 7.94 9.03 9

32 8.72 8.22 8

Myosin 1 189.71 12
2 85.54 2.22 12

4 44.92 4.22 11

8 24.89 7.62 11

16 17.52 10.83 1

32 17.91 10.59 9

TCR 1 5040.93 12
2 2202.65 2.29 12

4 1128.56 4.47 12

8 597.66 8.43 12

16 370.07 13.62 12

32 292.84 17.21 12

Table 4.2: Empirically Optimal k, Execution Times, and Speedups

super-linear for 8 processors or less. The super-linearity of the speedup is due to cache
effects, which are a reality of any ccNUMA architecture, including the SGI Origin [Laudon
and Lenoski, 1997].

For 2 to 8 processors, the time spent by Parallel FastLSA on servicing memory accesses
is significantly lower than that spent by the sequential FastLSA. The decrease of memory
access time, coupled with the decrease in computing time caused by parallelism, makes the
speedup of the Parallel FastLSA super-linear. Specifically, the memory requirements for
aligning the TCR sequences are substantial for at least the initial Fill Cache subproblem.
When the sequences are aligned on only one processor, the L2 data cache is not large enough
to hold all the data accessed by the processor, and large numbers of data cache misses are
incurred. Because the FastLSA Grid Cache is allocated at different points in the ccNUMA
architecture, servicing data cache misses can be expensive. When the sequences are aligned
in parallel, there are better chances that the cache of each processor can hold its working
data set.

The speedup curve for TCR is steeper from 8 to 16 processors than the speedup for
Myosin, and a reasonable improvement of the performance occurs for 32 processors. The
speedup curve increases from 16 to 32 processors with a slope of 0.22 - which is close to
0.27, the slope of the speedup curve for XRCC! between 8 and 16 processors.

In our experiments, we have also found that the majority of the alignment time is
spent solving the initial Fill Cache subproblem. For each alignment operation performed
by Parallel FastLSA, we computed the percentage of time spent on the initial Fill Cache

46

subproblem, out of the total execution time. For the TCR pair, this percentage ranges
from 87.86% for P = 1 to 77.08% for P = 16, and 67.53% for P = 32. We note that the
above defined percentage decreases with P, but increases with the size of the sequences; for
P = 16, the percentage is 59.03% for XRCC! and 63.40% for Myosin. Because of the design
of the FastLSA algorithms, the time spent on the initial Fill Cache subproblem depends
only on the size of the sequences, and not their particular configuration.

4.3 Description of Graph Types

In order to understand how the parameters and the design of Parallel FastLSA influence its
execution time, the remainder of this chapter is dedicated to a detailed empirical analysis
of the performance of the algorithm. For each pair of sequences aligned, the same series
of graphs is presented in order to facilitate cross-comparison. Most of these graphs present
performance numbers which are broken down in an attempt to approximate the distribution
of the time spent at different stages of an alignment.

Recall from Section 2.3 that FastLSA solves a succession of rectangular problems, called
FastLSA subproblems, using either a Base Case approach for the small subproblems, or a
General Case approach for the subproblems that do not fit in the Base Case buffer. Parallel
FastLSA solves the Base Case subproblems sequentially in the current implementation, but
it fills the FastLSA Grid Cache in parallel for the Fill Cache subproblems (Section 3.1).

The time spent by the FastLSA algorithms computing a pairwise alignment is primarily
determined by the total time spent by the algorithms on filling matrices for Base Case
subproblems, or filling Grid Caches for Fill Cache subproblems. Ideally, we would like to
present the time spent on each subproblem, and the breakdown times for each subproblem.
Unfortunately, because there are thousands of these subproblems for each sequence pair, an
approximation of the statistical distribution of the subproblem execution times is preferred.
The subproblems are clustered together based on the type or size of the subproblem, and
the execution times are accumulated for the subproblems inside each resulting partition set.
The clustering is done by processing the trace files, and the graphs obtained are presented
in the following three sections.

4.3.1 Subproblem Count Graph

Each series of graphs begins with a subproblem count graph which shows how many FastLSA
subproblems are solved during an alignment operation, and how large these problems are.
Note that the FastLSA subproblems which occur for a FastLSA alignment are determined
by the sequences, the size of the Base Case buffer and k, and are independent of the number
of processors used for the alignment. Therefore, only one counting graph is shown for each
pair of aligned sequences. This graph (e.g., Figure 4.2) consists of two plots: one for the
clustering based on the type of the subproblems, and the other for the clustering based on
the size of the subproblems.

47

Note that the clustering process described here is applied identically for all the metrics
benchmarked and reported in this chapter. For the clustering by type, the subproblems are
assigned to the Base Case set or the Fill Cache set according to their type. The plot for
the type-based clustering presents the number of subproblems in each of the two partition
sets for the five different values of k. The black bar on the left side of each pair of solid
bars represents the number of Base Case subproblems, whereas the red bar on the right
represents the number of Fill Cache subproblems.

The clustering by size is a further refinement of the type-based clustering. The Base Case
subproblems are distributed into three partition subsets based on their size (i.e., number of
d.p. matrix entries). The first partition holds the smallest subproblems, up to %BM in size;
the second partition holds those between %BM and %BM ; the third holds the biggest ones,
sized up to and including BM. For Fill Cache subproblems, the interval between BM and
the size of the initial d.p. matrix is evenly divided into five subintervals. Each subinterval
is assigned a partition subset to which a Fill Cache subproblem is distributed if its size falls
within that subinterval. The result is a cluster with three partition subsets for Base Case
and five partition subsets for Fill Cache.

