
Partial Synthesis of Heuristic Search Algorithms

by

Matthew Gallivan

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Matthew Gallivan, 2021

Abstract

Heuristic search is a core area of Artificial Intelligence (AI) with numerous

applications. In video games it is commonly used to calculate paths of

AI-controlled agents. Traditionally, heuristic search algorithms have been

designed by humans. Recent work attempted to synthesise heuristic search

algorithms by automatically combining elements of published algorithms. In

doing so, researchers defined a synthesis space for heuristic search algorithms

and then automatically searched through that space. We extend this line of

work and make the following contributions. First, we define a richer space of

algorithms using a finer set of building blocks. This space is constructed

using a context-free grammar. We then show that in the new space we can

automatically synthesise higher performing real-time heuristic search

algorithms. We evaluate these algorithms over benchmark pathfinding

problems taken from video games and show that our synthesis method

outperforms existing work.

ii

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

—T. S. Eliot, Little Gidding

iii

Acknowledgements

Throughout my degree I have received tremendous support. My supervisor,

Dr. Vadim Bulitko, has made this thesis possible. I am a better researcher

for having been mentored by him. He has guided me over every hurdle of this

journey and he has, time and again, proven to be knowledgeable, patient and

generous. The research contained herein is the result of a collaborative process

between myself and Dr. Bulitko. Chapters 4 and 6 are an adaptation of work

from an unpublished paper that was co-written by both of us. The term we is

used throughout to reflect these facts.

I thank Dr. Michael Buro and Dr. Levi H. S. Lelis for serving on my

examining committee, and Dr. Sarah Nadi for acting as my examination

chair. I would also like to thank Dr. Matthew R. G. Brown for his advice on

the statistical aspects of my research. I thank Dr. Dana Cobzas, Trevor

Graham and Dr. Mehrnoush Mirhosseini for their immensurate backing and

encouragement.

I would like to thank Lana Cook for her unfaltering support in every

meaning of the word. She has read every word I have written over the past

two years and has spent innumerable hours discussing the finer points of

heuristic updates.

Finally, I would like to thank my mother, Valerie Gallivan; my father,

Dennis Gallivan; and my sister, Andrea Gallivan. They have been the

scaffolding of my life for over three decades and where I stand now owes

completely to them.

iv

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Organisation . 4

2 Problem Formulation 5

2.1 Background . 5

2.1.1 Real-time Heuristic Search 6

2.1.2 Heuristic Search Algorithms 7

2.2 Performance Measures . 8

2.3 Program Synthesis . 8

3 Related Work 10

4 Our Approach 13

4.1 Space of Algorithms . 13

4.1.1 Background . 13

4.1.2 Learning Rules in a Context-Free Grammar 15

4.1.3 Our Space . 16

4.2 Suboptimality . 17

4.3 Program Synthesis . 18

5 Theoretical Analysis 20

6 Empirical Evaluation 24

6.1 Video Game Pathfinding . 24

6.1.1 Maps . 24

6.1.2 Problem Sets . 25

6.2 Synthesis Implementation . 26

6.2.1 Syntax Trees . 27

v

TABLE OF CONTENTS

6.2.2 Surrogate Suboptimality 28

6.2.3 Multiple Folds . 29

6.3 Analysis of the Results . 29

6.3.1 Hyperparameters . 29

6.3.2 Results . 30

6.3.3 Portability . 34

7 Future Work 36

8 Conclusion 38

References 39

Appendix A Detailed Results 42

Appendix B Interpolation 45

vi

List of Tables

6.1 The optimal path cost c∗(p) when solving each problem set with

A*, averaged over the 50000 problems on each map. Standard

deviations are listed. 26

6.2 The suboptimality and state expansions when solving each

problem set with LRTA*, averaged over the 50000 problems

on each map. Standard deviations are listed. 27

6.3 The rank correlation (RC) and solution time for various

surrogate set sizes sampled from Pm. 28

6.4 The hyperparameters used in our empirical evaluation. 30

6.5 The synthesis results listing the mean suboptimality of the 5

folds as well as the mean synthesis time. Suboptimalities are

bold when they outperform the opposing space’s algorithm on

the same problem set. 30

6.6 The algorithms with lowest training suboptimality, manually

simplified for clarity. 31

6.7 The synthesis results when using an increased surrogate set size

of |P̂ | = 1000. Suboptimalities are bold when they outperform

the opposing space’s algorithm on the same problem set. . . . 33

6.8 The suboptimality of algorithms evaluated over all problem sets.

Bold indicates the lowest suboptimality for each problem set. . 34

A.1 The results of program synthesis over the parameterised LRTA*

space. 43

A.2 The results of program synthesis over the context-free grammar

space. 44

vii

List of Figures

1.1 A pathfinding task displayed in Path Finding

Visualizer (Bodyul, 2010). Red is the start state, blue is the

goal state, light grey cells are impassable and green displays

the heuristic. 2

5.1 The PLRTA* and CFG space of algorithms intersect, but

neither are strict supersets. 20

6.1 Five Moving AI video game maps from Dragon Age

II (BioWare, 2011). The maps are ht mansion2,

lt gallowscourtyard, w blightlands, w sundermount and

w woundedcoast, respectively. 25

6.2 The problem coverage of the map ht mansion2 with red as

starts and green as goals. 26

6.3 The LRTA* learning rule encoded as a syntax tree. 28

6.4 The suboptimality of each synthesised algorithm found as a

function of the number of states expanded. Individual folds

are shown with dashed lines and their interpolated averages

are shown with thicker solid lines. 32

6.5 The algorithm aCFG
s , which did not use backtracking or

depression avoidance. 35

6.6 The algorithm aCFG
w , which did not use backtracking or

depression avoidance. 35

B.1 The data points of both example folds and their interpolated

average. 46

viii

Chapter 1

Introduction

Non-playable characters (NPCs) are computer-controlled agents that operate

in the environment of a video game. Many NPCs navigate within an

environment containing walls, human-controlled player characters and other

NPCs. To appear responsive and maintain realism these NPCs must find

their routes, or paths, quickly. The task of moving from a start location to a

goal location in a complex environment is known as pathfinding (Figure 1.1).

1.1 Motivation

There are a number of algorithms capable of solving pathfinding tasks. The A*

algorithm (Hart et al., 1968) finds a shortest possible path from start to goal.

However, a drawback of A* is that it must compute the entire path before

the agent is able to move. For games that have a number of computationally

intensive processes running simultaneously, computing entire paths for each

agent can be infeasible. Furthermore, calculating the optimal path is often

unnecessary; it serves to find a realistic-looking path for an agent.

While some games have used hierarchical pathfinding (Sturtevant &

Geisberger, 2010) to improve computation time, another approach is to place

a constraint on the heuristic search, upper-bounding its per-move planning

time by a constant that is independent of the size of the environment.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: A pathfinding task displayed in Path Finding Visualizer (Bodyul,
2010). Red is the start state, blue is the goal state, light grey cells are
impassable and green displays the heuristic.

Algorithms that satisfy this constraint are known as real-time heuristic

search (RTHS) algorithms (Korf, 1990). These algorithms forego guaranteed

optimality and, in exchange, are able to return partial suboptimal paths;

these partial paths allow agents to move before a full path has been

calculated. The seminal Learning Real-time A* (LRTA*) algorithm (Korf,

1990) accomplished this by interleaving planning, acting and learning. The

ability to quickly produce partial paths makes RTHS well-positioned for

video game pathfinding.

However, RTHS algorithms can suffer from extensive state revisitation (also

known as scrubbing) (Sturtevant & Bulitko, 2014, 2016). Over the last several

decades RTHS researchers have addressed scrubbing in a number of different

ways, including using different learning and action-selection rules (Bulitko &

Sampley, 2016; Hernández & Baier, 2012; Rivera et al., 2015) and through the

removal of specific graph vertices (Hernández et al., 2017; Sharon et al., 2013).

While each of these methods has led to better performance over the original

LRTA* algorithm, problems still exist. For example, certain methods contain

hyperparameters which must be tuned on a per-problem basis. Furthermore,

combining such methods can lead to their interacting in unexpected ways.

2

CHAPTER 1. INTRODUCTION

Thus, there exists the question of how best to combine such methods in a

high-performing RTHS algorithm.

Recent work (Bulitko, 2016a, 2016b) has addressed this by conducting a

search through a parameterised space of RTHS algorithms. More generally,

automatic generation of algorithms, known as program synthesis (Manna &

Waldinger, 1971), offers several advantages over traditional manual algorithm

design. First, it removes the very substantial and typically unreported human

time and effort needed to design a new algorithm for a particular domain.

