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Abstract

With the advancements in functional capabilities of computing and com-

munication devices, there has been a widespread interest in research and im-

plementation of distributed (control and optimization) algorithms. These al-

gorithms frequently find themselves in applications such as distributed com-

putation, sensor estimation, and multi-vehicle/multi-agent coordination. In

particular, the continuous-time (CT) variants of these algorithms are studied

when physical entities (also referred to as agents), such as autonomous ve-

hicles, whose dynamics naturally evolve over continuous-time, are involved.

However, direct implementation of such CT variants necessitates continuous

information exchange which is seldom possible. Therefore, this thesis focuses

on investigating CT distributed algorithms that employ time- or event-based

strategies for discrete-time communication over networks.

We begin by designing event-based broadcast strategies. First, we con-

sider a CT nonlinear system that can be stabilized with a known static state-

feedback controller. We employ an emulation-based technique to implement

the known controller with intermittent state updates; these updates are gov-

erned by event-triggering conditions (or ETCs which are mathematical condi-

tions based on system variables) that dictate when the system can broadcast

its state to the controller. Subsequently, we extend the study to the case of

multi-agent systems (MASs) where the agents intermittently broadcast the in-

formation to their neighbors over a network. Depending on an agent’s ability
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or inability to sense states (or relative states) of fellow agents, we design two

different event-triggering mechanisms (ETMs) that help the agent in making

decisions over broadcasts. We demonstrate the effectiveness of the proposed

framework by offering two case studies on consensus of agents governed by

nonlinear dynamics.

In the aforementioned studies, the focus is on designing event-based broad-

cast strategies and, therefore, we have assumed that the states are broadcasted

without being affected by the network itself. However, in practice, these broad-

casts are often prone to several network-induced imperfections. In this thesis,

we also investigate aspects of two such imperfections, namely, quantized broad-

casts and transmission delays. In this regard, first, we study the problem of

consensus among nonlinear agents that broadcast quantized information upon

event occurrence. Second, we present a framework for distributed control of

nonlinear agents where the state broadcasts take place at pre-defined sam-

pling instants (namely, time-based broadcast strategies) and are susceptible

to transmission delays.

Finally, we consider a distributed optimization problem over a class of di-

rected networks where the agents are assigned private cost functions. The

agents employ CT accelerated gradient algorithm to asymptotically reach

global minima; the convergence of such an algorithm is first established. Sub-

sequently, the distributed control framework proposed earlier is adopted to

enable event-based broadcasting of local decision variables.

The effectiveness of the proposed methods in this thesis are demonstrated

through case studies, numerical examples and, in some cases, counter-examples.

Through these findings, we believe that CT distributed algorithms can be

digitally implemented with some ease while simultaneously conserving energy

and/or communication resources.
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Chapter 1

Introduction

In this chapter, we introduce research background on distributed control

and optimization algorithms and on networked control systems (NCSs). Sub-

sequently, we present a literature survey to summarize the recent develop-

ments in event-triggered and sampled-data distributed control and optimiza-

tion. Thereafter, we list the contributions of this thesis and subsequently

provide its outline.

1.1 Research Background

Distributed algorithms have a long history in the field of computer science,

particularly, concerning aspects of distributed computation. The central idea

here is to breakdown a problem into several smaller ones and appropriately dis-

tribute them over a network of processors (also referred to as agents or nodes)

in order to potentially reduce the computational burden demanded by the

problem, see [56], [3]. Often, in such scenarios, the processors ought to achieve

consensus upon some quantities (e.g., on decision variables in distributed op-

timization, see [80]) while being mindful of their own dynamics. The notion

of consensus among dynamical systems was formally studied in [89], [71] and

it plays an important role in continuous-time (CT) distributed control and

optimization algorithms which form the crux of this thesis.
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1.1.1 Distributed Algorithms

Typically, CT distributed algorithms find themselves in cyber-physical

applications involving agents (such as unmanned aerial/underwater vehicles,

robots, and power grids) whose dynamics naturally evolve in continuous-time,

see [15, 41, 87] and the reference therein. These algorithms are often centered

around various consensus-based problems such as average consensus in [71,83],

average-max-min and finite-time consensus in [13], output consensus in [46],

bipartite consensus in [118] and consensus on general functions in [14]. They

focus on a plethora of multi-agent coordination problems such as vehicular for-

mations in [47], attitude (namely, orientation) alignment in [82], multi-agent

rendezvous in [85], flocking in [95], and coupled oscillators in [40], see survey

paper [84]. Most of these problems have also been investigated under the

scenarios where

� the nature of agent dynamics is either linear or nonlinear, see [51,70,116],

� the networks are either undirected, directed, or switching, see [71, 116],

and

� in the cases where the systems are prone to imperfections such as quan-

tizations, delays, input saturation and others, see [8, 33,48,50,71].

A number of problems in multi-agent coordination can also be posed as

distributed optimization problems (DOPs), for instance, a simple multi-agent

rendezvous problem can be posed as:

min
∑
i

|xi − xi(0)|2 subject to xi = xj, ∀i, j, (1.1)

where xi denotes the global position of agent i and xi(0) denotes the agent’s

initial position. More generally, a DOP is given as follows:

min
∑
i

fi(xi) subject to xi = xj, ∀i, j, (1.2)

where fi(·) corresponds to a convex and private local objective function at

agent i and the agents across the network eventually agree upon the decision

2



variable xi. The DOP in (1.2) can be further generalized to include set and/or

inequality constraints.

Algorithms addressing DOPs can be loosely classified based on the tech-

niques they adopt: a) gradient-based approaches in [65, 80], b) alternating

direction method of multipliers (ADMM) in [5], c) primal-dual approaches

in [126], d) gradient- and Hessian-based approaches in [102], and others,

see the survey article in [109]. Most of these algorithms (namely, the ones

in [65,80,102,126]) adopt consensus-based approaches and address the DOPs

through the discrete-time framework, i.e., the agents in the network run the

algorithms iteratively and, often, synchronously.

Over the last decade, motivated by applications involving physical systems,

researchers have studied (some of) the aforementioned algorithms in the CT

framework. Among these, the gradient-based ones have received considerable

attention owing to their low computational costs (which stem from computing

gradients) and, more importantly, their flexibility in readily adapting to CT

frameworks, see [29, 41,45,108,110].

1.1.2 Networked Control Systems (NCSs)

With the advancements in communication technologies, it may be con-

venient, and, in some cases necessary (for e.g., in remote implementation of

protocols or in applications involving distributed data compilations), to imple-

ment algorithms over wireless networks. In such cases, the data transmissions

over the network must happen intermittently, owing to finite communication

resources, contrary to the case of continuous availability of information in tra-

ditional control systems. This notion is pursued under the umbrella of NCSs

(see, [39,121]) and sampled-data control (SDC) systems (see, [28]). The meth-

ods under these studies can be broadly classified into two categories, namely,

time-triggered/sampled-data approaches and event-triggered approaches, see

Fig. 1.1 for an illustration. These approaches are often prone to network

related issues commonly referred to as network-induced imperfections (NIPs)

3



Figure 1.1: An illustration showing broadcasts (depicted in red arrows) across
timeline for both sampled-data approaches and event-triggered approaches.

in the literature.

Time-Triggered/Sampled-Data Approaches

In this approach, the broadcasts and/or the controller updates are sched-

uled to happen at pre-defined sampling instants that could either be periodic

or aperiodic and synchronous or asynchronous (in the context of distributed

systems or multi-channel networks). Often, the main objective is to com-

pute the upper bounds on sampling intervals such that the closed-loop system

meets appropriate notions of stability. This approach is traditionally studied

under the title of SDC systems, see the survey article in [28] and the references

therein.

Event-Triggered Approaches

Contrary to the time-triggered approach, in this approach the broadcasting

and/or the controller updates take place upon occurrence of an event1. The

challenge in this approach is, often, two fold: a) to design the appropriate

ETCs, and b) to ensure that the system is not prone to Zeno behavior2, while

simultaneously guaranteeing that the closed-loop system meets appropriate

notions of stability, see [94], the survey article in [21] and the references therein.

These approaches are naturally aperiodic.

1An event is said to have occurred when a mathematical condition involving system
variables (known as event-triggering condition (ETC)) is satisfied. This ETC could be
monitored either continuously or intermittently.

2In the context of event-triggered systems, Zeno behavior is defined as the occurrence of
infinite events in a finite interval of time, see [42].
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Network-Induced Imperfections

While networked implementation of control and optimization algorithms

can be advantageous, often, it comes along with several NIPs such as: a)

varying sampling/broadcasting intervals that govern the periodicity of data

broadcasts and/or controller updates, b) transmission delays which account

for processing times and the time interval between broadcast instants and

corresponding arrival instants, c) quantized broadcasts which are essential to

communication owing to finite resources/bandwidth, d) data/packet dropouts

in cases where receivers fail to pick up broadcasted data, and others, see [38]. A

comprehensive study concerning these aspects can be found in survey articles

such as [21, 120].

1.2 Literature Review

In this thesis, we focus on developing a framework for networked implemen-

tation of CT distributed algorithms. In this section, we present a literature

review on the recent developments in networked control and optimization.

1.2.1 Distributed Control

In this subsection, we present literature review associated with the fol-

lowing aspects of networked implementation of distributed control protocols

studied in this thesis:

� sampled-data and/or event-triggered implementation,

– periodic event-triggered control

� NIPs, namely,

– quantized broadcasts, and

– transmission delays.

5



Sampled-Data and/or Event-Triggered Implementation

One way to digitally implement control systems is to employ an emulation-

based technique, namely, to first design a CT controller for a CT system and

subsequently discretize the controller such that the sampling period (namely,

the time interval between two consecutive samplings/broadcasts/updates) is

sufficiently small. The design of these sampling instants (or the choice of

sampling period) is central to the study of SDC systems where the existence of

an upper-bound of allowable sampling periods, called the maximum allowable

sampling period (MASP), has been shown for linear systems in [10] and for

nonlinear systems in [43,69]. In the context of distributed systems, this notion

often translates to how frequently broadcasts must occur in order to ensure

appropriate notions of stability, for instance, see consensus algorithms via

sampled-data broadcasts in [86].

A possible drawback of SDC systems is that the controllers/transmitters

could provide needless inputs/broadcasts to the system even when the system

performance is satisfactory. In most cases, this results in unnecessary energy

consumption and actuator wear. Compared to the traditional approach, event-

triggered control has shown potential in significantly reducing the number of

samplings and/or controller updates (only in the cases where Zeno behavior

is avoided, see [42]), see [23,30,59].

The central aspect of event-triggered control is designing the ETC (or,

more generally, the event-triggering mechanism (ETM)) that makes decisions

on sampling instants, signal transmissions and controller updates. In the lit-

erature, the ETC is broadly classified into two categories depending on how

frequently it is evaluated, i.e., whether it is monitored continuously or checked

periodically (or intermittently) at pre-defined sampling instants; the former

notion is referred to as continuous event-triggered control (or, simply, event-

triggered control), see, for instance, [1,30,94,101], whereas the later is termed

as periodic event-triggered control, see [4, 17, 37, 100], even when the ETC is

checked intermittently (and not necessarily periodically). By its construction,
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Figure 1.2: An illustration of the model-based control system adopted by
agents operating over a communication network G.

a periodic event-triggered controller avoids the problem of Zeno behavior and,

to a certain degree, offers freedom in choosing sampling instants at which the

ETC is evaluated. In the context of distributed systems, this notion facili-

tates both synchronous and asynchronous broadcasts alike, thereby helping in

reducing network congestion even when the ETM is rendered redundant. In

this thesis, we focus our attention on systems that employ either sampled-data

approaches and/or periodic event-triggered approaches.

Periodic Event-Triggered Control in Systems and MASs

For linear systems, periodic event-triggered control has been studied via

the following three approaches: 1) impulsive system approach, 2) perturbed

linear systems approach, and 3) piece-wise linear systems approach, see [35],

and dynamic periodic event-triggered controllers were also discussed in [4].

For nonlinear systems, one way to construct such controller schemes is to

start from an existing CT event-triggered controller that stabilizes the system,

see [76]. Alternatively, an emulation-based technique is employed to design a

periodic event-triggered controller in [99]. For the case of nonlinear systems,

both [76,99] employ static ETMs.

For MASs with linear agent dynamics, reference [60] evaluates the ETCs

periodically; however, the agents in the network also broadcast their state

information at these instants whereas the local controllers are updated only

upon event occurrences. Unlike [60], studies in [16,32,61,125] make decisions
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on broadcasting information based on the ETCs which are evaluated period-

ically. For MASs with nonlinear agent dynamics, there are few results which

evaluate the ETCs periodically, see [18,90,115]. Reference [90] employed zero-

order-hold (ZOH) on the incoming broadcasts; while this may work for systems

with bounded nonlinearities (as remarked in [90]), it may not work for systems

with Lipschitz or one-sided Lipschitz nonlinearities. Such a concern can be

handled by employing model-based propagation of the broadcasted states, see

reference in [115] where the authors studied the consensus problem in the case

of Lipschitz nonlinear agent dynamics. Our work in [18] (included in Chapter

4 of this thesis) also employed model-based propagation of broadcasts but of-

fered a more general framework for distributed control; an illustration of this

framework is depicted in Fig. 1.2. Consequently, we addressed the consen-

sus problems over nonlinear agents (with Lipschitz and one-sided Lipschitz

dynamics) as case studies of the proposed framework.

NIP: Quantized Broadcasts

Information exchange in NCSs, in practice, necessitates that the data,

prior to broadcasting, undergoes some sort of quantization to accommodate

for the limited (or finite) network bandwidth available. NCSs with quantized

transmissions have been studied using both static and dynamic quantizers, for

instance, see [36,79,81,105,127] and the references therein. Solely employing

static uniform quantizers in NCSs for transmission offers (some) control over

the size of transmitted data (namely, by adjusting the quantization gain);

however, it often leads to bounded convergence, see [2]. Dynamic quantiz-

ers, on the other hand, utilize a zoom parameter to dynamically adjust the

quantization gain; in such cases, the precision of data transmitted may not be

adjusted but asymptotic convergence can be achieved, see [6, 36,105].

In the context of MASs, early studies that adopted quantized information

in CT consensus problems employed tools from the theory of discontinuous

differential equations and nonsmooth analysis for linear agents in [8, 19] and,

more recently, for nonlinear agents in [103]. Subsequently, problems involving
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quantized information exchange were studied both in the context of sampled-

data approaches and event-triggered approaches where the information was,

typically, quantized prior to broadcasting; in such cases, researchers could

circumvent the difficulties associated with the discontinuous nature of quan-

tizers, see [27,49,57,115,123] and the references therein. Studies which solely

employed static quantizers prior to broadcasting achieved practical consen-

sus, see [123, 124]. On the other hand, studies such as [49, 115] employed

static (uniform) quantizers along with encoding and decoding schemes; to-

gether, these mechanisms ensured asymptotic convergence. In the last few

years, there have also been studies on event-triggered consensus algorithms

that employ dynamic quantizers, see [57] for linear agent dynamics and [92]

for nonlinear agent dynamics.

With the exception of [115], studies such as [27, 49, 57, 92, 123] on event-

triggered distributed control either involved continuous monitoring of ETCs

or addressed problems involving agents with linear dynamics.

NIP: Transmission Delays

In practice, data broadcasts suffer from transmission delays; often these

delay estimates can also account for processing times taken up by the sys-

tem’s receiver/transmitter hardware. In this context, a large pool of liter-

ature in NCSs primarily focuses on systems with linear dynamics, see sur-

vey articles [39] and [121]. For CT linear systems, studies have modeled the

NCSs in terms of impulsive delay-differential equations, see [25, 64]. For CT

nonlinear systems, studies such as [114] and [7] extended the approach of

delay-differential equations to handle nonlinearities, and studies such as [74]

and [66] employed the concept of approximate discrete-time models. Refer-

ence [38] comprehensively expanded the seminal work in [69] to address NCSs

that suffer from some of the aforementioned NIPs.

In the case of MASs, early studies such as [71,72] addressed the problem of

transmission delays in consensus of single-integrator systems. Studies employ-

ing sampled-data approaches addressed consensus problems for linear agent
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dynamics in [22,93,107] and for nonlinear agent dynamics in [9, 20,34]. Most

of these studies (namely, [9,20,22,34,93,107]) employ the ZOH approach, i.e.,

they utilize the broadcasted states directly in their control protocols. However,

early studies on model-based control have shown potential in stretching the

upper bound on the sampling period, see [63,73]. For linear NCSs, the authors

in [63] studied model-based control of systems prone to transmission delays.

For nonlinear NCSs prone to transmission delays, approximate discrete-time

models were employed to construct a model-based scheme for SDC of the sys-

tem, see [55]. Recently, in [112], this problem for nonlinear NCSs was studied

employing tools from hybrid dynamical systems.

For MASs with nonlinear agent dynamics, studies in [18, 58, 104, 106, 115]

have employed model-based propagation of the broadcasted information for

SDC of linear and nonlinear agent dynamics. The distinguishing feature in

studies such as [18, 115] (and [54]), apart from employing model-based con-

trollers, is that the MASP of the MAS can be computed explicitly unlike in

studies such as [58,104,106] where it is numerically solved using linear matrix

inequalities (LMIs). In [54], the authors discussed the problem of intercon-

nected systems where the (linear) dynamics of a subsystem depends on its

fellow subsystems whereas the model-based control protocol depends, solely,

on the state of the concerned subsystem. As a result, the transmission de-

lay between the subsystem and the controller only affected the modeling on

the concerned subsystem and not its neighboring subsystems. In general, the

same is not true for MASs where the delays associated with an agent’s broad-

cast affects models at all of its neighbors. The authors in [115] addressed

the case of quantized information exchange among Lipschitz nonlinear agents,

but did not discuss the aspect of transmission delays that might affect these

exchanges. On the other hand, [90] studied nonlinear MASs in the presence of

transmission delays; however, the study employed the ZOH approach on the

incoming broadcasts. Furthermore, as remarked in [90], the dynamics of the

agents are restricted to bounded nonlinearities. Contrary to [90], our work
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in [18] (included in this thesis) offered a general framework for distributed

control using model-based propagation of state broadcasts; however, it did

not study MASs that may be prone to transmission delays.

1.2.2 Event-Triggered Distributed Optimization

In this thesis, we address the DOP described in (1.2) by designing a CT

distributed accelerated gradient algorithm (AGA); we adopt the term accel-

erated gradient flows (AGFs) to refer to CT AGAs. In this section, we briefly

present a literature review associated with AGAs, AGFs, and event-triggered

optimization.

AGAs (also referred to as heavy-ball algorithms), first introduced by Polyak

in the seminal paper in [75], injects the concept of acceleration, via a momen-

tum term, in traditional gradient descent algorithms. A similar algorithm

was later introduced by Nesterov in [67]. These algorithms have been shown

to achieve global optimal convergence rates for quadratic cost functions and

convex (and strongly convex) functions, respectively. Most of the algorithms

(and their variations) are studied in the discrete-time framework. Over the last

decade, authors in [91] studied Nesterov algorithms from the eye of dynamical

systems providing a CT limit, a differential equation, to the discrete-time Nes-

terov method. This work has rekindled interest in studying CT accelerated

gradient methods in the search of faster and robust algorithms as well as their

extensions in a distributed architecture, see [119], [110].

In the recent past, several papers have studied AGFs in the distributed

framework, see [110, 117, 122]. In [122], the authors extended the approach

in [29] to second-order MASs. However, [122] required the nodes to communi-

cate both states and their derivatives. In [110], exponential convergence with

an upper bound on decay rates was established that relied on system parame-

ters through several intermediate coefficients. This makes it difficult to attain

arbitrary (fast) convergence rates that can be achieved for AGFs as shown

in [117]. This property can be quite useful, particularly, in multi-agent coor-
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dination problems. Furthermore, all these studies (namely, [110,117,119,122])

consider the underlying communication topology to be a connected (undi-

rected) graph. Very recently, the case of AGFs for directed networks was

studied, see [108]. However, the authors in [108] used a push-pull approach

which required exchange of several intermediate states; this is not necessary

if the digraph is weight-balanced as shown in [45, 113]. In other words, if a

digraph is weight-balanced, then one can save on communication resources by

broadcasting (relatively) smaller data vectors.

Similar to the case of distributed control algorithms, for networked imple-

mentation of CT optimization algorithms, almost all existing studies employed

sampled-data broadcast protocols or continuous event-triggered broadcast pro-

tocols, see [45,97,110] and the references therein. For sampled-data broadcast

protocols in [45,97], the MASP that separates two consecutive broadcasts was

established; and for event-triggered broadcast protocols in [45, 97, 110], the

absence of Zeno behavior was demonstrated. To the best of our knowledge,

intermittent monitoring of the ETCs has not been studied yet in the context

of distributed optimization.

1.3 Thesis Contributions

The contributions of this thesis that distinguish it from related literature

are summarized as follows:

� First, we study the problem of designing dynamic periodic ETMs for

CT nonlinear systems which can be stabilized via CT state-feedback

controllers. We model the closed-loop system as a hybrid dynamical

system and, as a consequence of the stability analysis, obtain the MASP.

� Second, we extend the study on nonlinear systems to nonlinear MASs

and develop a framework for distributed control via dynamic ETMs that

make decisions on state broadcasting. In this study, we utilize model-

based propagations of the broadcasted states and design two dynamic
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ETMs based on an agent’s ability (or inability) to sense states of fel-

low agents in the network. Furthermore, we discuss two case studies on

the problem of consensus amongst (Lipschitz and one-sided Lipschitz)

nonlinear agents that interact over both undirected and directed com-

munication networks.

� Third, we investigate a case of distributed control under a specific type of

NIP, namely, quantized broadcasts. We address the problem of consen-

sus among nonlinear agents that communicate via quantized broadcasts.

For this, we adopt the framework developed for distributed control via

dynamic ETMs. Additionally, we consider that each agent employs an

encoder scheme (prior to broadcasting information) and decoder schemes

(to process received information) in order to achieve asymptotic consen-

sus.

� Fourth, we consider the problem of distributed control subject to yet

another NIP, namely, transmission delays. In this study, we propose

a methodology for SDC of nonlinear MASs which employ model-based

propagation of the broadcasted states. We demonstrate the effective-

ness of the proposed framework by addressing the consensus problem on

Lipschitz nonlinear agents.

� Finally, we consider a DOP over a weight-balanced directed network

where the agents employ AGF. In this study, we first establish sufficient

conditions on gains in the AGF to ensure the convergence of the CT

algorithm. Subsequently, we design a dynamic ETM that checks for

events intermittently and makes decision on broadcast instants.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents

concepts from hybrid dynamical systems that are employed throughout this

thesis. In Chapter 3, the problem of dynamic event-triggered control of a
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nonlinear system is studied. Chapter 4 extends the work on single-agent

systems to MASs and offers a framework for distributed control via event-

triggered broadcasts. Furthermore, the chapter also presents two case studies

on consensus problems that demonstrate the effectiveness of the proposed

framework. In Chapter 5, an event-triggered consensus of nonlinear agents

broadcasting quantized information is studied. Chapter 6 investigates the

problem of sampled-data distributed control in the presence of transmission

delays when model-based propagation of broadcasts is employed. In Chapter

7, the proposed distributed control framework is employed to study event-

triggered implementation of CT AGAs. Finally, Chapter 8 makes concluding

remarks on the thesis and offers some potential directions for future research.
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Chapter 2

Preliminaries on Hybrid
Dynamical Systems

In this thesis, we employ sampled-data based approach to design broad-

cast protocols (either time-triggered or event-triggered) for implementing CT

algorithms over a network. Activities such as sampling and broadcasting take

place at discrete-time instants (namely, sampling and/or event-triggering in-

stants) and allow for instantaneous changes in control (or event mechanism)

protocols. These instantaneous changes are referred to as jumps and can be

described by difference equations. On the other hand, between any two con-

secutive sampling instants, the algorithms operate in CT and are typically

characterized by differential equations; this behavior is termed as flow. This

hybrid nature (namely, combination of flows and jumps across time) of NCSs

falls innately under the umbrella of hybrid dynamical systems (or simply re-

ferred to as hybrid systems).

One of the consequences of employing hybrid systems approach to model

NCSs is that the system’s behavior is diligently analyzed, both, during flow

and at jumps. This is in contrast to traditional approaches where, for CT sys-

tems, one is largely concerned about its behavior during flow (in other words,

often, it is adequate if one ensures that the changes caused by jumps do not

disrupt the system’s stability or, alternatively, result in rise in its Lyapunov

function). However, unlike traditional approaches, a close examination of the

system’s behavior at jumps offers an opportunity to potentially improve the
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design of various dynamic ETMs employed throughout this thesis, see Section

3.2 in Chapter 3 for a remark on this. Another instance demonstrating the

advantage of adopting hybrid systems approach compared to its traditional

counterpart is highlighted in Remark 5.1 which comments on the conserva-

tiveness of MASP estimates computed in [115] (using traditional approach)

compared to our work in Chapter 5.

Since we adopt hybrid systems framework throughout this thesis, in this

chapter, we briefly present some mathematical preliminaries and concepts on

hybrid dynamical systems from the textbook in [31] and the articles in [68,69].

The rest of this chapter is organized as follows. Section 2.1 introduces the idea

of hybrid dynamical systems followed by Section 2.2 which discusses a class of

systems that offer special properties on solutions to these systems. Section 2.3

presents the concept of solutions for hybrid systems and Section 2.4 defines

some of the stability notions used in this thesis.

2.1 Introduction

A hybrid system, denoted by the quartet H = (C,F,D,G), consists of two

aspects of dynamical systems, namely, flows and jumps, and is expressed by

the following set of inclusions:

ẋ(t, j) ∈ F (x(t, j)), x ∈ C, (2.1a)

x(t, j + 1) ∈ G(x(t, j)), x ∈ D. (2.1b)

Here, the differential inclusion in (2.1a) describes the set of vector fields (given

by flow map F (x)) that the state x can flow along when it is part of the flow

set C. Likewise, the difference inclusion in (2.1b) describes the set of states

(given by jump map G(x)) that x could, instantaneously, take when it is in

the jump set D. As a result, the trajectory of x complying with (2.1) is

typically parameterized by the pair (t, j) where t denotes the time (during

flow) and j denotes the jump instant. From (2.1b) one can infer that the

jump phenomenon takes place instantaneously, i.e., time t remains unchanged
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before and after a jump. In this context, we use the shorthand notation x+

to describe jump state x(t, j + 1) in (2.1b).

2.2 Nominal Well-Posedness

Throughout this thesis, we study various hybrid dynamical systems that

are nominally well-posed. This notion for a hybrid system, vaguely speaking,

offers properties such as local boundedness of sets of solutions, the dependence

of these solutions on initial conditions, and also offers numerous consequences

on asymptotic stability and robustness of the hybrid system. Therefore, in this

subsection, we first present (easily verifiable) conditions that ensure that the

hybrid system H is nominally well-posed. For reasons of brevity, we refrain

from presenting involved technical definitions of nominal well-posedness and

refer the interested reader to Chapter 6 in [31].

Definition 2.1. (Outer semicontinuous) A set-valued mapping M : Rm ⇒ Rn

is outer semicontinuous at x ∈ Rm if for every sequence of points xi convergent

to x and any convergent sequence of points yi ∈ M(xi), one has y ∈ M(x),

where lim
i→∞

yi = y. The mapping M is outer semicontinuous if it is outer

semicontinuous at each x ∈ Rm.

Let domA denote the domain of mapping A. The following conditions are

sufficient (as stated in Lemma 2.1) to ensure that H is nominally well-posed.

Assumption 2.1. (Hybrid basic conditions)

1. flow domain C and jump domain D are closed subsets of Rn;

2. flow map F : Rn ⇒ Rn is outer semicontinuous and locally bounded

relative to C, C ⊂ domF , and F (x) is convex for every x ∈ C;

3. jump map G : Rn ⇒ Rn is outer semicontinuous and locally bounded

relative to D and D ⊂ domG.

Lemma 2.1. (Nominal well-posedness) If the hybrid system H satisfies As-

sumption 2.1, then it is nominally well-posed.
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2.3 Concept of Solutions

In this section, we formally define the concept of solution for hybrid sys-

tems that are nominally well-posed (and refer the interested reader to Propo-

sition 6.10 in [31] for existence of solutions). We also provide a short note on

the types of solutions restricting ourselves to those which are relevant to the

context of this thesis.

Definition 2.2. (Hybrid time domain) A compact hybrid time domain is de-

fined by the subset T = ∪J−1
j=0 ([tj, tj+1], j) ⊂ R≥0 × Z≥0 where j ∈ Z≥0 and

0 = t0 ≤ t1 · · · ≤ tJ . The set T is a hybrid time domain if ∀(T, J) ∈ T,

T ∩ ([0, T ]× {0, · · · , J}) is a compact hybrid domain.

Definition 2.3. (Hybrid arc) A hybrid arc is defined as a function S : T → Rn

if T is a hybrid time domain and if ∀j ∈ Z≥0, the function t → S(t, j) is locally

absolutely continuous on the interval Ij = {t|(t, j) ∈ T}.

Definition 2.4. (Solution of H) A hybrid arc S, whose domain is denoted by

domS, is a solution to the hybrid system H if S(0, 0) ∈ C ∪D, and

� ∀j ∈ Z≥0 such that Ij := {t|(t, j) ∈ domS},{
S(t, j) ∈ C,

Ṡ(t, j) = F (S(t, j))
for almost all t ∈ Ij

� ∀(t, j) ∈ domS such that (t, j + 1) ∈ domS,{
S(t, j) ∈ D,

S(t, j + 1) ∈ G(S(t, j))

The solutions to H are classified based on its hybrid time domain. A

solution S is

� complete if domS is unbounded, i.e., if supt T+ supj T = ∞, where T is

the hybrid time domain defined above;

� maximal if there does not exist another solution S̄ to H such that

domS ⊂ domS̄ and S(t, j) = S̄(t, j) for all (t, j) ∈ domS;
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� eventually discrete if T = supt domS < ∞ and domS ∩ ({T} × Z≥0)

contains at least two points;

� instantaneously Zeno if it is complete and eventually discrete;

� genuinely Zeno if it is complete but not eventually discrete.

In this thesis, we implicitly assume that are no finite escape times during flow

of the constructed hybrid system model H; this along with Assumption 2.1

ensures complete solutions of H, see Proposition 6.10 in [31].

2.4 Stability

In this section, we present definitions of input-to-state stability and asymp-

totic stability that are borrowed from [68]. Consider the following hybrid

system: {
ẋ = f(t, x, w), t ∈ [sk, sk+1]

x+ = h(x(sk)), t ∈ {sk}
(2.2)

where {sk|k ∈ N} is monotonically increasing sequence of time such that

s0 = 0, x ∈ Rn and w ∈ Rm are the state and external input, respectively,

of the system. Assume that functions f, h are such that the hybrid system in

(2.2) is nominally well-posed.

Definition 2.5. (Input-to-state stable) Let γ ∈ K and β ∈ KL be given.

The system (2.2) is input-to-state stable (ISS) from w to x if for all t0 ≥ 0,

x0 ∈ Rn, w ∈ L∞ and each corresponding solution x(·), we have that

|x(t)| ≤ β(|x0|, t− t0) + γ(∥w∥L∞), ∀t ∈ [t0, t0 + T ) (2.3)

where [t0, t0 + T ) is the maximal interval of definition of x(·).

Definition 2.6. (Uniform global asymptotic stability) Let β ∈ KL be given.

The system in (2.2), with w ≡ 0, is uniformly globally asymptotically stable is

for all x0 ∈ Rn and all corresponding solutions x(·), we have

|x(t, t0, x0)| ≤ β(|x0|, t− t0), ∀t ≥ t0 ≥ 0. (2.4)
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Chapter 3

Dynamic Event-Triggered
Control of Nonlinear Systems1

In this chapter, we present two methods for the design of dynamic periodic

event-triggered control of nonlinear systems via state feedback. These methods

differ in their construction of the dynamic ETMs; one requires continuous

availability of states of the system and the other relaxes this assumption. As

a part of the design methodology, we adopt an emulation-based technique, i.e.,

we assume the knowledge of an existing CT static state-feedback controller

that stabilizes the nonlinear system. Subsequently, an auxiliary variable is

defined that facilitates the formulation of dynamic ETM which is evaluated at

specific sampling instants. Considering the event-based controller updation,

the resultant closed-loop system is modeled as a hybrid system. The dynamic

ETM and an upper bound on the sampling period, called a maximum allowable

sampling period (MASP), are both obtained as a consequence of stability

analysis.