The plot for the size-based partitioning shows eight bars for each value of k. The
three black bars on the left indicate the number of FastLSA subproblems in the Base Case
partitions, while the five red bars to the right indicate the number of FastLSA subproblems
in the Fill Cache partitions. The five groups of bars are separated by thin, vertical, blue
lines which are used only as dividers.

4.3.2 Execution Time Graphs

Execution time is one of the most important indicators of the performance of an algorithm.
Two graphs presenting the execution times for the FastLSA alignments are next in the series
of graphs that we lay out for each sequence pair. One of the two graphs shows the execution
times clustered based on the type of the subproblems, while the other shows the execution
times clustered based on the size of the subproblems. Each of the two graphs shows six
plots corresponding to the number of processors used for benchmarking. In the trace file,
the execution time is measured overall for the alignment operation and individually for each
FastLSA subproblem.

When the FastLSA subproblems are clustered based on their type, the time is added
separately for the Base Case subproblems and the Fill Cache subproblems. The results
are shown in each plot as stacked bars, with each stack corresponding to a value of k
(e.g., Figure 4.3). The cumulative time spent solving Base Case subproblems is shown as
a black bar, and above it, there is a red bar representing the cumulative time spent on Fill
Cache subproblems. The remaining time to the total time of the alignment is depicted as
a blue-filled bar which is stacked at the top.

For the size-based clustering, the times recorded for each subproblem are added sepa-

48

rately for each of the eight partition sets. The results are shown in each plot as groups of
filled bars, each group corresponding to a value of k (e.g., Figure 4.4). The three black bars
on the left side of each group correspond to the cumulative time recorded for each of the
three subsets of Base Case subproblems, while the five red bars on the right side represent
the cumulative time for the five partition subsets of Fill Cache subproblems. The groups
are separated by thin, vertical blue lines.

4.3.3 Speedup Graphs

Speedup is an accurate indicator of the effectiveness of Parallel FastLSA. An overall speedup
is computed for every Parallel FastLSA alignment benchmarked, and breakdown speedups
are computed for each partition set. The breakdown speedup for a partition set is computed
by dividing the cumulative sequential time for that set by the cumulative parallel time for
that same set.

Two graphs that show speedups for Parallel FastLSA follow the execution time graphs
in the series. The first graph shows speedups for the clustering based on type; the second
shows speedups for the clustering based on the size of the subproblems. Each of the two
speedup graphs shows five plots which correspond to the five different numbers of processors
used for benchmarking Parallel FastLSA.

The graph plots for the type-based clustering show the speedup for the set of Base Case
subproblems as a black-filled bar, the speedup for the set of Fill Cache subproblems as a
red-filled bar, and the overall speedup as a blue-filled bar. For each value of k, a group of
three distinct filled bars is shown (e.g., Figure 4.5).

The graph plots for the size-based clustering have a layout similar to that of the graph
plots for the size-based clustering of the execution time (e.g., Figure 4.6). For the partition
sets that do not contain any FastLSA subproblems, the speedup is shown as 0.

4.3.4 Barrier Time Graphs

The series of graphs ends with two graphs that illustrate the delays that occur at the barriers
following the parallel regions. These graphs give a measure of the delay incurred by each
parallel region to the alignment process. A shorter delay at barriers is preferable.

The parallel region of a Fill Cache subproblem is the parallel filling of the Grid Cache.
The barrier time is computed for each Fill Cache subproblem as the time elapsed between
the arrival of the first thread at barrier, and the arrival of the last thread at barrier. Because
each Base Case subproblem is solved sequentially by the master thread, we assume that this
thread spends no time at the barrier that follows the subproblem, while the other threads
wait as long as it takes the master thread to solve the subproblem.

The barrier delay for a Fill Cache subproblem is primarily due to the final stage of the
parallel processing. This final stage is defined in the proof of Theorem 5 as the “third phase”
of a parallel processing region. When the queue has no available tasks, and nc more tasks

49

30 Base Case (3 bars) =——
! Fill Cacne (S bars) =—emem
300 | X
_ _ 20t ;
: £ |
3 3 200} !
2 E i
£ g i !
o (5 | :
100 ¢ ! :
| i
i H
50 b i :
o i
8 9 10 1 12 8 9 0
k k
By Type By Size

Figure 4.2: FastLSA Subproblem Count: Parallel FastLSA Alignment for Human XRCCI!
versus Mouse XRCC1 (Breakdown Based on the Type/Size of the FastLSA Subproblems)

are expected to be enqueued, the first processor that asks for work is going to be the first
that reaches the barrier. The other processors are still working on their tasks, or may have
reserved in advance some of the tiles, and are now waiting for them to become available.

Theoretically. the barrier time cannot be higher than P — 1 times the amount of time it
takes a thread to process an entire tile. The worst case scenario happens when one threads
reaches the barrier and the other P — 1 threads work on their last tile, one after the other.
This can happen if there is a chain dependency between the last P — 1 tiles. The upper
bound for the barrier time can be lowered by decreasing the granularity of the parallel tasks,
but at the risk of reducing the speedup.

The graphs for barrier time have a layout similar to that of the graphs for execution time
because they involve the overall time as well as a time value for each FastLSA subproblem.
For example, in Figure 4.7 each plot of the type-based clustering graph shows the stacked
values of the accumulated barrier time for Base Case and Fill Cache subproblems, and the
remaining time to the overall time of the parallel alignment.