Second, it means that algorithms can be synthesised on a per-environment or

even per-problem basis, allowing them to exploit latent features within those

domains. Third, insights gained from synthesised algorithms can be used

to improve the design of the algorithm space in an iterative human-machine

design process. Finally, allowing AI to configure itself to the problem at hand

is a valuable step towards artificial general intelligence.

A crucial design choice when using program synthesis is determining the

scope and complexity of the underlying space of algorithms. A simple space

might consist of a single tunable hyperparameter. A space with more

representational power might be defined as all valid programs in the C

language. The former is easier to search, although unlikely to contain

algorithms that are as highly performant as those found in the latter. A

desirable space has enough representational power to contain a

high-performance algorithm but is small enough that the synthesis is

computationally feasible. This motivates our work extending the space of

heuristic search algorithms and evaluating the resulting synthesised

algorithms in real-time video game settings.

1.2 Contributions

This thesis makes the following contribution:

3

CHAPTER 1. INTRODUCTION

• We propose a new space of RTHS algorithms; extending an important

subset of a previously published space. Our new space is defined by a

context-free grammar. This enriches the representation of synthesisable

heuristic search algorithms while retaining the ability to represent a

number of published algorithms.

• We then evaluate the new space by conducting a program synthesis over

it. Candidate algorithms synthesised from the new space of algorithms

outperform candidate algorithms synthesised from the space published

in previous work when evaluated for pathfinding on a set of video game

maps.

1.3 Organisation

This thesis is organised as follows: Chapter 2 mathematically formulates the

notion of a search problem and program synthesis. Chapter 3 reviews work

related to the problem at hand. Chapter 4 presents our approach. Chapter 5

analyses our algorithmic space. Chapter 6 evaluates our new approach

empirically. Chapter 7 proposes future work. Chapter 8 concludes with a

summary.

4

Chapter 2

Problem Formulation

In this chapter, we define the problem of synthesising heuristic search

algorithms. In Section 2.1 we define a heuristic search problem. Since we

evaluate our methods in real-time settings, we introduce the notion of a

real-time constraint on heuristic search in Section 2.1.1. In Section 2.2 we

define our performance measure. Finally, in Section 2.3 we frame the task of

finding high-performance algorithms as an optimisation problem.

2.1 Background

We adopt the definition of a search problem from the literature (Bulitko,

2016a). Given our focus on NPCs we present search in an agent-centered

manner. A heuristic search problem is defined as the tuple (S,E, c, s0, sg, h).

S is a finite set of states and E ⊂ S × S is a finite set of undirected edges

connecting those states. Together S and E represent a search graph. The

cost to traverse an edge from one state to another is given by the function

c : E → R+. The start state is s0 ∈ S and the goal state is sg ∈ S. A search

agent begins in state s0. The neighbourhood of a state is defined by the

function N(s) = {sn ∈ S : (s, sn) ∈ E}. A state is expanded when all of its

immediately neighbouring states are considered. The total number of states

expanded by an agent a on a problem p is denoted by E(a, p).

5

CHAPTER 2. PROBLEM FORMULATION

A search problem is solved when an agent finds a solution path

ψ = (s0, s1, . . . , sk) where sk = sg. The cost of this path is the sum of all

edge costs between its consecutive states: C(a, p) =
∑k−1

i=0 c(si, si+1). The

optimal path is a path with the lowest possible path cost for a given problem,

represented by C∗(p). The suboptimality of a path is the ratio between the

path cost and the optimal path cost:

α(a, p) =
C(a, p)

C∗(p)
(2.1)

The best possible suboptimality is 1. A suboptimality of 3 indicates a path

three times longer than optimal. In this work we assume all search problems

to be solvable.

A search agent is also given a heuristic function h : S × S → R+. This

heuristic serves as an estimate of the path cost between any two states, with

the optimal costs between two states being represented by the function h∗. We

shorten h(s, sg) to h(s) when the goal state is clear from the context.

2.1.1 Real-time Heuristic Search

In agent-centered search (Koenig, 2001) the agent occupies a single state st

at time t. Time advances in discrete steps t ∈ {0, 1, . . .}. An agent can only

occupy a single state at any time. If an agent is in the state st then at t + 1

it must move to a neighbour such that st+1 ∈ N(st). An agent is said to be

scrubbing if it revisits any state it has already visited (Sturtevant & Bulitko,

2014, 2016). The agent is able to update its heuristic at each time step. The

heuristic at time t is represented by ht. The initial heuristic is h0 = h.

A search agent is real-time if its planning time per move is bounded by

a constant that is independent of the total number of states in the search

graph (Korf, 1990). An algorithm is complete if it reaches sg at some point

in time (when the search problem is solvable). If, whilst solving a problem p,

6

CHAPTER 2. PROBLEM FORMULATION

Algorithm 1: LRTA* with cutoff

Input: problem p = (S,E, c, s0, sg, h), max travel Cmax

Output: path ψ = (s0, s1, . . . , st)
1 t← 0
2 st ← s0
3 ht ← h
4 ψ ← (s0)
5 while st 6= sg and C(ψ) ≤ Cmax do
6 st+1 ← arg mins∈N(st)(c(st, s) + ht(s))

7 ht+1(st)← mins∈N(st)(c(st, s) + ht(s))
8 ψ ← append(ψ, st+1)
9 t← t+ 1

an agent’s path exceeds a suboptimality of αmax · C∗(p), the agent is stopped

and its suboptimality is recorded. Calculating this threshold requires pre-

computing the optimal cost C∗(p).

2.1.2 Heuristic Search Algorithms

The Learning Real-time A* (LRTA*) algorithm (Korf, 1990) solves real-time

heuristic search problems. At each time step it selects a neighbouring state,

updates the current state’s heuristic and moves to its next state. We augment

the standard LRTA* algorithm with a cutoff, as can be seen in Algorithm

1. LRTA* consists of planning (line 6), learning (line 7) and movement (line

8) rules. It receives as input a search problem p and a maximum travel cost

Cmax. On lines 1 through 4, we initialise the time, the current state, the

current heuristic and the path ψ. Beginning on line 5, the algorithm continues

pathfinding until it has found its goal state or reached its maximum travel

cost. On line 6, it selects its neighbour with the lowest f score. In LRTA* we

define the f score as c(st, s) + ht(s). On line 7, it updates the heuristic of the

current state. On line 8 it adds to the path. Finally, on line 9, it updates the

time step. If C(ψ) > Cmax the path ψ may not end with the goal state.

7

CHAPTER 2. PROBLEM FORMULATION

2.2 Performance Measures

We define the performance of a real-time heuristic search algorithm evaluated

over a set of problems P = {p1, . . . , pn} as its mean suboptimality over all

problems in P :

α(a, P) =
1

n

n∑
i=1

α(a, pi) (2.2)

The solution time is defined as the cumulative time to solve all search problems

within the set P .

2.3 Program Synthesis

We denote the space of all possible heuristic search algorithms as A. The

problem we tackle in this work is to find the optimal algorithm a∗ ∈ A with

the lowest suboptimality over a set of problems P = {p1, . . . , pn}. This can

be viewed as the unconstrained optimisation problem (Boyd & Vandenberghe,

2014):

minimize
a∈A

α(a, P) (2.3)

Our synthesis methods solve this optimisation problem by approximating

a∗. Additionally we impose the following preferences. We seek a heuristic

search algorithm with low suboptimality synthesised using little optimisation

effort. We define optimisation effort (or synthesis cost) in terms of the number

of state expansions performed during synthesis.

We also prefer synthesised algorithms that retain their performance when

used on novel environments not seen during synthesis. Given an algorithm

synthesised from a set of problems PA, we consider it portable if its

suboptimality over another set of problems Pb is less than or equal to the

suboptimality of an algorithm synthesised and evaluated on Pb directly.

Portable algorithms are beneficial as (i) they eliminate the need to run

8

CHAPTER 2. PROBLEM FORMULATION

synthesis for each environment and (ii) they are more likely to perform well

in environments that dynamically change during gameplay.

Finally, we prefer synthesised search algorithms to be compact in their

representation and explainable to human researchers. Such algorithms are

easier to communicate to video game developers, provide insight and are more

likely to be trusted. Thus, compact and explainable search algorithms are

more likely to be deployed in a video game.

9

Chapter 3

Related Work

In this chapter we review existing work related to the problem of synthesising

heuristic search algorithms, as defined in Chapter 2.

A number of extensions have been made to the LRTA* algorithm (Korf,

1990) since its inception. These include refinements to the planning, learning

and movement rules of the LRTA* framework. For example, planning has

benefited from extension to the selection of nodes expanded as found by Koenig

and Sun (2009). Learning has been improved by adapting the heuristic to

the planning step (Bulitko, 2004) and allowing updates to the heuristic over

a number of states at each time step (Hernández & Meseguer, 2005). An

improvement in the movement phase can be found in the work on depression

avoidance (Hernández & Baier, 2012). The development of these extensions

can be viewed as a manual search through a space of algorithms. While the

algorithms developed are often highly-performant, the time to develop is on

the order of months or years.

