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Abstract

Large scale modern control systems involve the interconnection of system components using a

communication network. The presence of a network can make these systems vulnerable to cyber

attacks, thus compromising overall system’s performance and stability. Cyber attacks in control

systems has been a constant topic of research for over a decade, with concentration on three main

issues; namely, attack detection, resiliency of the control system, and state estimation under cyber

attacks. In this study, we address real-world challenges within this field and aim to enhance the

current state of resiliency strategies in network control systems.

In the first part, we study input-to-state stability of nonlinear systems under DoS attack.

More specifically, our goal is to obtain a relationship between ISS and DoS attack parameters.

We propose a novel model-based dual-mode sampling approach which, depending on the attack

intervals, intermittently switches between event-triggered and periodic sampling. We show that the

combined model-based state prediction, packetized data transmission, and event-triggered sampling

can attenuate the effects of DoS attack on stability.

In the next part of this research, our interest is in the study of one of the most critical forms of

deception attacks, known as zero-dynamics attacks (ZDAs) in sampled-data systems. This type of

attack excites the internal dynamics of the system resulting in unobservable, stealthy, deviation of

the states when the internal system dynamics is non-minimum phase. In this part, our interest is in

mitigating the effect of ZDAs in nonlinear sampled-data systems using the multi-rate approach. Our

approach consists of analyzing the dissipativity property in the zero-dynamics part of the system

and finding conditions on the sampling rate that neutralize the attack. We show that, under some
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mild conditions, using a multi-rate approach provides a secure nonlinear system against ZDAs by

preserving the minimum-phase property.

Then, we consider the practical limitation of the network control system and design a secure

control framework that takes advantage of the asynchronous sampling in event-triggered schemes

and embeds a sense of sampling zeros dynamics into the triggering threshold. Therefore, the

triggering instants happen in such a way that stabilize the zero-dynamics of the sampled-data

system. In this way, the event-based controller not only addresses the stability problem and network

limitation but also provides a solution to the unstable sampling zeros issue. Thus, aside from all

the aforementioned benefits, our proposed method also serves as a self-defence mechanism that

confronts ZDAs whenever the system is targeted by an adversary.

Finally, we propose a new method that aims to compensate for the performance loss observed

with the previous approach. We develop a model-based event-triggered control setup consisting

of a novel triggering condition with an inference-based control rule using a nonlinear model. The

key point is to exploit the concept of asynchronous (nonuniform) sampling inherent in the event-

triggered mechanism as the main solution. We employ the multiple Lyapunov functional method

and determine conditions on the switching signal that produce the desired result. Finally, we

analyze the stability of the overall system using Lyapunov theory and discover conditions on the

event-triggered parameters and inference-based control law that satisfy the stability criteria and

render the zero-dynamics minimum-phase. As a result, ZDAs become ineffective and not a viable

option to a malicious attacker.
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Notation

R,N,Z+ set of real, natural, and positive integers number

N0 setN∪0.
Rn n-dimensional vectors with components inR.
x∈X xis an element of set X

X ⊂ Y X is a subset of Y

A⊤ Transpose of matrix or vector A

AH Conjugate transpose of matrix A

A−1 Inverse of matrix A

λi(A) Eigenvalues of matrix Awith λ1(A) ≥ . . . ≥ λn(A) when all are real

I Identity matrix of appropriate dimension

|x| The Euclidean norm of a vectorx ∈ Rn

R>r(R≥r) set of reals greater than (greater than or equal) tor.

α∈class−K α : R≥0 → R≥0is strictly increasing andα(0)=0

α∈class−K∞ α(s) → ∞ass→ ∞
α∈class−KL α : R≥0 × R≥0 → R≥0 for each fixedt ≥ 0, ζ(., t)belongs to class−K

and for each fixed s ≥ 0, ζ(s, t) decreases to zero as t→ ∞.

M=diag(Vi) block matrix M includes square matrices Vi in the main diagonal

and zeroes in the off-diagonal entries.

δxk=
1
T (xk+1 − xk) δ−operator on discrete-time state xk with sampling time T.
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FDI False Data Injection

DoS Denial of Service

ZDA Zero-Dynamics Attack

ETM Event-Triggered Mechanism

TC Triggering Condition

ISS Input-to-State Stability

ZOH Zero-Order Hold

A/D Analog to Digital

D/A Digital to Analog

LTI Linear Time-Invariant

LQR linear Quadratic Regulator

LQG Linear Quadratic Gaussian

LMI Linear Matrix Inequality

PID Proportional Integral Derivative
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Chapter 1

Introduction

1.1 Background

Large-scale modern control systems involve the interconnection of system components using a com-

munication network and have been widely applied in large-scale fields due to their advantages in

flexibility and mobility compared to traditional structures. The presence of a network, however,

brings new challenges, such as security issues which can make these systems vulnerable to cyber

attacks. Indeed, although standard transmission protocols enhance the modularity of network con-

trol systems, they also pose a weakness in terms of cybersecurity, providing potential access points

for attackers and thus compromising the overall system performance and stability. Cyber attacks

in control systems have been a constant topic of research for over a decade, with concentration on

three main issues; namely, attack detection, resiliency of the control system, and state estimation

under cyber attacks. See for example [1, 2, 3]. A review of numerous security incidents in criti-

cal systems over the past decade, such as nuclear power stations, railway networks, power electric

grids, and water networks, emphasizes the importance of studying cybersecurity in control systems.

Many countries have initiated efforts to enhance the security of industrial control systems, opening

a new chapter in cybersecurity research, [4].

In networked control systems, cyber-attacks predominantly target the integrity and availability

of data flow. The latter is known as a Denial of Service attack, which disrupts data flow through

the network. The former is referred to as deception attacks, where malicious signals are injected

into sensor-to-controller or controller-to-actuator channels, [1]. DoS attacks, however, are much

easier to implement by a malicious agent and therefore occur much more often in networked con-

trol systems. DoS attacks are manifested as the interruption of data flow through the network

and can be intentionally accomplished by an attacker by propagating a random jamming signal

through the network. Therefore, DoS attacks do not require any sort of information about the
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system structure and/or interconnections, [5]. In general, DoS attacks result in data packet losses.

There are, however, some fundamental differences between packet dropouts induced by DoS attacks

and those induced by the behaviour of an unreliable network. In fact, the latter is usually modelled

as a random process whose characteristics can be extracted by examining the system, [6]. DoS

attacks, on the other hand, are manipulated by the attacker, and therefore, predicting an attack

scenario using typical process characteristics is, in general, not possible. Several models have been

developed to address this issue, including the time-delay approach, the switched system approach,

the game-theoretic approach, and probabilistic approaches using stochastic processes like Bernoulli

or Markov processes. While these models are useful for specific problems, they lack comprehensive-

ness. A deterministic approach, limiting the duration and frequency of attacks, is more applicable

when attackers have limited resources, [7]. Methods to address systems under DoS attacks fall

into two categories: robust control and inferential control. While the former approach focuses on

finding the maximum tolerable attack interval and keep preserving acceptable performance levels,

the later tries to compensate for the control system, typically by using models to predict outputs

during attacks. On the other hand, deception attacks act as exogenous inputs to components,

compromising trustworthy information flow. Although the impact of attacks may resemble faults

in control systems, technical differences exist. Simultaneous faults are assumed to be rare and

lack intent, while attacks can be coordinated across multiple points with malicious intent, [8]. The

complexity of deception attacks depends on the attacker’s available resources, categorized as dis-

closure, disruption, and model knowledge. Different types of deception attacks can be constructed

based on these resource levels, such as eavesdropping attacks, replay attacks, and ZDAs targeting

internal dynamics, [9]. Among all type of deception attacks, the ZDA is the most critical forms of

deception attacks. We focus on ZDAs because they can target the system while remaining stealthy,

[5]. In non-minimum phase systems, these attacks stimulate internal dynamics without showing

signs in the output, especially in sampled-data systems where additional non-minimum phase zero-

dynamics are induced during the discretization process, [10]. Studies in this regard address three

main problems: performance degradation, attack detection, and attack mitigation.

To combat the cyber attacks and implement defence strategies in network control systems,

utilizing advanced control system theory is crucial. among them, the concept of multi-rate sampling

and generalized hold functions approach has been attract the attention of researcher and recently

has been used as the core of ideas in this field, enabling the mitigation of attack effects and

ensuring the security of the system. Multirate systems come into play when signals in a system

are sampled at different speeds. This happens when different parts of the system have different

behaviours and limitations related to input and output channels. Indeed, the concept of multirate

systems was first introduced in [11], and later these systems found practical applications in various

areas such as estimating values, identifying and fixing faults in control systems, communication,

and sensor networks, as well as digital signal processing, [12]. In the field of cybersecurity and
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resilient control design, the multirate approach has been employed not only to compensate for the

lack of reliable data during attacks but also to detect strictly stealthy attacks in feedback control

systems. Another tools that have been a focal point of research in the past decade is event-triggered

approach. This method is developed as an alternative for time-driven systems where a new control

action occurs only when changes in the measured outputs exceed a predetermined threshold. These

controllers stand out for their ability to deliver performance akin to traditional control methods

while minimizing the need for continuous updates specially when there is limited source of energy

and communication recourses. The primary benefit of event-based schemes in network control is

that they can achieve a similar performance to time-triggered systems while reducing unnecessary

transmission of information between components, thus alleviating network congestion. See for

example [13] and the references therein.

1.2 Literature Survey

Providing a rather comprehensive model for DoS attacks has taken an important place in the

literature during the last decade, dealing with how to formulate the attack in a way that is integrable

with the control system equations. As a consequence, several methods have been emerged offering

solutions for the aforementioned trend. In [14, 15, 16] a time-delay model is employed to describe a

system subject to the DoS attack. Reference [17] studies the system both in the presence of attacks

as well as in the absence of attack as an augmented system and provides a unified formulation

using the dwell-time concept, the resting time between two switching instant, borrowed from the

switched system theory. Reference [18] offers pulse-width-modulation (PWM) approach to deal

with periodic attacks with unknown on/off intervals. Reference [19] considers a game-theoretic

approach with the control system acting as a defender.

A number of references consider the attack as an exogenous signal with stochastic behaviour.

Examples include [20] and [21], to mention a few, in which the attack signal is modelled as a

Bernoulli and Markov process, respectively. Although this approach provides important contri-

butions in the literature, they however suffer from the lack of reality due to the unpredictable

attacker’s plan. A rather general framework was introduced in reference [7] and employed in refer-

ences [22, 23, 24, 25, 26, 27, 28]. In this model, DoS attacks are defined by imposing a limit on the

total length and the number of attacks. This approach is sensible, for example, when the attacker

has a limited source of power. Moreover, network control systems are usually equipped with data

protection layers and most cyber-attacks are eventually detected and repelled, thus justifying the

limit on the number of attacks.

Analysis and design of control systems under DoS attacks has been studied from two main

perspectives, namely, robust control and model-based control [5]. In the robust control approach,
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a robust controller is designed to tolerate the maximum possible length of consecutive data losses

induced by a DoS attack. Reference [25] defines a new measure of robustness against DoS attack.

This measure is used to design a maximally robust controllers. Reference [26] studies the robustness

of a linear time-invariant system under DoS attacks when there is a bandwidth limitation and obtain

sufficient conditions on the communication bit-rate that guarantee exponential stability. Reference

[24] considers robustness of a class of nonlinear event-triggered control systems, using the framework

of hybrid dynamical systems. In [29] a linear system under DoS attack is modelled as an aperiodic

sampled-data system. A procedure is then provided to design a resilient state-feedback control

according to the min and max interval of attacks.

In the model-based approach, the controller employs the plant model to generate a prediction of

the plant’s future output to be used during attack intervals. The controller then uses the predicted

output to generate the actuator signal and hence stabilizes the system during attacks. Reference

[20] follows this idea and proposes an optimal controller for linear systems under constraints on

the state and input in an expected and probabilistic sense. Reference [27] proposes a model-based

event-triggered sampling scheme where a predictor is designed to predict states in the interval

between events, thus, saving communication resources and increasing the tolerable DoS attack in-

tervals. Reference [22] employs a model-based observer and quantized output controller to obtained

sufficient conditions on the DoS duration and frequency bounds for exponential convergence and

Lyapunov stability. In [28] an LQG optimal controller is designed using the packetized model pre-

dictive approach for a system in the presence of DoS attack, in which a slack vector of predicted

input is sent to the actuator at any sample time corresponding to the unreliable network induced

by attacks.

While DoS attack can be summarized as an unpredictable communication loss, deception at-

tack, however, is much more intelligent and can be propagated in a way that not only the attack

remains stealthy but also targets the trustable information flow in the control system loop. Stud-

ies on control systems subject to deception attacks can be categorized according to the attack’s

different forms and types. Indeed, the level of defence strategy’s complexity relies on the level of

model knowledge, disruption, and disclosure resources on the attacker’s side, [30]. In this regard,

Examples include replay attack, false data injection attack, eavesdropping attack, and ZDA. In

particular, [31] seeks asymptotical stability of the attacked system using a robust dynamic com-

pensator. In this approach, an unknown dynamical system with finite L2-gain is considered as a

rather general attack’s model and a robust dynamic compensation scheme, driven by two virtual

dynamical systems, is proposed corresponding to the insecure situation. In [32] the replay attack

is considered in which the feedback signal is infected by an imposed shifted output coming from

the attacker and resulting an artificial sense of time delay in the control loop. The attack is then

revealed using rewriting Kalman filter estimation from fixed gain to stochastic. In [33] a form of

deception attack so-called false data injection is modelled as a Bernoulli process. Then, by using
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recursive linear matrix inequalities, a time-varying controller gain is obtained to deal with any

abnormally induced by the attacker.

Besides the mentioned topics, attack detection and identification is another trend in this field.

In this regard, reference [34] investigates the problem of false data injection using tools from con-

trolled invariant sets. The method is then formulated based on reachability problems to find a set

of admissible control sequences such that the current state is reachable, otherwise, an attack has

occurred. In [35] an energy-based solution is offered to monitor the system and provide a detectabil-

ity property in such a way that any unbalance effect on the amount of system’s energy is counted

as a sign of attack. Reference [36] provides a new approach based on side initial state information

for integrity attack detection. Indeed, the initial state firstly is derived from the system’s physical

description and then employed to evaluate the reachability of the measured output in a bounded

time interval and reveal the presence of an attack. Reference [37] presents a watermarking setup

as a detecting method for the replay attack. In this manner, an unobservable artificial signal is

injected into the system. This signal has no impact on the system performance, but causes the

detectable residual if the attack is activated in the control loop.

The critical impact of cyber-attacks in control systems has lead researchers to investigate a

systematic approach to deal with different attacker’s scenarios. Beginning with [38], some struc-

tural properties of attacks including stealthiness, detectability, and identifiability were taken into

account in the analysis and design of resilient control systems. Following that, several works have

studied the stealthiness property of deception attacks and developed methods to generate strictly

undetectable attacks. In the study presented in [39], the problem of designing a stealthy false data

injection attack was explored in a switched system. This type of attack is usually not stealthy

and can be detected by a χ2-detector. However, in this paper, a strictly stealthy FDI attack was

designed using a joint attack strategy, targeting both sensors and the switching signal. Reference

[40] developed a process for generating stealthy false data injection attacks based on controlled

invariant subspaces and geometric control theory. The stealthiness of the attack was evaluated

using the incremental stability of the control system and the incremental input-to-state stability

of the detector. Finally, a sufficient condition was obtained based on the initial condition of the

attack model to preserve its stealthiness. In [41], the problem of generating stealthy attacks with

limited resources was investigated. To maximally degrade the estimation performance of the control

system, a partially multi-sensor false data injection attack was proposed. The selection of targeted

sensors was formulated as a constrained optimization problem. In [42], a new local stealthy covert

attack was proposed by combining covert attacks and ZDAs. In this method, access to all control

inputs is not necessary to keep the attack stealthy. The proposed approach demonstrated that

the attack could remain stealthy even if it partially targeted sensors and actuators, but only if the

mismatch between the actual plant and its model was small enough to be negligible.
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The problem of designing stealthy attacks involves the cost of accessing the critical resources of

the plant. Indeed, attackers not only need model knowledge but also require disclosure and disrup-

tion resources to successfully remain stealthy. As a consequence, multiple studies have turned their

attention to the so-called ZDA, which has the property of remaining stealthy under certain condi-

tions for non-minimum phase systems, without the attacker needing any feedback from disclosure

resources. ZDA stimulates the internal dynamic of the system resulting in unobservable deviation,

making any non-minimum phase mode of the system unbounded over time [43]. Research in this

area has mainly focussed on three problems. The first approach focus on studying the effect of

the ZDA on performance degradation. In this regard, the problem is formulated using reachability

analysis to approximate the maximum reachable set in which the attacker may deviate states. Ref-

erence [44] considers a stochastic control system equipped with χ2 detector. The so-called reachable

set in which the stealthy attack can compromise the states is then predicted using an ellipsoidal

approximation method. In [45] two security metrics are proposed based on geometric’s properties

of the reachable set. Reachability analysis is then formulated by using LMI techniques for a linear

system equipped with a general dynamic output controller, resulting in an optimum controller in

a way that the reachable set getting shrunk as much as possible. Reference [46] addressed the

problem of risk assessment for stealthy attacks in systems with a level of uncertainty. It introduced

a new metric known as output-to-output gain and derived necessary and sufficient conditions for

the risk to be bounded. The problem was formulated as an infinite non-convex optimization prob-

lem, approximated as a sampled non-convex optimization problem, and finally transformed into an

equivalent convex semi-definite program using the concepts of dissipativity and s-procedure. In the

second approach, the main objective is to detect the attack. This approach typically assumes that

the control system is equipped with an abnormal detector, such as a χ2 detector. Such a strategy

can be seen in [47, 48] and [49]. In [47] a new idea called the moving target approach is considered

against stealthy attack, including changes in the system’s parameters, adding an authenticating

dynamics, and employing nonlinear sensors, all in a time-varying fashion. As a consequence, the

attacker cannot follow the system model which results in revealing the stealthy attack by the detec-

tor. Reference [48] explores the impact of changes of a linear system’s parameters, more precisely,

regarding the number of measurements, presence of perturbation, and effect of actuators gain on

the attack detection and made a connection between stealthiness property of attacks and geometric

control characterization of the system’s zero-dynamic. Reference [49] firstly provides a systematic

approach to determine whether or not a stealthy attack can occur in a control system. Then, if

there is a vulnerable spot, the minimum number of protected redundant measurements, which is

needed to avoid stealthy attacks, is counted as a solution to have a secure system. In [50], the

existence condition of a kernel attack, which is the superset of all stealthy attacks, was provided.

It was proven that the kernel attack is detectable if both the observer-based residual and the con-

trol input-based residual are available. Two different schemes were provided for stealthy attack
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detection based on the moving target approach and the encrypted transmission approach in the

feedback control system. The ultimate goal was to limit the attacker’s knowledge of the system

model. The third approach’s consists of modifying the control law in such a way that the ZDA be-

comes neutral whenever propagated in the control system. In this approach, the ZDA is considered

as an unavoidable exogenous input and the main goal is to firstly identify and then re-construct

the vulnerable spots in a control system such that the attack is no more taken into account as

a threat. In [51] the stability degradation under ZDA in sampled-data systems is investigated in

which induced sampling zeros appears according to the sample and hold process. A generalized

hold function as an alternative of zero-order-hold is then proposed to neutralize the attack. Refer-

ence [52] introduces a multi-rate sampling and uses the property that multi-rate sampling permits

removing certain non-minimum phase zeros in a linear system. Some conditions are then obtained

using a multi-rate setup to construct a secured control system subject to ZDA.

As it is shown in [51] and [52] the problem of ZDA is much more critical in sampled-data

systems because of the sampling and hold process. Indeed, the discretization process adds a new

zero-dynamics to the system, known as sampling zeros, which have no counterpart in the original

continuous-time system, and surprisingly the newly induced zero-dynamics is non-minimum phase

if the relative degree is more than two in a system with a fast sampling rate, [10, 53]. Using the

multi-rate strategy proposed in [52] is a novel way to neutralize the ZDA in sampled-data systems.

Compared to other methods such as [47, 51] modifying the software part instead of the hardware

of the control system, is the main benefit of this method.

The basic idea of the multi-rate approach is to predict fast rate states between any two slow rate

actual ones using a discrete-time model of the continuous-time system, and feed the actuator with a

combination of predicted and actual data in the faster rate fashion. As a consequence, the sampling

and hold components are managed with different sampling times, making it possible to relocate

sampling zeros induced by the discretization. Multi rate sampled-data system has been an active

area of research, starting with earlier work of Kranc [15], with multiple applications, including

estimation and control, fault detection and isolation, communications and sensor networks, and

digital signal processing. Extensive research on the development and analysis of linear multi-

rate control systems has been carried out (see for example [1, 34, 35] and the references therein).

For instance, Longhi [36] analyzes some structural properties such as reachability, controllability,

and stabilizability of linear multi-rate sampled-data plants. Linear multi-rate controllers for a

given multi-rate sampled-data system are parameterized in [37]. After earlier works developed

by Chen and Qiu [34] on multi-rate H2/H∞ control, many researchers try to solve this problem

using various methodologies, [35] and [38]. Performance comparison of the linear single-rate and

multi-rate sampled-data systems was accomplished in [33]. In a nonlinear system, however, using

the multi-rate setup is much more challenging than the linear case and has received comparatively

much less attention. This is mainly due to the lack of a general theory for the multi-rate design
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of nonlinear plants and intrinsic complexity accompanied with nonlinear equations which make

the problem non-trivial. In particular, multi-rate nonlinear control systems has been studied by

[54, 55, 56, 57, 58, 59, 60, 61] when the output is measured at a slow rate compared to the control

input. More explicitly, [54] formulates the basic idea of multi-rate approach in nonlinear systems,

and investigates the existence of fast sampling for practical asymptotic stability of time-delay

system based on an approximate model in a disturbance-free environment. In [55] and [56] the

multi-rate idea is extended for input to state stability of nonlinear systems subject to a disturbance

in continuous-time and discrete-time design, respectively. In [57] dissipativity of multi-rate control

systems is studied using emulation method with emphasis on designing L2 gain nonlinear controllers

for multi-rate sampled-data systems. The aforementioned work considers the full-information case

where all state-variables are available for feedback, to overcome this difficulty, In [58] multi-rate

output feedback control for nonlinear systems is proposed and [59] provides a more general result

when network induced constraints are taken into account as norm-bounded uncertainties. Reference

[60] employs a discrete-time high-gain observer and proposes a multi-rate observer-based controller

for a class of nonlinear systems where, unlike the previous works, the measurement sampling rate

is faster than the control update rate. To deal with uncertainties in the sampling times, [61]

studies observer design in a multi-rate nonlinear system according to perturbations in the sampling

schedule, which is a more realistic situation compared to the previous works.

One important aspect in the study of networked control systems under cyber attacks is the

implementation of the results using the event-triggered framework. The benefits of this approach

stem from the flexibility offered by the event-based scheme when deciding when to transfer infor-

mation between system components. Rather than enforcing a fixed sampling rate, the event-based

approach enables the use of low data transfers during active attack intervals, and higher rates after

the attack. The idea of event-triggered sampling firstly began with the work reported in [62], which

considers a first-order stochastic system and shows that event-triggered sampling dominates the

regular time-triggered control with respect to closed-loop variance and sampling rate. Following

this work, stability analysis and performance evaluation of control systems equipped with event-

triggered sampling became a constant topic of research. Reference [63], presents a clever and rather

general solution to the stability problem of event-triggered systems. In this reference, the author

assumes the existence of a pre-designed continuous-time control law that results in the input-to-

state stability of a nonlinear plant. Reference [63] has inspired much work and several event-based

strategies have been proposed that extend this work (see [64] and the references therein). Following

novelties in this field, the application of event-triggered sampling in control systems under cyber-

attacks has seen much attention from the research community in recent years. To mention but a

few, reference [7] as a pioneer work in DoS attack, studies the implementation of event-triggered

and self-triggered sampling in a linear system in the presence of attacks. Reference [23] analyzes

the nonlinear control system which is equipped with event-triggered setup, proposed in [63], sub-
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ject to DoS attacks. In [24] a nonlinear output-based event-triggered system under the DoS attack

is formulated using a hybrid model, and conditions to have stability and performance criteria in

terms of induced L∞-gain is then extracted. Reference [26] focuses on bandwidth limitation as

a practical constraint in a networked control system targeted by DoS attacks, and employs the

event-triggered approach as a key idea to cope with this problem. In [27] the aperiodic property of

event-triggered sampling is taken into account as a defence strategy against periodic DoS attacks

on the sensor-to-controller network channel. The aforementioned result is then firstly extended by

[65] to a system under asynchronous attacks on both sides of the communication network (sensor-to

controller and controller-to-actuator channels) using static triggering conditions. Afterward, [66]

contributes earlier mentioned toward dynamic triggering conditions. Reference [66] encapsulates an

event-triggered system under periodic DoS using switching manner in a time-varying delay fashion

to study exponential stability of the resulting switched system. In [33] a state-dependent event-

triggered strategy together with a time-varying controller gain law are offered for a multi-agent

system to overcome the cyber threat generated by false data injection attack besides the presence

of disturbance and time-varying uncertainties. Reference [67] offered a resilient event-triggered

control for a system in the presence of stochastic deception attack modelled as a Bernoulli pro-

cess. Output controller law and the event-triggering threshold are then co-designed using LMIs

based solution in a way that asymptotic stability is obtained. Reference [68] presented sufficient

conditions according to input-to-state stability for a dynamic event-triggered PID-based control

system subject to deception attack. Reference [69] employed an event-triggered mechanism as a

tool for designing a covert attack that could target the system. Then, a defence strategy based on

a self-triggered approach was provided to combat the proposed attack in which it utilized pseudo-

random numbers unknown to the attacker. Reference [70] proposed a dynamic event-triggered

H-infinity filtering method to ensure stability and H-infinity performance for a system under both

DoS attacks and deception attacks. Although effective, the approach was deemed conservative and

in need of further improvement, especially concerning common integral inequalities. In[71], a new

approach based on a dynamic event-triggered scheme was introduced to identify secure time inter-

vals for a system under stealthy attacks. To guarantee l2 performance, the system was modelled

as a linear parameter-varying system. Observers and event-triggered mechanisms were designed

simultaneously to ensure input-to-state stability for the overall system where The system, under a

stealthy attack, was also affected by process disturbances, measurement noise, and nonlinearities.