4.4 XRCC1

It can be seen from the subproblem count graph (Figure 4.2), that the number of Base Case
subproblems is significantly larger than the number of Fill Cache subproblems, and this
disparity increases with k. The Base Case buffer is quite large (BM = 1,600, 000) and, at
the third level of recursion, all the subproblems will be of Base Case type. Furthermore,
each Fill Cache subproblem is partitioned into k? rectangles, and the FastLSA subproblems
of the next recursion level are only the relevant portions of these rectangles. Even if a
rectangle does not fit in the Base Case buffer, if the optimal path traverses only a small

region of this rectangle that fits in the Base Case buffer, the resulting subproblem (the
relevant region of the rectangle) is of Base Case type. The bigger the value of k, the smaller
the rectangles in which the Fill Cache subproblems are partitioned, and the more Base Case
subproblems will be generated.

In the plot that depicts the size-based clustering, the rightmost bar in each group is
of size 1, but it is difficult to notice because of the scale of the plot. This means that the
partition set that contains the biggest Fill Cache subproblems includes only one subproblem:
the initial Fill Cache subproblem.

Figure 4.3 shows that the total execution time is optimal for k£ = 12 for the sequential
alignment, and the optimal value for £ decreases with the increase of P, the number of
processors. For P = 32, the optimal value of k is 8. Figure 4.4 shows that the time spent
on solving the initial Fill Cache subproblem decreases with the increase of P. However,
for 16 and 32 processors, the time spent on the small-sized Fill Cache subproblems begins
to increase again after decreasing to 1.22 seconds for P = 8 and £k = 9. For P = 16 and
P = 32, the time spent on the small-sized Fill Cache subproblems also increases with the
increase in the value of k. These two phenomena indicate that the small-sized Fill Cache
subproblems cannot provide enough work for 16 and 32 processors. The small granularity
of the parallel tasks impacts the performance negatively. Figure 4.4 suggests that the best
solution is to solve these smali-sized Fill Cache subproblems on only 8 processors.

As Figure 4.5 shows, the overall speedup for an alignment is close to the speedup for
the Fill Cache subproblems, but the difference between the two speedups increases with
the increase of P. This discrepancy increases mainly because the proportion of the Fill
Cache time, out of the total time, decreases with the increase of P (Figure 4.3), and the
impact the Fill Cache speedup has on the overall speedup also decreases. As expected,
the speedup for the Base Case partitions is close to 1 (Figure 4.6) because the Base Case
subproblems are solved sequentially. For up to 16 processors, the speedup for the initial
Fill Cache subproblem is close to linear, whereas for 32 processors it goes as high as 19.43
for £ = 12. The speedup for the initial Fill Cache subproblem can be seen as upper bound
for the overall speedup of Parallel FastLSA.

Figure 4.7 shows a correlation between the increase in the percentage of the Fill Cache
barrier time out of the total time and the increase of P. This can be seen more clearly
in Figure 4.8, where the workload imbalance gets more accentuated with the increase of
P. Also, the initial Fill Cache subproblems seem to suffer the most because of the larger
granularity of their parallel tasks (i.e., tiles). As explained in Subsection 4.3.4, the barrier
time is very likely to increase with the size of the tiles. The barrier times are irrelevant for
the Base Case subproblems.

51

Fil Cache e

Base Case
80 s
70 ¢ kY S

i, | 5%

2 5 <

& ézo-

3 12

g:so éts

{

520 3 1ol
10+ 5p
0 4]
20 12
18 r
6t or

T 14 -

& g o

g!2> é

= 10 st

= 8¢

g € o}

o 6 3
rys 2l
2+
[+} o
10 12
9

10 b
8F 0

5 7t -

& g of
8F

g g

Es- ‘ée

= st 3

g E f

S 3r (5]
2r 2}
1
0 +]

Figure 4.3: Execution Time: Parallel FastLSA Alignment for Human XRCC1 versus Mouse
XRCC! (Breakdown Based on the Type of the FastLSA Subproblems)

52

Base Case (3 bars) w——
. | Fidt Cache (S pars) ==
: i :
i l
| i |
i 1
‘
10 11 12
Kk
=2
Base Case (3bars) ~———
Filt Cache (Sibars} e

"]

Y 8 § 8 & g =w ° o o~ e ® % o & - o 6 v ~ o o~ -
(29g) euny oaneimung (205) awt] eaneinwIND (%0g) awyy eanenwng

11
Case
Cacne

Dars) e
Dars) =
t
12
DAS) e
m) ——
12

11

Base Case (3 bars) ——

Fill Cache {5 hars) ==

2 &
]
- Q. ~ -
o
]
8 R 8 8 ¢ 8 R ¢ 2 e x 92 @ © 6w - = w
{20g) awi] eAnemun) (20g) awi] sAeMLNY (008} oW} aAneiuUND

53

Figure 4.4: Execution Time: Parallel FastLSA Alignment for Human XRCC1 versus Mouse

XRCC! (Breakdown Based on the Size of the FastLSA Subproblems)

Base Case ——
Fill Cache =

Figure 4.5: Speedup: Parallel FastLSA Alignment for Human XRCC! versus Mouse
XRCC1 (Breakdown Based on the Type of the FastLSA Subproblems)

