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The' study reported herein involved field measurements QfmfesistanceA

coefficients in in-service subyrban sanitqry sewers in Eamontqﬂ and the

surrounding areas, As plastic (pvQ) -and concrete are .now the most
commonly used séwer piping materials in subdivisions,[the“emphasis in
. ,.4 , ‘, , o ’ o .
thls study waa on these types in the sxze range from 200 mm to 400 mm.
C ,A wide range of slqpes, frOm‘steep to'flatq}was investigated. Most-of

.. the measurements wete‘ made at the normal flows occurrlnq in. &he

.
. : . : . )
)

.:jsewers. ‘ Becausej.most of these |flows . were ‘low under no:mal
. , \ . ‘ | . ' " ' W

cxrcumstances, augmented ~f low tests were ‘conducted -at selected sgtes to

¢ .
oY
.

, -
! ' T

detegmine the - resistance under conditions more representative @f design

conditions, . Co s . . : k K
A ' . - v . o '«.‘ I ; Y : o ' .
Lo . 'The in-service resistance coefficients were much higher than those
v o ;. s ' . t o ) \

. w ‘_‘ ~ o . ! ' L4 N
determined  from clean water new—pipe.laboratory tests commonly used in

[ - i . ' ’

séﬁer design.i The resistance at low flow wag\very h;gh be;ng ordets of
:A‘. \~*‘ ,

nagnitude hiqher than those USually assumed 1n the evaluatxon of "3c9ur

% . . ' i

A “ i . 4
. '
\ ) )

Y
‘
" .\, ’

N ) royghness w1th.relat1ve depth is much’ stronger than the usual var1atxons

presented 1n standard textboof’. ‘ ‘

/ e

[o8
<
L

velocities": There was a stronq varxatxon 1n the effectxve hYd:eulic“

f:oughness' with“‘telative~ aepth (d/D) This ,variation in hydiadlic‘

’
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T. ' INTRODUCTION
Currently common, sewer design standag‘ds recommend that .a Mannxng'

n of 0.013 should be used and that minimum slopes should produce a

v
”

velocity of at’ least 0. 61 m/s (2 ft/s flowing‘full or halfafull. At

the present time (1986) no distinction is usually made between different
‘ ‘ v, i

pipe materiais. This sewer design cvrite‘ria",. is based on recommendatjons
made by a eemmittee, appointed by the Sanitgry Section of the Boston
Society of Civ}; Engineers, in, j94%,{f§liewing enqnirieQ* made of the
municipal engineers zand Various State Health Departments As to their

design requlatxons and requxrements.

=y

Another xtem oﬁﬁxnterest ‘has been the variation Ln res;stance with

relatlve depth (d/D).’ In conduits flow;ng part- full laborqtory tests
.
'Y
have indicated a variation in the roughness ceefficient ‘relatiVe to

. ta

depth.  Most of the hydraulic elements graphs '(for example, a plot of

N

Q/qull versus 4/D)' in common use have been prepared on the assumption

that for the particular conduit shape Manning n does not change with -
flow depth. A_reView’ofxthe literature has indicated that the hydraulic
elements graphs avallable in most standard textbooks which take account |

of thé@rlatlon of n with depth bg; been prepared from the data of

Ll

: wilcox (1924) and‘YarneLl andAqudward (1920). ' n."“‘
| ‘A properly fdnctioningwséner nust‘transport solidé in euch.a'manner
that de;osité in the sewer 'and asseciated odonrlnufsances‘are %gpt‘to a
mfnimun. ,dfhe invert slope ‘muet 'te sufficient to .ensure‘dadeduate
o 4 e . :
cleans?ng ‘velocitiee at a reasonable minimumm flow. Sedinent is

transported by flowing water in ‘three ways:
1. Bed load movement: In this mode the solid particles are drégged or

' 'iolled aloné the bottom of;the pipe by ‘the water. T
' . El . = ! [N .



)

2. Suspended Jload movement; As the term suggests in this mode the
solid particles are continuously enveloped by flowing water and are
transported 4in 'suapension.

3. Saltation. The 8o0lid particles move Aalternately in bed load

' movement and suspensjon.

Solids which axe transport'ed in suspension move with the velocity
of the water, whereas solids moved as Bed load progress along the sewer
at much lower véloci'cy. To ensure ffeshness at the point of disposal it
is' desirable that the sewage solids be traﬂ!spox:ted main.1y in suspension.
Shields (1936) indicated that the  boundary shear stress required to
produce particle motion along tf_}ttom 1s’approximately proport‘ionall
to the diameter of the particles and thelir submerged specific weight.
From the“"(flndings of Shields, Camp {1946) derived the following equation
for the velocity reqﬁiréd to transport sgdimént:

vall gV F T | )
where V 1is the 4erage velocity, s is “the spéci‘fic gravity of the
particle, D the palrt:icle ‘diameter,‘v R the hydraulic radius and B is a
dimenéiorlmléss constant wit.h a value of about 0.04 to move granular
part}clés and of about 0.8 for.\ad'equate self-cleansing of sewers and
drains.‘ It is commor"n: to increase th§ minim;xm gradient by 50% for lines
at the top off’"‘;t-he system to ;;:revent- exéessive deposition of solids: sin;:e
the fiow depths and ﬁlocities are relatively small.

Fair et al. (1966) suggested that for part-full flow the slope

required,;; to transport the same size parti¢les that would be transported

L
AT



by the sewer flowing full is qiven by.

