
Quantifying the Uncertainty of a Belief Net

Response: Bayesian Error-Bars for Belief Net

Inference

Tim Van Allen a Ajit Singh b Russell Greiner c,∗ Peter Hooper d

aApollo Data Technologies, 12729 N.E. 20th Suite 7, Bellevue, WA 98005 USA
bCenter for Automated Learning and Discovery, Carnegie Mellon University,

Pittsburgh, PA 15213, USA
cDepartment of Computing Science, University of Alberta, Edmonton, Alberta

T6G 2E8, Canada
dDepartment of Mathematical and Statistical Scienc

1 Introduction

Bayesian belief nets (BNs), which provide a succinct model of a joint probabil-
ity distribution, are used in an ever increasing range of applications [Dav95].
They are typically built by first finding an appropriate structure (either by
interviewing an expert, or by selecting a good model from training data), and
then using a training sample to estimate the parameters [Hec98]. The resulting
belief net is then used to answer queries — e.g., compute the conditional prob-
ability P(Cancer=true | Smoke=true, Gender=male). These responses clearly
depend on the training sample used to instantiate the parameters, in that
different training samples will produce different parameters, which will lead
to different responses.

This paper investigates how variability within a sample induces variance in a
query response, and presents a technique for estimating the posterior distri-
bution of the query responses produced by a belief net. Stated informally, our
goal is an algorithm that takes

• A belief net structure that we assume is correct (i.e., an I-map of the true
distribution D [Pea88])

• A prior distribution over the network parameters Θ
• A data sample S generated from D
• A query of the form “What is q(Θ) = P(H=h |E=e, Θ) ?”

and returns both the expected value and the approximate variance of the query
response q(Θ), based on the posterior distribution of parameters given the
sample. By using these moments and an appropriate distributional form, we
approximate the density of q(Θ), from which we can produce explicit [L, U] ⊂
[0, 1] bounds such that 100(1 − δ)% of the posterior density is within the
interval. In other words, the algorithm returns both a point-estimate of the
answer and error bars around it.

There are many other ways to use this variance around a query response. (1) In
general, a good classifier should minimize Mean Squared Error, which can be
expressed as “Bias2+Variance” [Rip96]. The results in this paper provide a
way to compute variance, which we then used as part of the Bias2+Variance
measure to estimate the quality of different belief net structures, when seek-
ing the best classifier. Empirical evidence [GG05] suggests that this measure
is, in fact, one of the most effective discriminative model selection criteria.
(2) The maximum likelihood approach to combining the responses of vari-

∗ Corresponding author.
Email addresses: tim@apollodatatech.com (Tim Van Allen),

ajit+@cs.cmu.edu (Ajit Singh), greiner@cs.ualberta.ca (Russell Greiner),
hooper@stat.ualberta.ca (Peter Hooper).

2

Prior Distribution of Θ

�

�
	A

@@R��	

0.0 0.2 0.4 0.6 0.8 1.0

�

�
	B

@@R

0.0 0.2 0.4 0.6 0.8 1.0 �

�
	C

��	

0.0 0.2 0.4 0.6 0.8 1.0

�

�
	D

0.0 0.2 0.4 0.6 0.8 1.0

Data
Sample

@@R

���

Compute-

Posterior

#
"

!

'
&
$
%

-

Posterior Distribution of Θ

�

�
	A

@@R��	

0.0 0.2 0.4 0.6 0.8 1.0

�

�
	B

@@R

0.0 0.2 0.4 0.6 0.8 1.0 �

�
	C

��	

0.0 0.2 0.4 0.6 0.8 1.0

�

�
	D

0.0 0.2 0.4 0.6 0.8 1.0

-

Query
[H=h, E=e]

?

MeanVar

#
"

!

'
&
$
%
-

Mean: E [q(Θ)]
Var: σ̂2

h|e

0.0 0.2 0.4 0.6 0.8 1.0

Posterior Distribution
of q(Θ) = P(H=h |E=e, Θ)

-

δ

?

Compute

ErrorBar

#
"

!

'
&
$
%
- [L, U]

Fig. 1. Overview of the overall process for computing error bar around the query
response

ous independent belief net classifiers Pj involves weighting their respective
(mean) probabilities by 1/variance; i.e., P ∗(hi|e) ∝ ∑

j Pj(hi | e)/varj(hi|e).
[LGW06] shows that this works very well in practice. (3) We could use query
variance to detect outliers, as it could help differentiate sampling variation
from true outliers [Moo03]. (4) In classification, high probability is frequently
taken as a proxy for confidence. Error bars provide a more statistically rig-
orous measure of confidence. For example, imagine we have determined that
action1 (e.g., “apply treatmentX”) is optimal if P(+c | e) > 0.5, as this con-
dition means action1 maximizes expected utility (MEU) [KR76]. In the “tra-
ditional view”, we would be more comfortable taking this action1 for larger
values of P(+c | e) — e.g., more confident given e′ if P(+c | e′) = 0.7, versus
e′′ when P(+c | e′′) = 0.6. Now imagine we know that P(+c | e′) = 0.7 ± 0.5
and P(+c | e′′) = 0.6± 0.001. In either case, the MEU response is still to take
action1, as the expected utility depends only on the expected value of the re-
sponse, but not on other characteristics of the posterior distribution. However,
we should be more confident in taking this action in the second situation, e′′, as
there is less “probability mass” on the other side of the 0.5 decision boundary.
This could also be useful when making decisions in safety-critical scenarios, as
this analysis can help to quantify the chance of a bad outcome, after taking
the appropriate action — “good decision, bad outcome”. (5) Finally, if an
expert is available to also provide the query response, error bars can be used
to validate a given belief net structure. For example, if an expert claims that
P(B = 1 |D = 0, C = 1) = 0.5 but our technique asserts that this response
is in [0.26, 0.34] with 99% confidence, then we may question the validity of
the network. However, if our technique instead asserts that this response is
in [0.17, 0.58] with 99% confidence, we may not need to question the network
structure.

3

This paper provides a way to quantify this variance of a response. In par-
ticular, we show how to approximate the posterior distribution of the query
response, from which credible intervals (“Bayesian error-bars”) can be readily
computed. The overall process is shown in Figure 1. We begin with a network
structure, with a prior on its parameters. The ComputePosterior routine
uses a data sample to perform a Bayesian update of this prior, yielding a poste-
rior distribution over the network parameters. Next, the MeanVar algorithm
calculates the mean and approximate variance of the query response, Finally,
the ComputeErrorBar routine uses these moments to produce a model
of the posterior distribution of the query response, from which it computes
a 1 − δ credible interval. The ComputePosterior and ComputeError-

Bar subroutines are well understood; our main contribution is defining and
implementing MeanVar.

Section 2 provides the required background: defining belief nets and describing
the Bayesian framework we use. This section also describes the ComputePos-

terior and ComputeErrorBars steps. Section 3 presents the theoretical
justification for MeanVar. Given a set of explicitly specified assumptions, we
prove that the query response distribution is asymptotically univariate Gaus-
sian, and provide a closed-form formula for its asymptotic variance. 1 This
theorem is the basis for our estimate of the posterior distribution.

Section 4 presents an algorithm, MeanVar, for computing these variances:
In particular, it first describe the BuckElim+ algorithm (an extension of
the well-known Bucket Elimination algorithm [Dec98]) that computes both
the response and also the derivative of the response wrt each of the CPtable
entries; MeanVar uses these derivatives for computing our variance estimate.
This section provides theorems that state that the algorithm is correct, and
that its asymptotic computational cost is the same as inference. Appendix A
analyzes the special case where the query P(H = h |E = e) is “complete”,
in that E specifies a value for every variable except H. It also provides a
straightforward linear-time algorithm for this case.

While our variance estimate is asymptotically accurate, it is not clear whether
our error bar algorithm will work well in practice, especially for a small sample,
as the variance estimate is a first-order approximation, and ComputeError-

Bar inherits the assumption that the posterior query response will be Gaus-
sian. We therefore perform experiments, based on Monte Carlo simulations,
over a range of belief net structures and queries. The results, described in Sec-
tion 5, suggest that (1) our approximation to the variance is acceptable, but
(2) the resulting distribution is not well-modeled under the Gaussian assump-
tion. This negative result is not surprising: The response is a probability and
so must be in the [0, 1] interval; however a Gaussian distribution can have sig-

1 Essentially, “asymptotic” refers to a sufficiently large sample; see Theorem 2.

4

�
�

�
�A

@
@
@R

�
�

�	

m{} P(A = 1) P(A = 0)
102 0.343 0.657

�
�

�
�B

@
@
@R

a mA=a P(B = 1 | A = a) P(B = 0 | A = a)
1 36 0.194 0.806
0 68 0.412 0.588 �

�
�
�C

�
�

�	

a mA=a P(C = 1 | A = a) P(C = 0 | A = a)
1 36 0.250 0.750
0 68 0.353 0.647

�
�

�
�D

b c mB=b,C=c P

(

D = 1

∣

∣

∣

B = b

C = c

)

P

(

D = 0

∣

∣

∣

B = b

C = c

)

1 1 10 0.100 0.900
1 0 25 0.360 0.640
0 1 27 0.259 0.741
0 0 46 0.457 0.543

Fig. 2. Diamond network: A simple example of a belief network, with CPtable
distributions

nificant mass outside [0, 1]. We therefore considered approximating the query
response with a Beta distribution, and found that this produces more accurate
error bars.

Section 6 surveys relevant work, to place our results in context. Appendix B
provides proofs for the claims made in this paper. Given the abundance of
notation, we provide a list of symbols in Figure 3. Further details, along with
complete results, inputs, experimental parameters, and raw data, are available
in the webpage [Gre].

2 Preliminaries

2.1 Belief Nets

We assume there is a fixed underlying distribution over n discrete random
variables {X1, . . . , Xn}, which we denote as the underlying distribution or the
event distribution.

We encode the event distribution as a belief net 2 〈V, A, Θ〉 that consists of
a directed acyclic graph (DAG) whose nodes V represent variables and whose
directed arcs A represent dependencies between variables. The 〈V, A〉 network
structure encodes the independency relationships between variables in the un-
derlying distribution — i.e., a node is independent of its non-descendants,
given an assignment to its immediate parents. Each node C ∈ V is also associ-
ated with a conditional probability table, called its “CPtable”, that specifies
Θc|f = P(C=c |F= f) for each value c ∈ C and each assignment f to its set of
parents F [Pea88]. That is, a belief network factors the underlying distribution
into the product of these conditional probabilities. While we will typically view

2 a.k.a. Bayesian network, Bayesian belief network, probability net

5

Algorithms

BuckElim Bucket elimination algorithm for computing the expected value of

a query response; Section 4.1

BuckElim+ Bucket elimination for computing the expected value of a query

response and derivatives {q(c|f)
h|e (Θ̂)}c,f ; Section 4.2

ComputePosterior Computes the posterior distribution over network parameters; Sec-

tion 2.2

ComputeErrorBars Computes actual (Bayesian) error bars, based on distribution; Sec-

tion 2.3

MeanVar Computes mean and variance of response

Belief nets

D Underlying distribution from which the data was drawn

n Number of nodes/variables in the belief net.

k Total number of CPtable rows (over entire network)

C Capital letters denote nodes in the belief net (or equivalently the

variables they represent). Bold denotes a set of variables – e.g., F.

C=c Lowercase letters denote an assignment to a variable. If the assign-

ment is to a single binary variable, then {+c,−c} denotes the two

values.

(C, f) Refers to the CPtable row of variable C, corresponding to parental

assignment F= f

Θ = {ΘC|f}C,f Set of all network parameters, over the entire network

ΘC|f = ΘC|F=f CPtable row ΘC|f = 〈Θc1|f , . . . Θc`|f 〉
Θc|f = ΘC=c|F=f Single network parameter, corresponding to P(C=c |F= f)

Θ̂ = E [Θ] Expected values of network parameters

mC|F=f Effective sample size, associated with CPtable row ΘC|F=f (Equa-

tion 2)

qh|e(Θ) = q(Θ) Query response as function of parameters, for fixed implicit belief

net structure, and fixed implicit query P(H=h |E=e,Θ)

q(c|f)(Θ) = ∂q(Θ)
∂Θc|f

Derivative of query response with respect to formal parameter Θc|f

(Equation 6)

σ2
h|e = σ2

h|e(Θ) Variance of query response

σ̂2
h|e = σ̂2

h|e(Θ) Estimated variance of query response (Equation 7)

vh|e(C|f) Contribution to the variance of query P(h | e) due to CPtable row

ΘC|F=f (Equation 8)

BuckElim and BuckElim+ (Section 4)

bXi
, b∅ “buckets” for holding tables, including the CPtables

fi,j(·) Function belonging to bucket bXi

Join(F) Join of the functions f ∈ F
Elim(X, f) Marginalizes the variable X from table f

maxIndex(f) Largest index of the variables within Scheme(f) (Equation 11)

y Query response y = q(Θ) = P(H=h |E=e,Θ)

Fig. 3. Notation

6

each CPtable as a table, it is useful in Section 4 to view it as a function that
maps each assignment of the variables {C} ∪ F to the associated probability
value P(C=c |F= f) ∈ [0, 1].

