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ABSTRACT

Reactions in which an intermediate energy photon is absorbed by a nuclear target
resulting in the emission of single proton or neutron with the residual nucleus being left
in a definite state are investigated in a relativistic framework. The reaction mechanism that
is studied in detail is the direct interaction of the photon with a single nucleon in the
nucleus. In the model proposed the bound and continuum nucleon wave functions are
solutions of Dirac equations that contain appropriate relativistic potentials. The binding
potential is determined from relativistic Hartree calculations or is parameterized to have a
geometry that follows the nuclear density. The continuum nucleon is modelled to interact
with the nucleus through an optical potential that is determined from microscopic
calculations or from a phenomenological analysis of the elastic scattering data.

The results of the direct mechanism calculation are compared with data for the
160(7:p)*°N, “°Ca(1p)*°K, "B(7,7)!2C and 3H (F.7)*He reactions. The
calculations exhibit reasonable agreement with the available data at lower inomentum
transfers and there is an indication that other reaction mechanisms become important at
higher momentum transfers. For photoneutron knockout reactions on the other hand the
direct mechanism calculations significantly underestimate the available data. The
sensiﬁvity of the calculations to the particular potentials used is studied in detail.

The possibility of the photoemitted nucleon charge exchanging as it leaves the nucleus
is also investigated. The charge exchange is mediated by a relativistic isovector optical
potential that is determined from microscepic calculations. The results of this calculation
for the 16O('}',n)lso and 12C('}',n)1 1C reactions show that the final state charge
exchange amplitude is comparable with the direct amplitude. The data is not reproduced,
however, which indicates that other reaction mechanisms are important for (%)

reactions.
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1. Introduction

Electromagnetic interactions with nuclei are a particularly valuable means of
investigating the nature of the atomic nucleus. The interaction of a photon with the
individual constituents of the nucleus is well-understood, and so \investigating its
interaction with these constituents while they are interacting among themselves can lead to
very clean information about the dynamics of the nucleus. Furthermore, the small
coupling constant characteristic of the electromagnetic interaction facilitates calculations in
that first order perturbation theory is often sufficient. The distribution of charge in a
nucleus determined from electron scattering and the energy levels of nuclei determined
from low energy photon absorption are just two of a multitude of empirical results for
electromagnetic reactions that enhance and test our understanding of the nucleus.

The specific photonuclear reaction that is investigated here is one in which a photon
() is absorbed by a nucleus, resulting in the emission of a single nucleon (N). The
energy of the photon is in the range 50 MeV < E, < 400 MeV. The wave number of
such a photon corresponds to the size of a nucleon and so it is reasonable that the photon
"sees" individual nucleons in the nucleus; the incident energy is high enough so that
nuclear collective many-body effects will not be important. It is notable that the photon
can interact with the uncharged neutrons, as well as the protons, through the interaction
of the magnetic field associated with the photon and the magnetic moment of the neutron.
For medium or heavy nuclei the emitted nucleon gains most of the absorbed photon
energy. However, since the nucleon is massive, its momentum will be much greater than
that of the photon.

The high momentum transfer involved in a photonucleon knockout, or (N),
reaction makes it unique and interesting to study. The momentum transfer is typically
from 2 fm™! to 4 fm™. In the simplest picture, the photon interacts directly with a target
nucleon, knocking it out of the nucleus. The bound nucleon that the photon interacts with
must therefore have a very large momentum to account for the momentum mismatch
between the photon and emitted nucleon. Thus, information about the high momentum
components of a nuclear bound state wave function can potentially be obtained from a
study of these reactions. Such spectroscopic information complements that obtained from

(p,2p) and (e,e’p) reactions. Similar hopes for obtaining spectroscopic information



from the high momentum transfer (p,#) reaction are not forthcoming lméely due to the
uncertainty in the description of the interaction of the emitted pion with the residual
nucleus*¥, One of the welcome features of a (%N) reaction is that this type of
obstacle does not exist for the photon probe which does not interact strongly with the
nucleus. -

The probability of a bound nucleon having a momentum much greater than the Fermi
momentum is expected to be quite low. This suggests the possibility that the photon
interacting with only one nucleon is not the predominant mechanism through which the
reaction proceeds. Reaction mechanisms that involve two or more nucleons in conserving
momentum could be important. For example, the photon could interact with a meson that
is being exchanged between two nucleons, or it could excite a delta isobar that must
decay by interacting with a nucleon through pion exchange. Hence the very interesting
potential of seeing the mesons that are the intermediaries of the nuclear force and exotic
baryons in the nucleus exists for (%N) reactions.

Although the desirability of photonucleon knockout reaction experiments is clear, the
difficulty of such experiments has limited the number that have been done. Typically, the
cross sections for single nucleon emission are of the order of microbarns for lower
photon energies and nanobarns for higher photon energies and therefore the photon beam
must be reasonably intense to produce a significant number of events. Generating such a
monochromatic photon beam is not easy. Most experiments use the high energy tail of a
beam of bremstrahlung photons created by electrons striking a suitable radiator®),
Alternatively, the photon energy could be "tagged" by detecting such a scatiered
eleetron®D or high energy photons could be created by electron-positron annihilation®.
Althcugi ihe background may be large, the detection of a photoemitted proton is
straightforward, using a magnetic spectrometer for example®>. This is not the case for
the uncharged neutron and hence much fewer photoneutron knockout experiments have
been performed. The neutron may be detected indirectly using a recoil proton
spectrometer in which protons produced from p(n,p)n forward scattering ére
signatures for the photoemitted neutron®.

Recent advances in experimental technology have resulted in high quality
measurements of observables for (%N) reactions that have renewed interest in this
field. Most of the experiments are done for the target nuclei *He, '2C, '°0 and “°Ca. The

differential cross sections have predominantly been measured for the reaction going to the



ground state of the residual nucleus, although some data are available for the final nucleus
beingina particular excited state. The data are more complete in the lower energy range
with relatively few experiments having been done at higher energies. Cross sections and
some analyzing powers have also been measured for the inverse (77, 7) reaction. The main
difficulties in doing these experiments are detecting the photons and extracting the photon
events from the huge background of other possible reaction channels.

The theoretical description of the (%N) and (N,) data is unsatisfactory. Various
authors disagree significantly on the relative importance of the direct reaction mechanism
and the resonant (i.e., including the delta isobar) and nonresonant meson exchange
mechanisms. The calculations have been done in a nonrelativistic framework using the
Schréidinger equation and by-and-large have preceded many of the recent experiments.
Some of the recent data are in disagreement with all of the nonrelativistic calculations.
These observations suggest that the theory for these photonuclear reactions should be
reexamined.

The philosophy adopted here is that the direct reaction mechanism should be
understood very well before looking at the contribution from other reaction mechanisms.
Only with a good grasp of the contribution of this mechanism can the meson exchange
mechanisms be investigated with certainty. The departure taken from the previous
approaches is that the calculation for the direct mechanism is done in a relativistic
framework; the Dirac equation is used to describe the dynamics of the nucleons and the
interaction is described by a fully relativistic interaction Hamiltonian. The hope is that the
additional physics incorporated in such a relativistic description will be important in
explaining the empirical results.

There are a number of motivations for doing relativistic calculations for photonucleon
knockout reactions. Perhaps a sufficient reason is that the energy involved in the reaction
is a significant fraction of the nucleon rest mass energy. Relativistic kinematics are
automatically incorporated and the interaction Hamiltonian is fully covariant, unlike the
nonrelativistic one which neglects terms of higher order in the reciprocal nucleon mass.
The latter point might be even more important for reaction mechanisms that include pion-
nucleon interactions because an ambiguity emerges in the nonrelativistic reduction of the
corresponding covariant Hamiltonian*?). Furthermore, the relativistic nucleon wave

functions are four-component spinors whose lower two components are naively thought



lower two components are not insignificant compared with the upper two
components'?, and thus the relativistic calculation might have fundamental differences
from its nonrelativistic counterpart,

A relativistic calculation for a reaction is a logical extension of the growing "industry"
of relativistic calculations in nuclear physics. The success of these calculations is very
impressive for proton elastic and inelastic scattering and nuclear structure. In this sense
this (%N) calculation is a new testing ground for the relativistic continuum nucleon
wave functions that are determined from elastic scattering and for the relativistic bound
nucleon wave functions that are determined from some many-body model. The bound
nucleon wave function may intrinsically be better described in a relativistic theory.
Although the binding energy of a nucleon in a nucleus is low, this is a consequence of the
cancellation of very large "relativistic" potentials. These potentials are of the order of half
the nucleon rest mass and hence the nucleon effective mass is significantly altered in the
nucleus®?,

The outline of this investigation of relativistic calculations for photonucleon knockout
reactions is as follows: In Chapter 2, representative nonrelativistic calculations for
(7N) reactions are reviewed. The assumptions and approximations involved in these
models are described and the associated problems are delineated. This is done in part to
give guidance for the relativistic calculations. The models used and procedure for
determining the relativistic nucleon wave functions is the subject of Chapter 3. The
additional physics that is inherent in these wave functions beyond a nonrelativistic
treatment is pointed out. Having determined the relevant wave functions, the amplitude
for the direct reaction mechanism is formulated in Chapter 4. The rather formal derivation
of the amplitude is accomplished using a field theoretic method that is particularly suited
to relativistic nuclear physics. The unique features of the relativistic amplitude are
stressed. In Chapter S the results of the relativistic calculations for the direct reaction
mechanism are presented for a representative set of the experiments that have been done.
The sensitivity of the results to the model used are explored in depth. Finally, in Chapter
6, an additional channel through which a (y%N) reaction could procecd is explored. The
two-step mechanism in which the directly emitted nucleon subsequently undergocs a
charge exchange reaction is investigated especially for (¥.n) reactions. Details of the

calculations are given in the appendices.



~_The notation and conventions used in this thesis are primarily the same as in Bjorken

and Drell(1?, Physical units, in which # = ¢ = 1, are used consistently, except where
specified. The factors of # and ¢ can be recovered in any equation by dimensional
analysis.



2. A Review of Calculations for Photonucleon
Knockout Reactions

The potential for learning unique information about the nucleus from photon induced
single nucleon emission reactions has led to numerous theoretical investigations in this
area. Recent advances in measuring observables for (¥,p) and (%) reactions have
spurred efforts to explain the experimental results. A selected sample of calculations for
these photonuclear reactions, that are distingunished by the proposed reaction mechanism,
are reviewed in this chapter. Other reviews in the literature!3'4) may be referred to for
supplementary information on theoretical investigations of photonuclear reactions. The
theoretical approaches outlined below are nonrelativistic calculations that are limited to the
intermediate photon energy range between about S0 MeV and 400 MeV. The lower
energy limit is above the giant resonance region in which nuclear collective effects will be

important. Furthermore, the target nuclei considered are many-body systems (A 2 4);
the related topic of the photodisintegration of the deuteron will not be addressed.

2.1 The Quasideuteron Model

One model for (%,N) reacticns that does not explicitly start with a proposal for a
reaction mechanism is the quasideuteron calculation of Schoch!!®), The photon is
assumed to be absorbed by a correlated np pair that is approximated by a deuteron wave
function. The differential cross section for the reaction will then be the product of the
differential cross section for the photodisintegration of the deuteron, some phase space
factors, and the square of the overlap integral of the initial and final nuclear states. The
latter factor represents the ability of the nucleon of the quasideuteron that remains in the
nucleus to absorb the required momentum and also contains information about the
number of np (quasideuteron) pairs in the target nucleus. The nucieus is described by a
single-particle product wave function and the outgoing nucleon is taken to be a planc
wave. The deuteron photodisintegration cross sections are taken from the theoretical
calculations of Partovi'® for photon energies below 100 MeV and from the experimental
data of Kose et al.'? for photon energies above 100 MeV. The results of Schoch's
calculation produce qualitative agreement with the measured energy dependence of the

differential cross section of the reactions 16O(y.p)”’N in the encrgy range
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E, =60 - 300 McV and '®O(%n)'°0 in the energy range .= 6080 MeV for
the nucleon scattering angles 45°, 90" and 135°. The slope of the low energy data is
reproduced as well as the change in the slope of the (¥p) data as the energy increases.
There are deep minima in the theoretical results in the energy region E,= 100 - 200
MeV which are not present in the (¥,p) data. These are attributed to the use of plane
waves for the continuum nucleon wave function.

Despite the restricted success of the quasideuteron model, the conclusions that can be
drawn are very limited. Schoch claims that the success of the description might preclude
the validity of a single-particle absorption mechanism or a contribution from the A(1232)
isobar. There is no justification for this claim, however. The possible reaction
mechanisms are concealed within the deuteron photodisintegration cross sections and
hence the quasideuteron description does not specifically put forward any reaction
mechanism. Therefore it is not clear how the results can rule out any reaction mechanism.
Moreover, the unphysical view of a nucleus being composed of deuteron-like pairs and
the amount of phenomenological input and ad hoc factors in the calculation casts doubt
on any conclusions that are drawn from the results of the model.

2.2 The Direct Mechanism

The simplest mechanism by which a (%N) reaction can take place is one in which
the photon interacts with a single target nucleon. The residual nucleus is effectively a
spectator in this model. This so-called direct reaction mechanism is also referred to in the
literature as the One Nucleon Madel or the quasifree knockout (QFK) model. A number
of authors have investigated this mechanism in a nonrelativistic framework!8-20) The
following exposition follows the calculation by Londergan and Nixon®Y,

The nonrelativistic scattering amplitude for a (%,N) reaction is the matrix element of

the electromagnetic interaction Hamiltonian
H,_ =-]dx JX)-A(x) Q2.1

between initial and final nuclear states. In the direct reaction model the current is the one-

body nuclear electromagnetic current
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consisting of convection and spin magnetic currents. The electromagnetic potential of a

photon with polarization 4 is
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In Eq. (2.2) m is the nucleon mass, ¢ is the charge of the jth nucleon and K is the
magnetic moment in nuclear magnetons. The arrows over the gradient operators indicate
the direction in which the gradient acts. In Eq. (2.3) @, is the energy of the photon, k,
is the photon momentum and ¢ » is a unit polarization vector. In the spirit of the
independent particle model of the nucleus, it is assumed that the final nuclear state is
simply a one-hole state with respect to the initial nuclear state. If the final nucleus isinits
ground state, the hole is the absence of a valence nucleon in the target nucleus. With these
assumptions the reaction amplitude becomes proportional to the matrix element of the
electromagnetic interaction Hamiltonian between a single-particle bound wave function
and a nucleon continuum wave function

y] .
Mp o ~X i OL0-A(X) 18 (%) (2.42)
where the current is written as
N pN 1
ix)=e, —+ de Hy O xk, . (2.4b)

The subscript N denotes quantities that are characteristic of the continuum nucleon.

The Sound state wave function is either determined by solving a Schridinger equation
with Woods-Saxon binding potentials or is taken from Hartree-Fock calculations. The
continuum wave function can be taken in the first Bomn Approximation to be a planc
wave, in which case the differential cross section is proportional to the square of the
single-particle momentum density. In order to include final state interactions, the
continuum wave function can be approximated by a distorted wave that is determined
from a Schrodinger equation with optical potentials that give a good account of the

relevant proton-nucleus elastic scattering data.



for 12C and 0 target nuclei at incident photon energies of 60, 80 and 100 MeV('®, The
calculations are shown to be very sensitive to the bound and continuum wave functions
used. The energy dependence of '®O(%p)'*N and 4°Ca(yp)*°K reactions at proton
scattering angles of 45°, 90° and 135" has also been investigated up to 200 MeV incident
photon energy(!). For the %0 target the calculated differential cross sections fall
increasingly below the 90" and 135" data for energies above 100 MeV. For the 4°Ca
target, on the other hand, the agreement with the data is quite good for all the data up to
200 MeV.

One of the main criticisms of the direct mechanism for.photonuclear reactions is that it
cannot explain the experimental data for (%n) reactions. At energies below 100 MeV, it
is found that the angular distribution for these reactions is comparable in both magnitude
and shape to the (%,p) results. The direct reaction mode! considerably underestimates
the (%n) cross section because the convection current contribution vanishes for this
case. It has been suggested that a (p,n) charge exchange subsequent to a (p)
reaction might account for the "missing strength” in the theoretical (%) cross sections.
Boffi e al.®® have done calculations for such a charge exchange mechanism and have
found that although the charge exchange contribution is large relative to the direct
mechanism, it is still insufficient to explain the experimental results.

The failure of the direct reaction model for (%;n) reactions suggests that other
processes are important for this reaction. This does not, however, necessarily imply that
the direct reaction calculations for (yp) reactions are invalid, or that it is a coincidence
that the calculations give good results because of a fortuitous destructive interference of
amplitudes from other processes. It is possible that other mechanisms give a greater
contribution to the (%n) amplitudes than the corresponding mechanisms for the (¥,p)
amplitudes®).

One serious shortcoming of the direct mechanism is that the high momentum
components of the bound state wave functions used in the calculation are uncertain. The
bound state wave functions are determined from criteria that involve lower momentum

- transfers than are involved in (};N) reactions. In this sense, the (%N) reaction might
provide spectroscopic information about the target nucleus. However, due to the

uncertainty in the relative importance of various reaction mechanisms, good spectroscopic
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mformauon is yet to be rcahzed
2.3 The A(1232) Isobar

In addition to the direct bhotbejection mechanism, isobars may contribute to (%N)
processes as illustrated in Fig. 1. The A(1232) isobar, which has spin and isospin 3/2,
may be created by the photoexcitation of a nucleon, resulting in an intermediate state
which contains the propagating A and a one-hole state of the target nucleus. The isobﬁi'
then decays into an unbound nucleon and a pion which is absorbed by the residual
nucleus to produce the final nuclear state. The photon may also be absorbed by the isobar
subsequent to its fbrmation, resulting in the decay of the A into the unbound nucleon.

A nonrelativistic calculation for the two diagrams in Fig. 1 has been done by
Londergan and Nixon®®, The amplitude for the diagrams with the A is

Al

- 1
GO\ H AT (v, v
d imegim 1 eV Vi Y —p2M M2 E,

states

A
1H gl W)

1
Al| Al)

int g E; (p’/zu +M,~il[2)-E,

v o v, v W, Wi TH e WY 2.5)
‘where E is the total laboratory energy (photon energy E, plus target rest mass), £, is
the total energy (kinetic plus rest mass) of the intermediate state of the residual nucleus,

M, is the isobar rest mass (1232 MeV), and I'is the isobar width in the nuclear

A @a-n* N A A-D" 4T 5
A-1)y f
(2) | (b)

Fig. 1: The A isobar contributions to nucleon photoemission. (a) The A is created by the
photoexcitation of a nuclcon, propagates, and then decays to a nucleon which is emitted into the
continuum and a pion which is reabsorbed by the nuclcus. (b) The delia is created in the nucleus and then
decays to the emitted nucleon by absorbing the incident photon.
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medium (the width reflects the tendency of the A to decay). The sum over the
intermediate states includes a sum over all quantum numbers of the intermediate nucleus
as weli as over all spin and isospin states of the isobar, and an integration over the isobar
momentum p,,. The denotation of the wave functions is apparent.

The isobar production: and decay matrix elements 4 are written in terms of the
Y+ N — A production vertex and the A= N + n decay amplitude,
respectively. The form of the isobar production vertex is derived using a quark model for
the baryons and the parameters involved are determined from isobar electroproduction
cross sections. The coupling constants for the isobar decay amplitude are determined
from independent experiments and the associated form factors are arrived at from
neutrino reactions.

To evaluate Eq. (2.5), the final nuclear state and all intermediate states are taken to be
one-hole states with respect to the target nucleus. Other approximations in the calculation
are that the isobar-nucleus interaction is neglected (I'is the free A width) and, in the
spirit of the WKB approximation, the continuum nucleon wave function is taken to be a

"modified plane wave "
2, 0=y " 2.6)

The modified momentum p’ is complex; the real part represents a shift in the asymptotic
momentum due to the real part of the nuclear potential and the imaginary part takes into
account the possibility of losing flux into other charnels. The reduction factor { 12 als0
accounts for a flux loss. This approximate for: for the distorted wave simplifies the

computations considerably. v
Londergan and Nixon compare their calculations with the energy dependence of the

differential cross section for the reaction '®0(%p)'>N at 45°, 90° and 135" scattering
angles. They conclude that the delta isobar contributions to this reaction become
important at photon energies above 100 MeV. As the photon energy approaches the A
production threshold, the calculations indicate that the processes involving the A isobar
are dominant in determining the cross section.

A similar investigation of the role of the A in the (¥%p) reaction by Cheung and
Keister?% disagrees with the aforementioned results. They find that although the A

current is important, it does not dominate the reaction cross section. The main difference



between this calculation and Londergan and Nixon's is that Cheung and Keister neglect
the A nonlocality; the A energy is fixed at a value determined by external kinematics. The
authors claim that the quantitative implications of this approximation may not be large.
The proton distortions are included more completely by Cheung and Keister by
evaluating the proton wave function with an appropriate optical potential. This added
feature of the calculation is not expected to significantly alter the results at higher energies
from the case when the modified plane wave of Eq. (2.6) is used.

The reasons for the different results obtained in the two described calculations are not
clear, The approximations that are made to facilitate the calculations are different in the
two cases, but their validity seems to be justified. The discrepancies point to the
precarious nature of doing calculations involving the A isobar. A great deal of care must
be taken to treat the resonance properly, and the precise way of doing this is not well
established.

2.4 Meson Exchange Currents

An extensive investigation into photonuclear reactions by Gari and Hebach‘® starts
with the premise that the nucleus is a complex system of baryons and mesons. These
authors argue that the mesonic degrees of freedom must be taken into account to obtain an
accurate description of photonuclear reactions. The (%N) transition amplitude is written
as the matrix element of the electromagnetic interaction Hamiltonian between the initial
and final "total nuclear states” that include mesonic and resonance degrees of freedom. In

effect, this means that the photon can interact with the various components of the meson-

baryon system as shown in Fig. 2.

The total wave function of the nuclear system is very complicated, and so the full

i

Fig. 2: Photon interactions with the meson-baryon system. Nuclcons arc denoted by N,
mesons by M and M’ and resonances by N°.
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space is truncated to get an amplitude that contains pure nucleonic states only. The
transition vug.trix becomes

Mg={2, 1 Hop|2,) @.7)

where % and 1/, ave the vsual nucleonic states (no mesons). The effective electromagnetic
interaction in the subspace of nucleons is given by

(x)+J (x)]dx nnﬂbOdy+‘2EXC 2.8)

Heff =0 = _.[ A(x): [Jone -body

The one-body current is given by Eq. (2.2) and gives rise to the direct mechanism
described in Sec. 2.2. The form of the exchange current is

JExc(x) =i TVeff » D(X)] (2.9a3)
A
D(x) = Z e, X, 83(x -X,) (2.9b)
a=l

where e, is the charge of the ath nucleon and V:f,:’ is the effective nucleon-nucleon -

interaction, which may be taken as a theoretical one boson exchange potential or as a
phenomenological potential. The form of the exchange current is derived in the low
energy limit. It is a result of current conservation requirements and takes into account
only two-body terms.

The nuclear states are calculated using a shell model expansion. The nuclear
Hamiltonian is written as a sum of a shell model Hamiltonian and a residual interaction

NN NN sm
HN=TN+Veff =(TN+U)+(Veff —U)=H0 +R . (2.10)

The shell model Hamiltonian is a sum of the kinetic energy operator T, for the nucleons
and the single-particle potential U, and has eigenstates that satisfy

H"|¢)=E¢) . (2.11)

By retaining the residual interaction R, nuclesn-nucleon correlations are included in the
calculation. The full eigenstates of H,, are written in a perturbation expansion as
2 =10+ —1——RI9¥) (2.120)

E~Hytic
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where P is the projection operator
I’=1—|¢i)(¢‘.l (2.12c)

and EI and E, are the energy eigenvalues associated with the final and initial states. The
transition matrix with these states becomes

=(® e 1
My =6P1910)+ GOIR g—gerz 210)

+<¢,@IOEI——WPRU:,->+(¢,‘"|R — el IH,EPRM‘.). (2.13)
. - -

i~ %o / o
Schematically, the contributions to the transition matrix are shown in Fig. 3.
The approximations that are made in evaluating Eq. (2.13) are: (1) V' is taken to be
a central potential of the Yukawa type containing an exchange mixture, (2) the nuclear
correlations are calculated to first order only, and (3) intermediate states of the correlation
terms are dominated by giant resonances of different multipolarities. The latter

AT H

Fig. 3: The contributions to the transition matrix of Eq. (2.13). The emply ovals signify
nucleon-nucleon correlations. The top four diagrams represent the interactions of the photon with the
~ one-body nuclear current and the bottom four diagrams represent the exchange current contributions.
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assumption allows the replacement of the Hamiltonian operators in Eq (2.13) with their
corresponding energy eigenvalues. Further features of the model are that a
phenomenological effective current Jgfc(x) is put into the calculation to account for the
A isobar and the optical potential for the emitted nucleon is the same as the binding
potential for the bound nucleon. The latter attribute preserves the orthogonality between
the initial and final states.

The results of this meson exchange current calculation are compared with
experimental data for (%p) and (¥%n) reactions on 0 and *He over a fairly wide
energy range. A detailed investigation of the relative importance of the various reaction
mechanisms at different energies is carried out by the authors. The conclusion drawn by
Gari and Hebach is that in general the exchange current contributions that do not include
the A current are necessary to describe the data; the A resonance contribution is small.
The direct reaction mechanism is found to be very inadequate by itself, in that it
consistently underpredicts the measured cross sections. Nucleon-nucleon correlations are
not very important except at the low photon energies that are of the same order as the
excitation energies of the giant resonances.

One of the major shortcomings of this calculation is that the insistence on maintaining
the orthogonality between initial and final states results in an unrealistic continuum
nucleon wave function. The continuum wave function does not even remotely describe
the elastic scattering data of the nucleon with the residual nucleus. Nonorthogonality is a
result of restricting the possible reaction channels to a single channel. It is unrealistic to
restrict the reaction channels and then to artificially impose wave function orthogonality
as Gari and Hebach have done at the expense of the continuum nucleon wave function,
especially when it has been shown (cf. Sec. 2.2) that the (%N) calculations are very
sensitive to this wave function. Boffi er al.®® have investigated the problem of the
orthogonality defect for electromagnetic knockout reactions. They evaluate the difference
between the cross sections calculated with wave functions orthogonalized by the Gram-
Schmidt procedure and with the usual optical potential wave function. It is found that
there is no effect for (%,p) reactions if the nuclear structure information and the
electromagnetic interaction are not factorized in the cross section. Therefore it seems that
it is much more preferable to use a realistic continuum wave function that incorporates the

effects of other reaction channels in an approximate manner through a complex optical



potcnnal at thc expense of wave function orthogonahty , .

- Another criticism of the Gari and Hebach calculation is the form of the exchange
current, Eq. (2.9). In the context of a different model (cf. Sec. 2.5), Ryckebusch et
al.®” show that the long wavelength approximation in which Eq. (2.9) is evaluated is
inappropriate for photon energies above about 80 MeV. The problem of not knowing the
precise form of the nuclear current is an outstandiné problem for photonuclear reactions
as well as for all of nuclear physics.

2.5 RPA Calculations

Ryckebusch et al.(%*27 calculate cross sections for (%N) reactions using wave
functions for the initial and final states that are evaluated in the Random Phase
Approximation (RPA). RPA wave functions are calculated by diagonalizing the
Hamiltonian which consists of matrix elements of a Skyrme residual interaction between
particle-hole states. The particle-hole states are generated from Hartree-Fock calculations
in which the same Skyrme interaction is used. The final state wave function that has a
part containing an outgoing nucleon with definite momentum and spin projection, and a
residual (A - 1) nucleon system that is a pure hole state, is constructed from a linear
combination of the RPA continuum wave functions.