In [72], a novel approach based on event-triggered sampling was designed to bypass attacks and

secure the system under sparse FDI attacks. The main idea was to reconstruct the state from an

approximate model of the nonlinear system initiated by event-triggered samples, instead of using

periodically sampled data. This method increased the chances of exact estimation and decreased

the negative influence of attacks on control decisions. The estimations were utilized to implement

output-tracking control using the back-stepping method. Reference [73] addressed the problem of
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performance degradation for a system under DoS attacks. It proposed a co-design approach for

output-feedback control gains and event-triggered parameters using bilinear matrix inequalities,

which were solved by a successive convex optimization approach. The results provided a trade-off

between control performance and communication cost, while maintaining the system’s exponential

stability under attacks. In [74], a resilient control approach was proposed for a self-triggered system

under false data injection attacks, based on control signal reconstruction. The idea was to keep

the event interval as long as possible and send the critical control input in a protected way to the

actuator side. This approach allowed the continuous control signal to be reconstructed using a

first-order hold mechanism.

1.3 Research Motivation and Contributions

In this section, we delve into the driving forces behind our research and provide an overview of the

key contributions presented in this thesis. While we discussed different aspects of cybersecurity in

control systems in the previous section, there are still important unresolved problems that need

careful attention, despite the progress made in recent years.

In chapter 3, our interest is in the study of the stability of nonlinear systems under DoS attack.

More specifically, our goal is to obtain a relationship between asymptotic stability and DoS attack

parameters. Introducing a novel event-triggering strategy for sensor measurements and control, we

modify the model-based framework [75, 76, 77]. Our approach includes unique triggering rules with

adjusted thresholds and error equations, distinguishing it from previous methods. While discrete-

time models of nonlinear systems often lack closed-form solutions, our formulation aligns with

sampled-data nonlinear control theory [78, 79]. We show that the triggering rule, designed using

an approximate model, is effective for the true system under mild conditions. We also propose an

innovative inference-based control method to address sensor data loss during DoS attacks, filling a

gap in existing research on nonlinear systems [23, 24, 7, 80, 81]. By predicting future states using

plant models, our approach compensates for missing sensor data. While inference-based methods

are not new, this application to mitigate DoS attack effects on closed-loop stability is novel. We also

implement a buffer system for efficient data transmission, drawing on techniques from [82, 83, 84].

Finally, We integrate a model-based controller and event-triggered sampling to optimize network

traffic during data transmission, distinguishing our work from previous methods [23, 24, 7, 27].

Unlike prior studies, we relax constraints on attack synchronicity, channel targeting, and packet

dropout assumptions, enhancing the flexibility and robustness of our approach.

In chapter 4 we turn our attention to another critical attacks in network control system known

as ZDA. As shown in [51], [52], the problem of ZDAs is much more critical in sampled-data sys-

tems because of the sampling and hold process. In fact, discretization adds new zero-dynamics
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to the system, known as sampling zeros, which have no counterpart in the original continuous-

time system. Unfortunately, the newly induced zero-dynamics is non-minimum phase whenever

the relative degree is more than two in a system with a fast sampling rate, [10, 53]. Although

using the multi-rate strategy proposed in [52] is a novel way to neutralize the ZDAs in linear sys-

tems, nonlinear systems present a challenge due to the lack of exact discrete-time models. In this

chapter, our interest is in mitigating the effect of ZDAs in nonlinear sampled-data systems using

the multi-rate approach. We firstly study the effect of ZDAs on the stability of nonlinear systems

using the concept of dissipativity. To the best of the authors’ knowledge, this is the first study

of nonlinear sampled-data systems under stealthy attacks. Previous works in [51, 52, 48] consider

LTI systems. Recent work in [47] adds an artificial time-varying nonlinearity in the sensor part

to limit the information available to an attacker, assuming that the closed-loop system remains

stable. We extend the idea of using multi-rate sampling as a defence strategy against ZDAs initi-

ated in [52] for linear systems, to the nonlinear case. Our framework is novel and constitutes the

first attempt to implement the multi-rate approach in ZDAs in nonlinear control. Inspired in the

nonlinear sampled-data theory initiated by [78] and [79], as well as [54, 59, 57] in the multi-rate

case, our approach consists of using approximate models and provides a model-based solution that

is applicable to nonlinear systems under ZDAs. Finally, using the concept of lifting, [85, 86], we

formulate our solution in the lifted-domain and analyze the dissipativity property of the internal

dynamics of a multi-rate nonlinear sampled-data system.

In chapter 5 our interest is in mitigating the effect of ZDAs by employing the event-triggered

sampling schedule in a nonlinear system. The multi-rate sampling solution provided by [52], [51],

and what we have proposed in chapter 4, although effective, requires significant communication

resources that may be prohibitive in networked control with limited energy resources, limited

bandwidth, or both. Therefore, in this chapter we focus on nonlinear systems and consider an

entirely different approach, based on the use of event-triggering sampling. In this approach, the

event-triggering mechanism produces asynchronous (i..e nonuniform) sampling and inter-sample

times and can be designed to ensure that the system’s zero-dynamics of the feedback system is

minimum-phase, thus eliminating the possible existence of a harmful ZDA. Our approach is in-

spired by the theory of switched systems and the average dwell time introduced in [87], as well as

the geometric approach in [53]. In this work we address practical limitations in networked control

systems and propose a new event-triggered formalism in which the triggering decision depends not

only on the plant output but also on the deviation of extrinsic zero-dynamics. The event-triggered

approach was introduced and is primarily used to limit the transfer of information between system

components to what is necessary, thus reducing network congestion in bandwidth-limited systems.

See for example [13] and the references therein. Our proposed triggering method is cast in the

dynamic event-based framework [88] and we utilize it as a secure solution to counteract ZDAs and

ensure system resilience. The adjustable interval time between events serves as a key parameter
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that effectively safeguards against these attacks. Moreover, as in the classical event-triggering

approach, our scheme also reduces unnecessary communication demands when compared to tradi-

tional triggering conditions such as [63] under ZDAs. This feature becomes vital when a hybrid

attack (for example, a combination of a ZDA and a denial of service attack) targets the system,

forcing open loop operation for relatively long periods of time.

In chapter 6 we propose a new method that aims to compensate for the performance loss ob-

served with the previous approach. The event-triggered method in chapter 5 has been shown to

be effective in neutralizing the ZDA. Indeed, the core idea in is to increase the average inter-event

time as much as possible to ensure boundedness of the extrinsic zero-dynamics while preserving

the stability of the overall system. However, using this method comes at the cost of some perfor-

mance degradation due to the relatively long time interval between events. To address this issue,

we develop a model-based event-triggered control setup consisting of a novel triggering condition

with an inference-based control rule using a nonlinear model. The proposed setup is non-trivial

since it requires the use a model to generate predicted states and input signals for nonlinear dif-

ferential equations that, in general, do not have a closed-form solution. As a result, we employ

an approximate nonlinear model, which adds to the complexity of the solution due to model un-

certainty. Our formulation draws on the theory of sampled-data nonlinear control introduced in

[78, 79]. Notice that the majority of literature on resilience control under cyber attacks is limited

to linear systems, and comparatively less attention has been given to the nonlinear case. More-

over, our proposed triggering scheme utilizes the model-based framework [75, 76] but incorporates

changes, including the introduction of a new error equation and a new threshold criterion based

on the stability of the zero-dynamics. This new structure differentiates our approach from the

methods presented in references [75, 89] and chapter 5. We point out that in our previous chapter,

our design achieves boundedness of the extrinsic zero-dynamics, thus limiting the impact of ZDAs.

However, in this work, our solution is much for effective, achieving exponential stability for the

extrinsic zero-dynamics, making the system immune to the effects of ZDAs. The solution presented

here also removes the problems associated with extended inter-event sampling times encountered

in the previous chapter. Moreover, the design procedure for the event-triggering condition in this

work is entirely different, making it a unique and novel approach.
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Chapter 2

Mathematical Background

In this section, essential technical terms and foundational concepts are introduced, forming the

basis for the subsequent chapters of the thesis.

Consider the following system:

ẋ(t) = f(x(t)) + g(x(t))u(t), y(t) = h(x(t)), (2.1)

where x∈Rn, u, y∈R, and f , g, h are locally Lipschitz function, i.e., ∃ λf such that for any x and˜︁x in a compact set X, |f(x, u)−f(˜︁x, u)| ≤ λf |(x−˜︁x)|.
Assume now that the system (2.1) is controlled by

v̇(t) = s(y(t), v(t)), uc(t) = U(y(t), v(t)),

where v∈Rr is the state of the controller and s, U are continuous, locally Lipschitz functions and

zero at zero.

Definition 2.1 ([57]). The continuous-time system (2.1) with control input u(t) is said to be

differential dissipative with respect to the continuous supply rate ω if there exists a continuously

differentiable storage function V (x, v) such that for all x∈Rn, u∈R

V̇ (t) =
∂V

∂x
(f(x) + g(x)u) +

∂V

∂v
s(y, v) ≤ ω(u, y). (2.2)

2.1 Consistency of Discrete-Time Approximate Models

Definition 2.2 ([55]). Approximate model F aT,h is said to be one-step consistent with the exact

model F eT if for any compact set X there exists a function ρ∈K∞ and sampling time T ∗ > 0 where
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for any 0<T≤T ∗ there exist h∗ > 0 such that for all 0<h<h∗ and x∈X, the following is satisfied:

|F eT (x, uT )−F aT,h(x, uT )| ≤ Tρ(h). (2.3)

Inequality (2.3) guarantees that the error between solutions initiated with the same initial

condition is small over one integration (sampling) step, relative to the step size. This definition

has its origins in the numerical analysis literature, and has been extensively used in the theory of

nonlinear sampled-data systems. See references [78, 79, 55].

Sufficient conditions for one-step consistency were obtained in [78, Lemma 1], and can be stated

as follows. If F aT,h is one step consistent with the Euler approximation, and F aT,h is locally Lipschitz

uniformly in uT , i.e., for any x and ˜︁x in a compact set X, |F aT,h(x, uT )−F aT,h(˜︁x, uT )| ≤ λF |x−˜︁x|
where λF is Lipschitz constant. then F aT,h is one-step consistent with F eT .

Definition 2.3 ([78, 59]). F aT,h is said to be multi-step consistent with F eT if given L, η̂∈R>0, for

any compact set X there exist T ∗ and a class-KL function α such that for each 0<T≤T ∗ we can

find h∗ such that for x, z∈X if |x−z|≤δ, where δ>0, then |F eT (x, uT (x))−F aT,h(z, uT (z))| ≤ α(δ, T )

for all 0<h≤h∗. Moreover, for k≤L
T we have αk(0, T ):=α(· · ·α(α⏞ ⏟⏟ ⏞

k

(0, T ), T ) · · · , T ) ≤ η̂.

2.2 Zero-Dynamics

Definition 2.4. Consider the system of the form 2.1 with relative degree r. Define the following

transformation:

zk = Hnf (xk) := [ξk|ηk]⊺

= [ϕ1(xk), · · · , ϕr(xk)|ϕr+1(xk), · · · , ϕn(xk)]⊺ ,

where x=ϕ−1(z) and ϕ(.)=[ϕ1(.), · · · , ϕn(.)] such that ϕ1 = h(x), ϕ2=Lfh(x), ..., ϕr=L
r−1
f h(x) and

Θ:=[ϕr+1, ..., ϕn]
⊺ is chosen in a way that Hnf (x) is a diffeomorphism on a compact set X. More-

over, for any x∈X, Lgϕi(x)=0, i=r + 1, ..., n, where Lfh(x) is the Lie derivative of h(x) over the

vector field f(x), i.e., Lfh(x)=
∂h(x)
∂x f(x).

Hnf is called the normal form transformation and transfers the original system (4.3) into the

following form, constructed using Taylor’s formula with remainder, [53]:

F gT :{ δzk=ŜT (zk)+B̂T (βzk+αzkuk), yk=z
1
k}, (2.4)
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ŜT (zk)=

[︄
ST 0

0 0

]︄
zk+

[︄
0

ψ(zk)

]︄
, B̂T=

[︄
BT

0

]︄

ST=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 T
2 · · · T r−2

(r−1)!

0 0 1 · · · T r−3

(r−2)!
...

...
. . .

...

0 0 0
. . . 1

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, BT=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T r−1

r!
T r−2

(r−1)!
...
T
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
βzk=L

r
fh(x)|x=xk , αzk=LgL

r−1
f h(x)|x=xk

ψzk=LfΘ(x)|x=xk=[Lfϕr+1(xk), · · · , Lfϕn(xk)]⊤.

Assumption 2.1. The function Θ=[ϕr+1, ..., ϕn]
⊺ is chosen such that it is continuously differen-

tiable at every x∈X.

The zero-dynamics of the system (2.1) is defined as the internal dynamics when the input and

initial conditions are chosen such that yk is zero for all k, [90, 53]. The aforementioned dynamics

are given by the following two subsystems

δηk = ψ(0, ξ̂
2:r

k , ηk) (2.5)

δξ̂
2:r

k = Q22ξ̂
2:r

k , (2.6)

where ξ̂=Ĥξ, Ĥ=

[︄
1 0

H21 Ir−1

]︄
, H21=−

[︁
r
T , · · · ,

r!
T r−1

]︁⊺
, ξ̂

2:r

k :=[ξ̂
2

k, ..., ξ̂
r

k] andQ=ĤST=

[︄
Q11 Q12

Q21 Q22

]︄
.

The subsystem (2.5) is the sampled counterpart of the continuous-time zero dynamics known

as the intrinsic part, and (2.6) is a linear subsystem so-called extrinsic zero-dynamics.

2.3 Zero-Dynamics Attacks

Consider the system (2.1) and suppose u = uc + ua. The following provides the definition of the

ZDA.

Definition 2.5 ([30]). The exogenous input ua is a stealthy ZDA if it causes undamped internal

oscillations that are not detectable at the output when injected into a non-minimum phase system.

This results in y = 0 for the closed-loop system (2.1), despite internal dynamics divergence.

The following example demonstrates the malicious effect of ZDAs in a sampled-data system,

using a constant sampling rate. Consider a system with r≥2 sampled using a small and constant

sampling period h, i.e. h→0. Since the system’s relative degree is r≥2, the use of a fast sampling
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rate invariably results in non-minimum phase sampling zeros. Thus, the attacker utilizes the

unstable Q22 in (2.6) to generate ua(ih), i∈N, as follows.

δza(ih) = Qza(ih), ua(ih) = fa(β1, β2, ϕ, za(ih)), (2.7)

where fa is a well-designed function such that the attack remains stealthy. The following normal

form realization shows the effect of the attack on the internal dynamics:

δξ1(ih)=Q1ξ1(ih) +Q2ea(ih)+(β1+β2uc(ih)) (2.8)

δea(ih)=Q3ξ1(ih)+Qea(ih),

η(ih)=ϕ(ξ1(ih), ea(ih), η(ih))

y(ih)=ξ1(ih),

where ea=ξr−za, ξr is the internal dynamics, β1,β2,ϕ are some appropriate functions in the normal

form realization, uc is a stabilizer controller, and Q1, Q2, Q3 are matrices of suitable dimensions.

With respect to (2.8), while ξ1 and ea converge to zero, the internal states ξr follow the attack’s

unbounded state za. Indeed, under the attack, unstable sampling zeros cause unstable internal

dynamics which is not traceable at the output.
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Chapter 3

Model-Based Event-Triggered Control

Against DoS Attacks

In this chapter, we study the stability of a novel nonlinear event-triggered control system under

denial-of-service attacks based on an ISS-Lyapunov function analysis. A new dual-mode model-

based event-triggering strategy is proposed which works based on consistency between the approxi-

mate and exact discretization of the nonlinear plant. We combine an event-triggered module with a

controller based on the state prediction, together with a packetized transmission at the controller-

to-actuator channel to provide the desired stability properties under DoS attacks. We also provide

proof of Zeno-free behaviour for the event-based system. Our proposed method provides a max-

imum percentage of time that the system can tolerate attacks without performance degradation.

Finally, a numerical example is used to illustrate the effectiveness of the proposed approach.

The rest of the chapter is organized as follows: In Section 3.1, the main problem is discussed

and the new model-based event-triggering strategy is presented. Section 3.2 formulates the effect

of DoS attack on the system, and also provides preliminary lemmas used later in the main section.

Later, in Section 3.3, the asymptotic stability of the system under the DoS attack is investigated.

Finally, in Section 3.4 a numerical example is proposed to show the effectiveness of our proposed

method and provide a comparison with respect to related literature.

3.1 Problem Statement

Fig. 3.1 shows a schematic of the feedback system to be used throughout the chapter. The system

output is connected to the computer control via a network. Information is transferred through the

network as determined by an event-triggered rule connected to the sensors. The controller output is

transferred to the actuators through a network via digital-to-analog (D/A) converters. We assume
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Figure 3.1: Block diagram of the closed-loop control system under DoS attack

that the plant is described by the following nonlinear model:

ẋ(t)=f(x, u) (3.1)

where f is assumed to be locally Lipschitz, i.e., for any x and ˜︁x in a compact setX, |f(x, u)−f(˜︁x, ˜︁u)| ≤
λf |(x−˜︁x, u−˜︁u)| where λf is Lipschitz constant. The control u is implemented in an event-based

fashion, [63]. The transmission of information between sensors and controller takes place only at

the triggering instants {tn}, n∈N, prompted by a triggering event. When a triggering event occurs

at tn, x(tn) is transmitted through the network and received by the controller. The controller uses

a discrete-time approximation F aT,h of the plant model (3.1) to compute the following prediction of

the actual state x:

xa(tn+kT )=⎧⎨⎩ x(tn), k=0

F aT,h(x
a(tn+(k−1)T ), ua(tn+(k−1)T )), k ∈ N

(3.2)

where F aT,h is a family of discrete-time approximate models of (3.1) corresponding to the sampling

time T and parametrized by the modelling parameter h, and ua(tn+kT )=ψ(x
a(tn+kT )), n∈N∪{0},

for some Lipschitz function ψ. Neglecting computational delays, at time ti the controller sends the

following stack vector of length N+1 to the buffer

(ua(tn), u
a(tn+T ), ..., u

a(tn+NT )). (3.3)

For tn≤t≤tn+NT , the elements of (3.3) are used to update the actuator, i.e., u(t)=ua(tn+kT ) for

tn+kT≤t≤tn+(k+1)T , 0≤k<N . Then, for t≥tn+NT , the actuator continues to feed the plant the

last element of (3.3) until the next triggering instant tn+1. Therefore, we have u(t)=u
a(tn+NT ) for

t≥tn+NT . Based on these observations, we can define the measurement error between the actual
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and predicted state as follows:

e(t)=xa(tn+kT )−x(t), for tn+kT≤t≤tn+(k+1)T (3.4)

Thus, the actuator signal can be rewritten as u(t) = ψ(x(t)+e(t)). We assume ψ is designed such

that the equilibrium x=0 of the continuous-time system ẋ(t) = f(x, ψ(x+e)) is input-to-state stable

(ISS) with respect to the error e. This implies the existence of a Lyapunov function V and some

α1, α2, γ∈K∞, λ∈R>0 such that the following hold:

α1(|x|) ≤ V (x) ≤ α2(|x|), (3.5a)

∇V (x)f(x, ψ(x+e)) ≤ −λV (x)+γ(|e|). (3.5b)

As shown in Fig. 3.1, the system is vulnerable to DoS attacks. Suppose the sequences {hn} and

{τn}, n∈{N∪0}, represent the activation instants of DoS attacks and the corresponding length of

the attack, respectively. Then, the nth DoS time-interval is defined as Hn:={hn}
⋃︁
[hn, hn + τn].

The following assumptions provide a deterministic model for the attacks (see reference [7]).

Assumption 3.1. Let |E(τ, t)| denotes total time interval of DoS attacks over [τ, t] where τ, t∈R≥0

and t≥τ , i.e., |E(τ, t)|:=
⋃︁
n∈N∪0Hn

⋂︁
[τ, t]. We assume that there exist η∈R≥0, TD∈R>1 such that

|E(τ, t)|≤η+ t−τ
TD

.

Assumption 3.2. Let na(τ, t) denotes the number of DoS attacks intervals over [τ, t]. We assume

that there exist κ∈R≥0, Tn∈R>0 such that na(τ, t)≤κ+ t−τ
Tn

.

Notice that, 1
TD

and 1
Tn

represent a measure of the fraction of time over which communication is

denied, and the dwell-time between any two consecutive DoS intervals, respectively. Smaller values

of TD suggests potential DoS attacks of large duration, and smaller value of Tn represent higher

number of attack off-to-on instants.

3.1.1 Event-Triggered Mechanism

We depart from the continuous-time model (3.1) of a nonlinear system and denote F eT the exact

discrete-time model of (3.1) with sampling period T , i.e., x(k+1)=F eT (x, uT ). Recognizing, how-

ever that obtaining the exact discrete-time model requires solving the nonlinear differential model

equations which, in general, do not admit a closed-form solution, we assume that F eT is unknown,

and consider an approximate discrete-time model F aT,h. We assume that the model approximation

satisfies the one-step consistency property, defined in Definition 2.2.

Our event-triggering mechanism has two working modes; namely when attack is present when

it is not. We assume that our triggering module has been equipped with a verification mechanism
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to identify successfully transmitted signals (see [27, 24] for more details). Any triggering whose

reception is acknowledged will be referred to as a successful triggering. When, no verification signal

is received, the event mechanism assumes that a DoS attack is present and that communication

has been lost. In such case, the event-triggering module turns into periodic sampling with constant

sampling period ∆∈R>0. This periodic sampling, together with the verification mechanism, enables

the system to determine when the attack interval has ended, with an accuracy of ∆ seconds. During

normal operation, i.e. in the absence of an attack, the sampling instants are implicitly obtained

through the following triggering condition:

tn+1=inf{t>tn: γ(4|e(t)|)>λ1V (x(t))+γ(νTρ(h))} (3.6)

where λ1:=λ(1−c), 0<c<1, and ν∈R>0. Note that during attack intervals the system operates

in open-loop and hence, following (3.6) rather than time-triggered sampling may lead to Zeno

behaviour due to the fact that the error in (3.6) does not reset to zero during an attack. We

will show that our proposed sampling policy prevents the occurrence of Zeno behaviour. The

proposed condition (3.6) can be seen as a model-based event-triggered scheme since the error term

is defined as the difference between the system states and a reference model, which in this case is

the approximate discretization of the original system.

To complete the triggering module, we proceed as follows: notice that the system is potentially

vulnerable to DoS attacks. Thus, satisfying the triggering condition (3.6) may not necessarily

result in successful transmission. Therefore, we divide tn into the successful event instants, i.e.,

tsi={tn:DoS attack is off & n, i∈N} and unsuccessful event times, i.e., tusj ={tn:DoS attack is on & n, j∈N}.
For example, if tn={t1, t2, t3} and DoS status={on, off, on}, Then, tsi={t2}, i={1} and tusj ={t1, t3},
j={1, 2}.

Remark 3.1. The idea behind our strategy is the following: after each event, the digital controller

generates the N -point control sequence (3.3) that is sent to the buffers. This control input can be

used to feed the plant in a time-driven fashion for as long as no new information is received from

the event-triggering module. Our strategy is then to use the control sequence stored in the buffers

to compensate for the lack of real data during DoS attacks. The event-triggering rule (3.6) decides

when new information is to be transmitted, based on approximate and real data. The term γ(νTρ(h))

is used to compensate for the error induced by the model approximation over N steps, by stretching

the inter-event times. Notice that the well established triggering rules, such as [63, 23, 91], are not

applicable in our strategy without modifying the error function and the triggering threshold. Our

proposed triggering rule (3.6) consists of a combination of modified versions of the triggering rules

in [63] and [91], and is specifically designed to perform in the presence of DoS attacks.
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3.1.2 Main Problem

We can now state our main problem to be solved. Our goal is to obtain the triggering parameters

N , T , λ, c that maximize resiliency against DoS attacks. To this end, we formulate an stabilization

problem and provide a design procedure to obtain the smallest possible T ∗
D such that the event-

based control u with triggering condition (3.6), guarantees asymptotic stability of the system (3.1)

in the presence of DoS attacks with TD≥T ∗
D.