CIR o |
S, R _ (2)

This foilows from the requirement that the average bouhdqry shear stress
A

be the same in the two cases, Equation 2 suqgests that the slope must

he doubled when the depth of flow drops to 0.2 of. the diameter and

quadrupled at 0.1. | |

” .
The peak hourly flow in a sewer is often several times the average

dally f£low, The depth and méan +velocity thus vary con;iderably,
Furthermore, the population that a sewer serves commonly increases Bve;
the design period, and therefore the peak flow also increases with
time. Hence the early years ‘Are critical for adequate scouring
velocities whereas the sewer must bé sized to have adequate‘capaéity for
the peak flow at the end of the design period. Since there-is a large

factor of safety in the estimated peak flows most engineers design

sewers to flow just full at peak design flow. There will then be a free

surféce for ventilation at all lesser flows.
Traditionally, the results of clean water new-pipe laborafory tests
‘have been used to define the resistance,coefficiénts of sewers. These
tests do not,"howeve;, simulate the effects of ‘'scaling, or slime
build-up, which occurs on the inne% pipe surface’ under operating
conditions. .
However, a ndhber of field invesfigations on the in-service

roughness of sewers have been reported in the literature. Extensive

field testing of sewers has been conducted in Britain, which has



‘recently led to recommendations for in-service roughness ‘coefficients
for different piping materials. For exanllple, the Hydraulics Research
Statxén (1983) recommends the following rb;ghnesa coefficients fgr
sewers, slimed to half debth, and flowing at a velocity of approximately
0.75 m/s when half fulﬁ;
| PVC; Kg = 0-6 mm . n = 0.011
Concrete; ks = 3.0 mm \ ‘ n = 0,014
"

where k. is the equivalent iénd grain roughnpess used in the

"

Colebrook»White equation. These va&ues are very much higher than those
ﬁsed for sewer design in &grth'hmerica. |

The purpose of this investigatiop was t§ assesslthe applicability
of these results in Western Canada. A? élastic (PVC)‘and concfeté are

now the most commonly used sewer‘pxping‘materials,:the emphasis of this

study was on PVC and concreté in the size range from 200 mm to 400 mm.



IT. REVIEW OF PREVIOUS WORK
A Lagobatéry Tests
Altnc;ugh , keslstance coéffxoients determined from clean wataer
1Qbofatdry tests should nst be used in sewer design, such ;ests Rroviqé
an indication of how resistance varies with geometry, pipe material, and
other pertinent var;ables. |
1Yarpell and Woodward (1916, 1917)  carried out intensjive ana
N -1
painstaking research on velocities in pipes floanq partﬂfuil.
Experiments were made with a variety of the usual co@herCial sizes of
sewer pipe, bath of clay and concrete, from 4 to 12 inch (102 mm to
300 mm) inside diameter. Each pipe was tested at the f;liowiné

—~

s lopes; 0.0003, 0.0010, 0.0020, 0.0030, 0.0050, 0.0C75, 0.0100, 0.0125
*and 0;0150. The éipes were laid in about 7 inches u; soil in the bottom
A of a wooden f}dme 570 ft (174 m) long. The pipes were plaid¢ended with
: laying lengths of 1 ft (0.3 m) for the smaller sizes and 2 ft (0.6 m)
| ,the larger. Each length was abutted without sealing. Flow depths
were measured by piezometer taps in the pipe wall. To measure the water
entering and discharging from the lihe, 90°-notch weirs were used.
Kutter's n (Kutter's n is considerea equivalent  to Manning's n) and
Chezy's C were determined for éll runs. Measurements were made for 824
flow conditions. These included 237 measurements at relative depths
frde 0.83 to 0.99. The data of Yarnell and Woodward showed that
.Kutterﬂs (or Manning’s) n increased as the relative dep£h (d/D)
.decreased. Examples of their data are shown in Figure 1. As mentione@

- earlier, the variation of Manning n with depth found by Yarnell and

Woodward is still used in sewer design.
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Figure 1. Composite plot of Mdnning n vs 4/D fr pgrimental results

of early investigators.
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(30 m). wilcox measured velocities and depths “s well as discharge and e

[

wilcox' .‘(1924) carried out laboratory tests on 8 inch (z'oo mm)

co‘ncrete and vitrified clay pipe. The pipe elopes used were, 0 005

’ 0. 01, 0 015 0 02, 0 03 and 0 .04., The lengm of each line ‘was 98 3 f‘:

¢ [

- v | .

1 .
. .

depths, to determine the resistance‘ ,coefficients‘. The ’ depths wer‘e“_ '

R

PN , N

RN . ‘4,\

‘«measurements, salt solution was added to, the flow through a slot in t.he
I

a

‘aVerage ,veloci/ty.z ' No ‘le'ss than five‘ ‘observations ‘were' taken for the»‘ "

Sy o ¢
oL ' PR

. attributed to experimental error in the velocity measurement: 'the two‘ ""

. velocity. wilcox s da‘a

Lo
\ ' . '
o «

intake end of the pipe. A headphone, .probe and voltmeter were used,
' “ J

.downstreamﬂ to measure, the variation of salt concentration as the salt

.
\ [

s‘luq"p'a‘seed by the ‘probe.‘ The' change’in‘conductivity causedwa change in'.

' N R U S .
the tone in t.he headphone. The time from the instant the salt solution

'
1

struck the water to the first sound the head hore,‘ and the time to
P

the last audible sound were both measured 'with a stopwatch. The _mean
o | i N . '
“' : ! ' vy / ¢

" Y . -
)

4
"

for the resistance coefficient based-\on whether the velocity or the

.
I

l
\\‘

. N
o . . " ‘,‘ N P .

generally quite low fon low” values of d/D and increased as d/D

0
,,
l\ " 1 . '

"'.increased to some peak value then, ‘as d/D was increased further,

. . R
/, S . i ¢

Manning s n became lower. When discharge and depth were used ,to comyute '1

3

: .measured "by xpiezometer,'taps in; .the ‘pipeline, discharges by orifice_'u

‘meters and velocities by the salt 'dilution meth‘od.‘_,j For theilattefi}f{

time between tihe first and the last sound was’ used to. determine ‘the ’

discharge ; was measured. when velocity was: \used Manning s ‘n was

velocity, Mahning s n ‘was hi¢§h at low values of d/D and became lower as .