In their initial paper®¥, the authors use the one-body current of Eq. (2.2) in the
electromagnetic interaction Hamiltonian and thus do calculations for the direct
mechanism. However, since the wave functions are calculated from the RPA formalism,
nucleon-nucleon correlations are also taken into account. The energy dependence of the
cross sections for '%0(yp) and ‘“’Ca('y,p) reactions at 45°, 90° and 135° proton
angles are reproduced reasonably well in the photon energy range between S0 and 300
MeV (for the 160 target, the calculations are compared with data for the case in which the
residual 15N nucleus is left in the excited (3/27, 6324 keV) state as well as in the ground
state). The observed similar shape and magnitude of (%p) and (%n) reactions is
investigated by doing calculations for the cross sections of 16O(y,p)15 N and
16O(y,r:)150°(3/2") reactions at E,=60MeV. Both angular distributions are
reproduced very well by the calculation, but it is shown that whereas the proton emission
process is almost determined by the direct Hartree-Fock contribution (i.e., the

calculation is done using the Hartree-Fock wave functions rather than the RPA wave
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functions), the neutron emission process is dominated by the RPA correlations. For the
180(7:p)"N reaction at E,= 196 MeV, the RPA calculations overestimate the cross
section by almost an order of magnitude at the forward scattering angles; better agreement
is obtained for angles‘abovc 50°,

Ryckebusch et al. further investigate including an exchange current contribution in
their calculations?”), The form of the exchange current is determined from current
conservation requirements to be related to the commutator of the effective nucleon-
nucleon interaction 9 and the nuclear density p(r) by

Vi, 0= 1V,p01. 2.14)

This is similar to the method used by Gari and Hebach described in Sec. 2.4, cxcépt that
the exchange current is not evaluated in the low energy limit exclusively. The conclusions
drawn for the 'SO(%,p)!*N reaction at E, =80 MeV are similar to those of Gari and
Hebach, except that correlation terms are found to be more important in this case. The
cross sections are systematically overestimated when the exchange current is included in
addition to the RPA one-body contribution.

The most serious problem with the RPA model is the result for the °0(yp)!N
differential cross section at E, =196 MeV. It would seem that the direct RPA
calculation should give better results at lower momentum transfers and fall below the data
as the momentum transfer increases. The inclusion of meson exchange currents would
likely make the situation even worse. It is possible that the continuum RPA wave
function is responsible for the discrepancy between the theory and experiment. Since the
initial and final wave functions are constructed from the same Haxhiltonian, orthogonality
is preserved. Although this model for the wave functions is more convincing than the
prescription described in Sec. 2.4, the continuum nucleon wave function still does not

describe the related elastic scattering data.

2.6 Discussion

The theoretical models discussed above are in disagreement in the sense that each
attributes its success in describing experimental data to different processes. Furthermore,
most of these calculations were compared with the limited data available at the time they
were put forward. A more comprehensive set of photonuclear data has become available
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recently which has the potenti_al of putting more severe constraints on the theory. It is
instructive to examine various theoretical predictions for the same recent cxperimcnt. A
number of theoretical predictions for the 1,60(7.p)‘5N differential cross section at
E,=196 MeV are shown in Fig. 4. It can be seen that none of the calculations
adequately describes the data. It appears that some of the assumptions and
approximations made in the calculations are not valid or at least not general to all
kinematic conditions.

The outstanding problem of the 196 MeV 160(7,p)‘5N data highlights the
desirability of a more refined treatment for (%N) reactions. The models which involve
two nucleon mechanisms can be improved by making less simplifying aSsumptions. This
would involve more lengthy calculations. Indeed, nucleon photoemission reactions are a
good testing ground for meson exchange current calculations. As well, it certainly
becomes possible that relativistic effects will become important as higher incident
energies and momentum transfers are achieved.
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Fig. 4: Nonrelativistic calculations for the differential cross section of the
196 MeV 10(7,p)'*N reaction. The experimental points are from Turley et
al.®®, The solid curve is a result of the direct mechanism calculation of Turley(29), the
dashed curve is the Londergan and Nixon calculation which includes the A isobar®®, the
dotted curve represents Gari and Hebach's prediction with meson exchange current
contributions® and the dash-dotted curve is the direct RPA result of Ryckebusch ez

al.®,



3. Relativistic Nucleon Dynamics
One of the essential ingredients in doing relativistic calculations for photonuclear
reactions is the description of the dynamics of the nucleons involved. The interaction
between the photoejected nucleon (before and after it is emitted into the continuum) and
the core nucleus is especially important for constructing a theoretical model for (N)
reactions. The nuclear force is mediated by the exchange of mesons©%33), and therefore
an exact treatment would involve calculating all possible meson exchange processes

between the nucleons. This is a very formidable task and so it is desirable to construct a
model in which meson exchange effects are included in a simplified manner.

3.1 Relativistic Hartree Description of Nuclei

A relativistic quantum field theory for the nuclear many-body problem has been
developed by B.D. Serot and J.D. Walecka*). Their "quantum hadrodynamic" model
(QHD-II) is a relativistic Hartree description of nuclei and is based on the fields shown in
Table 1. The couplings between fields are chosen in the usual "minimal" fashion. For
example, it is assumed that the neutral scalar meson couples to the scalar density of
baryons through g,y and the neutral vector meson couples to the conserved baryon
current through g,Wy#wV,, . The quantities ¥¥ are the Dirac matrices, g, and g, are the
relevant field strengths and the adjoint spinor is defined to be W(x) = y'(x) 9.

In this model the Lagrangian density is

v Baryon p.a,... m
¢ Neutral scalar meson o my
Vu Neutral vector meson w m,
R Charged pseudoscalar meson 4 my
b, Charged vector meson P m,
Ay Photon Y 0

Table 1: Fields in the QHD-II Model of Serot and Walecka.
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where the electromagnetic field strength F#Y, the neutral vector meson field strength
G*Y and the charged vector meson field strength B#Y are defined as

Fi¥eglpv —g%A# (3.1b)
GHWWehyY-o'VH (3.1c)
BAY = 0#b’ -3 bH-g,(h#«b"). (3.1d)

As well, T are the Pauli isospin matrices and y5= 9919243, In Eq. (3.1a) the baryon
fields are taken to be isospinors, i.e.,

v=| | (3.1e)

At this point the Euler-Lagrange equationsc“)

P ( oz ] 0Z _, 52

ox* | d(ag;/0x*) | g

where g; represents any one of the fields in the Lagrangian, would give equations for the
fields. However, there is no method to solve these nonlinear field equations exactly, and
so further approximations must be made to get a solvable problem.

The simplifying assumption that will yield an approximate solution is to replace the
meson field operators by their expectation values which are classical fields. Furthermore,
only spherically symmetric nuclei with total angular momentum zero are considered. For
these cases, current conservation prohibits a three-vector piece V(r) = £ V(r) from
appearing as a classical field®>. The expectation values of the pseudoscalar field and any
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other charged field are zero as well because the nucleus is assumed to have a definite
parity and a well-defined charge respectively. The fields that survive are:

¢ —(d)= ¢, (3.33)
Vy (V)= 8,0V, (3.3b)
b, = (b,)=80bg (3.3c)
Ay (AL)=6,0A0. (3.3d)

This "mean-field" theory (MFT) is expected to become increasingly valid as the nuclear
density increases‘! V.
The Lagrangian density in the MFT becomes

8m = Vliyko,-g, 7°Vo - %8P7370bo‘ e %(1 +7Ty) yvo - (m—g,0,)1w
~31(V8,)* + mg3] + JUVVp? + m2VE] + 1 (VA + (Vo) + m3b3]. (3.4)
The field equations resulting from this Lagrangian are

(Vom)em=-g,p,0 ;i p®=AGITOYEIG)  (3.50)
(V2-m?) QX =-28,p,(X) ;  py(x) ={P|:W(X) ¥ (x):14B,) (3.5a)
(Vimy) by®) = - 32,00 i Py =@y @ Tw ®)IP,)  (3.50)
VA =~ep,®) 5 p,(x)=(Bl:y'® i1 + 2w (x:IP)  (3.50)

ik 9y~ 8, 7OVy- 38,7570, —e3(1 + T YA, ~[m - g, 6,y (x) =0. (3.5¢)

The densities p(x) are expectation values of various products of the baryon field
operator between the nuclear ground state I, ). The field operator can be expanded as a
sum of positive and negative energy solutions

V=3 (A Up() + BLV,(x)]. (3.6)

. . t
The label & denotes the quantum numbers of the single-particle states. AI, and B, may
~ be interpreted as creation operators for baryons and antibaryons. These operators satisfy
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the anticommutation relations

| (Ag A ) =6,5=1B,.Bp) (.7
with all other anticommutator combinations being zero. The colons in the expressions for
the densities imply "normal-ordering” which means that all destruction operators are

placed to the right of creation operators. Normal-ordering removes contributions from the

negative energy solutions V(x). ,
The field equations may be written as a set of coupled nonlinear differential equations
by writing the positive energy single-particle wave functions U, (x) in a form that is
-consistent with a central parity-conserving field (the explicit form is discussed in Subsec.
3.4.2). The resulting relativistic Hartree equations may be solved self-consistently by an
iterative procedure. The masses are taken to be the observed meson masses and the
coupling constants are determined by fitting properties of nuclear matter and bulk
properties of nuclei.
This self-consistent Hartree description of nuclei accurately predicts charge density

distributions, neutron densities, and rms radii of the ground states of spherical nuclei

such as *°Ca, %°Zr and 208pb®6), As well, in this model the observed spin-orbit
splittings between single-particle levels are reproduced and the existence of the nuclear
shell model is predicted.

3.2 Nucleon-Nucleus Scattering

3.2.1 Relativistic Hartree Description of Nucleon-Nucleus Scattering

The relativistic Hartree formalism should be able to describe the scattering of an
additional (unbound) nucleon from a nucleus. The continuum nucleon can qualitatively be

described as moving in the self-consistent fields calculated for the nucleus. The Dirac -

equation (3.5¢) for a stationary state Y(x) = y(x) e-& becomes

(-ia-V + Bm + g,V (") "'%8p73bo(') +e3(1+ AN -8B ¢o(r)}yl(x)
=Ey(x) (3.8a)

where o and J are related to the Dirac ymatrices by

a=p0y , B=p. (3.8b)

Equation (3.8a) can be written in the form
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[Hime + U@V ®) =By ®).  @ow)

The free Dirac Hamiltonian is ‘ o
Hye=—ia-V + fm ~ (3.9b)
and the "optical potential” is given in terms of the fields as

Uop(r) = 8,V N+ 38,T84(1) + e(1 + 1A - g, B o). (3.9¢)

The fields are known and so the problem could in principle be solved. Of course, the

effect that the scattered nucleon has on the nucleus has been ignored. Furthermore, other
possible inelastic reaction channels have been ignored. For these reasons, this formalism
is not used for doing calculations for nucleon-nucleus scattering. However, the
relativistic Hartree description gives an indication of what features a more quantitative
model of nucleon-nucleus scattering must contain. -

3.2.2 Phenomenological Dirac Optical Potentials

In direct analogy to the Schridinger calculations for nucleon-nucleus scattering®”, a
relativistic optical model for nucleon-nucleus scattering can be developed, based on the
Dirac equation as the relevant wave equation®®39, In this model, the local time-
independent Dirac equation is written exactly as in Egs. (3.9) except that the optical
potential is taken in its most general form. The Lorentz character of the Dirac equation
specifies that the optical potential can consist of a combination of scalar, pseudoscalar,
vector, axial vector and tensor potential types. Thus, the Dirac equation is

{-p +Blm + SX) + YFV, () + YSP(X) + 7Hy%A,(x) :
+ oM, O V®=Ey®) .  (3.10a)

where
oM=L (yhyv-yipH) . (3.10b)

For the case of a spherically symmetric nucleus with definite parity, only the scalar,
vector and tensor potentials survive. Furthermore, if the spatial part of the vector potential
is spherically symmetric it can be absorbed into the other terms“®. The tensor potential is
also usually neglected because it is not necessary o describe the elastic scattering®, The



Dirac equétion tﬁmfo:e bcéoﬁies N ,
| (ap+BIm+SOI+[VO)+V.Olv®=Ew® (3.11)

‘where V() is the Coulomb potential.
The potentials are usually parameterized as Woods-Saxon functions

= |4 iW
vo= 1+e TR * 1+eRa - (3.12)

which qualitatively have geometries that are similar to the shape of the nuclear density.
The strengths V and W, radial parameters R and diffuseness parameters g are varied to
give a good description of the scattering observables. The imaginary parts of the
potentials take into account in an average way a loss of flux into other reaction channels.
The phenomenological potential is found to have strong attractive scalar and repulsive
vector pieces. The real potential strengths are of the order of a few hundred MeV.
Calculations done in the relativistic optical model have had rather spectacular success
in reproducing the proton elastic scattering data on a wide variety of nuclei over a wide
range of incident energies®8942), The fits to cross section data are usually better than
the most sophisticated Schrodinger-equation-based approaches and the spin observable
fits are in general superior for Dirac calculations. Furthermore, the distorted waves
calculated with the Dirac equation have been used in calculations for inelastic (p,p")
reactions®>4*) and rearrangement reactions such as (p,7) reactionsS) with good

results.
3.2.3 The Relativistic Impulse Approximation

The relativistic impulse approximation®®*®) (RIA) gives a microscopic foundation
for the phenomenological relativistic optical model. The RIA combines the empirical free-
space nucleon-nucleon amplitude with densities obtained from Hartree calculations into
the calculation of an optical potential. In order for this approximation to be valid, the
energy of the scattering nucleon must be sufficiently high so that the density dependent
corrections to the free-space amplitudes can be ignored.

The invariant scattering amplitude that satisfies the constraints of Lorentz covariance,
parity conservation and that free nucleons are on their mass shell can be written in terms

of five complex functions as“6)
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= yh S /S S wita,S nv "
F=Fg + Fy viaw® B Yayiayt Faayiatanst Fr %0y Sy (3'_13)

where the subscripts (1) and (2) refer to the incident and struck nucleon respectively. The
complex amplitudes F are functions of the square of the total four-momentum s and the
square of the four-momentum transfer ¢. These amplitudes have their basis in meson
exchange processes between nucleons®?5%, but for the purposes of the RIA are
determined empirically from nucleon-nucleon scattering.

The nucleon-nucleus optical potential in the RIA is

. A e
U, @Ty) =—“—,’§,i<¢oli);‘,le WX £ (1,5) |, ) (3.14)

where k is the wave number of the nucleon in the center-of-mass frame, q is the
momentum transfer, T, is the nucleon lab kinetic energy, A is the number of nucleons
in the nucleus and 1d%) is the nuclear ground state. For spin-zero nuclei, only the scalar
term and the time-component parts of the vector and tensor terms survive. The optical
potential in coordinate space is

Upr) = 5(r) + B, Y(r) - 2ict, - #T(r) (3.15a)
where

3 . .
S() = jé—”(;;—e"q * Bota) | <42 Py (1) | (3.15b)

3 . .
V()= _[ -(%;%;e"""‘ Py@ | 2L F, (1)] (3.15¢)

3 . .

() =rj-(‘;?‘;-e'“‘" Br@| 22 F 1)) . (3.15d)

The densities i')'s and ﬁB are Fourier transforms of the scalar and baryon densities
defined by Egs. (3.5a) and (3.5b) and f)'T is the Fourier transform of p,(r) which is
defined by

Qce

[fp, (N = IZRCLLUACE (3.16)

The densities are calculated in the Hartree formalism. The optical potential will naturally
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contain hoth real and imaginary parts since the amphtudes are complex -
The Dirac equation for the incident nucleon in the RIA contains the RIA opucal

potenual.
(@4yP + Byylm + Upp (1) + B, Vv (0) = By () . 3.17)

Both the Coulomb potential V() and the tensor part of the optical potential are found
to have little effect on the scattering®" and so these are usually omitted. Equation (3.17)
can be solved to calculate observables for nucleon-nucleus scattering. Calculations in the
RIA for medium energy proton-nucleus scattering have been very successful in
describing the cross sections and especially spin observables©?,

3.2.4 Microscopic Relativistic Nucleon-Nucleus Scattering

Reéent relativistic microscopic calculations®*® go beyond the original RIA. These
calculations include effects that are not dealt with properly in the RIA, such as exchange
terms in nucleon-nucleus scattering and medivm modifications of the NN interaction.
Dealing with this important physics beyond the original RIA prescription gives a better
description of the scattering, especially at lower energies where these effects are
significant. The essential feature of the relativistic microscopic calculations is to model the
NN amplitude as arising from the first Born approximation for the exchange of mesons
of different Lorentz types (scalar, vector, tensor, pseudoscalar and axial vector). The
meson exchange diagrams include the direct interaction and the exchange term as is
shown in Fig. 5. The complex coupling constants and form factors for the meson-

Fig. §: Meson exchange diagrams for the NN amplitude in the first Born
approximation. The U's are the nucleon spinors and g; is the strength of the relevant meson-nucleon
coupling.
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nucleon 'vgr"tiqu. are fitted to repioducc NN scattering data at separate‘energies. The.

direct and exchange amplitudes (calculated using the Feynman rules for the diagrams) are
folded with relativistic Hartree densities, using a local density approximation for the
exchange part, to get an optical potential. The optical potential is then multiplied by a
correction factor that represents the effects of Pauli blocking. The correction factor is
obtained from relativistic nuclear matter calculations®. |

The aforementioned modifications are found to be important at energies below
500 MeV. The optical potential calculated in this framework is good down to at least
200 MeV. Furthermore, the explicit treatment of nucleon exchange allows the
unambiguous use of a pseudovector ¢y5 coupling for the pion, whereas in the original
RIA the pseudovector coupling gives the same result as the pseudoscalar ¥5 coupling.
The choice of the pion coupling is important because the pion makes a significant
contribution to the scalar and vector potentials through the exchange term.

Another approach that generalizes the original RIA includes the negative energy
sectors of the Dirac NN scattering space >, In the original RIA the five invariants of
Eq. (3.13) are sufficient to describe all the matrix elements between positive energy
spinors. There are an additional 39 invariants that are non-vanishing when matrix
elements between both negative and positive energy spinors are included as possibilities.
The amplitudes associated with these invariants are calculated using a relativistic meson
exchange model that provides a good description of NN scattering data in the
0 - 1000 MeV energy range®373%). This approach includes nucleon exchange
contributions and uses pseudovector aV coupling but does not incorporate ruedium
modifications. The resulting local form of the optical potential is

Upol®) =S+ BV(N - ia F T =[S (N + BV, cM]o-L . (3.18)

opt

The new features of this potential are the scalar and vector spin-orbit potentials S, ¢ and
Vis. Also, a space vector potential is absorbed into the five terms in Eq. (3.18).
Calculations with this extended RIA model give good results for the elastic scattering of
200 MeV protons“®.



29

3.3 The Relativistic Nucleon Wave Functions
3.3.1 The Continuum Nucleon Wave Function

The photoejected nucleon dynamics are described by a Dirac equation. In the
phenomenological and microscopic models the Dirac equation contains potentials which
take into account in an average way the meson exchange processes that may occur when
the nucleon is in the vicinity of the nucleus. In solving for the nucleon wave function the
optical potential is taken to include scalar and vector potentials only. On theoretical
grounds the tensor potential, which is due to the exchange of a p meson, is expected to
be small; this is supported by phenomenological analyses.

The Dirac equation for the outgoing nucleon of the (%N) reaction is

[—ic-V + Bm + BS(r) + V(r)-E] V’s,(") =0. (3.19)

The Coulomb potential is included in the vector potential in this expression. The distorted
wave V/s,(x) describes the elastic scattering of a nucleon from the residual nucleus of the
(%:N) reaction. The matrices o. and J are taken in the usual representation'? to be

0 ¢ $ 0
o=l ol » B=lo 4| (3.20)

These 4 x 4 matrices contain the Pauli matrices

101 20-1‘ 3 10
o=l1 0ol 9=liol" % =0 (3.21)

and the 2 x 2 unit matrix . The reduction of Eq. (3.19) into an ordinary second-order
linear differential equation is accomplished by examining the form of the free solution
(i.e., the solution of Eq. (3.19) with no potentials) and in analngy with the distorted
wave solutions for the Schrodinger equation(sg). '
The positive energy solution to the free Dirac equation for a particle with four-

momentum pH = (E,p) is the plane wave(!?)

E 1/2 1
| + -
v ") = ( 2mmJ oV [z, (3.22)
) E+m



The two-componcnt spinor Z, 7 i , 18 [o] for positive spin prOJecuon on the quanue:auon
axis, and [°] for the opposite prOJectlon The exponential may be expanded in terms of
spherical Bessel functions®® to give a partial wave expansion of the free solution

1/2 '
ws‘f”°’(x)=[E2+m'") e an 3 YY) (L 12 Mg, 5 ) TM)
! LiM q

X gy | &N yLuzJ (3.23)
E+m

The unit vector ﬁf is in the direction of the particle and & is the particle's wave number.
The Y's are generalized spherical harmonics that are eigenfunctions of the angular
momentum operators G2, L2 J?and J,. Specifically

Y

M-u
Ll/zl(‘m Z(L1/2 M-ppliMyy,” "zt (3.24)

where the ¥'s are the familiar spherical harmonics.
The nucleon distorted wave is expanded in partial waves in a form that is similar to
the free solution

6,(x)

/2

E+m - *A

vls(x)=( J B p :LY Tk (L1/2; M=s; s,|TM) . (3.25)
2 2m I;l f 15 6, (x)

The functions ¢,(x) and ¢,(x) are products of a radial function and a generalized

spherical harmonic
¢(x) =1, ,(r) :y“ 12,8 (3.26a)
¢2(x) = igLJ(r) :yL 1/21  L's2J-L . (326b)

This separation can be done because the potentials have radial dependence only. The form

of the lower component is arrived at from Eq. (3.23) through the identities®?

oV =of [.‘% - SlrL) (3.27a)

oL =J-12-§* (3.27b)
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oty @=-y

LiRJ s (3.27¢)

The Dirac equation (3.19) will give a matrix equation relating the upper and lower

components:

. 0 oV [m+S(r) 0 ] V() -E 0 ,(x)
ev oL 0 -m-so|t| o wvn-e o) =0 (3.28)

or equivalently
—ieVex) +[VIN+S()+m-E) (x) =0 (3.29a)
~io: Ve (x) +[V(N-S(N-m-E] ¢,(x)=0. (3.29b)

Substituting the expressions (3.26) for the upper and lower components into
Egs. (3.29) results in the following set of coupled first-order differential equations:

[E +m+S(r) - V(1] g, () = (ad; v lrk ) £,,0 (3.302)
(E-m-80r)-V(N1Sf, () = —( Zid;' + 1’T"'Jgu(r) (3.30b)

where

—(L+1) ford=L+1/2
ks(L-J)2I+1)= . 3.31)
L forJ=L-1/2
The identities (3.27) are used in deriving these results.
The wave function for an elastically scattered nucleon with incident spin projection s

therefore has the form
1/2
E + m] /

i LyM-s*
st(+)(x)=( m e‘E‘4ﬂ[§11LYL : (ﬁf)(LI/Z;M—-s s1JM)

M
$,0) Yy (D
x . (3.32)

. M
i, Y., @

The (+) superscript signifies that the wave function has outgoing boundary conditions,

k)|



i.e., the wave function consists of an incident plane wave and spherical outgoing
scattered waves. This boundary condition is required by the physical situation. The radial
functions satisfy the set of coupled first-order differential equations (3.30). This system
of equations can easily be transformed into a second-order differential equation for the
quantity f(r) = rf ;(r) by substituting the expression (3.30a) for g LJ(r) into
Eq. (3.30b). The result is

f"(')—mf'(r)—(d(r) sy + K4O Kt I)Jf(r) =0  (3.33)

d(r) rd()
where
dr)=[E+m + S - V()] (3.33b)
s(Ns-[E-m-S(N-V(©)]. (3.33c)

The first derivative term can be eliminated by making the transformation
£r) = y(N[d(N]*2. The equation then becomes

" kd'(r) x(x+1) _
y (r)+[a(r)— 7 O ) yn=0 (3.34a)
where
2
_d' _3[amn)
alr)= 2d0) " 4 [ an } dir) s(r). (3.34b)

Equation (3.34a) is of the standard form y"(x) = f(x)y(x) which can be
integrated using standard numerical techniques such as the Numerov method
(c¢f. Appendix B). Two further pieces of information are required to determine the
solution unambiguously. Since y(r) = [d(r)]‘”zf(r) = [d(r)]’”2 rf,,(r) and
the radial function is required to be finite by probability arguments, it is clear that
¥(0) = 0. Once the initial value y(0) is known, only the overall normalization of the
solution remains to be determined. The normalization is fixed by requiring that the
asymptotic (r — o) radial functions have the same normalization as those for the plane
wave solution. The upper component radial function for the plane wave is given in
Eq. (3.23) to be a spherical Bessel function which has the asymptotic form

i k) — sin(kr - Ln/2)

r oo kr

(3.35)
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The effect of the nuclear potential will be to introduce a nuclear phase shift & into this
asymptoi.c form, in analogy with the conventional Schrédinger partial wave analysis for
scattering from a nuclear potential®®, As well, for a scattering proton the long range
Coulomb potential will result in a phase shift I and a logarithmic term in the sinusoid.
The normalization is not affected by these modifications. The desired asymptotic form
that satisfies the outgoing boundary conditions is

fu(kr) - ¢ i6+E) sin(kr - 1 In(2kr) - L2 + &+ &, ) (3.36)
7~ oo .

kr
where 7 is the Coulomb parameter
_Zzye®  Zzye(g
-2l

Ze is the nuclear charge, z, e is the charge of the nucleon and v is the velocity of the
nucleon. This result for the upper component is completely analogous to the asymptotic
form of the radial functions for the Schrodinger equation®®, The phase shifts and
Coulomb interaction are discussed in more detail in Appendices C and D.

The normalization convention chosen for the nucleon wave function is arbitrary in the
sense that when observables for the elastic scattering are calculated the normalization
cancels out. The wave functions (3.22) and (3.32) are often multiplied by a factor of

33

(2m)~32 (m/E)"2. This is the 8-function normalization in which the free wave )

function satisfies the condition
j l/l:,(t,x') v (1.x) dx =8 x'-x). (3.38)

It is interesting to compare the second-order differential equation (3.34a) for y(r)
with the corresponding equation in the Schrisdinger formalism. The nonrelativistic
equation for the scattering of a spin-1/2 particle from a potential is¢?

')+ [k’- 2m U ) +m (1 + 10 U r) -ﬂéer] YH=0  (3.39)

where U (r) is the central potential and U, (r) is the spin-orbit potential. Comparing
this with Egs. (3.34) gives the identifications



- — + 40 4
kK -2m Uc(r? a(r) rd®) (3.40a)
— - 40

These equations give Schrédinger-equivalent central and spin-orbit potentials that
are arrived at from the Dirac equation. If it is assumed that E ~ m and
m >> [V(r)l, IS(r)l and use is made of Egs. (3.33b) and (3.34b) then the potentials
become

U(n) =8(r) + V(r) - (3419)
U (=== L vt -5) (3.41b)
50U 2m?r dr | '

In this approximation the central potential is the sum of large potentials of opposite sign.
This agrees qualitatively with the relatively small central potential in Schridinger
calculations. Also, whereas the large surface-peaked spin-orbit potential is put in by hand
in the nonrelativistic case, the "Thomas form" of the spin-orbit interaction appears
naturally from scalar and vector potentials in the Dirac equation. In general the equivalent
potentials given by Eqs. (3.41) have more complicated geometries than Woods-Saxon
geometries; if potential geometries of this form are used in Schridinger calculations the
agreement with scattering data is improved for higher incident nucleon energies (using the
Dirac-equation-based potentials in Schrédinger calculations yields exactly the same
results for elastic scattering observables as the full Dirac calculations(?),

3.3.2 The Bound Nucleon Wave Function

The bound state wave function of the nucleon appears in the expression of the
amplitude for (%N) reactions. The bound nucleon dynamics are described by a Dirac
equation which includes a binding potential. In the Dirac Hartree approximation this
potential is given a firmer theoretical basis; the binding potential is due to scalar @,
neutral vector @ and charged vector p meson exchange processes between nucleons
(¢f- Egs. (3.5)). The source of the mean fields is a nuclear density which is relatively
large and constant in the nuclear interior. Thus Egs. (3.5) suggest that the fields will

approximately follow the shape of the nuclear density. In a'nalogy with phenomenological
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determinations for nucleon-nu'cleus scattering, the potentials in Eq. (3.Se) may be
parameterized as Woods-Saxon functions rather than being solved for self-consistently in
the Hartree formalism. The parameterized potentials have magnitudes similar to the
Hartree potentials and are constrained to give the empirical Binding energy of the nucleon.