More recent work (Bulitko, 2016a, 2016b) synthesised real-time heuristic

search algorithms over a space of hyperparameters. Each hyperparameter

controlled an individual building block that affected the search of the

algorithm. For example, the weight hyperparameter multiplied updates to

the heuristic learning rule. The algorithms synthesised, both by using a

10

CHAPTER 3. RELATED WORK

simple grid-based search as well as by using an evolutionary search, obtained

lower suboptimalities than existing hand-crafted algorithms. Furthermore,

during the search they scrubbed less on average. While the results were

promising, the space of possible algorithms remained quite constrained,

represented only by a vector of parameters controlling existing building

blocks. We postulate that by expanding this existing space, a synthesis

process will find even better algorithms.

Related to searching a space of algorithm parameters is searching a space

of heuristic functions. Bulitko (2020) used an evolutionary algorithm to search

through a space of heuristics defined by a grammar of algebraic expressions.

This approach has been further improved by re-adding synthesised heuristics

to be used in a new synthesis (Bulitko et al., 2021; Hernandez & Bulitko,

2021). Since the behaviour of heuristic search algorithms is determined in

part by their heuristic, the synthesis of a high quality heuristic is crucial to

the performance of the algorithm. This research runs parallel to our own — a

future joint synthesis of algorithms and heuristics may produce even higher

performing algorithms.

Machine learning has also been applied to the process of program synthesis.

Muñoz et al. (2018) used a neural network in place of a movement rule; the

network received a number of inputs concerning an agent’s neighbouring states

and output the agent’s next move. The process of training the network can be

framed as program synthesis if we consider each individual set of weights as

a unique algorithm. The supervised learning is then a search over the space

of algorithms representable by the network. The resulting networks beat or

were comparable in suboptimality to some existing real-time heuristic search

algorithms. However, an issue concerning this work and neural networks in

general is that they can be difficult for humans to explain and communicate,

which is one of our preferences.

11

CHAPTER 3. RELATED WORK

In the domain of non-real-time heuristic search, Chen and Sturtevant

(2019) examined properties of priority functions used by A* to shape its

search. The priority function can affect the number of states expanded while

A* finds an optimal solution. Since the priority functions are parameterised

we can imagine forming a searchable space over their parameter set.

Search-based program synthesis (Gulwani et al., 2017) has emerged as an

effective means of generating algorithms. A form of program synthesis,

programming-by-example, constructs programs using input-output pairs.

This is related to our use of heuristic search problems to synthesise

algorithms, although we do not explicitly provide such pairs. Rather, we

treat the suboptimality of an algorithm as the objective function to optimise.

The synthesis of video game pathfinding algorithms can also be viewed as

procedural content generation (PCG) which has previously been applied to

games, automatically creating quests, levels and sounds, among other

content (Hendrikx et al., 2013). Our approach can be thought of as the

generation of NPC pathfinding behaviour; although, we are unaware of any

existing PCG work applied to real-time heuristic search algorithms.

12

Chapter 4

Our Approach

In this chapter we present our approach to synthesising real-time heuristic

search algorithms. In Section 4.1 we describe the space of algorithms over

which we will optimise. In Section 4.2 we describe how the suboptimality of

a heuristic search algorithm is evaluated. Finally, in Section 4.3 we combine

both the space of algorithms and their suboptimalities to craft a search method

that synthesises programs.

4.1 Space of Algorithms

We begin by defining A, the space of algorithms. An ideal space would

contain high-performing search algorithms and nothing else. Since we do not

know what such algorithms are before they are synthesised, we instead define

the space as an extension of a critical subset of a published space of RTHS

algorithms.

4.1.1 Background

Hand-crafted extensions to the planning, learning and moving rules in

LRTA* have been developed for decades. Recent research (Bulitko, 2016a,

2016b) has grouped a number of these extensions into a singular

parameterised framework, which we refer to as parameterised LRTA*

13

CHAPTER 4. OUR APPROACH

Algorithm 2: Parameterised LRTA*

Input: problem p = (S,E, c, s0, sg, h), parameters w, b, lop, bt, da
Output: path ψ = (s0, s1, . . . , sg)

1 t← 0
2 ψ ← (s0)
3 while st 6= sg do
4 if da then
5 µ← mins∈N(st) |h0(s)− ht(s)|
6 Ñ(st)← {s ∈ N(st) : |h0(s)− ht(s)| = µ}
7 else

8 Ñ(st)← N(st)

9 ht+1(st)← w · lops∈Ñ f
b(st)

(c(st, s) + ht(s))

10 if bt & ht+1(st) > ht(st) & t > 0 then
11 st+1 ← st−1
12 else
13 st+1 ← arg mins∈N(st) c(st, s) + ht(s)

14 ψ ← append(ψ, st+1)
15 t← t+ 1

(Algorithm 2)1. This has served as the space of algorithms A in existing

work. It receives as input a search problem p along with the following

parameters: w which multiplies the heuristic update, b which restricts the

available neighbours as sorted by their f score, lop which determines the

learning operator used in the heuristic update, and bt and da which toggle

the backtracking and depression avoidance components, respectively. Line 1

initialises the time, line 2 initialises the path and on line 3 the search

commences until the current state st is the goal state. If depression

avoidance has been enabled, lines 4 through 6 restrict the neighbourhood to

only those neighbours that have received the minimal heuristic update. Line

9 updates the heuristic of the current state using the weight parameter w

and the learning parameter lop, along with a neighbourhood restriction as

1 We exclude expendable states in our re-creation of the algorithm. In the four-neighbour
maps seen in Chapter 6, the expendable states (Sharon et al., 2013) building block does
not cull any neighbours and is thus superfluous to our analysis.

14

CHAPTER 4. OUR APPROACH

dictated by b. The parameter b ∈ [1, 4] indicates the number of neighbours to

include in Ñ . For example, if b = 2 only the two neighbours with the lowest

f score are stored in Ñ . On lines 10 and 11, if backtracking has been enabled

using the bt parameter and the newly calculated heuristic is greater than the

previous heuristic of the current state, the agent moves to st−1. Otherwise,

on line 13, the agent moves to the neighbour with the lowest f score. It uses

the entire neighbourhood N for this step. On line 14, we append st+1 to our

path. Finally, on line 15, the time is incremented and the loop continues.

4.1.2 Learning Rules in a Context-Free Grammar

Our hypothesis is that by extending an important part of the space of

algorithms defined by parameterised LRTA* we will be able to represent and

synthesise heuristic search algorithms with lower suboptimalities.

Parameterised LRTA* has a number of numeric and boolean parameters.

Replacing the learning rule in parameterised LRTA* with a richer

representation allows us to represent additional algorithms.

We choose to replace the learning rule of parameterised LRTA* with one

represented by a context-free grammar. This decision is based on promising

results synthesising heuristics using context-free grammars for real-time

search (Bulitko, 2020; Bulitko et al., 2021). A grammar is a specification of

how to construct strings in a language, given a set of tokens and production

rules. Each token can be nonterminal, meaning it can be replaced using a

production rule, or terminal, an elementary symbol with no associated

production rule. A context-free grammar (CFG) requires that the left-hand

side of any rule is a single nonterminal token. Our context-free grammar is

15

CHAPTER 4. OUR APPROACH

below2:

T ← O | C | V

O ← T + T | T × T

O ← min{T, T} | max{T, T} | mean{T, T} | mean{T, T, T}

C ← 0 | 1 | · · · | 9

V ← n1 | n2 | n3 | n4

This grammar is able to represent addition, multiplication, various statistical

functions taking two parameters (e.g., max), as well as a three-parameter mean

operator, the numbers between 0 and 9 and the heuristic values of the current

state’s neighbours (i.e., n1, n2, n3, n4). These heuristic values are sorted in

ascending order, meaning ni ≤ ni+1 with n1 being the lowest heuristic score

of the neighbourhood.

4.1.3 Our Space

The grammar induces a set of functions τ(S,E, s, h) that receive as input a

set of nodes S and edges E, the current state st of the agent and the current

heuristic ht.
3 As highlighted in Algorithm 3, we replace the learning rule on

line 9 with the function: ht+1(st)← τ(S,E, st, ht)(4.0)

We also include backtracking and depression avoidance as binary flags. They

cannot be represented within the grammar as they are not a part of the learning

rule. The new space of algorithms is A = R×{false, true}×{false, true} where

R = {τ : τ representable using the CFG}. As shown in Chapter 5, this space

includes a subset of the space of parameterised LRTA* algorithms (Bulitko,

2016a), as well as other algorithms previously unrepresentable.