The rest of this chapter is organized as follows. Section 3.1 presents pre-

liminaries and notations that are used throughout this thesis. The description

and formulation of the problem are addressed in Section 3.2. Section 3.3 dis-

cusses two methods of dynamic PETC schemes providing stability analysis in

each case. An illustrative example discussing the two methods is provided in

1The material in this chapter has been published as: Mani H. Dhullipalla, Hao Yu and
Tongwen Chen. Dynamic periodic event-triggered control for nonlinear plants with state
feedback. IFAC PapersOnLine, 53(2):2814-2819, 2020.
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Section 3.4 followed by concluding remarks in Section 3.5.

3.1 Preliminaries

Denote R to be set of real numbers, Z to be the set of integers then

R≥0 = [0,∞) and Z≥0 = {0, 1, 2, . . . }. Let |x| be the Euclidean norm of

an n-dimensional vector x ∈ Rn. A continuous function α : [0, a) → R≥0

is said to be of class K if it is strictly increasing and α(0) = 0. Further, α

is said to be of class K∞ if α(r) → ∞ as r → ∞. A continuous function

β : [0, a) × R≥0 → R≥0 is said to be of class KL if for a fixed r ∈ R≥0,

β(·, r) belongs to class K and for a fixed s ∈ [0, a), β(s, ·) decreases to

zero. A function f is locally Lipschitz if it satisfies the Lipschitz condition:

|f(x)− f(y)| ≤ L|x− y| for some scalar L in the neighborhood of every point

in the domain X ⊂ Rn. A function f is locally one-sided Lipschitz if it satisfies

the condition: (x − y)T(f(x) − f(y)) ≤ Los|x − y|2 for some scalar Los ∈ R

in the neighborhood of every point in the domain X . The function is globally

Lipschitz (or one-sided Lipschitz) if the domain X = Rn. The Clarke deriva-

tive, in [12], is defined as follows: for a locally Lipschitz function U : Rn → R

and a vector v ∈ Rn, U◦(x, v) := lim suph→0+,y→x
U(y+hv)−U(y)

h
. Furthermore,

we have U◦(x, v) ≤ lim supy→x⟨∇U(y), v⟩ where ⟨·, ·⟩ is the inner product and

∇U(·) is the classical gradient, see [68,96]. For a C1 function U(·), the Clarke

derivative U◦(x, v) reduces to the standard directional derivative ⟨∇U(x), v⟩.

This definition is useful to treat locally Lipschitz functions which may not

differentiable everywhere.

The following lemma is used to show asymptotic stability via Lyapunov

analysis that is discussed in Section 3.3.

Lemma 3.1 ( [12,53]). Consider two functions U1 : Rn → R and U2 : Rn → R

that have well-defined Clarke derivatives for x ∈ Rn and v ∈ Rn. Intro-

duce three sets A := {x : U1(x) > U2(x)},B := {x : U1(x) < U2(x)},

Ω := {x : U1(x) = U2(x)}. Then for any v ∈ Rn, the function U(x) :=

max{U1(x), U2(x)} satisfies U◦(x; v) = U◦
1 (x; v) for x ∈ A, U◦(x; v) = U◦

2 (x; v)
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for x ∈ B, and U◦(x; v) ≤ max{U◦
1 (x; v), U

◦
2 (x; v)} for x ∈ Ω.

3.2 Problem Formulation

Consider the following nonlinear system model

ẋ = f(x, u), (3.1)

where x ∈ Rn is the state and u ∈ Rm is the control input. The function

f : Rn × Rm → Rn is assumed to be continuous. It is assumed that the full

state vector x is measured, and there exists a static state-feedback controller

stabilizing the system in (3.1):

u = κ(x), (3.2)

where κ : Rm → Rn is the controller gain function. Due to the limited

communication resources, we intend to implement the controller in (3.2) (over

a network) in an event-triggered manner. To facilitate this, we define two time

instants, namely, sampling instants and event-triggering instants.

First, we define a time sequence {sk}∞k=0, used to check for event occur-

rences, such that

ε ≤ sk+1 − sk ≤ T, (3.3)

for all k ∈ Z≥0. The upper bound T > 0 is to be designed, and the lower

bound ε ∈ (0, T ] between the two consecutive sampling instants, sk and sk+1, is

decided by the hardware constraints and ensures instantaneous Zeno solutions

of the hybrid system (defined in (3.7)) are avoided. Note that the condition on

sampling instants in (3.3) facilitates both periodic and aperiodic monitoring of

event occurrences (namely, evaluating ETC); however, we continue to call this

approach periodic ETM to keep in line with the terminology used in articles

such as [98,99]. Furthermore, let {tl}∞l=0 ⊂ {sk}∞k=0 be a subsequence denoting

the event-triggering instants whose construction is discussed shortly in (3.6).

When an event occurs at time tl according to some pre-designed ETC, the

state x(tl) will be broadcasted to the controller node that updates the control
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Figure 3.1: Sequence of sampling instants {sk} and event-triggering instants
{tl} (where red arrows at {tl} depict broadcasting). Note that the sampling
sequence {sk} is not necessarily periodic and that {tl} ⊆ {sk}.

signal. Denote x̂(t) := x(tl), t ∈ [tl, tl+1), as the latest broadcasted state. The

periodic event-triggered state-feedback controller is then given by

u = κ(x̂). (3.4)

In this work, we will implement a dynamic periodic ETM, which involves

the following piecewise continuous auxiliary variable η ∈ R≥0 governed by
η̇ = fη(η, x, e), t ∈ [sk, sk+1);

η(t+) = gs(η, x, e), t ∈ {sk} \ {tl};
η(t+) = gt(η, x, e), t ∈ {tl};

(3.5)

where e = x̂ − x is the broadcast error with e(tl) = 0, ∀l ∈ Z≥0 upon event

occurrence. The function fη is continuous on R≥0 × Rn × Rn and is such

that fη(0, x, e) ≥ 0 for all x, e ∈ Rn. The functions gs and gt, defined on

R≥0 × Rn × Rn, are continuous and continuous non-negative, respectively.

The considered ETC, evaluated at every sampling instant {sk}, is as follows:

tl+1 = min{t > tl | t ∈ {sk}∞k=0, gs(η, x, e) < 0} (3.6)

which generates the subsequence {tk}∞k=0 of event-triggering instants, see Fig.

3.1 for an illustration. Fig. 3.2 depicts the trajectory of auxiliary variable η(t)

described by the dynamics in (3.5). The occurrence of event at sk+1 is also

shown in Fig. 3.2 and the value of η+ at sk+1 after the jump can be designed

such that η+ = gt ≥ η; this notion can be observed from the ETMs designed

in both Theorems 3.1 and 3.2. Without loss of generality, we assume that the

event is triggered at the initial instant, i.e., e(0) = 0 and t0 = s0 = 0.
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Figure 3.2: Hybrid dynamics of η and event occurrence at sk+1.

Let τ ∈ R≥0 keep track of the time elapsed since the last sampling instant

with the dynamics: {
τ̇ = 1, when τ ∈ [0, T ];

τ+ = 0, when τ ∈ [ε, T ].

We thus model the closed-loop system as the following hybrid system:{
q̇ = F (q), q ∈ C,

q+ ∈ G(q), q ∈ D,
(3.7)

where the augmented state q := (x, e, τ, η), the sets

C := {q ∈ R2n+2 | τ ∈ [0, T ], η ∈ R≥0},

D := {q ∈ R2n+2 | τ ∈ [ε, T ], η ∈ R≥0}, (3.8)

and the function F (q) and the set-valued mapping G(q) are given by

F (q) =


f(x, κ(x+ e))
−f(x, κ(x+ e))

1
fc(η, x, e)

 , and

G(q) =


G1, gs(·) > 0;

G2, gs(·) < 0;

{G1, G2} , gs(·) = 0,

(3.9)
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respectively, where

G1 =


x
e
0

gs(η, x, e)

 , G2 =


x
0
0

gt(η, x, e)

 .

Here, the flow set C is such that the system flows between any two sampling

instants, say during the interval [sk, sk+1], and jumps at the sampling instants,

i.e., at both {sk, sk+1}. It is important to note that the flow map F (q) and

the jump map G(q) in (3.9), are continuous and outer semi-continuous respec-

tively. This construction in addition to C and D being closed subsets ensures

nominal well-posedness of the hybrid system in (3.7), see Chapter 2 or the

textbook in [31].

The main objective in this chapter is to design the upper bound T and

the functions fη, gs, gt in (3.5) such that the closed-loop system in (3.7) is

asymptotically stable (see Chapter 2 for the definition), i.e., there exists a

KL-class function β such that for any initial state x(0, 0),

|φ(t, j)| ≤ β(|x(0, 0)|, t+ j),

for all t ∈ R≥0 and j ∈ Z≥0 with φ := (x, e).

3.3 Main Results

In this section, we will provide two kinds of dynamic periodic ETMs based

on different assumptions on the system. In the first one, the ETM is supposed

to read the state continuously (while the event is still checked for at discrete

sampling instants, sk). For the second kind, an ISS-Lyapunov function with

a linear decay rate will be used explicitly in the event-triggering condition.

3.3.1 Method I

To design the upper bound T and dynamics of η, we start by introducing

two assumptions, similar to those in [99], made on the hybrid system in (3.7).
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Assumption 3.1. For the closed-loop system in (3.7), there exist locally Lips-

chitz functions W : Rn → R≥0 and V : Rn → R≥0, αW , ᾱW , αV , ᾱV , αV ∈ K∞,

a non-negative function H : R → R≥0, scalars L ≥ 0 and γ > 0 such that the

following holds:

1. For any e ∈ Rn, αW (|e|) ≤ W (e) ≤ ᾱW (|e|),

2. For any x ∈ Rn and almost all e ∈ Rn,

⟨∇W (e),−f(x, κ(x+ e))⟩ ≤ LW (e) +H(x);

3. For any x ∈ Rn, αV (|x|) ≤ V (x) ≤ ᾱV (|x|),

4. For almost all x ∈ Rn and any e ∈ Rn,

⟨∇V (x), f(x, κ(x+ e))⟩ ≤ − αV (|x|) + γ2W 2(|e|)−H2(x).

Assumption 3.2. There exists a constant lα > 0 such that ᾱV (|s|) ≤ lαH
2(s)

for all s ∈ Rn.

Items 3 and 4 in Assumption 3.1 imply that the system ẋ = f(x, κ(x+ e))

is input-to-state stable (ISS) with respect to W (e), and V (x) is the corre-

sponding ISS-Lyapunov function.

Subsequently, to design the upper bound T , we introduce the following

concept of maximum allowable sampling period (MASP). For a given λ ∈

(0, 1), define T0(λ) as

T0(λ) =


1

Lµr
arctan r(1−λ)

2γλ
Lµ(1+λ)

+λ2+1
λ+1

, γ > Lµ,

1−λ
Lµ(1+λ)

, γ = Lµ,
1

Lµr
arctanh r(1−λ)

2 γλ
Lµ(1+λ)

+λ2+1
λ+1

, γ < Lµ,

(3.10)

where r :=

√∣∣∣( γ
Lµ
)2 − 1

∣∣∣ and Lµ := L + µ with an arbitrarily small constant

µ > 0. When λ and µ go to zero, T0(λ) would become the MASP, see [69]. By

choosing an appropriate value for the design parameter λ, the upper bound

T = T0(λ) is determined. Furthermore, we have the following lemma of T0(λ).
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Lemma 3.2 ( [69]). Let θ : R≥0 → R be the solution to

θ̇(s) =

{
−2Lµθ(s)− γ(θ2(s) + 1), s ∈ [0, T0(λ)];

0, s > T0(λ),

with θ(0) = 1
λ
. Then θ(s) is monotonically decreasing and θ(s) = λ for s ≥

T0(λ).

The following theorem provides a method to design the ETM in (3.5-3.6).

Theorem 3.1. Under Assumptions 3.1–3.2, if the functions in (3.5) are given

as

fη(η, x, e) =− βηη + σαV (|x|),

gs(η, x, e) =η +max{ρV (x), γλW 2(e)} −max{ρV (x),
1

λ
γW 2(e)},

gt(η, x, e) =η +max{ρV (x), γλW 2(e)} − ρV (x),

(3.11)

where βη > 0, σ ∈ (0, 1), and ρ satisfies ργlα ≤ λ, then the closed-loop system

in (3.7) is asymptotically stable.

Proof. Consider the following Lyapunov function

U(q) = V (x) + max{γθ(τ)W 2(e), ρV (x)}+ η, (3.12)

where θ(·) is defined in Lemma 3.2.

Analysis during flow:

We start by considering stability properties on the flow set, i.e., between two

sampling instants, and divide the analysis into three sub-cases depending on

the resultant Lyapunov function U(q).

Case I: When ρV (x) > γθW 2(e), one has

γ2W 2(e) <
γρV (x)

θ
≤ γρV (x)

λ
≤ V (x)

lα
,

which leads to

U◦ = V̇ + ρV̇ + fη(η, x, e)

≤ (1 + ρ)
(
− αV (|x|) +

V (x)

lα
−H2(x)

)
+ fη(η, x, e)

≤ − (1 + ρ− σ)αV (|x|)− βηη,

(3.13)
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where the first inequality uses Assumptions 3.1 and 3.2.

Case II: When ρV (x) < γθW 2(e) then

U◦ = V̇ + 2γθW (e)Ẇ (e) + γθ̇W 2(e) + fη(η, x, e)

≤ − αV (|x|) + γ2W 2(e)−H2(e) + fη(η, x, e)

+ 2γθW (e)(LW (e) +H(x))− γW 2(e)[2Lµθ + γ(θ2 + 1)]

≤ − 2µλγW 2(e)− (1− σ)αV (|x|)− βηη.

(3.14)

Case III: Finally, if ρV (x) = γθW 2(e), then from Lemma 3.1 it follows that

U◦ ≤ max{−ραV (|x|),−2µλγW 2(e)} − (1− σ)αV (|x|)− βηη. (3.15)

Then, based on the definition of U and Lemma 3.1, (3.13-3.14) imply that

there exists a positive function Γ : R → R≥0 such that

⟨∇U(q), F (q)⟩ ≤ −Γ(U(q)), q ∈ C, (3.16)

where Γ(s) is decided by ραV (s), βηs and max{2µλγs, (1− σ)αV (s)}.

Analysis at jumps:

Next, we examine stability of the system on jump sets, i.e., at sampling in-

stants. The analysis here is divided into two cases depending on the triggering

of an event which is decided by the sign of gs(η, x, e), as defined in (3.9).

Case I: When gs(η, x, e) ≥ 0, we have

U(G(q))− U(q) = V (x) + max{ρV (x), γ
1

λ
W 2(e)}

− V (x)−max{ρV (x), γθW 2(e)}+ gs(η, x, e)− η

= max{ρV (x), γλW 2(e)} −max{ρV (x), γθW 2(e)}

≤ 0,

(3.17)

where the last inequality is due to θ(τ) ≥ λ when τ ≤ T0(λ).

Case II: When gs(η, x, e) < 0, then we have

U(G(q))− U(q) = (1 + ρ)V (x) + gt(η, x, e)− V (x)

−max{ρV (x), γθW 2(e)} − η

≤ 0.

(3.18)
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Combining (3.17-3.18) leads to

U(G(q))− U(q) ≤ 0, (3.19)

for all q ∈ D. Therefore, the proof is completed following a similar line in [69]

based on (3.16) and (3.19). ✷

Remark 3.1. (Trade-off between sampling period and event occurrence) A

static version of the triggering condition in Theorem 3.1 can be given as

tk+1 = min{t ∈ {si}, t > tk|γW 2(e) > λρV (x)}, (3.20)

which has the similar form of that in [99]. By selecting ρ = λ
γlα

, one can

see that there is a tradeoff between the sampling periods and the inter-event

steps (the number of sampling instants between two consecutive events), that

is, a smaller λ would increase T0(λ) but would make it easier for the ETC in

Theorem 3.1 (or the static ETC in (3.20)) to be satisfied.

Remark 3.2. (On dynamic ETM) By introducing the nonnegative variable η,

the dynamic triggering condition in Theorem 3.1 can discard some transmis-

sions even when γW 2(e) > λρV (x). Thus, the capacity of dynamic triggering

condition to increase η plays a key role in prolonging the inter-event times.

From (3.11), fη(η, x, e) can provide some increment when x is large, while

gt(η, x, e) deals with the case of large e. Note that η cannot increase by the

jump with gs(η, x, e).

The main drawback of (3.11) is requiring the ETM to continuously read

the state measurement and conduct the integral operation. A direct solution

is to modify fc(η, x, e) as

fη(η, x, e) = −βηη, (3.21)

where σ is set to 0. However, such an fη would impair the capacity to increase

η. The main problem of Method I is that the x-related part of U in (3.12)

cannot offer any decrease when the system jumps. Thus, to solve this problem,

some new Lyapunov function could be studied.
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3.3.2 Method II

In this subsection, we will provide another method to design the dynamic

ETM which only needs to read the state x at the discrete sampling instants.

To this end, we revise Assumption 3.1 into the following form.

Assumption 3.3. Suppose that Assumption 3.1 holds with αV (|x|) = αvV (x).

Assumption 3.3 means that the Lyapunov function V converges exponen-

tially in the absence of measurement error e. Then based on this assumption,

we introduce the following theorem.

Theorem 3.2. Under Assumptions 3.2 and 3.3, if the functions in (3.5) are

given as

fη(η, x, e) =− βηη,

gs(η, x, e) =η +max{eaτρV (x), γλW 2(e)} −max{ρV (x),
1

λ
γW 2(e)},

gt(η, x, e) =η +max{eaτρV (x), γλW 2(e)} − ρV (x),

(3.22)

where βη > 0 and design parameters ρ, a, b satisfy

a =
αvγlα
λ

, b = eaT0 , ρ =
λ

γlαb
, (3.23)

then the closed-loop system in (3.7) is asymptotically stable.

Proof. Consider the following Lyapunov function:

O(q) = V (x) + max{γθ(τ)W 2(e), eaτρV (x)}+ η, (3.24)

where θ(τ) is governed by Lemma 3.2. Similar to the analysis in Method I,

we first study the behavior of O in flow and jump domains separately.

Analysis during flow:

Case I: When eaτρV (x) > γθW 2(e), it follows that

γ2W 2(e) <
eaτγρV (x)

θ
≤ eaτV (x)

lαb
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where b = λ
γlαρ

. Furthermore, we have

O◦ =V̇ + aeaτρV + eaτρV̇ + fη(η, x, e)

≤− αvV (x) + γ2W 2(e)−H2(x) + aeaτρV − βηη

+ eaτρ(−αvV (x) + γ2W 2(e)−H2(x)). (3.25)

According to (3.23), a is designed so that αv ≥ aeaτρ and eaτ ≤ b since

τ ≤ T0(λ). Then, (3.25) implies

O◦ =− αvρe
aτV (x) + (1 + eaτρ)(γ2W 2(e)−H2(x))− βηη

≤− αvρe
aτV (x)− βηη + (1 + eaτρ)(

eaτ

b
− 1)H2(x)

≤− αvρe
aτV (x)− βηη. (3.26)

Case II: When eaτρV (x) < γθW 2(e), the derivation is similar to (3.14) and

results in

O◦ ≤− 2µλγW 2(e)− αvV (x)− βηη. (3.27)

Case III: When eaτρV (x) = γθW 2(e) from Lemma 3.1 it follows

O◦ ≤max{−αvρe
aτV (x),−2µλγW 2(e)− αvV (x)} − βηη. (3.28)

Analysis at jumps:

Next, consider analysis at jumps that occur at sampling instants. Again,

similar to Method I, we have the following two cases depending on event

occurrence.

Case I: When gs(η, x, e) ≥ 0, we have

O(G(q))−O(q) = V (x) + max{ρV (x), γ
1

λ
W 2(e)}

− V (x)−max{eaτρV (x), γθW 2(e)}

+ gs(η, x, e)− η

≤ 0.

(3.29)

Case II: When gs(η, x, e) < 0, it follows that

O(G(q))−O(q) = (1 + ρ)V (x) + gt(η, x, e)− V (x)

−max{eaτρV (x), γθW 2(e)} − η

≤ 0.

(3.30)
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Therefore, the proof is completed by combining (3.26-3.30). ✷

Remark 3.3. To implement the dynamic triggering condition in Theorem 3.2,

at each sampling instant sk, k ∈ Z≥1, the event trigger needs to record the time

sk−sk−1 and calculate ea(sk−sk−1). In the special case that the event is detected

periodically, both of them are constants that can be determined offline.

Remark 3.4. Compared to Theorem 3.1, the method in this subsection (namely,

Method II) can offer some extra capacity to increase η at the jump. Before the

static condition γW 2(e) > λρV (x) is violated, both gs(η, x, e) and gt(η, x, e)

must enlarge the value of η. This feature assists in improving the inter-event

time and avoids continuous reading of state measurements between two suc-

cessive sampling instants.

Remark 3.5. (On shortcomings of Method II) The main drawback of Method

II is using the linear decay rate αv and its corresponding ISS-Lyapunov func-

tion explicitly. Although [78] showed that it is not restrictive to modify the

ISS-Lyapunov function in Assumption 3.1 to satisfy Assumption 3.3, note

that if the ISS-Lyapunov function V (x) for Method II is derived by relaxing

H(x) used in Assumption 3.1 for Method I then this directly affects the gain

γ associated with the error e. This increased γ shrinks ρ in (3.23) and so the

event-triggering condition is easily violated compared to that of Method I. This

is demonstrated by the difference in average numbers of triggers between Table

3.1 and Table 3.2 in the numerical example in Section 3.4.

Remark 3.6. (For linear systems) If the system in (3.1) is linear, then

Assumption 3.3 is not necessary, since it is trivial to find a quadratic ISS-

Lyapunov function with a linear decay rate in Assumption 3.1. In this case,

Method II might generate less events than Method I with fη in (3.21). Thus,

one may prefer to use Method II when the nonlinearity of the system is weak

and no state information is available to the ETM continuously.
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3.4 Numerical Example

As an illustrative example, the following scalar nonlinear control system is

considered

ẋ = −x3 + 0.5x2 + u, u = −2x. (3.31)

The corresponding event-triggered controller takes the form u = −2x̂. For the

system in (3.31), the corresponding Lyapunov functions and relevant quanti-

ties for each method are as follows:

Method I (M.I):

Assumption 3.1 is satisfied with Lyapunov functions V = x4

2
+ 2x2 and

W = |e|, and quantities H(x) = |x3− 0.5x2+2x|, L = 2, αv(|x|) = 0.047x6−

0.061x4+0.1892x2, γ = 2.049. Assumption 3.2 is satisfied by choosing lα = 1.

The ETM evaluates the sign of

gs(η, x, e) = η +max{0.34V (x), 1.73|e|2}

−max{0.34V (x), 2.62|e|2}.
(3.32)

Method II (M.II):

In order to satisfy Assumption 3.3, H(x) in Assumption 3.1 is considered to

be of the formH(x) = |px3−0.5x2+rx|, p > 1, r > 2. The resultant Lyapunov

function satisfying the assumption is V = px4

2
+ rx2 with p = 1.97, r = 3.87

and αv is 0.08. Additionally for Assumption 3.1, we also have W = |e|, L = 2,

and γ = 26.79. lα in Assumption 3.2 is chosen to be 1. The ETM that

evaluates the sign of gs(η, x, e), given by

gs(η, x, e) = η +max{0.003V (x), 2.12|e|2}

−max{7.7 · 10−4V (x), 337.3|e|2}.
(3.33)

In Fig. 3.3a, the upper bound T = T0(λ) is plotted as a function of

design parameter λ for each method. Stabilization of the system using both

methods is depicted through the state trajectories in Fig. 3.3b. As stated in

Remark 3.5 of Section 3.3, the increase in γ directly affects the performance
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Figure 3.3: Plots depicting MASP curves and state trajectories of Method I
and Method II.

(namely, the average number of triggers) of the method, as seen in (3.32),

(3.33). Notice that the gain γ in M.II is substantially higher than that in

M.I and the difference in no. of triggers of M.I in Table 3.1 and those of

M.II in Table 3.2 demonstrate its effect. We compare M.I and its variant M.I

(σ = 0) with those of [99] and [77] in Table 3.1. The performance measure

is computed over 100 simulations of 20 secs each with a sampling period τ =

T0(λ) = 0.05; the initial condition x(0) for each simulation is randomly picked

from an interval [−3, 3]. The primary focus here is to evaluate and compare

the ETMs, so the ETMs in [99] and [77] are adapted so as to fit the specific

example in (3.31). From Table 3.1 it can be inferred that a dynamic periodic

event-triggered controller can perform better than a static periodic event-

triggered controller (namely, [99]) and a continuous event-triggered controller

(namely, [77]) for nonlinear systems.

Subsequently, to make a fair comparison amongst the two methods dis-

cussed in this chapter, we first remove the effect of gain γ. This is done by

adopting the Lyapunov functions and related quantities of M.II to M.I as

mod. M.I (σ ̸= 0) and mod. M.I (σ = 0). Table 3.2 provides performance

comparison of the ETMs of the two methods.
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M.I M.I (σ = 0) [99] [77]

14.9 13.0 66.52 15.79

Table 3.1: Average no. of triggers over 100 simulations in 20 secs

M.II mod. M.I (σ ̸= 0) mod. M.I (σ = 0)

360.58 343.04 348.22

Table 3.2: Average no. of triggers over 100 simulations in 20 secs

3.5 Conclusion

We proposed two methods to design dynamic periodic ETM for nonlinear

systems using state feedback and provide an upper bound on the sampling

period that is dependent on a user defined parameter. For each of the meth-

ods, the design results in a closed-loop hybrid system which is asymptotically

stable. Since the ETC is evaluated only at sampling instants, the scheme

is easily implementable on digital platforms compared to its continuous-time

counterparts. A comparative study on an illustrative example supports the

view that the dynamic ETM is capable of reducing the average number of

events triggered compared to its static counterparts.
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Chapter 4

Dynamic Event-Triggered
Control of Nonlinear MASs1

Dynamic ETMs have shown potential in further reducing the number of

events in comparison to their static counterparts while delivering similar sys-

tem performance. In this chapter, we provide a framework to design dynamic

periodic event-triggered controllers for MASs with nonlinear dynamics. A

preliminary version of this work on single-agent systems was studied in the

previous chapter, also in [17]. The design methodology adopts an emulation-

based technique that assumes the existence of a continuous-time state feedback

controller that stabilizes the MAS. The dynamic ETMs are constructed based

on an agent’s ability or inability to sense states (or relative states) of fellow

agents in the network. To illustrate the design methodologies, two case studies

on nonlinear MASs (with Lipschitz and one-sided Lipschitz), interacting over

undirected and directed communication networks, are presented. Finally, the

results of the case studies are demonstrated via numerical examples.

The rest of this chapter is organized as follows. Section 4.1 presents pre-

liminaries on algebraic graph theory. The problem is formulated in Section 4.2

followed by the main results which are discussed in Section 4.3. Section 4.4

presents case studies on consensus amongst nonlinear MASs. An illustrative

example is simulated in Section 4.5 followed by concluding remarks in Section

1The material in this chapter has been published as: Mani H. Dhullipalla, Hao Yu and
Tongwen Chen. A framework for distributed control via dynamic periodic event-triggering
mechanisms. Automatica, 146:110548, 2022.
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4.6.

4.1 Preliminaries

In addition to preliminaries introduced in Section 3.1 of Chapter 3, in this

section we introduce concepts from algebraic graph theory, see [62] for more

information.

A graph (often also referred to as network) is an ordered pair G = (V , E)

where index set V = {1, 2, . . . , N} denotes the set of vertices (agents) and

E ⊆ V × V denotes the set of edges (communication links) connecting the

vertices (agents). If the set of edges are directed, then G is a directed graph.

A directed edge is an ordered pair (i, j) ∈ E where the vertex i is the tail

of the edge, while vertex j is its head. If the set of edges are such that

(i, j) ∈ E =⇒ (j, i) ∈ E , ∀i, j ∈ V , then G is an undirected graph. Let

N i
in denote the in-neighbor set of vertex i consisting of all vertices j ∈ V such

that (j, i) ∈ E and N̄ i
in = {i}

⋃
N i

in denote the set containing indices of agent

i and its in-neighbors. Define a nonnegative matrix A = [aij]N×N called the

weighted adjacency matrix where aij > 0 ⇐⇒ (i, j) ∈ E ; otherwise aij =

0. For undirected graph, the weighted adjacency matrix A is symmetrical.

The weighted in-degree of a vertex is di =
∑N

j=1 aji and degree matrix of G

denoted by D = diag([di, . . . , dN ]). The graph Laplacian is then defined as

L = D − A. For a connected undirected graph, L has exactly one eigenvalue

equal to zero and corresponding eigenvector to be 1, i.e., L1 = 0 where 1 is a

vector of appropriate dimension with all entries being equal to 1. All the other

eigenvalues are positive and can be arranged as follows: 0 < Λ2 ≤ . . .ΛM ,

where ΛM denotes the largest eigenvalue of L. Here, Λ2 is known as the

algebraic connectivity of G. For a strongly connected directed graph, the

general algebraic connectivity is defined as:

aξ(L) = min
xTξ=0,x̸=0

xTL̂x

xTΞx

where L̂ = (ΞL + LTΞ)/2, Ξ = diag(ξ), ξ = [ξ1, . . . , ξN ]
T such that ξi > 0, ∀i
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and
∑

i∈V ξi = 1, see [116].

4.2 Problem Formulation

Consider a MAS with N agents interacting over an established broadcast-

ing network G = (V , E). Let each agent in the network have the following

dynamics:

ẋi = fi(x, ui), ∀i ∈ V , (4.1)

where i denotes the agent index, xi ∈ Rn is the local state of agent i, x =

[xT
1 · · · xT

N ]
T ∈ RnN is the state vector consisting of all agent states and

ui ∈ Rm is the control input. It is assumed that functions fi : RnN × Rm →

Rn, ∀i ∈ V , are continuous and that each agent can broadcast its full state xi

to its neighbors in G. With the availability of neighbor states, it is assumed

that a static, distributed state-feedback controller ui, given by

ui = κ(xN̄ i
in
), ∀i ∈ V ,

stabilizes the MAS in (4.1). Here, xN̄ i
in
:= (Āi ⊗ In)x where diagonal matrix

Āi = diag({aj|aj = 1, ∀j ∈ N̄ i
in; aj = 0, ∀j /∈ N̄ i

in}).

In an effort to reduce the consumption of communication and energy re-

sources of the overall MAS, a periodic event-triggered broadcasting strategy is

implemented. For this, we define an event-verifying (sampling) time sequence

{sik}∞k=0 for each agent i such that

εi ≤ sik+1 − sik ≤ T i, ∀k ∈ Z≥0, ∀i ∈ V , (4.2)

where positive constant εi is such that εi ≤ T i and T i is the upper bound that

is to be designed. Note that positive εi, ∀i ∈ V , ensure: i) that instantaneous

Zeno solutions2 of the hybrid system, defined shortly in (4.8), are avoided

(see [69] for a remark on this), and ii) in the context of event-triggered systems,

2A solution x of (2.1) is instantaneous Zeno if it is complete (namely, domx is unbounded)
and eventually discrete (namely, T = supt domx < ∞ and domx ∩ ({T} × Z≥0) contains at
least two points), see Chapter 2 of this thesis or textbook in [31] for details.
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this implies that Zeno behavior3 is avoided. Furthermore, εi, in practice, re-

flects the smallest interval between two consecutive broadcasts that hardware

devices can achieve. Here, the largest value that T i can take while ensuring

closed-loop stability of a dynamical system is known as the MASP, see [69]

and [43] for more on MASP of sampled-data nonlinear systems. However, for

the overall network, we are interested in mini T
i which would be the MASP

of the MAS; this suggests that any choice of T ∈ (0,mini T
i], amongst the

agents, would result in asymptotic stability of the MAS.

Next, we define the event-triggering sequence for agent i, denoted by

{til}∞l=0, to be a subsequence of {sik}∞k=0. The construction of this subsequence

depends on the event-triggering condition which will be discussed shortly.