The Dirac equation for the bound nucleon with only the scalar and vector potentials is

[-iaV +Pm+ BS()+V(r)-E] V’n(") =0. (3.42)

As was the case for the continuum wave function, the tensor potential (due to the p
méson) gives rise to small effects and is therefore omitted for the sake of simplicity. The
Coulomb potential may be included in the vector potential; its effect is also small. The
potentials in Eq. (3.42) are real because there are no other channels to account for in the
case of a bound nucleon. The four-component spinor with well-defined angular
momentum and parity that is a solution of Eq. (3.42) is

TCE A
v =e b 9 Sy @ c Lh=2] ~L (3.43)
B '8 T °'n 1/ *

i) Y. A 2P

This form is very similar to that of the solution for the distorted wave since the Dirac
equations for the bound and distorted wave functions are the same except for the details
of the potentials.

The upper and lower radial components are therefore also related by a set of coupled
differential equations identical to Egs. (3.30). Explicitly

[Eg+m+S8(r)-V(N] gy () [-— + 1—@ ] fp( (3.44a)
(Ey-m=S) = VL) =-| £+ 152 ] 4,0 (3.440)

where
K= (Ly—Jp) QL+ 1) . (3.45)

Using the relationship E p=m—E, , where E, is the binding energy of the
nucleon, the following quantities may be defined:

35



i’l(r) =Ep-m-S(r)-V(r)=-E, - S(r)-V(r) (3.46a)

Vo) =Ep +m+S(r)-V(r)=2m-E,+ S(r)-V(r). (3.46b)

Then, substituting the expression (3.44a) for g (") into Eq. (3.44b) results in a second.
order differential equatipn forfn(r)

fy M+ BO) fr (N + AN f(N =0 (3.47a)
where
A0 = V@ vm- S [ "Z 2 x,,] (3.47b)
2 Vi
B(’) = -r- ——‘-,-2—(7)— . (3.470)

The first derivative term may be transformed away by the use of an integrating factor.
Specifically, the substitution

N LR
is made. The differential equation for y(r) becomes
Y'(N+ar)yir=0 (3.49a)
where
an=An-1B (M -LB0 . (3.49b)

This equation may be integrated by standard numerical techniques (cf. Appendix B).

The behaviour of y(r) at the origin and at large r is determined by physical
considerations. The function must be regular at the origin (i.e., y(0) = 0) since it is
related to the bound upper component by Eq. (3.48). As r — = the function should
vanish since the bound nucleon must be localized in space. The asymptotic form of
Eq. (3.49a) is

Y =E,2m~E,)y(r). (3.50)

In obtaining this result it is assumed that all the potentials are negligible for large . The
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exponentially damped solution
-JE,Cm=-F,) r 3.51)

yn=e
satisfies the physical criteria.
The overall normalization of the bound state is determined by requiring that the
probability of finding the bound nucleon in all of space is unity, Mathematically this is
expressed as

J-u/l:(x) y@dx =1 - (3.52)
which translates into
J'[ lfB(r)l2+ g, rdr =1 (3.53)

after the angular integrations are carried out.

It is interesting to compare the magnitudes of the upper and lower radial functions in
momentum space. Qualitatively the lower component is thought of as the relativistic part
of the wave function and is usually much smaller than the upper component. For the case
of the bound 1dj,, proton of 40Ca the results of a calculation with a phenomenological
potential are shown in Fig. 6. The potentials are taken to be Woods-Saxon functions

- W v

V(r) = o, (3.54a)
- W s

S(r) = TR, (3.54b)

The values for the strengths are varied to give the correct binding energy for the state and
the geometry is taken to be similar to that of p + 4°Ca scatiering optical potentials. It
can be seen that in the region of momentum transfer that is characteristic of intermediate
energy photonucleon knockout reactions the upper and lower components are of
comparable magnitude. Therefore, treating photonucleon knockout reactions with a
relativistic approach might lead to fundamental differences with nonrelativistic

Schrodinger calculations.
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Momentum Space Wave Funciions
for the 1dg,, Proton of *Ca
1
10 lIITll‘IlIIVIIIU"r]VT"T

10° - — IFp(q)]

— = 1Ge(q)] -

S 107® -
g
1073 —
1074 - -
-5 b ‘// \

1075 — < Y N

\ 4

10"6 B S T I | I I T P | l [ I I | I Lt 1 1 ' Lt 1 ‘J:I
0 1 2 3 4 5

q (fm™)

Fig. 6: The upper and lower component momentum-space wave functions
of the 1dy, proton of **Ca. These wave functions are computed from a Dirac
equation with Woods-Saxon binding potentials. The geometry parameters for the vector
and scalar potentials are R =3.73 fm and a = 0.6 fm. The vector strength is 320.0
MeV and the scalar strength is —398.3 MeV. The arrow denotes the region of momentum
transfer that is typical of intermediate energy (%,p) reactions os: “°Ca. The functions F B

and GB are related to the coordinate space radial functions fp(r) and g,.(r) by
Fy(q) = [r*dr f(n) Ji @0

Gy(q) = [rdr gy(r) Jan .



4. The One Nuclédn Model

The simplest mechanism by which a (%,N) reaction can proceed is one in which the
photon interacts directly with a valence nucleon of the target nucleus. The absorption of
the photon results in the nucleon being ejected into a continuum state with the residual
nucleus being left in a discrete state. This mechanism constitutes the One Nucleon Model
(ONM) for (%.N) reactions. It is also referred to as the quasifree knockout (QFK)
mechanism(6¥, Implicit in this model is the assumption that the initial and final nuclear
states can be described in terms of the shell model®®; the nucleon initially moves in a
potential that is the average result of its interactions with all the other nucleons and the
core is essentially a spectator in the reaction. Schematically the reaction is depicted in the

following Feynman diagram:
Y N
VAV AV VoV VoV WV V.V, N
~— /
- S -
A —- — A-1)

Fig. 7: The Feynman diagram for a (7,N) reaction in the One Nucleon Model.

The transition matrix element for (%;N) reactions may be written directly using the
Feynman rules for this diagram. As an alternative, a field theoretic approach starting with

a Lagrangian will lead to the scattering matrix for the (%,N) reaction. The Lagrangian is
perhaps a more "basic" starting point for the theory and hence this approach will be

followed.

4.1 The Lagrangian Formalism for the One Nucleon Model

In the spirit of the ONM, the Lagrangian for (%,N) reactions includes only one
nucleon, the electromagnetic field and the interaction between the nucleon and the

electromagnetic field. The nucleonic part of the Lagrangian

Lied® = [F0Uiy#3, -my cod’s @.1)
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| is the usual free fermion Lagrangian that through the Euler-Lagrange equations leads to
the free Dirac equation for the nucleon field w(x). The Lagrangian for the
electromagnetic field is®®

Lunf) =~ % [FPF, 0% 4.2)

The tensor F#¥(x) is the electromagnetic field tensor defined by

F¥(x) = 04" (x) - 9 A%(x) (4.3)
where A¥(x) is the four-vector potential of the photon. The interaction between the
nucleon and the electromagnetic field is obtained by making the substitution?

iyHo, = y*lid,~e, A, ()] 4.4)
in the free fermion Lagrangian. The term ey YHA u(x) describes the interaction of the

electromagnetic field with a Dirac particle of charge eys this is the familiar minimal
electromagnetic coupling. The total Lagrangian is therefore written as

L(t)=JW(x)[y# (9, -eyA, () —~mly(x)dx - 7}-J'F“V(x)ﬁ,w(x)d:'x . (4.5)

The Hamiltonian density % (x) is related to the Lagrangian density &(x) (where
L@ty = [B(x)d *x) by(®®

_98(x) 98(x) 4 4.6
Hx) = EY P+ ETIY ‘o) - o) . (4.6)

Thus the Hamiltonian H(r) = [% (x)d *x is a sum of free, electromagnetic and

interaction terms

H(t) = Hy o () + H . (1) + H (1) (4.7a)
where
Hgo (D) = J v'@lap + fmly(x)d (4.7b)
Hen®0 =1 [ 1B + B0 147 @7¢)
Hin (1) = j Y (leyy#A(0) Jy (x)d’x . (4.7d)

In the electromagnetic Hamiltonian, the tensor F#¥(x) has been written explicitly in terms
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of the electric and magnetic fields. Also, one of the Maxwell equations has been used to
eliminate one term for this part of the Hamiltonian.

In order to account for the anomalous magnetic moment that a nucleon is observed to
have, an additional magnetic dipole term

A 0 oY@ )

is included in the interaction Hamiltonian density®”). The proton has a magnetic moment
of 2.79 uy and the neutron has a magnetic moment of -1.91 My, Where
Hy = e/2my is the nuclear magneton. The predicted Dirac values of the magnetic
moment for the proton and neutron are 1 uy and O u,, respectively, and so
ky = 1.79 for a proton and ky = -1.91 for a neutron. The tensor oV is given in

terms of the Dirac matrices as
6“":%(;/#7"— yVyYH) . (4.8)
The interaction Hamiltonian with this additional term becomes
H, @)= I v(x) [eNyﬂA,, x) + "”2”” a“"Fuv(x)] vx)dx . 4.9)
The dynamical equation for the nucleon is derived from the Heisenberg equation of
motion
VD 111,y - (4.10)
Using the fermion anticommutation relations
{w@.x), v(t,x)} =0 (4.11a)
(W), ¥'@x)) = §1x - x) (4.11b)

and the the expressions (4.7a), (4.7b), (4.7¢) and (4.9) for the Hamiltonian in Eq. (4.10)
leads to the Dirac equation

[ 749, — ey yHA, (6) - % GH'E, (x) - m Jv/(x) =0 . (4.12)

A Foldy-Wouthuysen transformation of the Hamiltonian operator in this equation shows

explicitly how the additional tensor term accounts for the observed anomalous magnetic
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moment(!?,

Two points are worth noting about the preceding formulation for the nucleon
anomalous magnetic moment. First, the tensor term is not included in the interaction
Lagrangian because it includes time derivatives of the field A¥(x). This leads to probiems
in going to the Hamiltonian by the prescription of Eq. (4.6) in much the same way as a
velocity-dependeni potential in the interaction Lagrangian does in classical mechanics®.
Second, the anomalous magnetic moment can altemnatively be attributed to the influence
of strong interactions™?, This would require including pions in the Lagrangian. The end
result (for the anomalous moments) turns out to be the same, and so the complicating
feature of the pions is avoided by including the tensor term in the Hamiltonian.

4.2 The Scattering Matrix

The quantity that must be determined in order to make predictions of experimental
observabies for (%,N) reactions is the scattering matrix (S-mwutrix). The square of the
§-matrix gives the probability that the photonuclear reaction will take place. In first-order
perturbation theory the S-matrix for a reaction is®*

»g

st/

WRCATS)) | o a:i¥) (4.13)
where ¥, and 'I’f are the initial and final states of the system respectively. For the case of
(%.N) reactions, the initial siate contains a photon and a nucleus with A nucleons, and
the final state contains a free nucleon and 2 nucleus with (A - 1) nucleons.

In the One Nucleon Model the initial and final states may be writien using creation
and annihilation operators. The final state is written as

t M
1) = byt 197 (4.14)

The state I¢yf ) is precisely the final nuclear state with angular momentun quantum
number Jr ané projection M,. The operator bs; creates a nucleon in the continuum with
spin pro;ection syand momentum k. The initial state is written as a fractional-parentage
expansion of the ground state wave function of the target nucleus in terms of the complete

. M . .
set of wave functions @ ;) for the parent states J in the residual nucleus as®®®
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9= k) D (JUp s MMy 1IM,) 8, Up b, 18] (419)
Myt '

where a'(k,,) is the creation operator for a photon with momentum k, and b ,: M, is the
creation operator for a bound nucleon with angular momentum quantum numbers J,, and
M bound to the core ldby). The vector sum uéing Clebsch-Gordan coefficients ensures
that the initial nuclear state has a well-defined angular momentum J; with projection M; .
The 's are fractional-parentage coefficients; J Jl_z,(J ) 8ives the probability that the target
nucleus is in a configuration that consists of the vector product of a single-particle bound
state with total angular momentum J; and an eigenstate of (A - 1) nucleons that has
total angular momentum J,

The present study is restricted to nuclear targets with siinplc structure, namely those
having closed shells (J,= 0) or having one valence nucleon outside closed shells. In the
latter instance only transitions to the ground state of the residual nucleus (Jf= 0) are
considered. For such cases, J, is required to be Jp = Jpor Jp=J; respectively. The
overlap between nuclear wave functions involved in evaluating the S-matrix will pick out
the term in the parentage expansion with J = Jrand M = M,. The shell model
assumption iniplies that the corresponding fractional-parentage coefficient J j J,(J p) Will be
close to unity.

The interaction Hamiltonian (4.9) is written in terms of the four-vector potential of the
photon A¥#(x) and the nucleon field y(x). The electromagnetic potential is written in
second quantized form as(66)

AF) = g# J' (_2'5)’%!(%(07 [a®)e %+ a'(k)e k] (4.16)
where a' (k) and a(k) are the creation and destruction operators respectively for a photon

with momentum k and energy @, = Ikl. These operators obey the commutation relation

lak), a'®K)] = 8%k -k . 4.17)

The electromagnetic field tensor (4.3) is easily derived from the expression for A¥(x) as
v : d’k ikex bt Likex
F*(x) = l‘[m (EFkV-evkH) [ak) e * *~a'(k) e'**] . (4.18)

The second quantized form of the nucleon field operator y(x) i5(66)
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V) = Z | (2,,)-..,2[ [b ), (k,3) + ! 06) v, (K, 2)]
+ ) B @+dlv,0)  (@419)

where (i) b,(k) is the destruction operator for a nucleon with spin s and momentum
k and u,(k, x) is the corresponding space-time continuum wave function,

(i) d: (k) is the creation operator for an antinucleon with spin s and momentum
k and v,(k, x) is the corresponding space-time continuum wave function,

(iii) b, is the destruction operator for a bound nucleon with quantum numbers
denoted by n and u,(x) is the corresponding space-time continuum wave
function,

(iv) d; is the creation operator for a bound antinucleon with quantum numbers
denoted by n and v,(x) is the corresponding space-time continuum
wave function.

The creation and annihilation operators obey the usual fermion anticommutation

relations
(By(K) , bLK)) = 8,65k - k) (4.20a)
(dy(k) , dJK)) = 6,5, 8°(k k) (4.20b)
(Bar by} =8, (4.20c)
(dy,dy) =6, (4.20d)

with all other anticommutator combinations giving zero.

The S-matrix can be evaluated using the expressions (4.14) and (4.15) for the final
and initial wave functions, (4.9) for the interaction Hamiltonian and (4.19), (4.16) and
(4.18) for w(x), A¥(x) and F*¥(x). The S-matrix is an expectation value between
nuclear states |d>j'.") of & sum of terms involving products of creation/annihilation
operators and space-time wave functions. The nuclear states I‘I)j'-") contain only (A - 1)

positive energy bound baryons; there are no antiparticles. It follows that

d, |@7) =0 (4.21a)



d k) |®T) =0 (4.21b)
b(K) [®T") =0 (4.21¢0)
a®) |®7) =0, (4.21d)

Also, the creation operators bf, create bound nucleons only for unoccupied single-particle
levels and the destruction operators b, destroy only occupied levels. Using the
commutation and anticommutation relations to evaluate the momentum integrals (via the
delta function & 3(k - k") and spin sums (via the Kronecker delta &) greatly simplifies
the expression for the S-matrix. The S-matrix becomes

1/2 12
_— . 1 1
= =ity Iy Joi My My1J; M) L (%) (%k_T
14
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xJ'd‘xlIs[(k,x)e” {en, +ikyy O, k) ) € iy Up @) - (4.22)

In order to evaluate the S-matrix further, expressions for the bound state wave
function u A Mn(x) and the continuum wave function g (k,x) have to be specified. It is not
clear how to write these wave functions exactly, since they are a solution to a many-body
problem involving A nucleons. Some models in which the wave functions can be
approximately evaluated are discussed in Chap. 3. These results for the wave functions

are utilized in the following sections.

4.3 The Plane Wave Born Approximation

The lowest order approximation for the continuum nucleon is that it does not interact
with the residual nucleus after being photoejected from its bound state. The continuum
space-time wave function (which will now be denoted by v/ (x) rather than us(k,x))

therefore satisfies the free Dirac equation!?

(iy“a” -my (x)=0. (4.23)
S

The positive energy solution is the plane wave four-component spinor



|
v, )= /Eﬁ. op | 22 e ik® (4.24)
E+m

with energy E, momentum p = k and spin §7. The matrix in this equation is a 2 x 4
matrix containing the 2 x 2 unit matrix 4 and the Pauli spin matrices o, z,’/z is the two-
component spinor with spin projection §7. The calculation of the S-matrix using this
form for the nucleon wave function is the so-called plane wave Born approximation
(PWBA).

Because the bound nucleon is localized in space, it cannot be described by a plane
wave. The interaction between the bound nucleon and the (A - 1) nucleons cannot be
ignored since it is precisely this interaction which binds the nucleon. Furthermore, the
core must be present so that energy and momentum can be conserved in the reaction. The
core is in fact included in the interaction Lagrangian implicitly by including bound states
in w(x).

The bound state wave function is discussed in detail in Chap. 3. Another approach to
a description of the bound state wave function is to make an analogy with an electron
bound by a static Coulomb field. For this case the Dirac equation includes the Coulomb
potential!?

[:y“a,, -m+ ‘y"éf:—'] vix)=0 . 4.25)

In a qualitative sense, the (A - 1) nucleon core also provides a potential that binds the
nucleon. This potential is the average result of the interaction of the valence nucleon with
all of the other nucleons, and is justified in more detail in Chap. 3. Including an
appropriate central potential in the Dirac equation (again changing notation from
Uy 0 (X)t0 x

4,1, 10 ¥, 4 ()

749, =m + U] ¥, ,, () =0 (4.26)

will bind the nucleon.The spherically symmetric potential depends only on r = Ixl and
so this equation describes the nucleon in the rest frame of the nucleus with the origin at
the center of the nucleus.

Since the bound nucleon also has a definite parity (i.e., a definite orbital angular
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momentum L), its wave function can be written in analogy with the wave function for
the bound electron of a Hydrogen atom as*?

/Y "
W, @ = et gyt Y, 120, - (4.27)
The total energy of the nucleon is
Ep=m-E, (4.28)

where E, is the binding energy of the nucleon. :yL“;lz J(.Q) is the generalized spherical
(]

harmonic defined in Eq. (3.24). The radial functions Jg(r) and g (r) will satisfy a pair
of coupled differential equations which will depend on the form of the potential U(r).
With the wave functions described above, the S-matrix in the PWBA is

PWR /2 Ve 172
m 1 E+m
3 S, —u -iq'x . v A
a2y, [ﬂ s ] T et )| Vs 42

where ¢ = ky - k, is the momentum transfer in the reaction. It is apparent that aside
from some spin algebra, the S-matrix is proportional to the Fourier transform of the
bound state wave function. Thus, in the PWBA the cross section, which is proportiona!
to the square of the S-matrix, will be given in terms of the momentum-space bound state
wave function. The momentum transfer is very high in (%,N) reactions and so if the
PWBA is a reasonable approximation then (%N) experiments will probe the high
momentum components of the nuclear bound state wave function. Indeed, assuming that
direct photoemission is the dominant reaction mechanism, experiments will also give an
indication of the validity of describing the bound state in terms of a potential in the Dirac

equation.

4.4 The S-Matrix in the Distorted Wave Born Approximation

The scattering matrix of Eq. (4.22) for (%N) reactions is written in the relativistic
distorted wave Born approximation (DWBA) by using the results of Chap. 3 for the
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wave functions of a continuum nucleon distorted by an optical botential and a single
nucleon bound by an appropriate Dirac potential. The S-matrix is

m U2 1 /2
== if, ,Up) Uy Ty My My J, M)( 7 [_) (ﬁ?)
t4

"kr'x

x_"d‘x'uif )(k.x)e“ {eN'y“-l-mNuN k;'} e V().  (4.30)

The bound state wave function is given by Eq. (3.43) as

0
. SN :yz.,,uz ) .
uln(x)=e b v Ly =2-L, . 4.31)

igy(r) yL ';/2 J(-Q)

The Dirac matrices are taken in the usual representation to be

0 1 0 0 o ,
7‘o-n .y=_° 0 4.32)

where © are the Pauli matrices. The (~) superscript on the nucleon consinuum wave
function denotes that the the wave function asymptotically has a plane wave piece and
spherical incoming waves. This is in direct analogy with the nonrelativistic case(®?. The
wave function w7 (x) is the time-reversed wave of u/;*)(x) (¢f. Eq. (3.32)). Thus, its

form is(®

1/2
Oy | EXm ) iy —f yM-s o .
v/sf (x)-[ m ) e 47:%& Y, /(kf)(Ll/Z,M—sf sIIJM)

L12J

The integral in Eq. (4.30) is evaluated in the center-of-mass coordinate framg in which
the photon momentum is chosen to be parallel to the z-axis and ﬁyx k y defines the y-axis
direction. This frame is shown in Fig. 8. The photon polarization vector in this frame is
e# = (0, cosg, sing,0) which satisfies the necessary conditions ekg, =-1 and
eﬂk;‘ =0. The matrix multiplication and angular momentum algebra then proceed
straightforwardly, although the calculations are somewhat lengthy. With the partial wave

expansion of the exponential
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etE s gl Y [Em@ITD jkn YO (4.34)
{

the angular integrations can be carried out analytically. Furthermore, the time integration
gives an energy conserving delta function 8 (E - w-E 2
The final analytic form of the S-matrix is

7]
+m
Ss =§£- ;] (JB)(J 1M, MplJ, M)[ J 6 (E-w-Ep

x ) G @+ Y, 020y (L 12, M2, 5,17 Myr2p)
ILip

r Ky L, . ] -
—N—zm [IWC””J Ilu C“,Z,](smngucosg)
) v L (4.35a)
o g ] . .
N [(ZN " 2m )I’Lfru’LJ (N 2m )IILJ Cuzu](msg"z” sing) |

where zy, is the charge of the nucleon in units of the electronic charge e, the /'s are
radial integrals

I, ,— (Ly!:001L0) [ rarfy (0 f, () ey (4.35b)
A
X
Ky
e A
- g T - YA
k7
0] | ¥ (if)

Fig. 8: The coordinate frame in which the S-matrix is evaluated.
(?) A schematic diagram of the reaction (8 is the scattering angle).
(i) The chosen coordinate frame.



1= Lyl;001L" 0)jr’drf,,(r) g, J,(k,,r) (4.35¢)
,u-(L 1:001L0) [ rdr g1, (1) jleyr) (4.35d)
1% = (L 1:001L°0) [ ridr gy0) g, )y (4.35¢)

and the C's are combinations of Clebsch-Gordan coefficients

Culzl-(l‘ 12 Mgru -p\Jp Mp) (L 112 Mgp W\J My+2u)
x(L1; Mjp 0Ly Map) (4.350)

lu-(L 172 Myu Wl Mp) (L 172 Mg ptJ Mgr2p)
x(L Mg 0lL, Mgp) (4.35g)

uzu-(l‘ 12 Mgt -y My) (L 125 Myrt p1J Mip2p)
x(L1; Mgy 01 Ly M) (4.35h)

C ke = (g 125 Mghp -y Mp) (L' 12 Mghpt ) J M 2)
(L' 1 Mg O1Ly Mgrp) . (4.350)

The fractional-parentage coefficient either can be obtained empirically from pickup or
stripping reactions or is derived from theoretical models for the structure of the
nucleus?, The energy and momentum of the photoejected nucleon are determined by
energy and momentum conservation requirements (the relativistic kinematics are
described in Appendix A). The sum over angular momentum quantum numbers
converges and so the series is cut off in practise at some maximum L. The radial
integrals are evaluated numerically.

There are several features of the S-matrix that are interesting to note. The "spin.
magnetization" current terms that arise from the anomalous magnetic moment of the
nucleon are proportional to Ky H, @ Whereas the "convection” current terms that arise
from the minimal electromagnetic coupling are proportional to zye. For neutrons, only

the spin-magnetization current contributes to the S-matrix. For protons, the spin-
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magnetization current contributions are a factar of (ky@/2m) smaller than the convection
current contributions. At photon energies below about 200 MeV the convection current
interaction is expected to dominate the photoproton reaction. Furthermore, in this model
the photoproton cross section will be much larger than the corresponding photoneutron
cross section. As the photon energy increases, the coupling to the anomalous magnetic
moment will become increasingly important.

For proton photoemission the relatively large convection current terms involve radial
integrals that contain a product of upper and lower components of Dirac spinors in the
integrand. This suggests that a Dirac calculation for this reaction might give different
results from nonrelativistic Schrédinger calculations since the lower component is usually
thought to be the "relativistic correction” to the wave function. Also, only the anomalous
magnetic moment coupling involves an integral with a product of two upper radial
components in the integrand. Since the magnitude of the upper radial component of
especially the bound state wave function at small momentum transfer is significantly
larger than the lower radial component (cf. Fig. 6), the spin-magnetization current might
be relatively more important at forward angles.

4.8 Observables for (%,N) Reactions

Observables for (3N) reactions are calculated from the S-matrix in the usual way,
as is described in Appendix F. In the calculation of observables it is useful to write the
S-matrix as

om 12
Sﬁ=-ze—” JJ‘J/( )(J B,MM IJM)[ ] S(E-w- B)Z.;ME(B)‘ (4.36a)

This defines Z f 1.(6), which depends on the polarization of the incident photon and the
r Y
spin projections of the target nucleus and outgoing nucleon, to be

Z) (@ = X, 0N @+ DY N0, 9=0) (L1725 My 2u-s, 17 Mpr2pn)
ILin

*NZ ll B . R

2m [IILJ Cowr iy CyzLJJ(smé“‘"”c"sé)

8 . (4.36b)

Ky @ Ko\ Ly I
N s Lo 8 -
:[(ZN 5 )I C L (N+ 3 )IILJ CNLJJ(cosg i2usinf)
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flux, and_ summmg.oye,rithgph‘asc spacc of ;he outgomg,nucleon. For unpol_anzed
photons and target nuclei, and if the polarizations of the photoemitted nucleons and
residual nuclei are not measured, the cross section calculation includes averaging over
initial polarizations and summing over final polarizations, Recalling that the S-matrix is
written for the special case of a spin-zero target or residual nucleus, the Clebsch-Gordan
coefficient (JyJp; M Mp1J;M;) changes the sum over M, and M, into a sum
over M. Specifically, for J; =0

JM
. = . =17 7 12
G Jyi MMyl ;M) = (o My My 00) = (1T @1 1728, S, (4370

andforJ,=0
(f a.MMlJM) (0 B,OMIJM) 14, MM

=@+ 1" 50w, (437)

The resultant unpolarized (%N) cross section is

do__ 2rap(E+mc?) ¢ 2
aQ QJ+ 1)(2J+ l)hCPy JJ ( ; 'Z l . (4.38)

The factors of % and ¢ have been included to give the cross section units of area. The
quantity « is the fine structure constant which in the system of units used for the
electromagnetic potential takes the value

a=f-=1 (4.39)

The sum over photon polarizations is for the two independent cases =0 and
&=n/2 (i.e., £=(1,0,0) and € =(0,1,0) respectively).
The polarization of the photoejected nucleons is defined as

(do/dsd), ~ (dousd),

P6)=(0,)=
(doldsd, + (doidsd),

(4.40)

where (da/dﬂ)T is the differential cross section for nucleons which have spin projection
in the k,,x k v (up) direction and (doddSd), is the differential cross section for nucleons

with spin projection in the opposite direction. In the coordinate frame chosen for
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evaluating the S-matrix the expression for the nucleon polarization is

¢

20m 2! 125,00 6) 253, (0)
M,
P(6) = A

2

4
A
s, ”g &}Mﬂ

The analyzing power for a (%,N) reaction is defined as

(dolify, - (doidsd,
(do/d$d, + (da/d.Q)L

A(B)=

(4.41)

(4.42)

where (daid€Q), is the differential cross section for right circularly polarized photons
(e=(1/2)"(X +i§)) and (doMdS), is the differential cross section for left circularly

polarized photons (g = (1/2)"*

X —i¥)). Since the formalism above is done for linearly

polarized light, the mo.ification for the case of circularly polarized light is that

sin§ — isin& in the expression for Z f 4 (6) and the possible photon polarizations are
78

changed to &€ = 7/2 (right) and & = -n/2 (left).
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S. Results of the One Nucleon Model for
(7,p) and (p,7) Reactions

The results of the One Nucleon Model (ONM) for (%p) and (p,7) reactions will
be presented in this chapter. Presently, the experimental data is more extensive for these
reactions than was the case when the nonrelativistic models that are exposed in Chapter 2
were put forward. The aim of this chapter will be to compare the ONM results with
representative data throughout the intermediate energy range and for a variety of target
nuclei. In this way the validity and limitations of the model will be most completely
explored. The importance of testing a model with a comprehensive set of data is
illustrated by the results of a number of nonrelativistic calculations for the E, =196
MeV 60(%p)!*N differential cross section shown in Fig. 4. Although these models
reproduce some limited subset of experimental photonuclear data, it is clear that this
reaction presents problems for all the calculations.