E ta
oo } N ‘w\ . ’ »“

d/D increa,sed., The difference in the resistance coefficients is likely

i f ) \,\

Nd \
;

sound signals w0uld not provide a QOOd definition of the true average

. . W v
4 Al

~showed that for the same d/D the pipe at a

.
e

[
T [ ‘|,'

{ ‘velocity at ea/ch depth and grade. . Quite different results were obtained'..‘.g T

L

[

A
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steeper slope had a higher resistance. wWhen depth and discharge were

'
b

used the average n (a/b > o0.8) was . 0.011 for both the ‘8 in (200'mm)

vitrified_clay tile and concrete tile. Typical results given by Wilcox,

[

: . : ‘ _ ’
based on “the depth and discharge measurements,‘ -are reproduced in

S

Figure 1. ' They can be seehlifto followq those" of - Yarnell a{nd woodward

quite closely. I ‘ . A ) -

\ ¢

Bloodgood and:' Bell (1961) measured the flow r'e'sistance of 4 in: T

(100 mm) vitrified clay,- 4 in (100 mm) centrifugaliy—souh c‘aslt, iron,'

4 in (iOO mm ) cemefxt-—asbestos,’ 8 in (200 mm) . vitrifi'e.d ‘clay ‘and_‘a in

¢

(200" mm) cement-asbestos pipes. The’ lines were -supported on a trestle
and were about 300 f‘t‘. (91 m) long. There were 7 to 9'-piezometer ‘taps

inetalled along the,“line. Openings were made in the top of some of the

pipes so that the depth of flow could Q\e measured directly and the

i . .
b ,k, ) : . .

i

surface ~of 'the water observed. The direct measurements confirmed -the

piezometex; measurements. + The flow rate_ ‘,,for, each test was determined

Ay .1
[ W

using a calibrated V—notched weir as the ~-flow passed into a stilling

tank, from which the water entered the line being tested. Measurements_

e

were taken for the 4 in (100 nm) pipe tests at slopes of 0 0025 and

‘il

0.'0040, and telative depths .from 0.23 to 0.75. For- the 8 in (200 mm)

B ,x'« LN
| . A il

pipe tests, measurements were taken at a slope of 0 004 and relative

\

.‘.¢ N ' A “,

depths from 0.11 to 0. 46.41 Thera' were,';.3871v.' determinations of n for'clay

I ’:,,‘ Voo . Y

pipe, 387 for cement—asbestos pipe, and 104 for cast iron pipe. There'

. ﬂ"- (

was no significant variation in Manning n with pipe material {for the
e . (

. J (,, ".
4 in (100 mm) pipes at the two slopes the avetage values were: cast

! A 2 ,

—

5y

m‘m, 0 008353 clayﬂ 0 00865 and cement-asbestos, 0.00853; for the 8 :Lﬁ’.

‘\," i )
'

(200 mm) pipes the 'values werez cement-asbestos, 0.01037 and clay,

0. 01031) but the tesults indicated that n values for clay and cast iron

It
v
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Bloodgood and Bell concluded that that the relative depth d/D appeared

4

Ackers

pitch fibre
i

‘The_ vitrified clay tile line was 180 ft (55 m) of 12 in (300 mm)‘

pipe wefé significantly 10wer’fonvthe steeper slope. Erom‘theee results'

3 to be the principal factor in the variation of the n values pétained

Y

“from,{he‘test data.‘ Bxamples of this data are’'also| given in Figure 1.

N ! A
(1961)'tested vitrified clay tile, spun ‘precast, concrete and

3 ’

pipes %ﬁ the ' laboratory, flowing, both full and part ~full.

»

diameter pipe, halfdin 3 ft (O 91 m) long units and tbe remainder 2 ft

(0. 61 m) units. The firs% series of - tests were made on the vitrified

-

clay line with joints set as accurately as possible. Both the pipe- full

and part- full runs covered hydraulic gradients from 0 001 to 0.020..

pata . for

fullai and part-full flow were obtained after‘ inposing

eccentricity at the joints, as follows:’

Series A
Series‘Bf\\

Series C

- Series D

Series E .
Series F
Q

Series G

*Series  H

. Next,

pipes in 6

0.35 in'(9 mm) step-down.

\ ,
Near perfect joints. -,

-

: . . ‘ ; ‘ o
0.4 in (10 mm) step-up at each joint. ‘ . S

6.3 in (8 mm) step-up.
0.2 in (5 nm) step-up.

0.25 in (6 mm) horizonual displacem%pt at each joint. r

’

Random steps, up and down, at each Joint, with average step )

i

of 0.193 in (5 mm). | ';-"";-. : o

l

Joint  eccentricities of random; amount. and in random

i
[

direction, with average of 0.j9d‘in (5 mm).

~ m
! W
]

g

120 ft (36.6 m) of 12 in (300 mm) diameter epun-conCtete '

toe

ft‘(1 8 m) long units were’ installed at a slope of 0‘01.

",\,

dornelius—type joints were used (i.e. spigot and socket joints aealed

AL



with d solid rubber ring): these automatically ensure accurate

10"

centering of each pipe With 1ts neighbours, so that the pipeline tested’

had joints which were virtually free from 1ips. Moreover, it was

aligned and 1eve11ed ‘to within 0.0625 in (1.6 mm), this representing the
'best attainable quality of workmanship. | | |

After completing tests on the concrete pipesl 96 ft (29 3 m) ‘of

6 in (150 mm) diameter pitch fibre pipes in 8 ft (2.4 m) long units were

tested.' These pi?es had a glassy internal surface of pitch .and the

machined ‘taper joints provided near perfect - mating between the pipe

units.
~~

For all tests the discharge was measured by a weir on a tank as the

water entered the pipeline and the hydraulic gradient was measured from

-
v'piezometer taps. Under part full flow conditions, the depths measured

at the pipzometer taps were averaged (keeping the 3 ft and 2 ft pipes

”separate, and omitting the upstream taps at ,which uniform flow"

.

conditions had not been established).
The flows tested in all the pipelines were in the smooth waIl -

.rough wall transition region and the Manning equation dia not fit the

experimental data very .‘ Instead, the Colebrook—white equation was |,

used and the hydraulic resi\}ance represented by k the Nikuradse
”equivalent sand grain ‘ roughness. E This parameter is now almost
universally used for sewer design in Britain.

A}

Mean roughness values obtained ‘for pipe-full conditions for the
vitrified clay pipes with velocities in the range 1 to 10 ft/s (0 .30 to
3 1. m/8) are’ given in Table 1. For the vitrified clay pipes with
badly-made joints the effective roughness of the _pipe in 2 ft (0 6 m)

Vg ‘ o o ‘ . o .