3.2 Preliminary Results

Figure 3.2: Diagram of data transmission time relationship under DoS attack.

Fig. 3.2 provides a schematic of the sampling instants as discussed in previous section. Let

tsi be the most recent successful transmission instants between sensor and controller, enforced by

(3.6). Clearly, at t=tsi there is no attack present. At this instant, the controller receives the sensor

measurement x(tsi ) and use it to build the stack control vector (3.3) and send it to the buffer.

Neglecting transmission delay, the buffer receives x(tsi ) at the same time t=tsi . Therefore, according

to our control structure, the actuator will continue to receive the control signal from the buffer

over the finite time-sequence {tsi , tsi+T, . . . , tsi+NT}. After t=tsi+NT , the actuator signal is kept

constant at its last value ua(tsi+NT ), until the next successful triggering instant occurs. We also

denote by tdosk the time at which a DoS attack occurs which will last until time tdosk +δk. Obviously,

any event satisfying the triggering condition during this interval will results in an unsuccessful event

that will be denoted by tusj . These observations are summarized in the following table.

At time tusj , (3.6) is satisfied thus leading to a new triggering event. Transmission of this

information is however impossible due to the presence of the attack. Hence, the ETM does not
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Parameter Definition

tsi Successful triggering instants
tusj First satisfaction of event condition during attack

tdosk DoS attack activation instants
T Approximate model sampling time
N Buffer
δk Length of attack interval

receive the verification signal from the controller and concludes that an attack has occurred. Until

the acknowledgement signal verifies the end of the attack interval, data will continue to be sent at

a constant rate ∆−1. As suggested by Fig. 3.2, we divide the intersampling interval [tsi , t
s
i+1) into

three subintervals:

i. Interval θ
(1)
i where the buffer provides fresh control signals. Let θ

(1)
i =[tsi , t

s
i+NT ], then we

define

θ1(t)=
⋃︂
i∈Ns

θ
(1)
i

⋂︂
[0, t]. (3.7)

where Ns is the set of successful triggering events.

ii. Interval θ
(2)
i during which the control signal stored in the buffer has ended. θ

(2)
i can be defined

as follows

θ
(2)
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(tsi+NT, t

us
j ] tusj ∈(tsi+NT, tsi+1),

(tsi+NT, t
s
i+1) no event in (tsi+NT, t

s
i+1),

∅ tsi+1=t
s
i+NT,

then we define

θ2(t)=
⋃︂
i∈Ns

θ
(2)
i

⋂︂
[0, t]. (3.8)

Notice that because of the Zeno exclusion (Lemma 3.1), tusj can not happen in [tsi , t
s
i+NT ]

intervals.

iii. Interval θ
(3)
i where a triggering is required, but is impossible due to the presence of attack.

θ
(3)
i is defined below

θ
(3)
i =

⎧⎨⎩ (tusj , t
s
i+1] tusj ∈(tsi+NT, tsi+1),

∅ no event in (tsi+NT, t
s
i+1),
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then we define

θ3(t)=
⋃︂
i∈Ns

θ
(3)
i

⋂︂
[0, t]. (3.9)

3.2.1 Stability over θ
(1)
i

To analyze stability of the closed-loop system under DoS attack we employ the concepts of slow

sampling time Ts and fast sampling time Tf in the nonlinear multi-rate approach initiated in [54].

In the absence of attacks, we assume that the sampled-data version of (3.1) with sampling time

Ts is a dual-rate stable system in which the digital controller employs an approximate model F aT,h
and fast sampling time Tf to improve the inter-sample behaviour where Ts=NTf and N∈N>0. In

this regard, we consider Tf=T and Ts=NT . Therefore, according to [54], there exists T such that

during the inter-sample period NT , defined as θ
(1)
i in Fig 3.2, the conditions on the Lyapunov

function are satisfied and the state trajectories of the closed-loop system are bounded, assuming

that [54, Assumptions 9-11] hold. What we seek in the following is to analyze the stability of the

event-triggered control system provided in Fig 3.1 in the presence of DoS attack while taking into

account the above fact toward the dual-rate sampled-data system.

We begin by the following assumption on (3.1):

Assumption 3.3 ([23]). To avoid finite escape times during attacks, we assume the existence of

some µ∈R>0 such that for any r∈R and γ and α1 in (3.5) we have γ(4r) ≤ µα1(r).

Remark 3.2. In general, one-step (Definition 2.2) and multi-step consistency (Definition 2.3) do

not imply each other. However, when f(x, u) and uT (x) are locally Lipschitz, then for each compact

set X there exists K∈R>0 and T ∗ such that for any 0<T<T ∗ the one-step consistency implies the

multi-step consistency with the following α:

α(δ, T ):=(1+KT )δ+Tρ(h). (3.10)

Indeed, following [78, Remark 2], since f(x, u) in (3.1) and uT are locally Lipschitz we have

|F eT (x, uT (x)) − F eT,h(z, uT (z))|≤(1+KT )δ. Thus, with this type of Lipschitz continuity plus one-

step consistency the conditions of [78, Lemma 3] are satisfied, resulting in multi-step consistency.

Lemma 3.1. Let Assumption 3.3 hold and assume that the approximate model F aT,h and exact

model F eT are one-step consistent according to Definition 2.2. Then, the event triggering condition

is not satisfied for t ∈ θ
(1)
i , i ∈ Ns.

Proof. With respect to Definition 2.2, for any compact set B(δx), we can always find T and h such

that Tρ(h)≤L for an arbitrary fixed constant L>0. This condition is always satisfied by tuning
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the sampling time T . For any given D∈R>0 with |x(0)|≤D we can define a bound B(δx) with the

following radius.

δx:=α
−1
1

(︂
e2(2µ−cλ)(η+∆κ)α2(D) + (cmax(1+3δc))

)︂
where α1,α2 are defined in (3.5) and

cmax=max{
γ(L) + γ(8(η+∆

N + 1)(1 +KT )
η+∆
N L)

(2µ− cλ)
,

L

(2µ− cλ)
,
γ(L)

λ
}

δc=e
(2(2µ−cλ))η∗ eβ∗Tnκ

1− e−β∗Tn

η∗:=η+(1+κ)∆

β∗=(2(2µ−cλ))( 1

TD
+

∆

Tn
)+((1+N)Tβ)(2µ−(1+c)λ).

Moreover, since α1(D)≤α2(D) we can conclude that D≤δx. Now, Find T ∗, h∗ and define ρ∗ on

B(δx) such that the one-step consistency holds between exact and approximate model. In Theorem

3.2 we show that x(t)∈B(δx), therefore, ρ
∗ is always valid. Now, recall that the continuous-time

system (3.1) is locally Lipschitz. Also, the disturbance-free system results in x(t|t=kT )=x
e(kT ) and

it is valid for any T<T ∗; Therefore, (2.3) can be written as follows.

|x(t)−xa(ti+kT )|≤Tρ(h) (3.11)

for time ti+kT≤t≤ti+(k+1)T , and k∈{0, . . . , N} where ρ(.):=ρ∗(.)+λFa and λFa is the Lipschitz

constant of approximate model F a. As an illustration of (3.11) consider 0≤δT≤T and k=0, then

we have:

|x(ti+δT )−xa(ti+T )|

= |x(ti+δT )−xa(ti+δT )+xa(ti+δT )−xa(ti+T )|

≤|x(ti+δT )−xa(ti+δT )|+|xa(ti+δT )−xa(ti+T )|

≤δTρ∗(h) + λFaT≤Tρ(h) (3.12)

where the last inequality in (3.12) is obtained using (2.3) together with the Lipschitz continuity

property of approximate model F a. Continuing the above process for k∈{0, . . . , N} verifies that

inequality (3.11) is valid for any k≤N and t∈[ti+kT, ti+(k+1)T ]. Also, based on Definition 2.3

and (3.10), the deviation between x(t) and xa can be upper-bounded by N(1+KT )NTρ(h) after
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N steps. Therefore, for ti≤t≤ti+NT we have

|x(t)−xa(tsi+kT )|≤N(1+KT )NTρ(h).

Consequently, according to the error definition (3.4), we have |e(t)|≤N(1+KT )NTρ(h). Consider

the worst case scenario when |e(t)|=N(1+KT )NTρ(h), therefore, γ(4|e(t)|)=γ(4N(1+KT )NTρ(h)).

Based on the triggering rule (3.6) we can define ν:=4N(1+KT )N , then

γ(4|e(t)|)=γ(νTρ(h)). (3.13)

Moreover, Since, V (x(t)) is always positive, the following inequality holds true:

γ(νTρ(h))≤λ1V (x(t))+γ(νTρ(h)). (3.14)

Substituting (3.13) into (3.14) we conclude that event triggering rule (3.6) is never violated for

[ti, ti+NT ].

The result of Lemma 3.1 implies that no triggering takes place during the interval θ
(1)
i . To

enhance the analysis in this interval we use some ideas from the framework of multirate sampled-

data systems. In this context, we consider an scenario where the model updates the state at the

(fast) rate 1
T , whereas measurement samplings are performed at a slower rate 1

NT .

Consider now the sampled-data system of Fig. 3.1. Based on the observations in Fig. 3.2, at

each triggering instant tsi , the controller reads the measurement x(tsi ) and based on this information

predicts the state over the instants {tsi+T, . . . , tsi+NT}. These predicted states xa are then used

to compute the actuator signals at the fast sampling rate: ua(ti+kT )=ψ(x
a(ti+kT )). Therefore,

in view of (3.2), we can rewrite ua at the fast sampling instants ti+kT as follows:

ua(tsi )=ψ(x(t
s
i )),

ua(tsi+T )=ψ(F
a
T,h(x(t

s
i ), u(t

s
i ))),

...

ua(tsi+NT )=ψ(F
a
T,h(x(t

s
i+(N−1)T ), ua(tsi+(N−1)T ))).

We assume that the approximate model F aT,h with control signal uT is equi-Lipschitz Lyapunov-

ISS (see Definition 2 in [55]). Our next Lemma provides conditions for the ISS stability of the

continuous-time system over the θ1i intervals.

Lemma 3.2. Consider the sampled-data system of Fig. 3.1. The ISS condition (3.5) is valid over

the time intervals θ
(1)
i for continuous-time system (3.1) with control sequence (3.3) for radius ball

δx and i∈Ns, if |x(0)|≤D.
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Proof. The result of Lemma 3.1 guarantees that no new events can occur during the time interval

θ
(1)
i . Therefore, the control vector (3.3) is obtained using the predicted state based on the approx-

imate model F aT,h. Now consider [55, Theorem 1], we know that choosing an appropriate sampling

time T and numerical integration step h for the approximate model F aT,h, the discrete-time exact

model F eT is ISS. Thus, considering [79, Theorem 5] we conclude that using the multi-rate approach

leads to ISS for (3.1) in a sampled-data control system structure. Hence, the ISS condition (3.5) is

satisfied and the Lyapunov function V (x) decreases over θ
(1)
i .

3.3 Main Result

3.3.1 Zeno Exclusion

Lemma 3.3. Under Assumption 3.1, the dual-mode event-triggering rule (3.6) guarantees Zeno-

free behaviour for the closed-loop event-triggered system.

Proof. Based on Lemma 3.1, no triggering occurs during the NT seconds following each triggering

instant tsi . Moreover, for θ
(2)
i and θ

(3)
i where the verification signal is not received due to the

DoS attack, sampling takes place at a constant rate ∆−1. This guarantees the exclusion of Zeno

phenomenon, or in other words, the existence of some β>0 such that

ϕ(t) ≤ βt, β > 0, (3.15)

where ϕ(t) is the total number of events over the [0, t].

3.3.2 Stability Analysis

In this section we study the input-to-state stability of the sampled-data system (3.1). Lemma 3.2

provides a stability analysis over the period θ
(1)
i using tools from multirate sampled-data control.

According to Lemma 3.2, there is a Lyapunov function whose derivative is decreasing during this

interval. In the interval θ
(2)
i there are no new triggering events and therefore the system remains

stable, although with a different convergence rate. In the interval θ
(3)
i , however, the event rule is

violated at least once, the feedback signal cannot get updated due to the presence of the DoS attack.

Therefore, in general, the Lyapunov function may increase over this interval. In this section, we

discuss the input-to-state stability under DoS attack over the intervals θ
(2)
i and θ

(3)
i .

Recall that the continuous-time system (3.1) is locally Lipschitz and disturbance-free. Hence, ac-

cording to Definitions 2.2-2.3 and the proof of Lemma 3.1, it is easy to see that for tsi+kT≤t≤tsi+(k+1)T ,
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k∈{0, . . . , N} we have

|xa(tsi + kT )− x(t)| ≤ Tρ(h). (3.16)

Moreover, if |x(tsi+k1T )−x(tsi+k2T )|≤δ where δ∈R≥0, k1, k2∈Z+ and k1, k2 ≤ 1
T (t

s
i+1−tsi ), then

|xa(tsi+(k1+1)T )−x(t)| ≤ α(δ, T ) (3.17)

for tsi+k2T≤t≤tsi+(k2+1)T , where x is the system state, xa is the state predicted by the approxi-

mate model, and α is defined in (3.10). We will use the following inequality on a class-K∞ function

γ during the formulation and proofs:

γ(a+b) ≤ γ(2a)+γ(2b), a, b ∈ R≥0. (3.18)

Theorem 3.1. Consider the closed-loop system given by (3.1), (3.3), (3.6). Let Assumption 3.3

hold and suppose the system is targeted by DoS attacks satisfying Assumptions 3.1 and 3.2. Then,

V (x) in (3.5) satisfies the following inequalities:

(1) If t belongs to a time interval θ
(1)
i , then

V (x(t)) ≤ e−ω1(t−tsi )V (x(tsi ))+
γ(νTρ(h))

ω1
.

(2) If t belongs to a time interval θ
(2)
i , then

V (x(t)) ≤ e−ω2(t−tsi−NT )V (x(tsi+NT ))+
γ(νTρ(h))

ω2
.

(3) If t belongs to a time interval θ
(3)
i , then

V (x(t)) ≤ eω3(t−tusj )V (x(tusj ))+
cj
ω3

(eω3(t−tusj )),

where ω1=λ, ω2=2µ−cλ, ω3=µ−λ, and cj∈R≥0 is a constant.

Proof. The proof consists of two parts. In the first part, we evaluate the right side of (3.5b) in the

subintervals θ
(1)
i , θ

(2)
i , and θ

(3)
i , and then expand the result for θ1(t), θ2(t), θ3(t) functions. In the

second part, we assign upper-bounds to the Lyapunov function by solving differential inequalities.

(i) First Part. 1) Stability analysis for θ
(1)
i : In this interval, the stack vector (3.3) consists

of the current state value and N future predicted states. Based on lemma 3.2, appropriate choices

of N ,h and T guarantee the stability of the closed-loop system. Thus, we can use the one-step

consistency condition (3.16) to upper bound the error in this interval as |e(t)|≤Tρ(h) and hence
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write

γ(|e(t)|) ≤ γ(Tρ(h)) (3.19)

where we use the fact that γ ∈ K∞. Finally, from (3.5), (3.19) we obtain the following upper bound

on V̇ (x(t))

V̇ (x(t)) ≤ −λV (x(t))+γ(Tρ(h)). (3.20)

2) Stability analysis for θ
(2)
i : In this interval, the actuator uses the last element of (3.3) and

holds it until a new update is received. Contrary to the previous case, here the one-step consistency

does not necessarily hold. Thus, to update an upper bound on V̇ we start with the event rule (3.6)

and write

γ(|e(t)|)=γ(|xa(tsi+kT )−x(t)|)

≤ γ(2|xa(tsi+kT )|)+γ(2|x(t)|)

≤ γ(2|xa(tsi+kT )|)+µV (x(t)) (3.21)

where the first inequality in (3.21) follows from (3.18) and the second from Assumption 3.3 and

(3.5a). Considering the fact that |e(t)|=|xa(tsi+kT )−x(t)| we can write,

γ(2|xa(tsi+kT )|) ≤ γ(2|e(t)|+2|x(t)|)

≤ γ(4|e(t)|)+µV (x(t)). (3.22)

Substituting (3.6) in (3.22) we obtain

γ(2|xa(tsi+kT )|)≤λ1V (x(t))+γ(νTρ(h))+µV (x(t)). (3.23)

Finally, substituting (3.23) into (3.21) and using (3.5), we obtain

V̇ (x(t)) ≤ (λ1−λ+2µ)V (x(t))+γ(νTρ(h)). (3.24)

3) Stability analysis for θ
(3)
i : In this interval, from the definition of error in (3.4), we have

e(t)=xa(tsi+kT )−x(t). (3.25)

Moreover, considering (3.17) for t∈[tusj , tsi+1], we obtain:

|xa(tsi+1)−x(t)|≤α(δj , T ) (3.26)
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where δj>0. Now, applying the triangular inequality to (3.25) and (3.26), we have:

|e(t)| ≤ |x(t)|+|xa(tsi+kT )|. (3.27)

|xa(tsi+1)|≤|x(t)|+α(δj , T ) (3.28)

In the worst case, the Lyapunov function increases over the interval θ
(3)
i , therefore, |xa(tsi+kT )|≤|xa(tsi+1)|.

Substituting this condition as well as (3.28) into (3.27), we obtain:

|e(t)| ≤ 2|x(t)|+α(δj , T ). (3.29)

By applying the function γ(·) to both sides of (3.29) and considering the Assumption 3.3, we obtain

γ(|e(t)|)≤µV (x)+γ(2α(δj ,T )). (3.30)

Finally, substituting (3.30) into (3.5b), we get:

V̇ (x(t))≤(µ−λ)V (x(t))+cj (3.31)

where cj :=γ(2α(δj , T )).

(ii) Second Part. The next step is to solve (3.20), (3.24) and (3.31), and find an exponentially

decaying upper bound for each solution. The differential inequality (3.20) can be written as follows:

V (x(t)) ≤ e−λ(t−t
s
i )V (x(tsi ))+γ(νTρ(h))

∫︂ t

tsi

e−λ(t−τ)dτ

≤ e−ω1(t−tsi )V (x(tsi ))+γ(νTρ(h)(
1

ω1
− 1

ω1
e−ω1(t−tsi ))

≤ e−ω1(t−tsi )V (x(tc))+
γ(νTρ(h))

ω1
(3.32)

which gives us the desired upper bound on the Lyapunov function over θ
(1)
i . Similarly, we can solve

(3.24) to obtain the following upper bound on the Lyapunov function over θ
(2)
i .

V (x(t)) ≤ e−ω2(t−tsi−NT )V (x(tsi+NT ))+
γ(νTρ(h))

ω2
. (3.33)
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Finally, solving the differential inequality (3.31) we obtain:

V (x(t)) ≤ eω3(t−tusj )V (x(tusj ))+cj

∫︂ t

tusj

e(2µ−λ)(t−τ)dτ

≤ eω3(t−tusj )V (x(tusj ))+cj(
1

ω3
eω3(t−tusj )− 1

ω3
)

≤ eω3(t−tusj )V (x(tusj ))+
cj
ω3

(eω3(t−tusj )) (3.34)

which gives the desired upper bound over θ
(3)
i .

In the next Lemma, we provide upper bounds on the intervals θ1(t), θ3(t), and consequently we

have θ2(t)=[0, t]−(θ1(t)+θ3(t)).

Lemma 3.4. θ1(t) and θ3(t) which are defined in (3.7) and (3.9), are bounded from the above by

the following inequalities:

θ1(t) ≤ (N+1)Tϕ(t),

θ3(t) ≤ |E(0, t)|+∆na(0, t). (3.35)

Proof. Since the DoS attacks target the system in a random fashion and with different length

intervals, several scenarios can happen in regard to activation time of events and attacks. To cover

all situations, we consider the worst-case scenario. In that case, the system will send a new event

exactly after a DoS attack interval starts. In other words, there exists an unsuccessful triggering

at the beginning of the attack interval. Therefore, a conservative upper bound for θ3(t) is |E(0, t)|
plus ∆na(0, t), where ∆na(0, t) represents the total gap between the end of an attack and new event

at tsi+1. Therefore, part 2 of (3.35) is verified. In addition, we know that the number of events is

limited and is restricted by (3.15). In addition, after any event, N predicted samples are used by

the actuator, therefore each interval [tsi , t
s
i+NT ] will take (N+1)T seconds. Consequently, we can

consider (N+1)Tϕ(t) as an upper bound for the interval θ1(t), and part 1 of (3.35) is satisfied.

Theorem 3.2. Nonlinear control system (3.1) with control input (3.3) and ETM (3.6) under

Assumptions 3.1, 3.2, 3.3, and one-step consistency provided in (2.3), is practically asymptotically

stable for given δx>0, |x(0)|≤δx, on compact set B(δx) in the presence of DoS attacks, if the attack

parameters satisfy the following inequality:

1

TD
+

∆

Tn
≤ β(N+1)T ((1+c)λ−2µ)+2µ−cλ

3
µ−(1 + c)λ.

Proof. Based on (3.32), (3.33), and (3.34) in Theorem 3.1, the Lyapunov function has the following
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upper bound:

V (x(t)) ≤ e−ω1θ1(t)e−ω2θ2(t)eω3θ3(t)V (x(0))

+cmax(1+3

Nus∑︂
k=1

e−ω1(t−tsk)e−ω2(t−tsk−NT )eω3(t−tusk )) (3.36)

where cmax:=max{ cjω3
, Tρ(h)ω2

, γ(νTρ(h))ω1
}. Equation (3.36) can be obtained using a procedure similar

to that in the proof of [7, Theorem 2] and therefore we omit the details. Recall Tρ(h)≤L from

the proof of Lemma 3.1, and consider (3.10) where α can be represented as a function of Tρ(h),

Therefore, cmax is purely related to some constants. Also, the summation term in RHS of (3.36)

is bounded from above by some constant δc (see [7, Lemma 4]). Thus, Equation (3.36) gives us

an exponential upper bound for the Lyapunov function valid for all time. Stability in the sense of

Lyapunov is obtained if the exponential function on the right-side of (3.36) has a negative rate.

Substituting (3.35) in (3.36), separating the time t coefficients, and considering that we look for a

negative coefficient in the exponential in (3.36), we obtain

1

TD
+

∆

Tn
≤ β(N+1)T ((1+c)λ−2µ)+2µ−cλ

3
µ−(1 + c)λ. (3.37)

Therefore, we can write

V (x(t)) ≤ e−ωt+lV (x(0)) + cmax(1 + 3δc) (3.38)

where ω is the overall rate of the exponential term in (3.36) which is negative assuming (3.37)

hold, and l>0 is the upper-bound of the constant term of −ω1θ1(t)−ω2θ2(t)+ω3θ3(t), defined as

l:=2(2µ− cλ)(η +∆κ). To complete the proof, Substituting (3.38) into (3.5), the following upper

bound for the state trajectories of the closed-loop system is obtained.

|x(t)|≤α−1
1

(︂
elα2(|x(0)|)+cmax(1 + 3δc)

)︂
. (3.39)

The RHS of (3.39) is equal to δx which was defined in Lemma 3.1 as a radius of initial local domain

for function ρ. This implies that ρ is valid in all intervals.

Equation (3.37) provides the relationship between the attack parameters (TD, Tn), stability

(λ), buffer size (N), sampling period (T), event-triggered parameter (c, ν) and event generation

rate (β). From (3.37) we conclude that increasing N , we can have harsher attacks which means

that the system can tolerate larger DoS attack intervals with higher frequency in comparison with

previous works such as [23] and [24]. However, increasing the buffer size N comes with the cost of

increasing model mismatch error, and the approximate model might violate multi-step consistency.

Therefore, design parameters such as N should be chosen carefully. The following design procedure
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will provide a systematic way to choose appropriate parameters:

1. Select the parameters D,β,∆∈R>0, where |x(0)|≤D, β comes from (3.15), and ∆ is the

periodic sampling period of the attack detection process of Section II-C.

2. Find λ∈R>0 and µ∈R>0 to satisfy conditions in (3.5b) and Assumption 3.3, respectively.

3. Initiate parameter N , corresponding to the length of sequence (3.3).

4. Choose an approximate model F aT,h of nonlinear system (3.1) such that conditions in Definition

2.2 and 2.3 hold.

5. Find parameters h and T such that ISS condition (3.5) is preserved for (3.1) in the sampled-

data framework over the time interval θ
(1)
i .