5.1 The *O(y,p)!>N Reaction

Oxygen is the most common target nucleus for (%p) experiments. Data exists for
angular distributions over most of the intermediate energy range, and the energy
dependence of the differential cross section for proton scattering angles of 45°, 90° and
135° is well established from 50 — 300 MeV. Oxygen is also ideal for the ONM
calculations because both its structure and the elastic scattering of protons from it have
been investigated extensively, particularly in the context of the Dirac framework.

5.1.1 The E, = 196 MeV Differential Cross Section

The differential cross section of the 160(‘y,p)15N reaction for £, = 196 MeV®® js
the most complete of the few (%p) angular distributions measured above 100 MeV. The
observation that nonrelativistic calculations give poor results for this differential cross
section suggests that new physics may be coming into play in this reaction. The ONM
calculations will probe the possibility of relativistic effects being the solution to the
discrepancies between theory and experiment. For these reasons this reaction will be

studied in detail. In addition, complementary proton elastic scattering data exists at
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E, = 200 MeV (the photoemitted proton kinetic energy in the rest frame of the !N
nucleus is 196 MeV).

The relativistic theoretical calculations for proton-nucleus elastic scattering involve
evaluating the proton wave function from a Dirac equation with scalar and vector optical
potentials as is described in Sec. 3.2. In a phenomenological analysis the optical
potentials are often taken to be Woods-Saxon functions (cf. Eq. (3.12)) with a total of
sixteen adjustable parameters. More generalized shapes that follow the nuclear density are
also used on occasion. The parameters are varied to give an optimum fit to the elastic
scattering data by a search algorithm. Since the data often consist of significantly more
than sixteen measurements for cross section, analyzing power and sometimes spin
rotation function observables, the number of parameters is not excessive. Also, the
geometries of the potentials are constrained somewhat by the initial parameter guesses to
be reasonably similar to the geometries expected fiom a microscopic theory.

The 200 MeV 7 +'%0 elastic scattering data includes differential cross section
(do/dsd) and analyzing power (A) measurements from 0° — 135° scattering angles(’%
as well as some very recent, as yet unpublished, spin rotation function (Q)
measurements from 0° — 45° scattering anglesm). The Q data is of special interest, as it
has been shown that Dirac optical model analyses consistently give a better description of
this nbservable. The hope is that the spin rotation function measurements will pin down
the proton wave function more precisely. In both nonrelativistict’? and relativistic?
optical model analyses it is found that conventional Woods-Saxon geometries for the
potentials do not result in a very good description of the do/df2 and A data above
about 6., = 80°; more complicated geometries are required to give better agreement
with the data.

Figures 9, 11 and 13 show the results of three Dirac calculations for the 200 MeV
7 +'60 elastic scattering observables and Figs. 10, 12 and 14 show the corresponding
Dirac optical potentials and the associated Schrodinger-equivalent potentials (cf. Egs.
(3.40)). The Q data is shown without error bars, since these are not available. The
calculation shown in Fig. 9 uses scalar and vector optical potentials“z) with the

generalized Woods-Saxon geometry
Urny=Vf(nN+iWf,n (5.1a)
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Fig. 9: Relativistic optical model calculation for observables of 200 MeV

7 +1°0 elastic scattering using the parabolic symmetric Woods-Saxon

potential characterized by the parameters listed in Table 2. The data are from

Ref. 72 and 73.
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potential shown in Fig. 12, The data are from Ref. 72 and 73.
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1+w@F/R)
= (5.1b)
f’) [ 1+g(r)¢(’-k)/a] [1 +g(r) e (r+R)/aT
g =22 + (1-2%R) . (S.1¢)

The parabolic factor in the numerator of Eq. (5.1b) results in an enhancement of the
potential away from the center of the nucleus. This corresponds to the ohserved central
depression in the nuclear density in Dirac Hartree calculations®® and the experimentally
observed central depression in the charge density’® for 60, The factor g(r)
multiplying the exponentials. in Eq. (5.1b) generalizes the standard Woods-Saxon
geometry. The factor 4 is usually very close to unity and so the shape is not very
different from the standard shape. The second factor in the denominator in Eq. (5.1b)
also does not affect the shape very much. With this factor the potential is symmetrized in
the sense that the derivative of the potential, which is related to the force a nucleon will
experience due to the nucleus, will vanish at the origin. This feature of the potential is
obviously desirable for a spherically symmetric nucleus and also results in a well-
behaved Schrédinger-equivalent spin-orbit potential (cf. Eq. (3.41b)). The parameters of
this potential are varied by a search algorithm in such a way that the agreement with the
elastic data is optimized. The optimized parameters are shown in Table 2. The radial
parameters listed are related to the radial parameters of Eq. (S.1b) through the number of
nucleons in the nucleus by R =rgA'>. Figure 9 shows that this parabolic, symmetric

Description Yector Scalar
Real Imaginary Real Imaginary
Strength: 322.80 - 47.07 —-381.09 35.17
Radius r,: 0.9321 0.9945 0.8750 0.9716
Diffuseness a : 0.5439 0.4511 0.5252 0.4317
w: 0.01:1 1.9551 0.2164 3.2894
A: 1.0116 1.0116 1.0116 1.0116

Table 2: Parabolic symmetric Woods-Saxon optical potential parameters determined
for 200 MeV 7' +!%0 elastic scattering.
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Woods-Saxon potential gives a very good descripﬁqn, of the cross section and analyzing
power data up to 80°, Above 80" the description of the data is not as satisfactory. The Q
data has not been included in the fitting procedure, which accounts for the poor results
for this observable. An even more general optical potential™® gives the very impressive
results of Fig. 11 for all the observables. The potential is expanded in a Fourier-Bessel
series with parameters that are varied to fit all three observables. The main difference
between this potential, shown in Fig. 12, and the parabolic symmetric Woods-Saxon
potential of Fig. 10 is that the imaginary parts of this potential change sign in the nuclear
interior. The predictions for the scattering observables when a Dirac optical potential that
is determined from the microscopic calculations®*** described in Subsec. 3.2.4 is used
are shown in Fig. 13. The description of the data is good from 0° — 5§5°, but is poor at
more backward angles. Figure 14 illustrates that the microscopic potential differs from
the phenomenological potentials shown in Figs. 10 and 12 mainly in the imaginary
pieces. The surface-peaking of the phenomenological imaginary potentials is not manifest
in the microscopic potentials. Apparently, the enhancement in the imaginary strengths
near the surface of the nucleus is important in accounting for the elastic scattering data.

The distorted wave functions that result from these three potentials are utilized in the
ONM calculations for the 196 MeV (p) reaction on 0. The photoemitted proton is
actually interacting with the residual >N nucleus but since there is no elastic scattering
data from this nucleus the optical potentials for *60 are used. This is considered to be a
good approximation because nonrelativistic global optical potential parameterizations (in
terms of the nucleon incident energy and the nuclear mass number){’® show that a
difference of one nucleon is not expected to affect the potential a great deal. Also, the
effect of changing the potential strengths proportional to the fraction of nucleons in 1N
as compared with %0 does not significantly alter the results of the (¥,p) calculation. It
is assumed that the difference in the ‘%0 and 15N optical potential is sufficiently taken
into account by the A dependence of the radial parameters. This supposition ignores
the non-zero spin nature of the >N nucleus which, contrary to the situation for 10, does
not preclude the possibility of processes such as pion exchange contributing to the optical
potential. '

In the simplest scenario, the bound valence proton wave function is calculated using a
Dirac equation with a Woods-Saxon binding potential (cf. Subsec. 3.3.2). It is found
that there are many "reasonable” choices for the potential shapes that give the same



binding energy, and the results of the (%p) calculations are very sensitive to the
particular potential chosen. The teciuircment that the energy eigenvalue of the Hamiltonian
containing the Woods-Saxon binding potential corresponds to the empirical binding
energy of the nucleon docs not constrain the potential sufficiently. With these caveats in
mind, Fig. 15 shows the results of a ONM calculation with the bound state computed
using one such Woods-Saxon binding potential and the proton distorted wave computed
using the parabolic symmetrized Woods-Saxon optical potential shown in Fig. 10. The
parameters for the binding potential, listed in Table 3, are determined from a search
algorithm which gives the best fit to the (¥,p) data. The radial parameters in this case
and for all subsequent sets of bound state parameters have a dependence on the number
of nucleons in the nucleus (including the bound nucleon of interest) given by
R =ry(A - 1)'3, The fractional-parentage coefficient of the bound state wave
function is taken to be 1.0, i.e., it is assumed that the proton is in an ideal 1p,,, shell
model state. This is expected to be a good approximation for the doubly magic !0
nucleus and will be used for all the subsequent '®O(%,N) calculations. The agreement
with the experimental data shown in Fig. 15 is very good for angles less than 90°; at
backward angles the calculation falls increasingly below the data. Although there are
difficulties with the computation of the bound state wave function, this calculation
suggests that the direct photoejection mechanism has the potential of accounting for most
of the experimental points. At higher momentum transfers other processes may be
becoming important. The results are certainly closer 0 experiment than any of the
nonrelativistic results shown in Fig. 4. It is noteworthy that the magnitude of the
relativistic direct mechanism calculation does not fall below the data nearly so fast with
increasing momentum transfer as the rionrclativistic direct mechanism calculation,

Description Vector Scalar
Strength: 367.37 —-451.13
Radius r,;: 1.0739 1.0734
Diffuseness g : 0.5728 0.6258

Table 3: Woods-Saxon binding potential parameters for '€0.



E Y T [ T ‘I T - I Y -i.'
- : ‘ 7
i 160(7,p)15N J
10° | E,=196MeV
™ [ X 1
X100 E
L - .
E i ]
c : L} .
T g0 _
e 0 ¢
o n N
107 - BE
10-2 1 L J 1 I ! I I 1
0 45 90 135
B (deg)

Fig. 15: ONM calculation for the differential cross section of the 196
MeV 60(y,p)!*N reaction in which the Woods-Saxon binding potential

180

65

of Table 3 and the parabolic symmetric Woods-Saxon optical potential of
Table 2 are nsed. The data are from Ref. 28.



although quahtauvely the shapes of the two calculauons are sumlar B .

Using a Hartree bound state wave function circumvents the problems assocnated thh
the "phenomenological" bound state wave function described above. The self-consistent
Hartree calculations discussed in Sec. 3.1 give a unique bound state wave function for a
choice of meson masses and coupling constants that are determined from the bulk
properties of nuclei. The outcome of ONM calculations with such a bound state wave
function are illustrated in Fig. 16. The three curves shown are differentiated by the proton
distorted wave function used in the calculation. The solid and dashed curves are the result
of using the phenomenological distorted waves determined with the parabolic
symmetrized Woods-Saxon potential shown in Fig. 10 and the Fourier-Bessel potential
shown in Fig. 12, respectively. The microscopic Dirac optical potential of Fig. 14 is
utilized in the dotted curve calculation. Comparing the solid curve with Fig. 18, it is
encouraging that when the same proton distorted wave is used, the calculation using a
Hartree potential is not very different from the result obtsined with the Woods-Saxon
potential that gives good agreement with the data. Moreover, the distorted wave functions
that give better results for the elastic scattering also give better agreement with the 67)]
data. The three curves give an indication of the sensitivity of the calculations to the
distorted wave function employed.

It would certainly be desirable to be able to determine a unique phenomenological
binding potential. It is possible that in addition to the binding energy of the valence
nucleon, other experimentally determined properties of the nucleus might limit the
possibilities for the potential. These might include the energies of excited shell model
states, the rms charge radius of the nucleus and the rms radius of the valence nucleon.
These possibilities have been investigated with limited success. The empirical binding
energy of the 1p,,, neutron of 160 js very nearly obtained with the Woods-Saxcn
potential used in the calculation shown in Fig. 15. Other Woods-Saxon potentials for
which the (%p) results are not so good give very disparate neutron binding energies.
The bound nucleon wave function may also be constrained by theoretical calculations for
other reactions that require this wave function. The major problem in any of these
approaches to ascertain a good bound state wave function is that the empirical constraints
are sensitive to lower momentum components of the wave function than those germane
for the (%p) reaction. In this context, a Hartree calculation provides perhaps the most
reasonable choice for the bound nucleon wave function.
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Ref. 28.

67



§.1.2 Other Results

Several angular distributions exist for the '°0(yp)'*N reaction at photon energies
above 200 MeV?, Figures 17 - 19 exhibit the ONM calculations for the incident photon
energies 257, 312 and 360 MeV. For these cases a Hartree wave function i is used in
conjunction with distorted waves calculated with a microscopic optical potential.
Phenomenological optical potentials at these high energies do not exist because there is no
associated proton elastic scattering data. The NN t-matrices which are utilized in
calculating the microscopic optical potentials are available at incident nucleon energies of
200, 300 and 400 MeV and hence two curves are shown for the 257 and 360 MeV cross
sections corresponding to optical potentials calculated with the two adjacent NN ¢-
matrices. The 257 MeV angular distribution also includes the results for the two
phenomenological potentials determined for 200 MeV elastic scattering described above.
The minimum in the differential cross section that becomes more pronounced with
increasing energy is reproduced very well by the calculations. The curves that employ the
microscopic calculations for the optical potential are all seen to underestimate the data.
This was also observed for the 200 MeV calculations shown in Fig. 16. On the other
hand, the calculations using phenomenological optical potentials resulted in consistently
higher predictions for the differential cross section. Furthermore, it was noted that using
microscopic optical potentials results in an inferior description of the 200 MeV proton
elastic scattering data compared with using phenomenoiogical potentials. Thus, elastic
scattering data that corresponds to the higher proton energies involved in the 257, 312
and 361 MeV (¥p) reactions would be welcome so that ONM calculations with
phenomenological distorted waves could be investi gated.

Two lower energy angular distribuiions that deserve attention are those at E,=60
MeV and 100 MeV7®). The 60 MeV data and ONM results are shown in Fig. 20. The
distorted wave comes from a phenomenological analysis of the 49.5 MeV p+ o)
elastic scattering data”’®, The parameters of the Woods-Saxon potential so determined
are listed in Table 4. The Hartree wave function used for the bound nucleon is expected
to be more reliable at these lower momentum transfers. Noting that the differential cross
section is plotted linearly rather than logarithmically, the agreement of the calculation with
the data is very good. Similar conclusions follow concerning the calculations for the
E, =100 MeV reaction that are exhibited in Fig. 21. Both of the curves are calculated
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Fig. 18: ONM calculations for the differential cross section of the 312
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Fig. 19: ONM calculations for the differential cross section of the 361
MeV l'50(7/,p)‘5N reaction in which a Hartree binding potential and two
microscopic distorting potentials (solid: using 300 MeV NN ¢-matrices;
dashed: using 400 MeV NN ¢-matrices) are used. The data are from Ref. 77.

71



1

' I | °0(7,p)'°N
E,=60MeV

y|

-y
2]
o - .
0
3 - .
~~
G - .
<
™~ s -
3

5 —

0 45 90 135 180
6lab (deg)
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S~xon distorting potential are used. The data are from Ref. 78.
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Fig. 21: ONM calculations for the differential cross section of the 100
MeV 60 (7,p)!°N reaction in which a Hartree binding potential and two
distorting potentials (solid: Woods-Saxon; dashed: microscopic using 13§
MeV NN t-matrices) are used. The data are from Ref. 78.
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Real Imaginary Real Imaginary
Strength: 312.60 -22.10 -369.73 17.35
Radius 7,: 0.9278 0.9824 - 0.8655 0.9630
Diffuseness a : 0.4847 0.4676 0.5183 0.4108
w: 0.0208 2.1306 0.2053 3.2481

Table 4: Woods-Saxon optical potential parameters determined for 49.§ MeV
p + %0 elastic scattering.

using a Hartree bound state. The solid curve is calculated using a phenomenological
distorted wave function. The parameters of the Woods-Saxon optical potential
corresponding to this wave function are listed in Table S, and these are determined from
100 MeV p + %0 elastic scattering®®, The elastic data is limited to differential cross
section measurements from 6, = 6° - 84° and hence the optical potential determined
from this data is not expected to be very reliable. Using a microscopic calculation for the
distorted wave results in the dashed curve in Fig. 21. The microscopic optical potential is
computed using the 135 MeV NN r-matrices. Although the microscopic calculation is
not expected to be reliable in this energy region the agreement with the (%p) data is
very good. The point of showing these low energy calculations is to illustrate that a direct
mechanism can explain the experimental data, in contradistinction to the findings of Gari
and Hebach that are outlined in Sec. 2.4.

Description Vector Scalar
Real Imaginary - Real Imaginary
Strength: 295.02 -30.26 -387.09 21.84
Radius r,: 0.8189 0.8412 0.7238 0.7753
Diffuseness a : 0.5001 0.6741 0.5279 0.6748
’ w: 0.0208 2.1306 0.2053 3.2481

Table 5: Woods-Saxon optical potential parameters determined for 100 MeV
p + Y0 elastic scattering.
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The energy depcndcnce of the ONM calculations for the ?90(7.)))_‘5_1*1 differential
cross section are illustrated in Fig. 22. In these calculations, a Hartree wave function is
used together with the energy dependent distorted wave functions from microséopic
calculations. The differential cross section is evaluated in 20 MeV steps. and since the
NN t-matrices are available only for 13§, 160, 200, 300 and 400 MeV, the distorted
waves are calculated using the t-matrices that correspond most nearly with the energy in
consideration. At lower momentum transfers the calculation agrees quite well with the
data. As the energy and/or scattering angle increases, the results of the calculation fall
increasingly below the data. This is consistent with two nucleon processes becoming
important in higher momentum transfer regimes, as is expected. It must be kept in mind,
however, that the higher momentum components of the Hartree wave function are more
unreliable. Also, the microscopic distorted wave functions utilized do not describe the
elastic data very well and therefore good phenomenological distorted wave functions
would be preferable for these calculations. These are not available because the elastic
scattering data are not comprehensive enough over the required energy range. It should
be noted that in general the relativistic ONM results do not fall below the data as rapidly

(19)

as the nonrelativistic direct emission calculations'*”’, especially for larger scattering

angles.

5.2 The “°Ca(7,p)*°K Reaction

The "doubly xhagic" 40Ca nucleus is perhaps an even more suitable target than 160
for investigating the ONM for (¥p) reactions. The larger number of nucleons in 0Ca
makes it a better candidate for many-body models such as the Dirac Hartree model or the
simple Woods-Saxon model for the nuclear potential. Indeed, the scalar meson mass
used in the Dirac Hartree model is fixed by the requirement that the rms charge radius of
0Ca is reproduced. The elastic scattering of protons from 40Ca has been extensively
investigated. Phenomenological and microscopic Dirac calculations fare relatively better
in describing the data than for the case of 160. Unfortunately, photonucleon knockout
experiments with 40Ca are not as extensive as those with 1°0; although the energy
dependence of the differential cross section has been measured at specific proton
scattering angles in the intermediate energy range, there exist no good angular

distributions.
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Fig. 22: ONM calculations for the energy dependence of the dlffermtlal
Cross sectlon of the lQ"‘O(y,p)lsN reaction at 6 =45°, 90° and 135° in
which a Hartree binding potential and microscopic distorting potentials
are used. The data are from Ref. 77 (open circles) and Ref. 4 (closed circles).
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Three incomplete differential cross section angular distributions. for E,=151.3,
176.2 and 201.2 MeV are shown in Figs. 23 - 25 along with four ONM calculations for
each. All of the calculations employ a Hartree bound state wave function and a fractional-
parentage coefficient of unity. The solid curves are calculated using microscopic optical
potentials, the dashed and dotted curves are calculated using global optical potentials (fits
1 and 2 from E.D. Cooper et al.®?), respectively) and the dot-dashed curves are
calculated using Woods-Saxon optical potentials determined from the appropriate elastic
scattering data®®. The global optical potentials are parameterized by fitting
simultaneously the 5 +4°Ca elastic scattering data for energies between 21 and 200 MeV.
The calculations with phenomenological optical potentials all give similar results whereas
the calculation with the microscopic optical potential predicts larger cross sections
especially at larger angles. Apparently the calculation with the microscopic optical
potential gives the best description of the data, especially for the 135° data points which
incidently have considerable error bars. However, it is not clear that any concrete
conclusions can be drawn from this observation since the phenomenological optical
potentials account for the elastic scattering data better than the microscopic opr-cal
potentials do. Also, the good description of the backward angle data is at variance with
the '60(,p)'SN ONM results which indicate that other reaction mechanisms become
important for such high momentum transfers.

The results for the energy dependence of the differential cross section at 45°, 90" and
135° proton scattering angles are shown in Figs. 26 — 28. The curves in Fig. 26 are
calculated with a Hartree binding potential and microscopic optical potentials. Although
the description of the data is quite good, it is somewhat perplexing that the results are
better for larger scattering angles since at higher momentum transfer the single nucleon
mechanism is expected to become less important compared with two nucleon
mechanisms. This might suggest that the microscopic optical potentials are causing a
spurious contribution to the matrix element at high momentum transfers. Figure 27 is
consistent with this conclusion in that calculations with phenomenological optical
potentials and a Hartree bound state wave function tend to give better results for smaller
scattering angles, as is expected. In these calculations the glabal optical potentials of Ref.
81 are used between 100 and 200 MeV and two parameterizations of global optical

potentials that are determined by fitting the p +*°Ca elastic scattering data between 161
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Fig. 23: ONM calcuiations for the differential cross section of the 151.3
MeV "°Ca(7,p)3°K reaction in which a Hartree binding potential and
various distorting potentials (solid: microscopic; dashed; case 1 global
potential from Ref. 81; dotted: case 2 global potential from Ref. 81; dot-
dashed: Woods-Saxon) are used. The data are from Ref. 64.
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Fig. 24: ONM calculations for the differential cross section of the 176.2
MeV “°Ca(y,p)**K reaction in which a Hartree binding potential and
various distorting potentials (solid: microscopic; dashed; case 1 global

potential from Ref. 81; dotted: case 2 global potential from Ref., 81; dot-

dashed: Woods-Saxon) are used. The data are from Ref. 64.
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Fig. 25: ONM calculations for the different’ .ross section of the 201.2
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Fig. 26: ONM calculations for the energy dependence of the differential
cross section of the '"*0(7,p)'*N reaction at 0,,:45‘, 20° and 138" in
which a Hartree binding potential and microscopic distorting potentials
are used. The data are from Ref. 64.
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Fig. 27: ONM calculations for the energy dependence of the differential
cross section of the 16O(}',p)lsN reaction at 0p=45°, 90° and 135° in
which a Hartree binding potential and phenomenological distorting
potentials (solid curve: case 1 potentials of Refs. 81 and 82; dashed
curve: case 2 potentials of Refs. 81 and 82; squares: Woods-Saxon
optical potentials of Ref. 42) are used. The data are from Ref. 64.

82



3 3

’o ] v v v l v v v 1 lo
102 | — 10®
10° —10!
10t —10°

m

2

C

£ ot —10°

(o]

N3

3
10° | — 107"
107! —~ 107
1072 —107?
o3 . 1072
! 100 200 300

E%"b (MQV)

Fig. 28: ONM calculations for the energy dependence of the differential
cross section of the '0(y,p)'’N reaction at 0,=4s", 90" and 135" in
which the Woods-Saxon hinding potential characterized by the paramcters
of Table 6 and phenomenological distorting potentials (solid curve: case |
potentials of Refs. 81 and 82; dashed curve: case 2 potentials of Refs. K1

and 82; squares: Woods-Saxon optical potentials of Ref. 42) are used. The
data are from Ref. 64.



MeV and 1040 MeV®? are used for higher energies. Using a Woods-Saxon binding
potential in the ONM calculations together with phenomenological optical potentials
results in the curves shown in Fig. 28 which are very close to the data. The sensitivity of
these ONM calculations to the parameters of the Woods-Saxon binding potential is not
nearly so great as for the *60(%p)!N reaction and hence the results are thought to be
meaningful. The parameters of the Woods-Saxon binding potential, listed in Table 6, are
chosen in such a way as to reproduce the empirical rms radius of the lf-;,z neutron of
41ca®3 a5 well as the binding energy of the 1d,, proton of 0Ca. Very little adjustment
has been made in the parameters within these constraints to fit the (yp) data.

Evidently, the uncertainty in the bound state wave function remains a problem in
ONM calculations for the 40Ca(y,p)ss’l( reaction. The inferior description of the data
when a Hartree potential is used in the ONM calculation as opposed to a Woods-Saxon
binding potential might suggest that the Hartree calculations for “°Ca are not reliable for
the high momenium components of the wave function. This was not found to be the case
for 10. As a supplementary note, it is interesting that the Hartree potential for *°0 gives
the rms radius of the 1ds;, neutron orbit of 'O to be 3.54 fm, in agreement with the
experimental value of 3.56 + 0.09 fm®), On the other hand, the Hartree potential for
40Ca gives the *'Ca 1fy, neutron orbit radius to be 4.04 fm which is slightly above the
experimental value of 3.95 + 0.06 fm®>),

In order to establish if the physical approximations that are inherent in Hartree
calculations are responsible for unrealistic high momentum components of the wave
function, two refinements of the Hartree model are investigated in the context of the
40Ca(yp)*K reaction. In Fig. 29 are shown ONM calculations for the energy
dependence of the differential cross section. Both sets of curves are calculated with global

Strength: 450.00 — 541.558
Radius r,: 1.1 1.1
Diffuseness a : 0.6 0.6

Table 6: Woods-Saxon binding potential parameters for ‘’Ca.
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Fig. 29: ONM calculations for the encrgy dependence of the differential
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Hartree calculation; dashed: Hartree-Fock hound nucleon wave function)

and the case 2 glohal optical potentials of Refs. 81 and 82 are uscd. The
data are from Ref. 64.
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optical potentials. The solid lines are calculated with oncrbaryonflo_op contributions to the
quantum vacuum energy included in the relativistic Hartree calculation for the bound state
wave function®®), This modification might be important because the strong scalar
potential is a significant fraction of the nucleon mass and hence can result in the
production of a nontrivial number of virtual nucleon-antinucleon pairs. The improvement
in the quality of the agreement with the experimental points is notable for this case as
compared with using the Hartree wave function without baryon vacuum fluctuations (cf.
Fig. 27). The dashed lines in Fig. 29 are calculated with relativistic Hartree-Fock wave
functions®6#”), The Hartree-Fock calculation involves taking into account the exchange
terms of the nucleon-nucleon potential that are illustrated in Fig. 30(b) in addition to the
direct meson interaction terms that comprise the Hartree approximation, The o, @, p
and & mesons are included in the calculation. For this case, the ONM calculations also
give better agreement with the data compared with the results for a Hartree wave
function, espzcially at higher momentum transfers.

The improvements in ONM calculations for the two aforementioned refinements of
Hartree calculations suggests that the correct high momentum components of the the
ldy5 proton wave function of “°Ca might depend substantially on processes not
included in a Hartree calculation. This is not a firm conclusion, however, in that
numerical considerations might also be coming into play. For example, it is not clear if
the Hartree-Fock wave functions are dependable at high momentum transfers, since the
numerical computations are quite complicated. Whereas the Hartree computations have
been extensively examined, the recently formulated Hartree-Fock computations have not

yet been thoroughly tested.