;,“‘ . . ' o
i oo o

" units was greater than that in 3 ft (6 91 m)"units. With é@ar perfect'
joints, the 3 ft (0.91 m) long pipes were very simlliar to ! the' 2 £t

(0.61 m) long lones. This indicates the influence joint alignment and‘

[

spacing can have on the hydraulic performance of a pipeline.

‘The average roughness, obtained under part full flow conditions for(

vitrified clay pipe are also given in Table 1 for valuee"of

0.2 < d/D < 0.8 (Ackers noted that at depthe below 042D the anhlysiaj‘

‘becomes very sensitiﬁe to errors in depth measurement, and the k ‘valuee

at these low discharges are unreliable). These\results show that there

[}

is no great change of mean foughness over the Tange of proportional

depths 0.2 < d4/D < 0.8, althoughA there ie a sliqht_ tendency for.
part—full Kg values to be nigner than tneir,pipe—full values except when
. ~ ‘

the joint eccentricity consiste of steps down Af each 5oint (Series. E).
Ackers' xresulte 1ndicated that with a step-ub at each 'joint the
rongnneés ‘increased as tne ‘depth decreased, and the reverse for a
stephdovn at each joint.

For concrete pipes the mean roughness for full flow was O. 040 mm .
For part rull flow it was 0.14 mm for 0.2 < d/D < 0.8. The data for the

L}
pitch-fibre pipes indicated an average k < 0 for full- flow while for

"partpfull flow the average was 0.034 mm.
It was ev1dent that fcr all pipeltypes tested there was an increase
in apparent roughness as the flow went from full flow to part-full flow.
From \these' 1aboratory tests .and field measurements of- joint
eccentricitv, Ackers recommended k values for different diameter pipes
based on the workmanship of gipe installation. A table of k values was .

given for vitrified clay tile based on the worst conceivable standard of

pipe laying, i.e. one which resulted in the outer surface of ‘the spigot
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touching the inner surface of the socket. This table of ks values for
new pipes badly laid is reproduced here as Table 2.

Table 2.. pPredicted rougfiness valugs for. the pooregé“ﬁtAndard of pipe
laying (new vitrified clay tile) (from Ackers, 1961)

Predicted‘k8 value mm

pPipe Diameter Assumed Lip at Pipes in Pipes in

. Inches Joints (mm) 3 ft units ‘ 2 ft. units
3 ( 76 mm) | S 7.92 . . 0.09 0.12
6 (150 mm) 10.97 S 0.12 | : 0.18
9 (230 mm) 12.80 . 0.18 : ‘ 0.24
12 (300 mm) 15.85 0.24 . 0.34
18 (460 mm) £ 15.85 ‘ 0.24 : : . 0.34
24 (610 mm) . 18.90 0.34 - 10.46
30 (762 mm) 18.90 0.3 0.46

36 (914 mm) 25.30 0.55 | 0.79

In an earlier investigation Ackers (1959) had measured ‘the

¢

headlosses at open invert manholes, and found these totbe_smali, except

‘when . surcharge occurs., If the manhole contains a bend and sewer
. - . AL ' i
, ‘

yeloCities are high, the headlosses under surcharge may be considerable.
Neale and Price Vi1964 measured ‘the flow resistance of plastic

" (pPVC) pipe. Both full-flo part full flow tests were performed.J.

L}

The part-full flows were varied from 0.25D to 0.75D at\slopes of 0.0030,
0.0063, 0.0105 and 0.100. The pipe‘sizes tested were 8 in (200 mm) and
12 in‘(300.mm).‘ A total pipeline length of 100 ft (30.5 m), in 20 ft

(6 1 m) laylng lengths, ‘was used 1n each test arrangement, ‘Theiaverage

’

Manning n for the full flow tests was . 0. 0082. They also ‘noted an

apparent increase in the roughness for part-full flows, even thouqh

there was a conside;able scatter in their data- ‘the averaqe Manning n

Id

for the. part-full flows was O. 0086. Some of these results are shown ine

1



1. depth of flow

Figqure 1. Like Atkers, they show little variation with a/p.
I ‘
There 15 .a significant difference in: the ;art~full flow results

between the recent Ackers (1961) and Nﬁale and Price’ (1964) and odder
A

Yarnell and WOodward (1920) and Wi lcox (1924) results. fThe older tests

indicated a significant change'in Manning n for 0.2 < 4/D < 6.8 whereas

the recent tests do not. Ackers' believeg this is likely Jue to the

poor jointing betwsen the pipes in the old experiments.
Bock (1966) performed experiments on part-full . flow 4in smooth

pipes. The results indicated that the hydraulic roughness showed little

variation with depth for D > 0.3 but 1ncreased substantially for
P

- relative depths below this. The concommitant variation in Manning n

shown in Figure 2 would be almost imperceptable for 4/p > 0.2, as found

by Ackers and Neale and Price. | -,

The above ‘clear water 1ab—tests indicate that the roughness of a

pipeline is influenced by: . ‘

2. pipe material

3. spacing andiﬁlignmenﬁ of 'joints

3

L

The laboratory tests indicated that there is an increase in hydraulic

RN

roughnessf,when the flow goes from ‘full to' part-full due to a. shape

‘ effect. However, 'various researchers have not been in agreement on how
- . : . ’ ’ . .

N

,the‘roﬁéhneés varies with relative depth.

Ve
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remained to be seen Af resistance to flow in sanltary sewers

eimilar to Eﬁat inaicated by‘the clear~water teatsA By far the

-

most §§mprehenaive and rea}istic tests with this objective in mind were
YRS
those tég?TLed aut undex simulated field conditions by Perkins and

Gardiner {(1982) for the Hydraulics Research Station at Wallingford,

England.