2 The tokens of this language are implicitly defined as any existing within a production rule.
For example, T , n2, and 3 are all tokens in this language.

3 The search graph is required by the function in order to compute the neighbours of the
current state and the heuristic is required when evaluating the tokens {n1, n2, n3, n4}.

16

CHAPTER 4. OUR APPROACH

Algorithm 3: Parameterised LRTA* with context-free grammar

Input: problem p = (S,E, c, s0, sg, h), parameters w, b, lop, bt, da
Output: path ψ = (s0, s1, . . . , sg)

1 t← 0
2 ψ ← (s0)
3 while st 6= sg do
4 if da then
5 µ← mins∈N(st) |h0(s)− ht(s)|
6 Ñ(st)← {s ∈ N(st) : |h0(s)− ht(s)| = µ}
7 else

8 Ñ(st)← N(st)

9 ht+1(st)← τ(S,E, st, ht)
10 if bt & ht+1(st) > ht(st) & t > 0 then
11 st+1 ← st−1
12 else
13 st+1 ← arg mins∈N(st) c(st, s) + ht(s)

14 ψ ← append(ψ, st+1)
15 t← t+ 1

4.2 Suboptimality

Our goal is to find an a ∈ A which minimises α(a, P) given a set of problems

P = {p1, p2, . . . , pn}. However, the effort to compute α(a, P) depends in part

on |P |. Thus, we approximate α(a, P) as α(a, P̂) where |P̂ | � |P |. The

suboptimality over P̂ , the surrogate set, is the surrogate suboptimality which

serves as an estimate of the suboptimality of P . A large surrogate set more

closely estimates the suboptimality of P but also makes α(a, P̂) more expensive

to calculate. A small surrogate set can give a less accurate estimate but takes

less time to compute. The surrogate suboptimality offers a trade-off between

accuracy and speed. We examine these trade-offs empirically in Chapter 6.

17

CHAPTER 4. OUR APPROACH

Algorithm 4: Program Synthesis

Input: training set P , surrogate size s, budget m, cutoff αmax

Output: synthesised algorithm abest
1 fbest ←∞
2 P̂

s∼ P
3 i← 0
4 while i ≤ m do
5 a ∼ A

6 fa ← α(a, P̂)
7 if fa ≤ fbest then
8 abest ← a
9 fbest ← fa

10 i← i+ E(a, P̂)

4.3 Program Synthesis

With both the space of algorithms and their performance measure defined,

we are able to synthesise an algorithm by searching for it in the space. The

program synthesis runs for a finite amount of time and returns the best

algorithm found.

For synthesis, we use simple stochastic search (Algorithm 4). The process

is stochastic due to the use of random sampling, denoted by x ∼ X which

draws a single random sample from a space, or x
n∼ X which draws n random

samples with replacement. Here we overload the variable x to mean a single

sample or a set of samples. Algorithm 4 accepts as input a set of real-time

heuristic search problems P , a surrogate set size s, a synthesis budget m and

a suboptimality cutoff αmax. On line 1, we initialise the best suboptimality

score. On line 2, we sample s problems to create a surrogate set P̂ . The search

then runs until the synthesis budget has been exceeded (line 4). On line 5, we

sample a single algorithm from the space of all possible algorithms. Line 6 then

calculates the suboptimality of the sampled algorithm over the surrogate set of

problems. On lines 7 through 9, if the surrogate suboptimality of the current

18

CHAPTER 4. OUR APPROACH

algorithm was the best seen so far, we update both the best seen algorithm

and the best suboptimality score. Finally, i is incremented by the number of

states expanded over the surrogate set. The synthesis returns the algorithm

abest.

19

Chapter 5

Theoretical Analysis

We will show that our spaceA defined by the context-free grammar (Chapter 4)

covers an important subset of the space of parameterised LRTA* (Algorithm 2)

algorithms. We first show an example of two algorithms: one which PLRTA*

can represent and the CFG cannot, and the other an algorithm which the

CFG can represent but PLRTA* cannot. We then prove that the context-free

grammar covers a portion of the PLRTA* space when using the min operator.

Finally, we provide an example of a PLRTA* algorithm that the CFG space

can represent but which is not included in the proof.

Our space of context-free grammar algorithms is not a superset of the

space of parameterised LRTA* algorithms (Figure 5.1). For example, the

PLRTA* CFG (A)

Figure 5.1: The PLRTA* and CFG space of algorithms intersect, but neither
are strict supersets.

20

CHAPTER 5. THEORETICAL ANALYSIS

grammar is not able to produce floating point numbers. As such, the following

parameterised LRTA* algorithm cannot be represented:

3.1 ·min s∈Ñ4f(st)
(1 + ht(s)) (5.1)

The grammar also does not wholly represent the neighbourhood size

restriction b for all learning operators. In order to allow for the arbitrary

evaluation of {n1, n2, n3, n4}, we treat impassable terrain as portions of the

neighbourhood with a maximum heuristic value. While this leaves the min

operator equivalent, mean and max are not equivalent to parameterised

LRTA* for non-constant neighbourhood sizes. Finally, due to our restriction

to representing only integer variables, we use the definitions

mean(a, b) =
⌊
a+b
2

⌋
and mean(a, b, c) =

⌊
a+b+c

3

⌋
and exclude median.

Conversely, we are able to represent a number of algorithms using the

grammar that are unrepresentable in parameterised LRTA*. For example,

n1 + 2 · n2 (5.2)

cannot be represented in PLRTA*. Since parameterised LRTA* rules must

contain c(st, s) and n1 +2 ·n2 does not contain c(st, s) (i.e., a constant positive

integer), A contains learning rules not found in parameterised LRTA*.

We now prove that our grammar is able generate any learning rule

representable in PLRTA*, subject to the following restrictions: w ∈ N ∪ {0}

and lop = min.

Theorem 1. The learning rule w · mins∈Ñf
b (st)

(c(st, s) + ht(s)), restricted to

w ∈ N∪{0}, can be represented by our context-free grammar. We assume the

cost function c(st, s) to be a constant integer.

We prove this by breaking the learning rule into its constituent parts and

show that the grammar is able to represent each part.

21

CHAPTER 5. THEORETICAL ANALYSIS

Lemma 1. The multiplication of min by w can be encoded in the grammar.

Proof. This is achieved using the production rule O ← C × T , as long as T is

able to encode mins∈Ñf
b (st)

(c(st, s) + ht(s)).

Lemma 2. The grammar can represent the learning operator min applied over

the partial neighbourhood Ñ f
b , which contains between one and four states.

Proof. Without loss of generality, assume the four possible states’ heuristic

values are a, b, c and d. For a neighbourhood with a single heuristic value

a, we evaluate the learning operator over the neighbourhood using min(a, a).

The case of a neighbourhood of size two is proven similarly min(a, b). The

case of a neighbourhood with three heuristic values for min is represented

using min(min(a, b), c). Finally, a neighbourhood with four heuristic values

can be combined using min(min(a, b),min(c, d)). Since we restrict our proof

to the min operator, this holds for b ∈ N as we only ever calculate the minimum

heuristic value in the neighbourhood.1

Lemma 3. The grammar can represent Ñ f
b (c(st, s) + ht(s)) when |N | ≤ 4.

Proof. Using the rule V ← n1 | n2 | n3 | n4 we are able to select the neighbour

with the ith lowest heuristic score. We produce the f score using the rule

C + ni where C = c(st, s). Since c(st, s) is a constant positive integer, the

grammar can represent the cost using the integers 0 through 9 and addition.

For example, the learning rule of LRTA* can be represented using 1 + n1.

Using these lemmas, we now show that all integer-based parameterised LRTA*

learning rules using the min operator are representable by our context-free

grammar.

1 This does not hold for mean or max as calculations are affected by the introduction of
walls with large heuristic values to the neighbourhood calculation.

22

CHAPTER 5. THEORETICAL ANALYSIS

Proof. Using Lemma 1 we construct the expression w × T . We replace T

with O using T ← O. With a learning operator lop, we use Lemma 2 to

substitute O with some combination of the rule O ← min{T, T}. The exact

combination is determined by the number of heuristic values (one to four)

in the neighbourhood, dictated by i in Lemma 3, where i = |Ñ |. Finally,

we substitute the inner T values with the expression C + ni from Lemma 3.

We are thus able to represent all integer-based parameterised LRTA* learning

rules that use the min operator.