Base Case (3 bars) =———
Fill Cache (5 Bars) e

w
-
o

‘Base Case (3 bars) = Base Case (3 Dars) ———
Fill Cacne (S bars) === | Fill Cache (5 bars) ==

Speedup
N
w

Speedup
o - n w » (1.3 o» ~ o o

oS
[+]
8 9 10 11 12 10 11 12
L K
1
8 Base Case (3 bars) ~— s Base Case (3 bars) =
8) Fill Cache (5 bars) e Filt Cache (S Dars) e
i i
! | :
20+ | |
i
, i
1 '
15+ i
!
|
i
A1+ 2 3 '

10 T 12 8 9 10 T 12
% x
P =16 P =32

Figure 4.6: Speedup: Parallel FastLSA Alignment for Human XRCC1 versus Mouse
XRCC! (Breakdown Based on the Size of the FastLSA Subproblems)

55

Fili Cache ummmans
Base Case anmeme

Cumulative Time (Sec)

Cumutative Time {Sec)
3
Cumulalive Time (Sec)

Cumulative Time (Sec)

Cumulative Time (Sec)
O - N W > B B N & ®

Figure 4.7: Barrier Time: Parallel FastLSA Alignment for Human XRCCI versus Mouse
XRCC1 (Breakdown Based on the Type of the FastLSA Subproblems)

56

Cumulative Time (Sec)

12
16 18
Base Case (3 bars) ———— Base Casa (3 bars) ==
Fill Cache (S bars) e 16 , Fill Cacne (5 pars) e
14 . I } |
- 2 I | ! I
‘3; 1 ' ‘ ! ‘3; r2r |
E ' ' : ! § '
o 08} : : I
§ : ' . ! H o8
06 ! I !
g ‘ i g os} :
Q | i :
o4t j oal !
| !
1" ”?

25

Base Case (3 bars) ==
Filt Cache (5 0ars) e

{ i

!

Cumulative Time (Sec)

Cumulative Time (Sec)

Figure 4.8: Barrier Time: Parallel FastLSA Alignment for Human XRCC! versus Mouse
XRCC1 (Breakdown Based on the Size of the FastLSA Subproblems)

57

Base
it Cacr

Cumulative Number

Cumulative Number
8

1L

By Type By Size

8 9 10 11" 12
k

Figure 4.9: FastLSA Subproblem Count: Parallel FastLSA Alignment for Human Myosin
versus Hamster Myosin (Breakdown Based on the Type/Size of the FastLSA Subproblems)

4.5 Muyosin

The subproblem count graph for the alignment of Myosin sequences (Figure 4.9) shows
a noticeable increase in the number of Base Case subproblems from the previous data set
(Figure 4.2), but only a modest increase in the number of Fill Cache subproblems. However,
because of the increased size of the Myosin sequences, the Fill Cache subproblems are
bigger, and better suited for parallelization than the Fill Cache subproblems for the XRCC1!
sequences.

Figure 4.10 exposes a trend in the values of the total execution time across the five
values of &k, which is similar to that observed for the XRCC! sequences: the optimal value
of k shifts from 12 for P =1 to 9 for P = 32. This phenomenon occurs because k controls
the amount of re-computation that must be performed by the FastLSA algorithms and it
also controls the granularity of the FastLSA subproblems and, indirectly, the granularity
of the parallel tasks. A larger value for k£ means a larger FastLSA Grid Cache, a larger
number of d.p. matrix entry values stored, and, therefore, less re-computation. When P
has a small value, larger values for k£ tend to produce smaller execution times because
less re-computation is performed than for smaller values of k. Because P is small, the
contention for parallel work is small and the importance of the granularity of the parallel
tasks is reduced. However, once P increases, the granularity of the parallel work becomes
the dominant performance factor, overtaking re-computation time in importance. When
P has a large value, the performance of Parallel FastLSA is best for small values of k
because lower values for k tend to increase the granularity of the Fill Cache subproblems
and, indirectly, the granularity of the parallel tasks.

Figure 4.11 shows an interesting trend for the time spent on the Fill Cache subproblems

58

for 16 and 32 processors. While the time for the initial Fill Cache subproblem decreases with
the increase of k, the cumulative time for the smallest Fill Cache subproblems decreases.
Combining the information from the plots for P = 16 and P = 32, we can conclude that,
for P = 32, a better execution time can be obtained by running the initial Fill Cache
subproblem on 32 processors with & = 12, and the small Fill Cache subproblems on 16
processors with k = 8.

The speedup graph with type-based breakdown (Figure 4.12) shows a trend which is
similar to that of the speedups for the XRCC! sequences: the overall speedup is close to
the speedup for the Fill Cache subproblems, but the difference between the two speedups
increases with the increase of P. Figure 4.13 provides useful information on the upper
bounds for the overall speedups of Parallel FastLSA that can be expected when the param-
eter values listed in Table 4.1 are used for benchmarking. For example, when P = 32, the
best speedup for the initial Fill Cache subproblem is 22.31, and it is obtained for k = 12.
For 32 processors, 22.31 is a coarse upper bound for the best overall speedup, which was
empirically determined to be 10.90 for £ = 9.

The barrier time spent on solving the biggest Fill Cache subproblem (i.e., the initial
FastLSA problem) decreases consisiently with the increase in the value of k& (Figure 4.15).
It has already been mentioned that a higher k produces a higher number of FastLSA tiles,
giving the opportunity for a better load balancing of work among the processors. Again,
the percentage that the Fill Cache cumulative barrier time constitutes out of the total time
increases dramatically with P (Figure 4.14). This is allowed by the fact that the upper
bound for the barrier time is directly proportional with P — 1 (Subsection 4.3.4).