N N N N
|
| |
| M M |
| |
|

N N N N

(a) (b)

Fig. 30: The meson exchange contributions to the Hartree-Fock potential. (a) The direct
meson interaction terms that by themsel - :s constitute the Hartree patential. (b) The exchange terms that
aie necessary for the proper antisymmetrization of the nucleon wave functions.
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5 3 The "B (p,'y)“C Reaction

The radlauve captum of S0 MeV polamzd protons mc;dcm ona''B nuclcu\ has been
studied by two experimental groups‘“‘“’. The analyzing power measurements are
especially interesting for a comparison with the ONM predictions. The relatively low
incident proton energy precludes the use of microscopic optical potentials but elastic
scattering data exists for the # +"Be®® and # +12C92) reactions at this proton encrgy
and so phenomenological optical potentials can be determined. The detenmination of the
1p3/, proton wave funcrion of '2C is achieved through a Hartree calculation or with the
use of a Woods-Saxon binding potential. Because '*C contains only twelve nucleons, the
Hartree approximation might net be as good for this nucleus as for heavier nuclei. On the
other hand, the low momenwm transfers involved in the (7, ) reaction of interest is
conducive to the reliability of the wave function. The fractional-parentage coefficient of
the valence proton is taken from the theoretical determination of Cohen and Kurath 1o he
- 0.844071),

Figures 31 — 34 show ONM calculations for the differential cross section and
analyzing power of the ”BQ‘;’.”"C reaction at £, = SO McV. A phenomenological
Woods-Saxon potential that gives a good description of the SO MeV 7 +*Be clastic data is
used for the calculations shown in Figs. 31 and 32 whereas a phenomenological Woexds-
Saxon potential that gives a good description of the SO MeV 7 +'2C clastic data is used
for the calculations shown in Figs. 33 and 34. The parameters of these potentials are
listed in Table 7. The solid curves in all the figures are calculated with a Woods-Saxon
binding potential that gives good results for both choices of the distorting potentials and
the dashed curves are calculated with a Hartree potential. The parameters of the Weouds.-
Saxon binding potential are listed in Table 8.

The calculations that use the *Re optical potential give a very good description of the
data whereas those that use the 1>C optical potential do not fare quite so well. This could
give an indication that the usc of an optical potential that is determined for a closed shell
nucleus is not entircly appropriate for the scattering of a nucleon from a closed-shell-
minus-one-nucleon nucleus. The spins of the *Be wucleus and the ''B nucleus that the
proton is incident on in this rcaction arc the same since both have an unpared py .
nucleon. It is likely that the spin-3/2 nature of ''B has more of an cffect on the optical

potential than the "bulk effcct” of the lack of onc nucleon. It is also intcreating to note that
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Fig. 31: ONM calculations for the differential cross section of the 50 MeV
1B (5,)'2C reaction in which a Woods-Saxon distorting potential
determined for 50 MeV 7 + "Be elastic scattering and either a Woods-
Saxon binding potential (solid curve) or a Hartree binding potential
(dashed curve) are used. The data are from Ref. 88.
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Fig. 32: ONM calculations for the analyzing power of the §0 MceV
"B (77 '3C reaction in which a Woods-Saxon distorting  potential
determined for 80 McV 7 + "Be elastic scattering and cither a Waoods.
Saxon bhinding potential (solid curve) or a Hartree hinding potential
(dashed curve) are used. The data arc from Ref. K8,
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Fig. 33: ONM caiculations for the differential cross section of the 50 MeV
1B (5,9)'*C reaction in which a Woods-Saxon distorting potential
determined for 50 MeV 7 + '>C elastic scattering and either a Woods-
Saxon binding potential (solid curve) or a Hartree binding potential
(dashed curve) are used. The data are from Ref. 88.
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Fig. 34: ONM calculations for the analyzing power of the 0 MeV
"B(i;'.y)”C reaction in which a Waoods-Saxon  distorting potential
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(@) Strength: 24391 -32.45 ~307.56 . 27.46
Radius 7, 1.1154 1.1080 1.1120 0.7793
Diffuseness a : 04716 0.7520 0.5174 0.5544
: -0.0387 0.0964 -0.0719 0.9098

(b) Strength: 395.59 -64.31 -466.00 51.48
Radius r,: 1.0880 0.8173 1.0831 0.9760
Diffuseness g : 0.4376 0.6509 0.4654 0.3841
: 0.0 0.0 0.0 0.0

Table 7: Woods-Saxon optical potential parameters used in the ONM calculations for
the "'B@,y)*3C rveaction at £ » = $0 MeV. (a) Parameters determined from SO McV polarized
proton elastic scattering on 9Be. (b) Parameters determined from SO MeV polarized proton elastic
scattering on 2C.

the Woods-Saxon and Hartree binding potentials give very similar results. There are
other reasonable choices of the Woods-Saxon parameters for which this is not the case.
Almost invariably the ONM results are not as goad for these potentials however.

5.4 The *H(p,y)*He Reaction

Considerable experimental effort has gone into photonuclear reactions involving very
light target nuclei. The major interest in these reactions is to test few-body nuclear
models. It is not clear that the One Nucleon Model is suitable for these reactions because

scription Vector Scalar

- Strength: 300.00 -378.63
Radius r,: 1.0176 1.0379
Diffuseness a : 0.5410 0.5609

Table 8: Woods-Saxan binding potential parameters for .
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it mvolves .approximations that are applicable to many- body nuclcl .On the other hand, it
is interesting to. mvcsugatc how deficient the ONM is for light nuclei, thcrcby getting an
indication of the impontance of doing more precise few-body calculations, .

The reaction that is examined in this vein is 3H(i:‘ w‘Hc at 300 MeV mcndcm pmmn
a rcasonablc_angular rangc‘”). Corrcspondmg clnstxc sc;mcnng dam is uva;lnblc for bmh
?He(w and “He“”f:)g targets. The elastic data is in_general difficult 1o fit with
phenomenological optical potentials, in part because a Woods-Saxon geometry for the
nuclear density is not cxbcctcd to be a good approximation for these nuclei and also
because at large angles exchange effects involving the incident proton and the targer
nucleons start to become importam @897, Optical potential parameters that have heen
determined for 300 MeV 7+ *He®® and 350 MeV 7+ *He™? elastic scattering are listed
in Table 9. The 15, , bound proton wave function of *He is determined with # Woods-

Saxon binding potential that has been adjusted 1o give a good account of the (%, data.

(@)  Strength: 258.37 ~-226.52 ~302.49 275.50
Radius r: 0.6086 0.8878 0.6148 ().8233
Diffusencss g : 0.2898 0.3912 0.2917 0.3828
w: (.47 0.0 0.47 0.0

(b)  Strength: 271.87 ~193.14 = 325.50 208.6¥
Radius r,: 0.5106 0.6599 1.5870 0.8547
Diffuseness a : 0.3292 0.3000) (0.3529 0.3303
: 0.9283 0.7651 (0,7352 0.0710

A 1.0757 1.0787 1.0757 107587

Table 9: Woods-Savon optical potentinl parameters used in the ONM colewlations for
the ’l!(i’.y)‘llc reaction af l:" = 300 MeV, (3) Paramcisss deicemined fram WK MoV gl e
proton clastic waticring on "He. () Pasamcicrs doscrraned (tom 150 MoV golarized proson glastic
wancning on ‘e,



The potential parameters are listed in Table 10. The fractional-parcntagc coefﬁcient of the
valence proton is taken to be unity.

The ONM results for the SH(F,)*He reacticn at E » =300 MeV that use the
aforementioned potentials are shown in Figs. 35 and 36. The solid curves are for the He
optical potential and the dashed curves are for the “He optical potential. The agreement of
both calculations with the cross section data is quite good. It is unfortunate that there is
no data at more forward angles, however, since there is an indication of a peak in the
angular distribution at about 45°, This characteristic of the differential cross section is
seen in the (p,7) data at E, = 156 MeV®® and for the inverse (y,p) reaction data at
E,=334 MeV(, If this were the case for this 300 MeV (7,7) data, then the
calculations would not reproduce this fcature. The calculations for the analyzing power
are more sensitive to the optical potentiz; the calculation with the 3He optical potential is
out of phase with the A data whereas the calculation with the “He optical potential gives
a very good description of this data.

The meaning of these good ONM results is not totally clear. In addition to the
questionable application of the ONM to a light target, the incident proton energy is almost
exactly at the A isobar formation threshold and so it might be expected that reaction
mechanisms involving the A would become important. It is possible that the bound state
potential, to which these results are very sensitive, may be unrealistic in the sense that the
parameters are chosen to mock up some of the effects that are not in the ONM. Of course
this is a danger for all the previous calculations, but in this case it is particularly so
because of the absence of the independently determined Hartree bound nucleon wave

function.

Description Vector Scalar
Strength: 350.C0 -423.43
Radius r,;: 1.0911 1.0911
Diffuseness a : 0.2365 0.2365

Table 10: Woods-Saxon binding potential parameters for ‘He.
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‘kFig. 35: ONM calculations for the differential cross section of the 300
MeV *H(p,y)*He reaction in which a Woods-Saxon binding potential and
Woods-Saxon distorting potentials (solid: *He optical potential; dashed:
‘He optical potential) are used. The data are from Ref. 93.
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Fig. 36: ONM calculations for the analyzing power of the 300 MeV
3H(i;’,y)"He reaction in which a Woods-Saxon binding potential and
Woods-Saxon distorting potentials (solid: *He optical potential; dashed:
‘He optical potential) are used. The data are from Ref. 93.



8.5 Discussion

The results of One Nucleon Model calculations have been compared with data for
(7p) and (p,7) reactions on representative nuclear targets and at various incident
energies in the intermediate energy range. Similar calculations have been done for other
*He(y%p)*H, '*C(3p)"'B and 0(%p)'*N reactions that are not presented here
because the information that can be gleaned from these calculations is essentially
redundant. Individually, the relativistic ONM predictions for the empirical results are
better than those given by previous analogous nonrelativistic models. It seems that
relativistic dynamics are important for describing these high momentum transfer
reactions, The ONM results are more impressive when they are viewed coherently for all
the cases presented. Although the results are shown to be sensitive to the distorted wave
functions and even more so to the bound state wave fuhctions used, the consistently good
description of the experimental observables afforded by the calculations suggests that the
ONM is very credible. The momentum transfers for which the ONM is valid are greater
than suggested by previous investigations. There are also indications that for higher
momentum transfers other reaction mechanisms may be becoming important.

5.5.1 Sensitivity of ONM Results to Wave Functions

The importance of including final state interactions of the photoemitted proton with
the residual nucleus is illustrated in Fig. 37. Using a planc wave for the proton in the
calculation of the E, =196 MeV '80(%p)'N cross section results in the curve
shown which is quantitatively quite different from the distorted wave result that is
represented by the solid curve in Fig. 16. The proper proton distortion is apparently
critical in accounting for the data. It is observed that there is some variation in the ONM
predictions for (y,p) observables according to which optical potential is used in
determining the continuum proton wave function. Almost invariably, the distorted wave
functions for which the elastic scattering data is better described also give the best
agreement for the (¥,p) data. Thus, the sensitivity of the ONM calculations to the
continuum proton wave function is not a serious obstacle if a good optical potential can
be determined from the corresponding elastic scattering data. Since microscopic optical
potentials do not in general result in as good description of the elastic scattering data as do

phenomenological potentials, the latter are preferred for the (¥p) calculations.
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Fig. 37: ONM calculation for the differential cross section of the 196
MeV '0(7,p)'N reaction in which a Hartree bound proton wave
function and a plane wave continuum proton wave function are used. The

data are from Ref. 28.
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The sensitivity of the ONM calculations to the bound proton wave function used is a
more serious concern. On the one hand this sensitivity is expected and welcome since it
might give information about the high momentum components of the bound state wave
function. The lack of knowledge of the importance of other reaction mechanisms makes
such information uncertain, however. In using bound proton wave functions determined
with Woods-Saxon potentials, the parameters have consciously been constrained to be
"reasonable” by independent empirical evidence beyond the proton binding energy. These
constraints include the potential being consistent with the binding energies of other
nucleons in the nucleus, the rms charge radius of the nucleus or the rms radius of an
additional neutron, or requiring a gcometry for the potential similar to that of the real part
of the proton optical potential. In addition, the ONM results with the "good" Woods-
Saxon binding potentials are usually very similar to the ONM results with Hartree
potentials which intimates that these Woods-Saxon potentials are physically reasonable.

§.5.2 Nuclear Recoil Corrections

The problem of not being able to separate the center-of-mass motion from the relative
motion is intrinsic to the Dirac equation. The effect of nuclear recoil has been
incorporated into distorted wave calculations according to two somewhat different
prescriptions. Ottenstein, Sabutis and Wallace® start with a propagator that explicitly
includes the mass of the target nucleus and derive a wave equation in coordinate space by
localizing certain terms. Recoil effects are accounted for by virtue of including the finite
nuclear mass in the resulting coupled differential equations for the upper and lower
components of the wave function. Cooper and Jennings'%?) develop two-body
propagators for use in relativistic systems by eliminating in these propagators as much
short range structure as possible. The justification for this is twofold. First, the fact that a
nucleon is an extended object suggests that any short range structure in the propagator is
spurious. Second, it is pointed out that there may be considerable cancellation of short
range structure between various graphs of the interaction between even point objects. The
final result of this approach for nucleon-nucleus scattering is that the scalar and vector
optical potentials are simply multiplied by kinematic factors to take recoil effects into
account.

Recoil effects will be most important for reactions on light nuclei and so both of the

prescriptions mentioned were tested for the 196 MeV l"O()’.[))'SN and 300 MeV
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SHE, ) He calculations. It should be mentioned that it is not correct to apply the recoil
corrections when phenomenological otni.cal‘ Pptt_:mials,are used to generate the proton
distorted wave. The corrections to the wave function that are a result of recoil are already
incorporated into these potentials_ since the nucleus recoils in the elastic scattcring.
Therefore the recoil corrections should only be incorporated when microscopic optical
potentials are used although an indication of the size of these corrections may be obtained
by including the recoil corrections artificially when phenomenological potentials are used.
Figure 38 illustrates that the ONM calculations do not seem to be very sensitive to recoil
corrections. The slight changes in the results are minor compared with the changes that
are a consequence of the uncertainty in the distorting and binding potentials.
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Fig. 38: ONM calculations including recoil corrections (dashed curve:
recoil corrections of Ref. 101; dot-dashed curve: recoil corrections of
Ref. 102) for the differential cross section of the 196 MeV '*0(7,p)'*N
reaction in which a Hartree binding potential and a microscopic distorting
potentials are used. The data are from Ref. 28. The solid curve is the result without

recoil corrections.



6. Fmal State Charge Exchange

The success of the One Nucleon Model calculauons for ('y.p) reactions is not camed
over to the (%n) data. The (¥n) expenm_ents“tha; have been done for photon energies
below 160 MeV indicate that the angular distributions for these reactions are comparabie
in magnitude and shape to those for (%p) reacticns on the same target nuclei(103-108),
Since the photon couples to the neutron only through the magnetic moment, it is expected
that the ONM calculations for photoneutron knockout reactions will yield results that are
well below those obtained for photoproton knockout reactions. This is borne out rather
dramatically by the ONM calculation for the '60(yn)'°0 reaction at E, = 60 MeV
shown in Fig. 39. The inadequacy of the ONM calculations for (%n) reactions has led
some to conclude that the direct mechanism is unimportant for (%,p) reactions as well,
relative to reaction mechanisms that are not sensitive to the charge of the emitted
nucleon™ ' such as those that involve meson exchange currents. The consistently good
results of the relativistic ONM calculations for (,p) reactions indicate that the direct
mechanism is indeed important for these reactions, however, and therefore the observed
(7.m) cross sections deserve further study.

As has been pointed out in Secs. 2.2 and 2.5, there exists the nossibility that some
reaction mechanisms may contribute much more for a (¥%n) reaction than a (yp)
reaction. This is the case for the RPA calculations described in Sec. 2.5 in which the
correlation contributions are much larger for the (y%n) amplitudem). The possibility of
a (:N) reaction proceeding through the direct photoemission of a nucleon followed by
a charge exchange reaction is the clearest example of a process that will be more
significant for the (%n) amplitude, because of the much higher probability that the
photon will initially interact with a proton. This chapter will investigate this charge
exchange mechanism in a relativistic framework. A similar nonrelativistic calculation for
final state charge exchange indicates that this process is important compared with the
direct neutron knockout, although the data is still significantly underestimated®?.

6.1 The Charge Exchange Mechanism

From a microscopic standpoint, the charge exchange following a (¥p) reaction can
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Fig. 39: ONM calculation for the differential cross section of the 60 McV
%0 (7,n)'%0 reaction in which a Hartree binding potential and the
Woods-Saxon distorting potential characterized by the parameters of
Table 4 are used. The data are from Ref. 10S.
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Fig, 40: Feynman diagram for a (y,p) reaction followed by a (p,s) reaction
mediated by charged pion exchange.

be mediated by the exchange of a charged pion as is illustrated in Fig. 40. The amplitude
that would be calculated from this diagram would involve a nine-dimensional integral
because of the three vertices involved, as well as knowledge of all the nucleon single-
particle wave functions of the residual nucleus.

The problems associated with the aforementioned microscopic calculation can be
circumvented by going to a potential description in which the optical potential has
isovector as well as isoscalar pieces. Such a potential for spin-zero nuclei is written as

U(r) = S(r) + YOV + [S,,, (N +7°V, (NIt T/A (6.1)

where t and T represent the projectile and target isospin operators respectively and A is |
the number of target nucleons. Since isospin operators are included explicitly in the
potential, the nucleon and nucleus wave functions must include isospin pieces as well.
The proton and neutron are viewed as different states of an isospin 1/2 particle with
isospin projections —1/2 and +1/2 respectively. The isospin projection of a nucleus
therefore is T, = (N — Z)/2 where N and Z are the number of neutrons and protons
in the nucleus. For a nucieus in its ground state the isospin is given by T = IT,I. The
T operator contained in the isovector part of the potential can flip the nucleon isospin
projection (i.e., change a proton into a neutron and vice versa) and correspondingly
change the isospin projection of the nucleus by one unit. The final nucleus will have the
same total isospin quantum number as the initial nucleus however. This state is the
isobaric analogue state of the initial nuclear state and it will have the same spin and space
wave function as the initial nucleus. Transitions to the isobaric analogue state are only
possible for cases in which the magnitude of the raised or lowered nuclear isospin
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Fig. 41: Diagrammatic representation of a (y,m) reaction that proceeds through the
photoemission of a proton followed by a single charge exchange that is mediated by
the isovector optical potential.

projection remains less than the initial total nuclear isospin. The most evident example of
this limitation is that charge exchange reactions cannot take place on a target with
N =2, as is expected. The magnitude of the Q-value for a charge exchange reaction
will be the Coulomb energy difference between the initial and final nuclear states plus the
neutron-proton mass difference.

A (7.n) reaction which proceeds through final state charge exchange in the potential
formulation is pictured in Fig. 41. A potential description for the final state charge
-exchange is consistent with the spirit of the ONM calculations in that the (A - 1)
residual nucleons can still be taken to be spectators in the reaction by virtue of the fact that
the intermediate nucleus has the same spin and space wave function as the final nucleus.
The requirement that the intermediate and final nuclear states be analogues limits the
possible nuclear targets to which the formalism can be applied. A clear case for which
this condition is satisfied is the T = 1/2, T, = 1/2 intermediate state; the final nucleus
will then be in its ground state, having 7, = ~1/2. Such intermediate and final nuclei are
said to be mirror nuclei, examples of which are the pairs (*H,>He), (°N,'%0) and
(*K,%%Ca). These nuclei are precisely those involved in the (7.n) reactions on *He,

%0 and *°Ca which could proceed through the final state charge exchange mechanism.

6.2 The Isovector Optical Potential

The optical potential for nucleon-nucleus scattering is expected 1o have an isovector

component for nuclei with &' # Z because the NN amplitude contains isovector terms
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thatare a. xesult of processes such as charged plon exchange Phenomenologlcal analyses .

have not been attempted for determining | the isovector Dirac optical potential because it is
not expected that the potential shapes will be simple, as is the case. for the isoscalar optical
potential. It i is, however, straightforward to generalize the microscopic. calculanons for
the isoscalar optical potential, described in Secs. 3.2.3 and 3.2.4, to include isospin and
thus determine the isovector optical potential.

In the Relativistic Impulse Approximation (RIA) the isovector optwal potenuals are
(109)

given by
Vim0 =~ 7= ¢ [ dlg 7 B @55y@ (6.20)
C =—-4mik,pn/[(27)'m) (6.2b)
Foy=3 Fly-Fgy) (6.2¢)

Psy=Ply=Psy - (6.2d)
In these equations the superscripts p and n refer to target protons and neutrons. The
amplitude given in Eq. (3.13) is separated into proton and neutron amplitudes, as are the

- scalar and vector densities of Eqs. (3.5a) and (3.5b) to get the isovector quantities in Eqs.
(6.2c) and (6.2d). The densities may be obtained from Hartree or Hartree-Fock
calculations. The vector proton density may alternatively be determined from electron
scattering measurements.

The relativistic microscopic calculations that model the NN ¢-matrix from meson
exchange can similarly be extended to include isospin(“o). The direct and exchange NN
amplitudes are included, as well as Pauli blocking effects. The isovector potentials are
determined by folding the isovector amplitudes with the appropriate density

combinations.

6.3 The Relativistic Lane Equations and the Transition Matrix
for a (y,n) Reaction with Final State Charge Exchange

The usual method of doing calculations for (p,n) reactions is to write the wave
function for the system as a sum of a proton-target nucleus product wave function and a

neutron-residual nacleus product wave function. The dynamical equation of motion for
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the system wnll then result in, coupled equatxons for the proton and neutron wave
functions. In the nonrelativistic formulation using the Schrédinger equation the coupled

equations are the so-called Lane equauons(“” B

. The relativistic (description of a (p,n) reaction follows the same presenptlon as the
nonrelauwsuc one except that the dynamics are described by the Dirac equauon with an
appropriate relativistic Hamiltonian. The Hauultoman that describes both the proton-target
nucleus and neutron-final nucleus systems is :

H= H(e) +( + t,)AE +ap+ (%-t,) V) + ﬂU(r) + Bm, (6.3a)

where H(€) is the nuclear Hamiltonian (¢ are the internal nuclear coordinates) and
AE, is given by

AE =P (my-m,) +E,-E, (6.3b)
The wave function is

Y=@@y®IT,. T, -DY+d@uvE|T.T-1)11,L (6.4)
i P 2 2 J n 22

where @; and @ are the nuclear spin-space wave functions which are identical for the
reaction going to the isobaric analogue state. The proton and neutron Dirac four-
component spinors are appropriately labelled by the subscripts p and n, and the isospin
wave functions are included specifically. Substituting this wave function into the Dirac
equation

HY=EY (6.5)

with the Hamiltonian of Eq. (6.3a) results in the coupled Dirac equations that are the
relativistic Lane equations('®

[a-p+/3m,,+ﬂs+v+v N Z(ﬁs +V,,)—E,,]Vf,,

o) W, =0 (6.6a)

[a~p+ﬂm”+ﬁS+V+N Z- 2(B +V,,,,)—E,,]Vl,,
(ﬁs +Vo) ¥, =0 . (6.6b)

In these equations N and Z are the number of ncutrons and protons in the nucleus on
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which the proton is incident. In order to derive Egs. (6.6) the isospin wave functions in
Eq. (6.4) are coupled and the quantity H(e) (e) is taken arbitrarily to be zero. The
relativistic Lane equations may be solved using an iterative technique with the boundary
conditions being that ¥, has an incoming plane wave piece and outgoing spherical waves
and ¥, has outgoing spherical waves only. For the inverse (n,p) reaction the coupled
equations are the same but the boundary conditions in this case are that V¥, has an
incoming plane wave piece and outgoing spherical waves and ¥, has outgoing spherical
waves only.

The transition matrix for a (%n) reaction that includes the possibility of the
photoemission of a proton with subsequent charge exchange(s) to ultimately give a
continuum neutron, as well as the direct photoemission of the neutron, is

where the wave functions and the Hamiltonian are explicitly written with the isospin
dependence that underlies the relativistic Lane formalism. The final nuclear wave function
is given by Eq. (6.4) where the boundary conditions are for the (n,p) reaction and the
nuclear spin-space wave functions are labelled further by the total angular momentum J,
and projection M. The electromagnetic interaction Hamiltonian is

Hem = [%' '2] eYiA, + %[[-21_" 'z] KpHp + (%+ ‘ZJK"M'] o*'F,y . (68)

A ground state target wave funcion is written in a parent2g= expansion as(V

W= Y (LTITI) Y, (g MMy 1L M) v, &y
JTi, M, ae
x ) (T12;NNyIT,T)|12N;)ITN) (69)
N

B

where the fractional-parentage coefficients (J; T, {IJ T J, ) depend explicitly on
isospin and generally are different from the spin-orbit fractional-parentage coefficients of
Eq. (4.15). For the purposes of the expansion the Coulomb interaction is assumed to be
negligible and so protons and neutrons can be treated symmetrically.

Hereafter the only target nuclei that are consideied contain the same number of

protons as neutrons, i.e., T; =0, and have total angular momentum J;=0. The
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isospin of the residual nucleus is thus constrained to be T;=1/2 and the total angular
momentum Jj, that the knocked out nucleon initially had will be the same as the total
nuclear angular momentum J; . All the relevant (y,n) experiments have been done for
such targets.

With the wave functions and interaction Hamiltonian specified above, the transition
matrix of Eq. (6.7) becomes

- 00(1J,12J
Tﬁ‘=(-l)l’ M; 1 4 { f/ f)
Y27 +1 2

=(=)_\ %
g RIACE L NOTAS
x . (6.10)

+ j d'% g ) [ey"A,,(x) + 28 g V"Lvm] Vou®

In deriving this expression the Clebsch-Gordan coefficients have been explicitly
evaluated for the restricted class of target nuclei described above. The interpretation of the
two terms in the T-matrix for the (%n) reaction is intimately connected to the boundary
conditions on the neutron and proton wave functions being that Wn(’) has an incident plane
wave piece and incoming spherical waves and /™) has incoming spherical waves only.
The first term is the amplitude for the photon knocking out a target neutron that has final
state interactions which ultimately result in a free neutron. This implies that the initial
neutron either undergoes no charge exchange or an even number of charge exchanges in
moving through the region of the nuclear potential. The second term is the amplitude fc;k
the photon knocking out a target proton that has final state interactions that also ultimately
result in a free neutron. Thus the initial proton must undergo an odd number of charge
exchanges which is consistent with the boundary conditions that require the proton to
come from an incident neutron. A noteworthy feature of the transition matrix is the
relative sign between the two terms that comes about from the isospin Clebsch-Gordan
coefficients.

6.4 The Propagator Approach to (7,n) Reactions with Final
State Charge Exchange

As an alternative to solving the coupled Lane equations the continuum proton and

neutron may be viewed in a more distinct manner. The mechanism illustrated in Fig. 41 is
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interpreted as follows: The incident photon interacts with a valence proton in the target
nucleus through the ¢lecsromagnetic interaction. As a result, the proton is ejected from the
nucleus end intevacis with the interrediate nucleus through the proton-nucleus optical
potential wntil the charge exchauge occurs through the isovector optical potential.
Subsequent ta the chargs exchaage, the neutron interacts with the residual nucleus
through the neutron-nucleus optical potential without further charge exchange. The
transition matrix for this process on a T;=0=J, target, which is the first-order part
of the second term in Eq. (6.10) by virtue of considering only one charge exchange, can
be written with a Green function propagator for the proton between the electromagnetic
and isovector potential vertices as

AMEICY
%8 V2J+1 2

« [a%aly T0) L 18,000 + 7OVpuKET) G000
x[ey“A,(f)(x)-i-szﬁﬂ G“VFJE)(x)]WM ® . (6.11)
B

The superscript (£) refers to the polarization of the incident photon. The bound proton
wave function v/MB with spin projection My, satisfies the Dirac equation with suitable
binding potentials. It is the same wave function that is used for the ONM calculations and
is described in detail in Sec. 3.3.2. The continuum neutron wave function vl(“’ with spin
projection §; is the time-reverse of V/(*) (cf. Egs. (4.33) and (3.32)) which sausfies the
Dirac equation

[y“a — m=S() = 7OV) + 2L 15, + 7OV, n(r)]] v =0. ©.12)

This is very similar to Eq. (3.19), except that there is a contribution to the optical
potential from the isovector potentials since the t-T operator has a diagonal piece. This
addition to the optical potential is expected to be small by virtue of the 1/(4A) factor. The
Green function for a proton propagating from x to y that is interacting with the

intermediate nucleus optical potential satisfies
+)
[7“3 —m-SO)-YOV(I-1OVe)+ S u(r)+y°V,,,,(r)1] G, 9. 0)=8%y-x) (6.13)

where the derivative operators and the radial coordinate r refer (consistently) to either the
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four-vector y or x. The isovector potentials also contribute to the protonrnucleus optiéal_
potential, The (+) suberscdpt on the Green function signifies that the proton
asymptotically has outgoing spherical waves. The constants that multiply the integral in
Eq. (6.11) come from the fractional-parentage expansion_of the target nucleus in the same
way as for Eq. (6.10) and the diagonal brackets around the isospin operator signify an
expectation value between the proton-intermediate nucleus and neutron-final nucleus
isospin wave functions,

In order to facilitate the evaluation of the amplitude for the final state charge exchange
contribution for (%n) reactions,. the calculations are done for the inverse (n,7)
reaction. The picture now is that a neutron incident on a nucleus that is a member of a
mirror pair first undergoes a charge exchange reaction to give a proton moving relative to
the second member of the pair and then a (p,}) reaction takes place. The matrix algebra
turns out to be more straightforward for the inverse reaction, and the asymptotic
behaviour of the wave functions is more obvious. The transition matrix for the (n,9)
reaction with single charge exchange is

1 [ e ® Kobp uvr (&) ]
x5 J'dxdy VIMB(x)[ey“A“ x) t—5- ot Foy @
x Gy ) [Spa0) + 7VpIV,70) - (6.14)

The matrix element of the isospin operator t-T/A has been explicitly evaluated between
the proton-intermediate nucleus and neutron-final nucleus isospin wave functions to get
the isospin factor 1/(2A4). This T-matrix is precisely equal to the T-matrix of Eq. (6.11)
vy virtue of time reversal invariance.