When an event is triggered on agent i, it broadcasts its current state to its

neighbors over G. Let x̂i(t
i
l) denote the broadcasted state at triggering instant

til. Each agent i ∈ V , adopts a model-based approach, like discussed in [26],

to evaluate x̂j(t), ∀j ∈ N̄ i
in, as follows:

˙̂xj = Υ(x̂j), t ∈ [tjl , t
j
l+1), (4.3)

with x̂j(t
j
l ) = xj(t

j
l ) as its initial state, where Υ : Rn → Rn is considered to be

continuous function. For notational convenience, we use the same model Υ(·)

across all agents to propagate broadcast states in the network. For instance,

Υ(·) = 0 yields a ZOH model in all the agents. However, the methodologies,

discussed in Section 4.3, can adopt agent specific models (i.e., ˙̂xi
j = Υi(x̂

i
j))

and agent-and-neighbor specific models (i.e., ˙̂xi
j = Υij(x̂

i
j)). Since every agent

in the network uses the same mapping to model the evolution of broadcasted

states, they all have the same model-based estimate of neighbors’ states. Let

x̂(t) = [x̂T
1 (t) · · · x̂T

N(t)]
T ∈ RnN denote the broadcasted state vector at any

time t and x̂N̄ i
in
:= (Āi ⊗ In)x̂ denote all the model-based estimates available

to agent i at time t. Then, the periodic event-triggered controller at any time

3Occurrence of infinite events in finite time is called Zeno behavior. This phenomenon
in systems is undesirable because it is not physically realizable and does not aid in saving
resources.
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t is given by

ui = κ(x̂N̄ i
in
), ∀i ∈ V . (4.4)

Agents in G, in addition to broadcast channels, may have active sensing

capabilities; i.e., when agents can, intermittently, sense states (or relative

states) of their fellow agents using onboard sensors. If available, using this

(additional) information aids in improving the performance of the ETM. In

this context, we define the index set N i
k as the set of indices of agents in G

whose states (or relative states) are accessible to i at sik and the state xN i
k
=

(Ai,k ⊗ In)x where diagonal matrix Ai,k = diag({aj|aj = 1, ∀j ∈ N i
k; aj =

0, ∀j /∈ N i
k}).

In this chapter, a dynamic periodic ETM is implemented by introducing

a non-negative auxiliary variable ηi ∈ R≥0, ∀i ∈ V . The dynamics of ηi is

described using hybrid system framework as follows:

η̇i = f i
η(ηi, x̂N̄ i

in
), t ∈ [sik, s

i
k+1), (4.5a)

η+i = gis(ηi, ei, xN i
k
), t ∈ {sik} \ {til}, (4.5b)

η+i = git(ηi, ei, xN i
k
), t ∈ {til}, (4.5c)

where ei = x̂i − xi is the broadcast error. For all i ∈ V , the initial condition

ηi,0 = ηi(s
i
0) is a design parameter that is chosen to be a non-negative scalar.

The function f i
η is continuous on R≥0×RnN , is such that f i

η(0, ·) ≥ 0, and that

any solution (say Sηi(t, ηi,0, x̂N̄ i
in
)) to the differential equation η̇i = f i

η(ηi, x̂N̄ i
in
),

for any given bounded x̂N̄ i
in
and for any given non-negative initial state ηi,0, is

complete (i.e., Sηi(t, ηi,0, x̂N̄ i
in
) is defined for all time t ∈ [0,∞)). Furthermore,

gis : R≥0 × Rn × RnN → R is a continuous function and git : R≥0 × Rn ×

RnN → R≥0 is a continuous non-negative function. The dynamic periodic

event-triggering condition is then defined as

tik+1 = {t > tik|t ∈ {sik}∞k=0, g
i
s(·) < 0}, ∀i ∈ V . (4.6)

Intuitively, ηi in (5.10a) accumulates the effect of x̂N̄ i
in
over the interval [sik, s

i
k+1).

Following this, at sik+1, the condition in (4.6) is evaluated which, essentially,
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compares the effect of ηi and xN i
k
, when available, against that of rising ei.

This comparison is judged by the sign of gis. If g
i
s > 0, then the ηi takes up this

value, i.e., ηi = gis; else, ηi = git and the agent state is broadcasted resetting

ei = 0. In this context, we also note that the case when gis = 0 is handled,

slightly, differently when the hybrid dynamics of MAS is defined in (4.8) (see

discussion following (4.10)). Furthermore, in Appendix A.1.1, we present an

argument to show that ηi ≥ 0, ∀i ∈ V , under (mild) conditions imposed on

to-be-designed functions f i
η, g

i
s, and git.

To aid in the design of event-triggering condition, each agent i tracks the

time elapsed since the last event-verifying instant using the variable τi. Its

dynamics is given as: {
τ̇i = 1, when τi ∈ [0, T i]

τ+i = 0, when τi ∈ [εi, T i].
(4.7)

At every sik, the subsequent event-verifying instant sik+1 is pre-determined

such that the inequalities in (4.2) hold. Say ∆i
k = sik+1 − sik. When τi reaches

∆i
k, a jump takes place on agent i, i.e., the event-triggering condition in (4.6)

is evaluated. Here, we note that at time t = sik+1, fellow agents (namely,

{j|j ̸= i, j ∈ V}), in the network may (if t ∈ {sjk}∞k=0) or may not (if t /∈

{sjk}∞k=0) experience jumps. This notion is reflected in the definition of jump

set D, corresponding to the overall MAS defined shortly in (4.9), as a union

of subsets.

By combining the MAS dynamics in (4.1), the dynamics of broadcasted

state in (4.3), the periodic event-triggered controller in (4.4), the dynamics

of ETM in (4.6) and the dynamics of elapsed time in (4.7), the closed-loop

system of the MAS can be modeled using the hybrid systems framework as

follows: {
q̇ = F (q), q ∈ C;

q+ ∈ G(q), q ∈ D,
(4.8)

where q := (x, e, x̂, τ, η) is the augmented state, e := [eT
1 · · · eT

N ]
T ∈ RnN , τ :=

[τ1 · · · τN ]T ∈ [0, T 1]× · · · × [0, TN ], η := [η1 · · · ηN ]T ∈ RN
≥0, the flow set C
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and the jump set D are defined as

C = R3nN × [0, T 1]× · · · × [0, TN ]× RN
≥0,

D =
N⋃
i=1

{
R3nN × [0, T 1]× · · · × [εi, T i]︸ ︷︷ ︸

jump interval for i

× · · · × [0, TN ]× RN
≥0

}
, (4.9)

respectively. F (q) and G(q) in (4.8) are as follows:

F (q) =
[
fT (1⊗Υ− f)T (1⊗Υ)T 1 fT

η

]T
,

G(q) =
N⋃
i=1

Gi(q) such that

Gi(q) :=



{G1

i }, gis > 0,

{G2
i }, gis < 0,

{G1
i , G

2
i }, gis = 0,

τi ∈ [εi, T i],

ϕ τi /∈ [εi, T i],

(4.10)

where ϕ is a null set,

G1
i :=

[
xT eT x̂T (Ii1)

T (Iiη + ḡis)
T
]T
,

G2
i :=

[
xT ((Ii ⊗ In)e)T (x̂− ((IN − Ii)⊗ In)e)T (Ii1)

T (Iiη + ḡit)
T
]T
,

f := [fT
1 · · · fT

N ]
T ∈ RnN , fη := [f 1

η · · · fN
η ]T ∈ RN , Ii := diag({1, .., 0, .., 1})

with 0 at the i-th place, ḡis := [0 · · · gis · · · 0]T, ḡit := [0 · · · git · · · 0]T, and 1, and

0 are vectors of ones and zeros of appropriate dimensions, respectively. Here,

we note that although x̂ is determined by the pair (x, e), its dynamics has

been included in (4.8) because it is used to construct the ETMs.

It can be inferred from the definition of flow and jump sets in (4.9) that

the augmented state q flows along F (q) when every agent in the network flows

and jumps if at least one agent in the network jumps. We also note that when

gis = 0, agent i can either choose to broadcast state (i.e., opt for G2
i ) or avoid it

(i.e., opt for G1
i ). This construction makes the set-valued mapping G(q) outer

semi-continuous. Additionally, the function F (q) is continuous and the sets

C, D in (4.9) are constructed to be closed subsets; together, these properties

on (C,F,D,G) ensure nominal well-posedness of the hybrid system in (4.8),

see [31].
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Figure 4.1: Nature of broadcasts between agent i and agent j which employ
ETMs. On the two timelines, the black vertical ticks show sampling instants
{sik} or {sjk′} and the red arrows highlight the broadcast/triggered instants
{til} or {tjl′}.

Remark 4.1. (On sampling sequences) First, we note that although the ETM

discussed is called periodic ETM, the sampling sequences, as in (4.2), can be

both aperiodic and asynchronous thus broadening the scope of this approach.

Next, once the upper bound T i in (4.2) is determined, each agent in the net-

work, at every sampling instant sik, has the flexibility to independently and

arbitrarily choose τ i = sik+1 − sik within the range [εi, T i]. In other words, this

choice of τ i at every sik determines the subsequent duration of flow and jump

instant for the agents. Assuming all agents are triggered, simultaneously, at

the start (namely, si0 = sj0, ∀i, j ∈ V), if τ i across all agents at every sam-

pling instant is the same, then this results in a synchronous protocol (namely,

sik = sjk = sk, ∀i, j ∈ V , ∀k ∈ Z≥0). In other words, in a synchronous proto-

col the ETM on every agent in the network is evaluated at the same instant,

namely, sk. Further, if sk = k · T where positive constant T < min∀i T
i, then

the protocol would also be periodic. On the contrary, if τ i for an agent differs

from others in the network, which can sometimes be caused due to drifting

of local clocks, then this results in an asynchronous protocol (i.e, the ETM
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is evaluated asynchronously). The hybrid systems framework adopted in this

work can address both the scenarios described, see the illustration in Fig. 4.1.

The main objective in this work is to design dynamic ETMs, governed by

the functions f i
η, gis, git in (4.5), and establish MASP of the MAS, namely,

mini T
i such that the closed-loop hybrid systems model in (4.8) is asymptoti-

cally stable.

4.3 Main Results

In this section, we design two dynamic ETMs on the basis of agent’s ca-

pability in sensing state (or relative state) information of other agents in the

network. We consider the following two scenarios.

1. Broadcasting: agents solely depend on broadcast states and communi-

cate over established network G, e.g., power networks.

2. Active sensing: in addition to broadcasting, agents can also obtain states

(or relative states) of fellow agents in the network through onboard sen-

sors, e.g., sensing relative distances of nearest neighbors amongst a pla-

toon of vehicles.

4.3.1 Broadcasting

In this subsection, we consider that the agents in G can only broadcast

state information, which implies that the signal xN i
k
in (4.5) is not accessible

at each event-verifying instant {sik}. The focus is to design the ETM with

the intention that only local information is used during the event-verifying

instants {sik}. For this, we begin by introducing the following assumptions.

Assumption 4.1. For the hybrid system in (4.8), and ∀i ∈ V, there exist

a locally Lipschitz function Wi(ei) : Rn → R≥0, functions αi
W , ᾱi

W ∈ K∞,

a scalar function Hi(x, e) : R2nN → R≥0, and a non-negative scalar Li such

that:
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(a) αi
W (|ei|) ≤ Wi(ei) ≤ ᾱi

W (|ei|), ∀ei ∈ Rn;

(b) ⟨Wi(ei),Υ − fi⟩ ≤ LiWi(ei) + Hi(x, e), for all x ∈ RnN and almost all

ei ∈ Rn, ∀i ∈ V.

In Assumption 4.1(b), we assume that growth rate of Wi(ei) can be lin-

early upper bounded; this is facilitated by the use of model-based broadcast

estimates in (4.3).

Assumption 4.2. Suppose Assumption 4.1 holds. For the hybrid system in

(4.8), there exist a locally Lipschitz function V (x) : RnN → R≥0, continuous

functions V̂i(x̂N̄ i
in
) : RnN → R≥0, ∀i ∈ V, functions αV , ᾱV ∈ K∞, a contin-

uous function Θ(x) : RnN → RnN , a positive scalars αV and γi, ∀i ∈ V, and

non-negative scalars ωi, ∀i ∈ V, such that:

(a) αV (|Θ(x)|) ≤ V (x) ≤ ᾱV (|Θ(x)|), ∀x ∈ RnN ,

(b) ⟨V (x), f⟩ ≤ −αV V (x) +
∑

i∈V
[
γ2
i W

2
i (ei) − ωiV̂i(x̂N̄ i

in
) − H2

i (x, e)
]
, for

almost all x ∈ RnN and ∀ei ∈ Rn, ∀i ∈ V.

Here, the mapping Θ(·) : RnN → RnN in Assumption 4.2(a) represents a

state transformation and it provides additional freedom to address problems

involving MASs that do not necessarily converge to the origin with the avail-

able control protocol, for e.g., consensus protocols. For such systems, the idea

is that Θ(x) = 0 forms the equilibrium set.

Remark 4.2. (On Assumption 4.2(b)) Assumption 4.2(b) conveys that the

MAS ẋ = f(x, e), where x, e, f(·) are as defined in (4.8), is input-to-state

stable (ISS) with respect to ei, ∀i ∈ V, and correspondingly V is the ISS-

Lyapunov function of the MAS. Since V is ISS-Lyapunov, we have V̇ ≤

−άV V +
∑

γ́2
i W

2
i , where άV > 0, and γ́i ≥ 0, ∀i ∈ V; to this inequality

we can add and subtract terms
∑

ωiV̂i (and
∑

H2
i ). Here, introducing the

term ωiV̂i in Assumption 4.2(b) enables slower decay of the auxiliary variable

ηi (for instance, see (4.11) or (4.18)), thus facilitating fewer events, and as

a consequence fewer broadcasts and, perhaps, fewer controller updates. The
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idea (behind Assumption 4.2(b)) is that the added terms (non-negative terms)∑
ωiV̂i(x̂N̄ i

in
) (and

∑
H2

i ) can be absorbed into −άV V and
∑

γ́2
jW

2
j , since

x̂N̄ i
in

= (Āi ⊗ In)(x + e). Consequently, άV depreciates to αV > 0 and γ́i,

likely, increases to γi, ultimately resulting in Assumption 4.2(b). The design

constant ωi, ∀i ∈ V , can be increased upwards of zero (to a certain extent)

while simultaneously ensuring that αV > 0.

Next, in order to compensate for exponential rise of Wi(ei) and ensure

stability, we define a weighing parameter θi(s), s ∈ R≥0, that dampens the

rise in Wi(ei), using the following lemma.

Lemma 4.1 ( [69]). Let θi : R≥0 → R be the solution to the differential

equation

θ̇i(s, γ̂i) =

{
−2Li

µθi(s)− γ̂i(θ
2
i (s) + 1), s ∈ [0, T i

0(λ)]

0, s > T i
0(λ)

,

with the initial condition θi(0) = 1
λi
, where Li

µ = Li + µi for sufficiently

small µi > 0 and design parameter γ̂i ≥ γi. Then θi(s, γ̂i) is monotonically

decreasing and θi(s, ·) = λi for s ≥ T i
0(λi).

Here, λi ∈ (0, 1) is a design parameter that influences both MASP and

the event-triggering condition (namely, (4.11) in Theorem 4.1 below). By

choosing appropriate parameters such as λi, µi for each agent i, the upper

bound T i = T i
0(λi) can be determined using (28) in [69]. Note that, in Lemma

4.1, we also introduce the design parameter γ̂i ≥ γi which differs, slightly,

from the definition of θ̇i in [69] where γ̂i = γi was used.

The following theorem presents the main result of this subsection.

Theorem 4.1. Under Assumption 4.2, if the ETM governed by functions in

(4.5) is given by

f η
i =− βiηi + ωiV̂i(x̂N̄ i

in
),

gis = ηi + γ̂i

(
λi −

1

λi

)
W 2

i (ei),

git = ηi + γ̂iλ̄iW
2
i (ei), (4.11)
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where βi > 0 and λ̄i ∈ [0, λi], then the closed-loop system in (4.8) is asymp-

totically stable with respect to the following set {x ∈ RnN | Θ(x) = 0}.

Proof. For the closed-loop hybrid system in (4.8), consider the Lyapunov

candidate

U1(q) = V (x) +
∑
i∈V

[
γ̂iθi(τi, γ̂i)W

2
i (ei) + ηi(t)

]
,

where Wi and V satisfy Assumptions 4.1 and 4.2, respectively. For notational

brevity, we drop arguments of all the functions involved in this proof. We

begin the analysis by studying stability aspects over the flow domain C and

then address the same over the jump domain D.

Analysis during flow:

Evaluating the Clarke derivative of U1 at any instant results in:

U◦
1 ≤− αV V +

∑
i∈V

[
γ2
i W

2
i − ωiV̂i −H2

i + η̇i + γ̂iθ̇iW
2
i + 2γ̂iθiWiẆi

]
≤− αV V +

∑
i∈V

[
γ2
i W

2
i −H2

i − βiηi + γ̂i
(
− 2Lµ

i θi − γ̂i(θ
2
i + 1)

)
W 2

i

+ 2γ̂iθiWi

(
LiWi +Hi

)]
. (4.12)

Through Young’s inequality, we have 2γ̂iθiWiHi ≤ (γ̂iθiWi)
2 +H2

i . Using this

in (4.12) results in:

U◦
1 ≤− αV V +

∑
i∈V

[
− (γ̂2

i − γ2
i )W

2
i − βiηi − 2γiµiθiW

2
i

]
. (4.13)

Since, αV > 0 and design parameters γ̂i ≥ γi and βi > 0, there exists a positive

function ζ1 : R → R≥0 such that U◦
1 (q) in (4.13) satisfies:

U◦
1 (q) ≤ −ζ1(U1(q)), ∀q ∈ C. (4.14)

Analysis at jumps:

Evaluating U+
1 at jumps depends on the occurrence (or non-occurrence) of

events on the agents in G. Let time t denote an instant at which jumps

(across the network) occur and let I ⊆ V denote the index set such that
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I := {i|t ∈ {sik}∞k=0, ∀i ∈ V}. I represents the set of all agents that experience

jump at time t; this means, I = V for synchronous protocols and I ⊆ V for

asynchronous protocols. Note that the agents in the complementary set V \ I

do not, actively, take part in the jump; their states, instantaneously, before and

after the jump remain unchanged and as a result their contribution towards

convergence analysis at instant t is zero.

Since the agents in I are triggered depending on the sign of gis(·), we define

the following three index subsets: P = {i : gis > 0}, Q = {i : gis < 0} and

R = {i : gis = 0} to distinguish between the agents depending on their jumps

described in (4.10). Here, P ∪Q∪R = I. Accordingly, each agent in I takes

one of the following augmented states at the jump instant:
∀i ∈ P ,

[
xT
i eT

i x̂T
i τi ηi

]+
=

[
xT
i eT

i x̂T
i 0 gis

]
,

∀i ∈ Q,
[
xT
i eT

i x̂T
i τi ηi

]+
=

[
xT
i 0T xT

i 0 git
]
,{

∀i ∈ R1,
[
xT
i eT

i x̂T
i τi ηi

]+
=

[
xT
i eT

i x̂T
i 0 gis

]
,

∀i ∈ R2,
[
xT
i eT

i x̂T
i τi ηi

]+
=

[
xT
i 0T xT

i 0 git
]
,

(4.15)

where R1 and R2 are subsets of R (such that R1 ∪ R2 = R, R1 ∩ R2 = ϕ)

segregated on the basis of jump maps G1
i andG2

i , respectively, that they choose

in (4.10) when gis = 0. So, at any jump instant, U1 jumps as follows:

U+
1 − U1 = V (x+)− V (x) +

∑
i∈V

[
η+i − ηi

]
+
∑
i∈V

[
γ̂iθi(0, γ̂i)W

2
i (e

+
i )− γ̂iθi(τi, γ̂i)W

2
i (ei)

]
. (4.16)

Note that: a) from (4.10), we have x+
i = xi, ∀i ∈ V , which implies V (x+) =

V (x); and b) from (4.15), we have e+i = ei, ∀i ∈ P ∪ R1, and e+i = 0, ∀i ∈

Q∪R2, which implies Wi(e
+
i ) = Wi(ei) and Wi(e

+
i ) = Wi(0) = 0, respectively.

Using these equalities and (4.11) in (4.16) results in:

U+
1 − U1 =

∑
i∈Q∪R2

[
git − ηi − γ̂iθi(τi, γ̂i)W

2
i (ei)

]
+

∑
i∈P∪R1

[
gis − ηi +

( γ̂i
λi

− γ̂iθi(τi)
)
W 2

i (ei)
]
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U+
1 − U1 ≤−

∑
i∈Q∪R2

γ̂i
[
θi(τi, γ̂i)− λ̄i

]
W 2

i (ei)

−
∑

i∈P∪R1

γ̂i

[
θi(τi, γ̂i)− λi

]
W 2

i (ei).

Since, θi(τi, ·) ≥ λi ≥ λ̄i from Lemma 4.1, this implies that at the jump

instants we have

U1(G(q)) ≤ U1(q), q ∈ D. (4.17)

Using (4.14) and (4.17), the proof is completed by following an argument that

is similar to the proof of Theorem 1 in [69]. ✷

4.3.2 Active Sensing

In this subsection, in addition to broadcasting capabilities, we consider the

situation where agents have the capability to infer states (or relative states)

of agents in the network via onboard sensors, which enables xN i
k
in (4.5). The

focus is then to design an ETM that utilizes these relative state measurements

in order to further reduce the number of broadcasts and controller updates

at each agent. To facilitate this, in addition to Assumption 4.1 in Subsection

4.3.1, we make the following assumptions.

Assumption 4.3. Suppose Assumption 4.1 holds. For the hybrid system in

(4.8), there exist a locally Lipschitz function V (x) : RnN → R≥0, continuous

functions V̂i(x̂N̄ i
in
) : RnN → R≥0, ∀i ∈ V, scalar functions Ji(x, e) : R2nN →

R≥0, ∀i ∈ V, functions αV , ᾱV ∈ K∞, a continuous function Θ(x) : RnN →

RnN , a positive scalars αV , γi, ∀i ∈ V , and non-negative scalars ωi, ∀i ∈ V ,

such that:

(a) αV (|Θ(x)|) ≤ V (x) ≤ ᾱV (|Θ(x)|), ∀x ∈ RnN ;

(b) ⟨V (x), f⟩ ≤ −αV V (x)+
∑

i∈V
[
γ2
i W

2
i (ei)−ωiV̂i(x̂N̄ i

in
)−H2

i (x, e)−Ji(x, e)
]
,

for almost all x ∈ RnN and ∀ei ∈ Rn, ∀i ∈ V.

Furthermore, ∀i ∈ V, there also exists a locally Lipschitz function Vi(x) :

RnN → R≥0, scalar functions Ĥi(x, e), Ĵi(x, e) : R2nN → R≥0, positive scalars

αi and ci such that:
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(c)
∑

i∈V Vi(x) = V (x),

(d) ⟨Vi(x), f⟩ ≤ −αiVi(x) + ci
(
Ĥ2

i (x, e) + Ĵi(x, e)
)
, for almost all x ∈ RnN

and ∀ei ∈ Rn, ∀i ∈ V,

(e)
∑

i∈V Ĥ
2
i ≤

∑
i∈V H

2
i and

∑
i∈V Ĵi ≤

∑
i∈V Ji.

Assumption 4.4. For each agent i ∈ V, there exists a positive semi-definite

function Ṽi(xN i
k
) such that:

Ṽi(xN i
k
) ≤ Vi(x)

where recall that N i
k is the set of agents whose states (or relative states) can

be actively sensed by agent i at sik.

Remark 4.3. (On Vi, Ji and Ṽi) Items (a) and (b) in Assumption 4.3, similar

to Assumption 4.2, convey input-to-state stability of the closed-loop system in

(4.8) with respect to ei, ∀i ∈ V. In the case that Ji = 0, Assumption 4.3(a)–

(b) is identical to Assumption 4.2. However, introducing Ji in Assumption

4.3(b) provides for additional freedom while choosing the function Vi which

captures local (namely, agent-wise) effect of event-triggered controller ui on

agent dynamic ẋi = fi(x, ui). Depending on the specific problem that is being

addressed, the choice of Vi may not be unique; furthermore, it may not be

dependent, solely, on neighbors’ information. To address this and generalize

the approach, we introduce Ṽi(xN i
k
) in Assumption 4.4 which only depends

on the set N i
k. Choice of functions Vi, Ji and Ṽi in two different settings is

demonstrated in Section 4.4.

Remark 4.4. (On Assumption 4.3(d)–(e)) Assumption 4.3(d) conveys that

the decay of the local function Vi can be exponentially bounded and the term,

say Ri, accounts for the effect that neighbors, local dynamics and the event-

triggered controller have on V̇i. The idea behind Assumption 4.3(d) is that Ri

can be upper bounded using terms Ĥ2
i which is similar to H2

i , and Ĵi which

collects remaining residuals. Here, the scaling factor ci provides for additional
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design freedom. Assumption 4.3(e) ensures that the cumulative effect of Ĥ2
i is

smaller than the cumulative effect of H2
i . The same holds true for

∑
Ĵi and∑

Ji. Furthermore, we also note that in Assumption 4.3(b), one can replace

Ji with Ĵi for all agents i ∈ V but the same is not true for Ĥ2
i as shown in the

case of Subsection 4.4.2.

Remark 4.5. (On Assumptions 4.3 – 4.4) Assumptions 4.3 – 4.4 are moder-

ate considering Assumption 4.2 and active sensing capabilities. In fact, they

have the following trivial choices if we abandon the active sensing capability

and forgo Assumption 4: Ĵi = Ji = 0, Ĥi = Hi and Ṽi(xN i
k
) = 0; however,

these selections would not lead to any performance improvement in the ETM.

The following theorem provides the main result of this subsection.

Theorem 4.2. Under Assumptions 4.3 and 4.4, if the ETM governed by

functions in (4.5) is given by

f η
i =− βiηi + ωiV̂i(x̂N̄ i

in
),

gis = ηi + γ̃i

(
θi(τi)−

1

λi

)
W 2

i (ei) + ρi
(
eaiτi − 1

)
Ṽi(xN i

k
),

git = ηi + γ̃iθi(τi)W
2
i (ei) + ρi

(
eaiτi − 1

)
Ṽi(xN i

k
), (4.18)

where βi > 0 and the design parameters (ai, ρi, γ̃i) are such that, ∀i ∈ V,

eaiτiρiai − αV ≤ 0,

eaiτiρici + ϵU2 ≤ 1,

γ̃i
γ̂i

< ϵU2 < 1 and γ2
i < γ̃iγ̂i, (4.19)

then the closed-loop system in (4.8) is asymptotically stable with respect to the

following set {x ∈ RnN | Θ(x) = 0}.

Proof. Consider the Lyapunov function

U2(q) = V (x) +
∑
i∈V

[
γ̃iθi(τi, γ̂i)W

2
i (ei) + eaiτiρiVi(x) + ηi(t)

]
,

51



whereWi, Vi, V satisfy Assumptions 4.1 and 4.3 and triplet (ai, ρi, γ̃i), ∀i ∈ V ,

are scalars that are to be determined. Similar to the proof of Theorem 4.1,

we drop arguments of all the functions involved in this proof. We begin the

analysis with the flow domain C and then address the same over the jump

domain D.

Analysis during flow:

At any instant in C, the Clarke derivative of U2 is

U◦
2 ≤

∑[
− αV Vi + γ2

i W
2
i − ωiV̂i −H2

i − Ji + η̇i +
(
γ̃iθ̇iW

2
i + 2γ̃iθiWiẆi

)
+
(
eaiτiρiV̇i + aie

aiτiρiViτ̇i
)]

≤
∑[

− αV Vi + γ2
i W

2
i −H2

i − Ji + aie
aiτiρiVi + eaiτiρi

(
− αiVi

+ ciĤ
2
i + ciĴi

)
+ 2γ̃iθi

(
LiW

2
i +HiWi

)
+ γ̃i

(
− 2Li

µθi − γ̂iθ
2
i − γ̂i

)
W 2

i − βiηi

]
≤
∑[

−
(
αV − eaiτiρiai

)
Vi − eaiτiρiαiVi −

(
γ̃iγ̂i − γ2

i

)
W 2

i

−
(
1− eaiτiρici

)
Ĥ2

i −
(
1− eaiτiρici

)
Ĵi − γ̃iγ̂iθ

2
iW

2
i

+ 2γ̃iθiHiWi − 2γiθiW
2
i µ− βiηi

]
. (4.20)

Using Young’s inequality on 2γ̃iθiHiWi in (4.20) yields:

U◦
2 ≤

∑
i∈V

[
−

(
αV − eaiτiρiai

)
Vi − eaiτiρiαiVi −

(
γ̃iγ̂i − γ2

i

)
W 2

i

−
(
1− eaiτiρici − ϵU2

)
Ĥ2

i −
(
1− eaiτiρici

)
Ĵi −

(
γ̃iγ̂i −

γ̃2
i

ϵU2

)
θ2iW

2
i

− 2γiθiW
2
i µ− βiηi

]
. (4.21)

Considering that the design parameters satisfy conditions in (4.19) and As-

sumption 4.3, there exists a positive function ζ2 : R → R≥0 such that U◦
2 (q)

in (4.21) satisfies:

U◦
2 (q) ≤ −ζ2(U2(q)), ∀q ∈ C. (4.22)

Analysis at jumps:

For the analysis here, we borrow the index sets I, P , Q, R, R1, and R2

(see (4.15)) which are defined in the proof of Theorem 4.1. Recall that I =
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P ∪Q ∪R. At every jump instant in D, we have the following:

U+
2 − U2 =V (x+)− V (x) +

∑
i∈V

[
η+i − ηi

+ γ̃iθi(τ
+
i , γ̂i)W

2
i (e

+
i )− γ̃iθi(τi, γ̂i)W

2
i (ei)

+ eaiτ
+
i ρiVi(x

+)− eaiτiρiVi(x)
]
.

Using the jumps outlined in (4.15) yields the following:

U+
2 − U2 =

∑
i∈Q∪R2

[
git − ηi − γ̃iθi(τi)W

2
i (ei)−

(
eaiτi − 1

)
ρiVi(x)

]
+

∑
i∈P∪R1

[
gis − ηi + γ̃i

( 1

λi

− θi(τi)
)
W 2

i (ei)−
(
eaiτi − 1

)
ρiVi(x)

]
≤−

∑
i∈I

ρi
(
eaiτi − 1

)(
Vi(x)− Ṽi(xN i

k
)
)
.

Subsequently, employing Assumption 4.4, we have

U2(G(q)) ≤ U2(q), q ∈ D. (4.23)

Again, using (4.22) and (4.23), the proof is completed via the argument in the

proof of Theorem 1 in [69]. ✷

Remark 4.6. (On sensing network) In Theorem 4.4, Ṽi(xN i
k
) in (4.18) utilizes

the states (or relative states) that are sensed by i at sik. The network formed

as a consequence of sensing across all agents, called the sensing network, will

likely be directed and it need not be the same as the broadcast network G.

Agents, depending on their onboard sensors, may have different criteria on se-

lecting neighbors for active sensing, for example, choosing nearest neighbors or

choosing neighbors based on the sensor’s range. These criteria could make the

sensing network time-varying. Furthermore, in the case of a directed broad-

cast network G it is well-known that consensus is achieved if and only if G is

strongly connected; such a property is not necessary for the sensing network.

Lastly, it is plausible that at a certain event-verifying instant sik some or all

agents have no neighbors to sense, e.g., if the fellow agents are beyond the

sensor’s range. In such cases, the agents adopt a trivial choice, i.e. Ṽi = 0, as
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stated in Remark 4.5. This is also a reason why V̂i, affecting the flow of ηi in

(4.18) (and in (4.11)), is independent of xN i
k
and relies on only (model-based)

broadcast states x̂N̄ i
in
as stated in Assumptions 4.2 and 4.3.

4.4 Consensus in Control-Affine MASs

In this section, we analyze two case studies on the consensus problem of

nonlinear MASs in order to demonstrate the use of the two ETMs presented

in Section 4.3. First, we introduce the agent dynamics as follows:

ẋi = f̄(xi) + ui, ∀i ∈ V , (4.24)

where, for brevity of notation, we consider the scalar case, namely xi, ui ∈ R.

To achieve consensus of the MAS in (4.24), the distributed control protocol

employed by each agent is ui = −κLix where Li is the i−th row of the Lapla-

cian matrix L. Further, conditions on control gain κ that ensure consensus are

presented, shortly, in Subsections 4.4.1 and 4.4.2. A periodic event-triggered

implementation of the control protocol, as per (4.4), takes the form

ui = −κLix̂, κ > 0, (4.25)

where x̂ is the augmented vector of the broadcasted agent states. Each agent

i, adopts ˙̂xi = Υ(x̂i) = f̄(x̂i) as the dynamics of their model-based broad-

cast estimates. Defining the auxiliary variables ηi, τi as in (4.5) and (4.7),

respectively, and the augmented vectors as defined in Section 4.2, the hybrid

systems model of the MAS in (4.24) with (4.25) is:
q̇ =


[f̄ ](x)− κL(x+ e)

[f̄ ](x̂)− [f̄ ](x) + κL(x+ e)

[f̄ ](x̂)

1

fη

 , q ∈ C,

q+ ∈
⋃N

i=1 Gi(q), q ∈ D,

(4.26)

where [f̄ ](x) = [f̄(x1) . . . f̄(xN)]
T denotes the augmented vector of nonlinear

function f̄ , Gi(q) is the same as in (4.10).
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For the MAS in (4.26), we consider the following two cases based on the

associated broadcast network and agent dynamics. For each of these cases,

we demonstrate that the two dynamic ETMs designed in Subsection 4.3.1

and Subsection 4.3.2 asymptotically stabilize the closed-loop system in (4.26)

w.r.t. their respective stability sets.