' ' The experimental rig coneisted of a pipeline 157 m long, 225 mm in

diameter, laid above ground near a sewage pumping station. The site did

not permit a continuous lenqth of straight pipe, so it was pecessary to

1nclude'a 180°dbend in the middle ofythe ‘pipeline. Fresh sewage was
, circulatea through ‘the pipe,  with the‘flow varying with time in a manner

"
T

similar, to the flow variation in 'a normal gravity foul sewer, the flow
iy . v . . :

being part-full at all times.
The arrangement for supplying flow to the’'test rig was to pump from
the wet ﬁpll of thevsewaQe pumping'station‘to a constant head tank 8 m

above the,gﬁpgnd. " From .here the flow passed to.the test p%péline via a

- tilting weir, whose angle (and hence discharge:) was ;E lled to a

p

—g

=N ) y
predetermined sequence by .a rotating cam mechanism. A . Ver
T F\

o

tlcal arOp

"

pipe was installed at the upetream end Eo allow the escage of any air

that had been entrained in the sewage. A weir was installed at the ,
. R . } s

. N G- L
downstr@am end of the ‘pipeline for measuring the discharge. The sewage

in the wet well had already received some primary treatment in that grit

rand most of the ragel‘had been removed by grit channels and coarse

screens. B

4

The whole pipeline was insulated to maintain the sewage at the same

,temperature ?s the sewage arriving’at the pumping station.
Speciai«access holes were cut into the soffits of the pipes at che/ﬁ\l/
§

A



upstream ends of the test Jlengths to allow insertion of a . .camera for
taking regular photographs of the interior of the pipes.

To determine the clean pipe roughness before any sliming had taken

© place, the rig’was designed so that clean water could alsoc be cxpculqpbd

through the experimental pipeline.

17

Five test sections, from 13 to 20 m long, were incorporated in the

pipeline. These consisted of asbestos—cement (20'm length), spun
concrete (20 mi, vertically~cast concrete (13 m), unglazed clay (20 m),
and plastic (PVQ) (18 m). ;Upstream from eacﬂ of the test lengths, there
was a éhort length of pipe of the same material as éhe test length
(these lengths were 20, 5.5, 3, and 11.5 m respectively). This was to
serve as a transition between test lengths of pipes of difkerent
materials. bownstream from each test length there were short plpe

sections (4 m) of the same material, specially jointed to allow them to

* be removed éasily from the test rig for photographing and documentation

of the slime layer around the pipe perimeter. One of the aims of these

1 .

.tests was to determine if a correlation existed between the measured

-

‘w

hydraulic roughnesé and the sliée thickness and weight on the pipe wall.

[
Pressure taps were located at 5 or 6 different sectivns along each
test length. At each section there were four pressure taps. The four
" —_— \ .
taps were at 0° (soffgt of pipe), 60°, 137° and 240°, around the pipe
circumference and were inter-connected so dhat they measured a mean
pressure over the' cross-section of flow. The various sets of pressure
taps were linked to manometer boards fitted with vernier scales that
enabled the piezometric head to be measyred within 10.1' mm. The

experimental rig was made to run full for all roughness -paanre-ents;

Three different 24-hour hydrographs were used in the experiments.



18.°
o 'fhe shape of all three were similar: the difference béEween‘them\was in

3

the discharges that occurred at the peaks ' and ' troughs. The ,

characteristics ,of the 4different hyapographé ;re, givep ;h  Téble 5,

During Any run, the hydroqréph was repeéted daily; Three separate, lpng
. term rung, were.éarried éut as follows:

Run 1: Slope 6.004, hydrograph 1, toéal run time 335 days.

Run 2; Slope 0.004, hydrograph 2, total run time 206 days.

Run 3:; Slope 0.01, hydrograph 3, total run time 188 days. o

)

'The‘general procedure followed An each of the,ﬁhree ruﬁs waslfirgt
to determine the hydraulic roughness of'theLpipes‘in a clean condition,
using clegn,wapgr. These tests were.carried out with the pipe running
full at Reynolds numbers ranging from 1 x»105 to 3 x 105. Following thé
clean water tests, sewage was passed through the rig and the roughness
was determined at regular intervals.

Tﬂe method for determining the roughness was.tQ stop the-discﬁarge .
variat;on, maké the pipe flow full by closing a valve at the downstream
‘end, and then to measure the pressure.ais;ripution along the conduit. A.
best-fit'hyd?aulic gradient was then d;tegmined for each teét lenéFh;
from whiéh the hydraulic roughness was caiculated.using the Colebrook-
~ White equation. 'It was assumed that the pipe diamgter was: the original
clean diameter; no allowance was madé‘for any redu;tion in ;ffeétive
.diamete:.due to sliming. Because the pipe was made to run full for the
roughness measurements, the roughnesses determinéd were for a pipe where
the perimeter was partially slimed (up to the maximum depth of flow f;r
the hydrograph) and partially clean. The‘slimed portion usuaily had a

very uneven surfacg.
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On days when the roughness was being determined, the practice was

to carry out three seperate tests at Reynolds npumbers rapging from
S

0.85 x 10° to 1.5 x '10° for Runs 1 and 2 and from 1:§‘x‘105 to 1.8 x 10
for Run 3. The Reynolds npumber was restricted to this range to ensure

the shear stress during these tests.was not greater than the shear

stress being generéted during the slime building process.  The maximum

£

shear stress in Runs 1 and 2 (during the slime building process) was
approximateiy 2.5 Ppa, whereas the maximum durxng the roughness

deterﬁination tests was 2.2 Pa.

4]

As well as determining the pipe roughness, a complété photographic
. . ! \
record was made of the ¥hanging sliming pattern in éach of the test
. 4

iengths. fo do this the removable sections were periodically taken from

the pipe, the interiors photographed, and the slime scraped off, dried

\

and weighed.
From time to tihe, dissolved"oxygen levels were measured in the

sewage in ﬁhe rig and in the sewage arriving at the pumping station. A

"
.

continuous record of the sewage temperature 4in the rig was also

maintained.
L 4

Between each of the three main runs, the slime was removed from the
ﬁipes by means of.a pressure'jétting~system.