59

Fil Cache smummm

Base Case e
200 90
180 + a0+
160 70}
g 140 f 3
] g o
1 +
g ol
@ 100 b 'é
: 3%
80
g € 5l
S 60 [&]
w0t 2
20t 10
o]]
50 0
FCRS
w} =r
T3S -
] § =7
0}
£ £
® 25 1 515’
520. 5
g € o}
[VEREN (5]
10 ¢ st
st
0 0
20 20
18 F 18+
16 16+
g e S 14}
&]
12 + 12}
g 2 8 2
=10 " 10
2 F
gg. -Ea-
3 6} 3 6}
4 4h 4
2 2+
o [+]
8 9 10 1 12
k
P =32

Figure 4.10: Execution Time: Parallel FastLSA Alignment for Human Myosin versus Ham-
ster Myosin (Breakdown Based on the Type of the FastLSA Subproblems)

60

200 Base Case (3 bars) ——— 0 Base Case (3 bars) ——
Fill Cache (5 bars) ——— Fil Cache (£ DArs) e
180 r . 80 b
70 b
3 3 e *
g € sl
- (=3
o o
3 -
i i
30 b
3 3
20}
10r
9 10 11 12
[3
P=2
45 Base Case (3 bars) ~—— % Base Case (3 bars) =
ol ,) Fill Cacne +5 DArs) eeme Fill Cache (5 bars) =
3) | i i
st : l
§or 1]
I g
£ | :
[3
3" | 3
10 + ‘
1
st ;
0
] 9 10 11 12 10 11 12
L3 =
Base Case (3 bars) e
Fill Cache (5 bars) e
g g
[-
L] L
2 2
=
: £
(&) [}
10 1 12
[3
P =32

Figure 4.11: Execution Time: Parallel FastLSA Alignment for Human Myosin versus Ham-
ster Myosin (Breakdown Based on the Size of the FastLSA Subproblems)

61

Figure 4.12: Speedup: Parallel FastLSA Alignment for Human Myosin versus Hamster
Myosin (Breakdown Based on the Type of the FastLSA Subproblems)

62

Base Case (3 bars) ———
Fill Cacne (S Dars) =

12

-]
-
o

Base Case (3 bars) =—— Base Case (I bars) =
Fill Cache (S5DArs) = 9 Fit Cache (S bars} ===
8
7
6
§ s
!
4
3
2
1
o
11 12 9 10 n 12
3 3
P=4 P=28
18 25
Base Case (3 bars) —— i Base Case (3 bars) e
Fiil Cacne (5 pars) ~—— Fil Cache (Sbars) ———
| 2
t
15+
10
5
[¢]
11 12 [] 9 10 1" 12
[3
P =232

Figure 4.13: Speedup: Parallel FastLSA Alignment for Human Myosin versus Hamster
Myosin (Breakdown Based on the Size of the FastLSA Subproblems)

63

Other ammmm
FaCache e
Base Case nmmm

Cumulative Time (Sec)

8 8 8§ 8 8 & & 8

Cumulative Time (Sec)
Cumulative Time (Sec)

Cumulative Time (Sec)
)

Cumulative Time {Sec)
a

[} 9 10 1 12
k

P =16

Figure 4.14: Barrier Time: Parallel FastLSA Alignment for Human Myosin versus Hamster
Myosin (Breakdown Based on the Type of the FastLSA Subproblems)

64

Cumutauve Time (Sec)

Cumulative Time (Sec)

Cumulative Time (Sec)

Cumulative Time (Sec)

Cumulative Time (Sec)

Base Case (3 bars) ————
| FWl Cacne (S5 bars) e

|

!
|
i
|
!

Base Case (3 bars) ——=—=
, Fil Cache (5 ars) e

‘
'

Figure 4.15: Barrier Time: Parallel FastLSA Alignment for Human Myosin versus Hamster
Mpyosin (Breakdown Based on the Size of the FastLSA Subproblems)

Base Case ——— Base Case (3 bars) =——
Fill Cache =me——) Fill Cacne 15 dars) =
3000 3000 . .
2500 _ 2500 f
5 3 : i
2 2000 2 2000 : i
£ | |
2 1500 £ 1500 : :
3 . 1
g § | i
I3} 3] : .
1000 | 1000 ‘ l
500 | 500 ! !
N]
|
0 0 -
8 9 10 1" 12 8 10 1 12
Kk k
By Type By Size

Figure 4.16: FastLSA Subproblem Count: Parallel FastLSA Alignment for Human TCR
versus Mouse TCR (Breakdown Based on the Type/Size of the FastLSA Subproblems)

4.6 TCR

The subproblem count graph for the TCR sequences alignment (Figure 4.16) exhibits an
interesting feature: the number of subproblems solved for k£ = 12 is considerably smaller
than for £ = 11. This defies the trend observed for the previous two pairs of sequences, for
which the number of Base Case and Fill Cache subproblems increases almost linearly with
k. The most likely explanation for this phenomenon is that, because of the configuration
of the optimal path for the TCR sequences alignment and the configuration of the Grid
Cache for k = 12, Parallel FastLSA avoids recomputing large parts of the d.p. matrix. A
large number of subproblems are avoided because the FastLSA algorithm decides which
subproblem to solve next based on the position of the current head of the optimal path in
the d.p. matrix.