Figure 2 provides an example of a belief network. As a function, the CP-
table for B is denoted fB(a, b); in the row view, as ΘB=1|A=1 = 0.412 and
ΘB=0|A=1 = 0.588. As ΘB|A=1 is a distribution, the row entries must sum to
∑

b ΘB=b|A=1 = 1, and so ΘB=0|A=1 is implicitly defined by ΘB=1|A=1. We let
Θ = {Θc|f} denote the set of all CPtable rows.

In addition to providing a compact representation of a joint distribution, belief
nets are used to effectively compute marginal and conditional probabilities. A
query is a question of the form “What is P(H=h |E=e)?” and the answer (a
real number in [0, 1]) is known as a query response. 3 In this paper we assume
the network structure is fixed, and so for a particular query the answer depends
only on the network parameters Θ; cf., Equation 15 in Section 5.1, associated
with the Diamond network on Figure 2. To emphasize this relationship, we
will use qh|e(Θ) = q(Θ) to denote the response to the query P(h | e, Θ), as a
function of the parameters Θ.

2.2 ComputePosterior: Learning Network Parameters

We view Θ as a random vector, and follow the Bayesian view of parameter
learning by placing a prior on Θ, and then integrating the data to yield the
posterior distribution of Θ. We will assume the rows are independent (see
Definition 1(part 2) in Section 3), in that each row ΘC|f is independent of every
other row. Hence, the prior over Θ can be decomposed into priors on each row.
Following standard practice [Hec98], we will assume that each row is Dirichlet
distributed: ΘC|f ∼ Dir(mC=c1 |f , . . . , mC=cr |f) where each mC=ci|f > 0. 4 An
alternative notation for the same Dirichlet distribution is

ΘC|f = 〈ΘC=c1|f , . . . , ΘC=cr |f〉 ∼ Dir(mC|F=f ; Θ̂C=c1|f , . . . , Θ̂C=cr |f) (1)

3 We allow for the conditioning event, E = e, to involve no variables to allow
unconditional queries of the form P(H = h). Also, while our notation “H = h”
suggests that our approach works only when there is a single query variable,
note that everything holds when dealing with a set of query variables — i.e.,
P(H1 = h1, . . . ,Hr = hr |E=e).
4 A Dirichlet distribution with only two parameters is also known as a Beta distri-
bution, which we will denote as Be(a, b).

7

where

mC|f =
∑

i

mC=ci |f and Θ̂C=ci|f =
mC=ci |f

mC|f
(2)

mC|f is called the effective sample size of the distribution and each Θ̂C=c|f =

E
[

ΘC=c|f

]

is the expected value of ΘC=c|f [CH92].

Consider the density of ΘC|A=1 in Figure 2. Assume the prior density is
Dir(1, 1) and we have a complete data set — i.e., every instance in the set
specifies the value of all variables. Only instances with A = 1 can contribute
to ΘC|A=1’s posterior. Moreover, the values of C are multinomially distributed
within the selected sample. If there are 34 instances where A = 1, of which
8 have C = 1 and 26 have C = 0, then the posterior distribution of ΘC|A=1

is Dir(1 + 8, 1 + 26) = Dir(9, 27), which corresponds to the first row of C’s
CPtable shown in Figure 2. This is because a Bayesian update of a Dirichlet
prior with multinomial data yields a Dirichlet posterior — i.e., the Dirichlet
distribution is the conjugate prior for multinomial distributions [Wil62].

Bayesian parameter learning in belief networks consists of updating each row in
this fashion. In the absence of prior knowledge a uniform prior, Dir(1, . . . , 1),
over each row is often used. (Note this distribution is “flat”; that is, every as-
signment is equally likely.) Frequently, the posterior Dirichlet row distributions
are replaced by their expectations. In the above example, ΘC|A=1 ∼ Dir(9, 27)

would be reduced to Θ̂C|A=1 = 〈0.25, 0.75〉. Replacing the posterior row dis-
tributions with their expectations effectively ignores parameter uncertainty.
When the network parameters are fixed real numbers, the query response will
be a real number. However, uncertain network parameters will induce a distri-
bution over the query response; that is, if Θ is a random variable, then q(Θ)
is also a random variable. Furthermore, Cooper and Herskovits [CH92] have
shown that, under our assumptions (Definition 1),

E [q(Θ)] = q(E [Θ]) = q(Θ̂) (3)

That is, the posterior expectation of q(Θ) is simply the query response on the
network with mean parameters. Recall that Θ̂ = 〈Θ̂1, . . . , Θ̂r〉 is encoded in
the posterior row distributions, Dir(mC|f ; Θ̂1, . . . , Θ̂r) in Equation 1.

There are a number of algorithms for computing the query response when the
network parameters are fixed values. Section 4 will describe the one we will
use below, Bucket Elimination. Such algorithms calculate the expected value
of the response qh|e(Θ̂) but do not provide the variance:

σ2
h|e = E

[

(qh|e(Θ) − qh|e(Θ̂))2
]

8

Data

A B C D

1 0 1 1
1 1 0 1
0 0 0 0
1 1 0 0

Prior Distribution �
 �	A

@@R��	

ΘA ∼ Be(1, 1)

�
 �	B

@@R

ΘB|+a ∼ Be(1, 1)
ΘB|−a ∼ Be(1, 1)

�
 �	C

��	

ΘC|+a ∼ Be(1, 1)
ΘC|−a ∼ Be(1, 1)

�
 �	D ΘD|+b,+c ∼ Be(1, 1)
ΘD|+b,−c ∼ Be(1, 1)
ΘD|−b,+c ∼ Be(1, 1)
ΘD|−b,−c ∼ Be(1, 1)

@@R@@R ��	��	

ComputePosterior

'
&

$
%

'
&

$
%

??

Posterior Distribution �
�

�
�A

@
@
@R

�
�

�	

ΘA ∼ Be(4, 2) 0.0 0.2 0.4 0.6 0.8 1.0

�
�

�
�B

@
@
@R

ΘB|+a ∼ Be(3, 2) 0.0 0.2 0.4 0.6 0.8 1.0

ΘB|−a ∼ Be(1, 2) 0.0 0.2 0.4 0.6 0.8 1.0

�
�

�
�C

�
�

�	

ΘC|+a ∼ Be(2, 4) 0.0 0.2 0.4 0.6 0.8 1.0

ΘC|−a ∼ Be(1, 2) 0.0 0.2 0.4 0.6 0.8 1.0

�
�

�
�D ΘD|+b,+c ∼ Be(1, 1) 0.0 0.2 0.4 0.6 0.8 1.0

ΘD|+b,−c ∼ Be(2, 2) 0.0 0.2 0.4 0.6 0.8 1.0

ΘD|−b,+c ∼ Be(2, 1) 0.0 0.2 0.4 0.6 0.8 1.0

ΘD|−b,−c ∼ Be(1, 2) 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Example of ComputePosterior

Theorem 2 provides an asymptotic form for this variance, and Section 4 de-
scribes an algorithm, MeanVar, that can effectively compute this quantity
in general.

2.3 ComputeErrorBars: Error Bars for Query Response

ComputeErrorBars uses the mean and variance of a query response to
estimate the posterior distribution of q(Θ), which is then used to construct
approximate Bayesian credible regions (error bars). This depends on the actual
form of the distribution; here we consider two classes, Normal and Beta. In
the latter case, we need to find the Beta parameters α and β that correspond

9

to a given mean µ and variance σ2, namely

α = µ
µ(1 − µ) − σ2

σ2
and β = (1 − µ)

µ(1 − µ) − σ2

σ2
(4)

(If either α or β is non-positive, then the associated density function is not
well-defined. Also, if either parameter is less than 1, associated density has
mode(s) at 0 and/or 1.)

For any distribution D and any δ ∈ (0, 1), a 1 − δ credible region for the
query response is a set ω(D) such that P(q(Θ) ∈ ω(D)) = 1 − δ. While
there are infinitely many credible intervals on a continuous distribution, our
ComputeErrorBars system chooses contiguous intervals of the form [L, U]
such that the mass below the lower bound L equals the mass above the upper
bound U . Letting CDF−1(·; qh|e(Θ)) denote the inverse cumulative density
function of our model of qh|e(Θ), then

L = CDF−1

(

δ

2
; qh|e(Θ)

)

U = CDF−1

(

1 − δ

2
; qh|e(Θ)

)

Note that nothing in our framework precludes the use of other criteria for
interval selection (e.g., shortest contiguous 1 − δ interval).

3 The Posterior Distribution of a Response

The MeanVar subroutine requires an effective way to compute the variance
of the response σ̂2

h|e = σ̂2
h|e(Θ). Our main theorem provides a closed-form

expression for (an asymptotic estimate of) this quantity, given the following
assumptions:

Definition 1 The independent Dirichlet property with respect to a DAG 〈V,A〉
holds under the following conditions

(1) True Structure: 〈V, A〉 is an I-map of the underlying joint distribution [Pea88]
— i.e., every independence claim implied by the graph holds in the un-
derlying distribution.

(2) Parameter Independence: The distribution of a variable conditioned on one
assignment to its parents is independent of the distribution conditioned
on any other assignment to its parents. That is, if f1 6= f2, then ΘC|f1

and ΘC|f2 are independent (local parameter independence). Furthermore,
the local conditional probability tables are independent (global parameter
independence); see [SL90].

(3) Dirichlet Assumption: The distribution of a variable given an assignment
to its parents is Dirichlet distributed: ΘC|F=f ∼ Dir(mC=c1|f , . . . , mC=cr |f).

10

(4) Non-degenerate Posterior Means: The expected posterior parameters Θ̂c|f

are strictly between 0 and 1. 5

Note these assumptions conform with those made in maximum a posteriori
learning of belief network parameters [Hec98].

As we are assuming that each network parameter ΘC=c|F=f = Θc|f is a random
variable, the query response is a function of the network parameters, and is
thus itself a random variable. We will continue to use Θ̂ = {Θ̂c|f} = E [Θ] to
refer the expected value of the parameters, under the posterior distribution,
conditioned implicitly on observed data and/or expert opinion.

As mentioned above, we denote the query response as q(Θ) to emphasize that
it is simply a function from an instantiation of the network parameters to a
real number in [0, 1]. For example, the query q+a|+b(Θ) = P(+a | + b, Θ) from
Figure 2 6 can be viewed as

q+a|+b(Θ) = q+a|+b(Θ+a|{}, Θ−a|{}, Θ+b|+a, . . .)

=
Θ+b|+a × Θ+a|{}

Θ+b|+a × Θ+a|{} + Θ+b|−a × Θ−a|{}
.

(5)

For each network parameter Θc|f ∈ Θ, we can consider the partial derivative
of the query with respect to that parameter:

q(c|f)(θ) =
∂q(Θ)

∂Θc|f

∣

∣

∣

∣

∣

θ

(6)

which is functional in θ and so can be evaluated at any specific instantiation
of the network parameters. Using the q+a|+b(Θ) function from Equation 5,
observe that

q(+b|+a)(Θ)=Θ+a|{} ×
(Θ+b|+a × Θ+a|{} + Θ+b|−a × Θ−a|{}) − (Θ+b|+aΘ+a|{})

(Θ+b|+a × Θ+a|{} + Θ+b|−a × Θ−a|{})2

We can now state our main technical result:

Theorem 2 Given the “independent Dirichlet property wrt a given DAG”
assumption, the posterior mean of qh|e(Θ) is E

[

qh|e(Θ)
]

= qh|e(Θ̂). Now con-

sider an asymptotic framework where min{mC|f} → ∞ while the posterior

means Θ̂c|f remain fixed at values strictly between 0 and 1, and let

5 We discuss this constraint below — both after statement of Theorem 2 and also
following its proof in Appendix B.
6 This corresponds to Q2 from Equation 15.

11

σ̂2
h|e =

∑

(C,f)

1

1 + mC|f
vh|e(C|f) (7)

vh|e(C|f)=

(

∑

c∈C

q
(c|f)
h|e (Θ̂)2 Θ̂c|f

)

−
(

∑

c∈C

q
(c|f)
h|e (Θ̂) Θ̂c|f

)2

(8)

Under this framework, the standardized random variable

qh|e(Θ) − qh|e(Θ̂)

σ̂h|e
(9)

converges in distribution to the standard Normal distribution N (0, 1).

Given the form of Equation 9, we see that σ̂2
h|e (Equation 7) corresponds to

the asymptotic variance. (Recall from Equation 3 that q(Θ̂) = E [q(Θ)] is the
mean.)

The summation in Equation 8 is over values of a particular variable C — so if
this variable is binary, this sum will involve one term for +c and another for
−c.

The summation in Equation 7 is over all CPtable rows; hence for the Diamond
network in Figure 2, this would involve 9 terms, corresponding to 9 different
vh|e(C|f) values: { vh|e(A|{}), vh|e(B|+ a), vh|e(B| − a), . . . , vh|e(D| − b,−c) }.
Moreover, this vh|e(C|f) is 0 whenever q

(c|f)
h|e (Θ̂) = 0 for each c ∈ C, which hap-

pens whenever this CPtable row is not involved in computing qh|e(Θ) = P(h | e)
— e.g., when this C is d-separated from the query (i.e., H⊥C,F|E) or when
C is a barren node (i.e., neither it nor any of its descendants are instanti-
ated in this query [LD97]); see Appendix A. As an extreme case, imagine the
query corresponded to a single CPtable entry; e.g., in Figure 2, the query
was q+b|+a = P(+b | + a). Here only v+b|+a(B| + a) is relevant; the value of
v+b|+a(C|f) is 0 for the terms corresponding to the other 8 CPtable rows (C, f).