The evaluation of the amplitude (6.14) is achieved through the reduction of the eight-
dimensional integral to a four-dimensional integral and a differential equation by using the
property (6.13) of the Green function. Defining the quantity

(G| 4 ~(+) e ,
ls, (x) =34 '[dy Gp ' (xy)Spa(y) + 7°V,,,.(y)]v/,l » (6.15)

and operating on the left of Eq. (6.14) with
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[i 7Hdy—m—S(-y'V(r)-yOV.() +4—1A- [S),n(r)+7’ o‘fm(r)]] ,
where the radial coordinate and derivatives are with respect to the four-vector x, yields
the following equation:

[i Y#3=m=SI)-YOV)-7OVer)+ [sp,,(r)+y°v,,,.(r)]] 1)

=35 Bon 7V ¥)10) - (616)

This is a Dirac-type equation for / ,(;)(x) with a source term that is a product of the known
isovector potentials and the incident neutron wave function, The solution can be put into
Eq. (6.14) to yield the straightforward four-dimensional integral

TfM = (_I)JI-MI 1 (oo{lJfllsz)
e 25 +1 2

x fat ,, [ey”A,‘f’(x) + 22 o0 (x)] o . 617)

The Dirac equation (6.16) and this T-matrix clearly identify / ,(;)(x) as a proton distorted
wave function. Indeed, a comparison of the Dirac equation (6.16) and the Lane equation
(6.6b) establishes that / ,(;’(x) is the first-order part of the full Lane proton wave function.
The previous identification of the transition matrix (6.11) as the first-order estimate for
the second term in the Lane transition matrix (6.10) is thus confirmed. This
approximation is deemed to be reasonable since it is expected that the charge exchange
amplitude is small.

The method of solving for/ s(;)(x) is very similar to that used for the distorted wave
described in Sec. 3.3.1. The modifications from the direct mechanism case are that a
source term is present in the equation and that the boundary conditions are different.
These are a consequence of the proton in the intermediate state originating from a charge
exchange reaction, rather than existing in the initial state.

The form of the differential equation (6.16) suggests that Is(;)(x) can be expanded as
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o= (B o L L%: f(i‘(,,)(Ll/z M-s, ,uu)
: u("):ymmm)

x M . (6.18)
iGN Y10 s9D

in analogy with Eq. (3.32). Using this expansion and recalling that the solution for the
neutron wave function is

(+)() E+m 4,,2 Ly f(u,,)(l.l/z M-s.5,1J M)
LiM "
S NYL 1,6
X " , (6.19)
ig,  (NYL 1,8

the equation (6.16) gives the following coupled first-order differential equations for the
radial functions F; (r) and G (r):

[E +m+80) - V(r) -V r) - 31; [Spa(n) -V, (r)]] G

<[ &+ LK R0 L1 -Vl g 0 6208

[E -m- s(’) e V(r) Vc(r) + - 4A [ u(') + "(r)]] .’(r)

=_[ 41K x] LA 45 [S,0r) +VpuD1 S, ) . (6.20b)

These equations can be transformed into a second-order differential equation by the same
method as for Eqgs. (3.30). The procedure and results are summarized by the following
equations:

Y+ [""’ B 1’] 0) = 1) (6212)
Y =F@ de] (6.21b)

F(=rF, () - (6:21¢)
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anN= 2d0) —7( d(r)J ~d(r) s(r) (6.21d)

drya [ E+m+ SOV - V) - Vi) (5= V] (6210

s = _[ E~m—S(r) = V(r) = Ve) + A 18,000 +v,,,,(r)]] (6219

h(r) = [d(r)]‘"’[d(r)v(r)ﬂr) — W) - ug () + H0ENA@ | "’“’r)ﬂi)-] (6.21g)

dr)
ur) = i [Von(r) = Spn(P)] (621
W) == o [Vpnlr) + SpulP)] (6.210)
fn=rf,;,n0 (6.21))
- gn=rg, (6.21k)
k=(L-J)RJ+1) . (6.211)

The second-order differential equation (6.21a) may be solved numerically using the
method described in Appendix B. The two integration constants are determined by an
initial value and the normalization of the solution. The relationship of y(r) to the upper
radial part of the wave function, y(r) = [d(r)]™"/%rF (r), requires that y(0) = 0.
The asymptotic (r — ) boundary conditions for F(r) are fixed by the outgoing
boundary conditions of the Green function; F, ,(r) must asymptotically be an outgoing
spherical wave®”

\Y ikr - nin2kr - L2 + &, , + 6u)

F (n {—"]m ew“ sing, , £ (6.22)
LY s (v, LJ kr ' .

The normalization convention for this function is consistent with the normalization
chosen for the neutron wave function. The ratio of the velocities of the proton and
neutron assures that the neutron flux is consistent with the propagating proton flux. This
factor will essentially be unity since the masses of the proton and neutron are similar. The
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nuclear phase shift 8;, is evaluated by matching the numerical solution for F ;(r), with
the analytic asymptotic solution. The details of the numerics are described in Appendix C.

“Once the solution for / ,(;)(x) has been established, it is sqaightfox:w@rd to evaluate the
amplitude (6.14). It is now convenient, however, to write an S-matrix for the (yn)
reaction that proceeds through final state charge exchange to establish a connection with
the S-matrix for the direct reaction mechanism which is given by Eq. (4.30). In direct
analogy with Eq. (4.30), the "charge exchange" S-matrix is

i 1 (m) (1 \?
Spi =~ 1o, JIP Cp Jps My —M100) o (‘E'] [-2;,,7)
Y

4 =(-) , vy -ikyx
o xjdxls, Wek ey, + o byl e Ty () . (6.23)

The function / ,‘;’(x) is related to l,(;)(x) in the same manner as the distorted wave with
incoming boundary conditions is related to the distorted wave with outgoing boundary
conditions (cf. Eq. (4.33)), i.e. '

+ . -5 A
19w = JEEm o4y by IR, (L 12 Mo 1 M)
LiM

M ! . A
X yL 120D [F L) ioT GL,(r)] . (6.24)

The relationship between the isospin dependent fractional-parentage coefficients and the
spin-orbit fractional-parentage coefficients is established by comparing the constants in
Eq. (6.14) with those in Eq. (4.30) to be

(00{1J,124.)=12 g, P - (6.25)

The structure of Eq. (6.23) is precisely the same as that of the S-matrix for the direct
mechanism. Therefore the matrix multiplication and the angular momentum algebra are
the same for the two S-matrices and hence the results of Egs. (4.35) may be carried over
for the charge exchange S-matrix. The only difference will be that the distorted nucleon
radial functions are replaced by the radial functions of / s(;)(x).

In determining the total amplitude for the direct neutron photoemission and the proton
photoemission followed by charge exchange, care must be taken to establish the relative
signs of the two S-matrices. Isospin is included explicitly in the charge exchange

calculation and so it must be included as well for the direct neutron emission calculation.
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The isospin Clebsch-Gordan coefficients for proton and neutron knockout will have
0pp°site;siéns as has been noted in deriving the Lanc transition matrix (6.10). Thus, the
.sp,in,-_o‘rbit,frac;ionalrpaxentagc coefficient for a neutron must be of opposite sign to that
for the correéponding proton to be consistent with the phase between the direct and
charge exchange terms that comes about in the Lane description. The observables are
calculated from the resulting total S-matrix as outlined in Sec. 4.5.

6.5 Results of Final State Charge Exchange Calculations

Few photoneutron knockout experiments have been done compared with experiments
for photoproton knockout due to the difficulty of detecting the neutron. Most (%n)
experiments have been done on light targets for energies below 100 MeV; only recently
have measurements been made at higher energies. Nevertheless, the available data is
sufficient to give an indication of the importance of final state charge exchange.

The result of the (%;m) calculation with final state charge exchange is shown for the
E,=60 MeV '%0(%n)'°0 reaction in Fig. 42. A Hartree potential is used to
determine the bound state wave function. The isoscalar optical potential for the
propagating proton is taken to be the parabolic symmetﬁé Woods-Saxon potential of
Table 4 that is determined for 50 MeV p + %0 elastic scattering, again noting that this
is an approximation to the p + 5N optical potential that is actually required. Since this
potential is determined for scattering from a nucleus with the same number of protons as
neutrons, it must be the isoscalar optical potential. The proton optical potential is used in
determining the neutron distorted wave function as well since there is no relevant ncutron
elastic scattering data to determine a neutron optical potential. This is expected to be a
good approximation on the grounds of the charge independence of the strong
interaction!!?. The isovector optical potential is evaluated microscopically using the
prescription of Igbal ez al. 119 in which the isovector NN amplitudes are folded into
~ appropriate densities for 15N, The PN densities are determined by subtracting the single-
particle 1p, , proton density from the corresponding 160 densities. The single-particle
and nuclear densities are both taken from a Hartree calculation for '¢0.

Tt is apparent that the charge exchange amplitude is rclatlvcly large compared with the
direct mechanism amplitude, especially at backward angles. The inclusion of final state

charge exchange is not, however, sufficient to reproduce the data. At backward angles
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Fig. 42: Final state charge exchange calculations for the differential cross
section of the 60 MeV '%0(yn)'%0 reaction in which a Hartree binding
potential, phenomenological isoscalar optical potential and microscopic
isovector optical potential are used. The dashed curve shows the ONM
calculation, the dotted curve shows the charge exchange calculation and the solid curve is
the coherent sum. The data are from Ref. 10S.
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conmbutxon at backward angles is expected since the addmonal (p,n) reaction wxll
"spread"” theoutgoingnucleonmomemum e 4 b e et e

Cross section data for the 160(‘7. )50 reaction at the higher photon energies
E, =150, 200 and 250 MeV have very recently been measured®, Although the error
bars are quite large, the data indicates that the (y,n) cross section is very much the same
as the (y%p) cross section at E, = 150 MeV and actually gets larger than the (%p)
cross section with increasing energy. The data and calculations for E,= 150 and 200
MeV are shown in Figs. 43 and 44, For both instances a Hartree potential is used in the
determination of the bound nucleon wave function and the isovector optical potential is
evaluated micmscopically. For the 150 MeV calculation the isoscalar optical potential is
evaluated microscopically, since there is no corresponding elastic scattering data from
which to extract a phenomenological optical potential. For the 200 MeV calculation the
isoscalar optical potential is the phenomenological Fourier-Bessel potential for 200 MeV
7 +120 elastic scattering that is shown in Fig. 12. The contribution due to the interaction
of the photon with the neutron magnetic moment increases with increasing photon energy
and this is reflected in the relatively larger direct amplitude compared with the 60 MeV
case. At these energies the charge exchange contribution becomes small compared with
the direct contribution.

It might be expected that final state charge exchange would be more important for
lighter targets since the isovector potentials come into the equations for the proton and
neutron radial functions with a 1/A dependence. The calculation results for the
2C(1%n)''C reaction at E,=63 MeV are shown in Fig. 45. The binding potential
used is taken from a Hartree calculation, the magnitude of the fractional-parentage
coefficients for the valence nucleons is taken to be unity and the isovector optical potential
is evaluated microscopically. The diagonal optical potential used is the Woods-Saxon
potential determined for SO MeV 7 +7Be elastic scattering data that is specified in Table 7.
This potential is assumed to be the sum of the isoscalar and the diagonal part of the
isovector potential because *Be has both the same neutron excess and spin as UB. The
calculations are well below the data as is the case for the '%0(3#)50 reaction. The
effect of a lighter target nucleus does not affect the results of the charge exchange
calculations very much. It is somewhat surprising that the charge exchange contribution
is relatively smaller than the direct contribution for the reaction on 12C as compared with
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Fig. 43: Final state charge exchange calculations for the differential cross
section of the 150 MeV '60(7,n)'0 reaction in which a Hartree binding
potential and microscopic isoscalar and isovector optical potentials are
used. The dashed curve éhows the ONM calculation, the dotted curve shows the charge
exchange calculation and the solid curve is the coherent sum. The data are from Ref. 9.
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Fig. 44: Final state charge exchange calculations for the differential cross
section of the 200 MeV %0 (7,n)'*0 reaction in which a Hartree binding
potential, phenomenclogical isoscalar optical potential and microscopic
isovector optical potential are used. The dashed curve shows the CNM
calculation, the dotted curve shows the charge exchange calculation and the solid curve is
the coherent sum. The data are from Ref. 9.
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Fig. 45: Final state charge exchange calculations for the differential cross
section of the 63 MeV '2C(7,n)!'C reaction in which a Hartree binding
potential, phenomenological diagonal optical potential and microscopic
isovector optical potential are used, The dashed curve shows the ONM
calculation, the dotted curve shows the charge exchange calculation and the solid curve is
the coherent sum. The data are from Ref. 106.
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160, This could be due to the nucleon being knocked out of a 1p,, shell in the former
case as opposed to it being knocked out of the 1p,, shell in the latter case.

6.6 Discussion

The calculations for final state charge exchange indicate that the addition of this
mechanism to the direct mechanism is inadequate to describe the (yn) observables.
Although the charge exchange channel is significant compared with the direct mechanism,
especially for 160 at lower photon energies, it is apparent that other reaction mechanisms
must be important for (%n) reactions. It remains an open question as to what these
mechanisms are. The short-range nucleon-nucleon correlations that are higher-order
corrections to the shell model and optical potential descriptions may play a significant role
at the energies under consideration. It is eXpected that a proton will have larger
correlations with a neutron rather than another proton because of exclusion arguments.
Correlations therefore can lead to an emitted neutron subsequent to the interaction of the
photon with a proton and it is expected that this amplitude will be larger than the
corresponding one for an emitted proton in much the same way as for charge exchange.
Meson exchange current mechanisms are another possibility for explaining the large
(7:n) cross sections. Intuitively, pion exchange and delta isobar photoproduction
mechanisms migh: be thought to contribute the same for (;n) and (¥%p) reactions. A
detailed calculation of these mechanisms is necessary, however, to determine if this
premise is true. The interference between the various meson exchange amplitudes could
indeed result in very different contributions for the (%;n) and (y,p) reactions.

In order to illustrate the insignificance of the final state charge exchange contribution
to a (¥,p) reaction, the results of a calculation for the 60 MeV 160(‘)/,p)lsN Cross
section are shown in Fig. 46. The amplitudes are determined using the parabolic Woods-
Saxon optical potential described in Table 4 as the isoscalar potential, a microscopic
isovecter optical potential and a Hartree binding potential. The direct mechanism clearly
dominates the amplitude, in contrast to the situation for the parallel 60 MeV
16O(y,rz)150 cross section shown in Fig. 42. This is expected because of the greater
likelihood of the photon interacting with a target proton.

The relative importance of final state charge exchange is less at higher energies. This
is due to the charge exchange probability decreasing with increasing energy’} 13) and the

spin magnetization current interaction becoming more important. The observation that the
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Fig. 46: Final state charge exchange calculations for the differential cross
section of the 60 MeV °0(7,7)'*N reaction in which a Hartree binding
potential, phenomenological isoscalar optical potential and microscopic
isovector optical potential are used. The dashed curve shows the ONM
calculation, the dotted curve shows the charge exchange calculation and the solid curve is

the coherent sum. The data are from Ref. 78.



150(%n)'°0 cross sections get larger than the corresponding (¥%p) cross sections as
the photon chergy increases might be a result of the increased contribution of the spin
magnetization current interaction adding to whatever other mechanisms are predominantly
responsible for (%n) reactions. | '



7. Discussion and Conclusions

The purpose of this thesis has been to investigate photonucleon knockout reactions in
a relativistic framework. This research is a logical outgrowth of the recently developed
subject of relativistic nuclear physics and is motivated by the large momentum transfer
involved and the failure of nonrelativistic calculations to comprehensively describe the
available experimental data. Many of the conclusions that can be drawn from the
relativistic calculations have been mentioned in the previous two chapters and will not be
reiterated here. A general overview of the calculations will be presented and an indication
will be given of some of the problems that were not addressed as well as possible
direction for further investigation of (%N) reactions.

The One Nucleon Model (ONM) for the direct reaction mechanism involves
modelling the interaction of the bound and continuum nucleon with the rest of the
nucleons by using relativistic vector and scalar potentials. The model is by-and-large
parameter free in the sense that the nucleon wave functions are determined from
microscopic theory and/or independent empirical evidence. Only for the bound state wave
function determined with Woods-Saxon binding potentials is there any direct parameter
input,.and care has been taken not to arbitrarily vary these parameters for the sole purpose
of fitting the (,p) data. It should be mentioned that somewhat similar relativistic
calculations for the direct reaction mechanism have been done independently by
McDermott er al.*!¥), A comparison of results has been a valuable check of the
‘numerical computations.

The bound nucleon wave function is evaluated through the use of potentials in the
Dirac equation that simulate meson exchange processes in the nucleus. It is found that
using Woods-Saxon shapes for the binding potentials that are constrained only by the
empirical binding energy of the nucleon is inadequate; therc are many reasonable choices
of potential parameters that give significantly different results for the (y,N)
observables. Further empirical constraints might give more unique potentials, and this
should be investigated further. The ambiguity that exists for wave functions determined
from Woods-Saxon potentials suggests that a potential that is determined from a Hartee

(36)

calculation'™™ is preferred. Reservations exist also for the high momentum components

of the resulting wave function but since the relativistic Hartree approximation is based on
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the fundamental meson exchanges that mediate the nucleon-nucleon force it might be
reasonable that the description is accurate even beyond the momentum transfer region for
which the parameters of the calculation are fixed. Refinements of ‘the Hartree
appmx_imatio_n such as taking into account the polarization of the vacuum@s’ or including
the Fock term®® might be important for the high momentum behaviour of the wave
function. It would be desirable to have the computations for these effects consolidated so
that they could be applied to the (%N) calculations ‘with confidence. In any case, the
hope of securing spectroscopic information from photonucleon knockout has proved to
be elusive. The reaction is indeed very sensitive to the high momentum components of
the bound nucleon wave function as is expected, but ambiguity exists in the determination
of this wave function that renders the results somewhat inconclusive. A better idea of the
high momentum behaviour of the wave function might be realizable when the other
mechanisms that are important for the reaction are examined.

The interaction of the emitted nucleon with the residual nucleus is approximated by
complex scalar and vector potentials and this distortion of the wave function is found to
be very important for the description of the data. In this sense the ONM label for the
reaction is to some extent misleading since the other nucleons are involved through the
optical potential. The ONM designation actually means that a second nucleon is not
explicitly included microscopically. The optical potentials are either taken from
phenomenological proton elastic scattering analyses(® or are determined from
microscopic calculations that fold the nucleon-nucleon potential into Hartree nuclear
densities®®. A better description of the proton elastic scattering data ensues from
phenomenological potentials and hence these are deemed to give a more realistic
continuum nucleon wave function. Unfortunately, there is not alwayS elastic scattering
data corresponding to the (%;N) experiments that have been done. Relativistic global
optical potentials would be very desirable for such situaiions, especially for the 160
nucleus which is the most common (¥%N) target. |

Although there are a range of results corresponding to various choices of binding and
distorting potentials, the One Nucleon Model is deemed to be in good accord with most
of the experiments for (¥,p) reactions; the (¥p) data at lower momentum transfers
consistently falls within the area defined by the calculations. It is encouraging that the
agreement with the (%.p) data is almost invariably most favorable for the "best"
potentials; the optical potentials that best describe the proton elastic scattering data also
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give the best (%p) results and there is a similar indication for the binding potentials that
give good agreement with a range of nuclear characteristics. The success of the
calculations with realistic potentials for a variety of nuclei and for a range of incident
energies rcally gives credibility to the One Nucleon Model and suggests that investigating
(%p) reactions with this model can, in conjunction with other high momentum transfer
reactions such as (p,7) and (e,e’p), lead to a better description of the nucleon wave
functions involved. |

. The results of the relativistic ONM calculations are especially interesting when
contrasted to the corresponding nonrelativistic calculations®*22), The ONM results are
qualitatively similar to the results of the rigorous nonrelativistic calculations for the direct
mechanism, but are signiﬁcantly closer to the data at higher momentum transfers.
Furthermore, the ONM results cast doubt on some of the nonrelativistic
investigations' 329 that conclude that the direct reaction mechanism is relatively
unimportant for (y,p) reactions. Although the specific relativistic features that might
account for the favorable ONM results have not been investigated in detail, for example
by doing a nonrelativistic reduction of the relativistic amplitude, it is felt that in general
the relativistic wave functions are responsible. The relevance of doing a relativistic
calculation is attested to by the observation that the predominant terms in the amplitude
involve the lower component of one of the relativistic nucleon spinors.

In the process of formulating a workable model for (%N) reactions by making
simplifying approximations some of the original features of the theory are necessarily
abandoned. Most obviously, the use of potentials in the Dirac equation rather than the full
meson field operators surrenders the relativistic covariance of the theory. Furthermore,
the use of different potentials for the bound and continuum nucleon forgoes wave
function orthogonality. It has been mentioned that this is a consequence of restricting the
calculation to one reaction channel and is necessary to obtain realistic nucleon wave
functions. Orthogonalizing the wave functions using a Gram-Schmidt procedure such as
has been done for the nonrelativistic wave functions®® is not expected to have a large
effect. Related to the problem of wave function orthogonality is the lack of gauge
invariance of the interaction. The requirement of gauge invariance is that under the
transformation
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there is no change in physical quantities'®, which means that the scattering matrix |
should remain invariant. Under the gauge transformation (7.1) the S-matrix for the
minimal electromagnetic coupling becomes

=- fu-/ywA,,d‘x - - Jv'Ty”d)Aud‘x-e Fredzds . (1)

The last term should be zero for gaugé invariance to hold. Integrating this term by parts
and noting that the surface term vanishes leaves the integral

e_[a,,[v'lv"cb]z_d‘x :

The derivative of the quantity in the square brackets can be reexpressed using the Dirac

equations

[iv#d, —m-S-y°Viy=[iyhd,-Zly =0 (7.3a)

Liyd,-m -8 - yOV 1@ = [iy#3,- Z'1¢ =0 (7.3b)

for the continuum and bound nucleon (the primes indicate that the quantities are different

from the unprimed quantities) as
| LFY* O =i FIZ*-E19 . @.4)

This quantity is nonzero by virtue of the unlike potentials and so gauge invariance does
not hold. The interaction of the photon with the nucleon anomalous magnetic moment is
trivially gauge invariant, on the other hand. The way to address the problem of the gauge
invariance is not clear. Perhaps nothing can be done without sacrificing the realistic wave
functions that come about by using distinct potentials for the bound and continvum
nucleon.

A problem that is related to the magnetic moment interaction is that Dirac calculations
for the nuclear magnetic moments which involve using the same electromagnetic
interaction Hamiltonian used in the ONM do not reproduce the experimental
values11¢117) This has been solved to some extent by considering "backflow"
corrections!!®), which take into account the response of the spectator core to the single-
particle motion. These have not been included in the ONM calculations and it would



“perhaps be worthwhile to do so, although it is. not clear how to do this for the large
momentum transfers involved in the reactions. The contribution of the magnetic raoment
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interaction is small compared with the charge interaction for (¥p) reactions which -

suggests that the backflow correction likely will be small. v

A more general problem of relativistic calculations that is related to the structure of the
Dirac equation itself and not the ONM is that the center-of-mass motion cannot be
separated from the relative motion. This deficiency is not considered to be very serious
because the targets considered are relatively heavy. Calculations that estimate the effect of
a finite mass target19%1%2) ghow very little sensitivity to the nuclear recoil, although there
seems to be some disagreement over how to incorporate recoil corrections consistently.

The inadequacies that are evident in a comparison of the ONM predictions with
experimentally measured observables are the consistent underprediction of the (¥,p)
data at high momentum transfers and the complete failure to account for the (¥n) data.
The underestimation of the high g data seems to indicate, as expected, that at some point
reaction mechanisms that involve two nucleons sharing the momentum mismatch between
the photon and the emitted nucleon will predominate. The ONM calculations suggest in
which momentum transfer region this will occur, although a really good indication will
come only through actually doing calculations for other reaction mechanisms. The similar
magnitude of the (%n) and (y%p) cross sections represents a more confounding
observation for the ONM; it is not clear why a direct reaction mechanism is principly
responsible for (¥,p) reactions, whereas other mechanisms give rise to (%n) events.
Most of the likely nondirect mechanisms involve meson exchanges that are similar for
protons and neutrons since the strong interaction is symmetric in the two types of
nucleons. There are, however, plausible contributions that will be more significant for the
(y,n) amplitude such as the inclusion of nucleon-nucleon correlations and charge
exchange of the emitted nucleon subsequent to the direct interaction.

In an attempt to address the large (¥,n) cross sections, the contribution of charge
exchange following proton photoemission has been investigated. The charge exchange is
mediated by an isovector potential that is determined from microscopic calculations"9,
The addition of the charge exchange has not been found to substantially improve the
agreement of the calculation with the data, although it can contribute on the same level as

the direct mechanism. A shortcoming of the charge exchange calculation is the uncertainty
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nuclear targets and energles does not exxst, the tchabilxty of the tmcroscopic calculauons _ |
" must be indirectly inferred from the adequacy,of similar microscopic calculations for the

_ isoscalar potential and from the description of quite different charge exchange data, The
evidence suggests i't,hat the microscopic is_ovcctor potentials are reasonable and the
inaccuracies certainly would not affect the calculation to the extent that is required to give
agreement with the (%n) data. Final state charge exchange is not the reason for the
observed (%;n) cross sections.

The aforementioned deviations of the ONM with the (%N) data are felt to be
indications of additional physics coming into play. Although there are problems, the
encouraging results of the ONM suggest that the direct mechanism is described well by
the model. In this sense the (%;N) reaction remains a potentially interesting source of
- information about some aspects of nuclear dynamics; the (n) reaction especially
seems to be very sensitive to processes such as nucleon-nucleon correlations and meson
exchange currents that are difficult to extract information about from other nuclear
reactions. The exploration of the direct reaction mechanism in a relativistic framework
that is the subject of this thesis is an essential forerunner to investigating correlations and
meson exchange currents. Such investigations have not yet been done thoroughly in a
relativistic model and hence it would be very interesting to proceed in this direction, One
calculation that includes pion exchange has been attempted®) but the details have not
been published.

Relativistic calculations of meson exchange current mechanisms for photonucleon
knockout reactions have some compelling rationale. Primarily, meson exchanges between
nucleons are fundamentally described by a relativistic field theory, and not by the
Schrédinger equation. The meson-nucleon vertices are given by well-established
principles in a relativistic description whereas uncertainties may exist for the
corresponding nonrelativistic vertices. This is especially apparent for the ZNN vertex
that is the most important for the meson exchange current mechanisms and is not well-
established nonrelativistically"3), The YNA and *NA couplings are also
straightforward in principle in a relativistic model. A relativistic description of reaction
mechanisms involving the delta isobar would be very interesting because of the spin-3/2
nature of the delta. The covariant dynamical equation that a noninteracting spin-3/2 field

satisfies is!!?
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o arMemy,=0 (7.50)
with the su‘ plcmentary conditions e
Y'Y, =0 (7.5b)

a"wv =0 . (7.5¢)

The vector index on yindicates that there are four separate four-component spinors that
make up the field. The supplementary conditions reduce the number of independent
components from sixteen to eight. Now the delta isobar actually propagates in the nuclear
medium. The interaction of the delta isobar with the nucleus is an outstanding problem
that could be addressed in the calculation of delta mechanisms for (%N) reactions. The
purpose of showing these field equations is to stress the difference between a relativistic
delta wave function and a Schrédinger delta wave function. The spin is intrinsic in the
relativistic description whereas it is put in by hand in a nonrelativistic treatment. In fact
this is also the case for nucleons; that the Dirac equation is the dynamical equation for
spin-1/2 particles commends its use in nuclear physics.