6. Use the obtained parameters in the prior steps and find minimum values for TD∈R>1 and

Tn∈R>0 in the inequality (3.37) by tuning c such that 0<c<1. Notice that as c approaches

1, performance approaches the continuous-time case at the expense of additional events gen-

erated by the triggering rule (3.6).

7. Increase N then repeat steps 4-6. Stop the procedure when either the inequality (3.37) does

not hold anymore or appropriate T cannot be found with respect to step 5. Then, N−1 is

the maximum possible length of the buffer.

8. Substitute the final value obtained for TD and Tn into the inequalities in Assumptions 3.1-3.2

to find the maximum tolerable DoS attack interval and average frequency.

3.4 Case Study

To show the effectiveness of the proposed algorithm, we consider two nonlinear plants as follows.

Example 1: Consider the nonlinear system ẋ=x2−x3+u (also used in [23]), and notice that the

open-loop system has an unstable equilibrium point at the origin. Following [23] we consider the

stabilizing controller u=−2x, along with the Lyapunov function V (x)=1
2x

2. The initial parameters

are λ=2, γ(r)=4
3r

2, µ=128/3, c=0.5, and T=0.01. In order to have a proper comparison between

our proposed algorithm, which is based on the model, and the results of [23] in which the model is

not used, we consider the same DoS attack scenario where |E(τ, t)|=9 s, η=0.54 and TD=1.33.

Figure 3.3-(a) shows the state response of the nonlinear system over time. Compared to [23],

not only the system reaches the equilibrium but also does so in only 6 seconds which is 4 second

faster than the result in [23]. We emphasize that the same initial control law is used in both cases.
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Figure 3.3: (a): Nonlinear system state response under a DoS attack. (b): Inter-sampling time.

The improvement is due to the fact that, we use the predicted control inputs as long as the buffer

has unused data samples, leading to remarkably improved results.

Figure 3.3-(b) shows the successful triggering events over time. White and grey strips represent

the time periods where there is no activated DoS attack and the attack intervals, respectively.

Firstly, in comparison to the time-triggered strategy with sampling time T the number of events

has decreased by 52%. In comparison to [23], the number has decreased by 30%, which shows the

ability of the proposed event-triggering mechanism in managing network usage, despite sending the

control input vector at each event time. Furthermore, the simulation also shows the ability of the

proposed method to tolerate larger attack intervals followed by the fact that the system can work

in the open-loop mode for a long time without needing a new event. This result is a consequence

of using the model-based approach and predictions by the model a DoS attack prevents the use of

feedback. Secondly, event congestion is not observed neither under normal condition nor during

attacks.

Example 2: In this example we consider the problem of hovering control of the vertical takeoff

and landing (VTOL) aircraft to illustrate the effectiveness of our proposed method in a practical

control problem. The following model describes the motion of the VTOL aircraft in the x-y plane,
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[92].

ẋ1 = x2

ẋ2 = −ū1 sin(θ) + εū2 cos(θ)

ẏ1 = y2

ẏ2 = ū1 cos(θ) + εū2 sin(θ)− g

θ̇ = ω

ω̇ = ū2 (3.40)

where x and y are the position of the aircraft in the vertical–lateral plane, θ is the roll angle, and the

control inputs ū1, ū2 are the thrust and the rolling moment, respectively. Also, ε>0 represents the

coupling between the rolling moment and the lateral acceleration of the aircraft. Since the actuator

dynamics is nonlinear, it is convenient to express the control input using hyperbolic functions, [93].

We define the control input as follows ([93]):

ūi=(tanh(ui)+0.5ui) for i={1, 2}.

Thus, given the form of ū1 and ū2, which affects (3.40), the resulting nonlinear system is non-affine.

As shown in [92], the origin of system (3.40) can be stabilized by the following control law:

u1 =

√︂
v21(x1, x2) + (v2(y1, y2) + g)2

u2 = −k2
(︃
θ− tan−1

(︃
−v1(x1, x2)
v2(y1, y2) + 1

)︃)︃
−kθ̇,

where v1(x1, x2)=−k11x1−k12x2, v2(y1, y2)=−k21y1−k22y2 and k11, k12, k21, k22>0. Moreover, the

Lyapunov function is in quadratic form V (t)=0.5(x21+x
2
2+y

2
1+y

2
2+ω

2). Setting k=10, k11=0.1, k12=0.1, k21=10, k22=10

and ε=0.01, we study the behaviour of the proposed model-based event-triggered implementation in

the presence of DoS attacks. Following the design procedure, we choose parametersN=10, h=0.001,

T=0.001, λ= 2, c= 0.2, β=0.05, µ= 60, κ=0.5, η=1, and functions ρ(r)=|r|, γ(r)=r2. Therefore,

based on (3.31), the minimum value of TD=1.53 and Tn=0.04. To simulate the closed-loop system,

we assume initial conditions [x1(0), x2(0), y1(0), y2(0), θ(0), ω(0)]
T=[1, 0, 0, 0, 0, 0]T , and assume the

approximate model F aT,h is constructed using the Euler approximation method. The first event is

triggered at t=0, i.e. ts0=0.

We consider the following scenario: the system is run for 10 seconds while it is exposed to DoS

attack in 75% of running time duration, i.e., |E(t)|=7.5. The attack is chosen as a periodic signal

in which the DoS-on period (grey strip) and DoS-off period (white strip) is Ton=0.3 and Toff=0.1,

respectively. Figure 3.4 illustrates the effectiveness of the proposed method when applied to the

VTOL aircraft plant. With respect to Fig. 3.4-(a), even though there is some degradation in the
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Figure 3.4: (a): Nonlinear system state response under a periodic DoS attack. (b): Inter-sampling
time.

system’s performance, the states trajectories remain bounded and the system continues to work,

so that the proposed scheme is able to preserve stability. Moreover regarding Fig. 3.4-(b), the

proposed event-triggered method efficiently manages the network, and there is no Zeno behaviour.

For the purpose of comparison, the same system with the same control law, implemented using

a time-driven sampled-data system with a sampling time T=0.001 fails to stabilize the system

and the state trajectories are divergent. Furthermore, when classical event triggering rules such as

[23, 91], are applied to the same system, they can not provide stability due to the lengthy active

DoS attack’s time interval.

3.5 Summary

In this chapter we developed a model-based event-triggered control scheme for a general class of

nonlinear systems under DoS attacks. Our approach can reduce the amount of communication

between plant and controller and can significantly improve resilience against DoS attacks. The

event triggering rule makes use of the theory of sampled-data nonlinear control and is defined based

on the consistency between approximate and exact models of the plant, and hence, is structurally

different from the existing related works. We provide a relation between asymptotic stability and

attack parameters which is then used to improve the tolerable DoS attack intervals, when compared
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to the other related works in literature. Future work will consider the effect of disturbances and

measurement noise in the design, where Zeno exclusion is more critical.
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Chapter 4

Multi-Rate Sampled-Data Control

Against Zero-Dynamics Attack

In this chapter, we provide a novel defence strategy for a nonlinear sampled-data control system

under ZDAs. In a sampled data structure, sampling zeros induced by discretization make a system

vulnerable to deception attacks. we analyze the dissipativity in the zero-dynamics part of the

system equipped with a multi-rate setup and find conditions on sampling rates to neutralize the

attacker’s target plan. We show that, under some mild conditions, using multi-rate sampling in the

nonlinear sampled-data system not only preserves the dissipativity property of the intrinsic zero-

dynamics but also stabilizes the extrinsic zero-dynamics induced by the sample and hold process,

and as a result attenuate the effects of attacks on the system stability. Finally, a numerical example

is used to illustrate the effectiveness of the proposed approach.

The rest of the chapter is organized as follows: In Section 4.1, we present the fundamental

concepts and tools used throughout the sequel. In Section 4.2 we provide several preliminary

lemmas for multi-rate sampling used in later sections. Section 4.3 contains the main results. Here

we introduce the neutralizing strategy by investigating the preservation of dissipativity in the zero-

dynamics of a system under ZDAs. Finally, in Section 4.4 we present a numerical example to show

the effectiveness of our proposed approach.

4.1 Problem Statement

Fig. 4.1 shows a schematic of the feedback system used throughout the chapter. The system output

is transferred through the network using A/D converters connected to the sensors. The controller

output is transferred to the actuators through a network via D/A converters. We assume that the
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Figure 4.1: Block diagram of the control system under ZDAs

plant is described by the following nonlinear model:

ẋ(t) = f(x(t)) + g(x(t))u(t), y(t) = h(x(t)), (4.1)

where x∈Rn, u, y∈R, and f , g, h are locally Lipschitz function, i.e., ∃ λf such that for any x and˜︁x in a compact set X, |f(x, u)−f(˜︁x, u)| ≤ λf |(x−˜︁x)|.
Assume now that the system (4.1) is controlled by

v̇(t) = s(y(t), v(t)), uc(t) = U(y(t), v(t)), (4.2)

where v∈Rr is the state of the controller and s, U are continuous, locally Lipschitz functions and

zero at zero. Moreover, under no ZDAs, i.e. ua=0, the closed-loop system (4.1)-(4.2) satisfies the

differential dissipativity condition defined in Definition 2.1.

Departing from the continuous-time model (4.1) we denote F eT the exact discretized model of

(4.1) with sampling time T :

F eT :{δxk=fe(xk)+ge(xk)(uck + uak), yk=h
e(xk)}, (4.3)

where uak in (4.3) represents a ZDA signal defined in Definition 2.5. Similarly, the exact discrete-time

model of the dynamic controller (4.2) is given by SeT :{δvk=se(yk, vk), uck=U e(yk, vk)}.

Recognizing, however, that obtaining the exact discrete-time model requires solving the nonlin-

ear differential model equations which, in general, do not admit a closed-form solution, F eT and SeT
represent ideal discrete-time models which are, in general, unknown. Throughout our derivations

we will rely on a family of approximate discrete-time models F aT,h and SaT,h of (4.1) and (4.2), re-

spectively, that can be obtained by numerical integration based on sampling time T and numerical

integration step h. The deviation between the approximation and the exact model can be measured
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using classical techniques in numerical analysis as provided in Chapter 2.

Remark 4.1. For convenience, the results are expressed using the δ-operator, [94]. Corresponding

results using the shift operator, q, where δ=(q−1)/T and T is the sampling time, i.e., δxk=
1
T (xk+1−xk),

are straightforward to obtain. To analyze and design the control system under a ZDA, we transform

(4.3) into normal form using Definition 2.4.

4.1.1 Multi-Rate Sampling

The digital controller in Fig. 4.1 receives the output from the sensor with sampling time Tm

and transfers the control input uk using a faster sampling times Ti, such that Ti=miTm where

mi∈R+
<1,

∑︁q
i=1mi=1, and q is the number of times that we want to update the system between

two consecutive samplings of the output at kTm and (k+1)Tm, k∈{N∪0}. To compensate for the

lack of output data on the controller side, (q+1) samples of the control input are constructed

based on a discrete-time model. Since, in general, the exact model of a nonlinear system is not

available, we use the approximate model F gT defined in (2.4), in which T=max{Ti} and i∈{1, ..., q},
to construct uck as follows.

uck=

⎧⎨⎩U(h(xk), vk), k=iq, i ∈ Z+

U(h(F gT ), vk),with i.c. uciq=u(h(xiq), vk).
(4.4)

Using the above structure, we focus on neutralizing ZDAs by removing non-minimum phase

sampling zeros.

Remark 4.2. In general, the control system is free to employ any family of approximate model as

long as the one-step consistency condition in Definition 2.2 holds. In this chapter, we consider the

approximate model defined in (2.4) due to its simple zero-dynamics representation.

4.1.2 Main Problem

Our goal is to drive the internal dynamics of a sampled-data system under a ZDA to a stable region

using the multi-rate approach. To this end, we formulate a stabilization problem in the lifted time

domain and obtain conditions such that the zero-dynamics part of the sampled-data system is

stable, rendering ZDAs ineffective.
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4.2 Preliminary Results

In this section, we show that under some mild conditions, the approximate model F gT defined in

(2.4) can be replaced with the exact model F eT in (4.4) while preserving stability. We begin by the

following Lemma:

Lemma 4.1. Suppose f(x) and g(x) are locally Lipschitz functions, then locally Lipschitz continuity

is preserved under Lie derivative on a compact set X.

Proof. Verifying Lipschitz inequality for Lie derivative definition on x1, x2∈X we obtain,

|σg(x1)
σx1

f(x1)−
σg(x2)

σx2
f(x2)|⏞ ⏟⏟ ⏞

(∗)

≤|σg(x1)
σx1

||f(x1)−f(x2)|+|f(x2)||
σg(x1)

σx1
−σg(x2)

σx2
|

≤λgλf |x1−x2|+|f(x2)| |
σg(x1)

σx1
−σg(x2)

σx2
|⏞ ⏟⏟ ⏞

(∗∗)

. (4.5)

Re-writing (∗∗) in (4.5) using the definition of derivative and applying the triangular inequality we

have,

(∗∗)=1

h
|g (x1+h)−g (x1)−g (x2+h)+g (x2) |

≤1

h
|g(x1+h)−g(x2+h)|+

1

h
|g(x2)+g(x1)|

≤2

h
λg|x1−x2|. (4.6)

Substituting (4.6) into (4.5), we obtain,

(∗)≤(λgλf+λf+Mf+
2

h
)|x1−x2|, (4.7)

where |f(x)|≤Mf on the compact set X follows from the Lipschitz property of f(x). Inequality

(4.7) implies that Lf(x)g(x) is locally Lipschitz continuous. This completes the proof.

Lemma 4.2. The approximate model (2.4) is one-step consistent with the Euler approximate model

on a compact set X.

Proof. First, we prove that the model (2.4) is one-step consistent with the Euler model in the new

coordinates z according to Definition 2.2, i.e., |zuk+1−z
g
k+1|≤Tρ(T ). Applying Euler discretization
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to the system (4.1) in the new coordinates z we obtain the following state space representation,

[53]:

F uT : δξk=Aξk+B (βzk+αzkuk) , δηk=ψ (ξk, ηk) , (4.8)

A =

⎡⎢⎢⎢⎢⎣
0
... Ir−1

0

0 0 . . . 0

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
0
...

0

1

⎤⎥⎥⎥⎥⎦ .
Substituting (4.8) and (2.4) into the LHS of one-step consistency inequality of Definition 4.2 we

have,

|δzuk − δzgk| = |ŜeT zk + Ĝ
e
T (βzk+αzkuk)|

≤ |ŜeT ||zk|+ |B̂e
T ||βzk |+ |GeT ||αzk ||uk|⏞ ⏟⏟ ⏞

(∗)

, (4.9)

where Ŝ
e
T =

[︄
SeT 0

0 0

]︄
, B̂

e
T =

[︄
Be
T

0

]︄
and

SeT=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −T
2 · · · − T r−2

(r−1)!

0 0 0 · · · − T r−3

(r−2)!
...

...
. . .

...

0 0 0
. . . 0

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Be

T=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T r−1

r!
T r−2

(r−1)!
...
T
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Since f and h are both locally Lipschitz, the application of Lemma 4.1 and Assumption 2.1 imply

that the vector function ϕ is Lipschitz continuous on any compact set. Therefore, in the new

coordinates, Hnf :X→Z, Z is compact (thus bounded), i.e., there is Mz∈R>0 such that |zk|≤Mz

for all z∈Z. In addition, the input uk is bounded, therefore we can findMu∈R>0 such that |uk|≤Mu.

Moreover, Lipschitz continuity of h results in locally Lipschitz for α and β based on Lemma 4.1 in

such a way that |α(zk)|≤Mα and |β(zk)|≤Mβ for all z∈Z. Substituting these results into (4.9), the

RHS is bounded by the following:

(∗) ≤ |ŜeT |Mz + |B̂e
T |(Mβ +MαMu)⏞ ⏟⏟ ⏞
(∗∗)

.
(4.10)

Defining ρŜ(T ):=|ŜeT | and ρB̂(T ):=|B̂e
T |, and substituting them into (4.10), we obtain:

(∗∗) ≤ ρŜ(T )Mz + ρB̂(T )(Mβ +MαMu). (4.11)

39



Ŝ
e
T , B̂

e
T are increasing functions with respect to T , thus, we have ρz(T ):=MzρŜ(T )+(Mβ+MαMu)ρB̂(T )∈k∞.

Substituting the later into (4.9), considering the triangular inequality, and the initial condition in

the one step, i.e., zuk=z
g
k, we obtain

|zuk+1 − zgk+1| ≤ |δzuk − δzgk| ≤ Tρz(T ). (4.12)

Therefore, consistency is satisfied in the new coordinates z.

To prove the consistency between the Euler model and the approximate model we need to

show that |xuk+1−x
g
k+1| ≤ Tρ(T ). To this end, we reason as follows: Hnf is a diffeomorphism

and therefore, ϕ−1(z) is continuously differentiable and locally Lipschitz. Thus, consider λh as the

Lipschitz constant of ϕ−1(z) and substitute xk=ϕ
−1(zk) into the LHS of the consistency inequality

of Definition 4.2. We have:

|xuk+1 − xgk+1| = |ϕ−1(zuk+1)−ϕ−1(zgk+1)|

≤ λh|zuk+1−z
g
k+1| ≤ λhTρz(T ),

(4.13)

where in (4.13) the second inequality follows from (4.12). This completes the proof.

Theorem 4.1. If the following conditions are satisfied,

(i) The closed-loop continuous-time system with the control input u(t) is dissipative.

(ii) The approximate model (2.4) is one-step consistent with the exact model (4.3) and is uniform

locally Lipchitz.

Then there exist T ∗≥0 such that for any 0<Ti≤T ∗, i∈{1, ..., q}, the nonlinear sampled-data system

(4.3) with control input (4.4), satisfies the dissipativity inequality (2.2).

Proof. Based on Definition 2.1 u(t) is designed such that the dissipativity inequality (2.2) holds

for the continuous time system (4.1). For the second condition, according to [78, Lemma 1], a

sufficient condition for the approximate model to be one-step consistent with the exact model is

the following: (i) it is one-step consistent with the Euler model, and (ii) f(x) is a bounded, Lips-

chitz function. According to Lemma 4.2, the approximate model (2.4) is one-step consistent with

the Euler approximation. In addition, f(x) is Lipschitz and bounded, consequently the second

condition is also verified. Consider now [57, Theorem 1], we know that, under the above condi-

tions, choosing an appropriate sampling time T for F aT , the exact discrete-time model F eT preserves

dissipativity. Thus, considering [79, Theorem 5] we conclude that using the multi-rate approach

preserves dissipativity of the original system in a sampled-data implementation. Hence, condition

(2.2) is satisfied under control input (4.4) and approximate model (2.4).
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4.3 Main Results

In the sequel, we investigate the feasibility of applying the proposed multi-rate approach in neutral-

izing ZDAs. Since a multi-rate system can be seen as a periodic system, we formulate the problem

in the lifted domain in which the system is time-invariant, thus simplifying the analysis and design.

4.3.1 Lifting

Let v=v0, v1, · · · be a sequence of vectors vi∈Rn, i∈Z+. Define ˜︁v as a sequence of vectors in Rnq as
follows,

˜︁v = {[v0, v1, · · · , vq−1]
⊺ , [vq, vq+1, · · · , v2q−1]

⊺ , . . .} .

Then, map L:v ↦→˜︁v is defined based on the lifting operator L, i.e., ˜︁v=Lv, [95]. Define the notation

(k, i) to refer to the discrete time instant j=kq + i for i∈Z+
<q, k, j∈Z+ where

(k, i)+1=

{︄
(k, i+1), 0≤i≤q−2

(k+1, 0), i=q−1
(4.14)

To obtain the lifted model we rewrite ξ in (2.4) as follows:

δξ(k,1)=ST1ξ(k,0)+BT1

(︂
βz(k,0)+αz(k,0)u(k,0)

)︂
δξ(k,2)=ST2ξ(k,1)+BT2

(︂
βz(k,1)+αz(k,1)u(k,1)

)︂
=ST1ST2ξ(k,0)+ST2BT1

(︂
βz(k,0)+αz(k,0)u(k,0)

)︂
+BT2

(︂
βz(k,1)+αz(k,1)u(k,1)

)︂
...

δξ(k+1,0)=Πqi=j+1STiξ(k,q−1)

+BTq

(︂
βz(k,q−1)

+αz(k,q−1)
u(k,q−1)

)︂
+Σqj=1(Π

q
i=j+1STi)BTj (βz(k,j)+αz(k,j)u(k,j)).

(4.15)

Define ˜︁ε(k,0):= (︁ε(k,0), ε(k,1), . . . , ε(k,q−1)

)︁⊺
, where ε(k,i) = β(z(k,i))+α(z(k,i))u(k,i), the full state lift-

ing model related to ξ is δ˜︁ξ(k+1,0)=˜︁S˜︁ξ(k,0)+ ˜︁B˜︁ε(k,0) where, ˜︁ξ(k+1,0) = [ξ⊺(k,1), ξ
⊺
(k,2), ..., ξ

⊺
(k+1,0)]

⊺∈Rqr,
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and ˜︁S =

[︄
ST1 ST1ST2 · · · Πqi=1STi

0r×(q−1)r 0r×(q−1)r · · · 0r×(q−1)r

]︄⊺
,

˜︁B =

⎡⎢⎢⎢⎢⎣
BT1 0 · · · 0

ST1BT2 BT2 · · · 0
...

...
. . .

...

Πq−1
i=1STiBTq Πq−2

i=1STiBTq · · · BTq

⎤⎥⎥⎥⎥⎦ .
(4.16)

Therefore, the equivalent lifted system for the multi-rate sampled-data structure in Fig. 4.1 is

written as follows.
δ˜︁ξ(k+1,0)=˜︁S˜︁ξ(k,0)+ ˜︁B˜︁ε(k,0), δ˜︁η(k+1,0)= ˜︁ψ(z(k,0)),˜︁y(k,0)= ˜︁C˜︁ξ(k,0), (4.17)

where ˜︁C and ˜︁ψ(.) are the lifted parts associated to the output and ψ(.) in (2.4), respectively, which

will be derived later.

4.3.2 Zero-Dynamics of the Lifted System

Lemma 4.3. The transformation H and its inverse, H−1, convert the system (4.17) into normal

form.

Hqr×qr=
[︂
IH V1 · · · Vr−1

]︂⊺
H−1
qr×qr=

[︂
W E1 · · · Er

]︂
, (4.18)

where IH=diag{Ih}, Vi=diag{Vij},W=diag{wj},

Ei=diag{ei}, Ih=[1, 0, ..., 0]1×r,Vij=[lij , e
⊺
i ], wj=[1, Lj ]

⊺,

Lj=[l1j , ..., lrj ]=

[︄
−r
Tj
, ...,

−r!
T
(r−1)
j

]︄
for i∈Z+

≤r, j∈Z
+
≤q,

and ei∈Rr×1 is the unit vector, i.e., ei=[0, ..., 0⏞ ⏟⏟ ⏞
i−1

, 1, 0, ..., 0]⊺.

Proof. Based on Definition 2.4, a state-space representation is in normal form if the output is set

identically to zero, the internal dynamics is explicitly derived. We observe that applying H to

(4.17) first re-arranges the order of states in such a way that all lifted states ˜︁ξ1(k,i), i = 1, ..., q,
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directly associated to the output, are collected as a vector element in ξ̄ as follows,

˜︁ξk= [︂[︂ξ1(k,1), ..., ξr(k,1)]︂⊺ , ..., [︂ξ1(k,q), ..., ξr(k,q)]︂⊺]︂⊺
ξ̄k=

[︂[︂
ξ1(k,1), ..., ξ

1
(k,q)

]︂⊺
, ...,

[︂
ξr(k,1), ..., ξ

r
(k,q)

]︂⊺]︂⊺
, (4.19)

where ˜︁ξ, the left-side vector in (4.19), represents the current states order ξ in the lifted system

(4.17), and ξ̄, the right-side vector in (4.19), shows the desired order of states in the normal form

representation, i.e., ξ̄k = H˜︁ξk. Second, the direct effect of the control input on those parts of the

state which are not observed in the output are removed. To verify the later, consider (4.17) in the

new coordinates,

δξ̄(k+1,0)=H̄ξ̄(k,0)+B̄ε̄(k,0), δη̄(k+1,0)=
˜︁ψ(ξ̄, η̄), (4.20)

where B̄ = H ˜︁B =
[︂
T r−1
1
r! ,

T r−1
2
r! , · · · , T

r−1
q

r! |0r×1, · · · , 0r×1

]︂⊺
, and H̄=H ˜︁S=[︄ H̄11 H̄12

H̄21 H̄22

]︄
.

As shown in (4.20), the elements of B̄ corresponding to the unobservable states of ξ̄ are zero.

Therefore, the direct term from the input is removed from ξ̄
q+1:qr

, thus verifying the second con-

dition. Consequently, (4.18) can be used as a normal form transformation for the lifted system

(4.17).

Now, with respect to the normal form representation (4.20), the zero-dynamics of the lifted

system is as follows:

δη̄(k+1,0) =
˜︁ψ(ξq+1:rq

(k,0) , η(k,0)) (4.21)

δξ̄
q+1:qr
(k+1,0) = H̄22δξ̄

q+1:qr
(k,0) , (4.22)

where H̄22=

⎡⎢⎢⎣
Bl21q · · · Blr1q
...