As q
(+b|+a)
+b|+a (Θ̂) = 1 and q

(−b|+a)
+b|+a (Θ̂) = 0 for this query,

v+b|+a(B| + a) =

∑

b∈B

q
(b|+a)
+b|+a(Θ̂)2 Θ̂b|+a

−

∑

b∈B

q
(b|+a)
+b|+a(Θ̂) Θ̂b|+a

2

=
(

12 · Θ̂+b|+a + 02 · Θ̂−b|+a

)

−
(

1 · Θ̂+b|+a + 0 · Θ̂−b|+a

)2

=
(

Θ̂+b|+a

)

−
(

Θ̂+b|+a

)2
= Θ̂+b|+a × Θ̂−b|+a

12

which means the variance associated for this q+b|+a query is

σ̂2
+b|+a =

1

1 + mB|+a

[Θ̂+b|+a × Θ̂−b|+a]

which as expected is exactly the variance associated with a single Dirichlet
distributed variable Dir(mB|+a; Θ̂+b|+a, Θ̂−b|+a) — i.e., here Equation 7 is ex-
act and not just an approximation. Hooper [Hoo07] generalizes this to other
situations where Equation 7 is exact. (Appendix A provides another situation
where this equation yields a simple way to compute variance.)

This equation shows that σ̂2
h|e adds up the influence of each Θc|f on the query

P(h | e) (which is based on the derivative q
(c|f)
h|e (Θ̂)), weighted by (1+mC|f)

−1.
So while mC|f is the same for each query, this variance will be different for
different queries, as these derivatives will differ.

While Appendix B provides the full proof, we note here that both asymptotic
normality and the derivation of approximate variance (Equation 7) employ a
first-order Taylor expansion of the function q(Θ) about the posterior mean
Θ̂. The conditions on Θ̂c|f and mC|f ensure that this first-order approximation
is asymptotically valid. Comment#1 after the proof in Appendix B discusses
possible violations of these assumptions.

We can also use Equation 7 to understand how to deal with “fixed” CP-
table rows — i.e., specific Θc|f entries that correspond to definitions, and so
can be viewed as constants rather than variables. Here, this corresponds to
using an effectively infinite mC|f value, which means this row will contribute

1
1+mC|f

vh|e(C|f) ≈ 0 to the variance estimate — i.e., Equation 7’s summation

can simply ignore these CPtable rows. Here, we can of course allow a CPtable
entry to be deterministic — i.e., 0 or 1.

Section 4 presents an algorithm that can compute both the mean and variance
of the query response in O(n·exp(w)), where n is the number of variables in the
network and w is the induced tree width [Dec98]. This is the same worst-case
complexity as inference alone.

3.1 The Beta Approximation to the Posterior

Theorem 2 suggests using a Normal distribution to approximate the response
posterior distribution; however, the response is confined to [0, 1], whereas a
Normal distribution has positive density on the entire real line. When the
variance is large, the Normal approximation may deviate considerably from the
true posterior. Furthermore, we expect the response distribution may often be
skewed when its mean is near 0 or 1. It may therefore make sense to use a Beta

13

Posterior Distribution of Θ

�

�
	A

@@R��	

0.0 0.2 0.4 0.6 0.8 1.0

�

�
	B

@@R

0.0 0.2 0.4 0.6 0.8 1.0 �

�
	C

��	

0.0 0.2 0.4 0.6 0.8 1.0

�

�
	D

0.0 0.2 0.4 0.6 0.8 1.0

-

Query
[H=h, E=e]

?
?�

?

'

&

$

%

'

&

$

%

MeanVar

BuckElim+

'
&
$
%
-

Derivatives:

q
(i)
h|e(Θ̂) =

〈

∂q(Θ)
∂Θi

∣

∣

∣

Θ̂

〉

i

- Equation 3

'
&
$
%

-

Mean: E [q(Θ)]
Var: σ̂2

h|e

0.0 0.2 0.4 0.6 0.8 1.0

Posterior Distribution
of q(Θ) = P(H=h |E=e, Θ)

Fig. 5. MeanVar Process (including BuckElim+)

distribution instead, as it is confined to [0, 1], can model skewed distributions,
and when standardized, it converges in distribution to a standard Normal
random variable [Aki96]. Equation 4 shows how to map the computed mean
µ and variance quantities σ2 to the Beta distribution’s α and β parameters.

4 Computing the Variance: BuckElim+ and MeanVar

Equations 7 and 8 within Theorem 2 provides an estimate for the variance
of the response. This section sketches the MeanVar algorithm (Figure 6)
for computing this approximate variance. In particular, these equations in-
volve the derivative of the response with respect to each parameter. The
BuckElim+ algorithm, appearing in Section 4.2, computes these values. That
section also presents theorems showing the correctness and efficiency of this
algorithm. As BuckElim

+ is basically an extension of the Bucket Elimination
algorithm, we first review that algorithm in Section 4.1. Finally, Section 4.3
presents some remaining issues; in particular, explicitly describing how the
results of the BuckElim+ algorithm can be used to compute the variance.

There are many ways to optimize our overall MeanVar system. First, note
that MeanVar uses BuckElim

+ which in turn is based on BuckElim. As
BuckElim is a standard, well-studied algorithm, there are now a number of
known effective optimizations, including graph reduction, heuristics for finding
a good ordering, etc.; each of these translates directly to an improvement to
BuckElim+ and hence to MeanVar. Second, we can also find other insights
by squinting at Equation 8. In particular, Appendix A provides straight-line
code that applies to the special case when the query is complete.

14

4.1 Bucket Elimination Algorithm, BuckElim

The bucket elimination algorithm BuckElim [Dec98] is an elegant framework
for belief net inference in general, which uses non-serial dynamic programming
to iteratively eliminate variables by marginalization.

Notation: We must first introduce the notation of a table, which is a func-
tion mapping a set of named variables to <. For example,

f(A, B) =

a b f(A = a, B = b)
1 1 0.30
1 0 0.70
0 1 0.91
0 0 0.09

Notice this table corresponds to the ΘB|A function shown in Figure 2. A table’s
input variables are called its scheme; here Scheme(f) = {A, B}.

We next define two operations on tables, Join(·) and Elim(·, ·). The join
operation combines a set of tables into a new table: Letting h = Join(F),
then Scheme(h) =

⋃

f∈F Scheme(f) is the union of the variables of the tables,
and h’s values are

h(x) =
∏

f∈F

f(x|Scheme(f)
)

where “x|S” denotes the projection of an assignment x ∈ X onto a subset of
its variables S ⊆ X; e.g., 〈A = 1, B = 0, C = 0〉|{A,C} = 〈A = 1, C = 0〉. Thus,
the value of h on x is the product of the f ∈ Fs evaluated on the projections
of x onto the scheme for that f . We will often simplify our notation by using
Join(f, g) as an abbreviation for Join({f, g}), etc. Note Join({f}) = f and
Join({}) is undefined.

To make this more concrete, consider the table

g(A, C) =

a c g(A = a, C = c)
1 1 0.22
1 0 0.78
0 1 0.99
0 0 0.01

15

Then h = Join(f, g) is

h(A, B, C) =

a b c h(A = a, B = b, C = c)
1 1 1 0.3 × 0.22
1 1 0 0.3 × 0.78
1 0 1 0.7 × 0.22
1 0 0 0.7 × 0.78
0 1 1 0.91 × 0.99
0 1 0 0.91 × 0.01
0 0 1 0.09 × 0.99
0 0 0 0.09 × 0.01

This operation is similar to the relational join used in database theory [KSS98].

The elimination operation reduces a table f by marginalizing over one of
the variables in f ’s scheme, producing a function f−X = Elim(X, f) from
Scheme(f) − {X}. Assuming Scheme(f) = {X, Y1, . . . , Yk}, then

f−X(y1, . . . , yk) =
∑

x

f(x, y1, . . . , yk)

Hence, using the f defined above,

Elim(A, f) = f−A(B) =
b f−A(B = b)
1 0.3 + 0.91
0 0.7 + 0.09

We can eliminate a set of variables, by repeating this marginalization process
iteratively, for each variable; here, we would write Elim({Xi, . . . , Xj}, f).
(Observe we obtain the same result independent of the order in which we
eliminate variables {Xi, . . . , Xj}.) Notice Elim({}, f) ≡ f .

BuckElim Algorithm The bucket elimination algorithm BuckElim

takes as input a belief net, encoded as its set of associated CPtables F over
the variables V; a partial assignment to a subset of the variables E=e, and an
ordering of the variables — e.g., π0 = 〈A, B, C, D〉. Below, we will assume the
variables are numbered in order: 〈X1, X2, . . . , Xn〉. BuckElim then computes
the value:

P(E=e) = y =
∑

{x: x|E=e}

∏

f∈F

f(x|Scheme(f)
) (10)

where the sum is over all assignments to V that include the partial assignment
E = e. Of course, we could compute y by simply joining all the functions in
F and eliminating the variables in V not in E. However, BuckElim achieves

16

better efficiency than this brute force approach by exploiting the fact that
each function depends only on the variables in its scheme.

To do this, BuckElim builds and uses a set of buckets {bXi
}i associated with

each variable Xi ∈ V, and also one additional bucket b∅. Each bucket will
hold a set of functions. The buckets are ordered according to π, with b∅ at the
beginning. BuckElim initially loads the input functions from F (that is, the
belief net’s CPtables) into the buckets, as follows: Recalling that each table f
uses a set of variables Scheme(f) = {Xi}i, let

maxIndex(f) = argmax
i

{Xi ∈ Scheme(f)} (11)

be the largest index of f ’s variables, based on the π order. We then assign f
to the maxIndex(f) bucket. (If Scheme(f) = ∅, we define maxIndex(f) = ∅.)
Hence, we would assign ΘA|{} = ΘA to bucket bA, ΘB|A to bucket bB, ΘC|A

to bucket bC and ΘD|B,C to bucket bD. (Here, there happened to be a one-
to-one mapping between CPtable functions and buckets; that is not true in
general. 7)

BuckElim uses these buckets to answer queries. It traverses these buckets,
in reverse order (here, this means processing bD first, then bC , bB, bA and b∅).
To process each bucket bXj

: If the bucket is empty, BuckElim will skip it.
Otherwise, BuckElim joins the functions in the bucket, then eliminates the
variable Xj, producing

f̃ = Elim(Xj, Join(bXj
)) . (12)

We then store f̃ in the bucket bXp
, where p = maxIndex(f̃). That is, if

Scheme(f̃) = ∅, we store f̃ in the b∅ bucket. Otherwise, Scheme(f̃) has a
variable with the highest index, say Xi. (Note that i < j, as j had been
the largest index of each of the functions in bXj

, and it is now eliminated.)

BuckElim then stores f̃ in the bXi
bucket, and continues down the order-

ing, to process bXj−1
. At the end, it processes the b∅ bucket — which involves

Join(·)-ing the various constants, which corresponds to a simple scalar mul-
tiplication. BuckElim returns the resulting scalar.

The algorithm has one final complication: The process suggested above would
compute P({}), which is 1. In general we want to compute an expression of the

7 For example, in the ordering 〈D,C,B,A〉, the bD and bC buckets would both be
empty, and bB bucket would include the function ΘD|B,C and the bA bucket would
include the three functions ΘA|{}, ΘB|A and ΘC|A. The rest of the text will consider
only the π0 ordering.

17

Step b∅ bA bB bC bD

0 − fA,1(a) = ΘA=a|{} fB,1(b, a) = ΘB=b|A=a fC,1(c, a) = ΘC=c|A=a −
fC,2(b, c) = ΘD=1|B=b,C=c

1 − fA,1(a) = ΘA=a|{} fB,1(b, a) = ΘB=b|A=a

fB,2(a, b) = P(D = 1 |B = b, A = a)
(from bC)

2 − fA,1(a) = ΘA=a|{}

fA,2(a) = P(D = 1 |A = a)
(from bB)

3
f∅,1() = P(D = 1)

(from bA)

Fig. 6. Trace of BuckElim algorithm, on P(D = 1)

form P(E=e). To do this, we first initialize the relevant CPtable functions to
correspond to those instantiations, and use only those “restricted” functions.

Example To illustrate this, consider the P(D = 1) query, using the π0

ordering. Observe first that we do not need all of D’s CPtable entries, but
only fD=1,B,C(b, c) = ΘD=1|b,c(b, c). As this is a function of B and C, but
not D — that is maxIndex(fD=1,B,C) = C — we store this function in bucket
bC . Hence, when BuckElim starts, its 5 buckets are configured as shown in
Step#0 of Figure 6.

BuckElim then processes the buckets in reverse order. As bD is empty, Buck-

Elim’s first non-trivial operation deals with bC ; here it joins the two functions
in that bucket, and eliminates the variable C; this produces 8

fB,2(a, b) =Elim(C, Join(fC,1, fC,2)) =
∑

c

ΘC=c|A=a ΘD=1|B=b,C=c

=
∑

c

P(D = 1, C = c |B = b, A = a) = P(D = 1 |B = b, A = a)

As this function has the scheme Scheme(fB,2) = {A, B}, it is stored in the
bucket bB; see the Step#1 entry in Figure 6. BuckElim then sums out bB ,
computing

8 In some cases, the result of the computation has an easy interpretation; such as
P(D = 1 |B = b, A = a) shown here. This is not always the case.