4.4.1 Undirected Networks, Lipschitz Dynamics

In this subsection, we consider an undirected network G and assume that

the dynamics f̄(·) of the agent is globally Lipschitz with a Lipschitz constant

L. Prior to presenting the main result in this subsection, we note that the

continuous-time controller, ui = −κLix, achieves consensus when the control

gain κ is such that

κ >
L
Λ2

√
2dM
Λ2

= κ0, (4.27)

where dM = maxi di.

The main result is as follows.

Theorem 4.3. Let the MAS in (4.24) operate over a connected undirected

network G with Laplacian L and let L denote a Lipschitz constant associated

with dynamics f̄(·). Further, let control gain κ = pκ0, where p > 1 and κ0 is

defined in (4.27).

1. Broadcasting: Let Wi = |ei|, ∀i ∈ V , V = K
2
|z|2 where z = Lx and

V̂i = |Lix̂|2, ∀i ∈ V. Under Assumption 4.2, ∀i ∈ V, if the dynamic ETM

governed by (4.11) is such that: βi > 0,

ωi =
(
Λ2 −

Λ2
M

2ϵ2

)
(1− π1)(1− ξ1)κK,

γ̂2
i ≥ γ2

i = KκΞ3 + 2κ2Tr(ATA), (4.28)

where Ξ3 =
[
ϵ2
2
+
(
Λ2 −

Λ2
M

2ϵ2

)
(1− π1)(

1
ξ1
− 1)

]
Λ2

M , design parameters are
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such that ξ1 ∈ (0, 1],

ϵ2 ∈
(Λ2

M

2Λ2

p

p− 1
,∞

)
, (4.29a)

π1 ∈
(Λ2

p

(
Λ2 −

Λ2
M

2ϵ2

)−1
, 1
)
, (4.29b)

K > 2κ2/
[(
Λ2 −

Λ2
M

2ϵ2

)
π1κ− Λ2κ0

]
, (4.29c)

then the closed-loop system in (4.26) is asymptotically stable w.r.t. the

set

{x ∈ RN | Lx = 0}. (4.30)

2. Active Sensing: Let Vi = Ṽi =
K
2
|Lix|2, ∀i ∈ V. Under Assumptions

4.3 - 4.4, ∀i ∈ V, if the dynamic ETM governed by (4.18) is such that:

ai, ρi, γ̃i satisfy conditions in (4.19), βi > 0, ωi is as in (4.28),

γ̂2
i ≥ KκΞ3 + 2κ2Λ

2
M

ϵ4

∑
j∈V

|Lj| (4.31)

where Ξ3 is the same as in item (1), scalars π1, ξ1, ϵ2 are the same as

in (4.29), ϵ3 =
√
2√

Λ2dM
,

ϵ4 ∈
(
0,min

{
1,min

i

di(2− Lϵ3
κ
)

|Ai|2 + |Li|
,min

i

|Li|Λ2
M

|Ai|2
})

, (4.32a)

K > 2κ2
(N
ϵ4

+
2

ϵ3

L
Λ2κ

)
/
[(
Λ2 −

Λ2
M

2ϵ2

)
π1κ− Λ2κ0

]
, (4.32b)

then the closed-loop system in (4.26) is asymptotically stable w.r.t. (4.30).

The proof of Theorem 4.3 is presented in Appendix A.1.2.

4.4.2 Directed Networks, One-Sided Lipschitz Dynam-
ics

In this subsection, we consider the case of a directed network G and we

assume that the dynamics f̄(·) of the agent is globally one-sided Lipschitz

with a one-sided Lipschitz constant Los. Similar to Section 4.4.1, we first note
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that the continuous-time controller achieves consensus when the control gain

κ satisfies:

κ >
Los

aξ(L)
= κ̄0, (4.33)

where aξ(L) is the general algebraic connectivity of G introduced in Section

4.1.

Note that the result that follows is more general than the case study consid-

ered in Section 4.4.1 and is also beyond the case of local Lipschitz continuity.

Theorem 4.4. Let the MAS in (4.24) operate over a strongly connected di-

rected network G with Laplacian L and let Los be a global one-sided Lipschitz

constant associated with f̄(·). ξ is such that aξ(L) > 0. Further, let the control

gain κ = p̄κ̄0, p̄ > 1, where κ̄0 is defined in (4.33).

1. Broadcasting: Let Wi = |ei|, ∀i ∈ V, V =
∑

i∈V
K
2
ξi|xi − x̄|2 and

V̂i(x̂N̄ i
in
) = |Lix̂|2, ∀i ∈ V. Under Assumption 4.2, ∀i ∈ V, if the dynamic

ETM governed by (4.11) is such that: βi > 0, ωi =
ϑ
2
≥ 0,

γ̂2
i ≥ Kκ

ϵ1Λ̄
2
M

2
+ 2κ2Tr(ATA) + ϑTr(LTL)

where, ϵ1 ∈
(

1
2aξ(L)

p̄
p̄−1

,∞
)
and K is such that

K >
2γ + 4κ2

ξmin

Tr(LTL)/
[
2(aξ(L)κ− Los)−

κ

ϵ1

]
, (4.34)

then the closed-loop system in (4.24) is asymptotically stable w.r.t.

{x ∈ RN |
(
IN − 1Nξ

T
)
x = 0}. (4.35)

2. Active Sensing: For every i ∈ V, let Vi = K
2
ξi|xi − x̄|2, and Ṽi =

Kξmin

2N |Lsi,k|2
|Lsi,kx|2, where Lsi,k is the i-th row of Laplacian matrix Lst associ-

ated with the sensing network at time t ∈ {sik}∞k=0. Under Assumptions

4.3 – 4.4, ∀i ∈ V, if the dynamic ETM governed by (4.18) is such that

ai, ρi, γ̃i satisfy conditions in (4.19) and βi > 0, ωi, γ̂i and K are

the same as in item (1) above, then the closed-loop system in (4.26) is

asymptotically stable.
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The proof of Theorem 4.4 is presented in Appendix A.1.3.

In addition to Remark 4.6, through the following remarks: 1) we estab-

lish the reasoning behind considering separate case studies for undirected and

directed broadcast networks; and 2) we also present the motivation behind

Assumptions 4.3 – 4.4 considered in Section 4.3.

Remark 4.7. (On Vi) The case study in Subsection 4.4.1 on undirected net-

works could be considered as a special case of the 2nd case study in Subsection

4.4.2 on directed networks. However, the two case studies have been provided

in this work to demonstrate the construction of the functions Vi and Ṽi. Note

that in the proof of Theorem 4.4 in Appendix A.3, Vi in Assumption 4.3(c)–

(d) has been constructed entirely from the ISS stability of the global function

V in (A.13); as a result we have Ĵi = 0, ∀i ∈ V. However, the same is not

true in the case of Vi in Theorem 4.3 for the undirected case which satisfies

Assumption 4.3 with non-zero Ĵi = Ji. For this reason, as stated in Remark

3, we provide additional flexibility in the design by including the term Ji in

Assumption 4.3.

Remark 4.8. (On , Ṽi) For the case of undirected networks, in Part 2 of The-

orem 4.3, the function Ṽi(xN i
k
) = K

2
|Lix|2 can be constructed from the choice

of Lyapunov function V and the function Vi which were used in the proof of

Theorem 4.3. Here, the sensing network is the same as the established broad-

casted network, i.e. N i
k = N̄ i

in, ∀i ∈ V , ∀k ∈ Z≥0. However, such a selection of

Ṽi may not be feasible (or perhaps desirable) in the case of directed networks,

which motivates the differences in Vi and Ṽi. Hence, Assumption 4.4 somewhat

decouples the selections of these functions in analysis and implementation; al-

though, note that Ṽi < Vi could lead to more events. This is another reason

on why we do not simply present the scenario in Subsection 4.4.1 as a special

case of that in Subsection 4.4.2.
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4.5 Numerical Example

As an illustration of the two case studies, we consider that the following

agent dynamics and control protocol:

∀i ∈ V ,

{
ẋi = −x3

i + 0.1 sin(xi) + ui,

ui = −κLix, κ = 0.5.
(4.36)

It is straightforward to see that the system in (4.36) is one-sided Lipschitz with

one-sided Lipschitz constant Los = 0.1. Here, κ in (4.36) satisfies both (4.27)

and (4.33), simultaneously, for the broadcast networks considered below. The

periodic event-triggered protocol is ui = −κLix̂. For the MAS in (4.36), we

set the lower bound of sampling period, εi in (4.2), to be 1 ms, the time step

to be 0.1 ms and simulation time to be 5 s.

Network λi, ∀i T̄m ETMs Metrics
Topology M1 M2

Undirected

0.66 1 ms
(4.37) 9.51 9
(4.38) 2.39 39

0.44 2 ms
(4.37) 19.18 8
(4.38) 4.97 38

0.23 3 ms
(4.37) 32.71 6
(4.38) 8.94 30

Directed

0.69 1 ms
(4.39) 12.73 6
(4.40) 10.44 8

0.46 2 ms
(4.39) 27.54 6
(4.40) 21.31 6

0.26 3 ms
(4.39) 44.88 3
(4.40) 38.89 6

Table 4.1: Comparison between the two dynamic ETMs proposed in (4.11)
and (4.18).

Undirected networks: Consider λi = 0.66, ∀i ∈ V .

Part 1: Broadcasting. Some of the design parameters referred to in Theorem

4.3(1) are as follows: K = 55, ξ1 = 0.5, ϵ2 = 10, π1 = 0.75. The dynamic ETM
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adopted is (4.11) and is described by the following triplet ∀i ∈ V , (f i
η, g

i
s, g

i
t):

f i
η = −0.1ηi + 1.64|Lix̂|2,
gis = ηi − 314.07|ei|2,
git = ηi + 242.40|ei|2.

(4.37)

Assumptions 4.1 and 4.2 are satisfied through scalars Li = 0.1 + 0.5di, αV =

7.73× 10−4, ωi = {1.64}, γi = {71.15}.

Part 2: Active Sensing. Some of the design parameters referred to in Theorem

4.3(2) are as follows: K = 441, ϵ3 = 0.51, ϵ4 = 0.5. In this case, the dynamic

ETM adopted is (4.18) and the triplet (f i
η, g

i
s, g

i
t) is as follows:

f i
η = −0.1ηi + 13.21|Lix̂|2,
gis = ηi + 133.5(θi − 1.51)|ei|2 + 9.19

106
|Lix|2,

git = ηi + 133.5θi|ei|2 + 9.19
106

|Lix|2.
(4.38)

Assumption 3 is satisfied through αV = 4.16×10−5, αi = {0.34, 0.39, 0.32, 0.38},

γi = {201.34}, ωi = {13.21}, ci = {220.5}.

Further, Hi = 0.5(|Ai|2|e|2 + |zi|2) and Ji =
1
2
(2|z|2 − |zi|2) + 1

2
(71.79|Li| −

|Ai|2)|e|2 + 0.19
∑

j∈V aij|xi − xj|2. Figure 4.2 depicts the underlying commu-

nication network and state trajectories of agents achieving consensus and Fig.

4.4 shows the corresponding inter-event times for the case of active sensing.

Directed networks: Consider λi = 0.69, ∀i ∈ V .

Part 1: Broadcasting. Design parameters referred to in Theorem 4.4(1) are

as follows: K = 1.27 × 104, ωi = {0.5}, γi = {250.40}, ϵ1 = 1.1. Here,

the dynamic ETM adopted is (4.11) and is described by the following triplet

(f i
η, g

i
s, g

i
t): 

f i
η = −0.1ηi +

1
2
|Lix̂|2,

gis = ηi − 272.0|ei|2,
git = ηi + 247.2|ei|2.

(4.39)

Assumptions 4.1 and 4.2 are satisfied through scalars Li = 0.1 + 0.5di, αV =

4.48× 10−4, ωi = {0.5}, γi = {250.40}.

Part 2: Active Sensing. Design parameters referred to in Theorem 4.4(2) are
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Figure 4.2: Consensus in undirected network

the same as those in Theorem 4.4(1). In this case, the dynamic ETM adopted

is (4.18) and the triplet (f i
η, g

i
s, g

i
t) is as follows:

f i
η = −0.1ηi + |Lix̂|2,
gis = ηi + 211.7(θi − 1.44)|ei|2 + 1.7

105
|Lix|2,

git = ηi + 211.7θi|ei|2 + 1.7
105

|Lix|2.
(4.40)

Assumption 3 is satisfied through αV , ωi, the same as in Part 1 of Directed

networks, and αi = {0.03}, ci = {7.91× 103}.

Further,Hi = 0.5(|Ai|2|e|2+|Li(x−x̄1)|2) and Ji = 0. Figure 4.3 depicts the

underlying communication network and state trajectories of agents achieving

consensus and Fig. 4.5 shows the corresponding inter-event times for the case

of active sensing.

4.5.1 Analysis

First, we compare the two dynamic ETMs discussed in this work, namely,

(4.11) and (4.18). For this, we use two metrics, denoted by M1 and M2, which

are defined as follows:

M1
⟨n({til})⟩
⟨n({sik})⟩

%: the percentage of events triggered over the total number of

event-verifying instants involved where ⟨n(T )⟩ represents the cardinality
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Figure 4.3: Consensus in directed network
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Figure 4.4: Inter-event times of agents in undirected networks

of set T averaged across all agents;

M2 tlb-IET: the lower-bound of inter-event time, measured in ms, across all

agents over the simulation time, namely, tlb-IET = mini,l(t
i
l+1 − til).

Table 4.1 provides a comparison between the two ETMs described in Sec-

tion 4.3. For each network topology (undirected or directed) the comparison

is made over three different sampling periods denoted by T̄m = mini T
i
0(λi).

It can be inferred from Table 4.1 that for each T̄m, the percentage of events,

M1, is fewer in the case where agents can actively sense neighbors’ (relative)
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Figure 4.5: Inter-event times of agents in directed networks

information. This implies that the percentage of broadcasts, and as a result,

the no. of controller updates an agent requires is considerably lower (partic-

ularly in the case of directed networks, see Table 4.1) than in the scenario

where it solely relies on broadcasted information. Alongside M1, the metric

M2 describing lower-bound of inter-event times is also of considerable impor-

tance, particularly for implementation, because this governs the frequency at

which broadcasts and controller updates take place. From Table 4.1 it can

also be inferred that when agents have access to more information (referring

to ETMs in (4.38), (4.40)), the frequency of broadcasts/controller updates is

lowered significantly.

Next, we evaluate the dynamic ETM in (4.11) and (4.18) against the static

ETM (similar to the one in [100]). Note that the static ETM in [100] is de-

signed for networked control systems and cannot be used directly in our con-

text. However, for comparative purposes we adopt the following two static

ETMs, one for each broadcast topology: (i) for undirected networks

tik+1 ={t > tik|t ∈ {sik}∞k=0, 133.5(θi(τi)− 1.51)|ei|2

+ 9.19× 10−6|Lix|2 < 0}, ∀i ∈ V ; (4.41)
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Network T̄m ETMs Metrics
Topology M1 M2

Undirected 1 ms
(4.37) 9.51 9
(4.38) 2.39 39
(4.41) 97.0 1

Directed 1 ms
(4.39) 12.73 6
(4.40) 10.44 8
(4.42) 92.4 1

Table 4.2: Comparison between static and dynamic ETMs.

and (ii) for directed networks

tik+1 ={t > tik|t ∈ {sik}∞k=0, 211.7(θi(τi)− 1.44)|ei|2

+ 1.7× 10−5|Lix|2 < 0}, ∀i ∈ V . (4.42)

Table 4.2 provides a comparison between static and dynamic ETMs for

both network topologies. It can be inferred from Table 4.2 that the dynamic

ETMs perform considerably better than their static counterparts, both in

undirected and directed network topologies.

4.6 Conclusion

In this work, we proposed two design methodologies, based on the agent’s

ability (or inability) to actively sense the states or relative states of agents,

for periodic event-triggered control of nonlinear multi-agent systems via dy-

namic event-triggering mechanisms. The general MAS was modeled using a

hybrid systems framework after assuming the knowledge of a state-feedback

controller that stabilizes the continuous-time MAS. Maximum allowable sam-

pling periods and dynamics of the ETMs were obtained as a consequence of

the stability results provided. To demonstrate the utility of the design pro-

cedures, two case studies of consensus in nonlinear control-affine MASs with

both undirected and directed communication topologies were studied. Subse-

quently, an illustrative example was considered to convey the effectiveness of

64



the two dynamic ETMs. Future work would aim at extending the research to

systems with different broadcasting capabilities.
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Chapter 5

Dynamic Event-Triggered
Consensus of Nonlinear MASs
with Quantized Broadcasts1

Information exchange among agents operating over a network, in practice,

is restrained by limited communication bandwidth; this concern is often ad-

dressed by employing quantized broadcasts. In this chapter, we study the

problem of consensus of nonlinear MASs over a directed network where the

agents employ: a) encoders that quantize relevant information prior to broad-

casting, and b) decoders that process this information upon arrival. The

decision on the broadcast instant itself is made with the help of a dynamic

ETM in that the agents evaluate their respective event-triggering conditions

intermittently at pre-designed sampling instants (which may be both aperiodic

and asynchronous). Subsequently, the agents utilize model-based propagates

of the decoded neighbor states in their control protocols to achieve consen-

sus. The overall MAS is modeled using the hybrid systems framework and the

results are demonstrated through an illustrative example.

The rest of this chapter is organized as follows. Section 5.1 presents pre-

liminaries specific to this chapter. Section 5.2 discusses the problem and in-

troduces some intermediate variables such as encoded and decoded states.

1The material in this chapter has been accepted for publication as: Mani H. Dhullipalla,
Hao Yu and Tongwen Chen. Event-triggered consensus of nonlinear agents with quantized
broadcasts: A hybrid systems approach. 22nd IFAC World Congress, Japan, July 2023.
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Subsequently, the hybrid dynamics of the overall system is formulated and

the main results are presented in Section 5.3. Finally, a numerical example is

simulated in Section 5.4 followed by concluding remarks made in Section 5.5.

5.1 Preliminaries

In addition to preliminaries introduced in Section 4.1 of Chapter 4, in this

section, we introduce the concept of uniform quantizer. A uniform quantizer

q : R → R is defined as:

q(x) = ∆
⌊ x

∆
+

1

2

⌋
,

where ∆ > 0 is called the quantizer gain. The quantization error q(x) − x is

such that |q(x) − x| ≤ ∆
2
for all x ∈ R. In this work, we use the quantizer

to establish the hybrid dynamics of the overall system; therefore, we define

a set-valued (outer semicontinuous) quantizer mapping qosc(x) : R → R as

follows:

qosc(x) =


m∆, m− 1

2
< x

∆
< m+ 1

2
,

{
m∆, (m+ 1)∆

}
, x =

(
m+ 1

2

)
∆,

(5.1)

where m ∈ Z. For x ∈ Rn, the quantizer qosc(x) operates element-wise and

the quantization error is upper-bounded as |qosc(x)− x| ≤ ∆
2

√
n.

5.2 Problem Formulation

5.2.1 The Problem

Consider that each agent in a directed network G := (V , E) has the follow-

ing agent dynamics:

ẋi = f(xi) + ui, ∀i ∈ V , (5.2)

where xi ∈ Rn is the agent state and ui ∈ Rn is the control protocol. Assume

that the unforced dynamics, namely, f(·) : Rn → Rn in (5.2), is a globally

one-sided Lipschitz continuous function with a one-sided Lipschitz constant
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Los ∈ R. The distributed control protocol employed by the MAS in (5.2) is

given by

ui = −κ
∑
j∈N i

in

aij(xi − xj), ∀i ∈ V . (5.3)

Since we adopt an emulation-based approach in this chapter, we assume

that the control gain κ in (5.3) is large enough to achieve consensus. The

following lemma is a result from [116] which addresses this aspect.

Lemma 5.1. ( [116]) The MAS in (5.2) with the control input in (5.3) can

achieve global consensus if

aξ(L)κ > Los, (5.4)

where aξ(L) is the general algebraic connectivity of L.

Note that aξ(L) and ξ are described in Section 4.1 of Chapter 4.

5.2.2 Intermediate Variables

In order to implement an event-based controller that is inherently Zeno-

free, we formulate the consensus problem in Section 5.2.1 using the hybrid

systems framework. To facilitate this, in this subsection, we define several

intermediate variables and, with their aid, present hybrid dynamics of the

MAS in Section 5.3.1.

First, we define two time sequences, namely, sampling sequence and event-

triggering sequence. For each agent i ∈ V , let {sik}∞k=0 denote the sampling

sequence such that

εi ≤ sik+1 − sik ≤ T i, ∀k ∈ Z≥0, (5.5)

where εi is an arbitrarily small positive constant and T i is the to-be-designed

upper bound on the sampling interval sik+1 − sik. The event-triggering se-

quence {til}∞l=0 is a subsequence of {sik}∞k=0 whose construction is determined

by the event-triggering condition which is discussed shortly. The idea is that

each agent evaluates the event-triggering condition at {sik} and a subset of

these instants, that satisfy the event-triggering condition, are referred to as
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Figure 5.1: An illustration of the encoder and decoder modules on every agent
i ∈ V .

event-triggered instants, namely, {til}. In the scenario that {til} = {sik}, ∀i ∈

V , and ∀l, k ∈ Z≥0, the event-triggered protocol reduces to a sampled-data

protocol.

To have control over the size of packets (i.e., the number of bits per broad-

cast) that are broadcasted over the network, we assume that each agent broad-

casts information via a uniform quantizer. To accomplish this and achieve

asymptotic stability, each agent employs: i) an encoder that manipulates local

state and quantizes information, ii) decoders that process information received

from j ∈ N i
in, and iii) a global multiplier m that operates with the knowledge

of global time, see Fig. 5.1 for an illustration. The definition and hybrid dy-

namics of the variables involved is as follows. First, each agent i ∈ V employs

an encoder and broadcasts the encoded state νi ∈ Rn to its out-neighbors.

The hybrid dynamics of the νi is as follows:
ν̇i = 0, t ∈ [til, t

i
l+1),

ν+
i = νi, t ∈ {sik} \ {til},
ν+
i = qosc

(
xi−ζi
m

)
, t ∈ {til}.

(5.6)

Second, upon receiving νi, agent i and its out-neighbors employ decoders and

propagate the decoded state ζi ∈ Rn via the following hybrid dynamics:
ζ̇i = f(ζi), t ∈ [til, t

i
l+1),

ζ+i = ζi, t ∈ {sik} \ {til},
ζ+i = ζi +mqosc

(
xi−ζi
m

)
, t ∈ {til}.

(5.7)

where ζi(0) = 0. For notational convenience, in (5.6) and (5.7), we implicitly

assume that all agents in V employ the uniform quantizer defined in (5.1);

however, the approach in this chapter readily extends to the case where each
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agent employs a different uniform quantizer (i.e., with quantization gain ∆i)

for encoding and decoding operations. As a consequence, since each out-

neighbor of i employs the same hybrid dynamics for the decoded state, ζi is

identical across its out-neighbors. Let ζ ∈ RnN denote the concatenation of

the decoded states. Finally, the dynamics of the multiplier m ∈ R≥0 is as

follows: {
ṁ = −αmm, ∀t ∈ [0,∞) (5.8)

where the decay rate αm and the initial condition m(t = 0) are both positive

and identical across all agents (global information). To evaluate m, the agents

must be aware of the global time elapsed which is captured by t.

Using the model-based decoded state ζ, each agent in V employs an event-

triggered implementation of the control protocol in (5.3) given by

ui = −κ
∑
j∈N i

in

aij(ζi − ζj) = −κ(Li ⊗ In)ζ. (5.9)

Prior to designing the event-triggering condition, we define a non-negative

auxiliary variable ηi ∈ R≥0, ∀i ∈ V . The dynamics of ηi is described using

hybrid system framework as follows:

η̇i = f i
η(ηi, ζN̄ i), t ∈ [sik, s

i
k+1), (5.10a)

η+i = gis(ηi, ei), t ∈ {sik} \ {til}, (5.10b)

η+i = git(ηi, ei), t ∈ {til}, (5.10c)

where ei = ζi − xi is the network-induced quantized error, ζN̄ i := (Āi ⊗ In)ζ,

Āi = diag({aj|aj = 1, ∀j ∈ N i
in ∪ {i}; otherwise, aj = 0}). In (5.10), for each

agent i ∈ V , we assume that f i
η : R≥0 × RnN → R is a continuous function

such that f i
η(0, ·) ≥ 0 and, for any initial state ηi,0 and for any bounded

ζN̄ i , the solution to η̇i = f i
η(ηi, ζN̄ i) is complete. Furthermore, the functions

gis : R≥0 × Rn → R and git : R≥0 × Rn → R≥0 are continuous and continuous

non-negative, respectively. An argument to show non-negativeness of ηi under

the (aforementioned) mild assumptions made on functions f i
η, g

i
s, g

i
t is provided
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in [18]. With the help of hybrid dynamics of ηi, for each agent i ∈ V , the

event-triggering condition (consequently, event-triggering instant) is defined

as follows:

tik+1 = {t > tik|t ∈ {sik}∞k=0, g
i
s(·, ·) < 0}. (5.11)

For completeness of the exposition, we state the hybrid dynamics of the

network-induced quantized error ei as follows:
ėi = f(ζi)− f(xi) + κ(Li ⊗ In)ζ,
e+i = ei, t ∈ {sik} \ {til},
e+i = ei −mqosc

(
ei
m

)
, t ∈ {til}.

(5.12)

Let e ∈ RnN denote the concatenation of errors ei. Furthermore, each agent

in V also needs to keep track of time elapsed since the last sampling instant in

order to check for inequalities in (5.5). For this, we define the timer variable

τi, ∀i ∈ V . Its dynamics is governed by:{
τ̇i = 1 when τi ∈ [0, T i],

τ+i = 0 when τ ∈ [εi, T i].
(5.13)

Let τ be a concatenation of all the timer variables.

5.3 Consensus via Quantized Broadcasts

In this section, we present the hybrid dynamics of the MAS using variables

defined in Section 5.2.2 and subsequently present the result on event-triggered

consensus.

5.3.1 Hybrid Dynamics

Let q = (x, e, ζ, τ, η,m, t) denote the augmented state that represents the

overall MAS which operates with quantized communication and event-based

broadcast protocol. The hybrid dynamics of q is expressed as follows:{
q̇ = F (q), q ∈ C,

q+ ∈
⋃N

i=1 Gi(q), q ∈ D,
(5.14)
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where the flow set C and jump set D are defined as:

C = R3nN × [0, T 1]× · · · × [0, TN ]× RN
≥0 × R2

≥0,

D =
N⋃
i=1

{
R3nN × [ε1, T 1]× · · · × [εN , TN ]× RN

≥0 × R2
≥0

}
.

The function F (q) in (5.14) is as follows:

F (q) =



[f ](x)− κ(L⊗ In)(x+ e)
[f ](ζ)− [f̄ ](x) + κ(L⊗ In)(x+ e)

[f ](ζ)
1
fη

−αmm
1


, (5.15)

where [f ](x) = [(f(x1))
T · · · (f(xN))

T]T denotes the augmented vector of func-

tions f operating on x, and the set-valued jump mapping Gi(q) is

Gi(q) :=



{G1

i }, gis > 0,

{G2
i }, gis < 0,

{G1
i , G

2
i }, gis = 0,

τi ∈ [εi, T i],

ϕ τi /∈ [εi, T i],

(5.16)

where ϕ is a null set,

G1
i :=

[
xT eT ζT (Ii1)T (Iiη+ḡis)

T m t
]T
,

G2
i :=

[
xT (ēi)

T (ζ̄i)
T (Ii1)T (Iiη+ḡit)

T m t
]T
,

ēi = e−m(Īi⊗In)qosc(
e
m
), ζ̄i = ζ+m(Īi⊗In)qosc(

e
m
), Ii := diag({1, .., 0, .., 1}N×1)

with 0 at the i-th place, Īi := IN − Ii with 1 at the i-th place, ḡis :=

[0 · · · gis · · · 0]T and ḡit := [0 · · · git · · · 0]T.

From the definition of flow and jump maps in (5.14), it is straightforward

to verify that they are both outer semi-continuous mappings. We also note

that the sets C and D in (5.14) are closed subsets. These properties of the

hybrid system in (5.14) ensure that it is nominally well-posed, see Chapter 6

in [31] for details.
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5.3.2 Consensus

In this subsection, we first define a decaying parameter θi through which

MASP can be computed for each agent in V and subsequently present the

theorem for event-triggered consensus which describes the dynamics of the

ETM.

θi is defined using the following lemma from [69].

Lemma 5.2 ( [69]). Let θi : R≥0 → R be the solution to the differential

equation

θ̇i(s) =

{
−2Li

µθi(s)− γi(θ
2
i (s) + 1), s ∈ [0, T i

0(λi)]

0, s > T i
0(λi)

,

with the initial condition θi(0) = 1
λi
, where Li

µ = Li + µi, µi > 0 is arbi-

trarily small constant, and γi is the error gain. Then, θi(s) is monotonically

decreasing and T i
0(λi) is such that θi(s) = λi for s ≥ T i

0(λi).

Here, λi ∈ (0, 1) is a design parameter that influences both the MASP

and the ETM (namely, hybrid dynamics in (5.17)). By choosing appropriate

parameters such as λi, µi for each agent i, the upper bound T i ≤ T i
0(λi) can

be determined using (28) in [69]. Furthermore, Li in Lemma 5.2 is defined in

(A.14) and depends on Los, control gain κ, and in-degree di.

The main result of this chapter is stated as below and the proof is presented

in Appendix A.2.1.

Theorem 5.1. For the MAS in (5.14), if the upper bound on sampling interval

(defined in (5.5)) is given by T i
0(λi) stated in Lemma 5.2, and if the dynamic

ETM governed by (5.10) is such that ∀i ∈ V we have:

f i
η = −βiηi +

ϑ

2
|Liζ|2,

gis = ηi + γi

(
λi −

1

λi

)
|ei|2,

git = ηi + γiλi|ei|2, (5.17)
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where βi > 0, ϑ ≥ 0, λi ∈ (0, 1),

γ2
i ≥ Kκ

ϵ1Λ̄
2
M

2
+ 2κ2Tr(ATA) + ϑTr(LTL),

K >
2γ + 4κ2

ξmin

Tr(LTL)/
[
2(aξ(L)κ− Los)−

κ

ϵ1

]
,

ϵ1 ∈
( 1

2aξ(L)

p̄

p̄− 1
,∞

)
, (5.18)

and the control gain κ = p̄ Los

aξ(L)
, p̄ > 1, then, the closed-loop system in (5.14)

is asymptotically stable w.r.t. the consensus set

{x ∈ RnN |
((
IN − 1Nξ

T
)
⊗ In

)
x = 0}. (5.19)

Through the following remarks we discuss our results in comparison with

the results in [115].

Remark 5.1. By adopting the framework discussed in [18], in this chapter, we

show that the computation of MASP (via Lemma 5.2) can be made independent

of the nature of broadcasts (namely, exact state broadcasts in [18] or quantized

information broadcasts in this chapter). However, the study in [115] differs in

this respect; in [115], the computation of MASP was dependent on the nature

of broadcasts and appeared to be more conservative for the case of quantized

broadcasts, see (23) and (35) in [115]. In this context, see Table 5.1 in Section

5.4.

Remark 5.2. Second, we note that [115] presented results associated with

consensus of Lipschitz nonlinear dynamics over undirected graphs with periodic

sampling. It is worth mentioning that [115] did remark that their work could

be extended to the case of aperiodic sampling but offered no further analysis in

this context. On the contrary, in this work we present results for agents with

continuous one-sided Lipschitz dynamics over directed graphs with aperiodic

sampling by adopting the framework discussed in [18].

Remark 5.3. Next, the ETM in [115] is dependent on the difference between

model-based propagation of the true state xi, say x̂i, and the true state xi.
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This implies that in addition to the agent modeling the decoded states of itself

and its neighbors, it must also evaluate x̂i to evaluate the event-triggering

condition, see (25) in [115]. Unlike [115], the ETM in this work is governed

by the functions in (5.17) in Theorem 5.1 which are solely dependent on the

error ei = ζi − xi, eliminating the need to model x̂i.

5.4 Numerical Example

In this section, we present an illustration of our results by borrowing the

numerical example from [18]. We consider that each agent in the network

adopts the following dynamics:

∀i ∈ V ,

{
ẋi = −x3

i + 0.1 sin(xi) + ui,

ui = −κLix, κ = 0.5,
(5.20)

over a directed network whose graph Laplacian L is given by:

L =

[
2 0 0 −2

−1.3 2.3 0 −1
−0.8 −1.5 2.3 0
0 0 −2.5 2.5

]
. (5.21)

Notice that f(xi) = −x3
i + 0.1 sin(xi) in (5.20) is not globally Lipschitz but

is globally one-sided Lipschitz with one-sided Lipschitz constant Los = 0.1.