Finally, we note that the above proof does not cover the entire intersection

of both spaces. There exist a number of learning rules in parameterised LRTA*

that do not use the min operator that can be represented by the context-free

grammar. For example, the parameterised LRTA* algorithm

3 ·means∈Ñ1f(st)
(1 + ht(s)) (5.3)

can be represented in A as

3 ·mean(1 + n1, 1 + n1) (5.4)

While A is not a superset of PLRTA*, there is a significant amount of overlap

that allows us to compare the spaces using program synthesis.

23

Chapter 6

Empirical Evaluation

This chapter evaluates the solution approach we proposed in Chapter 4. In

Section 6.1 we describe the video game benchmarks we will be using. In Section

6.2 we describe the setup of each experiment. In Section 6.3 we evaluate our

synthesis over real-time heuristic search problems.

6.1 Video Game Pathfinding

We analyse our synthesis method using video game pathfinding problems

which serve as our benchmark for measuring suboptimality and are a de

facto standard when evaluating real-time heuristic search.

6.1.1 Maps

In line with previous work (Bulitko, 2016a, 2020; Bulitko et al., 2021), we use

video game maps from the Moving AI dataset (Sturtevant, 2012).

Specifically, we use five maps from Dragon Age II : ht mansion2,

lt gallowscourtyard, w blightlands, w sundermount and

w woundedcoast. These maps are pictured in Figure 6.1 with white

representing passable terrain and black representing impassable obstacles

called walls. The maps were chosen to represent both indoor and outdoor

environments. The map dimensions are 308 × 358, 642 × 514, 514 × 514,

24

CHAPTER 6. EMPIRICAL EVALUATION

Figure 6.1: Five Moving AI video game maps from Dragon Age II (BioWare,
2011). The maps are ht mansion2, lt gallowscourtyard, w blightlands,
w sundermount and w woundedcoast, respectively.

770× 770 and 578× 642 cells, respectively.

We treat each map as a four-connected grid of cells. Since a learning

rule may reference a neighbouring state when it does not exist (for example,

evaluating n3 when surrounded by two wall cells) we assign each impassable

cell a heuristic score of 264 − 1. To avoid inaccuracies with floating-point

operations, we only allow for non-negative integer heuristics using unsigned

integer arithmetic that is bounded at 0 and 264− 1. The movement cost along

any edge is 1. The initial heuristic h0 for every problem is defined as the

Manhattan distance from a state s = (x0, y0) to the goal sg = (xg, yg):

h(s, sg) = |x0 − xg|+ |y0 − yg| (6.1)

6.1.2 Problem Sets

For each map, we generate 50 thousand unique random search problems. These

are generated by selecting random start and goal states within the largest

connected component of each map. We denote these Pm, Pg, Pb, Ps and Pw

with the subscript indicating the first letter of the map’s name (after the

underscore). The coverage of Pm can be seen in Figure 6.2 with red indicating

start states and green indicating goal states.

We initially solve each problem p using the A* algorithm and record the

optimal path cost c∗(p) (Table 6.1). We also run the LRTA* algorithm with

a cutoff of 1000 (chosen in line with previous work; Bulitko, 2016a), for each

25

CHAPTER 6. EMPIRICAL EVALUATION

Figure 6.2: The problem coverage of the map ht mansion2 with red as starts
and green as goals.

Table 6.1: The optimal path cost c∗(p) when solving each problem set with
A*, averaged over the 50000 problems on each map. Standard deviations are
listed.

Problem set Optimal path cost

Pm 196.62 ± 109.73

Pg 162.41 ± 97.22

Pb 360.16 ± 270.12

Ps 310.32 ± 189.78

Pw 427.72 ± 228.62

problem set and record the results in Table 6.2. The suboptimality in this

table is the path cost of LRTA* divided by the path cost of A*.

6.2 Synthesis Implementation

In this section we describe our usage of syntax trees to represent our context-

free grammar, how we select the size of the problem set used to calculate

surrogate suboptimality and the cross-validation used in our experiments.

26

CHAPTER 6. EMPIRICAL EVALUATION

Table 6.2: The suboptimality and state expansions when solving each problem
set with LRTA*, averaged over the 50000 problems on each map. Standard
deviations are listed.

Problem set Mean suboptimality State expansions

Pm 354.24 ± 346.75 8.91× 104
± 9.75 × 104

Pg 177.49 ± 331.84 4.68× 104
± 9.90 × 104

Pb 230.27 ± 338.18 1.22× 105
± 1.94 × 105

Ps 424.94 ± 438.08 1.77× 105
± 2.07 × 105

Pw 274.47 ± 355.74 1.38× 105
± 2.03 × 105

6.2.1 Syntax Trees

We define the space of real-time heuristic search algorithms A as those whose

learning rule is represented by the grammar in Chapter 4. We implement

the learning rules produced by this grammar using syntax trees. Each tree

is randomly sampled using a recursive process. To begin, a single root node

is generated and randomly assigned the type operator (O), constant (C) or

variable (V). If the type of node is O it is randomly assigned an operator

from the set {+,×,min,max,mean}. It is also assigned randomly generated

children nodes. If the type of node is C it is randomly assigned an integer value

between 0 and 9. If the type of node is V it is randomly assigned a variable from

the set {n1, n2, n3, n4}. Nodes of type C or V have no children. The recursion

is continued until all leaf nodes are constants or variables. Algorithms are

composed of a randomly generated syntax tree and two randomly selected

boolean variables for backtracking and depression avoidance.

In order to evaluate a tree as a learning rule, it is traversed in postorder.

Constants return their integer value, variables return the value of the heuristic

at the specified neighbour state and operators return their operation applied

to their children. A learning rule for LRTA* represented as a tree is in Figure

6.3.

27

CHAPTER 6. EMPIRICAL EVALUATION

min

min

+

n1 1

+

n2 1

min

+

n3 1

+

n4 1

Figure 6.3: The LRTA* learning rule encoded as a syntax tree.

Table 6.3: The rank correlation (RC) and solution time for various surrogate
set sizes sampled from Pm.

|P̂| RC P̂ Time (s)

25 0.62 0.34 ± 0.16

100 0.80 1.25 ± 0.48

250 0.76 3.44 ± 1.89

1000 0.90 13.11 ± 7.68

6.2.2 Surrogate Suboptimality

We determine the size of the surrogate set of problems empirically. To do so

we draw 1000 random algorithms from the space A and calculate

suboptimality over both P and P̂ , as well as the mean time required to

calculate the surrogate suboptimality. Since our synthesis process depends

only on the relative difference between suboptimalities, the surrogate

suboptimality need not estimate the suboptimality of P . Rather, it is enough

that the surrogate suboptimality maintains the relative ordering of the larger

set’s suboptimality values. In other words, it is enough that if

α(a′, P̂) < α(a′′, P̂) then α(a′, P) < α(a′′, P) for any algorithms a′ and a′′.

We use Spearman’s ρ (Spearman, 1904) to calculate the rank correlation.

Higher values better represent the ordering of the suboptimalities of P . The

results of this process are listed in Table 6.3. Since we are unable to achieve

a RC of 1 in practice, we select a surrogate set size of 100 which has the RC

of 0.8 and an average 1.25 second solution time.

28

CHAPTER 6. EMPIRICAL EVALUATION

6.2.3 Multiple Folds

We repeated the synthesis process over 5 folds as follows. We first split the

problem set P into 5 disjoint partitions of the same size. We then ran 5 folds

and, for each fold, grouped four partitions into Ptrain and one partition into

Ptest. These groupings were unique for each fold. The problem set Ptrain was

passed into the synthesis algorithm. The resulting synthesised algorithms were

then evaluated over Ptest. Algorithm suboptimality calculated over Ptest was

then averaged over the 5 folds.

6.3 Analysis of the Results

In this section we list the hyperparameters used during synthesis, summarise

the results of synthesis over both the parameterised LRTA* and context-free

grammar space and analyse the portability of the synthesised algorithms.

6.3.1 Hyperparameters

Our empirical evaluation is controlled by a number of parameters listed in

Table 6.4. The surrogate size |P̂ | was set to 100 and the synthesis budget m

was set to 1011 states expanded. These were based on preliminary

experiments. The suboptimality cutoff αmax was set to 1000, in keeping with

existing work (Bulitko, 2016a). We compared two spaces of algorithms. The

first was the parameterised LRTA* space of algorithms with w ∈ [1, 2048],

b ∈ [0, 1], lop ∈ {min,max,mean}, bt ∈ {false, true} and da ∈ {false, true}.

The second was the space induced by our context-free grammar and the bt

and da parameters.

29

CHAPTER 6. EMPIRICAL EVALUATION

Table 6.4: The hyperparameters used in our empirical evaluation.

Hyperparameters Value

Problem set size (|P |) 5× 104

Surrogate problem set size (|P̂ |) 100
Synthesis budget (m) 1011

Cutoff (αmax) 103

Table 6.5: The synthesis results listing the mean suboptimality of the 5 folds
as well as the mean synthesis time. Suboptimalities are bold when they
outperform the opposing space’s algorithm on the same problem set.