18

fA,2(a) =Elim(B, Join(fB,1, fB,2)) =
∑

b

ΘB=b|A=a P(D = 1 |B = b, A = a)

=
∑

b

P(D = 1, B = b |A = a) = P(D = 1 |A = a)

which is stored in bA. It next sums out bA to produce a constant

f∅,1() = Elim(A, Join(fA,1, fA,2)) =
∑

a

P(A = a) P(D = 1 |A = a) = P(D = 1)

which is stored in b∅; see Step#2 and Step#3 of Figure 6.

BuckElim then returns this value, as the correct response to this query.

4.2 Extension to Compute Derivatives, BuckElim+

BuckElim+ takes the same inputs as BuckElim: a belief net (represented
by a set of CPtable functions F over the variables V), an ordering of the
variables π, and a partial assignment to the variables E = e. It returns both
the expected response (the y = P(E=e) shown in Equation 10) and also, for
each CPtable fi ≡ Θi, the partial derivative ∂y

∂fi
= q(i)(Θ) = ∂q(Θ)/∂Θi. For

notation, we will continue to name the functions appearing in bucket bXi
as

{fi,j}j; e.g., the functions within bA are {fA,1, fA,2}. We will also let gi(·) be
the “output” of bucket bXi

.

BuckElim+ computes these results in two steps.

Step A Run BuckElim on its inputs to compute y. The intermediate
results (the functions created as the output of each bucket) are stored for use
in Step B.

Step B Compute the derivative function for each input function as follows.

(1) Compute ∂y
∂g∅

for the output of b∅: g∅ = Elim({}, Join(b∅)) =
∏

i f∅,i

(Equation 12). This is trivial, as g∅ is a constant y = g∅; thus ∂y
∂g∅

= 1.

(2) Iterate over the remaining the buckets in the order reversed from Buck-

Elim — i.e., in the original order π, starting with b∅.

Let bXi
be the current bucket, whose output is gi = Elim(Xi, Join(bXi

)).
Now recall that maxIndex(gi) < i, as gi was formed by joining functions from
the Xi bucket (whose variables had indices at most i), and then eliminating

19

Xi. As we are processing buckets in order, BuckElim+ will have computed
∂y
∂gi

before reaching bXi
.

For each fij ∈ bXi
, compute ∂y

∂fij
as:

Let J = Join({ ∂y
∂gi

} ∪ {h ∈ bXi
: h 6= fij})

∂y
∂fij

= Elim(Scheme(J) − Scheme(fij), J)
(13)

(The first argument of Elim is Scheme(J)−Scheme(fij) = {X ∈ Scheme(J) :
X 6∈ Scheme(fij)}.) That is, we join ∂y

∂gi
and all the functions of the bucket

other than fij, then eliminate the variables that do not appear in Scheme(fij)
to produce a function ∂y

∂fij
whose scheme Scheme(∂y

∂fij
) equals Scheme(fij),

and whose values are the partial derivatives of y with respect to fij.

Example We already saw that, in b∅,
∂y

∂g∅
= 1, which means ∂y

∂f∅,1
= 1. In

bA, as f∅,1 was formed from the fA,i’s,

q(A|{})(a)=
∂y

∂fA,1
= Elim({}, Join(

∂y

∂f∅,1
,
∂f∅,1
∂fA,1

))

=
∂y

∂f∅,1
× ∂f∅,1

∂fA,1

= 1 ×
∏

j 6=1

fA,j = fA,2 = P(D = 1 |A = a)

That is, as fA,1 = ΘA|{},
∂y

∂ΘA|{}
= P(D = 1 |A = a). This makes sense, as

y = P(D = 1) =
∑

a P(D = 1 |A = a) P(A = a) and fA,1(a) = P(A = a).
Notice Scheme(∂y

∂fA,1
) = {A} = Scheme(fA,1). Similarly

∂y

∂fA,2

= fA,1(a) = P(A = a)

BuckElim+ continues working forward in the order — next processing the
functions within bB: Here, as fB,1 was used to produce fA,2,

q(B|A)(a, b)=
∂y

∂fB,1
= Elim({}, ∂y

∂fA,2
× ∂fA,2

∂fB,1
) = P(A = a) ×

∏

j 6=1

fB,j

= P(A = a) × fB,2 = P(A = a) × P(D = 1 |B = b, A = a)

and ∂y
∂fB,2

= Elim({}, P(A = a) × P(B = b |A = a)) = P(A = a, B = b).

Finally, as fC,1 and fC,2 were used to produce fB,2,

q(C|A)(a, c) =
∂y

∂fC,1

= Elim(B,
∂y

∂fB,2

× ∂fB,2

∂fC,1

) =
∑

b

P(A = a, B = b) ×
∏

j 6=1

fC,j

20

=
∑

b

P(A = a, B = b) × fC,2

=
∑

b

P(A = a, B = b) × P(D = 1 |B = b, C = c)

and q(D=1|B,C)(b, c) = ∂y

∂fC,2
= Elim(A, ∂y

∂fB,2
× ∂fB,2

∂fC,1
) =

∑

a P(A = a, B =

b) × P(C = c |A = a).

Appendix B provides the proofs for following two theorems, which respectively
prove that this algorithm is correct, and bound its computational complexity.

Theorem 3 BuckElim
+ correctly computes the partial derivatives of the re-

sponse wrt each CPtable q(ij)(Θ) = ∂y/∂Θij.

Theorem 4 The worst case complexity of BuckElim+ is O(n · rw) time,
where n is the number of nodes, r is the (fixed) size of largest domain over the
variables, and w is the induced tree width, given the ordering.

4.3 How MeanVar uses BuckElim+

The basic BuckElim algorithm deals only with the unconditional probabil-
ities. To compute conditional probabilities requires a summation and a divi-
sion: That is, for P(H= h |E= e) = P(H=h,E=e)

P(E=e)
, these inference algorithms will

first compute P(H = hi,E = e) for each i, then sum these values to compute
P(E = e) =

∑

i P(H= hi,E = e); finally it returns P(H= h |E = e) = P(H =
h,E=e)/P(E=e).

Our MeanVar will therefore first call BuckElim+ on P(H=h,E=e), then
on P(E=e). In each case, after computing the response BuckElim+ will also
compute the derivatives ∂P(H = h,E = e)/∂Θi (resp., ∂P(E = e)/∂Θi) for all
of the parameters Θi’s, evaluated at Θ̂. MeanVar then uses the quotient rule
for derivatives,

∂P(H=h |E=e)

∂Θi

=
1

P(E=e)

[

∂P(H=h,E=e)

∂Θi

− q(Θ)
∂P(E=e)

∂Θi

]

to compute the actual derivatives we need. Given the complexity results in
Theorem 4, it is trivial to observe that MeanVar is also O(n · exp (w)) time.

21

Input: Belief Net B (structure + parameters)
Set of queries { qi(Θ) = P(hi | ei, Θ) }
m = “effective size” used to compute parameters
r = number of “trials” — each involves one specific set of parameter values

1. Generate posterior over parameters

For k = 1..m

d(k) := RandomInstanceFrom(B)

Compute posterior Θ|D from initial Θc|f ∼ Dir(1, 1, . . . , 1) and D = {d(k)}
2. Compute replicate parameters, and query responses

For j = 1..r

Draw Θ(j) from Θ|D posterior distribution

For each query i Q
j
i := qi(Θ

(j))

3. Actual Analysis of {Qj
1}, {Qj

2}, . . .

For each query i, based on {Qj
i}j samples. . .

a. Compute and compare ai to ei (Section 5.2)
b. Perform relevant statistical tests — Normal vs Beta

Produce Quantile-Quantile plots (Section 5.3)
c. Perform coverage experiments “error bars” (Section 5.4)
d. Compare to binomial distribution (Section 5.5)

Fig. 7. Experimental Setup

5 Experiments

Theorem 2 provides an asymptotically accurate approximation of the variance
of a query response, σ̂2

h|e. When network parameters are estimated from small
or even moderately sized data sets there is no guarantee on the accuracy of
σ̂2
h|e. However, Section 5.2 shows that the approximation works well in practice.

Given the true mean and estimated variance of a query response, we consid-
ered two models for the distribution of q(Θ): Normal and Beta, based respec-
tively on asymptotic behaviour, and observations of issues like support (and
[Hoo07]). Section 5.3 compares the fit of each model to samples from q(Θ).
An important application of the query response model is the estimation of
error-bars, which is explored in Section 5.4. Finally, some researchers have
suggested that the variance is well approximated as a simple binomial expres-
sion. Section 5.5 presents empirical evidence to demonstrate that this not a
good approximation.

5.1 Experimental Set Up

To explore these claims we require the ability to control the parameter un-
certainty of Θ and the ability to sample from q(Θ). Our experiments will use

22

common benchmark networks, whose parameters are usually given as fixed
quantities, e.g., ΘB|a+ = (0.3, 0.7). We require parameter uncertainty in the
form of Dirichlet row distribution, e.g., ΘB|a+ ∼ Beta(3, 7). To resolve this
problem we treat the network with fixed parameters as the underlying dis-
tribution, from which we produce a sample D by drawing m tuples from the
network. Using the same structure as the initial network, we learn new param-
eters using this D. Assuming a uniform Dirichlet prior over the parameters
Θi ∼ Dir(1, . . . , 1), the data is integrated in to produce posterior parameters
Θ|D, as discussed above; see ComputePosterior in Section 2.2.

Given such a belief net and posterior distribution, we use a Monte Carlo
strategy to sample from q(Θ). Generate r replicates from Θ, denoted {Θ(j)}r

j=1,
where each replicate is formed by replacing each Dirichlet row distribution by
a sample from it. That is, each replicate instantiates a belief net with fixed
values for parameters Θ.

To illustrate, imagine we started with the Diamond network, whose parameters
were each initially uniform — i.e., each Θi ∼ Beta(1, 1) — then used a m =
100 element data sample to produce the posterior Θ|D distribution shown in
Figure 2, with ΘA|{} ∼ Beta(35, 67) and ΘB|+a ∼ Beta(7, 29). We then drew
samples of Θ|D of the form

〈 Θ
(1)
+a = 0.35, Θ

(1)
+b|+a = 0.18, . . . 〉

〈 Θ
(2)
+a = 0.31, Θ

(2)
+b|+a = 0.21, . . . 〉

〈 Θ
(3)
+a = 0.33, Θ

(3)
+b|+a = 0.17, . . . 〉

〈 ...
... . . . 〉

(14)

Notice this is not the same as drawing replicates of values for A, B, For
each instantiated network and fixed query qi, we calculate Qj

i = qi(Θ
(j)) using

an exact algorithm for belief net inference.

Our experiments are based on r = 1, 000 samples. This allows us to empiri-
cally evaluate the quality of the approximations implicit in Theorem 2, which
deals with the distribution over parameters Θ (Equation 14), not over the
basic tuples. We then performed various tests on these {Qj

i}j values; see next
subsections. Figure 7 summarizes these steps.

We use four network structures in our experiments: Diamond, Alarm, In-
surance and Hailfinder. Diamond is the four variable network illustrated in
Figure 2, that allows for a variety of inferential patterns. We considered the

23

following queries:

Q1 : P(+a) = Θ+a|{}

Q2 : P(+a | + b) =
Θ+b|+a×Θ+a|{}

Θ+b|+a×Θ+a|{}+Θ+b|−a×Θ−a|{}

Q3 : P(+a | + b, +c) =
Θ+b|+a×Θ+c|+a×Θ+a|{}

Θ+b|+a×Θ+c|+a×Θ+a|{}+Θ+b|−a×Θ+c|−a×Θ−a|{}

Q4 : P(+b, +c | + a) = Θ+b|+a × Θ+c|+a

Q5 : P(+a | + d) =

∑

b,c
Θ+d|B=b,C=c×ΘB=b|+a×ΘC=c|+a×Θ+a|{}

∑

a,b,c
Θ+d|B=b,C=c×ΘB=b|A=a×ΘC=c|A=a×ΘA=a|{}

Q6 : P(+d | + a) =
∑

b,c Θ+d|B=b,C=c × ΘB=b|+a × ΘC=c|+a

(15)

The Alarm network, a 37 variable network described in [HC91b], was designed
by medical experts for monitoring intensive care patients. Alarm has become
a standard for evaluating belief net learning and inference algorithms. Here
and below, we then used m = 150 samples to produce Dirichlet parameters.
Here we generated 100 queries by choosing a single query variable and three to
five evidence assignments, using [HC91a] to determine which variables could
be query variables. (Here, and below, the value of each query and evidence
variable is assigned uniformly at random.) The mean response of these queries
tends to cover the [0, 1] interval well, with many queries having mean response
near 0 or 1.

The Insurance network [BKRK97] models car insurance risk, using 27 vari-
ables. We generated 100 queries by randomly sampling one query variable and
between zero to two evidence variables. To ensure that the mean response of
the queries covered the [0,1] interval, we used a rejection sampling procedure:
We divided [0,1] into 5 ranges [0,0.2), [0.2,0.4), . . . , [0.8,1.0], and generated
queries until an equal number of responses fell into each bin. 9

The Hailfinder network [ABE+96] is a 56 variable network for forecasting sum-
mer hailstorms. Again we generated 100 queries using the same rejection sam-
pling procedure. (More details about these networks, queries and parameters,
as well as more extensive experimental results, are available in [Gre].)

5.2 Accuracy of Estimated Variance

The simplest measure of the accuracy of σ̂2
h|e is how close it is to the true

variance of a query response. Even though we do not know the true variance

9 This was required because we found that randomly sampling queries with 1 query
variable and 0–3 evidence variables produced queries whose responses were tightly
clustered around 0.2 – 0.3.

