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Abstract—Due to the unfavorable interference of non-Gaussian
noise, abnormal system states, and rough measurement errors,
dynamic state estimation (DSE) plays an important role in the
safe operation of power system. A novel DSE method based on an
adaptive cubature Kalman filter (CKF) with generalized
correntropy loss (GCL) criterion, termed AGCLCKF, is
developed to deal with the complex non-Gaussian distribution
noises of power system in this paper. First, a nonlinear regression
model is derived to simultaneously incorporate the state and
noise errors into the GCL cost function, and a fixed-point
iteration is exploited to recursively update the posterior state
estimate. Then, considering that the filtering performance of the
estimator is largely determined by the kernel bandwidth in
correntropy, an adaptive factor is established to adjust the kernel
bandwidth of kernel function in real-time, which can improve the
flexibility and accuracy of dynamic state estimation in the
existence of bad measurement information. Finally, extensive
simulation results carried out on the IEEE 39-bus test system
demonstrate that the proposed method can achieve much
accuracy and robustness under various situations.

Index Terms—Adaptive factor, cubature Kalman filter (CKF),
generalized correntropy loss (GCL), non-Gaussian noise, power
system dynamic state estimator, synchronous generator modeling.

I. INTRODUCTION

ccurate and reliable state estimation (SE) plays an
important role in the domain of power system, such as

line protection, parameter identification, emergency control
etc. [1]-[5]. In previous studies, the transmission and
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distribution networks are usually regarded as the research
focus of static state estimation since it is the basis for the
stable operation of the power grid [6]. As one of the key
factors affecting the normal operation of power system, the
state estimation of synchronous generator is also paramount
[7]. Dynamic state estimation (DSE), through real-time
monitoring and tracking with phasor measurement unit (PMU),
can provide an optimal solution for the dynamic change of
generator states.

In recent years, Kalman filter (KF), a recursive least squares
linear filter [8] and its non-linear extension variants, such as
extended Kalman filter (EKF) [9], unscented Kalman filter
(UKF) [10], [11], and cubature Kalman filter (CKF) [12], [13]
have been widely utilized in the dynamic state estimation.
Considering the unknown noise statistics and the uncertainty
of the model parameters, by incorporating the robust control
theory with the traditional EKF approach, a robust HEKF
filter was proposed to estimate the states of power system [14].
An improved EKF with multi-step adaptive interpolation
technique was established to achieve a balance between
computational efficiency and estimation accuracy [15]. In
order to mitigate the approximation error caused by the
linearization procedure of EKF, several derivative-free filters
were further developed [16]-[18]. A robust UKF approach
with positive semidefinite estimation error covariance was
proposed to enhance the numerical stability of the filter [16].
The decentralized derivative free UKF-based DSE with
several unknown inputs was advocated to estimate the state
variables of generator [17]. To deal with the adverse effects of
the bimodal Gaussian mixture measurement errors, a hybrid
robust estimator combining generalized maximum-likelihood
and CKF (GM-CKF) was proposed [18]. It is worth pointing
out that the cost function of the above KF-based system model
obeys the minimum mean square error (MSE) loss criterion,
which follows the Gaussian noise distribution and means that
these methods are easily sensitive to the non-Gaussian noise,
such as heavy tailed types [19], [20]. Therefore, the
performance of these methods can degrade seriously in the
presence of the non-Gaussian noise conditions.

In order to deal with the above issues, some robust dynamic
state estimation methods for power system dynamic state
estimation were developed. In [21] and [22], the H-infinity
methodology was utilized to enhance the robustness against
model uncertainties. The Huber estimator and M-estimation
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theory were developed to mitigate the adverse effects of
observation outliers [18], [23]. In addition, motivated by the
information theoretic learning, the concept of correntropy
based on the Gaussian kernel has been vigorously developed
and widely used in machine learning and automatic control
recently [24]-[26], which can effectively capture the higher-
order error statistics, especially for the non-Gaussian noise
error [27], [28]. However, the Gaussian kernel is likely to fail
in actual power system due to the singularity of specific type
of noise with Gaussian function. To address this problem, the
generalized correntropy was developed in [29]. Compared
with the correntropy based on the Gaussian kernel, the shape
of correntropy can be freely transformed by utilizing the
generalized Gaussian density function. Meanwhile, the
research on generalized correntropy loss is further compared
and analyzed in [30]. In addition, it is worth noting that the
influence of the kernel parameters on the estimated results
needs to be further investigated according to [31]-[34]. In fact,
an unsuitable kernel parameter of correntropy can affect the
performance of state estimation greatly. Specifically, a too
large kernel bandwidth (KB) can severely limit the ability of
filter to suppress outliers, while a too small KB may lead to
slow convergence and even divergence of filtering. So far,
there is still no method to effectively adjust the kernel
bandwidth in generalized correntropy.