Space P Average suboptimality Synthesis time (h)

P. LRTA* Pm 25.50 ± 9.60 3.32 ± 0.05

Pg 33.19 ± 10.36 4.14 ± 0.07

Pb 87.05 ± 47.73 3.37 ± 0.05

Ps 100.39 ± 10.66 4.01 ± 0.03

Pw 170.34 ± 61.16 3.50 ± 0.08

CFG Pm 25.62 ± 9.01 6.03 ± 0.06

Pg 19.41 ± 12.60 6.94 ± 0.13

Pb 42.66 ± 19.38 6.16 ± 0.07

Ps 33.50 ± 13.70 6.76 ± 0.04

Pw 82.65 ± 51.75 6.17 ± 0.04

6.3.2 Results

Summary

Detailed results for the parameterised LRTA* (Table A.1) and context-free

grammar (Table A.2) syntheses are listed in Appendix A. A summary of these

results is in Table 6.5. Synthesis using the space induced by the context-free

grammar outperformed synthesis using the parameterised LRTA* space on

all problem sets except for Pm. The synthesis process was, however, about

twice as long. This is because the randomly sampled parameterised LRTA*

algorithms were faster to compute on average than those sampled from the

context-free grammar space.

In Table 6.6 we present the context-free grammar algorithms for each

30

CHAPTER 6. EMPIRICAL EVALUATION

Table 6.6: The algorithms with lowest training suboptimality, manually
simplified for clarity.

Algorithm

aCFG
m mean(n1, (mean(0, n2) · 3))
aCFG
g 5 + min(n4,max(3, n3))
aCFG
b min(n4, 6 + n1)
aCFG
s mean(mean(max(n3, n2 · 4), 9 · n1,max(n4, 4)), n2, n1)
aCFG
w min(n1 ·min(n1, 4),mean(n1, n2) + 64) + 8

problem set with the lowest single-fold training suboptimality, denoted by

aCFG
m , aCFG

g , aCFG
b , aCFG

s and aCFG
w . For clarity the algorithms in the table

have been manually simplified. The original algorithms are presented in

Appendix A. None of the algorithms can be represented using parameterised

LRTA*. Furthermore, all of the algorithms take multiple ni values into

account, suggesting that there is a benefit to using more than just the

minimum h score.

Synthesis over time

Test suboptimality over time of each individual fold is depicted in Figure 6.4.

The x-axis denotes the states expanded by the synthesis process and the y-

axis represents the test suboptimality of the best algorithm so far. This was

calculated by maintaining a record of the best algorithm at each time step and

evaluating them each on Ptest once the synthesis completed. The evaluation

of each algorithm on Ptest was used only for plotting and did not influence the

synthesis process. Each individual fold is represented by a dashed line and the

mean of their interpolated values is represented by the thicker solid lines. The

interpolation procedure is described in Appendix B. The context-free grammar

(CFG) space is in blue while the parameterised LRTA* (PLRTA*) space is in

red. The solid black line denotes the suboptimality of the LRTA* algorithm.

Algorithms synthesised in the CFG space achieved lower average

31

CHAPTER 6. EMPIRICAL EVALUATION

107 108 109 1010 1011
101

102

103
ht_mansion2

LRTA*

CFG
PLRTA*

107 108 109 1010 1011
101

102

103
lt_gallowscourtyard

LRTA*

107 108 109 1010 1011
101

102

103
w_blightlands

T
es

t S
ub

op
tim

al
ity

LRTA*

107 108 109 1010 1011
101

102

103
w_sundermount

LRTA*

107 108 109 1010 1011

States Expanded

101

102

103
w_woundedcoast

LRTA*

Figure 6.4: The suboptimality of each synthesised algorithm found as a
function of the number of states expanded. Individual folds are shown with
dashed lines and their interpolated averages are shown with thicker solid lines.

32

CHAPTER 6. EMPIRICAL EVALUATION

Table 6.7: The synthesis results when using an increased surrogate set size
of |P̂ | = 1000. Suboptimalities are bold when they outperform the opposing
space’s algorithm on the same problem set.

Space P Average suboptimality Synthesis time (h)

P. LRTA* Pm 64.44 ± 25.56 3.12 ± 0.07

Pg 99.20 ± 6.29 3.74 ± 0.09

Pb 270.21 ± 45.14 3.40 ± 0.04

Ps 170.49 ± 66.346 4.28 ± 0.05

Pw 257.06 ± 66.02 3.53 ± 0.06

CFG Pm 88.00 ± 48.53 6.08 ± 0.07

Pg 22.95 ± 11.16 6.90 ± 0.15

Pb 89.98 ± 2.10 5.92 ± 0.08

Ps 104.58 ± 57.73 6.65 ± 0.08

Pw 180.99 ± 2.65 6.22 ± 0.04

suboptimalities than algorithms from the PLRTA* space on four problem

sets. On Pb the average suboptimality of CFG algorithms always

outperformed PLRTA* algorithms, although on Pg, Ps and Pw the PLRTA*

algorithms initially outperformed the CFG algorithms. This supports our

hypothesis that although the context-free grammar space of algorithms takes

more effort to search, it represents a richer set of algorithms that eventually

outperform parameterised LRTA*.

Increasing surrogate set size

We also ran the synthesis process with a larger surrogate set size. We chose

|P̂ | = 1000, as it had the largest rank correlation in Table 6.3, while keeping all

other hyperparameters the same. The results are shown in Table 6.7. Again,

the CFG space outperformed the PLRTA* space on the same four problem

sets. However, the resulting average suboptimalities were all higher when

compared with those in Table 6.5. This is because using a larger surrogate

size meant more states expanded per algorithm evaluation. As a result, fewer

algorithms were evaluated over the course of the entire synthesis process.

33

CHAPTER 6. EMPIRICAL EVALUATION

Table 6.8: The suboptimality of algorithms evaluated over all problem sets.
Bold indicates the lowest suboptimality for each problem set.

Algorithm Pm Pg Pb Ps Pw

aCFG
m 36.76 13.13 25.04 25.09 39.16
aCFG
g 262.82 40.05 321.90 165.23 309.63
aCFG
b 29.57 38.91 21.75 42.47 117.17
aCFG
s 18.29 9.28 20.37 14.63 49.06
aCFG
w 12.47 9.66 16.99 16.27 28.59

6.3.3 Portability

To investigate portability of the synthesised algorithms we evaluated them over

the problem sets from maps on which they were not synthesised. We chose the

algorithm from each map with the lowest single-fold training suboptimality

(Table 6.6).

Each algorithm was evaluated over the set of 50 thousand problems for each

map and their suboptimalities were recorded in Table 6.8. Aside from aCFG
g ,

every algorithm outperformed LRTA* on all problem sets. aCFG
s had the lowest

suboptimality on two problem sets while aCFG
w had the lowest suboptimality

on the remaining three. These two algorithms are depicted in Figures 6.5 and

6.6 as syntax trees (neither contained backtracking or depression avoidance).

The suboptimality of most algorithms (excluding the lowest performing aCFG
g)

remained relatively constant for all maps, suggesting that these algorithms are

portable to problem sets not seen during synthesis.

34

CHAPTER 6. EMPIRICAL EVALUATION

mean

mean

max

n3 ×

n2 4

×

9 n1

max

n4 4

n2 n1

Figure 6.5: The algorithm aCFG
s , which did not use backtracking or depression

avoidance.

+

min

×

n1 min

n1 4

+

mean

n1 n2

64

8

Figure 6.6: The algorithm aCFG
w , which did not use backtracking or depression

avoidance.

35

Chapter 7

Future Work

Our synthesis method randomly sampled algorithms and returned the one

with the lowest training suboptimality. Further improvements could be made

by replacing the random sampling with a more advanced method such as

simulated annealing (Kirkpatrick et al., 1983), genetic algorithms (Barricelli,

1957; Eiben & Smith, 2015) or tabu search (Glover, 1986).

Our algorithms were determined mostly by the grammar used. Extensions

to the grammar might add division or median operators. Other variables, such

as the number of times a state has been visited, can also be considered.

If the synthesis time can be reduced by several orders of magnitude (i.e.,

from hours to seconds) then it may be feasible to automatically create RTHS

algorithms for dynamic game maps. A further reduction of synthesis time

might allow an agent to synthesise its own algorithm on the fly.

Future work will evaluate the synthesis method on other maps from the

Moving AI dataset. The synthesis method can also be applied to any problem

that is solvable using real-time heuristic search. For example, it would be

interesting to note the algorithms generated for the sliding tile puzzle (Korf,

1990).