Here, κ = 0.5 in (5.20) satisfies the inequality in Lemma 5.1. The event-

triggered control protocol that uses the broadcast information is ui = −κLiζ.

For the MAS in (5.20), we set the lower bound of sampling period, εi in (5.5),

to be 1 ms, the time step for flow computation to be 0.1 ms and the total

simulation time to be 20 s. Figure 5.2 depicts the consensus of agent states

when the quantizer gain ∆ = 0.5 and αm = βi = 0.1.

Next, we compare our approach in this work (and its predecessor in [18])

against the work in [115] in terms of the following two aspects: a) the MASP

:= maxλi∈(0,1) T
i
0(λi), and b) the performance of ETM in the case of quantized

broadcasting. For brevity, we label [115] as R1, [18] as R2 and the work in this

chapter as R3 in Tables 5.1 and 5.2. We observed that the MASP computation

in [115] may result in slightly conservative bounds compared to this work
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Figure 5.2: Consensus with ∆ = 0.5 and αm = 0.1.

(or [18]); this is due to the way the error gain γ in [115] was computed, see

Table 5.1. Table 5.1 also offers a comparison between the two ETMs, namely,

the one in [115] and the one governed by (5.17) in this chapter.

Table 5.2 depicts the comparison in terms of percentage of events (averaged

across all agents over simulation time of 20 s) for various λi which affect

the choice of the chosen sampling period T̄m as follows T̄m ≤ mini T
i
0(λi).

Here, we compare the performance of [18] against this work by varying design

parameters (αm,∆) associated with the global multiplier m and the quantizer

qosc. It can be seen that for a given αm, smaller ∆ results in fewer events.

For this simulation example, we have also observed that as long as αm ≤ βi,

the quantization levels, determined by the values of q(ei/m), were bounded

below 1; however, unlike [115], in this chapter no theoretical bounds on the

quantization range are presented.

5.5 Conclusion

In this chapter, we studied the event-triggered consensus of nonlinear

agents (with one-sided Lipschitz dynamics) that interact over static directed

networks through quantized broadcasts. We addressed this problem by mod-

eling the MAS using the hybrid systems framework wherein the sampling and
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MASP Chosen Percentage of events

T̄m (αm,∆)

(in ms) (0.1, 0.01) (0.05, 0.01)

R1 1.6

1 ms

11.11 11.11

R2 4.4 – –

R3 4.4 15.88 19.19

Table 5.1: Performance comparison between R1: [115], R2: [18] and R3: this
work.

λi T̄m Percentage of events

(ms) R2 R3 with (αm,∆)

(0.1, 0.1) (0.1, 0.01) (0.05, 0.01)

0.69 1 13.37 46.32 15.88 19.19

0.45 2 28.60 71.14 24.66 30.14

0.25 3 46.25 85.09 30.55 39.25

Table 5.2: Performance comparison of the ETM with and without quantized
broadcasts.

events instants are characterized as jumps in the overall system. As a conse-

quence of establishing stability of the overall hybrid system, we obtained the

MASP and the dynamics of the ETM. Through an illustrative example we

convey the effectiveness of the ETM and provide a comparative study against

existing research. Our future work in this direction would focus on estimating

the quantization range necessary to avoid saturation.
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Chapter 6

Sampled-Data Control of
Nonlinear MASs prone to
Transmission Delays1

In this chapter, we consider the problem of distributed control of nonlin-

ear MASs where the information broadcasts over a network are susceptible to

one type of imperfection, namely, transmission delays. The design methodol-

ogy employed is such that the sampling instants (at which agents broadcast

information) could be both aperiodic and asynchronous in nature. The broad-

casts, upon arrival, are propagated by the agents through dynamical models

and these propagates are used in their control protocols. The overall MAS is

formulated as a hybrid dynamical system whose stability governs the upper

bounds on: a) the sampling interval, namely, the duration between two consec-

utive broadcasts, and b) the transmission delays that the broadcasts might be

prone to. Finally, through a case study on the consensus of Lipschitz nonlinear

agents we demonstrate the effectiveness of the proposed methodology.

The chapter is organized as follows. The problem is formulated in Section

6.1 followed by its hybrid systems model which is presented in Section 6.2. The

main results are discussed in Section 6.3 and its effectiveness is demonstrated

via a case study in 6.4. Finally, concluding remarks are stated in Section 6.5.

1The material in this chapter was submitted for publication as: Mani H. Dhullipalla,
Hao Yu and Tongwen Chen. Distributed control under transmission delays: a model-based
hybrid systems approach. IEEE Transactions on Automatic Control.
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6.1 Problem Formulation

Consider a MAS of N agents interacting over a network G = (V , E). Let

each agent in G have the following nonlinear dynamics:

ẋi = fi(x, ui), ∀i ∈ V , (6.1)

where xi ∈ Rn is the agent state, ui ∈ Rm is the control input and x is the

concatenation of agent states. Here, the function fi : RnN × Rm → Rn is

assumed to be a continuous function. For the MAS in (6.1), we assume that

there exists a distributed static state feedback controller, given by

ui = κ(xN̄ i
in
), ∀i ∈ V , (6.2)

that stabilizes it. Here xN̄ i
in

:= (Āi ⊗ In)x where the diagonal matrix Āi =

diag({aj|aj = 1, ∀j ∈ N̄ i
in; aj = 0, ∀j /∈ N̄ i

in}) and N̄ i
in is the index set defined

in Section 4.1.

To implement the control protocol in (6.2), agents in the network require

continuous access to their neighbor states which is seldom possible in scenarios

where a wireless network is employed to accomplish this task. Therefore,

in this work, we consider a networked systems approach to implement the

aforementioned control protocol ui over a broadcast network G. For this, it

is desired that each agent i broadcasts its full state information xi at discrete

sampling instants sik where {sik|sik < sik+1}∞k=0. For every agent i ∈ V , the

sampling interval sik+1 − sik must satisfy the following two inequalities:

εi ≤ sik+1 − sik ≤ T i. (6.3)

The lower bound εi in (6.3) is an arbitrarily small positive constant that

ensures instantaneous Zeno solutions2 are avoided and, in practice, reflects

the physical constraints of hardware devices employed. The upper bound

T i ≥ εi in (6.3) is a parameter that is to be designed and, in this work, is

referred to as the MASP associated with agent i.

2A solution x of hybrid system H is instantaneous Zeno if it is complete and eventually
discrete, see Chapter 2 of this thesis or [31] for technical definitions.

79



The states, as mentioned earlier, are broadcasted over G and are likely

to suffer from transmission delays. Let δi,kj denote the time interval between

when state broadcast is initiated by agent i (say, at sik) and when the state is

received by agent j ∈ N i
out (namely, at time sik + δi,kj ). We consider that the

delay, for all agents i ∈ V , is bounded as follows: 0 ≤ δi,kj ≤ T i
MAD, ∀j ∈ N̄ i

out,

where T i
MAD ≤ T i denotes the maximum allowable delay (MAD) associated

with broadcasts originating from agent i. Here, note that δi,ki = 0, ∀i ∈ V ,

i.e., we assume that any agent i ∈ V is immediately aware of its own latest

broadcast.

Assumption 6.1. (Small-delay condition) At every k ∈ Z≥0, each agent i ∈ V

satisfies

δi,kj ∈ [0,min{T i
MAD, s

i
k+1 − sik}], ∀j ∈ N i

out.

Assumption 6.1 is the so-called small-delay condition. This assumption

ensures that any broadcast from agent, say, i, arrives at their out-neighbors:

a) in the order that it was broadcasted, and b) it arrives before i initiates its

subsequent broadcast.

Subsequently, we consider a model-based approach to propagate the broad-

casts that are available to an agent. In this chapter, we assume that the

agent, say, j, broadcasts both the state xj(s
j
l ) and the corresponding broad-

cast instant sjl . Let x̂i
j denote the propagated state of in-neighbor j ∈ N i

in as

perceived by i and let rj,li = sjl + δj,li denote the arrival time of this state at i.

The hybrid dynamics of x̂i
j is given by:{

˙̂xi
j = Υi

j(x̂
i
j), t ∈ [rj,li , rj,l+1

i ),

x̂i
j((r

j,l
i )+) = x̃i

j(r
j,l
i ), t = {rj,li },

(6.4)

where Υi
j : Rn → Rn is a continuous function. Here, x̃i

j(r
j,l
i ) is assumed

to be, instantaneously, computable using the solution SΥi
j
(x̃i

j(0), tflow) to the

following system: {
˙̃xi
j = Υi

j(x̃
i
j), t ∈ [sjl , s

j
l+1),

x̃i
j((s

j
l )

+) = xj(s
j
l ), t ∈ {sjl }.

(6.5)
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In other words, x̃i
j(r

j,l
i ) = SΥi

j
(xj(s

j
l ), δ

j,l
i ). Let x̂i = [(x̂i

1)
T · · · (x̂i

N)
T]T ∈ RnN

and x̃i = [(x̃i
1)

T · · · (x̃i
N)

T]T ∈ RnN . For the protocols utilizing the available

broadcasts directly (i.e., employing ZOH), Υi
j(·) = 0, ∀i, j ∈ V , and x̂i

j = x̂k
j

where j is the in-neighbor of agents i and k.

Remark 6.1. (On model-based dynamics) Here, we considered that each agent

j ∈ V broadcasts both its sampling instant sjl and its sampled state xj(s
j
l ); this

is often referred to as the time-stamp technique, see [26]. Using this data,

the receiving agent i ∈ N j
out computes the initial condition of the model-based

state x̂i
j at r

j,l
i . With the mild assumption that Υi

j is continuous, this approach

is applicable in the case where the solution to the differential equation: ẋ =

Υi
j(x), x(t0) = x0, is easily computable for t ≥ t0, for instance, in the case of

linear systems as in [54] or, as an example, in the case of single-link robots as

in Section 6.4.2.

Owing to the communication network, each agent i employs the following

control protocol:

ui = κ(x̂i
N̄ i

in

), (6.6)

where x̂i
N̄ i

in

:= (Āi ⊗ In)x̂i. The primary objective of this work is to determine

the pair (T i
MAD, T

i), ∀i ∈ V , such that the revised control protocol in (6.6)

stabilizes the MAS in (6.1).

6.2 Hybrid Systems Modeling

In this section, we model the MAS in (6.1) using the hybrid systems frame-

work. For this, we define variables both w.r.t. in-neighbors (because ui in (6.6)

is a function of x̂i
N̄ i

in

) and out-neighbors (because it facilitates convergence

analysis in Section 6.3).

Let eji (t) = x̂j
i (t)−xi(t) ∈ Rn, ∀j ∈ N i

out, denote the network-induced error

of agent i as perceived by agent j and let ẽji = x̃j
i − x̂j

i ∈ Rn, ∀j ∈ N i
out. Let

eji , ẽ
j
i = 0, ∀j /∈ N i

out. Depending on the context, we perceive the quantity eji
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as the out-neighbor error for agent i (for some j ∈ N i
out) or as the in-neighbor

error for agent j (for some i ∈ N j
in). Using the model-based estimates in (6.4),

the flow dynamics of eji , ∀j ∈ N i
out, is

ėji = Υj
i (x̂

j
i )− fi(xi), t ∈ [ri,kj , ri,k+1

j ), (6.7)

where the boundary condition, namely, eji (r
i,k
j ), is revised via jump dynamics

at the arrival instants ri,kj is as follows:

eji ((r
i,k
j )+) = x̂j

i ((r
i,k
j )+)− xi((r

i,k
j )+)

= x̃j
i (r

i,k
j )− xi(r

i,k
j )

= x̃j
i (r

i,k
j )− x̂j

i (r
i,k
j ) + x̂j

i (r
i,k
j )− xi(r

i,k
j )

= ẽji (r
i,k
j ) + eji (r

i,k
j ). (6.8)

Next, we examine the hybrid dynamics of ẽji . The flow dynamics of ẽji is as

follows:

˙̃eji = Υj
i (x̃

j
i )−Υj

i (x̂
j
i ). (6.9)

Because x̃j
i and x̂j

i jump at instants sik and ri,kl , respectively, we examine jump

dynamics at both these instants. First, jump at a broadcast instant on i,

namely, at sik:

ẽji ((s
i
k)

+) = x̃j
i ((s

i
k)

+)− x̂j
i ((s

i
k)

+)

= xi(s
i
k)− x̂j

i (s
i
k)

= − eji (s
i
k). (6.10)

Subsequently, jump at an arrival instant of (xi(s
i
k), s

i
k) on j ∈ N i

out, namely,

at ri,kj :

ẽji ((r
i,k
j )+) = x̃j

i ((r
i,k
j )+)− x̂j

i ((r
i,k
j )+)

= x̃j
i (r

i,k
j )− x̃j

i (r
i,k
j )

= 0. (6.11)
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Next, let lji ∈ {0, 1} denote an indicator variable associated with agent

i and its out-neighbor j ∈ N i
out. If j /∈ N i

out, then lji = 0. At sik, when

agent i broadcasts data it sets lji = 1, ∀j ∈ N i
out. When neighbor j receives

this data, the indicator lji is reset to 0. At the next sampling instant sik+1,

owing to Assumption 6.1, lji = 0, ∀j ∈ N i
out; consequently, upon broadcast,

the indicator lji , ∀j ∈ N i
out, is reset to 1. Without loss of generality, we set

lii = 1, ∀t ∈ [0,∞), ∀i ∈ V . In Section 6.3, we will use li to construct jumps

associated with broadcasted state xi(s
i
k).

Finally, prior to introducing the hybrid systems model, we define the timer

variable τi to track the time elapsed since the last sampling instant on agent

i. Its dynamics is governed by:{
τ̇i = 1 when τi ∈ [0, T i],

τ+i = 0 when τ ∈ [εi, T i].
(6.12)

Let τ be the concatenation of all the timer variables.

We present the hybrid dynamics of the overall MAS. Each agent i ∈ V is af-

fected by its in-neighbors j ∈ N i
in; therefore, the hybrid dynamics of the overall

MAS involves the following concatenated variables: for every i ∈ V , let in-

neighbor errors be ei = [(ei1)
T · · · (eiN)T]T ∈ RnN , ẽi = [(ẽi1)

T · · · (ẽiN)T]T ∈ RnN

and in-neighbor indicators be li = [li1, . . . , l
i
N ]

T ∈ {0, 1}N . Furthermore, let

x = [xT
1 · · · xT

N ]
T ∈ RnN , e = [(e1)T · · · (eN)T]T ∈ RnN2

, ẽ = [(ẽ1)T · · · (ẽN)T]T ∈

RnN2
, lin = [(l1)T · · · (lN)T]T ∈ {0, 1}N2

, τ = [τ1 · · · τN ]T. Then, the hybrid

dynamics of q = (x, e, ẽ, l, τ) is given by:{
q̇ = F (q), q ∈ C

q+ ∈ G(q), q ∈ D
(6.13)

where flow and jump sets are defined as follows:

C =
{
RnN+2nN2 × {0, 1}N2 × [0, T 1]× · · · × [0, TN ]

|{lTi 1 > 1 ∧ τi ≤ T i
MAD} ∨ {lTi 1 = 1 ∧ τi ≤ T i}, ∀i ∈ V

}
,

D =
⋃
i∈V

Di, Di =
{
q ∈ C| {lTi 1 > 1 ∧ τi ≤ T i

MAD}

∨ {lTi 1 = 1 ∧ {εi ≤ τi ≤ T i}}
}
, (6.14)
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where out-neighbor indicators are concatenated in li = [l1i · · · lNi ]T. In (6.13),

the continuous function F (q) is given by

F (q) =
[
fT (Υx̂ − 1N ⊗ f)T (Υx̃ −Υx̂)

T 0T 1T
]T

, (6.15)

and the set-valued mapping G(q) =
⋃

i∈V Gi(q),

Gi(q) =


Gb

i (q),

i waiting to broadcast︷ ︸︸ ︷
lTi 1 = 1,

Gu
i (q), lTi 1 > 1,︸ ︷︷ ︸

j ∈ N i
out awaiting updates

. (6.16)

Note that, in (6.16), the set-valued maps Gi(q) are based lTi 1 which identifies

agents in N i
out that are yet to receive broadcasts from i. Here,

f = [fT

1 · · · fT

N ]
T ∈ RnN

Υx̂ = [(Υ1
x̂)

T · · · (ΥN
x̂ )

T]T ∈ RnN2

Υx̃ = [(Υ1
x̃)

T · · · (ΥN
x̃ )

T]T ∈ RnN2

Υi
x̂ = [(Υi

1(x1 + ei1))
T · · · (Υi

N(xN + eiN))
T]T,

Υi
x̃ = [(Υi

1(x1 + ei1 + ẽi1))
T · · · (Υi

N(xN + eiN + ẽiN))
T]T,

Gb
i =

[
xT (e− Γe

ie)
T (ẽ− Γẽ

i (ẽ+ e))T (l + Γl
i1)

T (Γτ
i τ)

T
]T
,

Gu
i =

⋃
j∈N i

out

Gu
ij,

Gu
ij =

[
xT (e+ Γe

ij ẽ)
T (ẽ− Γe

ij ẽ)
T (l − Γl

ij1)
T τT

]T
, (6.17)

where Γ
{}
{} matrices associated with broadcast jump maps Gb

i and update jump

mapsGu
ij are:

{
Γe
i = Γi⊗Γi⊗In,Γẽ

i = Âdia
i ⊗Γi⊗In,Γl

i = Âdia
i ⊗Γi,Γ

τ
i = IN−Γi

}
,

and
{
Γe
ij = Γj ⊗ Γi ⊗ In,Γh

ij = Γe
ij,Γ

l
ij = Γj ⊗ Γi}, respectively. Γi ∈ RN×N is

a diagonal matrix with the i-th diagonal entry 1 and others 0, In ∈ Rn×n is

identity matrix of dimension n, ldiain is the diagonalized matrix of vector lin and

Âdia
i = Āi −Γi (Āi is defined in Section 6.1). We note that the assumptions on

continuity of f and Υ, and the construction of G(q), to ensure that the set-

valued mapping is outer semicontinuous, allow the hybrid dynamics in (6.13)

to be nominally well-posed, see Chapter 6 in [31].

84



6.3 Main Results

In this section, we make some assumptions on functions associated with the

hybrid system and subsequently establish upper-bounds on transmission de-

lays, namely, T i
MAD, and on sampling intervals, namely, T i, while also ensuring

stability.

In this work, jumps in the hybrid system in (6.13) are characterized by

observing the changes that are caused by a broadcasted state, say, xi(s
i
k), on

its out-neighbors in N i
out rather than observing the changes that are caused

by various broadcasted states, sent by the in-neighbors in N i
in, on i. In other

words, the focus is on changes caused by a packet (sik, xi(s
i
k)) and is not on the

changes that occur at agent i. Adopting this perspective allows us to, neatly,

distinguish between the broadcast instants and update instants (caused by

data arrival on out-neighbors). To facilitate this distinction, we define di

based on li:

di =

{
0, lTi 1i = 1,

1, lTi 1i > 1.
(6.18)

When di = 0, the subsequent jump affecting (ei, ẽi) is because of broadcasting

by i; otherwise, the subsequent jump affecting (ei, ẽi) is caused by the arrival

of state xi(s
i
k) at some j ∈ N i

out.

In what follows, we make technical assumptions about the hybrid system

in (6.13).

Assumption 6.2. (On agent dynamics fi and models Υj
i ) For every i ∈ V,

there exists scalar functions Ĥj
i , Ĥ

max
i : RnN×RnN → R≥0, non-negative scalars

L̃j
i and L̂j

i such that, ∀j ∈ N̄ i
out, we have

a) | ˙̃eji | ≤ L̃j
i |ẽ

j
i |;

b) |ėji | ≤ L̂j
i |e

j
i |+ Ĥj

i (x, e
i);

c) Ĥj
i (x, e

i) ≤ Ĥmax
i (x, ei).
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Remark 6.2. Assumptions 6.2a) and 6.2b) essentially governs the nature of

the growth of error variables ẽji and eji , respectively. We note that Assumption

6.2a) holds for Lipschitz Υj
i but can also hold true for one-sided Lipschitz Υj

i

with L̃j
i = max{0,Lj

i} where Lj
i denotes the one-sided Lipschitz constant of

Υj
i . Assumption 6.2c) establishes a bound on the residual terms in Ĥj

i (x, e
i)

that are used to bound the growth rate of eji , ∀j ∈ N i
out.

Assumption 6.3. For the hybrid system in (6.13), and ∀i ∈ V, there exist

a locally Lipschitz function Wi(ei, ẽi) : RnN × RnN → R≥0, functions αi
W ,

ᾱi
W ∈ K∞, scalar function Hdi

i : RnN × RnN → R≥0, non-negative constant

Ldi
i and scalar λi ∈ (0, 1) such that

a) αi
W (|ei|) ≤ Wi ≤ ᾱi

W (|(ei, ẽi)|), ∀ei, ẽi ∈ RnN ,

b) let ėi = F̄ei, ˙̃ei = F̄ẽi and let F̄ ∈ {F̄ẽi , F̄ei + F̄ẽi}, then

⟨∇Wi, F̄ ⟩ ≤ Ldi
i Wi +Hdi

i (x, ei),

∀x ∈ RnN and almost all ei, ẽi ∈ RnN , ∀i ∈ V,

c) Wi(e
+
i , ẽ

+
i ) ≤ Wi(ei, ẽi) when di = 1 and d+i ∈ {0, 1},

d) Wi(e
+
i , ẽ

+
i ) ≤ λiWi(ei, ẽi) when di = 0 and d+i = 1.

Assumption 6.4. Suppose Assumptions 6.3a) and 6.3b) hold. For the hybrid

system in (6.13), there exist a locally Lipschitz function V (x) : RnN → R≥0,

functions αV , ᾱV , αV ∈ K∞, a continuous function Θ(x) : RnN → RnN and

positive error gains γdi
i , di ∈ {0, 1}, such that

a) αV (|Θ(x)|) ≤ V (x) ≤ ᾱV (|Θ(x)|), ∀x ∈ RnN ,

b) ⟨∇V (x), f(x, e)⟩ ≤ −αV (|Θ(x)|) +
∑

i∈V
[
(γdi

i )2|ei|2 − (Hdi
i (x, ei))2

]
, for

almost all x ∈ RnN and ∀ei ∈ Rn, ∀i ∈ V.

Remark 6.3. Note that Θ(x) in Assumption 6.4 represents a state transfor-

mation and aids in addressing problems involving MASs that do not necessar-

ily converge to the origin, see [18]. Assumption 6.4b) conveys that the MAS
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ẋ = f(x, e) is input-to-state stable (ISS) with respect to ei, ∀i ∈ V, where the

error gain γdi
i may be dependent on di if the residual Hdi

i is dependent on di.

Prior to stating the result on stability of the closed-loop system in (6.13),

we need to ensure that the conditions laid out in Assumption 6.3 are met.

This notion is addressed through the following lemma whose proof is given in

Appendix A.3.1.

Lemma 6.1. (On Wi) Suppose Assumption 6.2 holds. If Wi(ei, ẽi) is defined

as:

Wi(ei, ẽi) := max{λi|ẽi|, |ei + ẽi|}, ∀i ∈ V , (6.19)

then Assumption 6.3 is satisfied with Ldi
i = λi

−1
(
diL̃

max
i + 2

√
|N̄ i

out|L̂max
i

)
,

Hdi
i (x, ei) =

√
|N̄ i

out|Ĥmax
i (x, ei), where λi ∈ (0, 1) is a design parameter.

For each agent i ∈ V , we define two weight parameters θdii (s), s ∈ R≥0, one

for each di ∈ {0, 1}, using the following two differential equations:

θ̇dii = −2Ldi
i θ

di
i − γ̆i((θ

di
i )

2 + 1), (6.20)

where constants Ldi
i are defined in Assumption 6.3, γ̆i = 2γmax/λi, γmax =

maxi,di γ
di
i and γdi

i , di ∈ {0, 1}, are defined in Assumption 6.4. Note that

θdii (·), di ∈ {0, 1}, for each agent i ∈ V , are monotonically decreasing param-

eters that are used to compensate for the growth of error measure Wi(ei, ẽi)

and aid in determining T i
MAD and T i as shown in the following result whose

proof is presented in Appendix A.3.2.

Theorem 6.1. (Asymptotic stability in the presence of small-delays) Suppose

T i
MAD, T

i, ∀i ∈ V , are such that Assumption 6.1 holds and, additionally, the

solutions θ0i (·) and θ1i (·) of (6.20) satisfy the inequalities:{
θ0i (τi) ≥ (λi)

2θ1i (0), τi ∈ [0, T i],

θ1i (τi) ≥ θ0i (τi), τi ∈ [0, T i
MAD],

(6.21)

for some positive initial conditions θ
{0,1}
i (0). Then, under Assumptions 6.2,

6.3 and 6.4, the closed-loop system in (6.13) is asymptotically stable with re-

spect to the set {x ∈ RnN | Θ(x) = 0}.

87



Remark 6.4. We note that for the specific choice of Wi constructed in Lemma

6.1, Hdi
i is independent of di. As a consequence, the error gain γdi

i in As-

sumption 6.4b) could also be independent of di. Therefore, using Lemma 6.1,

the bound in Assumption 6.4b) can be rephrased in terms of Wi as follows:

⟨∇V (x), f(x, e)⟩ ≤ −αV (|Θ(x)|) +
∑

i∈V
[
γ̆2
i W

2
i − (Hdi

i )2
]
where we use the

fact that
∑

i∈V |ei|2 =
∑

i∈V |ei|2. Subsequently, this notion is also reflected in

the design of θdii in (6.20) where γ̆i is adopted instead of γdi
i .

Remark 6.5. The methodology discussed in this chapter relies on the as-

sumption (specifically, Assumption 6.4) that the considered MASs is, to a

certain extent, robust to external input. This notion can be exploited, per-

haps with suitable modifications, in order to ensure that the methodology is

applicable to several real-world applications involving multi-agent coordina-

tion problems such as attitude (namely, orientation) alignment, multi-agent

rendezvous, flocking, coupled oscillators, consensus in power generators, see

articles [84, 88] and the references therein for further description over these

problems.

6.4 Consensus of Nonlinear MASs

In this section, we consider a case study on consensus of Lipschitz nonlinear

agents and, subsequently, offer a numerical example to illustrate our results.

6.4.1 Lipschitz Dynamics

Let the agent dynamics be given by

ẋi = f(xi)− κ(Li ⊗ In)x̂i, ∀i ∈ V , (6.22)

where the unforced dynamics f(xi) : Rn → Rn is globally Lipschitz with

a Lipschitz constant L, L is the graph Laplacian of connected undirected

network G (see [62] for its properties) and the control gain κ is such that

κ >
L
Λ2

√
2dM
Λ2

= κ0, dM = max
i

di, (6.23)
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where di is the degree of agent i. Note that the condition in (6.23) can ensure

consensus of the MAS in (6.22) with a CT controller ui = κ(Li ⊗ In)x.

The following result, whose proof is given in Appendix A.3.3, addresses

the consensus of Lipschitz nonlinear MASs.

Theorem 6.2. (Consensus in the presence of small-delays) Consider the MAS

in (6.22), with a given control gain κ = pκ0 satisfying (6.23), where x̂i ∈

RnN is the concatenation of model-based neighbor states propagated via the

model Υi
j(·) = f(·), ∀j ∈ N i

out. Under Assumptions 6.2, 6.3 and 6.4, if

L̃j
i = L̂j

i = L, ∀i, j ∈ V, (Ĥj
i )

2 = 2κ2(|(Li ⊗ In)x|2 + |(Li ⊗ In)ei|2), ∀j ∈ N i
out,

V (x) = K
2
|(L⊗ In)x|2,

γ̆2
i = 4

|Lmax
i |2

λ2
i

(
Kκ

ϵ2
2
+ 2κ2|N̄ i

out|
)
, ϵ2 >

Λ2
M

2Λ2

p

p− 1
,

K > 2κ2|N̄ i
out|/

[(
Λ2 −

Λ2
M

2ϵ2

)
κ− Λ2κ0

]
,

where Λ2 and ΛM are the smallest and the largest non-zero eigenvalues of

L, respectively, then the closed-loop system in (6.22) is asymptotically stable

w.r.t. the set {x ∈ RnN |(L⊗ In)x = 0}.

6.4.2 Numerical Example

In this section, we present an illustrative example to demonstrate the re-

sults in Section 6.4.1. Consider a network of single-link robots with the fol-

lowing dynamics:

ẋi =

[
xi,2

− sin(xi,1)

]
− κ(Li ⊗ I2)x̂i, κ = 2, (6.24)

where xi = [xi,1 xi,2]
T, f(xi) is globally Lipschitz with a Lipschitz constant

L = 1 and the control gain κ satisfies (6.23). For the simulation, we set

the time step for flow computation to be 0.1 ms and the total time to be

5 s. When λi = 0.3, T i = T i
MAD = 1 ms, ∀i ∈ V , is chosen by examining

the trajectories of weight parameters θ0i (s) and θ1i (s) that satisfy conditions

in (6.21); these trajectories are depicted in Fig. 6.1. Using this, let δ̄ =
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Figure 6.1: Trajectory of weights θ0i (·) and θ1i (·) for λi = 0.3.

[0.2 0.3 0.4 0.6]T i
MAD ≤ T i ms denote the delays associated with broadcasts

from agents indexed {1, 2, 3, 4}, respectively. Figure 6.2 depicts the state

trajectories of the nonlinear MAS in (6.24) in the presence of transmission

delays given by δ̄.
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Figure 6.2: Consensus of state trajectories.
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6.5 Conclusion

In this chapter, we studied the problem of distributed control of nonlinear

MASs that are prone to small transmission delays. First, we offer a general

approach to address this problem by employing model-based propagates of the

neighbors’ states and subsequently model the overall MAS using the hybrid

systems framework. As a consequence of the stability analysis, we determine

the bounds on delay (namely, MAD) and sampling interval (namely, MASP)

for each agent. Furthermore, to demonstrate the effectiveness of the proposed

framework, we present a case study on the consensus of agents with Lips-

chitz nonlinear dynamics interacting over an undirected network. Finally, a

numerical example is simulated to illustrative the results of the case study.
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Chapter 7

Dynamic Event-Triggered AGFs
for Weight-Balanced Networks1

Accelerated gradients algorithms are currently at the receiving end of

widespread interest in optimization theory, both under discrete- and continuous-

time frameworks. In light of recent developments, in the first part of our work,

we study the problem of designing a CT AGA for weight-balanced directed

networks unlike the existing references that only address this problem for the

case of undirected networks. We show that the convergence is exponential

and the convergence rate is proportional to the gain, associated with the gra-

dient term, which can be arbitrarily chosen. Subsequently, in the second part

of our work, to facilitate digital implementation of the discussed algorithm,

we employ an event-based broadcasting protocol on each node of the digraph

that intermittently checks for events by evaluating an ETC and accordingly

making decision on broadcasting. The distributed system is reformulated us-

ing the hybrid systems framework and is Zeno-free by design; this formulation

allows us to improve the performance of the ETM and, as a consequence,

the broadcast protocol. We provide a numerical example to demonstrate our

results.

The rest of this chapter is organized as follows. In Section 7.1, some no-

tations and preliminaries specific to this chapter are presented. The problem

1The material in this chapter has been submitted for publication as: Mani H. Dhullipalla,
Hao Yu and Tongwen Chen. Accelerated gradient flows for weight-balanced digraphs with
event-based broadcasting. IEEE Transactions on Control of Network Systems.
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statement and algorithm are described Section 7.2. Convergence results for

the distributed algorithm are described in Section 7.3. The algorithm is re-

formulated through the hybrid systems framework and a periodic event-based

broadcast protocol is designed in Section 7.4. Numerical simulations demon-

strate the effectiveness of CT algorithm and the performance of event-based

broadcasts in Section 7.5. Concluding remarks are made in Section 7.6.

7.1 Notation and Preliminaries

In addition to the preliminaries on algebraic graph theory described in

Section 4.1 of Chapter 4, in this section we introduce some notation specific

to this chapter and provide some useful properties of weight-balanced directed

networks.

7.1.1 Notation

First, let Za, Zb, Zsym be three coefficients (or parameters) then they are

often referred together as Z{}; for instance, Z{} > 0 implies that each of the

three coefficients Za, Zb, Zsym are positive. Let A be a square matrix, then ΛA
M

corresponds to the maximum eigenvalue of A.