In view of the aforementioned researches, in order to further
solve the complex non-Gaussian noise interference in power
system, a novel robust DSE methodology based on adaptive
cubature Kalman filter with generalized correntropy loss
strategy (termed as AGCLCKF) is developed in this paper.
The main contributions of this paper are threefold.
 By utilizing the GCL optimal criterion and the nonlinear

regression model to adjust the state and noise covariance
matrices, the proposed method with a suitable kernel
bandwidth can achieve strong robustness against the non-
Gaussian noise.
 The utilization of the adaptive factor k can dynamically

update the kernel bandwidth according to the changes of
measurements, which can further improve the flexibility
of the algorithm and the robust performance in the
presence of abnormal measurement.
 Extensive comparative studies under various operating

conditions have been carried out to validate that
AGCLCKF can achieve much better performance in
terms of estimation accuracy and robustness under the
non-Gaussian noise conditions.

The remainder of this paper is organized as follows. The
dynamic state estimation model of power system is established
and analyzed in Section II. The GCL algorithm based on CKF
and the adaptive strategy of kernel bandwidth are developed
and introduced detailed in Section III. Extensive numerical
simulations carried out on the IEEE 39-bus test system under
various circumstances are provided to demonstrate the
efficacy of the proposed method in Section IV. Finally,
conclusions are drawn in Section V.

II. DYNAMIC STATE ESTIMATION MODEL OF POWER
SYSTEM

Compared with the classical second-order generator model
[22], this paper considers the electromagnetic dynamic process
of generator d, q, f, g, D and Q windings, while the dynamic
process of D, Q windings and stator in the sub transient
process are ignored. Then, a more accurate and simplified
nonlinear fourth-order generator model can be obtained [21].
The detailed generator state model can be described by
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where  indicates the absolute power angle of generator rotor;
 and 0 are the electrical angular velocity and its initial
value, respectively; jT denotes the inertia constant, DK

indicates the damping coefficient; mT and eT represent the
mechanical and electromagnetic power of the generator,
respectively; qe and de represent the q-axis and d-axis
transient electromotive force of generator, respectively; fdE is
the excitation voltage of generator stator; dx and dx are
synchronous reactance and transient reactance of generator d-
axis, respectively; 0dT  and 0qT  are the open-circuit transient
time constants of generator q-axis and d-axis, respectively; di

and qi represent the stator currents on the d-axis and q-axis of
generator, respectively; qx and qx respectively denote the
synchronous reactance and transient reactance on q-axis.

For the DSE of power system, a time-varying and discrete
characteristics physical model consisting of state and
measurement variables must be established in advance. By
utilizing the improved Euler approach [21], the discrete-time
nonlinear model for the generator can be expressed as
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where ( ) and ( )h  are the state propagation function and
vector-valued output function, respectively; nx R represents
the state vector composed of rotor power angle  , angular
velocity  , transient electromotive force on the q-axis qe and

d-axis de of generator; the measurement vector mz R
consists of power angle  , angular velocity  and stator
voltage on R-axis Re and I-axis Ie ; u comprises of generator
mechanical power mT , stator excitation voltage fdE and stator
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R-axis and I-axis currents Ri and Ii ; kw and kv respectively
indicate the system noise and measurement device noise,
which are usually assumed as the Gaussian white noise with
mean value of zero and covariance of kQ and kR , respectively;
the subscript k represents the time instant.

By rewriting the Re , Ie , di , and qi as functions of kx and

ku , the state propagation function and measurement functions
can be implemented as general state space model (5)

   sin( ) cos( )R d d q q d de e i x e i x        , (7)

   sin( ) cos( )I q d d d q qe e i x e i x        , (8)
sin( ) cos( )Id Ri i i   , (9)
sin( ) cos( )q RIi i i   . (10)

III. ADAPTIVE GENERALIZED CORRENTROPY LOSS
CUBATURE KALMAN FILTER WITH NONLINEAR

REGRESSION

In this section, based on the GCL criteria and CKF
framework, by combining the noise statistics with the kernel
width adaptive update strategy, a novel AGCLCKF algorithm
against the non-Gaussian noise is designed and introduced in
detail.