Finally, the synthesis could also be applied to non-real-time search, such as

A*. Priority functions of A* (Chen & Sturtevant, 2019) could be represented

36

CHAPTER 7. FUTURE WORK

as a context-free grammar with the addition of a branching expression. Since

A* finds optimal solutions, suboptimality would no longer be as useful of a

metric, but recent work on generating non-real-time heuristics implemented

loss as a function of state expansions (Bulitko et al., 2021), which could serve

as a function to minimise.

37

Chapter 8

Conclusion

In this thesis, we proposed and evaluated a program synthesis over a new

space of real-time heuristic search algorithms. Building upon existing work,

we defined our space of learning rules using a context-free grammar. The

algorithms generated using program synthesis outperformed rules synthesised

within a subset of a published representation (Bulitko, 2016a) on several

Dragon Age II maps. The synthesised algorithms also shown portability,

achieving low suboptimalities on novel maps. We believe the work presented

here is a stepping stone on the way to automatically synthesising more

powerful heuristic search algorithms.

38

References

Barricelli, N. A. (1957). Symbiogenetic evolution processes realized by artificial
methods. Methodos, 9 (35–36), 143–182.

BioWare. (2011). Dragon Age II.
Bodyul, V. (2010). Path Finding Visualizer. https://bodyulcg.com/tools/

path-finding-visualizer/
Boyd, S. P., & Vandenberghe, L. (2014). Convex Optimization. Cambridge

University Press.
Bulitko, V. (2004). Learning for Adaptive Real-time Search. Computing

Research Repository, cs.AI/0407016.
Bulitko, V. (2016a). Evolving Real-time Heuristic Search Algorithms.

Proceedings of the Conference on the Synthesis and Simulation of
Living Systems (ALIFE), 108–115.

Bulitko, V. (2016b). Searching for Real-time Heuristic Search Algorithms.
Proceedings of the Symposium on Combinatorial Search (SoCS),
121–122.

Bulitko, V. (2020). Evolving Initial Heuristic Functions for Agent-Centered
Heuristic Search. Proceedings of the IEEE Conference on Games
(CoG), 534–541.

Bulitko, V., & Doucet, K. (2018). Anxious Learning in Real-Time Heuristic
Search. Proceedings of the IEEE Conference on Computational
Intelligence and Games (CIG), 1–4.

Bulitko, V., Hernandez, S. P., & Lelis, L. H. S. (2021). Fast Synthesis of
Algebraic Heuristic Functions for Video-game Pathfinding. Proceedings
of the IEEE Conference on Games (CoG), in press.

Bulitko, V., & Sampley, A. (2016). Weighted Lateral Learning in Real-time
Heuristic Search. Proceedings of the Symposium on Combinatorial
Search (SoCS), 10–18.

Chen, J., & Sturtevant, N. R. (2019). Conditions for Avoiding Node
Re-expansions in Bounded Suboptimal Search. Proceedings of the
Joint Conference on Artificial Intelligence (IJCAI), 1220–1226.

Eiben, A. E., & Smith, J. E. (2015). Introduction to evolutionary computing.
Springer.

Glover, F. W. (1986). Future paths for integer programming and links to
artificial intelligence. Computers & Operations Research, 13 (5),
533–549.

39

https://bodyulcg.com/tools/path-finding-visualizer/
https://bodyulcg.com/tools/path-finding-visualizer/

REFERENCES

Gulwani, S., Polozov, O., & Singh, R. (2017). Program Synthesis. Foundations
and Trends in Programming Languages, 4 (1-2), 1–119.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4 (2), 100–107.

Hendrikx, M., Meijer, S. A., Velden, J. V. D., & Iosup, A. (2013). Procedural
content generation for games: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications, 9 (1),
1–22.

Hernandez, S. P., & Bulitko, V. (2021). Speeding Up Heuristic Function
Synthesis via Extending the Formula Grammar. Proceedings of the
Symposium on Combinatorial Search (SoCS), in press.

Hernández, C., & Baier, J. A. (2012). Avoiding and Escaping Depressions in
Real-Time Heuristic Search. Journal of Artificial Intelligence Research,
43, 523–570.

Hernández, C., Botea, A., Baier, J. A., & Bulitko, V. (2017). Online Bridged
Pruning for Real-Time Search with Arbitrary Lookaheads. Proceedings
of the Joint Conference on Artificial Intelligence (IJCAI), 510–516.

Hernández, C., & Meseguer, P. (2005). LRTA*(k). Proceedings of the Joint
Conference on Artificial Intelligence (IJCAI), 1238–1243.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220 (4598), 671–680.

Koenig, S. (2001). Agent-Centered Search. AI Magazine, 22 (4), 109–132.
Koenig, S., & Sun, X. (2009). Comparing real-time and incremental heuristic

search for real-time situated agents. Autonomous Agents and Multi-
Agent Systems, 18 (3), 313–341.

Korf, R. E. (1990). Real-Time Heuristic Search. Artificial Intelligence, 42 (2-3),
189–211.

Manna, Z., & Waldinger, R. J. (1971). Towards automatic program
synthesis. In Proceedings of the Symposium on Semantics of
Algorithmic Languages (pp. 270–310).

Muñoz, F., Fadic, M., Hernández, C., & Baier, J. A. (2018). A Neural Network
for Decision Making in Real-Time Heuristic Search. Proceedings of the
Symposium on Combinatorial Search (SoCS), 173–177.

Rivera, N., Baier, J. A., & Hernández, C. (2015). Incorporating weights into
real-time heuristic search. Artificial Intelligence, 225, 1–23.

Sharon, G., Sturtevant, N. R., & Felner, A. (2013). Online Detection of Dead
States in Real-Time Agent-Centered Search. Proceedings of the
Symposium on Combinatorial Search (SoCS), 167–174.

Spearman, C. (1904). The Proof and Measurement of Association Between
Two Things. American Journal of Psychology, 15, 88–103.

Sturtevant, N. R. (2012). Benchmarks for Grid-Based Pathfinding.
Transactions on Computational Intelligence and AI in Games, 4 (2),
144–148.

40

REFERENCES

Sturtevant, N. R., & Bulitko, V. (2014). Reaching the Goal in Real-Time
Heuristic Search: Scrubbing Behavior is Unavoidable. Proceedings of
the Symposium on Combinatorial Search (SoCS), 166–174.

Sturtevant, N. R., & Bulitko, V. (2016). Scrubbing During Learning In
Real-time Heuristic Search. Journal of Artificial Intelligence Research
(JAIR), 57, 307–343.

Sturtevant, N. R., & Geisberger, R. (2010). A Comparison of High-Level
Approaches for Speeding Up Pathfinding. Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), 76–82.

41

Appendix A

Detailed Results

Detailed results of the synthesis processes in Chapter 6 follow. Each entry

contains the problem set, the fold number, the resulting synthesised algorithm,

the test suboptimality of that algorithm and the total synthesis time of the

synthesis process. The results for parameterised LRTA* are in Table A.1 and

the results for our context-free grammar in Table A.2. Bold numbers indicate

the lowest test suboptimality of the 5 folds for a given problem set.

42

APPENDIX A. DETAILED RESULTS

T
ab

le
A

.1
:

T
h
e

re
su

lt
s

of
p
ro

gr
am

sy
n
th

es
is

ov
er

th
e

p
ar

am
et

er
is

ed
L

R
T

A
*

sp
ac

e.

P
F

ol
d

S
y
n
th

es
is

ed
A

lg
o
ri

th
m

T
es

t
S

u
b

o
p

ti
m

a
li

ty
S

y
n
th

es
is

T
im

e
(h

)

P
m

1
1
7
·m

ea
n
s∈

Ñ
f 4
(1

+
h
t(
s)

)
3
2.

57
3.

30

2
5
·m

in
s∈

Ñ
f 2
(1

+
h
t(
s)

)
3
8
.8

9
3.

3
5

3
5
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
18

.7
0

3.
27

4
6
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
1
8
.6
2

3
.3

0

5
4
·m

in
s∈

Ñ
f 3
(1

+
h
t(
s)

)
18

.7
4

3.
40

P
g

1
9
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
36

.2
5

4.
20

2
8
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
2
7
.0

1
4.

0
6

3
4
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
1
9
.8
6

4
.1

3

4
9
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
35

.5
6

4.
23

5
10
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
47
.2

8
4.

0
9

P
b

1
2
·m

ea
n
s∈

Ñ
f 1
(1

+
h
t(
s)

)
6
4.

08
3.

45

2
12
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
99
.7

7
3.

3
2

3
2
4
·m

in
s∈

Ñ
f 3
(1

+
h
t(
s)

)
15

2.
3
0

3.
33

4
9
·m

ea
n
s∈

Ñ
f 3
(1

+
h
t(
s)

)
95
.9

6
3.