7.1.2 Preliminaries

A digraph is weight-balanced if di =
∑

j∈V aij =
∑

j∈V aji = dout
i , ∀i ∈ V ,

i.e., in-degree at every node equals its out-degree. Let Ls := (L + LT)/2 and

Lss := (L − LT)/2 denote the symmetric and skew symmetric decompositions

of Laplacian L, respectively. The following lemma, from [11, 52], is used to

show convergence of dynamics in Section 7.3.

Lemma 7.1. (On weight-balanced networks) Let G be a strongly connected

and weight-balanced digraph with Laplacian L. Then, it follows that:

1. Ls ⪰ 0 and 0 is its simple eigenvalue;
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2. there exists Γ ∈ RN×N ≻ 0 such that

LsΓ = ΓLs = IN − 1

N
11T;

3. there exists non-negative scalar ϵL such that

ϵLLs − LT

ssLss ⪰ 0.

7.2 Problem Formulation

Let G = (V , E) be the digraph over which N computing nodes interact.

Each node i ∈ V is provided with local cost function fi : Rn → R which is

private (namely, known only to i). Consider the following DOP:

min
∑
i∈V

fi(xi) subject to xi = xj, ∀i, j ∈ V , (7.1)

where xi ∈ Rn is the local optimization variable. Next, we make some as-

sumptions on local cost functions.

Assumption 7.1. On local cost:

1. fi(·), ∀i ∈ V, is convex and continuously differentiable everywhere;

2. gradient ∇fi(·) is Li-Lipschitz, i.e.,

|∇fi(x)−∇fi(y)| ≤ Li|x− y|;

3. fi is µi-strongly convex, i.e.,

fi(y) ≥ fi(x) +∇fi(x)
T(y − x) +

µi

2
|y − x|2.

Assumption 7.1 ensures that the DOP in (7.1) has a unique minimum,

denoted x⋆. Here, we note that the assumption on strong convexity of fi

is similar to the assumptions made in existing literature such as [45, 111],

[108, 110, 113, 117, 122]. This assumption can be (slightly) relaxed to ensure

that only the global function
∑

i fi is either strongly convex, like in [113], or

it is restricted strongly convex as defined in [110]. The analysis in Section 7.3,

with small changes, extends to these relaxations.
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Assumption 7.2. The communication network G is a static, strongly con-

nected and weight-balanced directed graph.

In this chapter, we consider that each node i ∈ V has the following dy-

namics:

ẋi = a1vi − a2
∑
j∈V

aij
(
xi − xj

)
,

v̇i = −b1∇fi(xi)− b2vi − b3qi, (7.2)

q̇i =
∑
j∈V

aij
(
xi − xj

)
,
∑
i∈V

qi(0) = 0,

where state variables xi, vi, qi ∈ Rn and gains a{1,2}, b{1,2,3} are positive

scalars.

Remark 7.1. (On motivation) The dynamics in (7.2) is motivated by the CT

algorithm in [117] which provides an accelerated gradient method for undirected

networks. The algorithm in [117] can be obtained by making the substitutions:

a{1,2} = 1, and b2 = b3, in (7.2). However, the resultant algorithm may not

necessarily address the case of weight-balanced directed networks; this is, per-

haps, because of the specific choice of gains considered in [117]. In Appendix

A.4.1, we offer a counter-example to demonstrate that the algorithm in [117]

fails to converge over a weight-balanced digraph whereas the algorithm in (7.2)

(designed via Theorem 7.1) converges. Similar counter-examples can be con-

structed for [110] and [122]. Therefore, we begin with the most general case,

namely, (7.2).

The objective of the chapter is: 1) to show that the system, with node

dynamics (7.2), ensures that xi, ∀i ∈ V , approaches x⋆ asymptotically for

weight-balanced directed networks; and 2) to develop an event-based broad-

cast strategy (which is defined in Section 7.4) so that the objective in item

1) can be achieved through intermittent broadcasts as opposed to continuous

transmission in (7.2).
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7.3 Main Results: Convergence

In this section, we address the first objective of this work, i.e., to prove

that each node with dynamics (7.2) asymptotically reaches the global minima

x⋆ over a weight-balanced digraph. For this, let x = [xT
1 , , · · · , xT

N ]
T ∈ RnN ;

similarly, v ∈ RnN and q ∈ RnN are concatenated vectors of vi’s and qi’s,

respectively. Then, in compact form, the dynamics of the distributed system

can be expressed as 
ẋ = a1v − a2L

nx

v̇ = −b1[∇f(x)]− b2v − b3q

q̇ = Lnx, 1Tq(0) = 0

, (7.3)

where Ln = L ⊗ In. Here,
[
∇f(·)

]
is defined as [∇f(y)] := [∇f1(y1)

T, · · · ,

∇fN(yN)
T]T, ∀y = [yT

1 , , · · · , yT
N ]

T ∈ RnN .

The following lemma establishes the equilibrium of (7.3).

Lemma 7.2. (On equilibrium) Let E denote the equilibrium of the overall

system in (7.3) and let x⋆ denote the minimum of DOP in (7.1). Then,

E = (x̄⋆,0,−b1
b3

[
∇f(x̄⋆)

]
) where x̄⋆ = 1N ⊗ x⋆.

Proof. Let E := (x̄, v̄, q̄) and let (x̄i, v̄i, q̄i) denote the node-wise triplet of E.

From (7.2), the conditions for equilibrium, ∀i ∈ V , are as follows:∑
j∈V

aij
(
x̄i − x̄j

)
= 0, (7.4a)

a1v̄i − a2
∑
j∈V

aij
(
x̄i − x̄j

)
= 0, (7.4b)

−b1∇fi(x̄i)− b2v̄i − b3q̄i = 0. (7.4c)

From (7.4a), x̄i = x̄j = xc, ∀i, j ∈ V , where xc ∈ Rn denotes the consensus

state; employing this into (7.4b) establishes v̄i = 0, ∀i ∈ V . This results in

b1∇fi(x̄i) + b3q̄i = 0 from (7.4c). From (7.2), we see that
∑

i∈V q̇i = 0, which

implies that if qi(0) is chosen such that
∑

i∈V qi(t) =
∑

i∈V qi(0) = 0, then

b1
∑

i∈V ∇fi(xc) = −b3
∑

i∈V q̄i = 0. Under Assumption 7.1, the condition∑
i∈V ∇fi(xc) = 0 implies that xc = x⋆ ∈ Rn, where x⋆ denotes the global

minimum. This completes the proof.
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Next, in order to translate the equilibrium E to the origin we define trans-

formation variables as follows:
(
ai, bi, ci

)
:=

(
xi − x⋆, vi, qi +

b1
b3
∇fi(x

⋆)
)
. The

system dynamics in the transformed variables is given as:
ȧ = a1b− a2L

na,

ḃ = b1∇f − b2b− b3c,

ċ = Lna, 1Tc(0) = 0,

(7.5)

where ∇f =
[
∇f(x̄⋆)

]
−
[
∇f(x)

]
and state variables (a, b, c) are appropriate

concatenations of transformed states (ai, bi, ci), respectively.

Now we present the main result of this Section and provide its proof in

Appendix A.4.2.

Theorem 7.1. Suppose Assumptions 7.1 and 7.2 hold. If the system gains

a{}, b{} satisfy the following inequality:

min
{
S∆

ϕ

µ

4
,
b2
b1

Xb −
(
Xb + 1

) 1

2S∆
ϕ

L2

µ

}
−R(S∆

ϕ
p)

b2
2a2

−
(
Xb + 1

)
L
( L

4µ
+

1

2

)
max{ε, 1

ε
} > 0, (7.6)

where µ = mini∈V{µi}, L = maxi∈V{Li}, R >
(ΛΓ

ML)2ϵL
2µ

, ΛΓ
M is the max.

eigenvalue of Γ, Xb > 0, ε > 0, p = a1
b2
, and

S∆
ϕ
=

1 +
√
1 + 4 p

J

2p
, J =

2µ

L2

1

Xb + 1

b2
b1

, (7.7)

then the dynamical system in (7.3) converges to the equilibrium E exponentially

fast with a decay rate that is proportional to the gradient gain b1.

Remark 7.2. (On sufficiency conditions) Theorem 7.1 establishes sufficiency

conditions on the gains a{}, b{}. In the case of undirected networks, these

conditions can be expressed, relatively, easily (see [29], [117]); however, for

directed networks, conditions on gains may not be straight forward (see [45]).

The problem on existence of gains translates to ensuring simultaneous feasi-

bility of conditions (such as positivity of C{} in (A.46) and satisfying (A.43)
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which, together, narrows down to inequality in (7.6)) that ensure the algo-

rithm’s convergence. A detailed analysis on this is presented in the proof of

Theorem 7.1 in Appendix A.4.2.

Remark 7.3. (On arbitrary fast convergence) The decay rate αV in (A.47),

associated with the exponential convergence of the Lyapunov function V , is

proportional to gain b1 that is attached to ∇fi(xi) in (7.2). This is in line

with conclusions about arbitrary fast convergence made in [117]. Note that the

gains a{1,2}, b{2,3} can be designed relative to b1; this relationship is described

in (A.53) of Appendix A.4.2. From a design perspective, this implies that

the design parameters (namely, p, r{1,2} in (A.53)) need to be designed only

once after which the gradient gain b1 can be arbitrarily varied to achieve fast

convergence rates.

7.4 Main Results: Event-Based Broadcasting

In this section, we address the second objective of this work, i.e., to en-

able intermittent broadcasts of state information. Implementing (7.2) for

distributed optimization requires continuous knowledge of neighbors’ states

which is not always feasible, particularly, if the nodes are interacting over

wireless communication networks. To address this, we utilize a periodic event-

based broadcast protocol where the idea is to check for an event occurrence

at specific sampling instants and make decision on state broadcasting, see il-

lustration in Fig. 7.1. To facilitate this, we adopt hybrid systems approach

inspired from studies such as [4,17,37,99,100], [69]; the advantage of this frame-

work is, mainly, twofold: a) to an extent, it can handle both synchronous and

asynchronous protocols alike, and b) it offers flexibility in designing sampling

sequences (defined in Subsection 7.4.1) at which the ETC is evaluated and,

some, broadcasts occur. The later could help reduce network congestion.
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Figure 7.1: Illustration of the nature of broadcasts between two agents that
employ periodic event-based broadcasting protocols. Note that neither sam-
pling instants nor broadcast instants are necessarily synchronous or periodic
unlike commonly employed discrete-time algorithms.

7.4.1 Problem Formulation in Hybrid Systems’ Frame-
work

Briefly, each node flows along the dynamics in (7.9) for a certain interval

and at its sampling instants the agent checks for event occurrence, makes a

jump, and, if deemed necessary, it also broadcasts its local state to neighbors.

First, we define sampling and event-triggering instants. For each node

i ∈ V , let the sequence {sik}∞k=0 denote instants at which the ETC is evaluated.

The interval between two sampling instants is bounded as follows:

sik+1 − sik ∈
[
εi, T i

]
, ∀k ∈ Z≥0, ∀i ∈ V , (7.8)

where the lower bound εi is a positive quantity such that εi < T i and the

upper bound T i is to be designed as a consequence of asymptotic convergence.

Note that arbitrarily small and positive εi ensures both instantaneous Zeno
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solutions2 and occurrence of Zeno behavior3 (in event-triggered systems) are

avoided.

Remark 7.4. (On ‘periodic’ event-based protocol) Here, we note that the sam-

pling sequences {sik} (and as a consequence, the protocol), governed by its

interval constraint in (7.8), are not necessarily periodic or synchronous; how-

ever, to keep in line with the terminology used in [17,99,100], we continue to

call the approach discussed in this section as periodic event-based broadcasting.

This notion is illustrated in Fig. 7.1.

The event-triggering instants are instants at which the ETC is satisfied;

these are denoted by sequence {til}∞l=0. Since the ETC on each node is evalu-

ated at sampling instants {sik}, the event-triggering instants {til} must form a

subsequence of {sik}. This can be inferred from the update rule for til in (7.13).

Next, we discuss system dynamics with intermittent broadcasts. Let x̂i(t) =

xi(t
i
l), t ∈ [til, t

i
l+1), denote the broadcast state of node i and let ei = x̂i − xi

be the broadcast error. Let x̂ = [x̂T
1 , · · · , x̂T

N ]
T and e = [eT

1 , · · · , eT
N ]

T be

concatenated states. The broadcast state in node dynamics enters through

the consensus terms as follows:

ẋi = a1vi − a2
∑
j∈V

aij
(
x̂i − x̂j

)
,

v̇i = −b1∇fi(xi)− b2vi − b3qi,

q̇i =
∑
j∈V

aij
(
x̂i − x̂j

)
. (7.9)

The dynamics of q still stays on the manifold
∑

i∈V qi = 0, like in Section

7.3, which is ensured by choosing initial condition such that
∑

i∈V qi(0) = 0.

This is essential to enforce convergence to equilibrium E and, as a consequence,

2Hybrid systems can adopt complete solutions that become eventually discrete, i.e., in
essence, after a certain time the solution only uses the jump map without ever flowing
again. Such solutions are called instantaneous Zeno solutions. For further details on hybrid
systems, see Chapter 2 in [31].

3Zeno behavior, or, occurrence of infinite events in finite time, is undesirable because
realizing such a notion in physical systems is impractical. This phenomenon also leads to
Zeno solutions of the hybrid systems.
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the minima x⋆. Using the state translation (x, v, q) → (a, b, c) from Section

7.3, the dynamics of the system can be expressed as:

ȧ = a1b− a2L
n(a+ e),

ḃ = b1∇f − b2b− b3c,

ċ = Ln(a+ e). (7.10)

Since we considered the case of ZOH for the broadcast state, the error dynam-

ics, ėi = −ẋi = −ȧi, is given by:
ėi = −a1bi + a2

∑
j∈V aij

(
x̂i − x̂j

)
, t ∈ [sik, s

i
k+1)

e+i = ei t ∈ {sik} \ {til}
e+i = 0, t ∈ {til}

(7.11)

where x̂i − x̂j = ai − aj + ei − ej. In (7.11), when an event occurs, i.e.,

when t ∈ {til}, the state x̂+
i = x̂i(t

i
l) = xi(t

i
l) is broadcasted and the error

ei, instantaneously after jump (or broadcast), is set to 0; for other sampling

instants, i.e., t ∈ {sik} \ {til}, ei stays unchanged instantaneously after the

jump. Note that for the broadcast dynamics in (7.10), the flow domain has

not yet been rigorously defined; this will be addressed shortly in (7.16).

Prior to introducing the ETC, we introduce the auxiliary variable ηi ∈ R≥0

which captures dynamics of the ETM as follows:
η̇i = f i

η(ηi,X ), t ∈ [sik, s
i
k+1),

η+i = gis(ηi,X ), t ∈ {sik} \ {til},
η+i = git(ηi,X ), t ∈ {til}.

(7.12)

Here, the positivity of ηi is ensured by the design of its dynamics (i.e., functions

f i
η, g

i
s, and git) and the initial condition ηi(0) ≥ 0. Note that ηi in (7.12)

jumps to different values, namely, gis or git, depending on the occurrence or

non-occurrence of an event. Using (7.12), the ETC (and the update rule for

{til}) is as follows:

til+1 = {t > til | t ∈ {sik}∞k=0, g
i
s < 0}, ∀i ∈ V . (7.13)

Finally, to monitor the bounds on sampling period defined in (7.8), each

node i ∈ V also keeps track of the time elapsed since the last (namely, most
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recent) sampling instant using non-negative scalar τi. For any k ∈ Z≥0, it is

straightforward to see that τi is governed by:{
τ̇i = 1, t ∈ [sik, s

i
k+1),

τ+i = 0, t ∈ {sik+1}.
(7.14)

Note that τi in (7.14) resets at every sampling instant independent of event-

occurrence.

Now, we are prepared to discuss hybrid dynamics4 of the augmented state

X := [aT bT cT eT ηT τT]T which is expressed as follows:{
Ẋ = F (X ), X ∈ C,

X+ ∈ G(X ), X ∈ D,
(7.15)

where the flow and jump domains, i.e., C and D, respectively, are defined as:

C = R4nN × RN
≥0 × [0, T 1]× · · · × [0, TN ],

D =
N⋃
i=1

{
R4nN × RN

≥0 × [0, T 1]× · · · × [εi, T i]︸ ︷︷ ︸
sampling instant on i

× · · · × [0, TN ]
}
.

(7.16)

The function F and set-valued mapping G in (7.15) are

F (X ) =


a1b−a2Ln(a+e)
b1∇f−b2b−b3c

Ln(a+e)
−a1b+a2Ln(a+e)

fη
1

, G(X ) =
N⋃
i=1

Gi(X ),

Gi(X ) :=



{G1

i }, gis > 0;

{G2
i }, gis < 0;

{G1
i , G

2
i }, gis = 0;

τi ∈ [εi, T i]

ϕ τi /∈ [εi, T i]

(7.17)

where ϕ is a null set,

G1
i :=[ aT bT cT eT (Iiη+ḡis)

T (Ii1)T ]
T,

G2
i :=[ aT bT cT (In

i e)
T (Iiη+ḡit)

T (Ii1)T ]
T,

4For hybrid dynamics, we follow the formulation in [31]. To save space, we omit mathe-
matical definitions on concepts and notations used in Section 7.4. In this regard, we refer
the interested reader to Chapter 2 or textbook [31] for details.
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fη := [f 1
η · · · fN

η ]T, Ii := diag({1, · · · , 0, · · · , 1}) ∈ RN×N with 0 at the

i-th place on the diagonal, In
i = Ii ⊗ In, ḡis := [0 · · · gis · · · 0]T ∈ RN and

ḡit := [0 · · · git · · · 0]T ∈ RN .

For the hybrid system in (7.15), the domain C, defined in (7.16), is such

that all the nodes in the network could flow when X ∈ C. The domain D,

defined as a union of subsets, is such that the system in (7.15) jumps if at

least one node jumps (i.e., when τi equals the pre-decided sampling interval).

Note that at a jump instant, say t, only the nodes in the index set Y = {j|t ∈

{sjk}, ∀j ∈ V} actively participate in the jump. Consequently, the states of

nodes in V \ Y remain unaffected, instantaneously, after jump. When the

system jumps, the states (a, b, c), instantaneously after jump, do not change

for all agents in V ; however, depending on the sign of gis, the error ei for node

i could change as described in (7.17). Furthermore, the function F and set-

valued mapping G are continuous and outer semi-continuous, respectively, and

the domains C and D are closed sets; these ensure the property of nominal

well-posedness of the hybrid system in (7.15), see [31].

7.4.2 ETC and Sampling Period

To determine the appropriate ETC and sampling sequence for asymptotic

convergence, we first examine the effect that broadcast error e has over the

Lyapunov function V (defined in (A.41)) used to prove Theorem 7.1 in Section

7.3. Since the broadcast error e enters the system in (7.2) through consensus

terms, only derivative of functions Va and Vc, defined in Appendix A.4.2,

are affected, see Appendix A.4.3). This is assuming that π = a2∆, in the

definition of Q, is upheld to arrive at (A.40). Considering the function V

defined in (A.41), its derivative along the broadcast dynamics in (7.10) is

upper-bounded as follows:

V̇ ≤ −Ĉa|a|2 − Cb|b|2 − Ĉc|c|2 − Csyma
TLsa+ Ce|e|2, (7.18)

where the expressions for coefficients Ĉ{}, Ce are provided in Appendix A.4.4).
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Noticing the last term in (7.18), we define Wi := |ei|, ∀i ∈ V , to keep track

of the error growth; its derivative along (7.11), defined for almost all ei, ∀i ∈ V ,

is upper-bounded by:

⟨∇Wi, ėi⟩ ≤ (a2di)Wi + | − a1bi + a2L
na− a2A

ne|. (7.19)

Since the coefficients a{1,2} in (7.19) are proportional to b1 (see (A.53)), the

bound on the error growth rate also increases with increasing b1.

Next, in order to contain the growth of Wi and facilitate the design of the

sampling interval, motivated by [69], we define a decaying weight θi(t), t ∈

R≥0, using the following lemma.

Lemma 7.3. Let θi : R≥0 → R be the solution to the differential equation

θ̇i(t) =

{
−
(
b1
δ1
γiθ

2
i (t) + 2Li

νθi(t) + γi
)
, t ∈ [0, T i

0(λi)]

0, t > T i
0(λi)

(7.20)

with the initial condition θi(0) = λi
−1, where λi ∈ (0, 1), γi > 0, Li

ν = a2di+νi

for sufficiently small νi > 0. Then, θi(t) is monotonically decreasing and

θi(t) = λi, ∀t ≥ T i
0(λi).

From Lemma 7.3, it is straightforward to see that T i
0(λi) is the time that

θi takes to traverse from the initial condition θi(0) = λ−1
i to θi(T

i
0) = λi

along (7.20). Here, λi ∈ (0, 1) is a local design parameter that influences

both T i
0(λi) and the event-triggering condition governed by gis (see (7.21b) in

Theorem 7.2). νi > 0 is also a local design parameter that is introduced to

achieve asymptotic stability of the broadcast system (see proof of Theorem

7.2 in Appendix A.4.4)); an arbitrarily small choice of νi is adequate. By

choosing appropriate parameters such as λi, νi, for each node i ∈ V , T i
0(λi)

can be determined by slightly altering expressions in [69]. In the remarks that

follow Theorem 7.2, we will address aspects concerning parameters γi, δ1 and

b1 in (7.20).

In the theorem that follows, we design the dynamics of ηi that governs the

ETC in (7.13). The sketch of the proof is presented here.
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Theorem 7.2. Suppose Assumptions 7.1 and 7.2 hold. For all i ∈ V, let

V̂i = cL|Lni x̂|2, Wi = |ei|, and βi > 0. If the functions associated with dynamics

of ηi in (7.12) are as follows:

f i
η = − βiηi + b1V̂i, (7.21a)

gis = ηi + γi

(
θi −

1

λi

)
W 2

i , (7.21b)

git = ηi + γiλiW
2
i , (7.21c)

where γi is the error gain, θi, λi are as defined in Lemma 7.1, then the ETC

in (7.13) ensures that the hybrid system in (7.15) is asymptotically stable with

respect to the origin.

Sketch of Proof: The proof progresses by showing convergence of Lyapunov

function U , which is defined as:

U := V +
∑
i∈V

{
γiθiW

2
i + ηi

}
,

along (7.15), in both flow and jump domains, C and D, respectively. Here, γi

is the error gain in the upper-bound for V̇

V̇ ≤− Ĉa|a|2 − Cb|b|2 − Ĉc|c|2 − Csyma
TLsa

+
∑
∀i∈V

{
γ2
i |ei|2 −

δ1
b1

H2
i − b1V̂i

}
, (7.22)

which in turn stems from (7.18). The scalar function Hi stems from upper-

bounding the growth rate of Wi in (7.19) and V̂i is included to improve the

performance of ETC in (7.13) by slowing down decay of ηi in (7.21). The

details of the proof are presented in Appendix A.4.4.

The following remarks explain the effect that the gradient gain b1 has over

the design of ETC.

Remark 7.5. (On ETC design relative to b1) In Section 7.3, we showed that

the algorithm in (7.5) can achieve arbitrary fast convergence by varying b1.

In addition to designing the dynamics of ηi-s and sampling periods T i
0-s, in

this subsection, we are also interested in making the design of aforementioned
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attributes relative to b1. This provides us with freedom to arbitrarily choose b1,

like in Section 7.3, and still ensure the stability of hybrid system in (7.15) with

ηi governed by (7.21). In order to achieve this goal, we explicitly introduced

the gradient gain b1 in the dynamics of θi in Lemma 7.3. Appendix A.4.4) that

presents the proof of Theorem 7.2 shows the steps taken to make the design

relative to b1.

Remark 7.6. (On fast convergence and broadcasts) From (7.20) in Lemma

7.3, it can be seen that with increase in b1 (implying faster convergence), for

a fixed λi, the sampling period T i
0 shrinks. In other words, faster convergence

necessitates frequent event checks and, perhaps, frequent broadcasts. This is

attributed to the coefficients of the quadratic expression in θi which are all

dependent on b1. This includes the error gain γi in (7.22) which is also affected

by both b1 and δ1 as follows:

γ2
i =

S∆
ϕ
ϕ2

2b1

(
R
r2
r1
σLϱ1 +

r1
r2

L2

2µ
b21(ι1 + λΓ

MλLs
MϵLι2)

)
+ b1

(
2δ1

r21
r22
Tr(ATA) + cLTr(L

TL)
)
. (7.23)

Remark 7.7. (On performance of the ETM) When b1 is increased, from

(7.21a), we see that ηi decays slower; this could suggest that gis becomes negative

less frequently. However, this is not the case since increased b1 also fastens the

error growth in (7.19). The result is a combined effect of these two notions,

often, resulting in a higher number of events considering that gis in (7.21b)

involves W 2
i and not Wi.

Remark 7.8. (On convergence rate ∝ b1) The convergence rate of the broad-

cast dynamics in (7.10) depends on the slowest term in (A.61). Note that the

coefficients C̄{a,b}, Ĉc in (A.61) are shown to be proportional to b1 in Appendix

A.4.4); then, we could construct βi and λi (θi ≥ λi) as linear functions of b1

in order to make the overall convergence rate ∝ b1. Although, this can show

arbitrary fast convergence for (7.10), it is, further, detrimental to the perfor-

mance of the ETC (which is affected by b1 as noted in Remark 7.7) governed
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by (7.21). So, in this chapter, we do not pursue arbitrary fast convergence for

the case of system in (7.10) with intermittent broadcasts.

7.5 Numerical Example

In this section, we consider the following local objective functions for the

unconstrained problem in (7.1):

f1(x) =
3

4
x2 +

1

2
x log(x2 + 2), f2(x) =

1

2
x2 +

1

2

x2

√
x2 + 1

,

f3(x) = (x− 4)2, f4(x) = x2 +
x2

log (x2 + 3)
. (7.24)

The global objective function
∑

i∈V fi, is solved by nodes interacting over a

weight-balanced digraph G whose Laplacian is given by:

L =

[
1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

]
.

The initial states are x(0) = [5 0 7 − 1]T. The minimum of
∑

fi occurs at

x⋆ = 0.85 and its value at x⋆ is
∑

fi(x
⋆) = 12.79. For b1 = 1, the dynamics

of each node is as follows:
ẋi =

0.1
4
vi − 1

∑
j∈V aij

(
xi − xj

)
,

v̇i = −∇fi(xi)− 15vi − 3.65qi,

q̇i =
∑

j∈V aij
(
xi − xj

)
, qi(0) = 0.

(7.25)

The simulation results are discussed in two parts: 1) demonstrating that the

convergence rate of dynamics discussed in Section 7.3 is proportional to b1; and

2) examining the performance of the event-based broadcast strategy discussed

in Section 7.4.

First, the risk-ratio of DOP in (7.1) is given by the quantity
∑

{fi(xi) −

fi(x
⋆)}/

∑
fi(x

⋆) and the figures Fig. 7.2 and Fig. 7.3 depict risk-ratio in a

semi-log plot against simulation time of 100 secs. Here, we show that the con-

vergence of the algorithm in (7.5) can be achieved arbitrarily fast by increasing

the gradient gain b1. In Fig. 7.2, we also make a comparison against an ex-

isting CT algorithm which is a modified Lagrangian-based approach (denoted
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λi, ∀i ∈ V 0.09 0.27 0.7

b1 = 1, δ1 = 1
MASP (in ms) 4 3 1

% Broadcasts 48.43 27.47 7.54

b1 = 1, δ1 = 0.5
MASP (in ms) 2.8 2 0.6

% Broadcasts 44.02 23.19 6.01

b1 = 3, δ1 = 0.5
MASP (in ms) 1.9 1.2 0.3

% Broadcasts 65.65 33.53 7.50

Table 7.1: MASP and broadcast percentages
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Figure 7.2: Performance comparison by varying b1.

MLB in Fig. 7.2) for weight-balanced directed networks described in [45]. The

dynamics in (7.5) can be expressed as:

ẍ = −a1b1∇f − b2ẋ− a2b2Lx︸ ︷︷ ︸
proportional

− a1b3

∫
Lxdx︸ ︷︷ ︸

integral

− a2Lẋ︸︷︷︸
derivative

; (7.26)

and for a fair comparison, we adopt the following dynamics for the MLB

approach:

ẋ = −a1b1∇f − a2b2Lx− a1b3

∫
Lxdx. (7.27)
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Figure 7.3: Performance comparison of Euler-discretized algorithm and CT
algorithm with continuous and discrete broadcasts.

It is worth mentioning that as b1 is increased beyond b1 = 0.8, the state trajec-

tory of (7.27) diverges from the equilibrium. Figure 7.2 supports the argument

that accelerated gradient methods can, potentially, achieve higher convergence

rates using gradient information in comparison to the MLB approach.

Next, to evaluate the performance of the event-based broadcast protocol

we begin with the node dynamics in (7.25). The flow dynamics of ηi, ∀i ∈ V ,

is given by:

η̇i = −0.1ηi +
3

2
b1|Lni x̂|2, t ∈ [sik, s

i
k+1),

where ηi(0) = 1, ∀i ∈ V , and the jump dynamics is governed by (7.21). The

simulation time considered is 100 s and the time step for flow computations

is chosen to be 0.1 ms. By setting λi = 0.27, ∀i ∈ V , in Lemma 7.3, the

MASP, i.e., min{T i}, is around 3 ms as shown in Table 7.1; this implies

that the ETC in (7.13) is checked every 3 ms contrary to being evaluated at

every time step, i.e. 0.1 ms, in (implementation of) continuous-time ETC.

Further, Table 7.1 shows the influence of design parameter λi, ∀i ∈ V , on:

a) the MASP of the overall system (7.10); and b) the ETC (7.13) through
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the overall percentage of broadcasts, i.e., averaging over all the nodes in G.

From (7.21), it can be inferred that a higher λi could result in fewer events

but would need more frequent monitoring of the ETC; Table 7.1 supports this

argument. It also shows the effect of changing b1 and δ1 on the MASP and

percentage of broadcasts; these results substantiate the comments made in

Remarks 7.6 and 7.7. Figure 7.3 shows the performance of the CT algorithms,

when b1 = 15, with periodic broadcasts and periodic event-based broadcasts.

Notice that the performance of CT algorithm with event-based broadcasting

lies between the two bounding curves, namely, the (purely) CT algorithm and

its Euler-discretized counterpart.

7.6 Conclusion

In this chapter, we first studied the convergence of a distributed acceler-

ated gradient flow over weight-balanced directed networks. We showed that

the algorithm converges exponentially and arbitrarily fast based, solely, on

the choice of the gradient gain. Next, to facilitate digital implementation,

we designed an event-based broadcast protocol which intermittently checks

for events and makes broadcast decisions. In this regard, the methodology

adopted also aids in designing the sampling instants for each node at which

the events are checked (a subset of these instants are broadcast instants); this

helps in mitigating network congestion. Finally, we demonstrate the results

using a numerical example.
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Chapter 8

Conclusions and Future Work

In this chapter, we make some concluding remarks on the studies in this

thesis and, subsequently, offer some potential research directions and interest-

ing problems for future work.

8.1 Conclusions

This thesis focuses on developing methodologies for implementing dis-

tributed algorithms over networks using tools from the theory of hybrid dy-

namical systems. The outcomes of the work in the thesis are summarized as

follows:

1. First, we considered a single CT nonlinear system that can be stabi-

lized by a static state feedback controller. Using an emulation-based

technique, we designed two dynamic ETMs that govern the instants at

which the system can broadcast its state to the controller and achieve

asymptotic stability. The design methodologies adopted are Zeno-free

and are such that the ETCs are evaluated intermittently at pre-defined

sampling instants (either periodic or aperiodic); a subset of these sam-

pling instants qualify as event-triggering/broadcast instants.

2. Second, we extended the study from single systems to MASs interacting

over networks. We developed a general framework for distributed control

of agents that employed the designed dynamic ETMs to make decisions
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on the broadcast instants; these mechanisms are based on an agent’s

ability or inability to sense states (or relative states) of fellow agents in

the network at its own sampling instants. The ETC on the agents can

be evaluated both aperiodically and asynchronously; this notion helps

reduce network congestion even in cases where the ETMs are rendered

redundant and the agents are forced to broadcast at every sampling

instant. Furthermore, to broaden the scope of application, we considered

that each agent employs a model-based controller that propagates the

broadcasted state upon arrival. We demonstrated the effectiveness of the

developed framework through two case studies on consensus of nonlinear

MASs (with Lipschitz and one-sided Lipschitz dynamics), interacting

over both undirected and directed networks.

3. Third, we adopted the framework developed for distributed control via

dynamic ETMs to handle a particular kind of NIP, namely, quantized

broadcasts. In this case, we studied the consensus problem involving one-

sided Lipschitz nonlinear agents interacting over a directed network. In

addition to ETMs, we considered that the agents employed: a) encoders

that quantized relevant information prior to broadcasting, and b) de-

coders that processed this information upon arrival. Subsequently, the

agents utilized model-based propagates of the decoded neighbor states

in their control protocols to achieve consensus asymptotically.