. . .
...

Bl2(r−1)q · · · Blr(r−1)q

⎤⎥⎥⎦ ,Blkij= [︂ 0 V k
ij

]︂
,

V k
ij=

[︂
Vi1ST1ek Vi2ST1ST2ek ... VijΠ

q
ℓ=1STℓek

]︂⊺
.

The subsystem (4.21) is the counterpart of the continuous-time zero-dynamics, and (4.22) is induced

by the sampling zeros.
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4.3.3 Stability of the Zero-Dynamics

Assumption 4.1. Consider the following normal form representation of the continuous-time sys-

tem (4.1):

ξ̇(t)=Aξ(t)+B
(︁
βz(t)+αz(t)u(t)

)︁
, η̇(t)=ψz(t), (4.23)

where A,B are defined in (4.8). Throughout this section we assume that the zero-dynamics of (4.23)

is minimum-phase and satisfies the dissipativity inequality, i.e., there is a continuously differentiable

storage function Vz(t), and a supply rate ω(t) such that the following inequality holds.

Vż(t) =
∂Vz
∂η(t)

ψ(0, η(t)) ≤ ω(y(t)). (4.24)

Remark 4.3. If the original system (4.1) is non-minimum phase, then stabilization of the intrinsic

zero-dynamics is only possible by modifying the plant’s structure, [47, 48]. However, a minimum-

phase system is still vulnerable to ZDAs in sampled-data format (4.3) due to the unstable extrinsic

zero-dynamics originated in the sampling process. Our goal is to provide conditions such that

the minimum-phase property of (4.1) (or its modified version) is preserved when using a digital

controller. Thus, the ZDA is no longer a threat.

Theorem 4.2. Under Assumptions 2.1, 4.1, and the dissipativity property of closed-loop system

(4.1)-(4.2), for any pair {δ, ν}∈R>0, the intrinsic zero-dynamics (4.21) under multi-rate control

input (4.4) satisfy the following dissipation inequality for all |η(0)|<δ.

V (η̄(k+1,0))− V (η̄(k,0)) ≤
1

T

(︂
ω(η̄(k,0)) + ν

)︂
. (4.25)

Proof. We first expand the lifted internal dynamic ˜︁ψ in (4.21) under the zero-output condition

to find the relationship between intermediate states for the intrinsic zero-dynamics in the lifted-

domain. We have:

δη(k,1) = ψ(η(k,0))

δη(k,2) = ψ(η(k,1)) = ψ
(︁
η(k,0) + T1ψ(η(k,0))

)︁
...

δη(k+1,0) = ψ(η(k,q)) = ψ(Σq−1
i=1Tiδη(k,i)).

Define η̄(k+1,0):=[η(k,1), η(k,2), · · · , η(k+1,0)]
⊺, and

˜︁ψ(η(k,0)):=[ψ(η(k,0)), ψ(Σ
1
i=0Tiδη(k,i)), · · · , ψ(Σ

q−1
i=0Tiδη(k,i))]

⊺
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therefore we have

δη̄(k+1,0) =
˜︁ψ(η(k,0)). (4.26)

According to Assumption 4.1, Vz exist and it is continuously differentiable. To evaluate the dissi-

pation inequality for the zero-dynamics (4.26), we define a new storage function Vl:

Vl(η̄(k+1,0)) =

q∑︂
i=1

Vz(δη(k,i)). (4.27)

Substituting (4.27) in the LHS of (4.25) we obtain,

Vl(η̄(k+1,0))−Vl(η̄(k,0))=

Vz(δη(k,1))+ · · ·+ Vz(δη(k,q−1))+Vz(δη(k+1,0))

−Vz(δη(k−1,1))− · · ·−Vz(δη(k−1,q−1))−Vz(δη(k,0)). (4.28)

Substituting (4.26) into (4.28), we have,

Vl(η̄(k+1,0))−Vl(η̄(k,0))=Vz(ψ(η(k,0)))−Vz(ψ(η(k−1,0)))⏞ ⏟⏟ ⏞
Term 1

+Vz(ψ(Σ
1
i=0Tiδη(k,i)))− Vz(ψ(Σ

1
i=0Tiδη(k−1,i)))⏞ ⏟⏟ ⏞

Term 2
...

+Vz(ψ(Σ
q−1
i=0Tiδη(k,i)))−Vz(ψ(Σ

q−1
i=0Tiδη(k,i))).

(4.29)

According to Assumption 2.1, ψ is continuously differentiable, therefore, according to Lemma 1,

ψ satisfies a locally Lipschitz condition and the mean value theorem (see also [96]). Let λ be the

Lipschitz constant of ψ, and b, c > 0 be such that |ψ(η)| ≤ b and |∂Vz/∂η| ≤ c on the set |η| ≤ δ.

Thus, using the mean value theorem, the triangular inequality and the local Lipschitz property of

ψ, we can conclude that,

Term 1 ≤ ∂Vz
∂η |η∗

|ψ(η(k,0))− ψ(η(k−1,0))| (4.30)

≤ cλ|η(k,0) − η(k−1,0)| ≤ cλT1|ψ(η(kT+θ1T,0))| ≤ λT1bc,

Term 2 ≤ ∂Vz
∂η |η∗

|ψ(Σq−1
i=0Tiδη(k,i))− ψ(Σ1

i=0Tiδη(k,i))|

≤ cλ|η(k,0) + T1ψ(η(k,0) − η(k−1,0) − T1ψ(η(k−1,0)))|

≤ cλT1|ψ(η(kT+θ1T,0))|+ T1cλ
2|η(k,0) − η(k−1,0)|

≤ cλT1b+ cλ2T1T2|ψ(η(kT+θ2T,0))| ≤ λbc(T1 + λT1T2),
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where θ1, θ2 ∈ (0, 1). Repeating the above argument for i = 2, ..., q − 1, we conclude that all terms

in (4.30) are bounded and combining the bounds obtained for Term 1 to Term q in (4.29), the

dissipation inequality (4.25) is verified.

Theorem 4.3. The extrinsic zero-dynamics (4.22) is stable under the multi-rate control input (4.4)

during the ZDAs defined in Definition 2.5 if Ti≤T ∗ for i∈{1, ..., q}, and q ≥ r.

Proof. The first condition guarantees the feasibility of an inferential control setup (4.4) with respect

to the result in Theorem 4.1. Consider now internal dynamics given in (4.22). We know that

eigenvalues of H̄22 (eig{H̄22}) represent sampling zeros induced by discretization. Thus, if all

eig{H̄22} are moved to a stable region, then the associated extrinsic zero-dynamics (4.22) is stable.

Consider the matrix H̄22 derived from H̄ in (4.20). All of the entries in the main diagonal of this

matrix have terms of the form Πqℓ=1STℓ . Since STℓ is nilpotent, then it is such that if q≥r, then
Πqℓ=1STℓ=0. Consequently, all the main diagonal elements of H̄22 are zero, making it possible to

convert H̄22 into an upper-triangular matrix using standard row operations in such a way that the

main diagonal elements remain zero, i.e., H∆=HuH̄22 where H∆ is the upper triangular matrix

and Hu is the transformation such that eig{H̄22}=eig{H∆}. Now, because eig{H∆} are located on

the main diagonal and are identically zero, eig{H̄22} are zero which means that all sampling-zeros

are on the boundary of the stability region since, in the δ-operator, this region is a circle of radius

1 centred at (−1, 0). To complete the proof we need to show that the multiplicity of eig{H̄22} is at

most equal to 1 and consequently the extrinsic zero-dynamics is stable under multi-rate sampling.

Define the set Zc={Z+−{q, 2q, 3q, · · · }}. Notice that in H̄22, the iq, i∈Z+, rows have all of their

entries identically zero. Thus, from (4.22) we can write, δξ̄
(i+1)q
(k+1,0)=0, for i∈Z+. By rewriting the

above equation with respect to the standard shift-operator and expanding it using (4.15) we have,

ξ̄
(i+1)q
(k+1,0)=Πqℓ=1STℓδξ̄

(i+1)q
(k,0) (4.31)

+Σqj=1(Π
q
ℓ=j+1STℓ)BTj

(︁
β(z(j−1,0))+α(z(j−1,0))u(j−1,0)

)︁
.

Under a ZDA the control input is manipulated by the attacker to make the output identically zero,

i.e., u(j−1,0) =
−β(z(j−1,0))

α(z(j−1,0))
, therefore, the second term in the RHS of (4.31) will be zero. On the

other hand, ST is a nilpotent matrix and as a result Πqℓ=1STℓδξ̄
(i+1)q
(k,0) = 0. Consequently we have,

ξ̄
(i+1)q
(k+1,0) = 0, for i∈Z+. (4.32)

Consider now the remaining states in (4.22), i.e., ξ̄
q+i
(k+1,0) for i∈Zc. With respect to H̄22 in (4.22),

all of these states in the δ-operator formulation are constructed based on ξ̄
(i+1)q
(k+1,0),i∈Z

+. As shown

in (4.32), these states are equal to zero during the ZDA. Therefore, we have δξ̄
q+i
(k+1,0)=0 for i∈Zc

which equivalent to the following equation in the shift-operator: ξ̄
q+i
(k+1,0)=ξ̄

q+i
(k,0), for i∈Zc. Thus,
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we conclude that during a ZDAs all non-zero states remain in the last update. Therefore, using

the proposed method, all states of the extrinsic zero-dynamics stay in a bounded region during

the attack. Indeed, the latter observation proves that all zero eigenvalues of H̄22 have multiplicity

one. Therefore, the extrinsic zero-dynamics (4.22) is stable in the sense of Lyapunov during the

attacks.

It is worth mentioning that the values of Tis and q can impact performance and data trans-

mission in a system. Higher values of q can improve performance but also increase communication

bandwidth needs. To minimize the transmission rate, q should be set as low as possible.

Remark 4.4. Theorems 4.2 and 4.3 indicate that for any minimum-phase system (4.1), the use

of multi-rate sampling can preserve the minimum-phase property of the sampled-data structure,

provided that some mild conditions on the sampling rates are satisfied. Consequently, no unbounded

stealthy ZDAs are possible, and cyber-attacks constructed based on the system’s zero-dynamics will

not pose significant damage to the plant.

Remark 4.5. Our formulation ignores the possible existence of noise and disturbances. Notice,

however, that noise and disturbances do not change the inherent zero-dynamics nor the extrinsic

zero-dynamics of the system. The former depends on the plant structure, [47] and [48], and the

latter on the sampling rate and relative degree, [53]. Therefore, all of our results remain valid under

noise and disturbances. These signals should be dealt with when the designing the original controller

and do not affect our derivation in any respect.

4.4 Case Study

To illustrate the effectiveness of the proposed method, we consider a nonlinear benchmark plant,

the single-link flexible-joint robot manipulator (see reference [97]). The state-space representation

of the robot is given by:

ẋ = f(x) + g(x)u, y = x1, (4.33)

f(x)=

⎡⎢⎢⎢⎢⎣
x2

−MgL
I sin (x1)− k

I (x1 − x3)

x4
k
J (x1 − x3)

⎤⎥⎥⎥⎥⎦ , g(x)=
⎡⎢⎢⎢⎢⎣

0

0

0
1
J

⎤⎥⎥⎥⎥⎦ ,

where x=[x1, x2, x3, x4]
⊺. States x1, x2 are the angular position and velocity of the manipulator’s

link, and x3 and x4 are the angular position and velocity of the manipulator’s base, respectively (see
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reference [97] for more details). Since x2, x3, x4 are not available from measurement, the control

system is equipped with a high gain observer to estimate the states. The input signal u is applied

to the base. The control law is designed using sliding mode method as follows, [98]:

s = c1ξ1 + c2ξ2 + c3ξ3 + ξ4

u = (−c1ξ2 − c2ξ3 − c3ξ4 − F (ξ)− β sgn(s)) /b, (4.34)

where ξ1, ..., ξ4 are normal form states, and F (ξ)=−MgL
I sin ξ1

(︁
K
J −ξ

2
2

)︁
−
(︂
K
I +

K
J +

MgL
I cos ξ1

)︂
ξ3,

b= K
IJ and β=L+K.

It is easy to see that the relative degree of the system (4.33) is 4, same as the number of

states, i.e., n=r=4. Therefore, the continuous-time system (4.33) is minimum-phase. Applying the

discretization method (2.4) with sampling time T=0.01 seconds, the new zero-dynamics after the

sample and hold process is:

δξ2:4k =

⎡⎢⎣ −400 −1 −0.008

−12× 104 −600 −30

−24× 106 −12× 104 −800

⎤⎥⎦ ξ2:4k . (4.35)

Although all eigenvalues are outside the stability region resulting in an unstable zero-dynamics, we

see from Fig. 4.2-a that the controller u in (4.34) successfully stabilizes the robot’s dynamic with

initial condition [1, 0, 1, 0]⊺. Moreover, the non-minimum phase property of the zero-dynamics does

not affect stability of the closed-loop system in the absence of attacks.
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Figure 4.2: Trajectories of the original (a) and normal form (b) states.
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Figure 4.3: Trajectory of the normal form states (a) and details (b).

Consider now a ZDA generated based on the unstable zero-dynamics (4.35) and activated at

t=10s. Fig. 4.3 shows that the internal dynamic states ξ2, ξ3, ξ4 become unbounded, however the

undamped oscillations are not observed in y=ξ1, as is characteristic of the stealthy property of the
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ZDA.

We now apply the proposed method. Since the relative degree is 4, then considering the condi-

tion q≥r in Theorem 4.3, we choose q=4 and T1, T2, T3, T4=
T
4 which results in a dual-rate control

system.

Figure 4.4: Trajectory of the dual-rate control system under ZDA.

Fig. 4.4 shows the dynamic response of the closed-loop robot under the ZDA. Although the

attack is activated at t=0, the dual-rate controller stabilizes the system dynamics and neutralizes

the malicious effect of the ZDA such that all states remain bounded. In other words, using the multi-

rate approach removes non-minimum phase sampling zeros resulting in a stable zero-dynamics. As

a result, any attack generated based on sampling zeros results in a bounded signal without threat

to the control system.

4.5 Summary

We have developed a resilient control scheme using multi-rate sampling for systems under ZDAs.

The proposed method removes the non-minimum phase zero-dynamics induced by discretization

and preserve the minimum-phase property of the intrinsic zero-dynamics. The result is a sampled-

data structure that is immune to zero-dynamics attacks.
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Chapter 5

Event-Triggered Control Against

Zero-Dynamics Attacks

It is well-known in the literature that the discretization process in a sampled-data structure po-

tentially may induce an unstable zero-dynamics aside from the minimum-phase condition of the

original system which makes the system vulnerable to cyber-attacks. We study input-to-state sta-

bility of nonlinear event-based control systems under ZDAs, and as a secure approach, propose a

novel multi-objective event-triggered mechanism by resilient design of triggering strategy based on

current measurements together with a history of zero-dynamics. As a result, sufficient conditions

in terms of ISS and event triggering parameters are derived to guarantee stability. The proposed

solution makes it possible to have a trade-off between performance and resiliency while it keeps the

overall system asymptotic stable under the attack. Finally, a case study is presented to illustrate

the effectiveness of the proposed approach.

The chapter layout is as follows: In Section 5.1, we present the fundamental concepts and our

proposed event-triggered structure used throughout the sequel. In Section 5.2 we provide several

preliminary lemmas for sampling zeros and event-triggered sampling used in later sections. Section

5.3 contains the main results. Under the developed method, here we investigate the boundedness

property of the zero-dynamics of a system exposed to attacks, as well as asymptotic stability of the

overall system. Finally, in Section 5.4 we present a numerical example to show the effectiveness of

our proposed approach.
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Figure 5.1: Block diagram of the closed-loop control system equipped with an event-triggered
mechanism under ZDAs

5.1 Problem Statement

We consider a minimum-phase, continuous-time nonlinear system given by the following state-space

realization:
ẋ(t) = f(x(t)) + g(x(t))u(t)

y = h(x(t)),
(5.1)

where x(t)∈Rn, u(t), y(t)∈R, and f , g, h are locally Lipschitz function, i.e., ∃ Lf such that for any

x and ˜︁x in a compact set X, |f(x, u)−f(˜︁x, u)| ≤ Lf |(x−˜︁x)|.
Fig. 5.1 shows a schematic of the feedback system that will be used throughout the rest of the

chapter. Here the event-triggered mechanism block continuously monitors the sensor output and

determines when to send fresh data through the communication network, based on a triggering

rule. We will denote by tk, k∈N0, the event-time. Since the event-time is defined implicitly

by the triggering rule, the resulting sampling is nonuniform. Neglecting transmission delay, we

assume that the controller receives the transmitted data y(t) at the event time tk. The computer

control generates the control input uc(tk)=ψ(y(tk)) for some Lipschitz function ψ, and sends the

information through the network at the same instant tk. Assuming an insecure network, the control

input may be corrupted by an attacker who injects the ZDA signal ua(tk). A zero-order-hold device

is used to maintain the actuator signal u(t) constant over inter-event times, i.e. u(t)=uc(tk)+ua(tk)

for t∈[tk, tk+1). Thus, the difference between y(t) and the last transmitted output y(tk) in the ETM

for decision making, is given by

e(t)=y(tk)−y(t) for t∈[tk, tk+1). (5.2)

In the absence of attacks, we have that u(t)=ψ(y(tk)), and the actuator input is given by u(t)=ψ(y(t)+e(t))

using (5.2). We assume ψ is designed such that the equilibrium x=0 of the continuous-time sys-
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tem (5.1) is input-to-state stable with respect to the error (5.2) for any initial condition x0∈X.

This implies the existence of a Lyapunov function V and ν1, ν2, ν, γ∈K∞ such that the following

conditions hold:

ν1(|x|) ≤ V (x) ≤ ν2(|x|), (5.3a)

∇V (x)(f(x) + g(x)u) ≤ −ν(|x|)+γ(|e|). (5.3b)

Let τk be the inter-event period at event instant tk, i.e. τk=tk−tk−1 for k∈N0 which in general is

non-constant and determined by the event-triggering rule. The following definition introduces a

generalized form of sampling zeros. The sampling zeros depend on the system’s dimension n and

relative degree r together with the time period τk between two consecutive samples at tk and tk−1,

[53].

Definition 5.1 (Sampling zeros). Sampling zeros are the eigenvalues of a matrix Q(τk) associated

with the time-varying linear system of dimension r−1, known as extrinsic zero-dynamics. The

sampling zeros are induced by the sample and hold process and can be represented using the δ-

operator discrete-time model, as follows:⎧⎨⎩ δηk=Q(τk)ηk

Q(τk)=T21(τk)A12(τk) +A22(τk)
(5.4)

where

T21(τk)=
[︂
− n
τk

· · · − n!
τn−1
k

]︂⊺
,

A12(τk)=

⎡⎢⎢⎢⎢⎢⎣
1
τk
2
...

τn−2
k

(n−1)!

⎤⎥⎥⎥⎥⎥⎦
⊺

, A22(τk)=

⎡⎢⎢⎢⎢⎢⎣
0 1 · · · τn−3

k
(n−2)!

...
. . .

. . .
...

0 · · · 0 1

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ .

Let S (Q(τk)) denote the spectrum of Q(τk), i.e. λiτk∈S for i∈{1, ..., r−1}, and τk be the

(variable) inter-event times. The following lemma outlines the main features of the time-varying

matrix Q(τk) and its eigenvalues associated with time-varying sampling zeros.

Lemma 5.1. The spectrum S (Q(τk)) has the following properties:

I. At any event instant tk, all eigenvalues of Q(τk) are real (i.e. λiτk∈R).

II. The eigenvalues λiτk∈S are monotonically decreasing with respect to τk, i.e.,

λiτk ≤ λiτ , for τ ≤ τk
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III. There exist k
(2)
λ ∈R>0 such that the following inequality holds for any λiτk∈S and τk:

λiτk ≤
k
(2)
λ

τk

IV. for any λiτk , λ
j
τk∈S if |λjτk |≤|λiτk | at τk=τ , then the inequality is also valid for τk≥τ .

Proof. Part I follows from the fact that matrix Q(τk) is persymmetric for any value of τk.

To verify II, let Qc=τkQ(τk), and suppose λic and λiτk , i∈{1, ..., r − 1} are eigenvalues of Qc

and Q(τk), respectively, i.e., λ
i
c=τkλ

i
τk
. Because of the special form of Qc (all diagonal entries are

constant), the λic are constant and independent of τk. Thus, λ
i
τk
∝ 1
τk

which proves II.

Now suppose kλ is chosen such that λic≤k
(2)
λ , as a result, we have τkλ

i
τk
≤k(2)λ which implies III.

Part IV follows from II when λiτk=
λic
τk
.

Remark 5.1. The concept of time-varying zero-dynamics is studied in [99, 100, 101]. One realiza-

tion of this approach happens when a sampled-data system is implemented using an event-triggered

mechanism which then results in time-varying behaviour and variable induced sampling zeros. Our

interest is to exploit this property to eliminate the impact of ZDAs.

Suppose |λjτ0 | represents the largest absolute value of the eigenvalues of Q(τ0) in (5.4), i.e.

|λiτ0 |≤|λjτ0 | for λiτ0 i∈{1, ..., r−1} at τ0=t0. Then according to the result in Lemma 5.1 part IV,

the following time-varying scalar system represents the most unstable mode of the extrinsic zero-

dynamics (5.4) in all k∈N0:

δη̄k=λ̄τk η̄k. (5.5)

where λ̄τk :=λ
j
τk . In the sequel, we will use the location of this mode in our derivation.

With respect to Definition 2.5 and (2.6), a trivial solution to mitigate the impact of ZDA is to

discretize the system using a sufficiently large sampling period, i.e. h→∞, which may then render

stable eigenvalues for Q in (5.4), resulting in minimum-phase sampling zeros. This approach,

however, is not adequate since it forces the use of very low sampling rates, resulting in poor

performance with large inter-sample ripple and possible aliasing effect (see for example [95, Example

8.4.2]). Since the location of the sampling zeros depends on the time period between samples h,

a non-constant sampling rate may offer the possibility to enforce minimum-phase zero-dynamics,

thus rendering ZDAs ineffective.

It is worth mentioning that to carry out a ZDA, the attacker must possess system knowledge

and disruption resources including the system model, event-triggering mechanism, and access to

the controller-actuator communication channel, [30]. Additionally, even in the presence of system

model uncertainty, a robust ZDA technique, is discussed in [43].
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Remark 5.2. We assume that the adversary has full system knowledge, including plant dynamics

and event-triggering rule. Therefore, the available event-triggered mechanisms such as [88], [63]

cannot guarantee resiliency for the system. The reason is that although these methods originate

time-varying sampling zeros, the triggering rule is not explicitly designed to stabilize the extrinsic

zero-dynamics and may result in divergent internal states in the presence of ZDA. A new triggering

condition is required that takes into account changes in sampling zeros.

5.1.1 Event-Triggered Mechanism

Let tk, be the most recent sampling instant. The control signal is updated again at tk+1 according

to the following rule:

tk+1=inf{t≥tk+τ : |e|>σα(|y|)+θ|˜︁η|}, (5.6)

where σ, θ∈R>0, α∈K∞, τ∈R>0 is the minimum inter-event time, and ˜︁η is the solution of the

following differential equation for t∈[tk, tk+1):

˜︁η̇ = λ̂τk η̂ + σα(|y|)− |e. (5.7)

Moreover, η̂ is the solution of a continuous-time counterpart of the time-varying discrete-time

dynamics (5.5), i.e., ˆ︁η̇ = λ̂τk η̂, (5.8)

where λ̂ is the counterpart of λ̄ in the continuous-time framework. In the rest of the chapter, η̂

and ˜︁η are referred to as the internal state and auxiliary state, respectively. Moreover, we define Ik

as the inter-event time interval [tk−1, tk), and assume Ik<∞. In addition, the set of all triggered

instants tk is denoted by Sev.

It is worth mentioning that the idea behind using the triggering policy (5.6) is to add a sense

of zero-dynamics (5.4) to the triggering threshold. In this way, undamped deviations of η̂ lead to

an increase of the inter-event time τk, i.e., τk<τk+1 which results in λ̂τk+1
<λ̂τk and has the effect

of bounding the extrinsic zero-dynamics (5.4) due to the connection between η̂ in (5.8) and η in

(5.4) via (5.5).

5.1.2 Main Problem

We can now state the main problem to be solved. Our goal is to lead the internal dynamics of a

nonlinear system under ZDAs to a stable region by using the event-triggered sampling approach.

To this end, we formulate a stabilization problem to obtain the design parameters σ, θ, τ , and α(.)
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such that the event-based control u with triggering condition (5.6), guarantees asymptotic stability

of the system (5.1) while neutralizes the ZDAs.

5.2 Preliminary Results

We start with the following lemma where we obtain a relationship between the inter-event times τk

and the error e defined in (5.2). The result will be employed to analyze the stability of the system

under the event-triggered condition (5.6) in the next section.