Figure 4.17 shows that, for every value of P, the optimal value for k is 12. This value
is the best among the five values considered for k. Based on the trends observed for the
previous two pairs of sequences, it can be concluded that higher values for k£ may work even
better. We did not look for an empirically optimal value for k greater than 12, but plan to
do so in our future work. The large size of the d.p. matrix for the alignment of the TCR
sequences allows good granularity for the parallel tasks and, by increasing k, this can be
traded off for a better load balancing of the parallel work. The optimal value of k is the
one that generates the best equilibrium between granularity and load balancing.

It can be observed from Figure 4.18 that the best execution time for the alignment of
the TCR sequences could be achieved by executing the initial Fill Cache subproblem on
32 processors, and all other Fill Cache subproblems on 16 processors, using k = 12 for all
Fill Cache subproblems. For the Base Case subproblems, which are executed sequentially,

k = 9 is the optimal value among the values tested (Figure 4.17).

Figure 4.19 shows more clearly that the larger the sequences to be aligned, the more
effective Parallel FastLSA is. For example, the best speedup for solving Fill Cache subprob-
lems on 32 processors is 18.81 for the TCR sequences, while it is only 13.78 for Myosin, and
11.70 for XRCC1.

As for the previous pairs of sequences, Figure 4.20 helps to establish upper bounds for
the overall speedup of Parallel FastLSA. For instance, the best speedup for the initial Fill
Cache subproblem is 23.36 for 32 processors, 16.13 for 16, and 8.97 for 8 processors. These
are much better speedups (i.e., linear for 16 processors or less) than those for Myosin or
XRCCL1.

The barrier times presented in Figure 4.21 show a trend consistent with that observed
for the previous sequences: the percentage of the time spent at the barriers following the
Fill Cache subproblems, out of the total time, increases with P. Figure 4.22 gives a good
insight into how the value of k influences the distribution of the work on the processors.
For every value of P considered, the cumulative barrier time for each partition set decreases
with k. This occurs because a larger k generates more tiles, which in turn results in less
processor starvation. The more parallel work is present in the queue, the less likely it is
that the processors are blocked at the queue waiting for work. Also, because the tiles are
smaller for a larger k, the final (i.e., third) phase of each parallel region is shortened, and
the barrier time is reduced.

67

Other s
Fil Cache unmmmn
Base Case enmmmn

1500

Cugmulalvveg Time (Sg:) g E

Cumulative Time (Sec)

[=]

o

Cumulative Tima (Sec)
&
t 8388

Cumulative Time (Sec)

8

o

Cumulative Time (Sec)
Cumulative Time (Sec)

Figure 4.17: Execution Time: Parallel FastLSA Alignment for Human TCR versus Mouse
TCR (Breakdown Based on the Type of the FastLSA Subproblems)

68

2500
6000 Base Case (3 bars) ——— Base Case (3 bass) =
Fill Cache (5 Dars; Filt Cache iS pars) =
i B
; 2000 .)
- ; - i i
E ! E’ 1500 ;
[i = :
g 3000 : g |
5 E 3 o000t i
€ 2000} | g |
Q |) 3 .
100 | : : | |
i ' !
o : o |
9 10 1" 12 8] 10 11" 12
[3 k
P = P=2
1200 Base Case (3 bars) ——— 600 ‘Base Case (3 bars) =———
Fill Cache (5 Diars) e Fill Cache (5 bars) ————
500 | ’
,_§; ,3 400
= =
300
13
£ E 20}
(5] o
100
[}
8 9 10 n 12
[3
P=28
40 Base Case (J bars) ~—=— 350 Base Case (3 bars) ==
Sl Cacne (S Dars) e Fill Cache (5 Dars) e
350 + :
300 +
£ :
o 200 | []
2 E
k-] s
g g
3 2
(5] (51

Figure 4.18: Execution Time: Parallel FastLSA Alignment for Human TCR versus Mouse
TCR (Breakdown Based on the Size of the FastLSA Subproblems)

69

Figure 4.19: Speedup: Parallel FastLSA Alignment for Human TCR versus Mouse TCR
(Breakdown Based on the Type of the FastLSA Subproblems)

70

Base Case (3 bars) ——
Fill Cache (Sbars) e

o
-
o

Base Case (3 bars) =
Fill Cacne (€ bars) ~=——

Speedup
O =« N W & B O N @ ©
——— 1

11 12
[
P=:-
18 0
: Base Case (3 bars) ———— Base Case (3 bars) =

8t 1 i Fill Cache (5 bars) e Fill Cache (5 Dars) s
l i

14t !
|
]

12} !
|

2 w0}
§ 8t

6+

ras

Fag

8 9 10 (] 9 10 11 12
Kk k
P=16 P =32

Figure 4.20: Speedup: Parallel FastLSA Alignment for Human TCR versus Mouse TCR
(Breakdown Based on the Size of the FastLSA Subproblems)

71

Other emmmmm
Fil Cache ummmmm
Base Case o

2500

Cumuiative Time (Sec)

1200 700
1000 } 820 |

. ~ 500 }

§ oo} L]

g g 4ot

£
800

®

g £ |

. | ¢

(5] O 200
200 } 100 |
0 o
a0 400
400 + 350
350 »] 300 b
300 |]