4. Fourth, we developed a framework for sampled-data distributed control

of MASs to handle yet another important NIP, namely, transmission de-

lays. The framework employed time-stamp techniques, i.e., each agent

broadcasts both state and the time associated with it, and is designed for

the general case where the agents employ model-based controllers. The

methodology is such that the pre-defined sampling instants (at which

agents broadcast information) can be both aperiodic and asynchronous

in nature. As a consequence of the stability analysis, the upper bounds

on: a) the sampling interval, and b) the transmission delays are estab-
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lished without LMIs. We demonstrated the effectiveness of the method-

ology through a case study on consensus of Lipschitz nonlinear agents.

5. Finally, we considered a convex DOP where the agents: i) are assigned

private local cost functions; ii) communicate over a weight-balanced di-

rected network; and iii) employ AGFs to converge to the global minima.

First, we proved that the CT algorithm converges asymptotically with

a convergence rate that is proportional to the gradient gain which can

be chosen arbitrarily. Subsequently, to facilitate networked implemen-

tation, each agent employed an ETM that intermittently evaluates the

ETC and makes decision on broadcasting the local optimization variable.

8.2 Future Work

The future directions on the distributed control framework discussed in

this thesis are summarized as follows:

1. Robust to modeling errors:

The framework of distributed control discussed in Chapters 4, 5 and 6

employs a model-based framework for propagating broadcasted states.

This approach generalizes the existing work which largely employs ZOH

approach on these propagated states and, as a consequence, expands

the scope of the framework. For instance, in the case of consensus prob-

lems involving (homogeneous) Lipschitz nonlinear agents, consensus is

achieved under the assumption that the agents are precisely aware of

their own dynamics. However, such an assumption may not always hold.

Therefore, a challenging and promising research direction for the future

would be to extend the framework, discussed (in Chapters 4 and 6) in

this thesis, to handle modeling uncertainties and, consequently, make

the framework more robust.

2. Other NIPs:

In this thesis, we addressed two important imperfections, namely, quan-
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tized broadcasts and transmission delays. In the case of quantized broad-

casts considered in Chapter 5, the problem of determining saturation

ranges is yet to be addressed. In addition to this there are several other

imperfections, for instance, deterministic/random packet losses, inclu-

sion of transmission protocols (such as round-robin (RR) or try-once-

discard (TOD)) in the case of model-based networked controls, and oth-

ers. These problems are yet to be addressed and could result in fruitful

future work.

3. Necessary conditions on gains in distributed optimization:

For networked implementation of algorithms, throughout this thesis we

employ emulation-based techniques. In this regard, it was first essen-

tial to establish sufficiency conditions on the gains in the proposed CT

accelerated algorithm in Chapter 7 similar to most of the existing liter-

ature in this context with the exception of [29]. In order to determine

necessary conditions on gains (a{}, b{}) for distributed optimization al-

gorithms taking the following forms (or their variations):

Generalization of algorithm in [45]:
- Second order (x, q)

[
ẋ
q̇

]
=

[ −a2L a1I
L 0

]︸ ︷︷ ︸
Ā

[ xq ] +
[ −b1∇f

0

]︸ ︷︷ ︸
ext. input

.

Algorithm in Chapter 7:
- Third order (x, v, q)

[
ẋ
v̇
q̇

]
=

[ −a2L a1I 0
0 −b2I −b3I
L 0 0

]
︸ ︷︷ ︸

Ā

[
x
v
q

]
+
[

0
−b1∇f

0

]
︸ ︷︷ ︸
ext. input

,

we must ensure that the state matrix Ā in the above equations is Hurwitz

and study the system’s properties around the equilibrium. Currently,

with the exception of [29], this problem is largely unanswered. Address-

ing this problem also allows for relaxation of the assumption on strong

convexity of the local objective functions that was used in Chapter 7.
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[99] W. Wang, R. Postoyan, D. Nešić, and W. P. M. H. Heemels. Stabiliza-

tion of nonlinear systems using state-feedback periodic event-triggered

controllers. In 55th IEEE Conference on Decision and Control (CDC),

pages 6808–6813, Dec 2016.
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Appendix A

In this appendix, we collect proofs of theorems and lemmas presented in

this thesis.

A.1 For Chapter 4

A.1.1 On Non-negativeness of ηi

Lemma A.1. For all i ∈ V, let the initial state ηi,0 ≥ 0. If the functions (f i
η,

gis, g
i
t) in (4.5) are as described in Section 4.2, then the ETM in (4.6) ensures

that ηi stays non-negative.

Proof. Since the initial condition ηi,0 ≥ 0, ∀i ∈ V , without loss of generality,

we consider that ηi(s
i
k) ≥ 0 for some k ∈ Z≥0.

First, we discuss the flow of ηi in t ∈ [sik, s
i
k+1). In this case, ηi flows

along the continuous function f i
η(ηi, x̂N̄ i) until: a) it encounters jumps in the

MAS (caused by events among neighboring agents) during (sik, s
i
k+1), or b) the

next sampling instant sik+1. In case a), if agent j ∈ N i broadcasts its state

information (broadcasts are assumed to be finite), then at sjk′ ∈ (sik, s
i
k+1), the

MAS in (4.8) experiences jump as a result, x̂j is updated, η+i = ηi(t
+ = sjk′),

and the function f i
η(ηi, x̂N̄ i(t+ = sjk′)) may jump to a finite point such that

f i
η(ηi, x̂N̄ i(t+ = sjk′)) ̸= f i

η(ηi, x̂N̄ i(t)). However, since the solution Sηi exists

for every x̂N̄ i ∈ RnN , ηi continues to flow along the revised function f i
η until

it encounters either of the aforementioned cases (i.e., case a) or b)) again.

As a result, ηi(t) is continuous on [sik, s
i
k+1). If ∀t ∈ [sik, s

i
k+1), f i

η ≥ 0, then
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ηi(t) ≥ 0. If there exists t′ ∈ [sik, s
i
k+1) such that ηi(t

′) = 0, then since

f i
η(0, ·) ≥ 0, ηi(t > t′) ≥ 0.

Next, we discuss the jumps of ηi at sik+1. At sik+1, the event-triggering

condition in (4.6) is evaluated to decide the jump state of ηi. As seen in (4.5),

broadcast states of agents across the network, at sik+1, do not affect gis and git.

If gis < 0, then η+i = ηi(s
i
k+1) = git ≥ 0. On the otherhand, if gis ≥ 0, then

η+i = ηi(s
i
k+1) = gis ≥ 0.

A.1.2 Proof of Theorem 4.3

In order to prove that the dynamic ETMs associated with (4.11) and (4.18)

ensure asymptotic stability of (4.26), it suffices to determine appropriate func-

tions Wi, Vi, V and Ṽi that satisfy Assumptions 4.1–4.4 stated in Subsections

4.3.1 and 4.3.2. Therefore, we address the proof in two parts by considering a

constant control gain κ = pκ0, p > 1, that complies with (4.27).

Part 1: Broadcasting. For this, consider Wi = |ei| and V = K
2
|z|2 where

z = Lx and K > 0.

(1.1) Under Assumption 4.1, it is straightforward to see that the candidate

function |ei| satisfies Assumption 4.1(a). For Assumption 4.1(b), we evaluate

Ẇi as:

Ẇi ≤ |f̄(x̂i)− f̄(xi) + κL(x+ e)|

= L|ei|+ κ|diei − Aie+ Lix|

≤ (L+ κdi)Wi + κ| − Aie+ zi|, (A.1)

where di is the degree of agent i, zi = Lix, Ai is the i-th row of adjacency

matrix A and Hi is such that:

H2
i (x, e) = 2κ2

(
|Ai|2|e|2 + z2i

)
.

(1.2) Consider V = K
2
|z|2 and let the stability set be Θ(x) = Lx, then Assump-

tion 4.2(a) holds. To evaluate Assumption 4.2(b), we examine the derivative

of V which is given by V̇ = KzT
(
L[f̄ ]− κL(z + Le)

)
. Here, the 1st term in V̇
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can be simplified as follows using a design parameter ϵ1 > 0:

zTL[f̄ ] =
∑
i∈V

zi(Li[f̄ ](x)) ≤
∑
i∈V

|zi||
∑
j∈V

aij(f(xi)− f(xj))|

≤
∑
i∈V

Lϵ1di
2

z2i +
L
2ϵ1

∑
i,j∈V

aij|xi − xj|2

≤ Lϵ1dM
2

|z|2 + L
ϵ1Λ2

|z|2

= Γ1|z|2, (A.2)

where we used the well-known identity associated with connected undirected

graphs:

1

2

N∑
i,j=1

aij|xi − xj|2 = xTLx ≤ 1

Λ2

xTL2x.

Let ϵ1 =
√
2(
√
dMΛ2)

−1, then Γ1 in (A.2) reduces to Γ1 = L
√

2dM
Λ2

. Next, the

2nd term in V̇ can be upper-bounded as: , i.e.,

−zTL(z + Le) ≤ −
(
Λ2 −

Λ2
M

2ϵ2

)
|z|2 + ϵ2Λ

2
M

2
|e|2

= −
(
Λ2 −

Λ2
M

2ϵ2

)(
π1|z|2 + (1− π1)|Lx̂− Le|2

)
+

ϵ2Λ
2
M

2
|e|2

≤ − Ξ1|z|2 +
∑
i∈V

{
Ξ3|ei|2 − Ξ2|Lix̂|2

}
, (A.3)

where

Ξ1 =
(
Λ2 −

Λ2
M

2ϵ2

)
π1,

Ξ2 =
(
Λ2 −

Λ2
M

2ϵ2

)
(1− π1)(1− ξ1),

Ξ3 =
[ϵ2
2
+
(
Λ2 −

Λ2
M

2ϵ2

)
(1− π1)(

1

ξ1
− 1)

]
Λ2

M

and ξ1 ∈ (0, 1]. Using inequalities (A.2) and (A.3), the bound for V̇ is given

by:

V̇ ≤ −
(
Ξ1κ− Γ1

)
K|z|2 +

∑
i∈V

Kκ
{
Ξ3|ei|2 − Ξ2|Lix̂|2

}
, (A.4)
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where the positivity of Ξ1κ − Γ1 can be ensured by choosing the design pa-

rameters such that ϵ2 ∈ (
Λ2
M

2Λ2

p
p−1

,∞) and π1 ∈
(
Λ2

p
(Λ2 −

Λ2
M

2ϵ2
)−1, 1

)
. Next, we

evaluate
∑

i∈V H
2
i as follows:∑

i∈V

H2
i = 2κ2|z|2 + 2κ2

∑
i∈V

|Ai|2|e|2

=
4κ2

K
V + 2κ2Tr(ATA)|e|2.

Adding and subtracting
∑

i∈V H
2
i from (A.4) results in:

V̇ ≤ −
(
Ξ1κ− Γ1 −

2κ2

K

)
K|z|2 +

∑
i∈V

{(
KκΞ3 + 2κ2Tr(ATA)

)
|ei|2

−KκΞ2|Lix̂|2 −H2
i

}
which satisfies Assumption 4.2(b) when K is chosen such that (4.32b) holds.

Hence, all the assumptions in Theorem 4.1 have been satisfied which di-

rectly concludes asymptotic stability w.r.t. (4.30).

Part 2: Active Sensing. Here, Assumption 4.1 is satisfied via (A.1).

Before evaluating V̇ to satisfy Assumption 4.3(b), we will ensure Assumption

4.3(d) is satisfied. For this, consider Vi =
K
2
|zi|2 where zi = Lix; this satisfies

Assumption 4.3(c).

(2.1) For Assumption 4.3(d), V̇i takes the form V̇i = Kzi(Li[f̄ ](x))−Kκzi(Li(z+

Le)). Here, the 1st term can be upper-bounded, similar to (A.2), as:

zi(Li[f̄ ](x)) ≤ L
∑
j∈V

aij

(ϵ3z2i
2

+
|xi − xj|2

2ϵ3

)
=

Lϵ3di
2

z2i +
L
2ϵ3

∑
j∈V

aij|xi − xj|2, (A.5)

and the 2nd term can be upper-bounded as:

−zi(Li(z + Le)) =− diz
2
i + zi(Aiz + LiLe)

≤−
(
di −

ϵ4|Ai|2

2
− ϵ5|Li|

2

)
z2i

+
1

2ϵ4
|z|2 + |Li|Λ2

M

2ϵ5
|e|2, (A.6)
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where ϵ3, ϵ4, ϵ5 > 0 are identical ∀i ∈ V . Using inequalities (A.5), (A.6) the

upper bound for V̇i can be expressed as:

V̇i ≤−
((

di −
ϵ4|Ai|2

2
− ϵ5|Li|

2

)
κ− Lϵ3di

2

)
Kz2i

+
K

4κ

(2κ2

ϵ4
|z|2 + 2|Li|Λ2

Mκ2

ϵ5
|e|2 + 2Lκ

ϵ3

∑
j∈V

aij|xi − xj|2
)
. (A.7)

where ci = K/(4κ), ∀i ∈ V . Let ϵ4 = ϵ5 and let ϵ3 = ϵ1 where ϵ1 is defined in

Part 1 of this proof; then, the positivity of αi is ensured by the choice of ϵ4

in (4.32a) and ϵ3. It is necessary to show that the numerator in the second

argument of the min function in (4.32a) is positive; this is demonstrated as

follows:

2− Lϵ3
κ

= 2− L
√
2√

Λ2dM

1

p

Λ2

√
Λ2

L
√
2dM

= 2− 1

p

Λ2

dM

≥ 2− 1

p

N

N − 1

dm
dM

> 0,

where dm = mini di. Here, we recall that p > 1, use the well known upper-

bound of Λ2 ≤ N
N−1

dm (see [24]), and the fact that dm/dM ≤ 1.

The inequality in (A.7) can be expressed in the form V̇i ≤ −αiVi+ ci
[
Ĥ2

i +

Ĵi
]
as in Assumption 4.3(d) where

Ĥ2
i = H2

i = 2κ2
(
|Ai|2|e|2 + z2i

)
and as a result Ĵi is

Ĵi = 2κ2
[ |z|2
ϵ4

− z2i

]
+ 2κ2

[ |Li|Λ2
M

ϵ4
− |Ai|2

]
|e|2 + 2Lκ

ϵ3

∑
j∈V

aij|xi − xj|2 > 0.

Assumption 4.3(a) is the same as in Part 1 of the proof. For Assumption

4.3(b), we first sum H2
i + Ĵi over all agents which results in:

∑
i∈V

(H2
i + Ĵi) ≤

(2κ2N

ϵ4K
+

4κ

ϵ3K

L
Λ2

)
K|z|2 +

(2Λ2
Mκ2

∑
i∈V |Li|

ϵ4

)
|e|2.
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By adding and subtracting
∑

i∈V(H
2
i + Ĵi) from the right-hand side of (A.4)

gives:

V̇ ≤−
(
Ξ1κ− Γ1 −

2κ2

K

(N
ϵ4

+
2

ϵ3

L
Λ2κ

))
K|z|2

+
∑
i∈V

{(
KκΞ3 +

2Λ2
Mκ2

∑
j∈V |Lj|

ϵ4

)
|ei|2

−KκΞ2|Lix̂|2 −H2
i − Ji

}
, (A.8)

where Ji = Ĵi. Here, Hi = Ĥi, Ji = Ĵi which satisfies Assumption 4.3(e).

Finally, (A.8) takes the form V̇ ≤ −αV V +
∑N

i=1{γ2
i |ei|2 − ωiV̂i − H2

i − Ji}

satisfying Assumption 4.3(d).

(2.2) For Assumption 4.4, we choose Ṽi(xN i
k
) = Vi(x) since

Vi(x) =
K

2
|zi|2 =

K

2
|
∑
j∈V

aij(xj − xi)|2

depends only on neighbors’ states.

Therefore, assumptions in Theorem 4.2 are met which concludes asymp-

totic stability w.r.t. (4.30).

A.1.3 Proof of Theorem 4.4

Similar to the proof of Theorem 4.3, it suffices to determine appropriate

functions Wi(ei), V (x), Vi(x), V̂i(x̂N̄ i) and Ṽi(xN i
k
) that satisfy Assumptions

4.1–4.4 for the system in (4.26). Again, we address the proof in two parts by

considering a given control gain κ = p̄κ̄0, p̄ > 1, that complies with (4.33).

Part 1: Broadcasting. ConsiderWi = |ei|, ∀i ∈ V , and V =
∑

i∈V
K
2
ξi|xi−

x̄|2, where x̄ = ξTx, ei = x̂i − xi and K is a positive constant.

(1.1) Since Wi = |ei|, Assumption 4.1(b) is satisfied as follows:

Ẇi ≤ max{0,Los + κdi}Wi + κ| − Aie+ Lix|. (A.9)

Similar to proof of Theorem 4.3, Hi is such that:

H2
i = 2κ2

(
|Ai|2|e|2 + |Li(x− 1x̄)|2

)
,
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since Li1 = 0.

(1.2) For Assumption 4.2, let V (x) = K
2

∑
i∈V ξi|xi − x̄|2 = K

2
xTMTΞMx

where M = IN −1Nξ
T and Ξ = diag{ξ1, · · · , ξN}. The derivative of V is given

by V̇ = KxTMTΞM
(
[f̄ ](x)−κ(L(x+e))

)
where we examine individual terms.

First, we note that

xTMTΞM [f̄ ](x) = xTMTΞ
[
[f̄ ](x)− 1ξT[f̄ ](x)

]
= xTMTΞ[f̄ ](x) (A.10)

since xTMTΞ1 =
∑N

i=1 ξi(xi − x̄) = 0. Subtracting 0 = xTMTΞ1f̄(x̄) from

(A.10) results in

xTMTΞM [f̄ ](x) = xTMTΞ
[
[f̄ ](x)− 1f(x̄)

]
=

∑
i∈V

ξi(xi − x̄)T(f(xi)− f(x̄))

≤ Los

∑
i∈V

ξi|xi − x̄|2.

Next, we investigate bound for the 2nd term in V̇ . Here, we use the property

that ML = LM− (1ξT)L which is straight forward to derive. Then, the bound

for the 2nd term is as follows:

−κxTMTΞMLx = −κxTMTΞLMx ≤ −aξ(L)κx
TMTΞMx.

The 3rd term, namely, −κxTMTΞMLe, is bounded as follows:

κxTMTΞMLe = −κxTMTΞLMe = −κxTMTΞLe

≤ κ

2ϵ1
|ΞMx|2 + κϵ1

2
|Le|2

≤ κ

ϵ1K
V +

κϵ1
2

|Le|2,

because Ξ ≻ Ξ2. Collectively, the bound on V̇ can be expressed as:

V̇ ≤−
[
κ
(
2aξ(L)−

1

ϵ1

)
− 2Los

]
V − κϵ1KΛ̄2

M

2
|e|2, (A.11)

where Λ̄2
M = max(eig(LTL)). Consider the following two inequalities:

ωiV̂i(x̂N̄ i) =
ϑ

2
|Lix̂|2 =

ϑ

2
|Li(x− 1x̄) + Lie|2

≤ 2ϑ

Kξmin

|Li|2V + ϑ|Li|2|e|2
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and H2
i ≤ 2κ2|Ai|2|e|2+ 4κ2|Li|2

Kξmin
V . Adding and subtracting

∑
i∈V

{
ωiV̂i(x̂N̄ i)+

H2
i } to (A.11) results in:

V̇ ≤−
[
κ
(
2aξ(L)−

1

ϵ1

)
− (2ϑ+ 4κ2)Tr(LTL)

Kξmin

− 2Los

]
V

+
∑
i∈V

{(κϵ1KΛ̄2
M

2
+ ϑTr(LTL) + 2κ2Tr(ATA)

)
|ei|2

− ωiV̂i(x̂N̄ i)−H2
i

}
. (A.12)

This inequality takes the form of upper-bound in Assumption 4.2(b).

Hence, all the assumptions in Theorem 4.1 have been satisfied which con-

cludes asymptotic stability w.r.t. (4.35).

Part 2: Active Sensing. Here, Assumption 4.1 is satisfied via (A.9).

Before examining Assumption 4.3(b), we will ensure Assumption 4.3(d) is met.

(2.1) For Assumption 4.3, consider Vi(x) =
1
N
V (x), ∀i ∈ V . From (A.11), add

and subtract H2
i , this results in:

V̇ ≤ −ᾰV V +
∑
i∈V

{
γ̆2
i |ei|2 −H2

i

}
, (A.13)

where

ᾰV =
[
κ
(
2aξ(L)−

1

ϵ1

)
− 4κ2Tr(LTL)

Kξmin

− 2Los

]
,

γ̆2
i =

[κϵ1KΛ̄2
M

2
+ 2κ2Tr(ATA)

]
, ∀i ∈ V .

Here, the expression for γ̆2
i is independent of i, therefore we drop i from its

notation and use γ̆2 instead. From H2
i in item (1.1) above, we can infer that:∑

i∈V |ei|2 ≤
∑

i∈V
1

2κ2Tr(ATA)
H2

i . Using this inequality in (A.13) and dividing

the resultant inequality by N results in the following:

V̇i ≤ −ᾰV Vi +
( γ̆2

2κ2Tr(ATA)
− 1

)∑
i∈V H

2
i

N
,

where αi = ᾰV , ci = γ̆2

2κ2Tr(ATA)
− 1, Ĥi =

∑
i∈V H2

i

N
, Ĵi = Ji = 0. As a

consequence, Assumptions 4.3(d) and 4.3(e) are realized.

The choice of Ĥ2
i and Ĵi in item (2.1) above, implies that Assumption
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4.3(b) is identical to Assumption 4.2(b) and is satisfied through (A.12).

(2.2) Let Ṽi(xN i
k
) = Kξmin

2N |Lsi,k|2
|Lsi,kx|2. Then, Assumption 4.4 is satisfied as

follows:

Ṽi(xN i
k
) =

Kξmin

2N |Lsi,k|2
|Lsi,kx|2 =

Kξmin

2N |Lsi,k|2
|Lsi,k(x− 1x̄)|2

≤ Kξmin

2N
|(x− 1x̄)|2

≤ Vi(x),

where Lsi,k is the i-th row of Laplacian matrix Lst associated with the sensing

network at time t ∈ {sik}∞k=0, ∀i ∈ V , and is such that Lsi,k1 = 0, ∀i ∈ V .

Hence, all the conditions in Theorem 4.2 are satisfied which concludes

asymptotic stability w.r.t. (4.35).

A.2 For Chapter 5

A.2.1 Proof of Theorem 5.1

We address the proof in two parts. In Part 1, we establish upper-bounds for

growth rate of Wi = |ei| and decay rate of V (defined shortly). Subsequently,

in Part 2, we use the upper-bounds from Part 1 to demonstrate convergence.

Part 1: We begin by examining two candidate functions, namely, Wi =

|ei|, ∀i ∈ V , and V =
∑

i∈V
K
2
ξi|xi − x̄|2, where x̄ =

∑
i∈V ξixi ∈ Rn and

K > 0.

First, we determine bound on the growth rate of Wi as follows:

W ◦
i ≤ max{0,Los + κdi}Wi + κ|(Ai ⊗ In)e|

+ κ|(Li ⊗ In)x|,

≤ LiWi +Hi (A.14)

where Li = max{0,Los+κdi} and Hi is such that: H2
i = 2κ2

(
|Ai|2|e|2+ |(Li⊗

In)(x− 1N ⊗ x̄)|2
)
, since Li1N = 0.

Next, we examine bound on growth rate of V (x) in the presence of errors
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ei, ∀i ∈ V . We begin by noting that

V (x) =
K

2

∑
i∈V

ξi|xi − x̄|2 = K

2
xTMTΞMx

where M = (IN − 1Nξ
T)⊗ In = InN − 1Nξ

T ⊗ In and Ξ = diag{ξ} ⊗ In. The

derivative of V can be upper-bounded as follows:

V ◦ = KxTMTΞM
(
[f ]− κ(L⊗ In)(x+ e)

)
≤ −

[
κ
(
2aξ(L)−

1

ϵ1

)
− (2ϑ+ 4κ2)Tr(LTL)

Kξmin

− 2Los

]
V

+
∑
i∈V

{(κϵ1KΛ̄2
M

2
+ ϑTr(LTL) + 2κ2Tr(ATA)

)
|ei|2 − ωiV̂i(ζN̄ i)−H2

i

}
= − αV V +

∑
i∈V

{
γ2
i |ei|2 − ωiV̂i −H2

i

}
(A.15)

Complete derivation of the upper-bounds expressed in (A.14) and (A.15) can

be found in Appendix A.1.3.

Part 2: The two inequalities, namely, (A.14) and (A.15), from Part 1

aid in demonstrating asymptotic stability. Here, we consider the following

Lyapunov candidate function:

U1(q) =
K

2
xTMTΞMx+

∑
i∈V

{γiθi|ei|2 + ηi}.

• Analysis during flow:

We begin the analysis by evaluating the Clarke’s derivative of U1 as follows:

(U1)
◦ ≤ − αV V +

∑
i∈V

{
γ2
i |ei|2 − ωiV̂i −H2

i + γi(−2Lµ
i θi

− γiθ
2
i − γi)|ei|2 + 2γiθi(Li|ei|+Hi)|ei| − βiηi + ωiV̂i

}
≤ − αV V −

∑
i∈V

{
2µiγiθi|ei|2 + βiηi

}
≤ − αU1U1 (A.16)

where αU1 = min{αV ,mini{2µiγiλi},mini{βi}}.

• Analysis at jump instants:

At any instant t, a subset of agents in V experience jumps; this is denoted
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by the index set I defined as I := {i|t ∈ {sik}∞k=0}. Furthermore, since these

jumps depend on the sign of gis, we define the following index sets: P = {i|i ∈

I, gis > 0}, Q = {i|i ∈ I, gis < 0} and R = {i|i ∈ I, gis = 0}. Agents in R,

jump to either of the two states, namely, G1
i and G2

i , as expressed in (5.16);

therefore, these agents can be further subdivided into subsets R1 = {i|i ∈

R, Gi(q) = G1
i (q)} and R2 = {i|i ∈ R, Gi(q) = G2

i (q)}.

Here, e+i = ei, η
+
i = gis, ∀i ∈ P∪R1, and e+i = ei−mqosc

(
ei
m

)
, η+i = git, ∀i ∈

Q ∪R2. Therefore, at any jump instant t we have:

(U1)
+ − U1 =

∑
i∈P∪R1

{(γi
λi

− γiθi

)
|ei|2 + gis − ηi

}
+

∑
i∈Q∪R2

{γi
λi

|ei −mtqosc

( ei
mt

)
|2 − γiθi|ei|2 + git − ηi

}
≤

∑
i∈Q∪R2

γi
λi

n∆2

4
m2

t , (A.17)

where recall that ∆/2 is the quantization error associated with qosc(·).

• Analysis showing that lim supl→∞ U+
1 (t

i
l) = 0, ∀i ∈ V:

From the above analysis, we note that the hybrid dynamics of Lyapunov func-

tion U1 is governed by the following inequalities:{
(U1)

◦ ≤ −αU1U1,

(U1)
+ ≤ U1 +

∑
i∈Q∪R2

∆̄im
2
t .

(A.18)

where ∆̄i = γi
λi

n∆2

4
. Here, because the MAS operates in an asynchronous

manner, the time interval between two consecutive jumps in the overall system

cannot be lower bounded unlike in the case of synchronous (and periodic)

protocols studied in [115]. However, from (5.5) we note that each agent in V

flows for at least the duration of εi. In other words, if i ∈ I (jump index set)

at time instant t, then i /∈ I during the interval (t, t + εi); therefore, it does

not participate in any jumps (in the overall system) that might occur during

this interval. Using this notion, we construct a bounding trajectory for U1

and show that the bounding trajectory asymptotically converges to zero.

For each agent i ∈ V , we define Ū1,i such that its hybrid dynamics is
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expressed as: 
(Ū1,i)

◦ = −αU1Ū1,i, t ∈ (til, t
i
l+1),

(Ū1,i)
+ = Ū1,i, t ∈ {sik} \ {til},

(Ū1,i)
+ = Ū1,i + ∆̄im

2
t , t ∈ {til},

(A.19)

along with the initial condition Ū1,i(t = 0) = 1
N
U1(t = 0). From the compari-

son lemma in [44], we note that

U1 ≤
∑
i∈V

Ū1,i, ∀t ∈ [0,∞).

To show that Ū1,i converges to zero, we evaluate the expression for (Ū1,i)
+ at

triggering instants {til} and show that as til → ∞, (Ū1,i)
+ → 0.

First, we evaluate the expression for Ū1,i(t
i
1)

+ and subsequently for arbi-

trary event instant til as follows:

Ū1,i(t
i
1)

+ = Ū1,i(0)e
−αU1

ti1 + ∆̄im
2
0e

−2αmti1

Ū1,i(t
i
2)

+ = Ū1,i(0)e
−αU1

ti2 + ∆̄im
2
0e

−2αmti1e−αU1
(ti2−ti1)

+ ∆̄im
2
0e

−2αmti2

...

Ū1,i(t
i
l)
+ = Ū1,i(0)e

−αU1
til +

[ l−1∑
k=1

{
e−2αmtike−αU1

(til−tik)
}

+ e−2αmtil

]
∆̄im

2
0. (A.20)

From (5.5), recall that sik+1−sik > εi; this, by the definition of event-triggering

condition in (5.11), implies that til+1−til > εi. Therefore, we have that til′−tik′ >

(l′ − k′)εi, ∀l′, k′ ∈ Z≥0. This implies that Ū1,i(t
i
l)
+ can be upper-bounded as

follows:

Ū1,i(t
i
l)
+ ≤ Ū1,i(0)π

l + ∆̄im
2
0

l∑
k=1

ϖkπl−k

= Û0
1,iπ

l + ∆̄im
2
0

l∑
k=0

ϖkπl−k (A.21)

where Û0
1,i = Ū1,i(0) − ∆̄im

2
0, π = e−αU1

εi and ϖ = e−2αmεi . Note that the

summation term in (A.21) is symmetric in π and ϖ and is geometric in nature.

141



Therefore, we have

Ū1,i(t
i
l)
+ ≤


Û0
1,iπ

l + ∆̄im0

π−ϖ
πl+1, 2αm > αU1 ,

Û0
1,iπ

l + ∆̄im0

ϖ−π
ϖl+1, 2αm < αU1 ,

Û0
1,iπ

l + ∆̄im0(lπ
l), 2αm = αU1 .

(A.22)

It is straightforward to see that as l → ∞, the bound on Ū1,i(t
i
l)
+ goes to 0

and its rate of decay is governed by 2αm when 2αm < αU1 or by αU1 , otherwise.

Since, U1 ≤
∑

i∈V Ū1,i; it follows that limt→∞ U1 also reaches zero from above.

This concludes the proof. □

A.3 For Chapter 6

A.3.1 Proof of Lemma 6.1

In this proof, we show that the choice of Wi(ei, ẽi) in (6.19) satisfies As-

sumption 6.3.

• First, Assumption 6.3a) is satisfied as follows:

αi
W (|ei|) =

λi

2
|ei| ≤

λi

2
(|ẽi|+ |ei + ẽi|)

≤ max{λi|ẽi|, |ei + ẽi|} = Wi

≤ |ei|+ |ẽi| = ᾱi
W (|(ei, ẽi)|). (A.23)

Here, recall that λi ∈ (0, 1).

• Second, we evaluate ⟨∇Wi, F̄ ⟩ to show that Assumption 6.3b) holds. De-

pending on the outcome of the max function in (6.19), we have the following

three cases.

Case I: When Wi = λi|ẽi|,

⟨∇Wi, F̄ẽi⟩ ≤ λi|(Ādia

i ldiai ⊗ In)(Υi(x̃i)−Υi(x̂i))|

≤ λi

( ∑
j∈ ¯N i

out

lji (L̃
j
i |ẽ

j
i |)2

) 1
2

≤ λidiL̃
max

i |ẽi| ≤ diL̃
max

i Wi, (A.24)

where F̄ẽi = (Ādia
i ldiai ⊗In)(Υi(x̃i)−Υi(x̂i)), L̃

max
i = maxj∈N i

out
L̃j
i and λi|ẽi| ≤ Wi

(by definition of Wi). Note that if di = 0 (i.e., when out-neighbors have
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received broadcasts from i), then ẽji = 0, ∀j ∈ N i
out, till the next broadcast

instant sik+1. Therefore, we have ⟨∇Wi, F̄ẽi⟩ ≤ 0 which is reflected in (A.24)

with the inclusion of di.