A． Generalized Correntropy Loss Criterion

Inspired by the information theoretic learning, supposing
two random variables X and Y , the correntropy is formally
defined as [29]

  ,( , ) ( , ) ( , ) ( , ) d X YV X Y E X Y x y F x y     , (11)
where ( )E stands for the expectation operator, , ( , )X YF x y

denotes the joint probability distribution of ( , )X Y ; ( ) 
represents the shift-invariant Mercer kernel with kernel
bandwidth  , where the Gaussian kernel is generally the
most commonly used.

Based on (11), in order to deal with the non-Gaussian noise
effectively, a more flexible generalized Gaussian density
kernel with zero mean is developed, which can be expressed
by
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where ( )  is the gamma function,   , 2  // 1    

represents the normalization coefficient;  and  represent
the shape parameter and the width of kernel, respectively;

1/   is related to kernel parameters; Note that if 2 
and 2  ( is the kernel bandwidth of correntropy), GCL
degenerates into the maximum correntropy criterion (MCC).

Therefore, (11) can be further defined as follows
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and the finite number of samples  1
, N

i i i
x y


in actual situations,

the estimator of the GCL between X and Y is further
expressed as
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By minimizing  ( , )GCLJ X Y , (15) can be regarded as a cost
function similar to the mean square error criterion. It is worth
pointing out that compared with the conventional Kalman
filtering method based on the MSE criterion, the GCL
criterion can deal with the non-Gaussian noise effectively,
which owns strong robustness against outliers.

B． GCL Strategy Based on CKF

As a typical Kalman filter for processing nonlinear models,
the CKF algorithm is mainly composed of two parts as follows.

1) State Prediction: First, suppose that a set of n-
dimensional state variables 0X is given at the initial time

instant, then the initial state mean   0 0 0X E X∣ and state

error covariance 0 0P
∣ can be represented by
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By utilizing the state estimation value  1 1k kX  ∣ and the
Cholesky decomposition of the state error covariance 1 1k kP  ∣

at time instant 1k , a set of cubature points , 1 1i k kX  ∣ and
*
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where i represents the i-th cubature point of the cubature
point set { i } (i =1, 2, ..., 2n), and n is the number of state
variables, the form of i is defined as follows
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Then, the prior state prediction 
1k kX ∣ and covariance

prediction 1k kP ∣
at time instant k-1 can be calculated by
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2) Measurement Update: By Cholesky decomposition of
1k kP ∣ , a set of equal-weight cubature points , 1i k kX ∣ around

the state prediction value  1k kX ∣ can be generated as follows
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The prior measurement mean 
1k kZ ∣ and cross-covariance

, 1xz k kP ∣ between the states and measurements can be derived
as
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3) State Update: In order to make full use of the conducive
characteristics of GCL criterion against the non-Gaussian
noise, the nonlinear regression method based on GCL is
derived in this section, which intends to approximate the
nonlinear model of actual power system exactly and can be
developed by the following procedure.

At first, based on the nonlinear power system model
expressed by (5), the following equation can be derived:
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where kB can be obtained by Cholesky decomposition of
T

k kE     . In order to facilitate the solution, both sides of (26)

are multiplied by 1
kB at the same time instant, the nonlinear

regression model based on the generalized correntropy loss
can be further be described as
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where I symbolizes the identity matrix.

Subsequently, the cost function based on the GCL criterion
can be constructed as follows
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where L n+m , m is the dimension of the measured variable;
, , , ,( )i k i k i k i kD F X γ , ,i kγ denotes the i-th element of matrix

kγ . According to the cost function   GCL iJ X , the optimal
state variable  iX can be calculated by
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Accordingly, let   GCL / =0i iJ X X  , the following equation
can be obtained
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X
 

  
 

, (36)

where
,

,

0
0
x k

k
z k

U
U

U
 

  
 

, (37)

with     , 1, ,diag , ,x k k n kU g g  γ γ , , z kU

    1, ,diag , ,n k n m kg g  γ γ ,     2
, , ,expk i i ig


 

 
  k kγ γ γ .

It is worth pointing out that when the measurement is
corrupted by the non-Gaussian noise, the correntropy gain kU
will be reduced to zero, which can avoid the divergence of
state estimation effectively.