% %’w-

€ 250 |

5 § 20}

Z 200t 2

F] 150 ¢

ol | ¢

Q Q
100 ¢ 100
50 b 50 }
o 0

] 9 10 1" 12

Figure 4.21: Barrier Time: Parallel FastLSA Alignment for Human TCR versus Mouse
TCR (Breakdown Based on the Type of the FastLSA Subproblems)

72

Base Case (3 bars) ————
Fiil Cache 15 bars) e

Cumutative Time {Sec)

14 14

Base Case (I Dars) . i . Base Case (3 Dars) e
: i Fidl Cache (Shars) e ! i Fili Cache (5barg) —emme—
12 i | 12t ;
; | j !
i ! i
£ g s}
s '
g g
Q O gt
2F
9 10 1 12
3
P=38
35
e Base Case (3 bars) = Base Case (3 bars) =em—e-
L ! Fil Cacne (5 bars) == Fill Cache (5 Dars) e
l u¥ i
]
= o 2t ;
] & z
g 22}
e '
o
5 5
o 10+
(38
0
10 " 9 10 11 12
(3 [
P=16 P =32

Figure 4.22: Barrier Time: Parallel FastLSA Alignment for Human TCR versus Mouse
TCR (Breakdown Based on the Size of the FastLSA Subproblems)

73

4.7 Base Case Subproblems: Sequential Approach versus
Parallel Approach

The Parallel FastLSA version that solves the Base Case subproblems sequentially was pre-
ferred to the version which solves the Base Case subproblems in parallel because it exhibits
better performance. This is emphasized in Figure 4.23, which shows a pairwise comparison
between the overall speedups for the two versions of Parallel FastLSA. The comparison is
done for each pair of sequences and for each value of P.

When the Base Case subproblems are solved sequentially, the overall speedup is consis-
tently better than when they are solved in parallel. The difference between the speedups
for the two versions increases with P because of the poor performance of solving small Base
Case subproblems on an increased number of processors. The poor performance is due to
the large overhead associated with a large number of processors, and this overhead cannot
be offset by the few opportunities for parallelism offered by the Base Case subproblems.
Only a small number of very small tiles can be placed in the queue when a Base Case
subproblem is solved in parallel and, consequently, only a few of the processors get to work
on these tiles.

4.8 Concluding Remarks

This chapter describes the experiments performed with Parallel FastLSA, and discusses the
results achieved. Parallel FastLSA exhibits good speedups, almost linear for 8 processors or
less, and, not surprisingly, the longer the sequences to be aligned, the more efficient Parallel
FastLSA is.

First, we present the experimental methodology used for our benchmarks. We specify
the architecture on which Parallel FastLSA is run, and the three pairs of sequences that
are aligned. We also list the values that are assigned to each parameter used by Parallel
FastLSA. Some of these parameters are given several values in order to determine how their
variation affects the performance of the algorithm.

We then begin the discussion of the performance of Parallel FastLSA by displaying
the best speedups obtained in our experiments. For 8 processors or less, the speedups are
almost linear for all three sequence pairs that we align using Parallel FastLSA. We explain
the trends of the speedup curves and hypothesize on the deterioration of the speedup that
occurs from 16 to 32 processors.

In order to obtain a better insight into the effectiveness of Parallel FastLSA, we present
for each pair of sequences a series of performance graphs. Each series consists of a subprob-
lem count graph, execution time graphs, speedup time graphs, and barrier time graphs.
These graphs are important because they help us assess the performance of Parallel FastLSA
at the lower level of FastLSA subproblems.

In the course of our experiments we discovered that running the Base Case subproblems

74

in parallel causes a deterioration in the performance of Parallel FastLSA. For this reason,
we mainly discuss experimental results for the version that runs the Base Case subproblems
sequentially.

By studying the execution time graphs, we find out that an empirically optimal value
for k can be found in the interval considered, 8 < k < 12, but for the TCR sequences, for
which an optimal value is most likely to be greater than 12. We also point out that the
empirical optimal value for k tends to decrease when P increases.

In the speedup graphs it can be observed that the overall speedup for an alignment is
close to the speedup for the Fill Cache subproblems. Furthermore, we note that an almost
linear speedup is achieved for the initial Fill Cache subproblem, which is the largest Fill
Cache subproblem solved by Parallel FastLSA during an alignment operation.

75

paraiiel Base Case ———
sequental Base Case —

a
-]
H
a gl
4 b
2-
. |
2 4 8 16
p
XRCC1
paraliel Base Case ~———
sequental Base Case
16 F
a
3
2
-8
@

Speedup

Figure 4.23: Comparison of the overall speedups for the two versions of Parallel FastLSA

76

Chapter 5

Future Work and Conclusions

5.1 Future Work

First, throughout our experiments in Chapter 4, we use constant, predetermined values
for the parameters involved in Parallel FastLSA. Our goal for the future is to develop a
procedure that will allow us to compute “good™ values for BM, u, v, and k, based on
the values of m, n, P. and the memory configuration of the computer on which Paraliel
FastLSA is run. These customized values for the parameters should allow Parallel FastLSA
to align a pair of sequences in a time close to the empirical optimum.

Second, in the course of our research, we have decided that the FastLSA Grid Cache
should have k rows and k columns for simplicity. However, there is no reason not to have a
Grid Cache with & rows and ! columns, where k and [can have different values. Furthermore,
in the current implementation, we use the same value for k for every Fill Cache subproblem
solved by the algorithm. Qur belief is that it would be preferable to use customized values
for k and [- values that are dynamically computed for each Fill Cache subproblem.