The calculations for reaction mechanisms that involve two nucleons will be more
complicated than the ONM calculations. However, many of the details, such as the
nucleon wave functions for example, will be directly taken over from the ONM.
Furthermore, the rather elegant method of evaluating the transition matrix for the final
state charge exchange process could be applied to meson exchange and correlation
calculations since all of these are essentially two-step processes that involve some
intermediate propagating particle. The additional reaction mechanisms are definitely worth
investigating. Further theoretical and experimental work for photonucleon knockout
reactions undoubtedly has the potential of elucidating more interesting physics of the
nucleus.



10.
11,

12.

13,

14,

References

. H.W.Fearing, in: Progress in Pardclé and Nuclear Physics, (D. Wilkinson,
_ ed.), Vol, 7, p. 113, Pergamon Press, Toronto (1981). -
. D.F. Measday and G.A. Miller, Ann. Rev. Nucl. Part. Sci 29 121 (1979).

E.D. Cooper and H.S. Sherif, Phys. Rev. C 30, 232 (1984).

M.J. Leitch, J.L. Matthews, W.W. Sapp, C.P. Sargent, S.A. Wood, D.I.S.
Findlay, R.O. Owens and B.L. Roberts, Phys. Rev. C 31, 1633 (1985).

R.A. Schumacher, J.L. Matthews, W.W. Sapp, R.S. Turley, G.S. Adams and
R.O. Owens, Phys. Rev. C 33, SO (1986).

P.D. Harty, M.N. Thompson, G.J. O'Keefe, R.P. Rassool, K. Mori, Y. Fujii,
T. Suda, 1. Nomura, O. Konno, T. Terasawa and Y. Torizuka, Phys. Rev. C
37, 13 (1988),

"A.C. Shotter, S. Springham, D. Branford, J. Yorkston, J.C. McGeorge, B.

Schoch and P. Jennewein, Phys. Rev. C 37, 1354 (1988).

E. De Sanctis, M. Anghinolfi, G.P. Capitahi. P. Corvisiero, P. Di Giacomo,
C. Guaraldo, V. Lucherini, E. Polli, A.R. Reolon, G. Ricco, M. Sanzone and
A. Zucchiatti, Phys. Rev. C 34, 413 (1986).

E.J. Beise, G. Dodson, M. Gargon, S. Haibriten, C. Maher, L.D. Pham, R.P,
Redwine, W. Sapp, K.E. Wilson, §.A. Wood and M. Deady, Phys. Rev.
Leut. 62, 2593 (1989).

E.D. Cooper, Ph.D. Thesis, University of Alberta (1981), unpublished.

B.D. Serot and J.D. Walecka, Advances in Nuclear Physics (J.W. Negele and
E. Vogt, eds.), Vol. 16, Plenum Press, New York (1986).

I.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill,
New York (1964).

M.M. Giannini, in: Proceedings of the Fifth Course of the International School
of Intermediate Energy Nuclear Physics (R. Bergere, S. Costa and C. Schaerf,
ed.), p. 97, Verona, Italy (198S).

J.T. Londerzua, in: Pion Production and Absorption in Nuclei - 1981 (R.D.
Bent, ed.), AIP Conference Proceedings No. 79, p. 339, American Institute of
Physics, New York (1981). '

132



15.
16.
17.

18.
19.
20.
21.
22,
23.
24,
25.
26.

27.

28,

29.
30.

31
32.
33.

34.
3s.
36.

S t_'., ';, '}"

B Schoch Phys Rev Len 41 80 (1978)

F. Partov:, Ann. Phys. 27,79 (1964). ;- L Ce
R. Kose. W. Paul K. Stockhorst and K. H Klssler, Z. Phys 202 364
(1967). S

Katsuyulu besawa. Ph D Thesxs, Utuversxty of Waslungton (1978).

" unpublished.

S. Boffi, C.Giusti and F.D. Pacati. Nucl. Phys A359 91 (1981)

J.T. Londergan and L.D. Ludekmg, Phys. Rev. C 28, 1722 (1982).
J.T. Londergan and G.D. Nixon, Phys. Rev. C 19, 998 (1979).

§. Boffi, F. Capuzzi, C.Giusti and F.D. Pacati, Nucl. Phys. A436, 438

-(1981).

J. Ryckebusch, M. Waroquier, K. Heyde and D. Ryckbosch, Phys. Lett.
194B, 453 (1987).

C.Y. Cheung and B.D. Keister, Phys. Rev. C 33, 776 (1986).

M. Gari and H. Hebach, Phys. Rep. 72, 1 (1981),

'§. Boffi, F. Cannata, F. Capuzzi, C.Giusti and F.D. Pacati, Nucl. Phys.

A379, 509 (1982).

1. Ryckebusch, M. Waroquier, K. Heyde, J. Moreau and D. Ryckbosch,

Nucl. Phys. A476, 237 (1988),

R.S. Turley, E.R. Kinnee, J.L. Matthews, W.W. Sapp, E.J. Scheidker, R.A.

Schumacher, S.A. Wood, G.S. Adams and R.O. Owens, Phys. Leut. 1§7RB,
19 (198S).
R.S. Turley, Ph. D. Thesis, Massachusetts Institute of Technology (1984),
unpublished.
A.E.S. Green and T. Sawada, Nuc!. Phys. B2, 276 (1967) and

| Rev. Mod. Phys. 39, 594 (1967).
K. Erkelenz, Phys. Rep. C13, 191 (1974).
K. Holinde, Phys. Rep. CGS8, 121 (1981).
R. Vinh Mau, in: Mesons in Nuclei (M. Rho and D.H. Wilkinson, eds.),
Vol. 1, p. 151, North-Holland, Amsterdam (1979).

H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Mass. (1950).

J.D. Walecka, Ann. Phys. 83, 491 (1974).
C.J. Horowitz and B.D. Serot, Nucl. Phys. A368, 503 (1986).

133



: 37
38.

39,
40.
41.
42,

43,
44,

45.

46.
47.

48.

49,
- 50.

S1.

52.

53.
54.

A K Kennan. H. McManus ancl R M Thaler; Ann Phys 8.8 551 (1959)
B C Clark S Hama and R L. Mercer. in: The Imeracu'on Between Medlum

Proceedmgs No 97 p 260 Amerxcan Insutute of Physics. New York (1983)
L.G. Amold, B.C. Clark, R.L. Mercer and P. Schwandt, Phys. Rev. C 23,
1949 (1981). :
S.J. Wallace, in Annual Rew'ew ofNuclear and Particle Science
(1.D. Jackson, H.E. Gove and R.F. Schwitters, ed.), Vol. 37, Annual
Reviews Inc., Palo Alto, Calif. (1987).
B.C. Clark, S.G. Klibermann, E.D. Cooper and R.L. Mercer, Phys. Rev. C
31, 694 (198S).
AM. Kobos, E.D. Cooper, J.I. Johansson and H.S. Sherif, Nucl. Phys.
Ad4S, 60S (198S5).
H.S. Sherif, R.I. Sawafta and E.D. Cooper, Nucl. Phys. A449, 709 (1986).
1.I. Johansson, E.D. Cooper and H.S. Sherif, Nucl. Phys. A476, 663
(1988). ‘
E.D. Cooper and H.S. Sherif, Phys. Rev. Lett. 47, 818 (1981) and

Phys. Rev. C 2§, 3024 (1982).
1.A. McNeil, L. Ray and S.J. Wallace, Phys. Rev. C 27, 2123 (1983).
J.A. McNeil, J.R. Shepard and S.J. Wallace, Phys. Rev. Lent. §0, 1439
(1983).
I1.R. Shepard, J.A. McNeil, and S.J. Wallace, Phys. Rev. Len. §0, 1443
(1983).
J.A. Tjon and S.). Wallace, Phys. Rev. Lett. 54, 1357 (1985).
L.S. Celenza, A. Harindranath and C.M. Shakin, Phys. Rev. C 31, 63
(1985).
B.C. Clark, S. Hama, J.A. McNeil, R.L. Mercer, L. Ray, G.W. Hoffman,
B.D. Serot, J.R. Shepard and S.J. Wallace, Phys. Rev. Lett. §1, 1808
(1983).
B.C. Clark, S. Hama, R.L. Mercer, L. Ray and B.D. Serot, Phys. Rev. Lett.
§0, 1644 (1983).
C.J. Horowitz and D. Murdock, Phys. Lett. 168B, 31 (1986).
D.P. Murdock and C.J. Horowitz, Phys. Rev. C 3§, 1442 (1987).



. 8s,
56.
s7.
58.
§9.
60.

61.
62.

63.
64.

65.
66.

67.

68.
- 69.

70.
71.
72.

73.
74.
75.
76.

77.

C.J. Horowitz and B.D. Serot, Nucl. Phys. A464, 613 (1987).

J.A. Tion,and S.J, Wallace, Phys. Rev, C 32, 267 (1985).

E.E. van Faasen and J.A. Tjon, Phys. Rev. C 28, 2354 (1983).

E.E. van Faasen and J.A. Tjon, Phys. Rev. C 30, 285 (1984).. .

GR. Satchler, Direct Nuclear Reactions, Oxford, New York (1983).
J.D. Jackson, Classical Electrodynamics, 2™ edition, Wiley, New York
(1978). , T L
M.E. Rose, Elementary Theory of Angular Momentum, Wiley, New York
(1957).

N.K. Glendenning, Direct Nuclear Reactions, Academic, New York (1983).
R. Sawafta, M.Sc. Thesis, University of Alberta (1984), unpublished.
M.J. Leitch, F.C. Lin, J.L. Matthews, W.W, Sapp, C.P. Sargent, D.J.S.
Findlay, R,O. Owens and B.C. Roberts, Phys. Rev. C 33, 1511 (1986).
A. Bohr and B.R. Mottleson, Nuclear Structure, Benjamin, New York (1969).
I.D. Bjorken and S.D. Drell, Relativistic Quantum Fields, McGraw-Hill, New
York (196S).

S. Schweber, H. Bethe and F. de Hoffmann, Mesons and Fields, Row-
Peterson, Evanston, llinois (1955).

B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1949),

D.F. Jackson, in: Advances in Nuclear Physics (M. Barangar and E. Vogt,
ed.), Plenum Press, New York (1971).

J. Johansson, M.Sc. Thesis, University of Alberta (1987), unpublished.
§S. Cohen and D. Kurath, Nucl. Phys. A101, 1 (1967).

C.W. Glover, P. Schwandt, H.O. Meyer, W.W. Jacobs, I.R. Hall, M.D.
Kaitchuck and R.P. Devito, Phys. Rev. C 31, 1 (1985).

E.D. Cooper, private communication,

I. Sick and J.S. McCarthy, Nucl. Phys. A180, 631 (1970).

E.D. Cooper, private communication.

R.L. Varner, T.B. Clegg, T.L. McAbee and W.£. Thompson, Phys. Lett.
185B, 6 (1987).

G.S. Adams, E.R. Kinney, J. L. Matthews, W.W. Sapp, T. Soos, R.O.
Owens, R.S. Turley and G. Pignault, to be published in Pkys. Rev. C.



8.
79.
80.
81,

82.

83.

84.
8S.
86.
87.
88.

89.

90.

91.

92.

93.

94.

9s.

136

D.J.S. Findlay and R.O. Owens, Nucl. Phys. A279, 385.(1977).

F.A. Fannon, E.J. Burge and D.A. Smith, Nucl. Phys. A97, 263 (1967):
A.J. Houdayer, T.Y. Li and S.K. Mark, Can. J. Phys. 48, 765 (1970).

E.D. Cooper, B.C. Clark, S. Hama and R.L. Mercer, Phys. Lett. 206B, 588
(1988) [Erratum: Phys. Lett. 220B, 658 (1989)].

E.D. Cooper, B.C. Clark, R. Kozack, S.Shim, S. Hama, J.I. Johansson,
H.S. Sherif, R.L. Mercer and B.D. Serot, Phys. Rev. C 36, 2170 (1987).

S. Platchkov, A. Amroun, P. Bricault, .M. Cavedon, P.K.A. de Witt
Huberts, P. Dreux, B. Frois, C.D. Goodman, D. Goutte, J. Martino, V. Meot,
G.A. Peterson, X.H. Phan, S. Raman and 1. Sick, Phys. Rev. Lett. 61, 1465
(1988).

R.S. Hicks, Phys. Rev. C 28, 695 (1982).

C.J. Horowitz and B.D. Serot, Phys. Lett. 1408, 181 (1984).

P.G. Blunden and M.J. Igbal, Phys. Lett. 196B, 295 (1987).

P.G. Blunden and M.J. Igbal, to be published.

M. Nomachi, T. Shibata, K. Okada, T. Motobayashi, F. Ohtani, H. Ejira and
T. Kishimoto, Phys. Rev. C 31, 242 (1985).

H.J. Hausman, S.L. Blatt, T.R. Donoghue, J. Kalen, W. Xim, D.G.
Marchlenski, T.W. Rackers, P. Schmalbrock, M.A. Kovash and A.D. Bacher,
Phys. Rev. C 37, 503 (1988).

G.S. Mani, D. Jacques and A.D.B. Dix, Nucl. Phys. A16S, 145 (1971).
R.M. Craig, J.C. Dore, G.W. Greenlees, J. Lowe and D.L. Watson, Nucl.
Phys. A83, 493 (1966).

J.A. Fannon, E.J. Burge and D.A. Smith, Nucl. Phys. A93, 263 (1967).

J. Thekkumthala, J.M. Cameron, C.A. Davis, P. Kitching, J. Pasos, J.
Soukup, J. Uegaki, H.S. Wilson, R. Abegg, D.A. Hutcheon, C.A. Miller,
A.W. Stetz and A.H. Hussein, Nucl. Phys. A45S, 687 (1986).

D.K. Hasell, A. Bracco, H.P. Gubler, W.P. Lee, W.T.H. van QOers, R.
Abegg, D.A. Hutcheon, C.A. Miller, J.M. Cameron, L.G. Greeniaus, G.A.
Moss, M.P. Epstein and D.J. Margaziotis, Phys. Rev. C 34, 236 (1986).
G.A. Moss, L.G. Greeniaus, J.M. Cameron, D.A. Hutcheon, R.L.
Liljestrand, C.A. Miller, G. Roy, B.K.S. Koene, W.T.H. van Oers, A.W.
Stetz, A. Willis and N. Willis, Piys. Rev. C 21, 1932 (1980).



96.

97.
8.
99,

100.
101,
102.
103.
104.
105.

106.
107.

108.

109.
110.
111.
112.
113.

114,

115.

H.S. Sherif, M.S. Abdelmonem and R.S. Sloboda, Phys. Rev. C 27, 2759
(1983). : :

H.S. Sherif and M.S. Abdclmonem. Phys. Rev. C 36, 1900 (1987)

H.S. Sherif and M.S. Abdelmonem, private communication.

J.P. Didelez, H. Langevin-Joliot, N, Bijedic and Z. Manc, Nouvo Cimento
67A, 388 (1970).

J. Arends, J. Eyink, A. Hegerath, H. Hartmann, B. Mecking, G. Ntldeke and
H. Rost, Nucl. Phys. A322, 253 (1979).

N.A. Ottenstein, J. Sabutis and S.J. Wallace, Phys. Rev. C 38, 369 (1987).
E.D. Cooper and B.K. Jennings, to be published.

H.Géringer and B. Schoch, Phys. Lett. 97TB, 41 (1980).

B. Schoch and H.Géringer, Phys. Lett. 109B, 11 (1982).

H.Gdringer, B. Schoch and G. Lithrs, Nucl. Phys. A384, 414 (1982).

H. Schier and B. Schoch, Nucl. Phys. A229, 93 (1974).

M.R. Sené, I. Anthony, D. Branford, A.G. Flowers, A.C. Shotter, C.H.
Zimmerman, I.C, McGeorge, R.O. Owens and P.J. Thorley, Phys. Rev. Lett.
§0, 1831 (1983).

M.R. Sené, 1. Anthony, D. Branford, A.G. Flowers, A.C. Shotter, C.H.
Zimmerman, J.C. McGeorge, R.O. Owens and P.J. Thorley, Nucl. Phys.
Ad42, 215 (1985), | |

B.C. Clark, S. Hama, E. Sugarbaker, M.A. Franey, R.L. Mercer, L. Ray,
G.W. Hoffmann and B.D. Serot, Phys. Rev. C 30, 314 (1984).

M.J. Igbal, J.I. Johansson, S. Hama and H.S. Sherif, Nucl. Phys. A487,
626 (1988).

AM. Lane, Nucl. Phys. 38, 676 (1962).

S. DeBenedetti, Nuclear Interactions, Wiley, New York (1964).

C.D. Goodman, in: The (p,n) Reaction and the Nucleon-Nucleon Force,
(C.D. Goodman, S.M. Austin, S.D. Bloom, J. Rapaport and G.R. Satchler,
ed.), p. 149, Wiley, New York (1979).

J. P. McDermott, E. Rost, J.R. Shepard and C.Y. Cheung, Phys. Rev. Lett.
61, 814 (1988).

L.J.R. Aitchinson and A.J.G. Hay, Gauge Theories in Particle Physics , Adam
Hilger, Bristol (1982).

137



116.
117.
118.

LD Mlller. Ann Phys 91 40 (1975) o ‘
A. Bouyssy, S. Marcos and J.-F. Matluot. Nucl. Phys A415 497 (1984)
J.A. MacNeil, R.D. Amado, C.J. Horowitz, M Oka, J.R. Shepard and D.A.

. Sparrow, Phys. Rev. C 34, 746 (1984).

119.

120,

121.
122.
123.

124.
1285.

126.
127.
128,

Y. Takahashi, An Introduction to Field Quannzauon. Pergamon, Oxford
(1969).

Particle Data Group, Particle Properties Data Booklet, North Holland,
Amsterdam (1986).

B.V. Numerov, Mont. Not. R. Astron. Soc. 84, 592 (1924).

IM. Blatt, J. Comp. Phys. 1, 382 (1967).

J. Raynal, Optical Model and Coupled Channel Calculations in Nuclear
Physics, Trieste, 1971 and IAEA, Vienna, 1972.

A.E. Thorlacius and E.D. Cooper, J. Comp. Phys. 72, 70 (1987).

M. Abramowitz and L A. Stegun (editors), Handbook of Mathematical

Functions, National Bureau of Standards Applied Mathematics Series 55, U.S.

Department of Commerce (1964).

J. Comfort, in computer code COMFY.

E.D. Cooper, private communication.

E. Segre, Nuclei and Particles, W.A. Benjamin, Reading, Massachusetts
1977)

138



Appendix A
Kinematics for Photonucleon Knockout Reactions

In this appendix the relativistic kinematics of the photon and nucleon involved in a
photonuclear reaction is described. In a (%N) experiment the incident lab kinetic energy
of the photon is given. Using the known masses of the target nucleus, photoemitted
nucleon and residual nucleus all other kinematic quantities are determined.

The S-matrix, and hence the cross section, are evaluated in the center-of-mass
coordinate frame and so the kinematic transformation to this frame from the laboratory
coordinate frame is required. The relationship between the laboratory and center-of-mass
energies of the photon is derived by equating the invariant mass-squared [}z"Ei ]2— [E‘Jp ; ]2
in the two frames. In the laboratory frame the total energy is

Eyn= Ey gt My (A1)

where m. is the target nucleus rest mass and the vector sum of momenta is just p,,
In the center-of-mass frame the total energy is

- , T
Eon=Eyom ¥V +m3 (A2)

and the vector sum of momenta is zero. Thus
2 2 2
(E'}"lab+ mr) - py,labz [Ey,cm+ v E‘;,cm + m‘zr ] . (A3)

Solving this equation for the photon center-of-mass energy gives

mr .
=F B S (A4)
Erem™Eriaon[ ¥ 28,0,

The magnitude of the photoemitted nucleon momentum is related to the conserved
total center-of-mass energy given in Eq. (A.2). Energy conservation requires that the total
final center-of-mass energy, which is Ey .+ Ep . (where Ey . is the total energy
of the the nucleon and E . is the total energy of the residual nucleus), is precisely
equal to the initial center-of-mass erergy E_,. Together with momentum conservation,
which requires that py ... = - Pr ., the following expression for the momentum of

the nucleon is arrived at:
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me 2‘/5 -2(m +mF)+[(mF @)/E ] | C(AS)

where mis the nucleon rest mass,and mF is the rest mass of the resxdual nucleus
The kinetic energy of the nucleon in the lab frame depends on the scattpung angle and
can be calculated straightforwardly from energy and momentum conservation arguments.
This quantity is superfluous to the (¥%N) calculations, however, since all calculations -
are done in the center-of-mass frame. On the other hand, the kinetic energy of the nucleon
in the rest frame of the recoil nucleus is required so that the appropriate energy dependent
optical potential for the nucleon is used. This can be derived by equating the invariant
mass-squared in the center-of-mass frame with the invariant mass-squared in the frame in
which the residual nucleus remains at rest. The kinetic energy of the nucleon in this frame
is
roo- E‘;“—(m,ﬁ-m)2
N,lab sz

(A.6)

For (N,7) reactions, the kinematic relations are derived in a completely analogous

manner. The results are:

Ty 1aTy, a0+ 2M)
p =mi T (A7)
Noem = 7| +m.1.+2m.r(TN'lab+m) )

Ey =Py ot (A.8)

2 2 2
ET.cm =Pn,cm +my (A9)
E..=Ey ot Er.om (A.10)

2 2

E, o= (EL ~mDI2E (A.11)

2 2 2
Epon=En ot M2 (A.12)



L (E"+ 2 _"ii Cu o
Ey b = N lab m'l') pN lab F . (A.IS)
| | | Z(EN 1ab + My~ Py, |.b°°saub)
For tlus case the target nuclcus is the nuclcus on which the nucleon is mcxdcnt. |
In most cases the cross sections for photonucleon knockout reactions are given in the
center-of-mass frame. However, on occasion laboratory cross sections may be given and

so the relationship between the laboratory and the center-of-mass cross sections is
desirable. Because the total scattering cross section

do
O™ J' df (A.14)
is a scalar, the integrand
do do
Q=—— ) d .
0 d 0 d(cosB) d¢ (A.15)
must be the same in every frame. In particular
do da d(cosB,,)
—| = —_— 16
aQ) =~ dQj ., d(cosé ) (A.16)
gives the relationship between the center-of-mass and laboratory cross sections. The
laboratory scattering angle is related to the center-of-mass scattering angle by
sinf
tan6, = Pom o - (A.17)
7 (P08, + BE)

where 8’ is the center-of-mass velocity in the lab frame and 7°* = (1 - f°3)7'2,
The quantities p_, and E_ are the momentum and energy of the photoemitted nucleon.
Using Eq. (A.17), it is straightforward to evaluate [d(cos8,,,)/d(cos6,,,)] and hence
find that

s ab pczm (p.Ecmcosecm+ pcm)
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Appendix B

Numerov Integration of Second-Order Diﬁ'erentlal Equations

B 1 Homogeneous Equotions

The second-order differential equation that has to bc integrated in order to solve for
the radial functions of a four-component solution of the Dirac equation is of the form

y'() =£r) yr) . (B.1)

The solution of this differential equation may be found numerically using the Numerov

method!?Y,
The Numerov method involves using a Taylor expansion for y(r + h) and

y(r - h):

o o)
y(r + ) = Z P4 n,(') (B.2)
n=0 *
o o,
yr-hy=, k"2 n,(') . (B.3)
n=0 °

Adding these two equations gives
100+ +30-m =30 + L8y + iy + H1O0 4. BY

This equation is differentiated twice, multiplied by (h¥/12) and then subtracted from
Eq. (B.4) to get

[y(r +h-15 y"(r +h)+yr-h) -5 y"(r h)] y(n) + y"(r) +O[A°] . (B.5)
Using the differential equation (B.1) for y" and dropping the terms of order h® gives
Yr+h)[1-Te+h]+yr-n[1-Tr-n) =yr) [2+10T()] (B.6a)
2
T = Thz' o . (B.6b)
Finally, Eq. (B.6a) can be rewritten in terms of the quantity

w(r) = y(n [1-T)] (B.7)

142



143

as

2+ 1or(r)] o5

w(r+h)+w(r h) = [ T
It can be seen that the Numerov method is self-stamng 1f the values of w(O) and
w(h) are known. In practise, w(0) is usually zero and the value of w(h) is taken to be
an arbitrary small number. The solution then will have a normalization that depends on
the choice of w(h). The solution may be renormalized to the desired normalization of
the known asymptotic (r — o) solution. The derivative may be found by subtracting
Eq. (B.3) from Eq. (B.2) and following a procedure similar to that used for the function
to eliminate the term proportional to 1. If terms of order /° are neglected, the derivative
formulais

2hy'(N=yr+m[1-2T(r+m]-yr-h)[1-2Tr-h] . (B.9)

B.2 Inhomogeneous Equations

If the differential equation contains a source term
y'(n) =1(r) y(r) + g(r) (B.10)

then the same procedure as is followed for the homogeneous case results in the equations

2+ 10T(r
wir+h)+wir-h) = [—1——_7-'67-] wr)+2r+h) +102(r) +2z2(r—h) (B.11a)

B2
x(r)= = g(r) (B.11b)

2h y'(r) = y(r + h) [1 =2T(r + h)] —y(r — h) [1 =2T(r — h))
=2[z(r+ h)-2(r-h)} . (B.12)

This integration procedure will give a particular solution for the inhomogeneous equation.
Any linear combination of the solution to the homogeneous equation may be added to the
particular solution to give a general solution for the inhomogencous differential equation.
It is clear that the Numerov method will become increasingly accurate as the step size
of the integration h is decreased. The size of h in turn determines the amount of
computing time the algorithm requires. The Numerov methad can be modified to be more
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efficient22129 pyt for the purpose of the Q’-N) calculation the aforementioned method

is sufficient.



Appendlx C

Numerics and the Calculation of Phase Shifts for the
Nucleon Distorted Wave Function

C.l The Contlnuum Nucleon Distorted Wave Function

The evaluauon of the radial functions of the nucleon dlstoned wave reduces to
numerically integrating Eq. (3.34a):

() +[a(r)- ’ﬁ‘f,'(‘,’)’- LS "] ¥ =0. C.1)

This equation is integrated using the Numerov method (¢f. Appendix B).
Small r Behaviour

For the purpose of the numerical integration it is necessary to know the quantity

Oy =- [a(r)— ";Z'((r'))- "'(ff 1)] Yo (C.2)

at two adjacent points of the integration mesh. Although y(r) is regular at the origin, itis
not clear what the behaviour of f(r)y(r) is near the origin since f(r) contains terms
proportibnal to 1/r and 1/r%, Observing that x(x + 1) = L(L + 1) leads to the
conclusion that there are two distinct cases, namely L=0and L >0. For L =0 the
asymptotic equation for small 7 is

y'() + 140 “f,(")’ ¥y =0 . (C.3)

Now d(r) involves a linear combination of potentials (¢f. Eq. (3.33b)) and so its radial
derivative, which is related to the force experienced by the nucleon, should vanish at the
origin. Therefore, for L =0, f(ny(r) ’-_—’% 0 and the numerical integration may be
started by taking the quantity w(r), defined in Appendix B to be

w(r) = y(r) [1 ———f (r)] ’ (C4

as zero at the origin and by arbitrarily setting w(h) to be a small number which
determines the normalization of the numerical solution.
For L > 0 the asymptotic equation for small r is
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"<r) My(r) o S ©
w}uch shows that the regular soluuon near the orxgm goes as |
y(r) —) ¢:r“l ' (C 6)
where c is an arbltrary non-zero constant. For all the cases in wluch L> 1 it is clear
that finyr) — e § 0 and so the integration is started by taking w(0)=0 and
w(h) = & (£ is a small number). The case L =1 presents a problem because if the
result (C.6) is used then it is seen that f(r)y(r) '-:.-% 2¢c.