24

of a query response, using r = 1000 samples from the query response distri-
bution, {Qi}r

i=1, in a nonparametric bootstrap provides a good estimate. This
is especially true since q(Θ) is unidimensional and often unimodal. That is,
over a wide range of queries qi, we want to see how our analytic estimate ai

(i.e., the σ̂2
h|e from Equation 7 in Theorem 2) compares to the large-sample

estimate

ei =
1

r

r
∑

j=1

(Qj
i − E[Qi])

2. (16)

As we know that our variance estimate is asymptotically correct as m → ∞,
we are most interested in seeing its behaviour for relatively small values of
m. Figure 8 shows our results on the four networks. We used m = 150 for
the three larger networks, but m = 25 for Diamond. (Using m = 150 here
would reduce the variance in the query responses to nearly zero.) The fact
that essentially all of the values are extremely near the “y = x” diagonal line
shows a very tight fit over almost all of the queries. We quantify this below.
While the absolute scale of the variances appears small, note that the variance
is usually less than 1

12
, which is the variance of the uniform distribution on

[0,1]. 10

While all of the deviances (between ai and ei) are relatively small, many of the
larger deviance value are associated with the queries with the largest variance
values. This is not surprising, and follows from the fact that we are using the
Delta method, which is based on a first-order Taylor expansion. We elaborate
in Comment#2 after the proof of Theorem 2 (in Appendix B).

We use Mean Scaled Percentage Error

MSPE =
100

n

∑

i

|ai − ei|
ei

(i.e., the average percentage that ai deviates from ei over n queries) to evaluate
the quality of our estimate. Figure 9 shows that our MeanVar estimates are
accurate across a range of sample sizes. For example, even with only m = 25
samples, our worst average over any structure was under 14%, and after 200
examples, the worst was around 7%. The rate of convergence of σ̂2

h|e differs with
each query; see Comment#1 after the proof of Theorem 2, in Appendix B.

10 Each of the points in Figure 8 is based on a single Θ vector produced from a
single data set. We also considered other Θ parameter values, by estimating new
parameters from other data sets generated from the underlying distribution — i.e.,
re-running process in Figure 7, starting from Step 1. We found that the quality of
the variance estimate is similar.

25

0.0057 0.0115 0.0172

0.
00

57
0.

01
15

0.
01

72

(a) Diamond m = 25

0.0000 0.0193 0.0387

0.
00

00
0.

01
93

0.
03

87

(b) Alarm m = 150

0.0003 0.0206 0.0408

0.
00

03
0.

02
06

0.
04

08

(c) Insurance m = 150

0.0001 0.0161 0.0321

0.
00

01
0.

01
61

0.
03

21

(d) Hailfinder m = 150

Fig. 8. Each 〈x, y〉 point represents a query whose x-value is the estimated variance
of a query response computed using MeanVar, ai, and whose y-value is the sample
variance of the response based on r = 1, 000 instances drawn from the true response
distribution, ei from Equation 16. Subfigures: (a) six queries on Diamond; (b) one
hundred queries on Alarm; (c) one hundred queries on Insurance; (d) one hundred
queries on Hailfinder.

5.3 Normal vs Beta Distribution

Some tasks, such as the ones mentioned in [GG05] and [LGW06], require only
an estimate of variance; the previous section showed that our analytic esti-
mate of variance fits the empirical evidence very closely. However, for many
other tasks (such as computing error bars), we also need to know the form of
the underlying distribution. While this parametric form is unknown in gen-
eral [Hoo07], we can still determine whether we would get appropriate answers

26

Effective Sample Size

M
ea

n
Sc

al
ed

 P
er

ce
nt

ag
e

Er
ro

r

25 75 125 200 300

2
4

6
8

10
12

14 hailfinder
alarm
insurance
diamond

Fig. 9. Mean scaled percentage error vs. effective sample size m.

if we used some plausible form. Section 3.1 argued for fitting the mean and ap-
proximate variance to either a Normal or Beta distribution. Here we compare
samples from the true distribution, {Qi}r

i=1, against each model.

Figure 10 presents two histograms of these {Qj
i}j values for two different

queries Qi, with expected means near 0.5 and 0.05 respectively. On each, we
have superimposed the pdf (probability distribution function) for the best
fit Normal and best fit Beta distributions. The left figure shows that both
distributions can have good fits, when the mean is far from 0 and from 1,
and the distribution is fairly symmetric. The right figure shows that even the
best-fitting Normal distribution has problems when the distribution is skewed.

A “quantile-quantile plot” provides a way to visualize this fit, by plotting
sample quantiles against the theoretical quantiles of the fitted (Normal or
Beta) distributions. Here, a straight diagonal line indicates that, for each k =
1..r, the kth sample (of r) appears where the distribution predicts k/r of
the data should be. Figure 11 shows nine such quantile-quantile plots, for the
queries numbered {15, 25, . . . , 95}, where the numbers are based on the query’s
mean response. 11 We see that many of the queries are better approximated
by the Beta than the Normal, especially when the true distribution is skewed
(i.e., the ones with mean response µ near 0 or near 1).

One way to quantify the difference between models is to compare the (log)likelihood
of the query instances Qj

i = qi(Θ
j) computed based on the Normal (resp.,

Beta) parameters
∑

j log PNormal(µi ,σ
2
i
)(Qj

i) (resp.,
∑

j log PBeta(ai ,bi)(Qj
i)). For

11 As we cannot show all 600+ quantile-quantile plots here, we provide a represen-
tative sample for Alarm. The rest of the plots are available in [Gre]

27

Normal
Beta

1.188e−01 4.819e−01 8.451e−01

(a) Low skew

Normal
Beta

1.712e−03 8.457e−02 1.674e−01

(b) High skew

Fig. 10. Two query response distributions from Alarm: Each is a histogram of the
{Qi}r

i=1 instances, overlayed with the fitted Beta and Normal models. When the
skew is low, the models tend to be similar, but when the skew is high, the Beta
model is a much better fit.

0.01 0.04 0.07

0.
02

0.
06

µ = 0.0398

0.04 0.08

0.
04

0.
08

µ = 0.0661

0.0 0.2

0.
1

0.
3

µ = 0.1733

0.0 0.2 0.4 0.6

0.
1

0.
3

0.
5 µ = 0.2856

0.4 0.6

0.
4

0.
6

µ = 0.5412

0.70 0.80

0.
65

0.
75

µ = 0.7622

0.5 0.7 0.9 1.1

0.
5

0.
7

0.
9 µ = 0.8

0.7 0.9 1.1

0.
7

0.
9

µ = 0.8933

0.93 0.96 0.99

0.
92

0.
95

0.
98 µ = 0.9602

0.02 0.05 0.08

0.
02

0.
06

µ = 0.0398

0.04 0.08

0.
04

0.
08

µ = 0.0661

0.1 0.2 0.3 0.4

0.
1

0.
3

µ = 0.1733

0.1 0.3 0.5

0.
1

0.
3

0.
5 µ = 0.2856

0.4 0.6

0.
4

0.
6

µ = 0.5412

0.70 0.80

0.
65

0.
75

µ = 0.7622

0.5 0.7 0.9

0.
5

0.
7

0.
9 µ = 0.8

0.6 0.7 0.8 0.9 1.0

0.
7

0.
9

µ = 0.8933

0.92 0.95 0.98

0.
92

0.
95

0.
98 µ = 0.9602

Fig. 11. Quantile-Quantile Plots for nine query instances (Alarm network), each
comparing query sample distribution against our estimate of q(Θ) distribution using
calculated mean and variance. The left-hand side assumes q(Θ) is Gaussian; the
right-hand side assumes q(Θ) is Beta distributed. The µ value is the expected query
response.

Diamond, constructed using m = 25 samples, the likelihood of the Beta model
is higher than Normal model for each of the six queries. For Alarm (m = 300),
the likelihood of the Beta model is higher than the Normal model for 92 of
the 100 queries. For Insurance (m = 300), the Beta model is better for 89 of
the 100 queries. For Hailfinder (m = 300), the Beta model is better for 89 of
the 100 queries.

28

Table 1
Fail-Beta is the fraction of queries that did not fit the Beta hypothesis; Fail-Normal
is the fraction of queries that did not fit the Normal hypothesis.

Domain Fail-Beta Fail-Normal

Diamond (m = 25) 0/6 1/6
Alarm (m = 300) 16/100 50/100
Insurance (m = 300) 13/100 36/100
Hailfinder (m = 300) 10/100 31/100

The fact that Beta has higher likelihood is even more impressive, given that
this log-likelihood measure unnaturally favours the Normal model, especially
when the response is near 0 or near 1: As Θ → 0 (or Θ → 1), the log-likelihood
of the Beta distribution tends to −∞, but this does not occur with the Normal
distribution. (This is because the log-likelihood for the N (µ, σ2). model is a
constant plus a sum of terms −(1/2)× [(x−µ)/σ]2 while the log-likelihood for
Be(a, b) is a constant plus a sum of terms (a−1)×log(x)+(b−1)×log(1−x),
which blows up (large negative) for x near 0 and 1. Hence, the Beta distribution
is strongly affected by values near the boundary of the unit interval, while the
Normal log likelihood is not.)

Another approach is to use a goodness-of-fit test where, formally, the null
hypothesis is that the samples {Qj}r

j=1 were drawn from the Normal model
(resp., Beta model) and the alternate is the negation of the null hypothesis.
Such tests do not allow us to state that the data was drawn from the null
model, instead the focus “is on the measure of agreement of the data with the
null hypothesis.” [DS86]. Here, we are asking how close the observed distribu-
tion is to the best-fit Normal (resp., the best-fit Beta) distribution.

These goodness-of-fit procedures suggest that the Normal model is problem-
atic. Using an Anderson-Darling normality test [AD54], for example, 80 of the
100 Alarm queries showed evidence of non-normality at a significance level of
0.05. Due to a lack of critical values for the Beta distribution, we resort to a
lower power Kolmogorov-Smirnov test to compare model [Dar57]. At the same
0.05 significance level, we get the results in Table 1. In all four domains, the
Beta distribution tends to fit queries better than the Normal distribution.

5.4 Accuracy of Bayesian Error Bars

Another way to compare the Normal and Beta models is based on their re-
spective performance on some task. If a model is accurate then functionals of
a model that we care about, such as credible regions of the posterior response,
should also be accurate.

As mentioned above, a (1 − δ) credible set is a region ω ⊂ < such that
P(q(Θ) ∈ ω(D)) = (1− δ). If our model of the posterior response distribution

29

0.0 0.2 0.4 0.6 0.8 1.0

0.
80

0.
85

0.
90

0.
95

1.
00

Mean Query Response

Sa
m

pl
e

Co
ve

ra
ge

(a) Alarm (Normal)

0.0 0.2 0.4 0.6 0.8 1.0

0.
80

0.
85

0.
90

0.
95

1.
00

Mean Query Response

Sa
m

pl
e

Co
ve

ra
ge

(b) Insurance (Nor-
mal)

0.0 0.2 0.4 0.6 0.8 1.0

0.
80

0.
85

0.
90

0.
95

1.
00

Mean Query Response

Sa
m

pl
e

Co
ve

ra
ge

(c) Hailfinder (Nor-
mal)

0.0 0.2 0.4 0.6 0.8 1.0

0.
80

0.
85

0.
90

0.
95

1.
00

Mean Query Response

Sa
m

pl
e

Co
ve

ra
ge

(d) Alarm (Beta)

0.0 0.2 0.4 0.6 0.8 1.0

0.
80

0.
85

0.
90

0.
95

1.
00

Mean Query Response

Sa
m

pl
e

Co
ve

ra
ge

(e) Insurance (Beta)

0.0 0.2 0.4 0.6 0.8 1.0

0.
80

0.
85

0.
90

0.
95

1.
00

Mean Query Response
Sa

m
pl

e
Co

ve
ra

ge

(f) Hailfinder (Beta)

Fig. 12. Query sample coverage of computed 90% Bayesian credible intervals.
(a-c) Assumes q(Θ) is Normally distributed; (d-f) Assumes q(Θ) is Beta distributed.
Each point represents a query, sorted in order of expected response. The horizontal
line represents the desired result: 90% coverage.

is good, then the expected fraction of query samples Qj in ω should be (1−δ).

Here, for each query q, we first used MeanVar to compute the mean and
variance of the response, then used these values to compute a 90% credible
region for the Normal distribution [LN , UN], and for the Beta distribution
[LB, UB]. We then drew r = 1, 000 instances from q(Θ), using the procedure
described in Section 5.1, and recorded what fraction of instances appeared
in [LN , UN] (resp., [LB, UB]). If the distributional assumption is correct, we
expect this ratio to be close to 0.9. The results are presented in Figure 12.

While both approximations had problematic cases, the Beta distribution pro-
duces more accurate intervals for most queries. The problems with the Normal
model are conspicuous when the mean query response is near 0 or 1, which is
when q(Θ) exhibits significant skew. Repeating this experiment with an 80%
credible interval produces similar results. 12

12 We considered yet other intervals. However, larger intervals (e.g., 95% or even
99%) are contrary to the goal of verifying whether the Normal or Beta distributions

30

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean Query Response

Sa
m

pl
e

Co
ve

ra
ge

(a) Normal Approximation: σ̃2
h|e:BS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean Query Response

Sa
m

pl
e

Co
ve

ra
ge

(b) Beta Approximation: σ̃2
h|e:BS

Fig. 13. Query sample coverage of computed 90% Bayesian credible intervals. These
plots were generated using the same queries and samples as Figures 12(a) and 12(d),
except σ̃2

h|e:BS
(Equation 17) was used instead of σ̂2

h|e (Equation 7).