Lemma 5.2. Consider the nonlinear system (5.1) under the proposed triggering policy (5.6). For

any δ∈R>0, there exist positive constants τ , σ, Mδ, and My such that the inter-event time τk is

lower bounded by the following inequality for any η̂0∈R, and ˜︁η0≥0

τk ≥
1

βm
ln (c1|e|+c2) , (5.9)

if x∈B(δ), ∂α
∂|h(x)|

⃓⃓⃓
∂h(x)
∂x

⃓⃓⃓
|x|≤Mδ, and |h(x)|≤My,

where c1=
β1

k2β1+k
, c2=

k
β1k2+k

, β1=2LgLψMδ, β2=˜︁λτ , βm=max{β1, β2}, k=σLfLgLψMδMy, k1=θ˜︁η0,
and k2=

k1
|β2−β1| .

Proof. The triggering condition (5.6) is satisfied at the event instant so that at tk we have |e|=σα(|y|)+θ|˜︁η|,
therefore, the derivative of |e| is as follows:

|e|̇ =σ ∂α
∂|y|

|y|̇ +θ|˜︁η̇| (5.10)

|y|̇ ≤ |∂h
∂x

||x| (Lf + LgLψ|ytk |+ 2LgLψ|e|) . (5.11)

Inequality (5.11) follows from Lipschitz property of f ,g,ψ, and h in (5.1). Substituting (5.11) into

(5.10) we obtain:

|ė| ≤ σ
∂α

∂|y|
Lf |x|+σ

∂α

∂|y|
|x|LgLψ |ytk |

⃓⃓⃓⃓
∂h

∂x

⃓⃓⃓⃓
+2σ

∂α

∂|y|
|x|LgLψ

⃓⃓⃓⃓
∂h

δx

⃓⃓⃓⃓
|e|+ θ|˜︁η̇|. (5.12)

Since |x|≤B(δ), we can find positive values for Mδ and My such that ∂α
∂|y|
⃓⃓
∂h
∂x

⃓⃓
|x|≤Mδ and |y|≤My.

Substituting these conditions into (5.12), we have:

|e|̇ ≤ k+2LgLψMδ|e|+θ|˜︁η̇|. (5.13)

56



Further, by substituting |e| into (5.7) and then the result into (5.13) we have:

|e|̇ ≤k+2LgLψMδ|e|+θη̂0eλ̂(τ)t, (5.14)

where (5.14) follows from the positivity of ˜︁η and the result of part II in Lemma 5.1. Solving the

differential inequality (5.14) with respect to |e|, we obtain:

|e| ≤ k1
β2 − β1

eβmτk +
k

β1

(︂
eβmτk−1

)︂
. (5.15)

Finally, inequality (5.15) justifies the relationship (5.9) between inter-event time τk and error |e|.

Remark 5.3. Notice that when the error e is negligible, the event-triggering rule does not generate

new events, thus there is no transmission of information through the network. Therefore, using a

lower bound for inter-event period τk is unessential. However, for large values of |e|, the traditional

triggering condition provides a high average rate for events to ensure that e converges as soon as

possible. In this case, having a lower bound on the inter-event period is vital to adjust the triggering

instants and avoid undamped sampling zeros. Inequality (5.9), indeed, justifies the aforementioned

observation in our approach when the lower bound on the inter-event period τk is tuned based on

the value of e using the proposed triggering rule (5.6).

We now present several lemmas and definitions that we’ll be needed in the next section.

Lemma 5.3. Given a function f :[tk, tk+1)→R≥0, we can find a constant Ml>0 such that the

following inequality holds.

Mlf(t) ≤ ln(f(t) + 1) ≤ f(t). (5.16)

Proof. Using the definition of the logarithmic functions we can verify the RHS inequality in (5.16)

as follows.

ln(f(t) + 1) =

∫︂ f(t)

0

dr

r + 1
≤
∫︂ f(t)

0

dr

1
= f(t).

The LHS of inequality (5.16) is valid for some Ml>0 because the function f(t) is defined over a

limited time interval [tk, tk+1).

Lemma 5.4. There exist some rλ, k
(1)
λ , tλ∈R>0 such that the following inequality holds for chi-

squared distribution with κ=4 in 0<t≤tλ.

e−
1
2
ln2(

k
(1)
λ
t

) ≤ rλ

(︄
t

k
(1)
λ

)︄(κ
2
−1)

e
− 1

2

(︄
t

k
(1)
λ

)︄
(5.17)
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Proof. Let fλ(t)=
fn(t)
fd(t)

where it is a continuous function over 0<t≤tλ, and fn and fd correspond to

LHS and RHS of (10), respectively, i.e.,

fn(t) = e−
1
2
ln2(

k
(1)
λ
t

), fd(t) =

(︄
t

k
(1)
λ

)︄
e
− 1

2

(︄
t

k
(1)
λ

)︄
.

To validate (5.17) one just needs to show that there exist at least one maxima for fλ over 0<t≤tλ.
In this regard the derivative of fλ is obtained as follows.

f ′λ(t) = e
− 1

2
ln2(

k
(1)
λ
t

)+ 1
2

(︄
t

k
(1)
λ

)︄
×

⎛⎝k(1)λ ln(
k
(1)
λ
t )− k

(1)
λ + 1

2 t

t2

⎞⎠ ,

where it has two roots in 0<t≤tλ (associated with the maxima and the minima of fλ). By choosing

appropriate k
(1)
λ , the biggest root of f ′λ can be placed on tλ, therefore, only one maximum is possible

for fλ over 0<t≤tλ which then verifies (5.17).

Definition 5.2 (Hermite-Hadamard inequality). Let f :[a, b]→R be a convex function. Then

f

(︃
τ + t

2

)︃
≤ 1

t− τ

∫︂ t

τ
f(u)du ≤ f(τ) + f(t)

2
. (5.18)

5.3 Main Results

In this section, we firstly investigate the Lyapunov stability of the nonlinear system (5.1) under the

triggering rule (5.6). Then, we study the boundedness of the extrinsic zero-dynamics states (5.4)

induced by the sampling zeros under the proposed method.

Theorem 5.1. The nonlinear system (5.1) with the event-triggering policy (5.6) is asymptotically

stable if for any ε>0 where x0∈B(ε), there exist some positive constants τ , σ, Ml, and function α

satisfying the following inequalities for all x∈Rn.

ν(|x|)>γ(µ2α(|h(x)|) + µ) (5.19a)

µ3
µ2

≤µ4 + µ21
2µ2

(5.19b)
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where µ = µ1 + µ21 + µ4 and

µ1 =
1 + h7 − l2

h8 − l3 − 1
2 l5

, µ2 =
l5

2h8 − 2l3 − l5

µ3 =
l4

h8 − l3 − 1
2 l5

, µ4 =
l1

h8 − l3 − 1
2 l5

h1 (yτ ) = e
1
2
ln2(

kλ
τ
)σα(|y(τ)|)

l1 = ˜︁η0rλΓ2 + ˜︁η0h1(yτ )Γ2Γ4

l2 = ˜︁η0rλΓ1 + ˜︁η0h1(yτ )(Γ2Γ3 + Γ2
4)

l3 = ˜︁η0h1(yτ )Γ1Γ3, l4 =
σ

2
˜︁η0Γ4, l5 =

σ

2
˜︁η0Γ3

h7 =Ml(Γ4 − τ), h8 =MlΓ3

Γ1 =
k1k

|β2 − β1|βmkλβ1
e
− 1

2βmkλ
ln( k

β1
)

Γ2 =
1

βmkλ
ln(

k

β1
)e

− 1
2βmkλ

ln( k
β1

)

Γ3 =
k1k

|β2 − β1|βmβ1
, Γ4 =

1

βm
ln(

k

β1
),

kλ = max{k(1)λ , k
(2)
λ }.

Proof. We proceed as follows: we depart from the ISS condition (5.3) and rewrite the error e

in (5.3b) with some terms constructed based on the design parameters. As a result, constraints

in (5.19) are obtained to preserve Lyapunov stability for the system (5.1) under the triggering

condition (5.6). To this end, we begin by solving the auxiliary differential equation (5.7) which

is then substituted in the event-triggered rule (5.6) to make a connection between the design

parameters and the error e:

˜︁η = e−
1
2
ln2(

kλ
t
)⏞ ⏟⏟ ⏞

B

×⎡⎢⎢⎣˜︁η0 + ∫︂ t

0
e

1
2
ln2(

kλ
τ
)σα(|y|)dτ⏞ ⏟⏟ ⏞

A

−
∫︂ t

0
e

1
2
ln2(

kλ
τ
)|e|dτ⏞ ⏟⏟ ⏞

D

⎤⎥⎥⎦ . (5.20)

Re-writing A and D in (5.21) based on Hermite-Hadamard’s relation, and re-stating B using the
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results in Lemma 5.4, we obtain:

A ≤ (t− τ)

2

(︂
e

1
2
ln2(

kλ
t
)σα(|y(t)|) + e

1
2
ln2(

kλ
τ
)σα(|y(τ)|)

)︂
D ≥ (t− τ)e

1
2
ln2(

kλ
t+τ

)σα(|e(t+ τ)|)

B ≤ rλ

(︃
t

kλ

)︃
e
− 1

2

(︂
t

kλ

)︂
. (5.21)

Moreover,

B ×D≥ e−
1
2
ln2(

kλ
t
)e−

1
2
ln2(

kλ
t+τ

)⏞ ⏟⏟ ⏞
(∗)

|e|(t− τ)

≥ |e|(t− τ), (5.22)

where the last inequality in (5.22) follows by the fact that (∗)≥1. Substituting (5.21) and (5.22)

into (5.20) we have:

˜︁η ≤ rλ˜︁η0(︃ t

kλ

)︃
e
− 1

2

(︂
t

kλ

)︂
+ ˜︁η0 (t− τ)

2
σ2α(|y|)

+
(t− τ)

2
h1 (yτ ) rλ˜︁η0(︃ t

kλ

)︃
e
− 1

2

(︂
t

kλ

)︂
− |e|(t− τ), (5.23)

where (︃
t

kλ

)︃
e
− 1

2

(︂
t

kλ

)︂
=

1

βmkλ
ln(c1|e|+c2)e

− 1
2βmkλ

ln(c1|e|+c2)

≤ (
1

βmkλ
ln(c2) +

c1
βmkλc2

|e|)e−
1

2βmkλ
ln(c2). (5.24)

Inequality (5.24) is obtained using (5.9) together with the inequalities (5.16) and e
− 1

2βmkλ
ln(1+

c1
c2

|e|) ≤
1.

In addition, considering inequalities (5.9) and (5.16), the following relation holds for inter-event

time τk.

|e|(t− τ)≥|e|
(︃

1

βm
ln (c1|e|+ c2)− τ

)︃
≥h7|e|+ h8|e|2. (5.25)
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Substituting (5.24) and (5.25) into (5.23), we obtain the following inequality for ˜︁η:
˜︁η ≤ l1 + (l2 − l7)|e|+ (l3 − l8)|e|2

+ l4α(|y|) + l5|e|α(|y|). (5.26)

Substitute (5.26) into the triggering condition (5.6), we have:

|e| ≤ σα(|y|) + l1 + (l2 − l7)|e|

+ (l3 − l8)|e|2 + l4α(|y|) + l5|e|α(|y|)

≤ l1 + (l2 − h7)|e|+ (l3 +
1

2
l5 − h8)|e|2

+ (l4 + σ)α(|y|) + 1

2
l5α

2(|y|), (5.27)

where the last inequality of (5.27) follows from the relation |e|α(|y|)≤1
2 |e|

2 + 1
2α

2(|y|) which is

obtained using young’s inequality. Consequently, rearranging (5.27), we obtain:

|e|2 + µ1
1

2
|e| ≤ µ2α

2(|y|) + µ3α(|y|) + µ4. (5.28)

Adding µ1 to both sides of (5.28), we have:

(|e| − µ1)
2 ≤ |e|2 + µ1|e|+ µ21

≤ µ2

(︃
α2(|y|) + µ3

µ2
α(|y|) + µ4 + µ21

µ2

)︃
. (5.29)

Since
µ4+µ21
2µ2

≥µ3
µ2

holds with respect to condition (5.19b), based on (5.29), we obtain:

|e| ≤ µ2α(|y|) + µ. (5.30)

Substituting (5.30) into (5.3b), we have:

V̇ (x) ≤ −ν(|x|) + γ(µ2α(|h(x)|) + µ). (5.31)

Finally, since condition (5.19a) holds, the RHS of (5.31) is negative, and the result follows.

We now turn our attention to the zero dynamics. In the next theorem we obtain conditions such

that the auxiliary state ˜︁η and internal state η̂ remain bounded, thus resulting in bounded behaviour

for all modes in extrinsic zero-dynamics (5.4). This dynamics is time-varying, due to the variable

sampling zeros induced by the event-triggered mechanism. Therefore, the following analysis is cast

as a piecewise linear system and uses elements from the theory of switching systems.
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Figure 5.2: The shape of trajectories η̂ and ˜︁η at constant time t with respect to τk∈[tk, t) for
different values of θ.

Lemma 5.5. Consider the solution of systems (5.7) and (5.8) starting at tk, and let max{η̂(t)}=η̂(t̂m)
and max{˜︁η(t)}=˜︁η(˜︁tm). There exist some θ∈R>0 such that.

t̂m≤˜︁tm. (5.32)

Proof. Consider the differential equation (5.7). Consider first the case when σα(|y|)=0. At event

instant tk we have |e(t)|=θ|˜︁η| and η̂=e− 1
2
ln2(

kλ
τk

)
η̂tk , which results in ˜︁η̇= 1

τk
ln(kλτk )e

− 1
2
ln2(

kλ
τk

)
η̂tk−θ|˜︁η|

and can be solved numerically. Figure 5.2 shows the trajectories of ˜︁η and η̂, with respect to τk

for different values of θ. According to Fig. 5.2, the maxima of η̂ can happen at τk=kλ, while, the

maxima of ˜︁η depends on kλ as well as θ. Consequently, by choosing an appropriate θ the time

instant ˜︁tm always happens with a lag t̂m, i.e., t̂m≤˜︁tm. For a case when σα(|y|) ̸=0, the positive

term σα(|y|) causes additional lag for ˜︁tm with respect to t̂m. Thus inequality (5.32) is also valid in

this case.

Remark 5.4. Regarding the result in Lemma 5.5, ˜︁η follows any increase/decrease of η̂. Therefore,

the term θ|˜︁η| in the RHS of the triggering rule (5.6) can be used to monitor the oscillation of the

extrinsic zero-dynamics (5.4). Moreover, doing so allows us to employ ˜︁η in the rest of the derivation

to evaluate the bounded property of zero-dynamics.

Theorem 5.2. If the parameter θ∈R>0 is chosen such that the inequality (5.32) is satisfied, then

the extrinsic zero-dynamics (5.4) is bounded under the event-triggering rule (5.6).

The proof of Theorem 5.2 requires some preliminary steps. We first investigate the boundedness

property of the switching system (5.7). In order to determine the overall convergence rate for the

switching system (5.7) we must examine the relationship between the trajectory of ˜︁η and the event-

triggering condition (5.6) in each interval Ik. To this end, we denote rk>0 (rk≤0) as the divergence

(convergence) rate of the unstable (stable) mode of (5.7) in the time interval Ik, i.e., rk=
˜︁ηtk−˜︁ηtk−1

τk
.
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Figure 5.3: A schematic of ˜︁η’s trajectory under two triggering conditions (5.34)

Figure 5.4: A schematic of ˜︁η’s trajectory under the proposed method

Proposition 5.1. Consider an arbitrary interval Ik=[tk−1, tk) and assume in this interval the

system (5.7) has an unstable mode with the divergence rate rk. Then, under the triggering condition

(5.6) we have that rk≤rj for j∈N<k.

Proof. A schematic of Proposition 5.1 is shown in Fig. 5.3 and 5.4. The proof consist of two parts:

First, suppose all modes of (5.7) in some consecutive time intervals, {Ii, · · · , Ik}, are unstable. In-
deed, the divergence rate of trajectory ˜︁η associated to {Ii, · · · , Ik}, has positive values {ri, · · · , rk}.
We now show that the following inequality holds.

rk≤rk−1≤ · · ·≤ri. (5.33)

Our proof is based on an iterative procedure and the comparison lemma. Consider the system in

Fig. 5.1 under two different triggering conditions.

TC1: |e|>σα(|y|)+θ|˜︁η|
TC2: |e|>σα(|y|) +Mi+1, (5.34)

where Mi+1≥0 is a constant. Suppose ts1j and ts2j for j∈{i, · · · , k} represent the triggering instants
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in TC1 and TC2 with Mi=0. Let τ s1j =ts1j −ts1j−1 denote the inter-event period for TC1. Consider

now the trajectories starting at t=ts1i−1 for both triggering conditions. The next event under both

triggering condition TC1 and TC2 is triggered at the same time, i.e. ts1i =ts2i =ts1i−1+τ
s1
i as shown

in Fig. 5.3. Now if the next event instant in TC2 takes place when ts2i+1=t
s1
i−1+2τ s1i , we have,

|e|=σα(|y|) at ts2i+1. Since the system is the same, the error at t=ts1i−1+2τ s1i is same for both TC1

and TC2. Substituting |e|=σα(|y|) in TC1, we obtain σα(|y|)>σα(|y|)+θ|˜︁η| which is not valid.

Therefore, ts1i+1>t
s1
i−1+2τ s1i which results in ri+1<ri.

Now we add the positive termMi+1:=θ|˜︁η||t=ts1i+1
in the RHS of TC2 so that ts2i+1=t

s1
i+1. Following

the previous steps for the interval Ii+2 with the modified triggering condition TC2 given by:

TC2: |e(t)|>σα(|y|) +Mi+1.

we have the following: If we assume that ts2i+2=t
s2
i+1+τ

s1
i+1, then |e|=σα(|y|)+Mi+1 at ts2i+2, and as

a result, we have σα(|y|)+Mi+1≥σα(|y|)+θ|˜︁η| for TC1 at ts2i+2. Since we assume ri+1 is positive,

θ|˜︁η|≥Mi+1 in interval Ii+2. Therefore, TC1 is not violated at ts2i+2 and we have ts1i+2>t
s1
i+1+τ

s1
i+1, as

a result ri+2<ri+1. Therefore, iterating the procedure for Ij , j∈{i+3, · · · , k}, inequality (5.33) is

verified.

Second, suppose that in an arbitrary time interval In, the switched system (5.7) has a stable

mode as shown in Fig. 5.4, i.e, rn≤0. We claim that under the triggering condition (5.6), rn+1 can

not be arbitrary, and it is limited by ri, i∈N<n. The proof is as follows:

Define Mn:=θ|˜︁η|t=ts1n . Since rn≤0, there exist some t∗∈[0, ts1n ) such that θ|˜︁η|t=t∗=Mn, and let

t∗∈[ts1l , ts1l+1) where ts1l ,ts1l+1∈Sev. Suppose t∗ is also an event instant for the same system under

the triggering condition {TC2: |e(t)|>σα(|y|)+Ml−1} in associated time interval t∈[ts1l−1, t
∗), and

let r∗ be the divergence rate of the corresponding trajectory. According to the first part, starting

from ts1n , the next event for TC1 with the initial triggering threshold σα(|y|)+Ml−1 occurs at

ts1n+1 when ts1n+1−ts1n ≥t∗−ts1l−1. Thus, the possible divergence rate in this interval satisfies rn+1<r
∗.

On the other hand, since interval [ts1l−1, t
∗)≥[ts1l−1, t

s1
l ), therefore, r∗≤rl which results in rn+1<rl.

Consequently, any possible positive rn+1 is bounded from the above by the divergence rates of the

past unstable modes.

Remark 5.5. Proposition 5.1 gives insight into the behaviour of the time-varying zero-dynamics

(5.7) in any arbitrary interval with respect to the inter-event period τk. This observation can be

employed to analyze the boundedness property of zero-dynamics (5.4).

Proposition 5.2. Let NSm be the number of switching instants for ˜︁η over the time interval sequence

Sm={Ik, · · · , In} with associate modes {λk, ..., λn}., and let T−
Sm

, T+
Sm

, λ−Sm
, and λ+Sm

be the total

activation time of the stable and unstable subsystems, and the largest negative and positive modes

of (5.7) in Sm, respectively. Then, there exist constants h and β such that the following conditions
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hold for any m∈N.

λ+Sm
T+
Sm

− λ−Sm
T−
Sm

≤ h (5.35a)

NSm ≤ β. (5.35b)

Proof. According to the first part of Proposition 5.1, Sm includes some consecutive unstable modes

together with at least one stable mode. Since τk<∞, T+
Sm

and T−
Sm

are both finite, which justify

(5.35a) for the sequence Sm. Moreover, because of the existence of τ the minimum inter-event

time, the total number of switching instants over the sequence Sm can not exceed Sm
τ , which

guarantees that (5.35b) holds. Furthermore, based on results of the second part of Proposition

5.1, the divergence rates of the unstable modes in the next time section Si, i> m, must be smaller

than the divergence rates of the unstable modes in Sm, which verifies conditions (5.35) over any

Si, i∈N>m.

Proof of Theorem 5.2. According to Propositions 5.1 and 5.2, the auxiliary dynamic (5.7) is time-

varying based on the interval between events τk. Therefore, it can be viewed as a switched system

with stable and unstable modes. Now with respect to [87, Theorem 1], the stability condition for

(5.7) in any section of time Sm is as follows.

|˜︁η|≤ceaNSme(λ
+
Sm

T+
Sm

−λ−Sm
T−
Sm

)|˜︁η0|, (5.36)

where a and c are constants. Substituting (5.35) into (5.36), RHS of (5.36) is bounded by a steady

exponential term ceaβeh|˜︁η0| which renders a bounded trajectory for the auxiliary state ˜︁η over any

time section Sm. Regarding Lemma 5.5; choosing an appropriate θ, the auxiliary state ˜︁η follows any

increase/decrease of the internal state η̂, which results in a bounded trajectory for η̂. Since η̂ is the

most unstable mode of the extrinsic zero-dynamics (5.4), it follows that, according to the results

in part III and IV of Lemma 5.1, all modes of the extrinsic zero-dynamics, which are represented

by (5.4), are forced to stay bounded the entire time.

Remark 5.6. According to the theorem 5.1, the event-triggered rule (5.6) provides the asymptotic

stability of the closed loop system, satisfying the inequalities (5.19a) and (5.19b). Therefore, with

respect to the theorem 5.2, in order to eliminate the risk of ZDAs on the extrinsic zero dynamics,

one needs to design the parameters in the event-triggering condition (5.6) ensuring that inequalities

(5.19) and (5.32) are satisfied. Consequently, extrinsic zero dynamics states of the sampled-data

system in Fig. 5.1 remain bounded and unsuitable for exploitation by an adversary for cyber-attack

purposes.

Remark 5.7. It is worth mentioning that under the ZDAs, the term ˜︁η(t) in (5.6), which is closely

tied up with (5.4), prevents the event generator from having a high rate of average triggered instants.
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This condition results in enlarged enter-event intervals, which eventually dampen the extrinsic zero-

dynamics (4) due to the inverse relation revealed in Lemma 5.1. This is the tool that we have

developed to mitigate the extrinsic zero-dynamics (5.4), as proven in Theorem 5.2. As a side

effect, it prevents the system from exhibiting Zeno behaviour under attack due to the induced large

enter-event time τk.

5.4 Case Study

To illustrate the effectiveness of the proposed approach, we consider a nonlinear benchmark plant,

the single-link flexible-joint robot manipulator. The state-space representation of the robot is given

by: {︄
ẋ = f(x) + g(x)u

y = x1
(5.37)

f(x)=

⎡⎢⎢⎢⎢⎣
x2

−MgL
I sin (x1)− k

I (x1 − x3)

x4
k
J (x1 − x3)

⎤⎥⎥⎥⎥⎦ , g(x)=
⎡⎢⎢⎢⎢⎣

0

0

0
1
J

⎤⎥⎥⎥⎥⎦ ,

where x=[x1, x2, x3, x4]
⊺. For a detailed description of the model the reader is referred to [97].

An observer-based LQR controller is designed based on linearized model of (5.37) to stabilize the

nonlinear system around the operating point [1.32, 0, 3.22, 0].

We now apply our proposed method. Choosing τ=0.06, σ=10, θ=0.1, α=|y|, and η̄0=0.1 with

ν(|x|)=|x| and γ(|e|)=|e| so that conditions in (5.19) and (5.32) are satisfied. It is easy to see

that the relative degree of the system (5.37) is 4, the same as the number of states, i.e., n=r=4.

Therefore, the continuous-time system (5.37) is minimum-phase. However, a new non-minimum

phase zero-dynamics appears induced by the sample and hold process with sampling time T=0.01s

as follows:

δηk=

⎡⎢⎣ −400 −1 −0.008

−12× 104 −600 −30

−24× 106 −12× 104 −800

⎤⎥⎦ ηk. (5.38)
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Figure 5.5: (a): States responses. (b): Trajectory of the sampling zero ˜︁η. (c): Events instants tk
under (5.6).