In order to facilitate the iterative calculation dynamically,
(35) can be further derived as a fixed-point iterative form as
follows

      
   

1( ) ( 1) ( 1) ( 1)( 1) ( 1)

( 1) ( 1)
  ,        

t t t tT t T t
k k k kk k

t t
k k k

X X X X

X X

U U

z

   

 

     
 
     
 



(38)

where    
 ( 1)

( 1)

t
k

t k k
k

k X X

X
F X

X 


 
 


.

Then, by weighting the residuals with correntropy gain kU ,
the prediction covariance 1k kP ∣ and the measurement noise

kR can be corrected by
 1 T

1 ,, 1 , 1k k x kp k k p k kP B U B
  ∣ ∣ ∣ , (39)
 1 T

, , ,k r k y k r kR B U B . (40)
Thus, (36) can be further transformed into the following

form
   k k k k -1 k k -1k kX = X + K Z - Z∣ ∣ ∣ , (41)

where -1
k xz,k k -1 zz,k k -1K = P P

∣ ∣
represents the gain matrix. Then,

the posterior state error covariance can be updated as follows
 T

1 , 1k k k kk k zz k kP P K P K  ∣∣ ∣
, (42)

where   
2 TT

1 1, 1 , 1 , 1
1

1
2

n

k k k k kzz k k i k k i k k
i

P Z Z Z Z R
n

   


   ∣ ∣∣ ∣ ∣
.
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It is worth noting that in order to prevent the singularity of
matrix kU caused by the sharp increase of measurement
information, the following means are utilized


1  ∣k kk kZ Z , (43)

, 1
∣k zz k kP , (44)

1
kτ  T

k k k   , (45)
where  is a positive threshold and should be set in advance.
While kτ  , only the time update step without states

update step is executed, i.e.,  
1= k k k kX X∣ ∣ and 1= k k k kP P

∣ ∣ .
Otherwise, both are worked.

C． Adaptive Kernel Bandwidth
From (12), it should be pointed out that the efficacy of the

method based on correntropy criterion is significantly affected
by the kernel bandwidth. To be specific, if a too large kernel
bandwidth is utilized, the ability of the estimator against
outliers can be degraded heavily; on the contrary, if a too
small kernel bandwidth is used, the estimation accuracy and
convergence speed of the estimator will be severely reduced
[31]. Therefore, the selection of an appropriate kernel
bandwidth is very important to ensure the performance of the
proposed method. To deal with the above issue and acquire the
suitable kernel bandwidth, an adaptive factor k is introduced
to achieve the optimal kernel bandwidth adaptively.

Let    , 1kd tr tr T
k kzz k kP   ∣   primarily. Then, by

comparing the trace of prior measurement covariance , 1zz k kP ∣

with that of the innovation vector T
k k  proposed in (42).

Thereby, the adaptive factor k can be defined as

 
 

, 1 ,

1 0,k

k

if d

trμ
t

otherwi e
r

s


 



∣zz k k

T
k k

P

 

(46)

where ( )tr A represents the trace of A .
Therefore, the kernel bandwidth  can be calculated by

1k k k   . (47)
Note that when lots of abnormal data appear in the

measured information, it can be seen from (43) that the
innovation vector k become larger, and then the kd will be
less than or equal to zero. Further, adjusted by the adaptive
factor k in (47), the kernel bandwidth will be dynamically
updated corresponding to the changing measurement
information.

Remark 1: As described in [32], the kernel function with an
inappropriate kernel bandwidth will seriously affect the
filtering performance of the estimator. In addition, the fixed-
size kernel bandwidth is adopted by [27], which is usually
obtained based on a large number of experiments and
debugging. Therefore, it is troublesome to accurately select an
appropriate kernel bandwidth with varying measurement
information.

Remark 2: In order to solve the above problem, an adaptive
correction technology is developed in (46). By utilizing this

methodology, the kernel bandwidth can be adjusted
dynamically and adaptively with the actual operating
conditions of the power system, where not only the difficulty
in choosing the appropriate kernel bandwidth is avoided, but
also a much better estimation performance can be achieved.

For convenience, the proposed AGCLCKF approach for
robust dynamic state estimation of power system is fully
summarized as Algorithm 1:

Algorithm 1: AGCLCKF with Nonlinear Regression

Step 1: Initialization: k = 1,  ,  ,  0 0∣X ,  0 0∣P , -1kQ , kR ,
Step 2: Time update:
A set of cubature points , -1 -1∣i k kX and *

, -1∣i k kX are
obtained by (17) – (19), and then the prior state prediction


-1∣k kX and -1k kP
∣ are calculated by (21) – (22).