3
6

5
4
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
2
3
.1
2

3.
39

P
s

1
13
·m

in
s∈

Ñ
f 3
(1

+
h
t(
s)

)
+

d
a

95
.5

8
3.

9
8

2
9
·m

in
s∈

Ñ
f 3
(1

+
h
t(
s)

)
+

d
a

93
.1

6
3.

99

3
8
·m

in
s∈

Ñ
f 3
(1

+
h
t(
s)

)
1
08

.2
5

4.
0
5

4
4
·m

in
s∈

Ñ
f 3
(1

+
h
t(
s)

)
9
0
.0
7

4
.0

0

5
5
6
·m

ea
n
s∈

Ñ
f 3
(1

+
h
t(
s)

)
+

d
a

11
4
.9

1
4.

04

P
w

1
8
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
1
1
3
.0
2

3
.5

2

2
3
2
·m

in
s∈

Ñ
f 2
(1

+
h
t(
s)

)
26

3.
2
1

3.
43

3
10
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
1
26
.3

2
3.

5
7

4
1
4
·m

in
s∈

Ñ
f 4
(1

+
h
t(
s)

)
15

1.
3
7

3.
57

5
21
·m

in
s∈

Ñ
f 3
(1

+
h
t(
s)

)
1
97
.7

8
3.

4
1

43

APPENDIX A. DETAILED RESULTS

T
ab

le
A

.2
:

T
h
e

re
su

lt
s

of
p
ro

gr
am

sy
n
th

es
is

ov
er

th
e

co
n
te

x
t-

fr
ee

gr
am

m
ar

sp
ac

e.

P
F

ol
d

S
y
n
th

es
is

ed
A

lg
o
ri

th
m

T
es

t
S

u
b

o
p

ti
m

a
li

ty
S

y
n
th

es
is

T
im

e
(h

)

P
m

1
m

ea
n

(n
2
,m

ea
n

(n
3
,m

a
x
(n

1
,(
n
1
·n

1
))
,n

1
),

m
in

(n
1
,n

1
))

19
.6

9
6.

09
2

m
ea

n
((

((
m

in
(n

2
,n

1
)
+

m
ax

(m
in

(m
ea

n
(n

1
,(

9
·n

4
),
n
3
),
n
2
),
n
1
))

+
n
1
)
+

8)
,4
,4

)
1
9
.0

4
5.

9
3

3
m

ea
n

(n
1
,(

m
ea

n
(0
,n

2
)
·3

))
3
6.

7
6

6.
0
7

4
m

in
((

(m
in

(1
,3

)
·m

ea
n

(3
,8

))
·n

2
),

m
in

(n
3
,(
n
2

+
m

ax
((

m
ax

(3
,n

1
)

+
7)
,8

))
))

1
8
.5
4

6.
04

5
(4

+
m

in
(n

3
,n

1
))

34
.0

9
6.

04

P
g

1
(3

+
n
2
)

2
2.

47
6.

95
2

(5
+

m
in

(n
4
,m

a
x
(3
,n

3
))

)
40

.0
5

7.
09

3
m

ea
n

(m
ea

n
(m

ea
n

(m
ax

(2
,(

m
ax

(n
3
,n

1
)·n

4
))
,n

1
,3

),
n
1
),

m
ea

n
(2
,m

in
(1
,m

in
((
n
1
·

m
ea

n
(m

ax
(n

3
,(
n
3

+
n
1
))
,6

))
,(
n
1

+
n
2
))

),
(3
·6

))
,n

3
)

9
.6
2

6.
92

4
m

in
(n

3
,(

2
·n

2
))

14
.2

8
6.

74
5

m
in

(m
ea

n
(n

1
,n

3
,(
n
2

+
m

in
(n

3
,(

4
·m

ax
(1
,n

2
))

))
),

(n
4
·n

4
))

10
.6

2
6.

9
7

P
b

1
m

a
x
(m

ax
(4
,m

ea
n

(2
,n

4
))
,n

1
)

70
.2

3
6.

1
4

2
(2

+
m

in
(n

1
,(
n
1

+
(n

3
+

8)
))

)
54
.3

4
6.

12
3

(m
in

(2
,8

)
+

m
ea

n
(n

1
,m

ea
n

(m
ax

(7
,n

1
),

m
ax

(1
,(
n
2
·5

))
))

)
34
.1

6
6.

22
4

m
in

(n
4
,(

6
+

n
1
))

2
1
.7
5

6
.0

8
5

m
in

(m
ea

n
((

m
a
x
(5
,4

)
·n

2
),
n
1
,n

2
),
n
4
)

3
2
.8

4
6.

23

P
s

1
m

ea
n

(m
ea

n
(m

a
x
(n

3
,(
n
2
·4

))
,(

9
·n

1
),

m
ax

(n
4
,4

))
,n

2
,n

1
)

1
4
.6
3

6
.7

8
2

(m
in

((
n
3
·n

2
),

(m
in

(m
a
x
(m

ea
n

(n
1
,n

4
,8

),
4)
,n

3
)

+
m

in
(n

3
,5

))
)
·2

)
28
.6

6
6.

8
2

3
m

a
x
(n

2
,m

a
x
(m

in
(n

1
,5

),
n
1
))

45
.8

2
6.

7
5

4
m

in
((
n
1
+
n
2
),

m
ea

n
(m

ea
n

(m
a
x
(m

ax
(m

ax
(0
,m

ea
n

(n
2
,m

ea
n

(n
3
,4

),
m

ax
(8
,1

))
),

6)
,

(m
a
x
(m

ea
n

(m
in

(n
1
,1

),
m

ea
n

(n
2
,n

1
),
n
2
),

m
ea

n
(n

3
,5
,n

3
))
·4

))
,4
,n

3
),
n
1
))

3
0.

4
0

6.
7
4

5
m

a
x
(n

2
,n

1
)

48
.0

0
6.

7
1

P
w

1
m

ea
n

((
8

+
n
1
),
n
1
,n

1
)

14
9.

4
9

6.
15

2
m

in
(n

3
,(
n
2

+
m

ea
n

(1
,3

))
)

11
9
.9

1
6.

2
4

3
m

ea
n

((
n
1

+
(n

2
+

m
ea

n
(m

ea
n

(m
ax

(n
3
,3

),
2)
,2
,2

))
),

0)
76

.1
1

6.
14

4
(m

in
((
n
1
·m

in
(n

1
,4

))
,(

m
ea

n
(n

1
,n

2
)

+
(8
·8

))
)

+
8)

2
8
.5
9

6
.1

6
5

m
in

(n
3
,m

a
x
(m

ea
n

(m
ea

n
((

(n
3

+
n
1
)
·m

ax
(8
,(

(2
+

9)
·(

7
·3

))
))
,n

3
),
n
1
,7

),
2)

)
3
9
.1

6
6.

17

44

Appendix B

Interpolation

We describe the interpolation of the results discussed in Chapter 6. The

interpolation occurred over 5 folds. Since each fold recorded the number of

states expanded and test suboptimality when the best algorithm was

outperformed, each fold was not guaranteed to contain the same number of

data points.

Consider two folds with the data points {(x0, y0), (x1, y1), . . . , (xm, ym)}

and {(x′0, y′0), (x′1, y′1), . . . , (x′n, y′n)} with m 6= n. Our goal is to calculate the

pointwise average of both sets. However, since they are not of the same size

and because xi may not equal x′i, we first generate intermediate points.

We generate q evenly spaced x values within each set. For the experiments

in Chapter 6, we place an x value at every 105 state expansions such that both

sets end up with an even number of x values {0, 105, 205, . . . ,min(xm, xn)}.

We denote these values {c0, c1, . . . , cq}.

The corresponding y values are constructed using a linear interpolation.

Assuming, without loss of generality, we are working with the first fold and we

wish to find a di for a given ci. Assuming xj−1 ≤ ci ≤ xj for some j, then di

is the linear interpolation of yj−1 and yj. The first fold is left with the points

{(c0, d0), (c1, d1), . . . , (cq, dq)}. We repeat for each fold. Since each fold now

contains an equal amount of datapoints, we calculate the pointwise average.

45

APPENDIX B. INTERPOLATION

Figure B.1: The data points of both example folds and their interpolated
average.

For example, assume we have two folds containing the data points

{(0, 10), (3, 8), (4, 5), (10, 2)} and {(0, 12), (7, 6), (10, 1)}. In Figure B.1, the

first set is depicted in blue and the second in red. We interpolate every

second x value which results in the final interpolated points

{(0, 11), (2, 9.48), (4, 6.79), (6, 5.42), (8, 3.67), (10, 1.50)}, shown in orange.

46