Consider now a ZDA generated based on the unstable zero-dynamics (5.38) and activated at

t=0s when the initial condition of states is 10% deviated from the operating point. Figure 5.5-a

shows the system response under the proposed method when it is exposed to the attack. We see

that, although the system performance is degraded compared to normal situation, the controller,

however, successfully neutralizes the attack gradually damping the deviations. The trajectory of

η̂, the most unstable mode of the extrinsic zero-dynamics, is shown in Fig. 5.5-b. To have a better

view of the response, the plot is shown on a logarithmic scale. We observe that using the proposed

triggering condition, the extrinsic zero-dynamics remains bounded. More precisely, the proposed

method (5.6) takes care of the sampling zeros in such a way that whenever the trajectory in 5.5-b

starts to deviate, intervals between events become longer, which can be seen in Fig. 5.5-c. Thus,

the positive rates of (5.8) gradually decrease resulting in a stable mode for internal state η̂.
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Figure 5.6: Trajectory of the states (a) and details (b).

Figure 5.7: (a): Trajectory of the sampling zero η̂. (b): Events instants tk under (5.39).

68



For the purpose of comparison, we apply the following triggering rule to the same system:

tk+1=inf{t>tk+τ : |e(t)|>σα(|y(t)|)}. (5.39)

The event-triggering condition (5.39) is the well established triggering rule proposed in [63] and

employed in multiple studies in networked control systems. The main difference between (5.39) and

(5.6) is that the former is developed based on the static relation of e and y in which the dynamic

changes are absent. However in the latter, we deploy the deviation of the extrinsic zero-dynamics

so that it can supervise not only e but also η̂. Figure 5.6 shows the system response under the

static triggering rule (5.39) when it is compromised by the ZDA. The simulation result reveals that

the internal dynamic states x2, x3, x4 become unbounded even though the exponential behaviour is

not observed in y, as is characteristic of the stealthy property of the ZDA. As a result, although the

deviation of the output y is compensated and settled on the operating point, the internal dynamics

is unbounded. This failure reflects the fact that there is no control of the sampling zeros using the

static event-based method (5.39). Indeed, according to Fig. 5.7, the lack of correlation between

the event instants and the rate of the internal state’s trajectory η̂ in any sub-interval τk results in

unbounded extrinsic zero-dynamics. This can be employed by an adversary to target the internal

dynamics as illustrated in Fig. 5.6.

5.5 Summary

In this chapter, we have developed a resilient control scheme using event-triggered sampling for an

affine class of nonlinear systems under ZDAs. Our approach can mitigate the malicious effect of

the attacks and as a result significantly improve resilience against cyber threats. We show that the

proposed event-based strategy can provide boundedness of the non-minimum phase extrinsic zero-

dynamics induced by discretization while guaranteeing asymptotic stability of the overall system.

Consequently, the sampled-data structure is no longer vulnerable to ZDAs.
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Chapter 6

Model-Based Event-Triggered Control

Against ZDAs

It is commonly recognized that a non-minimum phase system is vulnerable to undetectable cyber-

attacks known as ZDAs. Interestingly, even though the physical plant is minimum-phase, high rate

discretization can introduce non-minimum phase behaviour, increasing susceptibility to ZDAs in

cyber-physical systems. This chapter presents an effective approach for addressing such a security

issue. Our approach involves a novel inferential control setup activated at asynchronous sample in-

stants, prompted by a well-designed model-based event triggering method. Rigorous analysis using

switched system theory demonstrates that the proposed method can converge the zero-dynamics

response to a safe region resulting in minimum-phase property while preserving overall Lyapunov

stability, leading to a secure closed-loop structure under the attack. Simulation results confirm the

effectiveness of the proposed design.

The chapter layout is as follows: In Section 6.1, we present the fundamental concepts and our

proposed event-triggered structure used throughout the sequel. In Section 6.2 we provide several

preliminary lemmas for sampling zeros and event-triggered sampling used in later sections. Section

6.3 contains the main results. Under the developed method, here we investigate the boundedness

property of the zero-dynamics of a system exposed to attacks, as well as asymptotic stability of the

overall system. Finally, in Section 6.4 we present a numerical example to show the effectiveness of

our proposed approach.

6.1 Problem Statement

The feedback system in the chapter is illustrated in Fig. 6.1. It comprises of a digital control

connected to the system output via a network. The event triggering block receives output measure-
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Figure 6.1: Block diagram of the closed-loop control system equipped with an event-triggered
mechanism under ZDAs.

ments from the sensors and decides when to transfer information to the controller. The controller

output is transmitted through the network and is received by the actuators after passing through

the digital-to-analog converters. The plant is described by the following nonlinear model:

ẋ(t) = f(x(t)) + g(x(t))u(t), y(t) = h(x(t)), (6.1)

where x∈Rn, u, y∈R, and f , g, h are locally Lipschitz function, i.e., ∃ Lf such that for any x and˜︁x in a compact set X, |f(x, u)−f(˜︁x, u)| ≤ Lf |(x−˜︁x)|.
We denote F eT the exact discrete-time model of (6.1) with sampling period T , i.e.,

F eT :{δxk=fe(xk)+ge(xk)(uc+uz), yk=he(xk)},

Here the exact discrete-time model F eT represents an ideal discretization that we assume is unknown.

Notice that finding F eT requires solving the nonlinear differential equation (6.1) which, more often

than not, does not have a closed form solution. In the absence of F eT , we consider an approximate

discrete-time model, F aT,h, which can always be found using numerical integration techniques. To

represent the deviation between the exact model and its approximation we assume that F aT,h satisfies

the following consistency properties defined in chapter 2.

Definition 6.1. We denote F uT,h the Euler discrete-time model of (6.1) with sampling period T for

k∈N0, i.e.,

F uT :{δxk=f(xk)+g(xk)uk, yk=h(xk)},

Remark 6.1. Even though F eT is unknown, we can check whether or not the approximate model

satisfies definition 2.2 or 2.3 using the following sufficient conditions.

(i) If F aT,h is locally Lipschitz uniformly in uT and F aT,h is one step consistent with the Euler

approximation F uT , then F
a
T,h is one step consistent with F eT (see [78, Lemma 1]).
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(ii) In general one-step consistency and multi-step consistency does not imply each other. How-

ever, if f(x), g(x) and uT (x) are locally Lipschitz, there exist K∈R>0 and T ∗>0 such that

for any 0<T<T ∗, α(δ, T )=(1+KT )δ+Tρ(h) (see [78, Remark 2] together with [78, Lemma

3]).

6.1.1 Event-Based Inferential Control Setup

The inferential control uc in (6.1) is implemented using a so-called event-based method. In this

approach, information is only exchanged between the sensor and the controller at specific triggering

instances {ti}, i∈N, following the occurrence on an event. When an event occurs at ti, the state

x(ti) is transmitted over the network and received by the controller. The controller then uses a

discrete-time approximation F aT,h of the plant model (6.1) to calculate the predicted output ya given

by:

ya(ti+nT )=

⎧⎨⎩ ha(x(ti)), n=0

ha(F
a
T,h(x, uc)), n ∈ N

where F aT,h is a family of discrete-time approximate models of (6.1), T and h are the sampling

time and integration step, respectively, and uc(ti+nT )=ψ(ya(ti+nT )), n∈N0, for some Lipschitz

function ψ. We neglect the computation delay and assume that the controller sends the stack vector

of the length N+1 to the buffer at ti.

(uc(ti), uc(ti+T ), ..., uc(ti+NT )). (6.2)

Note that under no ZDA (ua=0), the actuator uses the term uc(ti+nT ) in (6.2) to update the

plant input for ti≤t≤ti+NT , i.e., u(t)=uc(ti+nT ) for 0≤n<N and ti+nT≤t≤ti+(n+1)T . After

that, for t>ti+NT the actuator keeps the plant input constant with value u(t)=uc(ti+NT ) until

the next triggering instant ti+1. Therefore, we have u(t)=uc(ti+NT ) for ti+NT≤t<ti+1.

We define the measurement error between the actual and predicted output as follows:

e(t)=ya(ti+kT )−y(t), for ti+nT≤t≤ti+(n+1)T (6.3)

and rewrite the actuator signal as u(t)=ψ(y(t)+e(t)).

Assumption 6.1. We assume ψ is designed such that the equilibrium x=0 of the continuous-time

system ẋ(t) = f(x) + g(x)ψ(h(x)+e) is input-to-state stable with respect to the error e. Thus there

exists a Lyapunov function V : Rn → R and some α1, α2, γ∈K∞, λ∈R>0 that satisfy the following
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conditions:

α1(|x|) ≤ V (x) ≤ α2(|x|), (6.4a)

∇V (x)(f(x)+g(x)ψ(h(x)+e)) ≤ −λV (x)+γ(|e|). (6.4b)

Assumption 6.2. We assume that the approximate model F aT,h is one-step consistent with the

exact model F eT , and it is equi-Lipschitz Lyapunov-ISS. Moreover, the control law ψ is uniformly

locally Lipschitz with respect to y.

6.1.2 Sampling zeros dynamical system

The zero-dynamics of system (6.1) is the internal dynamics when input and initial conditions result

in zero output, [102, 53]. In the sampled-data framework proposed in Fig. 6.1, this includes

a sampled version of the continuous-time zero dynamics (intrinsic part) and a linear subsystem

(extrinsic zero-dynamics) caused by the sample and hold process. Sampling zeros are the eigenvalues

of matrix Q(τi) associated with extrinsic zero-dynamics, and vary with time if the inter-sample

time τi=ti−ti−1 is not fixed which can be represented as a switching dynamical system using the

δ-operator as follows, [53]: ⎧⎨⎩ δηi=Q(τi)ηi

Q(τi)=T21(τi)A12(τi) +A22(τi)
(6.5)

where

T21(τi)=
[︂
− n
τi

· · · − n!
τn−1
i

]︂⊺
,

A12(τi)=

⎡⎢⎢⎢⎢⎢⎣
1
τi
2
...

τn−2
i

(n−1)!

⎤⎥⎥⎥⎥⎥⎦
⊺

, A22(τi)=

⎡⎢⎢⎢⎢⎢⎣
0 1 · · · τn−3

i
(n−2)!

...
. . .

. . .
...

0 · · · 0 1

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ .

6.1.3 Zero-Dynainter-samplemics Attacks

As it can be concluded from 2.5, (2.6) and the example therein, in a sampled-data system with

constant sampling time T and a relative degree r≥2, using a fast sampling rate leads to non-

minimum phase sampling zeros. Therefore, the attacker can exploit the unstable Q(T ) to generate

uz(nT ), n∈N. This vulnerability is demonstrated by an example on a nonlinear system in [103].

Omitting the details of the example, the malicious effect of a ZDA in this scenario is that it has the
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potential to mask any unbounded deviation of the internal dynamics from the output. Indeed, the

attacker injects an output-zeroing input to the plant, therefore, while the output converge to the

operating point, the internal dynamics follows unbounded states of the attack’s dynamical system

created by the non-minimum phase extrinsic zero-dynamics. Consequently, unstable sampling zeros

cause unstable internal dynamics that cannot be detected at the output.

To combat the effects of ZDAs, one trivial strategy is to increase the sampling period when

discretizing the system, i.e. T→∞. This can stabilize the eigenvalues for Q in (6.5) resulting

in minimum-phase sampling zeros. However, this solution has limitations as it necessitates low

sampling rates, resulting in a poor system performance with significant inter-sample ripple and the

possibility of aliasing (see for example [95, Example 8.4.2]). Since the dynamics of the sampling

zeros depend on the time period between samples, τi, a non-uniform sampling strategy can be

utilized to induce non-uniform switching behaviour. As a result, it is possible to find a stabiliz-

ing switching signal that provides the minimum-phase property for the sampling zeros dynamical

system (referred to as extrinsic zero-dynamics), thus, rendering ZDAs ineffective. Under certain

conditions to be clarified later, using a well-designed event-triggered method can effectively provide

a stabilizing switching signal for the extrinsic zero-dynamics and overall stability of the closed-loop

system.

6.1.4 Main Problem

It is now clear that the main challenge to address is as follows. Our goal is to simultaneously

stabilize the nonlinear dynamical system (6.1) together with the extrinsic zero-dynamics (6.5) by

using the inference-based control setup (6.2) with a well-designed triggering condition. To this

end, we formulate the stability problem and obtain a relationship between ISS and the triggering

parameters such that the inferential event-based control setup guarantees both the minimum-phase

property and Lyapunov stability of the closed loop system (6.1) under ZDAs.

6.2 Preliminary Results

In this section, we firstly analyze the stability of the extrinsic zero-dynamics (6.5) under the event-

triggered mechanism. This results in a switching zero-dynamics whose stability is studied using

switching system theory. The following Lemmas characterize the behaviour of the switching zero-

dynamics under asynchronous sampling, known as a switching signal.

Lemma 6.1. For the switching system (6.5) there exist some fixed kλ>0 such that the following

statements are valid with respect to kλ and τi:

For any interval τi=[tk−1, tk), k∈N0:
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1. If τi≤kλ, then Q is not Schur stable over t∈[tk−1, tk) which results in the existence of an unstable

mode for (6.5).

2. If τi>kλ, then Q is Schur stable in t∈[tk−1, tk) which results in the existence of a stable mode

for (6.5).

Proof. The properties of the spectrum S{Q(τi)} are outlined in chapter 5. As indicated by the

results in Theorem (5.1), because of the special form of Q, the eigenvalues of Q(τi) decrease mono-

tonically with respect to τi, i.e., for any λ∈S{Q}, λ∝ 1
τi
. Therefore, there exist a positive constant

kλ such that max{|λi||λi∈S{Q}, i=1, ..., n}=kλ
τi
. Now, if τi>kλ, all eigenvalues are located inside

the stability region, resulting in a stable mode and vice versa. Therefore, the stability of a switching

dynamical system (6.5) is directly related to τi.

Lemma 6.2. For any stable/unstable mode Q(τi), there exist a scalar constant a>0 such that

|Q(τi)|≤a|λm(τi)|, where |λm(τi)| represents the largest absolute value of the eigenvalues of Q(τi)

at t=τi, i.e. |λm(τi)|≤|λ(τi)j | for λ(τk)i i∈{1, ..., r−1}.

Proof. Computing the scalar a is a straightforward utilizing algebraic matrix theory.

We define S(t, t0) as a set of all triggering instant ti during t∈[t0, t], and n(t, t0), Ξ+(t, t0)

(Ξ−(t, t0)) as the total number of switching instants in S(t, t0) and total duration of unstable

(stable) modes of switching extrinsic zero-dynamics (6.5) in t∈[t0, t], respectively, then propose the

stability condition of system (6.5) as follows:

Theorem 6.1. The dynamical system (6.5) is exponentially stable under any arbitrary switching

sequence S if there exist constants n0, t0, τz, Tz∈R>0 such that the following conditions are satisfied:

n(t, t0)≤n0 +
t−t0
τz

(6.6a)

Ξ+(t, t0)≤ξ0 +
t−t0
Tz

(6.6b)

Proof. Consider the linear switching system (6.5). At any switching time ti, the solution of (6.5)

can be written as follows:

η(tk)=Q(τk)Q(τk−1) · · ·Q(τ0)η(0). (6.7)

According to Lemma 6.1, the switching system (6.5) contains stable and unstable modes for t<tk.

Assume τi (τj), i∈{1, ..., Ns} (j∈{1, ..., Nu}) indicates the time interval where (6.5) has stable
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(unstable) modes. Therefore, we can partition (6.7) as follows:

η(tk)=Πi=Ns
i=1 Q(τi)Π

i=Nu
j=1 Q(τj)η(0) (6.8)

Define λi=|λ(τi)| and λj=|λ(τj)| as the norm of the smallest and largest eigenvalues of the stable

and unstable mode in τi and τj , respectively. Using Lemma 6.2 and substituting λi and λj into

(6.8) we have:

|η(tk)|≤Πi=Ns
i=1 aiλiΠ

j=Nu

j=1 ajλj |η(0)|

≤Πi=Ns
i=1 e(ai+ln(λi))Πj=Nu

j=1 e(aj+ln(λj))|η(0)|

≤eamn(t)+ln(λ+)Ξ+(t)+ln(λ−)Ξ−(t)|η(0)| (6.9)

where am=max{ai, aj}, λ+=max{|λj |}, and λ−=max{|λi|}, j∈{1, ..., Nu} and i∈{1, ..., Ns}. The

exponentially stability of the system (6.5) is guaranteed if the exponential rate of the RHS in (6.9)

is monotonically decreasing. Thus, considering the condition (6.6b) we can choose an arbitrary

scalar λ∗≤λ− and k0>0 to have the following inequality:

ln(λ+)Ξ+(t)+ln(λ−)Ξ−(t)≤ln(λ∗)t+k0 (6.10)

such that Tz=
ln(λ+)−ln(λ−)
ln(λ∗)−ln(λ−)

, and ξ0=
k0

ln(λ+)−ln(λ−)
.

Substituting (6.10) into (6.9) we have:

|η(tk)|≤eamn(t)+ln(λ∗)t+k0 |η(0)|. (6.11)

Now, substituting condition (6.6a) into the exponential rate in the RHS (6.11), we can choose an

arbitrary scalar α≥k0 and λ̄≤λ∗ to obtain the following inequality:

amn(t)+ln(λ∗)t+k0≤α+ln(λ̄)t (6.12)

such that N0=
α−k0
am

and τz=
am

ln(λ̄)−ln(λ∗)
.

Finally, substituting (6.12) into (6.11) and considering the fact that 0≤λ̄≤λ−≤1, the RHS

of inequality (6.11) has a monotically decaying rate. Therefore, the switching system (6.5) is

exponentially stable under the switch signal S, provided that conditions (6.6) hold.

76



6.2.1 Event-Triggering Condition

Let ti, be the most recent sampling instant. The control signal is updated again at ti+1 according

to the following rule:

ti+1=inf{t>ti:

γ(4|e(t)|)>λ1γ(4|y(t|)+γ(νTρ(h)) (6.13a)

∧ n(t)≤n0+
t

τz
(6.13b)

∧ Ξ+(t)≤ξ0+
t

Tz
} (6.13c)

where λ1:=λ(1−c), 0<c<1, ν∈R>0, and e(t) is defined in (6.3). The second and third conditions in

(6.13) are derived from the criteria in Theorem 6.1 to ensure that the triggering sequence ti satisfies

the stability condition of switching extrinsic zero-dynamics (6.5). Typically, the ETM module first

evaluates the first condition (6.13a) to make a decision on event triggering instant ti, but satisfying

(6.13a) may not guarantee successful transmission. Therefore, we denote tusj as unsuccessful event

times, i.e., tusj ={t:(6.13a) holds but (6.13b) or (6.13c) does not hold & j∈N}. In this regard, we

partition [ti, ti+1] into the following three sub-intervals:

[ti, ti+1]=∆1(ti+1, ti) ∪∆2(ti+1, ti) ∪∆3(ti+1, ti) (6.14)

where

∆1(ti+1, ti):=[ti, ti+NT ]

∆2(ti+1, ti):=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ti+NT, t

us
j ] tusj ∈(ti+NT, ti+1),

(ti+NT, ti+1) tusj /∈(ti+NT, ti+1),

∅ ti+1=ti+NT,

∆3(ti+1, ti):=

⎧⎨⎩ (tusj , ti+1] tusj ∈(ti+NT, ti+1),

∅ tusj /∈(ti+NT, ti+1).

Lemma 6.3. Under the Assumption 6.2, the event-triggering rule (6.13) guarantees Zeno-free

behaviour for the closed-loop event-triggered system.

Proof. According to the error definition (6.3) and Remark 6.1, for tsi≤t≤tsi+NT we have |e(t)|≤N(1+KT )NTρ(h).
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Consider the worst case scenario when |e(t)|=N(1+KT )NTρ(h). We have γ(4|e(t)|)=γ(4N(1+KT )NTρ(h)).

Based on the first triggering condition (6.13a) we can define ν:=4N(1+KT )N , then γ(4|e(t)|)=γ(νTρ(h)),
and as a result, γ(4|e(t)|)≤λ1γ(4|y(t)|)+γ(νTρ(h)). Thus, we conclude that condition (6.13a) is

never violated for [ti, ti+NT ] which guarantees Zeno-free behaviour.

Remark 6.2. According to Lemma 6.3, once an event instant tsi occurs no additional triggering

happens within the time period [ti, ti+NT ]. This guarantees the presence of β>0 such that ϕ(t)≤βt,
where ϕ(t) represents the total number of times that (6.13a) is satisfied in [0, t].

6.3 Main Results

In this section we analyze the stability of the nonlinear system (6.1) using the common Lyapunov

function method. We firstly, investigate some bounds on the time intervals defined in (6.14) in the

following Lemma to be used in Theorem 6.2.

Lemma 6.4. Consider the event-triggering condition (6.13) and define the time interval [ti, t] as

follows:

[t, ti]=∆1(t, ti)
⋃︂

∆2(t, ti)
⋃︂

∆3(t, ti)

where ∆m(t, ti)=
n(t)⋃︁
i=0

∆m(ti, ti−1)
⋂︁
[0, t] for m∈{1, 2, 3}, then sub-intervals ∆m(t, ti) are bounded

from the above by the following inequalities:

∆1(t, ti)≤(N+1)Tn(t, ti) (6.15a)

∆3(t, ti)≤Ξ+(t, ti)−(ϕ(t, ti)−n(t, ti))(N+1)T (6.15b)

∆2(t, ti)≤(t−ti)−∆1(t, ti)−∆3(t, ti) (6.15c)

Proof. With respect to (14) ∆1(t
s
i+1, t

s
i ) is a fixed length interval with the length of (N+1)T after

any successful triggering time tsi , therefore, the total length of ∆1(ti+1, ti), ti∈S
⋂︁
[ti, t] is upper-

bounded by the total number of events n(t, ti) multiplied by (N+1)T which verifies (6.15a). To

evaluate inequality (6.15b), we consider the worst case as follows: if tusj ∈[ti, ti+1], then t
us
j =ti+NT

for ti∈S
⋂︁
[ti, t]. Thus using the definition ∆3 in (6.14) and ϕ in Remark 6.2, (6.15b) is verified.

Finally, the remaining part in [ti, t] upper-bounds ∆2(t, ti) which verifies (6.15c).

Lemma 6.5. Consider the nonlinear system (6.1) and assume that the approximate discrete-time

model F aT,h satisfies the one-step consistency of Definition 2.2. Then for k∈{0, ..., N} and i∈N0 we
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have:

1) for ti+kT≤t≤ti+(k+1)T : |x(t)−xa(ti+kT )|≤Tρ(h) (6.16a)

2) for ti≤t≤ti+NT : |x(t)−xa(ti+kT )|≤α(δ, T ). (6.16b)

Proof. Recall that the disturbance free continuous-time system (6.1) is locally Lipschitz. Thus,

x(t|t=kT )=x
e(kT ) ∀T<T ∗. Consider 0≤δT≤T and k=0, then we obtain the following:

|x(ti+δT )−xa(ti+T )|

≤|x(ti+δT )−xa(ti+δT )|+|xa(ti+δT )−xa(ti+T )|

≤δTρ∗(h) + λFaT≤Tρ(h) (6.17)

where ρ(.):=ρ∗(.)+λFa and λFa is the Lipschitz constant of approximate model F a. The final

inequality in (6.17) is derived by utilizing a one-step consistency in conjunction with the Lipschitz

continuity property of the approximate model F a. By continuing this process for k∈{0, . . . , N} we

have that inequality (6.16a) holds true for any values of k≤N and t∈[ti+kT, ti+(k+1)T ].

Additionally, as outlined in Definition 2.3 and Remark 6.1, the deviation between x(t) and xa

can be bounded by N(1+KT )NTρ(h) after N steps. As a result, we conclude that for ti≤t≤ti+NT
we have:

|x(t)−xa(ti+kT )|≤N(1+KT )NTρ(h). (6.18)

Defining α(δ, T )=N(1+KT )NTρ(h), inequality (6.18) implies the second condition (6.16b).

Assumption 6.3. In order to prevent finite escape times during [ti, ti+1], we assume the presence of

some µ∈R>0 such that for any r∈R and γ and α1 in (6.4) there exist ν>0 such that γ(νr) ≤ µα1(r).

Theorem 6.2. Under Assumptions 6.1-6.2, given any δx>0, the nonlinear system (6.1) under

control setup (6.2) and triggering rule (6.13) is Lyapunov stable for all |x(0)|≤δx if the parameters

in (6.6) satisfy the following inequality:

˜︁T (ω1−2ω2+ω3)

τz
+
ω3−ω2

Tz
≤β ˜︁T (ω3−ω2)−ω2 (6.19)

where ˜︁T=(N+1)T , and ω1=−λ, ω2=−(µ(λ1+2)−λ), ω3=µ−λ.

Proof. To prove the theorem we consider first the right-hand side of (6.4b) within an arbitrary

inter-event time interval [ti, ti+1] and expand the result for [0, t].