Step 3: Measurement update:
The cubature points , -1i k kX

∣ and , -1i k kZ
∣ and the prior

measurements 
∣k k-1Z and ∣xz,k k-1P are obtained by (23) – (25)

and (26) – (27), respectively.
If kτ  then

 
-1k k k kX X∣ ∣ and -1

∣ ∣k k k kP P
else

Step 4: Initialization: 1 t  ,  (0)
-1k k k kX X∣ ∣ and

,0 1k k  

Repeat:

Update the states 
( )t
k kX ∣ and the state error covariance

( )t
k kP
∣

according to (41)-(42)
( -1) ( -1) -1

, -1 , -1( )t t
k xz k k zz k kK P P

∣ ∣

   ( ) ( -1)
-1 -1- 

t t
k k k k k kk kX X K Z Z∣ ∣ ∣

 ( -1)( ) ( -1) ( -1) ( -1)
-1 , -1- ( )

tt t t t T
k k k kk k zz k kP P K P K∣∣ ∣

where the prediction covariance  ( -1)
-1

t
k kP ∣ , ( -1)

, -1
t

zz k kP
∣ and

measurement noise  ( -1)t
kR corrected by correntropy gain kU

can be obtained by
 (t -1) (t -1) -1 T

k k -1 x,kp,k k -1 p,k k -1P = B U ) B(∣ ∣ ∣

  
2 ( -1)( -1)

-1 -1, -1 , -1 , -1
1

1 -
2 

 
n T tt T

k k k k kzz k k i k k i k k
i

P Z Z Z Z R
n

∣ ∣∣ ∣ ∣

 (t -1) (t -1) -1 T
k r,k z,k r,kR B ) B(= U

with

    ( -1)
, , ,β βdiag g g(t -1) (t -1)

1,k n,k= γ γt
x kU

    ( -1 )
, , ,β βd ia g g g(t -1 ) (t -1 )

n + 1 ,k n + m ,k= γ γt
z kU

   exp 
α α -2(t -1) (t -1) (t -1)

i,k i,k i,kγ = - γ γg

 ( -1)( -1)
|, , ,- ( )γ
tt

k ki k i k i kD F X
Step 5: Correct kernel bandwidth k of GCL by adaptive
factor k :
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( ) ( ) ( )( )
∣ ∣ ∣

t t t T
k k k k k kP S S ,  ( )( ) ( )

, , ,for i=1 2n  
tt t

k kii k k k kX S X ∣∣ ∣

 ( ) ( )
, ,,
∣ ∣

t m t
ki k k i k kZ h X X , 

2( ) ( )
,

1

1
2 

 ∣ ∣

nt t
k k i k k

i
Z Z

n
,

 ( )( ) -  ∣

tt
k kk kZ Z ,    ( ) ( )

, -1 - ( )t
kd  

∣

t t T
k kzz k ktr P tr

 
 

, -1

)
,

1 ,

(

t
k

s

i

other

0

wi

f 

e

d >



 


 



∣
t

zz k kk

t t T
k k

tr P

tr

1
t t t
k k k  

Step 6: 1t t 

Until
 



( ) ( -1)

( -1)

-


∣ ∣

∣

t t
k k k k

t
k k

X X

X

where  is a positive threshold, which indicates that the
internal iteration will be stopped.
End
Step 7: 1k k  , go back to Step 2.

IV. ILLUSTRATIVE EXAMPLE
In this section, extensive simulations are carried out on the

New England test system model with 10 generators and 39
buses to demonstrate the effectiveness and robustness of the
proposed method under various conditions. The single-line
diagram of the test system and its detailed parameters can be
found in [21]. By utilizing the software PSCAD/EMTDC ○R ,
the true state variables and measurements can be generated to
simulate transient stability. Note that the input variables of
system are usually treated as known. The specific verification
includes the following steps: when 0.5 t s , a three-phase
grounding fault suddenly occurs at the line outlet of bus 16-
bus 21, which is solved at 0.7 t s . The sampling frequency
of the phasor measurement unit is 50 samples per second.
Then, 200MCN  independent Monte-Carlo simulations are
carried out for each case study to acquire more reliable
statistical significance. In the following discussion, the
generator 2 (G2) is randomly taken as an example. All the
tests are implemented in Matlab environment using Intel ○R
Core TM i5 2.30GHz CPU with 16GB memory computer.