The - results of tﬁe clean water tests are given in Tablé 4. These .
'would' include ' the effect of surface ftexture.,as well as joint
discontinuites ahd pﬁpe ndsalignm;nts,'although the latter two.factors

were' not considered to have a great influence because of the care taken

ip,assqmbling the pipeline. o
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Table 4. Roughness of Clean Pipes (from Perkins and Cardiner,frgez)
\ -~ - . v . N D .
b Roughness,7ks_(mm)” e
Material . Before Run'1 Before Run .2 Before‘Run 3

Vertically castﬂconcrete 0.09 0:25{ : ... 0. 09]
PVC (plastic) =~ = * - 0.04 0.10% ', hoo 0y 06
Spun concrete ‘ 0.09 0.18~ 10416
Asbestos-cement 5 0.02 0.07 - 0.04
0.07 0.18 0.13

~ Clay

When sewage was passed through the ' pipe the hydrauiic\ roughness.

increased very rapidly over a short period of time (30 days or less).

After this initial rapid increase,

as shown

the roughness  fluctuated with time,

- ' ' | .
in Figure 3, suggesting that it is a function of the growth and

distribution of -the slime on the pipe wall; which varied with time.

Slime is formed by bacteria, protozoa and fungi in the sewage. The*

/

populations of these various organisms are influenced by the sewage

temperature, the food that‘it contains, ‘the amount of dissolved oxygen

and . its

*

chemical composition. It was

felt the‘

sewage

siime.,was

influenced most by the fungi present, e.g. during winter, the fungi tend'

\

to be dominant and produced a slime with a tough skin, whereas in summer

the fungi "had less influence/and,the‘slime was affected‘more by the

other organisms in the sewagéu

Temperature was a significant parameter.

supplied

~function’

to 20°C.

;/changing

increase.

J

' Accordiné.to'information

to Perkins and Gardiner, bacterial growth rate is a direct

i

of temperature and doubles when temperature increased from 10°C

‘Thus . if the temperature of the sewage was increased, without‘

K

any of its other characteristics, the slime growth would also

!

i
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After the ‘initial rapid ‘slime growth period the. results showed

that:

1« 1In the spring (March to June) roughness increased at a steady rate

until the sewage temperature reached a limlting value, after which‘

L & ' ) o . )

% the roughness stayed constant. For concrete pipes, based on Run 1,
. % ' L o T ‘ ‘
this temperature seemed to be about 16°C. The limiting temperatures

were 1ower for the other materials, probably about HS°C for‘blay,

\
i , b

‘J4°C for asbestos-cement and 13°C for 'PVC. m

2. In the summer (July and August) roughnesses were low relative to
o " N . ‘ s

‘other times of the year. The. exact mechanism which triggers the

reductions was not clear.
3. In the autumn_(Septemberfto Novemher) the roughness increaeed again.

4. fThough no‘runsfﬁere made during the winter, it appears'that when
sewage temperatures are lower the roughness falls to a low value,
though probably not as low .as mid-summer. = - . -

»

Perkins and Gardiper could offer no, precise exblanation of these

- findings but they.”offered"some"thoughts"on ;features that likely

influence the slime layer. The slimeqthickness, and roughness, erises

~from a balance between the growth rate, ‘the rate‘of‘sloughing due to' 'the

shearing action of the flow and . to the netutal life-death cycle of the

slime itself. , Thus 1f, the rate of growth was reduced, the slime“

\

thickness, ahd therefore the roughness, would reduce. It was suggested

o

that» the low roughnesses in the summer . were due to . growth being

"inhibited by the factors related to the incoming sewage. In winter
"growth /is %nhibited by the low . temperetures. ‘Between these two

N

/o B

Y I B
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conditions there is a range of temperatures where growth is more rapid.
and roughness increases.. Various hypotheses were examined in an attempt

v,

to explain the relationship between roughness and sewage temperature‘for

’
'

each pipe material. Some limited success was achieved but no hypothesis

'  was able to explain satisfactorily all the observed results.

when the results of Run '2 were compared with the results of Run 3,
r ) l”

| it was ound that the, high and, low roughness values for Run 3 ‘were about

" one third of'the corresponding values in Run 2? The flow velocities in

A b
»

Run 3 were higher than in Run 2 and Run 1.

During Runs 1 and 2 a few roughness measurements were carried out

"

under part-full conditions to'get some indication of the variation of

roughness sith depth of‘flow. The procedure during these tests was to

-~
3

set a steedy discharge, using .the " valve at the downstream end to

establish uniform flow conditions. . This was difficult to achieve,

N "

partly because the‘ualre did not‘allou fine adjustments‘tO»he‘made,'and',
partly‘becausefthe water surface was.uery;undulatoryf making it‘hard to
determine when the flos was uniform; The uater'depths in the pipe‘were,
measured by the piesometer taps.g . ,‘; |

The roughness of thJ part—full Ppipes ‘was estimated from the

best-fit energy grade line, the mean geometric parameters over the

' ‘reach, and the Colebrook-White equation, assuming that the flow was in'

i

f the - rough-turbulent region. The data for these part—full tests showed

quite'large scatter.i Ihere were significant changes 1n roughness for
only small changes in relative depth. For example, in Run 1 two testij
were carried out at’ virtually the same relative depth for PVC‘pipe but
gave rise to part-full roughnesses of 2. 0 and. 3. 4 nme Despite such

inconsistenCies« general trends'kwere> evident.\ The maximum roughness



"
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. ~
W
e

occurred when the flow depth co'rresponded to that of the mai(imum depth’

of sewagé, and’ that the part ~full roughness was significantly greater

than the. pipe-full roughness. Table 5 gives the salient features of

.lfthese results for part—full flow;

.

Perkins and Gardiner pointed out ’ that the variation of roughness L

) with flow depth would. produce a stage—discharge characteristic ‘different
-”,grom that of a pipe with un{form roughpess around the periphery. For
example, .instead of the maximum capacity occérring at a proportional;

T
'

depth of O. 95"a slimed sewer with non-uniform roughness will have ite;

maximum, capacity when it is flowing full.

The initial growth period of the 'slime was very short (3-4 weeks),

0

and after that thzz?uantity of slime present on the walls appeared to

depend on other factors which were not necessarily a function of period

in use. Pipes removed late in the test period appeared to have the same

. pattern and degree of‘sliming as those remowved one month earlier.