Any interval [ti, ti+1] in (6.14) can be divided into three sub-intervals ∆1(ti+1, ti), ∆2(ti+1, ti),

∆3(ti+1, ti). Beginning with ∆1(ti+1, ti), according to Lemma 6.3, no further triggering events
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occur. Therefore, the Lyapunov function V (x) remains non-increasing, and this is supported by

the control input sequence (6.2) at any t=ti, given that the approximate model F aT,h is created by

selecting suitable values of T and N based on Assumption 6.2 and the results in [55, Theorem 1].

Thus, one-step consistency is satisfied and we obtain:

γ(|e(t)|) ≤ γ(LfTρ(h)) (6.20)

where (6.20) is derived using the Lipschitz continuity together with the one-step consistency con-

dition in the basis of (6.16a). Therefore, substituting (6.20) into (6.4b) and solving the resulting

differential inequality, we have the following upper-bound on V (x(t)) for t∈[ti, ti+NT ] with ω1=λ.

V (x) ≤ e−ω1(t−ti)V (x(ti))+α1 (6.21)

where α1=
γ(LfνTρ(h))

ω1
.

In ∆2(ti+1, ti), the actuator employs the last element of (6.2) and holds it until a new update

is received. Unlike the previous scenario, here the one-step consistency does not necessarily hold.

Thus, to obtain an upper-bound on V̇ we start with the fact that |e(t)|=|ya(ti+kT )−y(t)|, and we

can write:

γ(2|ya(ti+kT )|) ≤ γ(4|e(t)|)+γ(4|y(t)|) (6.22)

where the right hand side in (6.22) follows from the following inequality on a the function γ∈K∞:

γ(a+b) ≤ γ(2a)+γ(2b).

Moreover, using the triangular inequality we have:

γ(|e(t)|)≤γ(2|ya(ti+kT )|)+γ(2|y(t)|). (6.23)

Substituting (6.22) into (6.23) we obtain:

γ(|e(t)|)≤γ(4|e(t)|)+γ(4|y(t)|)+γ(2|y(t)|). (6.24)

From the Lipschitz property of h(x) we can write |y|≤Lh|x|. Moreover, the triggering condition

(6.13a) is not violated in this time interval, i.e. γ(4|e(t)|)≤λ1γ(4|y(t)|)+γ(νTρ(h)) . Therefore,

substituting the aforementioned inequalities into (6.24), we have:

γ(|e(t)|)≤(λ1+2)γ(4Lh|x(t)|)+γ(νTρ(h)). (6.25)

Substituting (6.25) into the right-hand side of (6.4b) and considering Assumption 6.3 with ν=4Lh,
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we obtain the following upper-bound on V̇ (x):

V̇ (x(t))≤(−λ+µ(λ1+2))V (x(t))+γ(νTρ(h)). (6.26)

Finally, solving (6.26) results in the following upper-bound on V (x(t)) for t∈[ti+NT, tusj ] with

ω2=µ(λ1+2)−λ.

V (x(t)) ≤ e−ω2(t−ti−NT )V (x(t+i NT )),+α2. (6.27)

where α2=
γ(νTρ(h))

ω2
.

In ∆3(ti+1, ti), we assume that the condition (6.13a) holds and the system needs to send a

new event, however, due to stability conditions (6.6) on the extrinsic zero-dynamics, at least one of

(6.13b) or (6.13c) is not satisfied. As a result, a new unsuccessful event is created and the Lyapunov

function V (x) may increase. Thus, the condition on the Lyapunov function is established as follows:

from the definition of error in (6.3), we have

|e(t)|≤2|y(t)|+Lhα(δ, T ) (6.28)

where (6.28) is derived by utilizing the multi-step consistency between models outlined in Definition

2.3 together with (6.16b). Substituting (6.28) into (6.4b), we get:

V̇ (x(t))≤(µ−λ)V (x(t))+α3, (6.29)

where α3:=γ(2Lhα(δ, T )).
Finally, solving the differential inequality (6.29) we obtain an upper-bound on V (x) with exponen-

tial rate ω3=µ−λ as follows:

V (x(t)) ≤ eω3(t−tusj )V (x(tusj ))+
α3

ω3
(eω3(t−tusj )), (6.30)

which gives the desired upper bound over t∈[tusj , tsi+1].

Consequently, using (6.21), (6.27), and (6.30), the following inequality holds for the Lyapunov

function V (x(t)) over t∈[ti, ti+1]:

V (x)≤eω3∆3(ti+1,ti)−ω2∆2(ti+1,ti)−ω1∆1(ti+1,ti)V (x(ti))

+α1e
ω3∆3(ti+1,ti)−ω2∆2(ti+1,ti)+(α2+α3)e

ω3∆3(ti+1,ti). (6.31)

Using the common Lyapunov function technique in the switching system, we can substitute V (x(ti))
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into (6.31) for i∈{0, ..., n(t)}, and extend the inequality (6.31) over t∈[0, t] as follows:

V (x)≤eω3∆3(t,0)−ω2∆2(t,0)−ω1∆1(t,0)V (x(0))

+α1

⎡⎣n(t)∑︂
i=0

eω3∆3(t,ti)−ω2∆2(t,ti)−ω1∆1(t,ti)

×eω3∆3(ti,ti−1)−ω2∆2(ti,ti−1)
]︂

+(α3+α2)

⎡⎣n(t)∑︂
i=0

eω3∆3(t,ti)−ω2∆2(t,ti)−ω1∆1(t,ti)

×eω3∆3(ti,ti−1)
]︂

≤

A⏟ ⏞⏞ ⏟
eω3∆3(t,0)−ω2∆2(t,0)−ω1∆1(t,0) V (x(0))+(α3+α2+α1)

×
n(t)∑︂
i=0

eω3∆3(t,ti)−ω2∆2(t,ti)−ω1∆1(t,ti)eω3∆3(ti,ti−1)

⏞ ⏟⏟ ⏞
B

. (6.32)

If the exponential rate of A in (6.32) is negative, and the summation B is bounded from above over

the entire time, then we can make sure that Lyapunov function V (x) is monotonically decreasing

over the time interval [0, t]. Hence, we substitute the upper-bound of ∆m(t, 0), m={1, 2, 3}, from
(6.15) into A in (6.32) and make it negative to obtain the following inequality condition:

(ω2−ω1)
˜︁T
τz
−ω2+(ω2+ω3)

(︃
1

Tz
−(β+

1

τz
). ˜︁T)︃⏞ ⏟⏟ ⏞

r∗

≤0 (6.33)

Notice that inequality (6.33) verifies condition (6.19). Next, we analyze the convergency of the

summation B in (6.32). We can rewrite B as follows:

B≤e(c∗−ω3
˜︁T−τzN0)

n(t)∑︂
i=0

e(r
∗+ω3)τzn(t,ti), (6.34)

where c∗=(ω2−ω1) ˜︁TN0+(ω2+ω3)(t0+ ˜︁TN0), and inequality (6.34) follows from the upper-bounds

on ∆m(t, ti), m={1, 2, 3}, obtained in (6.15) together with condition (6.6a). Since the coefficient

of ω3 in r∗ is less than −1, i.e., 1
Tz
−(β+ 1

τz
) ˜︁T< − 1, we can easily verify that the term (r∗+ω3) is
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negative, therefore, the summation part in the right-hand side of (6.32) converges as follows:

n(t)∑︂
i=0

e(r
∗+ω3)τzn(t,ti)≤ 1

1−e(r∗+ω3)τz
. (6.35)

Finally, the negative exponential rate of A and bounded summation term B in (6.32) leads to

decreasing Lyapunov function V (x) over [0, t]. This implies the Lyapunov stability of the closed-

loop nonlinear system (6.1)-(6.2) with triggering rule (6.13).

Substituting now (6.32) into (6.4), we obtain the following upper-bound for x(t):

|x(t)|≤α−1
1

(︃
ec

∗
α2(|x(0)|)+

1

1−e(r∗+ω3)τz

)︃
. (6.36)

The right-hand side of (6.36) is the compact set X which was denoted in Definitions 2.2-2.3 and can

be calculated offline as a radius of initial local domain for the function ρ and Lipschitz constants.

This implies that ρ, Lf , Lg, and Lh are valid in all intervals.

Remark 6.3. Inequality (6.19) provides the relationship between the extrinsic zero-dynamics sta-

bility parameters (τa, Ta), the system stability parameter (λ), buffer size (N), sampling period (T ),

event-triggered parameter (c, ν) and event generation rate (β). From (6.19), we conclude that in-

creasing N leads to a larger upper bound for (6.19). This allows for greater growth in 1
τa

and 1
Ta
,

and accordingly create larger allowable n(t) and Ξ+(t) in (6.6a) and (6.6b). As a result, the switch-

ing extrinsic zero-dynamics (6.5) remains bounded and stable even when more unstable modes are

present in t∈[0, t].

6.4 Case Study

Figure 6.2: Schematic of single trailer articulated vehicle in (X,Y )-plane.

To evaluate the effectiveness of our proposed method, we consider the single trailer articulated

vehicle model discussed in [104]. Figure 6.2 illustrates the schematic of an articulated vehicle, with
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the Y-axis representing the vertical position and X-axis representing the desired horizontal position.

The steering angle of the tractor, represented by α=tan−1(u), where u serves as the control input.

L1 and L2 are the wheelbase distances, and θ1 and θ2 are the orientations, respectively. Our

goal is to control the vehicle’s position along the X-axis using the steering angle. We define:

[x1, x2, x3]:=[y2, θ1, θ2], therefore, the state space representation of the system is as follows:

ẋ1 = tan (x3)

ẋ2 = − tan (x2)

L1 cos (x3)
+

1

L2 cos (x2) cos (x3)
u

ẋ3 =
tan (x2)

L1 cos (x3)

y = x1 (6.37)

where L1=2 and L2=4. The normal form representation of (6.37) is given by:

ż1=z2, ż2=z3, ż3=F (z)+b(z) tan(α)

where x1=z1, x2=tan−1(L2 cos
3(tan−1(z2))z3), x3=tan−1(z2), F (z)=

(− cos(x3)+3 cos(x2) sin(x3) sin(x2))L1 sin(x2)
L2
2L1 cos5(x3) cos3(x2)

and b(z)= L2 cos(x3)
L2
2L1 cos5(x3) cos3(x2)

.

A control system for the articulated vehicle is designed by combining a sliding mode control

method with a high gain observer, as follows:

s=c1z1+c2z2̂+z3̂

u = (−c1z2̂−c2z3̂−F (z)−β sgn(s))/b(z)

where z2̂ and z3̂ are the estimations of z2 and z3, respectively. The remaining parameters are c1=6.5,

c2=11.5, and β=3.5. It is clear that the relative degree of the system (6.37) is equal to the order

of the system, i.e., r=n=3. Therefore, the continuous-time system is minimum-phase. However,

when a digital controller governs the vehicle, the following extrinsic-zero dynamics appears after

using the discretization method induced by the sample-and-hold process, [53].

δητi+1=

[︄
− 3
τi

−1
2

− 6
τ2i

− 3
τi

]︄
⏞ ⏟⏟ ⏞

Q(τi)

ητi (6.38)

From Q(τi) we can infer that the eigenvalues are related to the inter-event time τi, and thus, the

time interval between two consecutive event directly impacts the stability of the extrinsic zero-

dynamics (6.38). For example, under a fixed inter-event time, i.e., τi=T , k∈N0, when the value of
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T is small, the eigenvalues of Q(T ) are outside the stability region, which in turn make the extrinsic

zero-dynamics (6.38) non-minimum phase.

Figure 6.3: Time response of the states with fixed sampling time T .

The time response of the vehicle under digital sliding mode control with fixed sampling time

is illustrated in Fig. 6.3. We assume initial conditions [1,−1.1, 0]. As can be seen in Fig. 6.3-(a),

under no ZDAs, despite the extrinsic zero-dynamics being non-minimum phase for T=0.5s, the

system remains stable. Consider now the effect of the ZDAs generated using the non-minimum

phase zero-dynamics (6.38) applied to the input. The internal dynamics of the vehicle (states x2

and x3) may not remain bounded, as shown in Fig. 6.3-b. Indeed, the attack input is designed to

make the internal dynamics pass through the kernel of the output at any sample time Tk, k∈N0.

Thus the malicious effect of the attack is hidden from the output and the controller does not detect

any abnormal deviation in the internal dynamics. This illustrates the stealthy characteristic of the

ZDA, as the attack does not affect the measurement part, but affects the internal dynamics.

In the sequel, we depart from the fixed inter-event time T and let the triggering condition

(6.13) and control setup (6.2) governs the system. We choose parameters n0= 7.5, t0= 1.54, τa= 5,

Ta= 1.76, N=15, h=0.001, T=0.04, λ= 2, c= 0.2, β=0.05, µ= 60, κ=0.5, η=1, and functions

ρ(r)=|r|, γ(r)=r2. We assume the approximate model F aT,h is constructed using the Euler approx-

imation method. The first event is triggered at t=0, i.e. t0=0.
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Figure 6.4: Time response of the system under ETM (6.13) and without ZDA.

Figure 6.4 illustrates the effectiveness of the proposed method. As we can see, the event instants

shown in 6.4-b are carefully executed such that, firstly, states with non-zero initial condition become

bounded and converge to the equilibrium point (Fig. 6.4-a), which verifies the result in Theorem 6.2.

Secondly, the switching extrinsic zero-dynamics (6.38) becomes bounded and eventually converges

to zero (Fig. 6.4-c), as guaranteed in Theorem 6.1.

The significance of our proposed method in ensuring a stable extrinsic zero-dynamics can be

observed in Fig. 6.5 where an active ZDA targets the system. When the system is governed

by the triggering condition (6.13) and inferential control setup (6.2), the zero-dynamics (6.38) is

minimum-phase. Therefore, even if an attacker propagates a malicious signal input using (6.38),

there may be some bounded deviations, but it is not destructive and the internal dynamics of the

system remain stable, as demonstrated in Fig. 6.5-a.

For the purpose of comparison, we apply the ZDA to a typical event-triggered control system.

In this case, the control structure remains the same, but we remove the restriction criterion induced

by the stability of extrinsic zero-dynamics on triggering condition (6.13). Therefore, the event is

triggered whenever (6.13a) is satisfied regardless of the (6.13b)-(6.13c), i.e:

tk+1=inf{t>tk: γ(4|e|)>λ1γ(4|y|)+γ(νTρ(h))} (6.39)
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Figure 6.5: Time response of the system under ETM (6.13) and active ZDA.

Figure 6.6: Time response of the system under ETM (6.39) and without ZDA.

As seen in Fig. 6.6, using a typical triggering condition (6.39), while the vehicle is stabilized

under the control setup (6.2), there is no control on extrinsic zero-dynamics under such a condition
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and eventually it becomes unstable as shown in Fig. 6.6-c.

Figure 6.7: Time response of the system under ETM (6.39) and active ZDA.

In Fig. 6.7, the system equipped with the triggering condition (6.39) runs under an active

ZDA and becomes unstable at t=18s despite the control setup being the same as our proposed

method. This observation highlights the importance of a well-designed triggering condition in

countering ZDAs. Therefore, the event instants are executed in such a way that the control input

simultaneously stabilizes the zero-dynamics and the system itself, eliminating any vulnerable spots

and serving as a proactive strategy.

Remark 6.4. It is worth noting that both the typical event-triggering condition (6.39) (Fig. 6.7-a)

and the fixed constant sampling (Fig. 6.3-b), result in an unstable system and are vulnerable to

ZDAs. However, running under event-triggered mechanism (6.39), attacks cannot remain stealthy,

and their malicious effects eventually appear as deviations in the system’s output, as shown in Fig

6.7-a. Conversely, the same effect does not occur when using the fixed time-triggered approach,

as illustrated in Fig. 6.3-b. This is mainly because the use of event-triggered sampling results in

unpredictable and random inter-sample time interval from the attacker’s point of view. This feature

makes the system’s dynamics act as a so-called moving target, which is the type of strategy proposed

in [47] as a detection method against stealthy attacks. As a result, the closed-loop system’s dynamics

become difficult to estimate by the attacker. This observation, along with what we proposed in this

chapter, highlights the advantage of using the event-triggered methods instead of the time-triggered

to deal with stealthy attacks in network control systems.
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6.5 Summary

In this chapter, we propose a novel control scheme that enhances the resiliency of affine nonlinear

systems against ZDAs. Our approach integrates model-based event-triggered method and inferential

control setup. We developed a new event-triggering condition based on the stability of switching

systems with stable and unstable modes to provide the stabilizing switching signal for the extrinsic

zero-dynamics in the event-based structure. Additionally, with the help of the common Lyapunov

function technique, we established conditions on the event-triggered controls parameters to ensure

stability under ZDAs. We demonstrated that the strategy we have devised results in minimum-

phase behaviour of the extrinsic zero-dynamics while maintaining Lyapunov stability, leading to

significant improvements in protection against cyber threats.
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Chapter 7

Summary and Conclusion

This thesis focuses on cybersecurity and resilient control design for a nonlinear system under cyber

attacks. While we explore a secure control method against DoS attacks, our primary focus is on

ZDAs, which constitute an active area of research in deception attacks. The main objective of this

thesis is to contribute to advancing the understanding of these attacks in sampled-data systems

and to design a secure control framework. This framework leverages asynchronous sampling in

event-triggered schemes, serving as a self-defence mechanism to counteract ZDAs whenever the

system is targeted by an adversary.

In Chapter 3, we propose an inference-based control approach to compensate for the lack of

sensor information during DoS attacks. Previous works on nonlinear systems do not provide a

stabilization strategy during the DoS attack. While in our scenario the controller uses the plant

model to predict future states ahead of time and uses this information as a substitute for sensor

measurements. In this regard, we propose a novel model-based event-triggering strategy to com-

municate sensor measurements and the control block. The use of discrete-time models of nonlinear

systems requires solving a nonlinear differential equation that typically does not admit a closed

form solution. Thus, our formulation is framed in the theory of sampled-data nonlinear control and

consistency of approximate discrete time model. We show that the triggering rule can be designed

based on an approximate model, however assuming only mild conditions, the rule is guaranteed to

work for the actual system. The inferential controller and event-triggered sampling are effectively

combined to balance network traffic induced by packetized data transmission in the control loop.

Contrary to the restriction of synchronous attacks existent in previous works and the one side

restriction on the attacker channel’s target condition, our method allows the control system to be

asynchronously targeted on the sensor to controller and controller to actuator channels. Further-

more, the assumption on the maximum number of consecutive packets dropout, which is the case

in packetized transmitting strategy is also relaxed.

In chapter 4, our goal was to extend the existing research on the benefit of multi-rate sampling
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for the stability of the system under ZDAs. Using the concept of dissipativity as a fundamental

tool in control systems analysis and design, we study the effect of ZDAs in nonlinear systems. We

formulate our solution in the lifted-domain and analyze the dissipativity property of the internal

dynamics of a multi-rate nonlinear sampled-data system based on an augmented system constructed

using the lifting operator. The theory of lifting and its application in periodic linear systems is

well established. In this chapter we apply the same principles to a nonlinear system and provide

a framework for analysis and design a model-based resilient control of nonlinear systems in the

lifted-domain. Using a model to generate predicted states and input signals in linear systems is

trivial because of the existence of explicit solutions for the linear differential equations. In the

nonlinear case, however, this is not a trivial task since most nonlinear differential equations do

not admit a closed-form solutions. Therefore, the only resource available is to use an approximate

solution. Our approach is consistent with the use of approximate models in the nonlinear sampled-

data theory. Therefore, our solution is cast in the context of this body of literature and provides a

model-based solution that is applicable to nonlinear systems under ZDAs. The framework provided

in this chapter is one of the first attempts to implement such algorithm in nonlinear sampled-data

systems under stealthy attack.

In chapter 5, we study the effect of ZDAs on the stability of nonlinear sampled-data systems

implemented using an event-triggered mechanism. We formulate the problem as a switched systems

and analysis the stability of the overall system using the concept of average dwell time. We use the

event-triggered approach to eliminate the vulnerability of ZDAs induced by the sampling process.

The new triggering decision depends not only on the plant output but also on the deviation of

extrinsic zero-dynamics. Indeed, the triggering condition explicitly includes the zero-dynamics and

therefore introduces a trade-off between performance and resiliency while maintaining asymptotic

stability during attacks. As in the classical event-triggering approach, our scheme also reduces un-

necessary communication demands when compared to traditional triggering conditions under ZDAs.

However, the event-triggered approach proposed here is drastically different from the traditional

use of event-triggered sampling discussed in the existing literature. The event-triggered approach

was introduced and is primarily used to limit the transfer of information between system compo-

nents to what is necessary, thus reducing network congestion in bandwidth-limited systems. We

utilize the event-triggered mechanism as a secure solution to counteract ZDAs and ensure system

resilience. The adjustable interval time between events serves as a key parameter that effectively

safeguards against these attacks. Moreover, our proposed method not only neutralizes the ZDAs

but makes the system immune to the so-called zero-stealthy attack. This type of attack arises when

the control system works in a multi-rate sampling framework. Notice that previous works, although

effective in resolving the unstable sampling zeros problem, make the system vulnerable to this type

of cyber-attacks, due to the use of multi-rate sampling methods. Our proposed event-triggered

mechanism, simply does not have this problem and is therefore immune to zero-stealthy attacks.
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It is also worth mentioning that the multirate approach that has been presented in the chapter

4, although effective, ignores network bandwidth constraints and may result in excessive transfer

of information between components. In this work we address practical limitations in networked

control systems and tackle the problem from an entirely different angle. Using the event-driven

approach becomes vital when a hybrid attack (for example, a combination of a ZDA and a DoS

attack) targets the system, forcing open loop operation for relatively long periods of time.

In Chapter 6, we investigate an event-triggered inferential-based control scheme for nonlinear

sampled-data systems under ZDAs. While the multi-rate methods explored in Chapter 4 faced chal-

lenges due to high communication bandwidth demands, the event-triggered strategy discussed in

Chapter 5 experienced performance degradation. Our innovative approach tackles these obstacles

and surpasses previous efforts. We introduced a novel event-triggering strategy to facilitate com-

munication between sensor measurements and the control block. Our proposed triggering scheme

is based on the model-based framework, but with modifications, including a new error equation

and a threshold criterion obtained from the stability analysis of the extrinsic zero-dynamics. By

employing the concept of switched system theory, we addressed the simultaneous stabilization of

the nonlinear sampled-data system and its zero-dynamics under the proposed triggering condition.

This allowed us to establish criteria for design, ensuring a stable, minimum-phase closed-loop sys-

tem. I tis worth to mention that our solution outperforms the approach presented in Chapter 5,

achieving exponential stability for the extrinsic zero-dynamics, rendering the system immune to

the effects of ZDAs. Additionally, our solution eliminates issues related to extended inter-event

sampling times encountered in Chapter 5.

7.1 Directions for Future work

Our proposed results in this thesis can be pursued in the following areas:

� Resilient control against ZDAs is crucial for non-minimum phase linear/nonlinear systems.

Therefore, studying the security of these type of systems is essential due to their inherent

vulnerability to stealthy attacks. Whether in continuous time or within a sampled-data

framework, these systems are susceptible to ZDAs. One effective approach to tackle this issue

involves formulating the problem as a switching system and utilizing the concept of switching

systems, where all sub-systems are unstable. This method helps analyze the stability of the

zero-dynamics and assess the feasibility of potential solutions.

� The concepts of relative degree, normal-form transformation, zero-dynamics, and sampling

zeros are rarely studied for MIMO systems. However, most large-scale plants are typically

represented as multi-input multi-output systems, requiring additional research to enhance the

understanding of their security under ZDAs. The existing approach in the literature is not
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applicable for cases with more than one output, rendering it an open problem for further

study.

� The theory of zero-dynamics and its concepts, such as controlled invariant subspace, kernel

space, sampling zeros, and relative degree, remain open areas of study in hybrid systems

like event-based, switching, and piece-wise affine systems. Gaining a deeper understanding

of these systems’ behaviour enables the control community to offer effective solutions for

mitigating cyber attacks and ensuring security for the overall system. Therefore, exploring

these fundamental definitions in hybrid systems is valuable and worthwhile.

� Comprehensive protection against cyber attacks in sampled-data control systems. Most ref-

erences in the literature consider a scenario in which an attacker employs a single form of

attack. In a realistic scenario, however, an attacker can employ various forms of malicious

attacks to target the control system. Moreover, a combination of published methods does

not provide an optimal solution to confront combined attacks, thus opening an important

research challenge to explore the analysis and design of combined defence methods in control

systems.

� Extension of previous results with respect to the practical feedback issues such as network

constraints, input and output disturbances, measurement noise, and model uncertainties. As

it is well studied in the literature, the impact of disturbance on any control system equipped

with an event-triggered method is critical due to the possible occurrence of Zeno phenomena.

Moreover, although a communication network offers benefits to the control system in terms

of time and budget, there are unavoidable constraints such as jitter, bandwidth limitations,

and packet dropout which demand further exploration and improvement of the proposed

methods. Consequently, the last part of this research will take into account the effects of

these limitations.
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