In order to visualize and digitize the statistical results, the
overall performance index xE and the mean absolute error
(MAE) in [21] are used to evaluate the performance of various
algorithms, which are defined as


1 1

1 1MAE( )
MC SN N

i iMC S

k
N N 

   i,ki,kX - X , (48)

 2
,,

1 1

1 - /
TMC

T

N N

x
MC

E N
N  

   i ki k
i k

X X , (49)

where MCN , SN and TN represent the total number of Monte
Carlo runs, state variables and simulation time, respectively;

,i kX and 
,i kX denote the true and estimated value of states,

respectively.

In order to verify and highlight the efficacy of the proposed
method, the methods CKF [11], HCKF [35], and the
developed GCLCKF are utilized to make comparisons under
the different circumstances.

A. Case 1: Gaussian Noise Distribution Conditions
In this subsection, it is assumed that the noise statistics of

the system model obey the following Gaussian distribution:
610kQ I and 510kR I , which represents the state and

measurement error covariance matrix, respectively; and both
of them are zero mean. The shape parameter  is set as 1.9.
The initial state covariance 5

0 10P I .
In this case, the overall performance xE of CKF [11],

HCKF [35], GCLCKF and AGCLCKF for various states of
generator are shown in TABLE Ⅰ. It can be easily noted that
the xE of GCLCKF and AGCLCKF is much smaller than that
of CKF and HCKF. In addition, compared with the CKF, the
overall performance index of HCKF is smaller. By introducing
robust control theory, the system and measurement noise
statistics can be dynamically modified, so that the HCKF
method can achieve superior performance than the
conventional CKF in this case.

More importantly, the proposed AGCLCKF can achieve
better estimation performance than GCLCKF due to the
adaptive adjustment of the kernel bandwidth. Meanwhile,
those results also clarify that the size of kernel bandwidth will
affect the filtering performance of GCLCKF and AGCLCKF
obviously. As shown in Table I, it can be seen that when  is
set as 3, GCLCKF and AGCLCKF have relatively minimal
errors. Note that this kernel bandwidth is adopted in the
following discussion.

TABLE Ⅰ
OVERALL PERFORMANCE xE OF  ,  , '

qe AND '
de

WITH THE GAUSSIAN NOISE
Filter xE of  xE of  xE of '

qe xE of '
de

CKF 0.0296 0.2970 0.2175 0.7212
HCKF 0.0110 0.0241 0.1236 0.4161

GCLCKF
(  =2)

0.113×10-3 0.665×10-3 0.0222 0.0450

GCLCKF
(  =3)

0.120×10-3 0.614×10-3 0.0214 0.0241

GCLCKF
(  =5)

0.122×10-3 0.609×10-3 0.0242 0.0366

GCLCKF
(  =10)

0.124×10-3 0.635×10-3 0.0233 0.0451

AGCLCKF
(  =2)

0.079×10-3 0.186×10-3 0.0151 0.0439

AGCLCKF
(  =3)

0.077×10-3 0.158×10-3 0.0102 0.0225

AGCLCKF
(  =5)

0.085×10-3 0.161×10-3 0.035 0.0343

AGCLCKF
(  =10)

0.084×10-3 0.169×10-3 0.016 0.0554
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Fig. 1. Estimation results of  for G2 with the Gaussian noise.

Fig. 2. Estimation results of  for G2 with the Gaussian noise.

Fig. 3. Estimation results of '
qe for G2 with the Gaussian noise.

Fig. 4. Estimation results of '
de for G2 with the Gaussian noise.

Fig. 5. MAE results of each approach for G2 with the
Gaussian noise.

Next, the estimated results of G2 are taken for illustration.
Figs. 1-4 show the estimated results of the different discussed
methods with the Gaussian noise. It can be observed that
compared with CKF and HCKF, GCLCKF and AGCLCKF

are more accurate in state tracking, especially for the state
variables '

qe and '
de . Moreover, due to the correction of kernel

bandwidth, the proposed AGCLCKF performs better than
GCLCKF slightly. In contrast, the performance of the CKF
and HCKF methods is relatively poor in tracking the true
states. Under this working condition, the average absolute
error (MAE) results of the discussed methods for G2 are
presented in Fig. 5, which are calculated from 200 Monte–
Carlo runs. It can be noted that the MAE of CKF is the largest,
followed by HCKF, GCLCKF is even smaller, and
AGCLCKF has the smallest. In other words, the proposed
AGLCCKF method can achieve the best estimation
performance under the Gaussian noise distribution conditions.