Third, our implementations of Parallel FastLSA are based on threads of execution,
which are the trademark of the shared memory computational model. For this reason, we
run all benchmarks on a shared memory multiprocessor computer. We have also considered
implementing a distributed memory version of Parallel FastLSA, but deemed the commu-
nications penalty of distributing each tile across the network to be very time consuming.
However, we wish to find cut whether an MPI [Argonne National Laboratory, 2001] version
of Paruallel FastLSA may become efficient, and under what conditions.

5.2 Conclusions

Parallel FastLSA is a new parallel algorithm for optimal pairwise sequence alignment. Par-
allel FastLSA is the parallel version of FastLSA, a sequential algorithm that finds an optimal
alignment for two biological sequences using linear space. FastLSA is proven to be empiri-
cally faster than two other frequently used algorithms: Needleman—Wunsch and Hirschberg.
Parallel FastLSA is designed to further improve the time performance of FastLSA, while

7

still using only linear space.

We have described the Parallel FastLSA algorithm in detail and have explained thor-
oughly how the algorithm can be implemented. In order to distribute parallel tasks to the
processors efficiently, we propose two strategies: Dynamic Distribution of Work and Static
Distribution of Work. These two strategies are implemented separately and are evaluated
in our experiments. We conclude that their performance is similar, and discuss in detail
only the results of the implementation based on Dynamic Distribution of Work.

We have analyzed the effectiveness of Parallel FastLSA and have given detailed accounts
of its theoretical and empirical performance. The upper bounds that we find for the space
and time complexity of Parallel FastLSA prove that Parallel FastLSA uses linear space and
runs in quadratic time. Our experimental results show that Parallel FastLSA exhibits good
speedups, almost linear for 8 processors or less, and its efficiency increases with the size of
the sequences that are aligned.

78

Bibliography

Altschul. S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. J.
Lipman (1997). Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic Acids Research 25, 3389-3402.

Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman (1990). Basic local
alignment search tool. Journal of Molecular Biology 215, 403-410.

Aluru, S., N. Futamura and K. Mehrotra (1999). Parallel biological sequence comparison us-
ing prefix computations. In: Proceedings of the Second Merged Symposium IPPS/SPDP
1999, 13th International Parallel Processing Symposium & 10th Symposium on Parallel
and Distributed Processing. San Juan, Puerto Rico. pp. 467-473.

Argonne National Laboratory, Mathematics and Computer Science Division (2001).
MPICH. http://www-unix.mcs.anl.gov/mpi/mpich.

Campbell, M. K. (1999). Biochemistry. Saunders College Publishing, Harcourt Brace Col-
lege Publishers.

Charter, K., A. Driga, P. Lu, J. Schaeffer, D. Szafron and I. Parsons (2002). FastLSA-a
fast linear-space algorithm for sequence alignment. in preparation.

Charter, K., J. Schaeffer and D. Szafron (2000). Sequence alignment using FastLSA. In:
Proceedings of the 2000 International Conference on Mathematics and Engineering

Techniques in Medicine and Biological Sciences (METMBS 2000). Las Vegas, Nevada.
pp. 239-245.

Dayhoff, M., R. M. Schwartz and B. C. Orcutt (1978). A model of evolutionary change in
proteins. Atlas of Protein Sequence and Structure 5, 345-352.

Hirschberg, D. S. (1975). A linear space algorithm for computing longest common subse-
quences. Communications of the ACM 18, 341-343.

Korf, R. E. (1999). A divide and conquer bidirectional search: First results. In: Proceedings
of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99-Vol2)
(Dean Thomas, Ed.). Morgan Kaufmann Publishers. San Francisco. pp. 1184-1191.

Korf, R. E. and W. Zhang (2000). Divide-and-conquer frontier search applied to optimal se-
quence alignment. In: Proceedings of the National Conference on Artificial Intelligence
(AAAI-2000). Austin, Texas. pp. 910-916.

Laudon, J. and D. E. Lenoski (1997). The SGI Origin: A ccNUMA Highly Scalable Server.

In: Proceedings of the 24th International Symposium on Computer Architecture. Den-
ver, Colorado. pp. 241-51.

Martins, W.S., J.B. del Cuvillo, F.J. Useche, K.B. Theobald and G.R. Gao (2001). A mul-
tithreaded parallel implementation of a dynamic programming algorithm for sequence
comparison. In: Pacific Symposium on Biocomputing 2001.

Myers, E. and W. Miller (1988). Optimal alignments in linear space. CABIOS 4, 11-17.

79

Needleman. S. B. and C. D. Wunsch (1970). A general method applicable to the search of
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology
48. 443-453.

Penn State University (2001a). Bioinformatics Group. http://bio.cse.psu.edu.

Penn State University, Bioinformatics Group (20016). TCR sequences.
http://bio.cse.psu.edu/pipmaker/examples.html.

Penn State University, Bioinformatics Group (2001c). XRCC1 and Myosin sequences.
http://globin.cse.psu.edu/globin/html/pip/examples.html.

Setubal, J. C. and J. Meidanis (1997). Introduction to Computional Molecular Biology. PWS
Publishing Company.

Smith, T. F. and M. S. Waterman (1981). Identification of common molecular subsequences.
Journal of Molecular Biology 147, 195-197.

Veridian Systems (2001). PBS. http://www.pbspro.com.
Waterman, M. S. (1995). Introduction to Computational Biology. Chapman & Hall.