There'was.little difference in the general characteristics of the

.fsl me that ' grew on different pipe materials in different runs. SampleSg

LA

taken from the pipe inverts showed significantly higher bulk density and

~

contained more’ sand than samples taken from near the waterline. There

»
4

was also a difference‘in appearancea “In the early stages of each run
2

, '

“the- bottom of the pipes were covered with ‘e thin (1 2 mm) uniform layer ‘

of grey slime, while at’' the waterline white, gela_tinous lumps up to

10. %mm high were present.‘

r

The average dry weight of slime per unit area of slimed surface was
used as a measure of the quantity of slime present on the pipe walls.

This was determined for the proportion of the pipe perimeter that had

. glime attached. - The results of these measuremenﬁs indicated:

§

28]



26

. L
) L3
- . " T wers ol e ~
$*0 St - 0% _ikto . - %0 Coow . - Kerd
veo . S'¥ B L Tt - Lo - PR L7 Al T 0°S T - 3UBWPO-503B3GSY

et s'o. . 06 80 et T ogeg F o “e3910u00-unds ¢

B - T Y LY S AT S - T 0*¢ - oM

ssauybnoy _ (um) Sy, . Cuuy Sy - . ssauybnoy . 055‘ Sy o A,Ea‘v‘m.x , S ..,.wm.,a,.ﬂ
unuyiXew 103 " ssauybnoy ssauybnoy -~ - ‘UNETXeW 103 ssauybnoy -ssauybnoy Teriajen

‘deq saviersy  [Tnd-od¥d  [Tnd-3aed unwxey  yadeq saTieTey TInd-o41d”, TInd=37ed wnupxew

- < )

e O

Lt s T 1 = -

Z uny , , : : Luny ; it .,

- - (2861 ‘19utpies pue surIag WOIF) mOTF TINF-3ded . G Syqel
- - - . . - [ T R B
- ‘ ‘e : . 3 PR c i i

2T : - gt . N 2



27

/ - \

1. .The‘increase in'slime weight with time showed a similar pattern to

" the increase in hydraulic roughness. ~ The drop 4in hydraulic

3

roughness on day 150 in Run 1 was coincident with a drop in slime
',weight. "In both Run 1 and Run 2 theAincrease in roughness at the .

end of the test was reflected by an increase in the amount‘of slime

present.b
2. After the initial period of growth the spun concrete surface showed
consistently more slime than clay or RVC. hlthough Cclean

asbestos-cement pipe has a very low roughness (kg = 0.02 mm),

;towards the ' end of each run both the roughness and\the amount .of

slime present were higher than for either the PVC or clay pipes. Lo

-

3. In Run 3 the higher velocity resulted in much less slime growﬁﬁj@n
' all pipe materials, although the general ‘pattern of a uniﬁorm,‘
smooth‘layer on the invert‘with larger slime lumps at the waterline

. was still evident; . The difference between the pipe materials was
also much less marked, although the spun‘ concrete and asbestos-

cement surfaces still had‘slightly more slime than PVC or clay.

N l . . \

As both the slime weight and hydraulic roughness showed btoadly
similar trends, an attempt ‘was made to correlate kg .and slime weight.;‘

Before correlating the data for"roughness and slime"weight it was,

fnecessary“to compute‘ksAvalues‘for the slimed portions of'the‘perimeter,

so',that'ithe‘ influence :of”‘the relatively clean pipe crowns -could be

0 Tl ' v ) ' . ' s . ’
eliminated. This was done using perimeter-weighted friction factors:

\
. ‘ N : R S o L
‘f ="fs’ps + fnPn . » It o . . o (?)'



v

28

‘where
‘f - fricticn factor
n‘ = portion of totai perimeter ocoupied by‘a'surfhce roughness‘
and the subscripts are | | | |
‘c‘ = coﬁposite surface
5 e slimed surface

n = new (or ¢tlean) surface

\

" The crown of each\pipe was assumed to be completely unaffected by slime

and to have clean pipe roughness values of: !

kg (mm)
clay o | . 0.09 &
PVC ~ 0.04
asbestos-cement - 0.02

v concrete o ‘ ‘ 0.09

Although ‘there was a clear trend for hydraulic roughness to increase

- 3,

T‘with the amount of slime present, the correlation was npt good enongh.

for‘s'reliable predictibn‘of kg from 'slime weight. This is likely

4

 because, the textural“lroudhness' of slime lumps at the waterline in *:

. . . _ : e
part-full sewers has a much greater influence on hydraulic rotghness

than the total volume of slime present.

The HRS data indicates that the: higher the velocity in the pipe the

:quicker equilibrium is established. Perkins and Gardiner determined the‘

relaticn between slime weight and velocity from their data and’ data from/ﬂ

1



“

other researchérs., . The best fit line to all the data points for All

i

pipe materials had the equationA

W = 48.,9/v72-10 ‘ — 4

_where N J

E\\:gur>eight of slime per unit area Of slimed surface in g/m

vV = me/én velocity in m/sA

i
/
/

'

The coxrelation coefficient r? was 0.91. The exponent suggests that the

amount of ' slime present is ipdeed inversely proportional to . the sirear

'
2

stress exerted by the flow. : . !

The principal conclusions from Perkins and Gardiner's experiments

are:

1. Sllme builds up on the sewer very au1ckly -to an equilibrium between“

the applijd shear stress ‘and the characteristics of the sewaqe. The.

subsequent roughness and slime mass variation is related *to changes

,r

in the physical chemical or biological nathre of the Sewage,
) o R

2. Pipe material does influence the equilibrium' amount of slime, andl

.

hence,the roughness. AS a general rule the greater the 'initial

roughness of ' the pipe, the greater the slimed roughness.

\

3. Slige thlckness 19 1nverse1y proportional to boundary shear.

'4;‘lThe roughness is much greater for part- full flow than for full flow

in sewers, primarily because Qf the non—uni

slime.

.Based on their experimental datavPerkinswund Gardiner‘recoumended:‘

fom -~ B . " ) K ~ . "

m ldistribution of .