5.5 Binomial Variance

Several researchers have suggested (personal communication) that the vari-
ance of the response may be much simpler, perhaps as trivial as the binomial

variance σ̃2
h|e:BS = q(Θ̂) (1−q(Θ̂))

m
where m is the total number of tuples, or

perhaps

σ̃2
h|e:BS =

q(Θ̂) (1 − q(Θ̂))

m + k + 1
(17)

in the Bayesian framework when we assume uniform priors and the query
variable has k values. To investigate this claim, we repeated the coverage test
on Alarm, but used this σ̃2

h|e:BS estimate in place of σ̂2
h|e (Equation 7). Fig-

ure 13(a) (resp., Figure 13(b)) shows the results, assuming the distribution is
Normal (resp., Beta). Clearly this estimate performs poorly in both instances.
This is expected: Equation 17 essentially matches Equation 7 only if the query
variable is not connected to any other nodes:

are good models of the posterior, as there are more distributions that will satisfy
a given 0.99 interval by chance than there are distributions that will satisfy a 0.90
interval by chance. By contrast, a really small interval (like 50% or 10%) would
reflect only the model quality immediately around E [q(Θ)].

31

Observation 5 If the query variable H is k-ary, is given uniform priors, and
is not connected to any other nodes, then for any evidence E = e, σ̂2

h|e =

q(Θ̂) (1 − q(Θ̂))/(1 + k + m).

In general, when there are connections, this variance will be larger, as the sum
will include other positive quantities.

5.6 Timing Information

Both BuckElim and BuckElim+ have O(n ·exp(w)) time complexity, where
w is the induced treewidth of the ordering. While BuckElim+ is obviously
slower, the additional cost of running BuckElim+ depends on the average
size of the functions after running BuckElim. This is because BuckElim+

must compute derivatives with respect to all of the functions in the buckets
after BuckElim. For example, on the 100 Alarm queries, the average cost of
our MeanVar algorithm was 3.3 times that of BuckElim alone.

6 Related Work

Our results provide a way to compute the variance of a belief net’s response
to a query, based on the posterior distribution over Θ, which is determined
by the data sample. This is done using the “Delta method”, which basically
propagates the variance of each parameter, based on the partial derivatives.

Kleiter [Kle96] similarly uses this method within a stochastic simulation tech-
nique to approximate the mean and variance of a query. His methodology
appears to be more general than ours, allowing incomplete data, but is also
more computationally intensive. His system calculates an approximate vari-
ance for a complete query at each iteration of the simulation using an expres-
sion derived by the Delta method. While his derivation is somewhat similar
to the one given in our Appendix B, we obtain a different expression for the
approximate variance. We have been unable to verify whether the two expres-
sions are equivalent. Kleiter also presents an exact result for a network with
two nodes, A → B. He shows that, given complete data and an appropriate
prior distribution, the query P(A |B) has a Beta distribution. In recent work,
Hooper [Hoo07] generalizes this result using ideas related to likelihood equiv-
alence of the BDe metric [HGC95]; i.e., given a BDe prior and complete data,
a query has a Beta distribution if can be represented as a CPtable parameter
for an equivalent DAG structure inducing the same dependence model. In ad-
dition, our paper differs from Kleiter’s by also providing an effective way to
compute the variance information BuckElim+, as well as empirical evidence

32

that our approach typically works effectively, despite its approximations.

Several other researchers also consider the posterior distribution over CP-
tables, but for different purposes. For example, Cooper and Herskovits [CH92]
use it to compute the expected response to a query (see Equation 3). We
extend their foundational result by computing the variance of the response
as well. Similarly, while many BN-learning algorithms compute the posterior
distribution over CPtables [Hec98], most seek a single set of parameters that
maximizes the likelihood, which again is different from our task.

Others, including [WC05], use this response variance for various tasks, in-
cluding a bias-variance analysis for various probabilistic classifiers (similar
to [GG05]). These earlier systems, however, will estimate this quantity em-
pirically — sometimes based on replicates of the Θ parameters, but more
often based on a set of training instances from the base domain D (each used
to instantiate the parameters, and then to compute the response to a fixed
question, etc.). We provide empirical evidence that our analytic estimates are
as accurate, but much faster to compute: Most of their empirical estimates
require hundreds or thousands of replicates, which means they require a com-
putation that is hundreds or thousands of times more than just computing a
single response. By contrast, we noted in Section 5.6 that our approach can
require a total computation only a small factor slower than just computing
the response itself. For complete queries (Appendix A), the additional cost
needed to compute the variance is negligible.

Our main theoretical result (Theorem 2) uses the sensitivity of the query to
each CPtable entry. Many other projects consider such sensitivity analyses,
providing mechanisms for propagating ranges of CPtable values to produce
a range in the response; cf., [Las95,CGH97,CNKE93,KVdG00,Dar00]. Those
papers do not consider variance, but typically assume that parameters are
intervals to be propagated throughout the network. While they require the
user to explicitly specify the range of a local CPtable entry, our work uses
a data sample as the source of these “intervals”, in that it depends on the
posterior distribution of the CPtable parameters {Θc|f}, which in turn is based
on the observed data. This assumes the CPtable parameters are independent
Dirichlet rows, which is in accord with common models of learning belief
network parameters.

While our system must propagate all of the “ranges”, most of the other sys-
tems only propagate a single range, based on the one associated derivative. One
exception is the Darwiche [Dar00] system, which can simultaneously produce
all of the derivatives. This system compiles a belief network into a polynomial
representation, which can then be symbolically differentiated. There appears
to be a close similarity between his approach and our (independently devel-
oped) BuckElim+ algorithm (Section 4.2), as his polynomial can be viewed

33

as a symbolic representation of the variable elimination process, and his differ-
entiation proceeds from the leaves of the tree-representation of the polynomial
to its root, tracing out the same pattern in space that our BuckElim+ traces
over time. However, Darwiche does not consider our error-bar application, and
so does not include the additional optimizations we could incorporate.

Excluding the [Dar00] result, none of the other projects provides an efficient
way to compute those partial derivatively. Also, some of those other papers
focus on properties of this derivative — e.g., when it is 0 for some specific
CPtable entry. Note this information can be derived from Equation 8. Finally,
while some other results deal only with singly connected networks [CNKE93],
our analysis holds for arbitrary structures.

Our analysis also connects to work on abstractions, which also involves deter-
mining how influential a CPtable entry is, with respect to a query, towards
deciding whether to include a specific node or arc [GDS01]. Their goal is typ-
ically computational efficiency in computing that response, either exactly or
approximately. By contrast, our focus is in computing the error-bars around
the response, independent of the time required to determine that results.

Lastly, our experiments require instances drawn from q(Θ), which can them-
selves be used to estimate approximate credible intervals. There are applica-
tions of sampling methods to other problems in belief nets, which can possibly
be confused with our concerns. For example, in stochastic sampling inference
algorithms, confidence intervals on the posterior [CD01] refer to the distribu-
tion induced by sampling. However, the underlying network has no parameter
uncertainty in those applications.

7 Conclusion

Further Extensions

Our current system has been implemented, and our data indicates that rea-
sonably accurate error-bars can be produced. There are several possible ex-
tensions. One class of extensions involves discharging the assumptions listed
in Definition 1. It may be possible to deal with situations where a single
correct structure is not provided. Instead, one may be given a distribution
over structures or be forced to learn both structure and parameters from a
data sample. (However, our empirical evidence on tasks that use these esti-
mates [LGW06,GG05] suggest that Equation 7 works fairly well even if the
model structure is wrong.) We assume that the network parameters, Θ, can
be decomposed into Dirichlet row distributions. It would be useful to apply a
similar analysis to alternate CPtable encodings, such as Noisy-OR [Pea88] or

34

CP-Trees [BFGK96].

The normative process, depicted in Figure 1, starts with completely specified
training instances. It is not clear how to use an incomplete training sample.
First, the posterior distribution over Θ is not guaranteed to be Dirichlet.
Second, it is not clear how to compute quantities like effective sample size. The
näıve EM algorithm for learning parameters [Hec98] will produce an effective
sample size that is too large. Note, however, that our technique is independent
of the source of the Θ distributions; i.e., they apply whenever we are given a
product of Dirichlet distributions, however they are obtained.

While our system takes advantage of optimizations available to Bucket Elim-
ination algorithms (e.g., optimized variable orderings), the bucket data struc-
tures must be initialized for each query. It would be desirable to use a mul-
tiple query algorithm for inference and calculation of the partial derivatives,
as this would amortize the cost of initializing tables with evidence, and would
also also us to reuse intermediate computations shared by different queries.”
Query-DAGs [DP96], given its similarity to Bucket Elimination, is an obvious
candidate; another option is Junction Trees [JJ94].

Appendix A provided a very simple algorithm for computing our variance
estimate σ̂2

h|e for the special class of “complete data” queries, and then showed
that we could use this to quickly deal with any query to a Näıve Bayes structure
(provided only the query node is the root). It would be useful to develop other
specialized algorithms (that similarly bypass BuckElim+) for other specific
network topologies.

Contributions

Many real-world systems work by reasoning probabilistically, based on a given
belief net model. When belief net parameters are based on a finite random sam-
ple, these parameters can be viewed as random variables, whose uncertainty
induces uncertainty in the response to a given query. This paper addresses the
challenge of computing this posterior distribution of a belief net’s response to
a query.

We define the task, then prove that, given standard assumptions about the
parameters, this response distribution is asymptotically Normal, and provide
its mean and asymptotic variance (Theorem 2), from which we can estimate
the associated credible regions (“Bayesian error bars”) around the expected
response. We also connect this task to the well-understood problem of learn-
ing belief networks parameters from complete data, and provide an algorithm
MeanVar for computing this asymptotic variance for any query on any be-
lief net. We prove both that MeanVar is correct, and that it has the same
asymptotic complexity as belief net inference. This procedure, in effect, prop-

35

agates the uncertainty of each parameter based on its partial derivative. The
subroutine used to compute all of these derivatives, BuckElim+, is of inde-
pendent interest as these derivatives have many uses outside the scope of this
paper [DP96,Sin04]. We also provide a much simpler “straight-line” algorithm
for efficiently computing the variance in two common situations: “complete
data” queries, and Näıve Bayes inference.

Our underlying theoretical claims, that the distribution is Normal and has
variance σ̂2

h|e (Equation 7), are only asymptotic; they say nothing about the
properties of this distribution given only a finite sample. We therefore ran a
body of empirical tests to investigate the performance. Our results show that
our approximate variance σ̂2

h|e is extremely close to correct, given even small
sample sizes. However, the associated distribution is often not close to Normal.
Our experiments did show that this distribution is often well-approximated by
the Beta distribution, and in particular, the associated error-bars are typically
fairly accurate.

In earlier works, we have already identified two tasks that can use these vari-
ance quantities: discriminative model selection, and as a way to combine esti-
mates from different Bayesian classifiers. These existing tasks are enabled by
our (relatively) efficient methods for estimating variance. We eagerly antici-
pate the emergence of many other applications.

Acknowledgments

We are grateful for the many comments and suggestions received from Adnan
Darwiche and the three anonymous reviewers. All authors gratefully acknowl-
edge the generous support of NSERC. TvA and AS also acknowledge support
from iCORE, AS acknowledges further support in part by the National Science
Foundation (grant IIS-0325581), and RG from the Alberta Ingenuity Centre
for Machine Learning. Most of this work was done while TvA and AS were
students at the University of Alberta.

References

[ABE+96] B. Abramson, J. Brown, W. Edwards, A. Murphy, and R.L. Winkler.
Hailfinder: A Bayesian system for forecasting severe weather. Intl. J.
Forecasting, 12(1):57–71, Mar 1996.

[AD54] T.W. Anderson and D.A. Darling. A test of goodness of fit. J. American
Statistical Association, 49(268):765–769, Dec. 1954.

36

[Aki96] Yoshihisa Akimoto. A note on uniform asymptotic normality of Dirchlet
distribution. Mathematica Japonica, 44(1):25–30, Dec 1996.

[BFGK96] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-
specific independence in Bayesian networks. In UAI-96, 1996.

[BKRK97] John Binder, Daphne Koller, Stuart J. Russell, and Keiji Kanazawa.
Adaptive probabilistic networks with hidden variables. Machine
Learning, 29(2-3):213–244, 1997.

[CD01] Jian Cheng and Marek J. Druzdzel. Confidence inference in Bayesian
networks. In Proceedings of the Seventeenth Conference on Uncertainty
in Artificial Intelligence (UAI-2001), pages 75–82. Morgan Kaufmann
Publishers, 2001.

[CGH97] Enrique F. Castillo, José M. Gutiérrez, and Ali S. Hadi. Sensitivity
analysis in discrete Bayesian networks. IEEE Transactions on Man,
Cybernetics and Systems, 27:412–424, 1997.

[CH92] G. Cooper and E. Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Machine Learning, 9:309–347, 1992.