Case II: When Wi = |ei + ẽi|,

⟨∇Wi, F̄ẽi + F̄ei⟩ ≤ |F̄ẽi |+ |F̄ei |

≤ diL̃
max

i |ẽi|+ |Υi(x̂i)− (ĀT
i ⊗ fi(xi))|

≤ diL̃
max

i |ẽi|+
( ∑

j∈ ¯N i
out

(L̂j
i |e

j
i |+ Ĥj

i (x, e
i))2

) 1
2

≤ diL̃
max

i |ẽi|+
√

|N̄ i
out|(L̂max

i |ei|+ Ĥmax

i (x, ei))

≤ 1

λi

(
diL̃

max

i + 2

√
|N̄ i

out|L̂max

i

)
Wi +

√
|N̄ i

out|Ĥmax

i (x, ei),

where we use the inequality λi|ei| ≤ 2Wi from (A.23).

Case III: When Wi = λi|ẽi| = |ei + ẽi|, then

W ◦
i ≤max

{
diL̃

max

i Wi,
1

λi

(
diL̃

max

i + 2

√
|N̄ i

out|L̂max

i

)
Wi

+

√
|N̄ i

out|Ĥmax

i (x, ei)

}
=

1

λi

(
diL̃

max

i + 2

√
|N̄ i

out|L̂max

i

)
Wi +

√
|N̄ i

out|Ĥmax

i . (A.25)

• Third, for Assumption 6.3c), we consider the jump at the arrival instant t

when di = 1. At t, let the index set N i,k
out := {j|t ∈ {ri,kj }, ∀j ∈ N i

out} denote

the set of all agents that received the state broadcasted by i at sik. At t,

d+i ∈ {0, 1}, (eii)+ = eii, and, ∀j ∈ N i,k
out , (e

j
i )

+ = eji + ẽji , (ẽ
j
i )

+ = 0. For all

j /∈ N i,k
out , (e

j
i )

+ = eji and (ẽji )
+ = ẽji . Using these expressions, we evaluate W+

i

as follows:

W+
i = max{λi|ẽ+i |, |e+i + ẽ+i |}

= max
{
λi|ẽi − (

∑
j∈N i,k

out

Γj ⊗ In)ẽi|,

|ei + (
∑

j∈N i,k
out

Γj ⊗ In)ẽi + ẽi − (
∑

j∈N i,k
out

Γj ⊗ In)ẽi|
}
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= max{λi|ẽi − (
∑

j∈N i,k
out

Γj ⊗ In)ẽi|, |ei + ẽi|}

≤ max{λi|ẽi|, |ei + ẽi|} = Wi. (A.26)

Here, we note that any arrival instant t that corresponds to update on agents

in N i,k
out , di = 1; this immediately follows from the definitions of lji and di

discussed in Sections 6.2 and 6.3, respectively.

• Finally, for Assumption 6.3d), we consider the jump at the sampling instant

t = sik on i when di = 0 and when i is about to perform its next broadcast.

At t, d+i = 1, (eii)
+, (ẽii)

+ = 0 and, ∀j ∈ N i
out, (e

j
i )

+ = eji , (ẽ
j
i )

+ = −eji . Using

these expressions, we evaluate W+
i as follows:

W+
i = max{λi|ẽ+i |, |e+i + ẽ+i |}

= max{λi|ẽi − (Adia

i ⊗ In)(ẽi + ei)|,

|ei − (Γi ⊗ In)ei + ẽi − (Ādia

i ⊗ In)(ẽi + ei)|}

= max{λi| − ei + (Γi ⊗ In)ei|, |0|} ≤ λi|ei|. (A.27)

Here, we note that ẽi− (Adia
i ⊗ In)(ẽi+ ei) = −ei+(Γi⊗ In)ei. From (6.11), we

see that after the broadcasted state is received at the out-neighbors N i
out, ẽ

j
i =

0, ∀t ∈ [ri,kj , sik+1). Therefore, Wi = max{λi|0|, |ei|} = |ei|. Consequently,

W+
i ≤ λiWi, satisfying Assumption 6.3d).

Note that if there is a jump instant t such that t ∈ {sik} ∧ {ri,kj |j ∈ N i,k
out}

(namely, if the broadcast instant on i coincides with the arrival instant on

j ∈ N i
out), then, first, the jump corresponding to update is evaluated (i.e.,

di = 1 → d+i = 0) and subsequently the jump corresponding to broadcast is

evaluated (i.e., di = 0 → d+i = 1). Such an occurrence can take place if the

transmission delay δi,kj = sik+1 − sik for some out-neighbor j ∈ N i
out. Since the

number of agents in the network is finite, the jumps at such a jump instant t

are also finite.
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A.3.2 Proof of Theorem 6.1

For the closed-loop hybrid system in (6.13), consider the Lyapunov candi-

date

U(q) = V (x) +
∑
i∈V

γ̆iθ
di
i (τi)W

2
i (ei, ẽi).

For notational brevity, we drop the arguments of functions involved in U .

• Analysis during flow:

At any instant t, let index sets M := {i|di = 0} and N := {i|di = 1} denote

agents that are either ready to broadcast (namely, those in M) or agents whose

broadcasted states are yet to be received by, at least some, out-neighbors

(namely, those in N). By definition, M ∩N = ϕ and M ∪N = V . With the

aid of these sets, the Clarke derivative of U(q) can be expressed as follows:

U◦ ≤ − αV (|Θ(x)|) +
∑

i∈M∪N

[
(γ̆iWi)

2 − (Hdi
i )2

]
+
∑
i∈M

[
γ̆i
(
− 2L0

i θ
0
i − γ̆i((θ

0
i )

2 + 1)
)
W 2

i

+ 2γ̆iθ
0
iWiW

◦
i

]
+
∑
i∈N

[
γ̆i
(
− 2L1

i θ
1
i − γ̆i((θ

1
i )

2

+ 1)
)
W 2

i + 2γ̆iθ
1
iWiW

◦
i

]
≤ −αV (|Θ(x)|). (A.28)

This implies that there exists a positive function ζ : R → R≥0 such that U◦(q)

satisfies

U◦ ≤ −ζ(U). (A.29)

• Analysis at jumps:

At any jump instant t, let I := {i|(t ∈ {sik}∞k=0∧di = 0)∨ (t ∈ {ri,kj }∞k=0∧di =

1)} denote the index set of agents that are actively involved in the jump, i.e.,

they either broadcast at t or their previously broadcasted state arrived at their

respective out-neighbors at t. The remaining agents in V do not participate in

the jump, i.e., q+i = qi, ∀i ∈ V\I. Based on the above definition of I, we define

index sets P := {i|t ∈ {sik}∞k=0 ∧ di = 0} and Q = {i|t ∈ {ri,kj }∞k=0 ∧ di = 1}.
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This implies that

∀i ∈ P,


W+

i ≤ λiWi,

τ+i = 0,

d+i = 1,

θ
d+i
i = θ1i (0),

∀i ∈ Q,



W+
i ≤ Wi,

τ+i = τi,

d+i ∈ {0, 1},
θ
d+i
i ∈ {θ0i (τi),

θ1i (τi)}.

(A.30)

At t, using (A.30), we have:

U+ − U =
∑
i∈P

γ̆iθ
1
i (W

+
i )2 −

∑
i∈P

γ̆iθ
0
iW

2
i

+
∑
i∈Q

γ̆iθ
{0,1}
i (W+

i )2 −
∑
i∈Q

γ̆iθ
1
iW

2
i

≤
∑
i∈P

((λi)
2θ1i (0)− θ0i (τi))γ̆iW

2
i

+
∑
i∈Q

(θ0,1i (τi)− θ1i (τi))γ̆iW
2
i , (A.31)

where the notation θ
{0,1}
i suggests that di can take either values 0 or 1. This

implies that, at the jump instants, we have

U(G(q)) ≤ U(q), q ∈ D. (A.32)

Using (A.29) and (A.32), the proof is completed by following an argument

similar to the proof of Theorem 1 in [69].

A.3.3 Proof of Theorem 6.2

It suffices to show that the dynamics in (6.22), with the functions V (x) =

K
2
|(L ⊗ In)x|2, Wi(ei, ẽi) as in Lemma 6.1, and Θ(x) = (L ⊗ In)x, satisfies

Assumptions 6.2, 6.3 and 6.4. Let Ln = L⊗ In and Lni = Li ⊗ In.

• First, for Assumption 6.2, because of the model Υj
i (·) = f(·), it is straight-

forward to see that L̃j
i = L, ∀i, j ∈ V . Next, the growth of error eji = x̂j

i − xi

is bounded as follows:

ėji = f(x̂j
i )− f(xi) + κLni x̂

i,

≤ L|eji |+ κ|Lni x|+ κ|Lni ei|. (A.33)
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The quantities L̂j
i and Ĥj

i (x, e
i), stated in Theorem 6.2, can be inferred from

the bound in (A.33). Since, the expression for Ĥj
i (x, e

i) is independent of j,

Ĥmax
i = Ĥj

i , ∀j ∈ N i
out.

• Second, Assumption 6.3 is directly satisfied by choosing Wi as in Lemma 6.1.

Using Assumption 6.2 and Lemma 6.1, the quantities Ldi
i and Hdi

i (x, ei) are

as follows:

Ldi
i = L

(
di + 2

√
|N̄ i

out|
)
λi

−1,

(Hdi
i )2 = 2|N̄ i

out|κ2
(
|Lni x|2 + |Lni ei|2

)
. (A.34)

• Finally, for Assumption 6.4, we examine the derivative of V (x) = K
2
|Lnx|2

that is as follows: V̇ = KzTLn([f ]−κ(z+[e])) where [f ] = [f(x1)
T · · · f(xN)

T]T

and [e] = [(Ln1e
1)T · · · (LnNeN)T]T. The terms in V̇ can be upper-bounded as

follows:

V̇ ≤ −2
[(

Λ2 −
ΛM

2ϵ2

)
κ− Γ1

]
V +

∑
i∈V

ϵ2Kκ

2
|Lni ei|2, (A.35)

where Γ1 = L
√

2dM
Λ2

(see Appendix A.1.2 for details on the derivation leading

up to the bound in (A.35)). Adding and subtracting
∑

i∈V(H
di
i )2 to the bound

in (A.35) results in:

V̇ ≤ − 2
[(

Λ2 −
ΛM

2ϵ2

)
κ− Γ1

]
V +

∑
i∈V

{ϵ2Kκ

2
|Lni ei|2

+ 2|N̄max

out |κ2(|Lni ei|2 + |Lni x|2)− (Hdi
i )2

}
≤ − 2

[(
Λ2 −

ΛM

2ϵ2

)
κ− Γ1 − 2

|N̄max
out |κ2

K

]
V

+
∑
i∈V

{(ϵ2Kκ

2
+ 2|N̄max

out |κ2
)
|Li|2|ei|2 − (Hdi

i )2
}

V̇ ≤ − αV V +
∑
i∈V

{(ϵ2Kκ

2
+ 2|N̄max

out |κ2
)
|Lmax

i |2|ei|2 − (Hdi
i )2

}
≤ − αV V +

∑
i∈V

{4γ2

λ2
i

W 2
i − (Hdi

i )2
}
. (A.36)

Here, in the third inequality we use:
∑

i∈V |ei|2 =
∑

i∈V |ei|2.
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A.4 For Chapter 7

A.4.1 Counter-example

In this subsection, we offer a counter-example to demonstrate that the

distributed accelerated algorithm in [117], designed for undirected graphs,

may not work for weight-balanced digraphs. Consider the following convex

optimization problem: minxi∈R
∑5

i=1
mi

2
|xi − xi(0)|2 where x(0) = [5 0 7 −

1 − 4]T, and node inertia m = [14 2 2.5 3 2]T. This problem has to be solved,

in a distributed manner, over a weight-balanced digraph given by the graph

Laplacian:

L =
1

8

[
0.6986 −0.5326 −0.1654 −0.0004 −0.0002
−0.0595 0.9182 −0.6676 −0.0681 −0.1230
−0.0213 −0.0004 0.9207 −0.5809 −0.3181
−0.0248 −0.2458 0 0.8293 −0.5587
−0.5930 −0.1394 −0.0877 −0.1799 1

]
. (A.37)

The algorithm in [117], is
ẋ = v − Lx,

v̇ = −β∇f − kv − kq,

q̇ = Lx,
∑

i qi(0) = 0,

(A.38)

where β = 0.55 and k = 113.63 satisfy the sufficiency conditions stated in (15)

of [117]. Our algorithm is as follows:
ẋ = 0.1

4
v − 4Lx,

v̇ = −∇f − 2v − 196q,

q̇ = Lx,
∑

i qi(0) = 0.

(A.39)

Fig. A.1(a) and A.1(b) depict the position trajectories when (A.38) (from

[117]) and (A.39) (our algorithm) are employed over (A.37), respectively.

Furthermore, we also note that one can generate similar counter-examples,

perhaps, using the Laplacian in (A.37) and objective functions used in this sub-

section, for accelerated gradient algorithms designed for undirected graphs in

[110], [122]; therefore, discussion on sufficiency conditions for weight-balanced

digraphs in Section 7.3 is necessary.
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Figure A.1: Counter-example demonstrating that algorithm designed for undi-
rected graph (such as [117]) may not work for weight-balanced digraphs.

A.4.2 Proof of Theorem 7.1

We present the proof in two parts. In Part 1, we describe the construction

of Lyapunov function and establish an upper bound, as a function of gains

a{}, b{}, on its decay rate. In Part 2, we analyze the coefficients associated

with terms in this upper bound to ensure positivity, and as a consequence,

guarantee convergence of (7.3) and existence of gains.

Part 1: First, we define the following terms and their derivatives.

1) Define Q := ∆a + ϕb + πc where ∆, ϕ, π are positive scalars. Then,

Q̇ =
(
a1∆ − b2ϕ

)
b + ϕb1∇f − ϕb3c if π = a2∆. Evaluating d

dt
(1
2
|Q|2) results

in:

QTQ̇ = ϕ
(
a1∆− b2ϕ

)
|b|2 − πϕb3|c|2

+∆
(
a1∆− b2ϕ

)
aTb−∆ϕb3a

Tc+ ϕb1Q
T∇f

+
(
π
(
a1∆− b2ϕ

)
− ϕ2b3

)
bTc. (A.40)

2) Let Vc :=
1
2
cTΓnc where Γn = Γ⊗ In and Γ satisfies Lemma 7.1, then

V̇c = cTΓnLna = cTa+ cTΓnLnssa

≤ cTa+
λΓ
M

2ζ1
|c|2 + λΓ

Mζ1
2

|Lnssa|2

≤ cTa+
λΓ
M

2ζ1
|c|2 + λΓ

Mζ1ϵL
2

aTLnsa,
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where Lns = Ls ⊗ In, Lnss = Lss ⊗ In.

3) Let Vb :=
1
2
|b|2, then V̇b = −b2|b|2 − b3b

Tc+ b1b
T∇f .

4) Let Va :=
1
2
|a|2, then V̇a = a1a

Tb− a2a
TLnsa.

Consider the following Lyapunov function

V :=
1

2
|Q|2 +KaVa +KbVb +∆ϕb3Vc, (A.41)

where K{a,b} are positive scalars. Using aforementioned items 1)–4), the

derivative of V along (7.5) is upper bounded as:

V̇ ≤ ϕ∆b1a
T∇f −

(
Kbb2 − ϕ

(
a1∆− b2ϕ

))
|b|2

−
(
ϕ∆a2b3 −∆ϕb3

λΓ
M

2ζ1

)
|c|2 +

(
ϕ2 +Kb

)
b1b

T∇f

+ ϕ∆a2b1c
T∇f +

(
Kaa1 +∆

(
a1∆− b2ϕ

))
aTb

+
(
a2∆

(
a1∆− b2ϕ

)
−
(
ϕ2 +Kb

)
b3
)
bTc

−
(
Kaa2 −∆ϕb3

λΓ
Mζ1ϵL
2

)
aTLnsa. (A.42)

Here, we disintegrate (and dissolve) the following terms in (A.42) and selec-

tively absorb them into coefficients of |a|2, |b|2, |c|2 and aTLnsa: 1) we note

that aT∇f ≤ −µ|a|2; 2) we set

a2∆
(
a1∆− b2ϕ

)
−

(
ϕ2 +Kb

)
b3 = 0, (A.43)

which eliminates the cross term bTc; 3) we disintegrate the leftover cross terms

through Young’s inequality as follows:
aTb ≤ ε1

2
|a|2 + 1

2ε1
|b|2,

bT∇f ≤ L
(

ε2
2
|a|2 + 1

2ε2
|b|2

)
,

cT∇f ≤ L
(

ε3
2
|a|2 + 1

2ε3
|c|2

)
.

(A.44)

Using the aforementioned items and (A.44) in (A.42) results in the following:

V̇ ≤ −Ca|a|2 − Cb|b|2 − Cc|c|2 − Csyma
TLnsa

≤ −min{Ca, Cb, Cc}(|a|2 + |b|2 + |c|2) (A.45)
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where the coefficients C{·} are given by

Ca = ϕ∆µb1 −
(
Kaa1 +∆

(
a1∆− b2ϕ

))ε1
2

−
(
ϕ2 +Kb

)
b1

Lε2
2

− ϕ∆a2b1
Lε3
2

, (A.46a)

Cb =
(
Kbb2 − ϕ

(
a1∆− b2ϕ

))
−
(
ϕ2 +Kb

)
b1

L

2ε2

−
(
Kaa1 +∆

(
a1∆− b2ϕ

)) 1

2ε1
, (A.46b)

Cc = ϕ∆
(
a2b3 − b3

λΓ
M

2ζ1
− a2b1

L

2ε3

)
, (A.46c)

Csym =
(
Kaa2 − ϕ∆b3

λΓ
Mζ1ϵL
2

)
. (A.46d)

If we ensure that every C{·} > 0 in (A.46), then from (A.45), it can be seen

that the Lyapunov function V has linear decay rate, i.e., V̇ ≤ −αV V where

αV ≥ min{Ca, Cb, Cc}
λP
M

∝ b1ϕ
2, (A.47)

and λP
M is the maximum eigenvalue of P given by

P =
1

2

[
(Ka+∆2)IN ∆ϕIN π∆IN

∆ϕIN (Kb+ϕ2)IN ϕπIN
π∆IN ϕπIN π2IN+∆ϕb3Γ

]
⊗ In.

Part 2: Here, we show positivity of coefficients C{}, expressed in (A.46),

to ensure convergence of the system dynamics in (7.5) which simultaneously

addresses concerns on existence of such gains. Let Kb = Xbϕ
2, a2 = Θb3 and

a1 = pb2 where scalars Xb, Θ, p > 0. First, from Cc > 0 and Ca > 0, we can

establish bounds of ε3 as follows:

2µ

a2L
> ε3 >

Θb1L

2
(
a2 −

λΓ
M

2ζ1

) . (A.48)

A feasible solution that ensures the order of inequalities in (A.48) is plausible

only if the following inequalities are simultaneously satisfied:Θ < 4µ
b1L2 ,

ζ1 >
2µλΓ

M

a2

(
4µ−Θb1L2

) . (A.49)
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To simplify our analysis, we choose Θ := 2µ(b1L
2)−1 and ζ1 := 2λΓ

M(a2)
−1

that comply with (A.49). This choice bounds ε3 as follows: 2 µ
a2L

> ε3 >

4
3

µ
a2L

. Let ε3 := 3µ(2a2L)
−1; then, Cc = 1

24

a22L
2

µ
b1ϕ∆. From Csym > 0, we

have Ka >
(λΓ

ML)2ϵL
2µ

b1
a2
ϕ∆. Define R such that R > RKa =

(λΓ
ML)2ϵL
2µ

, and let

Ka = Rb1(a2)
−1ϕ∆; then,

Csym = Rb1ϕ∆− ϕ∆b3
λΓ
Mζ1ϵL
2

=
(
Rb1 − (λΓ

M)2ϵL
b3
a2

)
ϕ∆

=
(
R−RKa

)
b1ϕ∆.

Note that Rka depends solely on the network and objective functions involved.

Choices made for Θ, ζ1, ε3, R and Ka ensure that the coefficients C{c,sym}

are positive. Next, we determine other design parameters in order to ensure

that the coefficients C{a,b} are also positive. For this, we begin by evaluating

(A.43) which can be expressed as:

Θb3b2
(
p∆2 − ϕ∆

)
− (Xb + 1)ϕ2b3 = 0

=⇒ ∆2 − 1

p
ϕ∆− 1

p

Xb + 1

Θb2
ϕ2 = 0. (A.50)

Note that the quadratic equation in (A.50), in ∆/ϕ, always has two real

roots; these lie on either side of the imaginary axis. Let S∆
ϕ
, given by (7.7),

denote the positive solution of (A.50). Through substitutions involving various

parameters, we can rewrite Ca and Cb in (A.46) as

Ca = ϕ2b1S∆
ϕ

µ

4
−Kaa1

ε1
2
−

(
Xb + 1

)
ϕ2
( ε1
2Θ

+
b1Lε2
2

)
= b1ϕ

2
(
S∆

ϕ

µ

4
−

(
Xb + 1

)
L
(L
µ

ε1
4
+

ε2
2

)
−R(S∆

ϕ
p)
b2
a2

ε1
2

)
, (A.51)

and

Cb = Xbb2ϕ
2 −Kaa1

1

2ε1
−

(
Xb + 1

)
ϕ2
(
b1

L

2ε2
+

1

Θ

ϕ

∆
+

1

Θ

1

2ε1

)
= b2ϕ

2
(
Xb −R(S∆

ϕ
p)
b1
a2

1

2ε1

)
−
(
Xb + 1

)
b1ϕ

2
( L

2ε2
+

L2

2µ

1

S∆
ϕ

+
L2

2µ

1

2ε1

)
= b1ϕ

2
(b2
b1

Xb −
(
Xb + 1

)
L
( L

2µ

1

2ε1
+

1

2ε2
+

L

2µ

1

S∆
ϕ

)
−R(S∆

ϕ
p)
b2
a2

1

2ε1

)
,

(A.52)
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respectively. To provide intuition on solving for positivity of Ca, Cb in (A.51)

and (A.52), respectively, we let ε1 = ε2 = ε; then C{a,b} > 0 can be com-

bined into one inequality expressed in (7.6). From S∆
ϕ
in (7.7) we see that a

relatively small p can inflate the first argument of the min function in (7.6).

This affects the second term in (7.6), specifically S∆
ϕ
p = (1 + p

J
)
1
2 , favorably;

additionally, this term can also be manipulated by picking appropriate ra-

tio r2 := b2/a2. The second argument of the min function can be inflated

by appropriately choosing the ratio r1 := b2/b1. Thus, solving (7.6) ensures

positivity of coefficients C{a,b}.

To summarize, the coefficients a{1,2}, b{2,3} in (7.5) can be expressed in

terms of the gradient gain b1, ratios r{1,2}, p and (cost) function parameters

L, µ as follows: {
a1 = pr1b1, a2 =

r1
r2
b1,

b2 = r1b1, b3 =
a2
Θ
= r1

r2
L2

2µ
b21.

(A.53)

In order to ease the design of event-based broadcasting in Section 7.4, we

also define C̆{} such that the coefficients C{} in (A.45) can be expressed as

C{} = b1ϕ
2C̆{}. Here, C̆{} are given by:

C̆a = S∆
ϕ

µ

4
−

(
Xb + 1

)
L
( L

4µ
+

1

2

)
−R(S∆

ϕ
p)

b2
2a2

, (A.54a)

C̆b =
b2
b1

Xb −
(
Xb + 1

)
L
( L

4µ
+

1

2
+

L

2µ

1

S∆
ϕ

)
−R(S∆

ϕ
p)

b2
2a2

, (A.54b)

C̆c =
1

24

(r1
r2

)2L2

µ
S∆

ϕ
b21, (A.54c)

C̆sym =
(
R−RKa

)
S∆

ϕ
. (A.54d)

A.4.3 Effect of the Broadcast Error

Recall that e only affects functions Va and Vb, defined in Appendix A.4.2;

therefore, their derivatives along dynamics in (7.10) are bounded as:

V̇a = a1a
Tb− a2a

TLnsa− a2a
TLne

≤ a1a
Tb− a2a

TLnsa+ σL

( b1
2ϱ1

|a|2 + ϱ1
2b1

|e|2
)

︸ ︷︷ ︸
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and

V̇c = cTa+ cTΓnLnssa+ cTe+ cTΓnLnsse

≤ cTa+
(λΓ

M

2ζ1
+

b1
2ι1

+
b1λ

Γ
M

2ι2︸ ︷︷ ︸
)
|c|2 + λΓ

Mζ1ϵL
2

aTLnsa

+
1

b1

(ι1
2
+

λΓ
M ι2ϵL
2

λLs
M

)
|e|2︸ ︷︷ ︸,

where the under-brace shows the additional terms as a result of broadcast

error. Here, σL is the spectral norm of L. The derivative of V , defined in

(A.41), along (7.10) is then upper bounded as:

V̇ ≤ −Ĉa|a|2 − Cb|b|2 − Ĉc|c|2 − Csyma
TLsa+ Ce|e|2,

where

Ĉa = Ca −KaσL
b1
2ϱ1

= b1ϕ
2
(
C̆a −RS∆

ϕ

r2
r1

σL

2ϱ1

)
(A.55a)

Ĉc = Cc −∆ϕb3

( b1
2ι1

+
b1λ

Γ
M

2ι2

)
= b1ϕ

2
(
C̆c −S∆

ϕ
b3

( 1

2ι1
+

1λΓ
M

2ι2

))
= b31ϕ

2S∆
ϕ

r1
r2

L2

2µ

( 1

12

r1
r2

−
( 1

2ι1
+

λΓ
M

2ι2

))
, (A.55b)

Ce =
1

2b1

(
KaσLϱ1 +∆ϕb3(ι1 + λΓ

M ι2ϵLλ
Ls
M)

)
=

S∆
ϕ
ϕ2

2b1

(
R
r2
r1
σLϱ1 + b3(ι1 + λΓ

MλLs
MϵLι2)

)
, (A.55c)

and C̆a is from (A.54). Here, positivity of coefficients Ĉ{a,c} can be ensured by

choosing ϱ1, ι1, ι2 as follows:

ϱ1 > R
r2
r1

2σL

µ
, (A.56a)( 1

ι1
+

λΓ
M

ι2

)
<

1

6

r1
r2
, (A.56b)

and, if deemed necessary, revising the choice of p in (7.6). Let the new choice

of p be denoted by p̄; if it remains unchanged then p̄ = p.
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A.4.4 Proof of Theorem 7.2

In this proof, using the ηi dynamics in (7.21), we show that the dynamics

in (7.10) asymptotically converges to E.

We begin the proof by establishing some quantities. First, recall that

in (7.19) we bounded the growth rate of Wi. Here, we define Hi such that

Ẇi ≤ (a2di)Wi + Hi, where H2
i := 2

(
a21|bi|2 + a22|Li|2|a|2 + a22|Ai|2|e|2

)
. Next,

we add and subtract
∑

i∀V(δ1/b1)H
2
i , δ1 > 0, from (7.18) which results in:

V̇ ≤ −
(
Ĉa − 2

δ1
b1

a22Tr(L
TL)

)
|a|2 −

(
Cb − 2

δ1
b1

a21
)
|b|2

− Ĉc|c|2 − Csyma
TLsa+

∑
i∀V

{(
Ce + 2

δ1
b1

a22Tr(A
TA)

)
|ei|2 −

δ1
b1

H2
i

}
.

(A.57)

where Ĉ{a,c}, Ce are defined in (A.55).

Second, to enhance performance of the ETC in (7.13), we use the informa-

tion that is locally available at the node, namely, Lni x̂, to construct an function

V̂i as

V̂i = cL|Lni x̂|2 ≤ cL|Li|2|a|2 + cL|Li|2|e|2. (A.58)

We add and subtract
∑

i∀V b1V̂i from (A.57), resulting in

V̇ ≤−
(
Ĉa − (2a22

δ1
b1

+ b1cL)Tr(L
TL)

)
︸ ︷︷ ︸

C̄a

|a|2

−
(
Cb − 2a21

δ1
b1

)
︸ ︷︷ ︸

C̄b

|b|2 − Ĉc|c|2 − Csyma
TLsa

+
∑
i∀V

{(
Ce +

(
2a22

δ1
b1

Tr(ATA) + b1cLTr(L
TL)

))
︸ ︷︷ ︸

γ2
i

|ei|2

− δ1
b1

H2
i − b1V̂i

}
. (A.59)

From (A.53), we express a1, a2 in terms of b1 and p̄; then

C̄a =b1

(
ϕ2
(
C̆a −RS∆

ϕ

r2
r1

σL

2ϱ1

)
− (2

r21
r22
δ1 + cL)Tr(L

TL)
)
,

C̄b =b1

(
C̆bϕ

2 − 2p̄2r21δ1

)
, (A.60)
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where coefficients C̄{a,b}, Ĉc ought to be positive which can be ensured, inde-

pendent of choice of b1, by choosing appropriate ϕ.

Now, we are ready to show the convergence of the hybrid dynamics (7.15).

Let the Lyapunov function be defined as follows:

U := V +
∑
∀i∈V

{
γiθiW

2
i + ηi

}
.

Stability analysis for hybrid systems has two aspects, namely, convergence in

the flow domain when X ∈ C, and convergence in the jump domain when

X ∈ D.

• Analysis during flow:

The derivative of U along the dynamics described in (7.15) is:

U◦ = V̇ +
∑
∀i

{
γiθ̇i|ei|2 + 2γiθiẆi|ei|+ η◦i

}
≤− C̄a|a|2 − C̄b|b|2 − Ĉc|c|2 − Csyma

TLsa+
∑
∀i

{
γ2
i |ei|2

+ γi
(
− 2Li

νθi − γi(
b1
δ1
θ2i + 1)

)
|ei|2

+ 2γiθi
(
a2di|ei|+Hi

)
|ei|+ η̇i −

δ1
b1

H2
i − b1V̂i

}
≤− C̄a|a|2 − C̄b|b|2 − Ĉc|c|2 − Csyma

TLsa

−
∑
∀i

{
2γiθiνi|ei|2 + βiηi

}
. (A.61)

where U◦ denotes the Clarke derivative, see [12]. Here, we used Young’s

inequality to disintegrate 2γiθiHi|ei| as:

2γiθiHi|ei| ≤
b1
δ1
γ2
i θ

2
i |ei|2 +

δ1
b1

H2
i .

Since the coefficients C̄{a,b}, Ĉc, βi are positive, there exists a positive def-

inite function Ω such that U◦ in (A.61) satisfies

U◦ ≤ −Ω(U(X )), ∀X ∈ C. (A.62)

• Analysis at jumps:

Prior to examining changes in the Lyapunov function U , over the jump domain
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D, we define three index sets to categorize agents based on the sign of their

gis at the jump instant t. Recall that in (7.17), the jump states described by

the set-valued mapping in Ji depend on gis. At jump instant t, the nodes in

the network, which actively take part in the jump, must belong to one of the

following sets: a) P = {i ∈ V | gis > 0}, b) Q = {i ∈ V | gis < 0}, and c)

R = {i ∈ V | gis = 0}. Here, P ∪ Q ∪R ⊆ V . Note that agents which do not

take part in the jump, at jump instant t, do not contribute towards changes

in U .

The states (a, b, c), like mentioned in Section 7.4.1, do not change, instan-

taneously, after the jump; however, states (e, η, τ) instantaneously jump as

follows: 
∀i ∈ P : e+i = ei, η

+
i = gis, τ

+
i = 0,

∀i ∈ Q : e+i = 0, η+i = git, τ
+
i = 0,

∀i ∈ R :

{
∀i ∈ R1 : e+i = ei, η

+
i = gis, τ

+
i = 0,

∀i ∈ R2 : e+i = 0, η+i = git, τ
+
i = 0,

where R1, R2 are subsets of R such that the R1 ∪R2 = R and R1 ∩R2 = ϕ

(null set). The two sets R1 and R2 represent the index subsets of nodes i ∈ R

that jump to states J 1
i and J 2

i , respectively. At any jump instant V + = V ,

therefore we have:

U+ − U =
∑
∀i

{
η+i − ηi +

[
γiθi|ei|2

]+ − γiθi|ei|2
}

≤
∑

i∈P∪R1

{
git − ηi + γi

( 1

λi

|e+i |2 − θi|ei|2
)}

+
∑

i∈Q∪R2

{
gis − ηi + γi

( 1

λi

|e+i |2 − θi|ei|2
)}

≤ −
∑

i∈P∪R1

γi(θi − λi)|ei|2 ≤ 0.

Recall that θi(τi) ≥ λi from Lemma 7.3; therefore, from (??) we have:

U(X+) ≤ U(X ), X ∈ D. (A.63)

The proof is completed by following the arguments made in Theorem 1

of [69] using (A.62) and (A.63).
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