B. Case 2: Non-Gaussian Measurement Noise Conditions
Due to communication noise and external interference, the

actual measurement noise measured by the PMU tends to
deviate from the Gaussian noise. In order to verify the
effectiveness of the proposed method under this condition, it is
assumed that the measurement noise obeys the heavy-tailed
non-Gaussian noise, which is generated by the mixed-
Gaussian distribution such as [30]

   2 2
1 2) 0 0~ (1 , ,kr N v N v   ,

where  20, iN v represents the Gaussian noise with zero mean
and the covariance of 2 ( 1, 2)iv i  ;  indicates the degree of
mixture. In this case study, the measured noise covariance

2 ( 1, 2)iv i  and the mixing parameter  are set to 5
1 10v  ,

6
2 10v  and 0.1  , respectively.
The estimated results of the proposed AGCLCKF method

and other discussed approaches at each time instant k are
displayed in Figs. 6-9. And the MAE results of 200 Monte-
Carlo sampling of each method are further displayed in Fig. 10.
It can be seen that the estimated result of CKF has seriously
deviated from the true value of states under the non-Gaussian
measurement noise circumstance. By utilizing the H-infinity
theory, the performance of HCKF performs better than that of
CKF to some extent. However, compared with GCL criterion,
HCKF still has large error. In addition, it can be found that the
tracking speed of AGCLCKF on state variables is significantly
better than GCLCKF in this scenario, which is due to the
correction of kernel bandwidth by adaptive factor k .
Therefore, the AGCLCKF approach can achieve a higher
filtering accuracy and more robust performance than the
GCLCKF.

Fig. 6. Estimation results of  for G2 with the non-Gaussian
measurement noise.
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Fig. 7. Estimation results of  for G2 with the non-Gaussian
measurement noise.

Fig. 8. Estimation results of '
qe for G2 with the non-Gaussian

measurement noise.

Fig. 9. Estimation results of '
de for G2 with the non-Gaussian

measurement noise.

Fig. 10. MAE results of each approach for G2 with the non-
Gaussian measurement noise.

Furthermore, the overall performance index xE of the
dicussed approaches for each state are presented in TABLE Ⅱ.
As can be seen from it, the estimation error of CKF is the
largest, followed by HCKF and GCLCKF. Besides, under the
premise of a suitable kernel width, the AGCLCKF will
achieve the smallest error result. In short, compared with other
methods, the AGCLCKF has the optimal estimation accuracy
and robustness under the non-Gaussian noise conditions.

TABLE Ⅱ
OVERALL PERFORMANCE xE OF  ,  , '

qe AND '
de

WITH THE NON-GAUSSIAN MEASUREMENT NOISE
Filter xE of  xE of  xE of '

qe xE of '
de

CKF 0.0096 0.0727 0.2389 0.6775
HCKF 0.0018 0.0113 0.0258 0.1533

GCLCKF
(  =2)

0.0014 0.0095 0.0116 0.0586

GCLCKF
(  =3)

0.0012 0.0065 0.0103 0.0477

GCLCKF
(  =5)

0.0013 0.0063 0.0107 0.0496

GCLCKF
(  =10)

0.0021 0.0077 0.0124 0.0487

AGCLCKF
(  =2)

0.0010 0.0035 0.0098 0.0307

AGCLCKF
(  =3)

0.0008 0.0028 0.0086 0.0211

AGCLCKF
(  =5)

0.0013 0.0039 0.0093 0.0330

AGCLCKF
(  =10)

0.0011 0.0105 0.0105 0.0423

C.Case 3: Unknown Model Parameter Variation Conditions
In the actual power system, the uncertainties of the

generators come not only from the complex non-Gaussian
distributed noises, but also from the time-varying model
parameters, which is due to the fluctuation of the mechanical
characteristics, temperature, and the interference of saturation
on the inductance, thus some parameters of the synchronous
generator can be deviated from the rated values gradually [22].
According to [36] in terms of model validation and calibration,
it can be concluded that the various parameters of generator
reflect different sensitivities to system disturbances. Therefore,
in order to investigate the robustness of each discussed method
under this circumstance, in this case, the transient reactances
of d-axis and q-axis are assumed to be 15% deviated from the
rated values, which can be simulated by a Gaussian random
variable with zero mean and given error as standard deviation.

Fig. 11. Estimation results of  for G2 with model parameter
variation.

Fig. 12. Estimation results of  for G2 with model parameter
variation.
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Fig. 13. Estimation results of '
qe for G2 with model parameter

variation.

Fig. 14. Estimation results of '
de for G2 with model parameter

variation.