[CNKE93] Peter Che, Richard E. Neapolitan, James Kenevan, and Martha Evens.
An implementation of a method for computing the uncertainty in inferred
probabilities in belief networks. In UAI-93, pages 292–300. Morgan
Kaufmann Publishers, 1993.

[Dar57] D.A. Darling. The Kolmogorov-Smirnov, Cramer-von Mises tests. Ann.
Math. Stat, 28:823–838, 1957.

[Dar00] A. Darwiche. A differential approach to inference in Bayesian networks.
In UAI’00. Morgan Kaufmann, 2000.

[Dav95] March 1995. Special issue of “Communications of the ACM”, on Bayesian
Networks.

[Dec98] Rina Dechter. Bucket elimination: A unifying framework for probabilistic
inference. In Learning and Inference in Graphical Models, 1998.

[DP96] Adnan Darwiche and Gregory M. Provan. Query DAGs: A practical
paradigm for implementing belief network inference. In Proceedings of
the Twelfth Conference on Uncertainty in Artificial Intelligence, 1996.

[DS86] Ralph B. D’Agostino and Michael A. Stephens. Goodness-of-Fit
Techniques, volume 68 of Statistics, textbooks and monographs. Marcel
Dekker Inc., 1986.

[GDS01] Russell Greiner, Christian Darken, and Iwan Santoso. Efficient reasoning.
Computing Surveys, 2001.

[GG05] Yuhong Guo and Russell Greiner. Discriminative model selection for
belief net structures. In Twentieth National Conference on Artificial
Intelligence (AAAI-05), pages 770–776, Pittsburgh, July 2005.

37

[GGS97] R. Greiner, A. Grove, and D. Schuurmans. Learning Bayesian nets that
perform well. In UAI-97, 1997.

[Gre] http://www.cs.ualberta.ca/∼greiner/Research/BNvar.

[HC91a] E. H. Herskovits and C.F. Cooper. Algorithms for Bayesian belief-
network precomputation. In Methods of Information in Medicine, pages
362–370, 1991.

[HC91b] Edward Herskovits and Gregory Cooper. Algorithms for Bayesian belief
network precomputation. Methods of Information in Medicine, pages
362–370, 1991.

[Hec98] David E. Heckerman. A tutorial on learning with Bayesian networks. In
M. I. Jordan, editor, Learning in Graphical Models, 1998.

[HGC95] D. Heckerman, D. Geiger, and D.M. Chickering. Learning bayesian
networks: the combination of knowledge and statistical data. Machine
Learning, 20, 1995.

[Hoo07] Peter Hooper. Exact beta distributions for query probabilities
in bayesian networks. Technical report, University of Alberta,
2007. http://www.stat.ualberta.ca/~hooper/research/papers+

talks/exactbeta.pdf.

[JJ94] Finn Jensen and Frank Jensen. Optimal junction trees. In Proceedings
of the 10th Annual Conference on Uncertainty in Artificial Intelligence
(UAI-94), pages 360–36, San Francisco, CA, 1994. Morgan Kaufmann.

[Kle96] G. Kleiter. Propagating imprecise probabilities in Bayesian networks.
Artificial Intelligence, 88, 1996.

[KR76] R. L. Keeney and H. Raiffa. Decision with Multiple Objectives:
Preferences and Value Tradeoffs. John Wiley & Sons, New York, 1976.

[KSS98] H. Korth, A. Silberschatz, and S. Sudarshan. Database System Concepts.
McGraw Hill, 1998.

[KVdG00] U. Kjaerulff and L.C. Van der Gaag. Making sensitivity analysis
computationally efficient. In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, 2000.

[Las95] K. B. Laskey. Sensitivity analysis for probability assessments in Bayesian
networks. IEEE Transactions on Man, Cybernetics and Systems,
25(6):901–909, 1995.

[LD97] Y. Lin and M. J. Druzdzel. Computational advantages of relevance
reasoning in bayesian beliefs networks. In Uncertainty in Artificial
Intelligence (UAI), pages 342–350, 1997.

[LGW06] ChiHoon Lee, Russell Greiner, and Shaojun Wang. Using variance
estimates to combine Bayesian classifiers. In International Conference
on Machine Learning (ICML’06), Pittsburgh, June 2006.

38

[Moo03] Andrew W. Moore. Private communication, May 2003.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[Pei87] Julio L. Peixoto. Hierarchical variable selection in polynomial regression
models. American Statistician, 41:311-313, 1987.

[Rip96] B. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge, UK, 1996.

[RMt86] David E. Rumelhart, James L. McClelland, and the PDP Research
Group, editors. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, volume 1: Foundations. The MIT Press,
Cambridge, 1986.

[Sin04] Ajit P. Singh. What to do when you don’t have much data: Issues in
small sample parameter learning in Bayesian networks. Master’s thesis,
University of Alberta, 2004.

[SL90] David J. Spiegelhalter and Steffen L. Lauritzen. Sequential updating
of conditional probabilities on directed graphical structures. Networks,
pages 579–605, 1990.

[vAGH01] Tim van Allen, Russell Greiner, and Peter Hooper. Bayesian error-
bars for belief net inference. In Proceedings of the 17th Conference on
Uncertainty in Artificial Intelligence, Aug 2001.

[Van00] Tim Van Allen. Handling uncertainty when you’re handling uncertainty:
Model selection and error bars for belief networks. Master’s thesis,
Dept. of Computing Science, University of Alberta, 2000.

[WC05] G.I. Webb and P. Conilione. Estimating bias and variance from data.
Technical report, 2005.

[Wil62] S. Wilks. Mathematical Statistics. John Wiley & Sons, 1962.

A “Complete Query” Case

This appendix considers the challenge of computing the variance of the re-
sponse to a query P(H = h |E = e) in simple case where the query is “com-
plete”, in that the evidence E includes every variable except the query H. Here
we show straight-line code that can compute the variance (as well as expected
value) of the response.

Using the identity [GGS97,Dar00]

q
(c|f)
h|e (Θ) =

∂P(h | e)

∂Θc|f
=

1

Θc|f

[

PΘ(c, f , h | e) − PΘ(h | e) PΘ(c, f | e)

]

39

(where each term PΘ(·) refers to the value computed by the belief net whose
parameters are instantiated by Θ), we can obtain the following derivative-free
form of Equation 8:

vh|e(C|f)=

∑

c∈C

1

c|f
[P(c, f , h | e) − P(h | e) P(c, f | e)]2

− [P(f , h | e) − P(h | e) P(f | e)]2

 (A.1)

where here (and below) we use P(·) for PΘ̂(·), where Θ̂ is the posterior
mean. We can trivial read off that vh|e(C|f) (Equation A.1) will be 0 whenever
H⊥C,F|E.

The following theorem shows that most of these vh|e(C|f) terms are 0, and the
remaining ones are trivial to compute.

Theorem 6 Given the “complete query” P(H = +h |E=e), where E includes
every non-H variable, the only non-0 v+h|e(C|F= f) terms are . . .

• associated with the query variable H: Assuming H’s parents are {M1, . . . , Mk},
and the evidence E = e includes the +m = [+m1, . . . , +mk] assignment
to these variables,

v+h|e(H| + m) = P(+h | e)2

[

∑

h∈H

P(h | e)2

Θ̂h|+m

+
[1 − 2P(+h | e)]

Θ̂+h|+m

]

(A.2)

(For every other −m 6= +m assignment to the parents, v+h|e(H| −m) = 0.)

• associated with H’s children: For each child S of H, with parent set {H, U1, . . . , Ur},
where the evidence E=e includes +u = [+u1, . . . , +ur] and S = +s,

v+h|e(S| + h, +u) = P(+h | e)2 [1 − P(+h | e)]2
[

1

Θ̂+s|+h,+u

− 1

]

(A.3)

and for each h′ 6= +h

v+h|e(S|h′, +u) = P(+h | e)2 P(h′ | e)2

[

1

Θ̂+s|h′,+u

− 1

]

(A.4)

and v+h|e(S|h,−u) = 0 for every other parental assignment [h,−u] where
−u 6= +u.

Connecting this with the general graph in Figure A.1, we need only deal with
the CPtable rows associated with H and its children, the Si’s. Notice the only

40

· · ·
B
BN

�
����M1

���
@

@R

· · ·

· · ·
B
BN

�
����Mk

���
�

�	���H���
�
�
�
�

@
@R���S1

���
��	 @@R���T1

���T2

· · ·
�

�	 ���S
�̀��

��	 @@R

���W1

���W2

A
AU

�
��

A
AU���U1

1

���
HHHHHj

�
�	

���U2
1

���
Z

Z
Z~

· · ·
���U

r1

1

���
?

���U1
�̀��
�

��

· · ·
���U

r`

�̀��
�����

@
@R

Fig. A.1. Example of a Belief Net structure, for computing P(H=h |E=e) — used
to illustrate Theorem 6.

values that could influence the variance correspond to these variables and
their parents, which is exactly the Markov blanket around H (which are the
double-circled, but not triple-circled, nodes in Figure A.1) . . . which makes
sense, as these are the only values that influence the response itself. Note this
means Theorem 6 does not require that the evidence E include every non-
query variable; for this theorem to apply, we need only require that E include
all the variables in the Markov blanket around H.

Here, if H involves |H| = r classes, and it has ` children, then we can compute
the variance by adding up only 1 + ` × r quantities. Moreover, each of these
computations is easy, as each Θ̂·|· is simply a quick look-up, and the P(h | e)
terms are trivial given that the evidence E includes the Markov blanket around
H. (Moreover, this quantity has probably already been computed, as it was
needed to compute the response — note the basic inference algorithm typically
has already computed P(hi, e) for each hi ∈ H.)

We close this section with two further simplifications. First, when dealing with
binary classes H = {+h, −h}, Equation A.2 reduces to

v+h|e(H| + m) = P(+h | e)2 P(−h | e)2

[

1

Θ̂+h|+m

+
1

Θ̂−h|+m

]

and both Equation A.3 and A.4 reduce to

v+h|e(S|h, +u) = P(+h | e)2 P(−h | e)2

[

1

Θ̂+s|h,+u

− 1

]

Hence, using the notation defined above, the total variance here is simply

σ̂2
h|e(Θ) = P(+h | e)2 P(−h | e)2

∑

h

[

1

1 + mH|+f

1

Θ̂h|+f

+
∑

S

1

1 + mS|h,+u

(

1

Θ̂+s|h,+u

− 1

)]

41

Second, recall from above that we can ignore “barren nodes” — aka “uninstan-
tiated descendants”. For example, imagine that the evidence E= e does not
include a value for one of the query variable’s children nor does not it include
values for any of that child’s descendants — e.g., in Figure A.1, imagine the
evidence E does not include values for S1 nor T1 nor T2. We can then ignore
this branch. (This follows from the observation that the parameters of these
nodes do not contribute to the response [LD97].)

Note this means we can always quickly compute this variance estimate for a
Näıve Bayes structure, which will require computing only 1+ `′×r quantities,
where `′ ≤ ` is the number of H’s children that are instantiated.

B Proofs

Proof of Theorem 2 The following proof is a more detailed version of
the proof in [vAGH01] employing the Delta method. Consider the first-order
Taylor expansion

q(Θ) = q(Θ̂) + L + R

where the linear term is

L = [Θ − Θ̂]T · q′(Θ̂)

and the remainder term is

R = 1
2

[Θ − Θ̂]T · q′′(Θ̃) · [Θ − Θ̂]

with Θ̃ = Θ̂ + a(Θ − Θ̂) for some a ∈ (0, 1). Here q′(Θ̂) is the vector of
first partial derivatives evaluated at Θ̂ (which is composed of the subvectors,

q
(C|f)
h|e (Θ̂)), q′′(Θ̂) is the matrix of second partial derivatives evaluated at Θ̂,

and the superscript T denotes transposition. Under our asymptotic framework,
the variances of the components Θc|f of Θ are of order 1

mC|f
→ 0, so Θ converges

in probability to Θ̂. Since the components Θ̂c|f of Θ̂ are strictly between 0 and
1, it follows that components of the matrix q′′(Θ) remain uniformly bounded
for all Θ within an open neighbourhood of Θ̂. Consequently, the remainder
term R converges to zero at a rate faster than the linear term L, so R is
asymptotically negligible compared with L. We approximate q(Θ) − q(Θ̂) by
L, and we define σ̂2

h|e to be the variance of the L term.

Now (q(Θ) − q(Θ̂))/σ̂h|e and L/σ̂h|e have the same asymptotic distribution.
We claim that this distribution is the standard Normal distribution. First
note that L/σ̂h|e has mean 0 and variance 1. Asymptotic normality follows
from the fact that CPtable rows ΘT

C|f are independent and each row (af-
ter suitable standardization) is asymptotically multivariate Normal. More

42

precisely,
√

mC|f + 1 (ΘC|f − Θ̂C|f) converges in distribution to a multivari-

ate Normal distribution with mean vector (0, . . . , 0) and covariance matrix
Diag(Θ̂C|f) − Θ̂C|f Θ̂T

C|f , where Diag(Θ̂C|f) is a diagonal matrix with the com-

ponents of Θ̂C|f along the diagonal; see [Aki96]. We can thus express L/σ̂h|e

as a linear combination of independent, asymptotically Normal terms. In this
expression, we can standardize each of the independent random variables to
have unit variance. We thus write L/σ̂h|e =

∑

r arZr, where r indexes all
CPtable rows in the network, the Zr are independent random variables with
mean 0 and variance 1, and each Zr is asymptotically normal. The coefficients
ar do not necessarily remain fixed under our asymptotic framework, but the
coefficients must satisfy the constraint

∑

a2
r = 1 since L/σ̂h|e has variance one.