For the case L = 1 the solution near the origin is y(r) = cr % Therefore, if & is
small enough then the first two values of w(r) will be

w<0)=y<0)[1-T’§f(0)]=-%- W €
w(h) =y(h)[1 —"—f(h)] %hzc . (C.8)

If w(h) = & is chosen arbitrarily as before, then w(0) = ~&/5. With the first two -
values of w(r) specified, the numerical integration proceeds straightforwardly.

Large r Behaviour

The normalization of the solution is fixed by requiring that the radial function
determined numerically have the same normalization as the analytic large r asymptotic
solution. For the sake of simplicity the long range Coulomb interaction will be ignored in
the present discussion. The modifications that come about when the Coulomb potential is
included will be discussed later.

For large enough 7 the nuclear potentials will vanish and Eq. (C.1) becomes

Y+ [k Z—LLI;%—Q] y(n=0 (C.9)

where & is the nucleon's asymptotic momentum. Equations (3.34b) and (3.33b) have
been used to arrive at this result. For no potentials, Eq. (3.34b) can be simplified to

an)=E*-m?=k* . (C.10)

The radial functions in the distorted wave expansion (3.32) are related to y(r) by
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| y(r) [d(r)] "’rf,,,(r) B <c 11)

where d(r) is. defmed in Eq (3 33b) 'I‘herefore. for the case of vamslung potentxals,
Eq (C.9) can be transformed into the cquauon '

f,,’} Q) +—f,,,(r)+[ 2 ﬂ—",*—‘)-]f,, SN=0 . (C.12)
This fauuhar equatxcn has the regular solunon
h ,(r) =J (kr) (C.13)

where the j, (kr) are the spherical Bessel functions®®. The normalization of this

solution corresponds exactly to the normalization chosen for the plane wave solution
(3.23). The plane wave in this case is normalized with the delta function normalization

-(2—175)-3 % .[ V’,,p(") V’:Z p'(x) dx= 83("’ -P) 8:.3' ) (C.14)

The (1/2m)*(m/E) factor comes from the factors in Eq. (4:19).
The asymptotic form of the spherical Bessel function is

sin(kr—La:/Z)

This is the solution for the radial functions if no potentials are present. In analogy with
the nonrelativistic case®?, the effect of the nuclear potentials will be to introduce a
nuclear phase shift into the sinusoid. In more detail, the scattered wave will have a plane
wave piece and outgoing spherical waves. This means that if w, /(r) is defined as

W, J(_r) = lcrfL Q) (C.16)

(C.15)

and the regular solution (i.e., the solution that goes asymptotically as
sin(kr - L® /2)) is written as F,(r) and the irregular solution (i.e., the solution that
goes asymptotically as cos(kr — Lx /2)) is written as G ,(r) then

Wy (D) = F (1) + Cp G, (1) +i F ()] (C.17)
W) T sintkr—Las2) +Cp et (C.18)

The quantity C, , is the coefficient of the scattered wave and is thus determined by the
nuclear potentials. If C, , is defined to be
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c’uu-%(e""u_l) (C.19)
then Eq. (C.18) becomes |
wL J(r) --) e iy sm(lcr Lz/Z + GL ,) (C.20)

wluch 1dcnt1ﬁes 81. ;7 88 the nuclear phase sluft. ,

The Coulomb potential introduces a loganthmic term and an adduional phasc shxft
into the asymptotic transcendental functions. The radial solutions of the Dirac equation
with a Coulomb potential asymptotically are

F 0 =3 sinkr-nin2kr—Lai2 + X, ) (C.21)
G, N ’:2' cos(kr - nIn2kr-L7i2 + X, ) (C.22)

where 7 = Ze%(E/p) is the Coulomb parameter and &, ; is the Dirac Coulomb phase
shift (the Dirac Coulomb wave functions are discussed in detail in Appendix D). Thus,
when the Coulomb potential is included, the asymptotic form of w (r) becomes

w0 = 't siner-nindkr-Lu2 + 3,4 6,) . (C23)

The nuclear phase shifts are calculated by matching the logarithmic derivatives of the
numerical and analytic solutions at a radius where the nuclear potentials have vanished. -
The analytic solution is the obvious generalization of Eqgs. (C.17) and (C.19)

wy () =e 5L (F, () + Cp J[G, ) +i Fp (0]} (C.24)
C=-se®-1 . (C.25)

Using these equations and remembering that the numerical solution has associated with it
an arbitrary normalization, the matching equations are

N,, 5,0 =e %" % (cos8 | F, () +5ind, G, (0] (C.26)

N, 5,0 =" P coss Fl () +sing,, G 0] . (C2D)

In these equations N, , renormalizes the numerical solution & ,(r) and the the right-
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' hand-sxde of Eq., (C 26) is, preclsely the quantuy wu(r) of Eq. (C 24). when use has‘

been made of Eq. (C.25). Equations (C.26) and (C.27) can be solved for the nuclear
phase shift as '

AN K/ 5,0 F, 0= 5,0 Fy0) ~C '2;
L=t 5,0 G0~ TG 0] (C.28)

Once the nuclear phase Shlft is known. Bq (C.26) can be used to evaluate the

normalization constant N, ; by which the numerical solution must be multiplied to get the

desired normalization.

C.2 The Propagating Proton Wave Function

The evaluation of the radial functions of the propagating proton wave function
reduces to numerically integrating Eq. (6.21a):

kd'(r) x(x + )]
rda(n J y(r) = h(r) (C.29)

y'(r+ [a(r) -

This equation is integrated using the Numerov method for inhomogeneous equations (cf.
Appendix B).

Small r Behaviour

For r = 0 the source term on the right-hand-side of Eq. (C.29) vanishes. Thus, the
small r behaviour of y(r) is identical to that for the solution of the homogeneous
equation (C.1): For L #1 the integration is started by taking w(0) =0 and
w(h) = & For L =1 the first two values of w(r) are w(0) = -£/5 and
w(h) = & The integration can then proceed with only the normalization of the
numerical solution, which depends on the choice of the small number ¢, being
undetermined.

Large r Behaviour

Equation (C.29) for large r takes the same form as the homogeneous equation
because the source term h(r) vanishes as the nuclear potentials vanish. Hence the
* asymptotic solutions are a linear combination of the Dirac Coulomb wave functions. The
linear combination for the quantity wu(r) = krF,(r) that satisfies the conditions of
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an outgoing spherical wave and no incoming plane wave is

w, ) =e'11C,  1GEn) + P (C.30)
WLJ(') ,-:).. ec‘Eu CLJ ei(kr - Nin2kr -Lw2 + .Y.'u) . (C.31)

The Dirac Coulomb wave functions are now denoted with the superscript (c) to
differentiate them from the propagating proton radial functions. The ratio of the proton to
neutron velocities that is included in Eq. (6.22) is taken to be unity in these equations.
The coefficient C; , is defined in terms of the nuclear phase shift in Eq. (C.25).

In order io determine the coefficient C, ,, a linear combination of the numerical
solutions of the homogeneous and inhomogeneous differential equations is matched to
the expression (C.31) at a radius at which the nuclear potentials have effectively
vanished. Denoting t-= homogeneous and inhomogeneous numerical solutions as &, g)
and &, L(;” respectively, ..c matching equations are

5 + N, 50 = e C,, 1GE0 + iFSE] (C.320)
O +N, 580 e 1600 +iFEM . (C32M)

Solving these equations for the constants N, , and C, , gives

y. < ZL OG0+ - 50 GHO +FHO L
™0 1690 + iF90] - 0 1690) + iFO0]
LJ L] LJ L) L] L)
M), e (P HY, | P
CLJ =e -iZyp 3‘LJ ) yLJ " - G’LJ & 3‘LJ ) . (C.34)

50 1690 +F W1 - 0 1680 +iFER]



Appendix D

The Dirac Coulomb Wave Functions

D.l The Analytic Form of the Diruc Coulomb Wave Functions

For a Coulomb potential only, the coupléd equations (3.30) for the upper and lower
radial components of the Dirac wave function are

[E-m-V 1S, (N=— [£+ L 7 . &N ©.1a)
d, 1+x]
[E+m-V(lg, ()= [;,7 Y @ (D.1b)

where V (r) = Ze*/4nr is the Coulomb potential of a proton incident on a charge Z
nucleus. |
I£f(r) = rf, ,(r) and g(r} = rg, (r), then Egs. (D.1) become

-

..Z_‘—’z..(E+m)- (r)+f(r)+ r=0 (D.2a)
| 4nr g 7 “
P ze -(E-m) f(r)—g'(r)+-'5g(r)=0 . (D.2b)
| 4nr r
With the definitions
x=kr (D.3a)
za=-2¢ (D.3b)
ar
€4y = Etm (D.3¢c)
Tay= 2% €, (D.3d)
= S0
ux) = —— (D.3e)
&,
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v =28 (D.30)
| €o
Eqgs. (D.2) become
P_'L-)_ |
" ] v(x) + u'(x) + = u(x) 0 (D.4a)
[ Nw)
<~ Huw-ve + § v(x) =0 . (D.4b)

Further defining the complex functions

F(x) = ulx) +iv(x) (D.5a)
F¥o) = ut) - iv(x) B (D.5b)
results in the coupled equations
20K+ N — +
—!- i Z‘*’ "“’] F*x) = [3%—’-7@— 2] F(x) + 2i F'(x) (D.63)
L

-2i GRS = ")
[ lx+2" n"]F(x)=[ "Mx n()]ﬂ*(x)nir'(x) . (D.6b)

A second-order differential equation for F(x) is obtained by substituting F*(x) from
Eq. (D.6a) into Eq. (D.6b). The resulting equation for F(x) is

" 1 g 277 Zat-x
F(x)+;l' (x)+[1+ T P ]F() =0 (D.7)

where 1= (17( ot n(_))/Z is the Coulomb parameter.

The equation for F(x) is a general confluent equation defined in Eq. (13.1.35) of
Handbook of Mathematical F unctions1®, edited by M. Abramovitz and 1. Stegun. In
the following, frequent use will be made of results quoted in this book which will be
denoted by AMS. Solutions for F(x) are (AMS 13.1.36)

F(x) =x‘e” *M(t-in, 2t + 1, 2ix) (D.8)

where ¢ = + k2~ a? and M is the Kummer function (AMS 13.1.2). Taking the positive
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value of the squarc root for ¢ givc,s:a:wgular function at the prigin whereas the negative ’
value of the square root will give an irregular solution.
The regular solution of Eq. (D.7) is

Fo(x) =x* e™*M(s - in, 25 + 1, 2ix) (D.9)

where 5= {k- &% . The regular parts of the functions f and g that appear in Egs. (D.2)
may be written in terms of the real and imaginary parts of Fp(x) as

=g e A (kn)'e™™ M(s—in, 1 + 25, 2ikr) (D.10a)
g,V =Je_, Im Ay (kr)'e™™ M(s—in, 1 + 25, 2ikr) (D.10b)

The constant A is complex and therefore may be written
Ag=Npe'n . (D.11)
Using the Kummer transformation AMS 13.1.27, Egs. (D.10) become
foi =4 J0 Ny ' (O M(s - im, 1 + 25, 2ikr) +
e O M(s 1 —im, 1+ 25, 2ikr)) (D.122)

== £Je5 Ny @)’ (" M5~ im, 1 + 25, 2ikr) -
e~ Ot B a5 +1 —im, 1 + 25, 2ikr)) . (D.12b)

In order to get a constraint on the phase e these expressions for fR(r) and gR(r)
are substituted into the original differential equation (D.2a). Using recurrence relations
and differential properties of the Kummer function ultimately leads to the result

e 2% - —(k+iZamip) (D.13)
s+in

Although it is not obvious, @y is real. This can be verified by showing that le = 1,
The constant N depends on the asymptotic normalization convention chosen for
fR(r). The asymptotic form of the Kummer function is (AMS 13.5.1)
, . I'(2s+1) —S,1 =5 _n/2
- ) y —9 T 1 e 2 "
M(s—in, 2s + 1, 2ikr) e Tl+s4in)| kr) e

xe-iugl‘(Hs+in)+ins/2+inln2kr (D.14)
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which leads to |
N o T@se™™
fn(’) _) R ’("‘) X )
r=e 2°|ITQA+s+in)|

cos(@—kr —arg T(1+s+im+nIn2r +7512) (D.15)
where I'() is the well-known gamma function*®), The asymptotic form of the regular
part of f(r) may be written
ey
fR(r) ':2. T sinkr-nin2kr-Ln/2 + ELJ) (D.16)

where &, ; is the Dirac Coulomb phase shift. This is consistent with the plane wave
normalization of Eq. (C.14) and also is analogous to the nonrelativistic result for
Coulomb functions. Comparing Egs. (D.15) and (D.16) leads to the identifications

s -an2 N
N. = 12% ITL +s +in)| (D.17)

Rk Jem TCs+1)

and

z

=B TA +s+im + S L-s+ D¢y . (D.18)

An irregular solution for f(r) can be obtained by taking ¢ = — Jk’>- a? in Eq. (D.8).
The results for this irregular solution, denoted by f_(r), can be obtained directly from
Egs. (D.10), (D.13) and (D.17) by replacing s by -s:

fn=Je, Re A n7e™ M(-s—in, 1 -2, 2ikr) (D.192)
8. (N=ye_, ImA (kry e M(~s-in, 1-25,2ikr) .  (D.19b)
A=N, e (D.19¢)
e—2i¢I - —(x'+iqug)) (D.19d)

-s+in

N L2 s vim)

Yk e, T-29)

However, in the calculation of the phase shifts described in Appendix C the irregular

(D.19e)

solution is taken to lead the regular solution in phase by 90°. Noting that any linear



combmauon of urcgular and regular solunons is megular, the uregular solutxon that leads
f r= f (7) in phase by 90° can be shown to be(1®
ji(r) =cotf f(r) - cosech () (D.20a)

6 = —7s — tan”*(cotms tanh:m) +(-)m2 . (D.20b)
Specifically, the asymptotic form of £(r) will be

f n —) cos(kr nin2kr —Lri2 +&, ) . (D.21)

Once the upper component fu(r) is known, the lower component g, (r) may be
evaluated using Eq. (D.2a). The asymptotic forms of the regular and irregular parts of the
the lower component can therefore be obtained by using Egs. (D.16) and (D.21) in
Eq. (D.2a) to get

1
gR(r) :{, -k-[ B -fm ] cos(kr —nIn2kr-Lr/2 + &, ) (D.22a)

i _p .
gl(r) :?.. - -,-‘-[ E+m ] sm(kr—nln2kr-—Ln/2+ZL NE (D.22a)

D.2 Numerical Evaluation of the Dirac Coulomb Functions

The regular and irregular Dirac Coulomb functions of Egs. (D.10a) and (D.20a) can
be evaluated numerically using a power series expansion for the Kummer function®?,
This method involves very accurate and time-consuming computations. As an alternative
it is possible to express the Kummer functions M in terms of Coulomb functions. Since
well-established computer subroutines have been written for the Coulomb functions, this
method is used to compute Dirac Coulomb functions®26),

The upper regular solution (D.10a) contains M(s —in, 1 + 2s, 2ikr). The

recurrence relations AMS 13.4.3 and AMS 13.4.4 can be used to get

M(s—in, 1 + 25, 2ikr) = _—mi—l-) ikr M(s + 1 — i, 25 + 2, 2ikr) +
M(s —in, 25, 2ikr) . (D.23)

The Kummer function is related to the regular Coulomb function F, (1, x) by
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M(L+1-in,2L+2,2ix)=¢'* Fi(ﬁ. nx c;(n) (D.24a)
2L e N + 1 + i)
r@L+2)

(AMS 13.6.8 and AMS 14.1.7 respectively). Using Eqs. (D.23), (D.24), and (D.17) in
Eq. (D.12a) gives

fR( n= -[(s sm% n COS¢B_ F(Tl, kr) + ——- COS¢R F l(ﬂ-k’)] (D.25)

(D.24b)

C m=

This analytic form can easily be computed if an algorithm is available for compuiing
Coulomb functions for non-integer order s and s - 1.

It is not straightforward to get a similar expression for the irregular upper component
(D.20a). However, in analogy with the regular solution (D.25), the following expression
may be inferred to be the irregular solution:

£ = [(ssxn% ﬂcos%)G(n’kr) +J + costy G, l(ﬂ,kr)] D.26)

s

This expression is obtained by replacing the regular Coulomb function in Eq. (D.25) by
the irregular Coulomb function G, (7,kr). An indication that this is the correct form
can be seen from the asymptotic behaviour of Eq. (D.26). Asymptotically,

G, (n.kr) ’-_-i cos(kr — 0 In2kr - L7/2 + ;) (D.27a)
0, =arg I'A+s+in) (D.27b)

(AMS 14.5.6). Using Egs. (D.27) as well as the identity

0, ,=0,—tan"' nis (D.28)

S-

(AMS 14.5.7) in Eq. (D.26) results in the asymptotic form
1
I r'_—’)” T cos(kr - nn2kr-Lr/2 + X, ;) (D.29)

which is precisely what is required (cf. Eq. (D.21)). Results of Eq. (D.26) have further

been tested against the power series method results and the agreement is excellent®?,

Similar considerations for the regular and irregular parts of the lower component lead
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" _l : p ‘-(scos¢;+n:sin‘¢i) R
apr -k[E-l-m J[ . F(nkr) +

B0 Ging, F,_(n, kr)] (©.308)

_1 P —(s cosgp + 1 sind»R_)
&=y [ E+m ][ ; Gmkn) +

JS’: n’ sing, G,_,(n,kr)]. (D.30b)



Appendnx E

Numerics for the Bound Nucleon Wave Function

The evaluauon of the radlal funcuons of the bound nucleon wave funcuon reduces to
nutnerxcally integrating Eq. (3.49a) '

'+ a(r) yr)=0 - (ED
where a(r) is defined by Eqs (3 49b), (3.47b), (3.47¢c) and (3 46) This equation is

integrated using the Numerov method (¢f. Appendix B). In this case the quantity w(r)
defined in Appendix B is

2
w(r) = y(r) [1 -—l'fia(r)] . (E.2)

Ins order to start the integration this quantity must be known at two consecutive points.

The value of w(r) at the origin and r = h is found by arguments very similar to
those for the distorted wave case described in Appendix C. For the case L, =0, a(r)
near the origin is

Q

Ly=

a() V)V, E3)

r—0
and so w(0) =0 since y(r) is regular at the origin. Choosing w(h) =&tobe a
small number (associated to the overall normalization of the solution) allows the
integration to proceed. For the case L, > 0, Eq. (E.1) near the origin becomes

L 1
y"(r)—Lr’f—)y(r) =0 E.4)

which is precisely the same as Eq. (C.5). This suggests that for L, >0
L,>0
y() -f-) crbat?, (E.S)

r—-0

Thus, for L, =1 the integration is started by taking w(0) = -&/5 and w(h) =&
whereas for L, > 1 the initial values of w(r) are w(0) =0 and w(h) = ¢&.
A further numerical problem exists in solving Eq. (E.1), which can be seen by

looking at the asymptotic form of y(r). For r = o= Eq. (E.1) becomes
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 YO=E@m-E)y) E6)

the physical solution to which is
y(r) :z e (E.7a)
¢=JE(m-E) . | (E.7b)

A typical radial solution for the bound state is shown in Fig. E.1. This solution has an
exponentially damped tail which is required because the nucleon is localized in space (this
behaviour is what causes the radial integrals in the S-matrix for photonucleon knockout
reactions to converge). Now if the differential equation is integrated outwards from
r =0 the undesired exponentially increasing solution would eventually dominate due to
the imprecision in the numerical integration.

~ The solution to this problem lies in integrating the equation from 7 = 0 to a radius
near the peak of the function y(r) (call this radius the matching radius) and integrating
backwards from some large radius where the function is small to the matching radius. In
order to carry out the inward integration the value of y(r) must be known at two
consecutive points for large r. Since a(r) is finite for large r, knowing y(r) will

0'02 A4 T Ad A l T v v A d ] L
&
e
g
T 0.01 -
o
2
>
| A , N 4
0.00 : — T
0 5 10 15
r (fm)

Fig. 47: The radial function y(r) for the 1dy,, proton of 40Ca. The Woods-Saxon

binding potentials for this «.:¢ have vector and scalar strengths of 320.0 MeV and -398.3 MeV
respectively and the geometry parameters are R = 3.73 fm and a = 0.6 fm.
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 determine, w(r). By large r it is meant that the potemxals are negllgnble For tlus case |

Eq. E.1)is

') = [E,,(zm E,,)+M] . E.8)

'l‘he asymptouc behavxour of ¥ suggests that the solution for largc rcan be written

- | ¥) =) e A E9)
with £ defined in Eq. (E.7b). The equation for A then is

Lp(lpg+1)
— x?

h'(x) - 2h'(x) - h() =0 " (E.10)

where x = &r . Expanding h(x) in a power series as
h(x) = - (E.11)

and substituting this into Eq. (E.10) yields a recursion relation for the coefficients a;,
an= 5 [LyLy+ D =n(n = 1] ap y (E.12)

Clearly the series will terminate at the coefficient ay, where N =L, + 1. The
normalization is arbitrarily fixed by letting a, = 1. For a given L, two consecutive
values of yatr =R and r = R - h can be found by using Egs. (E.11) and
(E.12). The inward integration can then proceed.

At the matching radius the value of the functions and their derivatives arrived at from
the outward and inward integrations will not necessarily match. The logarithmic
derivatives are matched by adjusting the potential strengths or the binding energy and
then the functions are renormalized on both sides to meet smoothly. The overall
normalization is then adjusted so that the volume integral of the modulus of the bound
state wave function is unity, i.e.,

J.rzdr[ fin+gnm=1. (E.13)



Appendix F

Calculatiou of Observables for Photonucleon Knockout
Reactions

For the purpose of calculaung obscrvables for (yN) reactions, the S-matnx is
written as in Eq. (4.36a)

” JJ-J(JB) E +m 1
=L L3 —)— 4
S =5 s = SE-w En)z M(a) (F.1)

for the special cases of J;=0or J = 0, with 2 M(G) defined by Eq. (4.36b).
Implicit also in this expression is that the sum over uuual and final nuclear polarizations
will reduce to a sum over the spin projection M, of the bound nucleon.

F.1 Cross Section

The cross section for (%N) reactions is abtained from the S-matrix as follows:
(1) Square § i 1o obtain a transition probability:

2_ ¢ 4711, B E+m 2,.,¢ 2
e . .
1Ss1" = yp @+ D oF [6(E - @- Ep)] 'Zs,u,,( )] (F.2)

@) Divide by the time to form a rate:
Following Bjorken and Dreil’?, the energy delta function would be smeared out if
transitions were considered in a time interval (-7/2,T/2), i.e.,

iE-Ey _ 2sinl(TI2)(E - E, )]

. T2
21:8(8,— E) 4 J.dt e

— (F.3)
) °f E
This suggests that for large but finite T
| 4sin’[(T/2)(E,~ E,)] ~
[228(E,-E)® — L (F.4)

2
E-E)

The area under the curve defined by the expression (F.4), considered as a function of
E. is 22T and so the identification
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[ZnG(E F)] =[2n6(0)1zz6(z E) 2;;1'8(5 E)b_ FS

RN

1smade TheumeTmaytheteforebewntten o
T= 2;:6(0) (F.6)

The rate will then be
B "2 V .
S, J ()
5. o B Eom 5 - w- EB)I M(e)| @D

T 27 (21+ 1) ok

where o = e¥4r = 1/137 is the fine structure constant.

(3) Divide by the incident flux to give the probability of finding a pioton in a unit phase
space element around momentum p due to the interaction of one photon with one target
nucleus:

Since the speed of light ¢ = 1 is a constant in any reference frame, the incident flux will

be

¢ __1
Yo" @y = G E8

The (27)° factor comes from the normalization convention chosen for the photon, i.e.
(¢f. Eq. 4.16)),

AMx) ~ Em_r’e":z—:ﬁ'ﬁ % 4 i) (F.9)

Normally the flux is J = (velocity/volume), but for this case the &-function
normalization was used for the photon. It the photon were normalized to unit probability
in a box of volume V, the four-vector potential would be

U ~ik-
E [ ckx+

ik-x
W e e l. (F.10)

Au(x) ~
The energy in the wave A would then be precisely @, i.e.,
= %Id’x E*+BY) = J'd’x B’= ‘[,d’x (VA =w . (F.11)
v v

The flux for this case would be
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It can be seen that in going from the box to the 8 -funcuon normalxzatxon mvolves the
replacement of Vby 2m)°. 'I'nus, for the case under consideration

2 ‘ : PoE
Sal JJJ » |
Bl D Eem SE-a-E,) 2%, (8
r 2”, @y @i ok (E-0-Ep | M( . ®13
(4) Sum over the phase space v
For the &-function normalization the phase space sum involves an integral over all
possible proton momenta. Since E2 = p? + m? the identity pdp = EdE holds and
thus

2
1S, 1!,,
_& 3 - 'r E+m g
I Jide" 2::’ @y’ (2]+1)J O(E-o-Ep 12, M(G)l PE dE dQ

2

= 4na @I+D o

12 (Oag (®.14)

where the nucleon energy is understood to be determined by energy conservation
considerations (cf. Appendix A).

(5) For unpolarized photons and targets, and if the polarization of the nucleon is not
measured, then average over the initial and sum over the final polarizations:

2
1_1 599 pE+m) ¢

2 27+1 dnex @I+ 2 Iz, M(B)l (F.15)
yMpl

do
dan

The final result for the unpolarized (%,N) cross section is

do __ 2nap(E+mcd) 7% (6 .
aQ  QJ+DQJ+ Dicp, ”J.’f( );; ' M( Jig (F.16)

In this expression the units of # and c have been included to give the cross section in the
proper units of square fermis. The sum over the photon polarizations includes the two
independent choices &§=0 and &= 7/2.

The cross section for the reverse (N,)) reaction is calculated in a similar manner.

T 1_6};3

_l,.'_ (F12)'
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The dxfferenccs are as follows , _ ‘
(1) The incident nucleon flux in the cen tcr-of-mass frame is

M . 1 2
inc en' @n) E (F.17)

where v is the velocity of the nucleon. This result is arrived at by evaluating the

relativistic flux operator o between plane wave states:

I=yjay, (F.18a)
where
Y2 2| 8
_ 1 [m) [Etm pr s ‘ |
e (E] [ m ) = e X, (F.18b)

(2) The phase space integration is over the photon momentum [d p v

(3) The spin average results in the factor

where J, is the spin of the target nucleus.

The final result for the unpolarized (N,7) cross section is

do 2’ml’gg(EW&mc
aQ Q@I+ 1hep J,,( )Z| M(B)l (F.19)

This equation may also be arrived at from the principle of detailed balance®.

F.2 Polarization

The polarization of the photoemitted nucleon is calculated from the S-matrix using
the density matrix formalism{!?®), This method is the most straightforward for the case
under consideration because the quantization axis is chosen to be parallel to the photon
momentum direction, which is in the scattering plane. The density matrix for the outgoing

nucleon can be written

p=% L mmt (F.20)
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where M is the scattering amplitude. The M-matrix is related to S-matrix by the

requirement that
do _ |

| . - da T (F.21)

This equation may be compared with Eq. (F.16) to get

" N

4rnap (E+mc®)
¢ = :

M‘/“a - ( Q@J+ Dhep, ] JJ,.J,(‘,B) Zs, M, (F.22)

The trace in Eq. (F.21) is equivalent to a sum over the polarizations s., M p and 4
i.e.,Z can be thought of as a 2x(2Jp + 1) x2 matrix labelled by the spin
projections s, M, and ¢ respectively.

The polarization defined by Eq. (4.40) is the expectation value of the Pauli spin
matrix g, In the density matrix formalism this is given by

trpo,  w(ZZ'c)

PB) = ; (F.23)
up t(ZZ")
Writing
¢ ¢ ¢
2y M, Z‘l/z'MB'i‘l T Z-IIZMB
Z = F.24
2zt .zt z¢ 29
V2-M, Cu2-Mpl T Cum,
and evaluating the traces leads to the result
20m 2% 1238 231306
2(6) =—— (F.25)

2 lzs§M|2

sMgé 77

Since time reversal invariance is a good symmetry, the analyzing power A(6) for

(N, reactions will be given by this expression as well.