Fig. 15. MAE results of each approach for G2 with model
parameter variation.

TABLE Ⅲ
OVERALL PERFORMANCE xE OF  ,  , '

qe AND '
de

WITH MODEL PARAMETER VARIATION
Filter xE of  xE of  xE of '

qe xE of '
de

CKF 0.0503 0.0153 0.0498 0.3843
HCKF 0.0321 0.0223 0.0363 0.1931

GCLCKF
(  =2)

0.0211 0.0208 0.0222 0.1335

GCLCKF
(  =3)

0.0106 0.0147 0.0107 0.1023

GCLCKF
(  =5)

0.0117 0.0149 0.0110 0.1104

GCLCKF
(  =10)

0.0134 0.0151 0.0523 0.1299

AGCLCKF
(  =2)

0.0105 0.0123 0.0211 0.0995

AGCLCKF
(  =3)

0.0099 0.0117 0.0069 0.0864

AGCLCKF
(  =5)

0.0110 0.0125 0.0121 0.0902

AGCLCKF
(  =10)

0.0127 0.0133 0.0438 0.0105

Figs. 11-14 display the state tracking of CKF, HCKF,
GCLCKF, and AGCLCKF methods in the presence of
unknown model parameter changes. In addition, the MAE

comparison results of various filters in this case are provided
in Fig. 15. The xE indices are calculated by 200 Monte-Carlo
simulations for each of the discussed approaches are exhibited
in TABLE Ⅲ. It can be seen that all the discussed approaches
can roughly estimate the states, the estimation results are
significantly different. To be specific, as the CKF lacks the
robustness against uncertainty, it cannot converge quickly,
which is much sensitive to parameter fluctuations, especially
for the state estimation of '

de . Compared with the CKF, the
MAE and xE results of HCKF are slightly lower. In other
words, the relatively stronger robustness is embodied in
HCKF, due to the constraint of parameter variation to a certain
extent. However, compared with the CKF and its variants,
which use the minimum error criterion as the cost function, the
GCL criterion owns stronger robustness. Based utilizing the
GCL criterion, the GCLCKF can suppress the adverse effects
caused by the uncertain transient reactance with fast
convergence rate. Nevertheless, compared to the GCLCKF
with a fixed kernel size, the AGCLCKF has smaller error
results and more accurate filtering performance, which is due
to the fact that it can dynamically adjust the covariance matrix
and the bandwidth of kernel according to the changes of
parameters.
D.Case 4: Evaluation of Computational Efficiency

For the dynamic state estimation of power system, the
efficiency of algorithm is another paramount factor. Therefore,
the overall calculation time of all the discussed methods in the
Case 1-3 is fully investigated, which is shown in Fig. 16. It
can be seen that the total calculation time of CKF, HCKF,
GCLCKF, and the proposed AGCLCKF algorithms increase
in turn. To be specific, the CKF takes the least time, followed
by HCKF due to the adjustment of constraint parameter 2
and the update of large-scale matrix. Moreover, the GCLCKF
takes a little more time than HCKF, this is because it involves
the tuning of the measurement noise Rk and the state
covariance Pk with correntropy gain Uk . In addition,
compared with the GCLCKF, due to the adaptive correction of
the kernel bandwidth k , the AGCLCKF spent a little bit
more calculation time. Nevertheless, it is still less than the
sampling rate of the PMU (20 milliseconds, 50 samples per
second). Therefore, the proposed filter AGCLCKF is able to
achieve the real-time tracking of power system dynamic
estimation online.

Fig. 16. Overall calculation time of all filters in the case
studies 1-3
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V. CONCLUSION

To deal with the widespread non-Gaussian noise problem in
the power system, a novel robust DSE strategy based on
generalized correntropy loss criterion with CKF framework
was proposed. In this method, by utilizing the GCL optimal
criterion and nonlinear regression model, the error covariance
and noise covariance are adjusted through the correntropy gain,
where not only the susceptibility to the non-Gaussian noise in
the measurement information can be greatly reduced, but also
the strong nonlinearities can be addressed effectively so as to
further improve the accuracy of estimation. In addition, to
enhance the flexibility and robustness of the proposed method,
an adaptive strategy is introduced to update the kernel
bandwidth in real-time. Extensive numerical experiments
carried out on IEEE 39-bus test system have verified the
accuracy and robustness of the proposed AGCLCKF method
for DSE in power system. In future work, we further consider
applying the proposed filtering method to combined networks
including transmission and distribution networks with
renewable energy resources.
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