It then follows that L/σ̂h|e is asymptotically standard normal.

The proof is completed by deriving an expression for σ̂2
h|e, which we defined

as the variance of the linear term L. Since CPtable rows are independent, this
variance can be decomposed as

σ̂2
h|e =

∑

C,f

q
(C|f)
h|e (Θ̂)T · Cov(ΘC|f) · q

(C|f)
h|e (Θ̂) (B.1)

where the summation ranges over all CPtable rows and the covariance matrix
for ΘC|f is

Cov(ΘC|f) =
1

mC|f + 1

(

Diag(Θ̂C|f) − Θ̂C|f Θ̂T
C|f

)

.

It is then straightforward to obtain Equations 7 and 8.

Comment#1: Assumptions underlying Theorem 2. The asymptotic
framework in Theorem 2 involves only the posterior distribution, not its deriva-
tion from sample data. The following argument shows that the assumptions
are supported by large-sample theory, provided the Dirichlet prior distribution
is appropriate. Suppose the CPtable parameters are in fact generated by the
assumed prior. It then follows, with probability one, that each Θc|f is strictly
between zero and one. Now consider the behaviour of the posterior distribu-
tion as the number of complete training cases becomes arbitrarily large. In
the frequentist perspective, conditioning on the parameters and not the sam-
ple data, the effective sample sizes mC|f and posterior means Θ̂c|f are random
variables, each mC|f becomes arbitrarily large (with probability one), and each

Θ̂c|f converges in probability to Θc|f . The asymptotic framework in Theorem 2
is similar to this large-sample framework, differing primarily in the assumption
(appropriate in a Bayesian context) that the posterior means are fixed.

The text in Section 3 already argued that one can deal with deterministic
links, within an asymptotic framework. (Here, we basically ignore these CP-
table rows.) What happens if instead a Dirichlet prior is incorrectly adopted

43

here? Large-sample theory shows that Θ̂ converges toward the boundary. The
variance approximation (Equation 7) may still be valid, but this is not guar-
anteed since higher-order terms in the expansion could be non-negligible. It
is also possible that Equation 7 is valid but asymptotic normality fails. For a
simple example of this last scenario, suppose the query is a single belief net
parameter that is degenerate: q(Θ) = Θc|f = 0. Suppose the prior distribution
for Θc|f is Be(a, b). (Use a = b = 1 for a flat prior). There is zero probability
that (C,F) = (c, f) so the posterior distribution will be Be(a, b+m) where m
is the number of samples with F= f . The posterior variance is given by Equa-
tion 7, an exact result here and not an approximation. A simple calculation
shows that, as m → ∞, the posterior distribution of q(Θ)/σ̂h|e is the Gamma
distribution with shape parameter a, mean

√
a, and variance 1. If a = 1, then

this Gamma distribution is the exponential distribution.

Comment#2: Why |σ̂2 − σ2| can be large when σ2 is large: Consider
two queries q1(Θ) and q2(Θ) with corresponding variances σ2

1 < σ2
2 . The larger

variance associated with q2 may arise from a combination of two factors. First,
the components of Θ relevant to q2 may be more variable than components
relevant to q1 — i.e., there may be some Θi terms where ∂q2(Θ)

∂Θi
is large, which

have large (co)variances. The linear approximation describes local behavior
of the function (here qi(·)) near its mean, so increased variation may pro-
duce a larger remainder term. Second, the first derivatives of q2 may tend to
be larger than those of q1. In practice, larger linear terms are often associ-
ated with larger quadratic terms; e.g., statistical variable selection methods
for polynomial models will seldom delete a linear term while retaining a cor-
responding quadratic term [Pei87]. Larger quadratic terms produce a larger
remainder term. Both arguments support the claim that approximations to
variance produced by the first-order Delta method can be less accurate when
the variance is larger. (We note, again, that in practice, even the largest of
these errors is still quite small.)

Proof of Theorem 3 The proof is by induction on the bucket ordering. The
basis is the first bucket b∅; it is trivial to compute the derivative function of its
output g∅ here, as it is the constant 1. To prove the inductive step, assume we
have computed the derivatives of all of functions in the first J buckets (i.e.,
we know ∂y

∂fi,k
for all i ∈ {∅, 1, . . . , J−1} and all k) and that Scheme(∂y

∂fi,k
) =

Scheme(fi,k), and now we now want to compute the derivatives for functions
fJ,k in bucket bJ . Recall that BuckElim used these values in forming fI,1 =

44

Elim(XJ , Join(fJ,1, · · · , fJ,k)) which appears in the earlier bI bucket.

⇐= Ordering for Step A (≡ BuckElim) ⇐=
=⇒ Ordering for Step B =⇒

b∅ · · · bI · · · bJ · · ·
fI,1(XI , . . .) · · · fJ,1(XJ , . . .)

fJ,2(XJ , . . .)
...

fJ,k(XJ , . . .)

(B.2)

To simplify notation, we will simply write f(x) for f(x|Scheme(f)
).

Now observe

∂y

∂fJ,`

= Elim(Z, Join(
∂y

∂fI,1
,

∂fI,1

∂fJ,`

)) (B.3)

where Z are the variables that are not in fJ,`; see Equation B.5 below. (The
Join here is just a trivial application of the chain rule — aka “backpropa-
gation” [RMt86].) As I < J , by the inductive assumption we can assume
that we have the first term ∂y

∂fI,1
, and that its arguments are Scheme(∂y

∂fI,1
) =

Scheme(fI,1). Moreover, as fI,1(x) = Elim(XJ , Join(fJ,1, · · · , fJ,k)) =
∑

xJ

∏

k fJ,k(x),
the second term within the Join of Equation B.3 is

∂fI,1

∂fJ,`

(x1..I, xJ)= Join({fJ,k | k 6= `}) =
∏

k 6=`

fJ,k(x1..I, xJ) (B.4)

is just the product of the other functions in the J th bucket [Van00], where
x1..I corresponds to the variables within fI,1.

The result of this computation,
∂fI,1

∂fJ,`
, will involve the variables in fI,1 as well

as XJ . It is joined with ∂y
∂fI,1

(Equation B.3), to produce a function with argu-

ments in Scheme(fI,1)∪ {XJ}. As ∂y
∂fJ,`

should depend on only Scheme(fJ,`),

the only remaining step is to marginalize the extra variables

Z = Scheme(fI,1) ∪ {XJ} − Scheme(fJ,`) ; (B.5)

this is done in second part of Equation 13. This also fulfills the second part of
the inductive step, as it insures that Scheme(∂y

∂J,`
) = Scheme(fJ,`).

Proof of Theorem 4 BuckElim+ needs to consider at most 2n functions,

45

as Step A (≡ BuckElim) starts with at most one function (CPtable) for each
of the n variables, then adds at most one new function each time a variable is
eliminated.

We therefore need only show that the cost of computing the derivative of
each of these functions is O(rw), where r is the largest domain of any of the
variables, and w is the tree-width. We will consider the general case, using the
notation from the Equation B.2, where fI,1 = Elim(XJ , Join(bXJ

)).

Combining Equations B.3 and B.4, we obtain

∂y

∂fJ,`

= Elim(Z, Join(
∂y

∂fI,1
, {fJ,k | k 6= `})) (B.6)

Now consider the variables involved in the join

Scheme(
∂y

∂fI,1

) = Scheme(fI,1)

Scheme(fJ,k)⊂ Scheme(fI,1) ∪ {XJ} ∀k

which means this entire computation will involve no more than 1+|Scheme(fI,1)|
variables, which is at most 1 + w, as |Scheme(fI,1)| is at most the tree-width
w.

Therefore joining the required tables in Equation B.6 requires O(rw+1) =
O(rw) time and space (as r is a constant). Of course, after the join com-
putation is done, the algorithm will then marginalize out the variables in Z
(Equation B.5) to produce a function (for the derivative) that has, at most,
w variables. The cost of marginalization is at most the cost of the join, and
so the overall complexity of computing a single derivative is O(rw).

Proof of Observation 5 As noted above, we need only consider the CP-
tables of nodes that are not d-separated from the query node H, which means
we need consider only this single H node. The variance σ̂2

h|e is therefore the
variance associated with this single Dirichlet-distributed variable, which is
σ2
H

= P(h) (1 − P(h))/(1 + mH). (Recall P(h) = q(Θ̂).) As H has no parents,
each of the n training instances contributes to one of its Dirichlet parameters.
As H is k-ary and we start with uniform priors, this means mH = k + n. (Note
we could also derive this value using Equation A.2, and then Equation A.1.)

Proof of Theorem 6 As we sweep over the vh|e(C|f) terms, we need to
consider three cases, depending on the query variable H: (i) H is C, (ii) H appears

46

in F, or (iii) neither.

Case (iii): If H 6= C and H 6∈ F, then vh|e(C|F = f) = 0. 13

Here, as the evidence variables E includes every variable except H, it includes
both C and all of F. To simplify notation, write E = {. . . , +c, +f , . . .} to
indicate the specific assignments used, where +f = [+f1, . . . , +fj] refers to
E’s assignment to all of C’s parents.

Notice vh|e(C| − f) = 0 whenever −f 6= +f :

P(c,−f , h | e) = P(c, F = −f , h | . . . , F = +f , . . .) = 0

Similarly P(c,−f | e) = 0, P(−f , h | e) = 0 and P(−f | e) = 0.

We therefore consider only F = +f . Here P(+f , h | e) = P(+f , h | . . . , +f , . . .) =
P(h | e) and P(+f | e) = 1, which we use to reduce the bottom line of Equa-
tion A.1:

[P(+f , h | e) − P(h | e) P(+f | e)]2 = [P(h | e) − P(h | e) × 1]2 = 0

Now consider the top part of Equation A.1, and observe we need only con-
sider the value of +c value of C within the summation. (For each −c 6= +c,
P(−c, +f , h | e) = P(−c, +f , h | . . . , +c, . . .) = 0.) As above, we have that
P(c, +f , h | e) = P(c, h | e) and P(c, +f | e) = P(c | e). Hence,

∑

c∈C

1

Θ̂c|+f

[P(c, +f , h | e) − P(h | e) P(c, +f | e)]2

= 1
Θ̂+c|+f

[P(+c, +f , h | e) − P(h | e) P(+c, +f | e)]2

= 1
Θ̂+c|+f

[P(h | e) − P(h | e) × 1]2 = 0

Case (i): If H = C, where H’s parents are M = {Mi}, then v+h|e(H| +

m) = P(+h | e)2

[

∑

h∈H

P(h | e)2

Θ̂h|+m

+
[1 − 2P(+h | e)]

Θ̂+h|+m

]

and v+h|e(H| − m) = 0

for −m 6= +m.

As argued above, this v+h|e(H|m) value is 0 when M = −m 6= +m (the value
used within e). When M = +m, we can again omit the M = m from the
various equations; again, this means the second line of Equation A.1 is 0.
Hence, as the value of the query variable h = +c,

13 Note this follows from the observation that this condition means H⊥C,F|E. We
include this case as it provides useful analysis and notation.

47

v+h|e(H| + m)=
∑

h∈H

1

Θ̂h|+m

[P(h, +m, +h | e) − P(+h | e) P(h, +m | e)]2

=
1

Θ̂+h|+m

[P(+h, +h | e) − P(+h | e) P(+h | e)]2

+
∑

h6=+h

1

Θ̂h|+m

[P(h, +h | e) − P(+h | e) P(h | e)]2

=
1

Θ̂+h|+m

[P(+h | e)[1 − P(+h | e)]]2 +
∑

h6=+h

1

Θ̂h|+m

[P(+h | e) P(h | e)]2

= P(+h | e)2

[1 − P(+h | e)]2

Θ̂+h|+m

+
∑

h6=+h

P(h | e)2

Θ̂h|+m

= P(+h | e)2

[

∑

h∈H

P(h | e)2

Θ̂h|+m

+
[1 − 2P(+h | e)]

Θ̂+h|+m

]

Case (ii): If H ∈ F, then write C’s parents as F = {H} ∪ U, and assume the
evidence E=e contains both U = +u and C = +c. Using the same arguments
as above, we know that vh|e(C|h,−u) = 0 for any −u 6= +u. We therefore
consider only U = +u, and can then reduce Equation A.1 as . . .

v+h|e(C|h, +u) =

∑

c∈C

1

Θ̂c|h,+u

[P(c, h, +u, +h | e) − P(+h | e) P(c, h, +u | e)]2

− [P(h, +u, +h | e) − P(+h | e) P(h, +u | e)]2

=

1

Θ̂+c|h,+u

[P(h, +h | e) − P(+h | e) P(h | e)]2

− [P(h, +h | e) − P(+h | e) P(h | e)]2

(This uses the fact that each term in the summation with c 6= +c is 0.)

If H = +h, this is

v+h|e(C| + h, +u) =

1

Θ̂+c|+h,+u

[P(+h | e) − P(+h | e) P(+h | e)]2

− [P(+h | e) − P(+h | e) P(+h | e)]2

= [P(+h | e)(1 − P(+h | e))]2
[

1
Θ̂+c|+h,+u

− 1
]

but if h′ 6= +h,

v+h|e(C|h′, +u) = [P(+h | e)P(h′ | e))]2
[

1
Θ̂+c|h′,+u

− 1
]

48