7 L

\ ! B . L
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the kg values given 1n Table 6. /These are for plpe~full flow and apply
to pipea with velocitiea of about 0.75 m/s, carrying only sewage and

&2
s}i’med to approximately half depth. For steeper pipes with velocities

around 1.2 m/s, corresponding to Run 3, high, low, and median values. are

roughly one third of those given in Table 6.

Table 6; Recommendations for Design and Analysis (from Perkins and
Gardiner, 1982)

’

‘MatdPial v High S Low : " Median

) v kg (mm) kg (mm) kg (mm)
‘Vertically .cast concret; 3.8 1.3 1.8
. Spun concréte : 4,2 1.8 2.3
Asbestos-cement © 2.8 1.2 1.8
, Clay : 2.3 0.6 1.1
1.1 0.6 0.6

PVC (plastic)

B. FIELD TESTS

. A number of field tests to determine roughness coeffilients An

sani tary sewers havé been reborted in (the literature. Extensive field
tests have been conducted in Britain, although many of these tests were
on largé sewers and pipe ,materials which are not commonly used for

sewers today&in North America. . In these, and other§ in Nort@ﬁmmerica,

mapy different methods have ﬁ;én used t§<determine the in—situ-rouéhness
oéjthe'seﬁeis."lf is wo;thwhile to teview‘eome'of these field f‘sts,'to
compare the techniques and results ;ith the present study.

The onlz( repor;t:ed field test results for plast;.tc sewer pipe are

those by Bi(ﬁop and Jeppson (1978). - They reported a maximum ks of

A
2
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1.80 mm apd a minimum value of 0.02 mm for a range of relative depths of

0.06 to 0.4 for their tests on 300 mm and 200 mm plastic sewer pipe.
Bishop anq Jt;:ppson used a curxent meter, efither van'Otj‘c propelienlmeter
or e Mlarsh—McBirney electromagnetic currex'\t meter {(Mode]l 201) aﬁ‘ the
manholes to determine the éverage ve.:lqcity in the sewer. This teéh;lique
has strong limitations/’Qbecause it ‘does not obtain a true . average
velocity over the test length, nor over the cross-section at the
manhole, and debris in the sewage interferes with the current ;net.er
operation, The Froude numbers of the flows were all greater than one,
indicating that all the tests ‘were on steep pipes where supércritical
‘flov‘: was éccurring.

‘There have been‘ more field tests of sewers fabricated from other
materials. Johnson (1939-1940).conducted field tests on 3 non-circular
sewers and one circular sewer. Johnson measured flow depth and velocity
to determine the resistance coefficients. A number of techniques lto
determine the velocitlies were evaluated. One was the dye-velocity
method. Dye was injected at the upstream manhole, and the time of .1te
a\‘ppearan'ce at the downstre;ahx manhole :las noted visually, as was the

approximate time of the most intense colour and the time when the dye

could last be detected. The time of ‘the appearance of‘(f(?t.he dyé was
it .

easiiy determined, but the exa\ck:t: times of the most intense colour and
the last appearance of the dye were difficult to define because of. the
gradual changing or fading of the colémr at these times.l Also, the
natural discolouration of the’' sewage and the necessity forA using
artificial light in the sewers hampered these visual determinations.
Johnson also evaluatéd the salt dilution method v'zhiéh wags used by

Pomeroy (see below), using both chemical analysis of discrete samples
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and continuous measurement of resjistance. ' The Jlatter was done using
copper electrodes conpected to an 8' volt‘power supply and a meter
rea@ing to 300 mA. The electrodes were suspended™in the sewage, ali
6the; equipment and the observers ﬁeing above ground. Readings of the
milliameter were taken at 2 s or 5 s 1rlxt:ervals And were plotted against
time. Tge centroid of the resultinglcurvé was taken to indicate the
time of passage of the salt. Jéhnson found that the electrical
résistance method was the easiésc, fastesﬁ and most accurate of the
methods evaluated. '

‘Johnson repoFted an average Manning n of 0.0201 at a relative depth
of 0.115 for the 2 ft (610 mm) circular brick sewer that he tested.
Like others, Johnson féund that n was higher for low flows. These n
values were higher thban those found by others for conduits carrxying
clean QACer. He noted that this' was probably because of the .thick

) t e NN i
coating of slime and grease deposited 'dn the sewer walls over time.

Schmidt (1959) conducted tests on a large trunk sewer (span 8 ft‘
6 in (2.6 m) height 9 £t 5 3/4 in (2.9 m)) built in 1926 and designed to
carry.both sanitary éewage and storm water runoff. The flow depﬁh was
measured in the sewer and the electrical resistance method employed by
Johnson was used to determine the velocity. Schmidt also found that

"
Manning n varied with flow depth. puring the field observations,
‘Schmidivdiscovéred a short section of sewer which‘was p0.20 ft (61 mm)
above the general invé:t'gradiept. Repeated observations indicated that

although this condition had no measureable effect on depth of flow or

velocities at high flows, at low flows a noticeable damming effect was
created.

14

Field tests on small corcrete, asbestos-cement and clay tile sewer
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lines were carried out by Pomeroy (1964). Pomeroy tested 95 lines using
\ : . .
the salt dilution method. Salt was added to the sewer over a short

. \ .
interval of time, usually about 2s but sometimes as long as 10s i a

3
greater spread \x\in the downstream peak of salt concentration was desireq,

and theivariatipn ‘{n salt concentration with time was meaBured at the
v
\ )
it .
next manhole downstream from discrete samples. After subtracton of the
| ,
\
background concer\\tration the discharge was determined from the area

under the concentrationﬂ:i‘me curve gnd the known mass ofr §;Alt. The flow
velc}ci'ty‘was obtained from 'Fhe centroid of the,éoncent‘ra;ion—time curve.
The largest diémeter testéd by Pomeroy was 24 in (610 mm) and the
smalles.t was 6 in (15‘0 @). A lar?e number of lines wefe-e (200 mm), 10
(250 mm) and 12 inche; (300 mm) in diameter. . A large range of slopes,
\
from steep to flat, we\-e‘inclgded. These measurements indicated that
for a relative depth of\‘ 0.25 che average Manning n Was 0.0122 for 34
measurements on asbestos‘-ycement pipes, ,0.0136 for 31 measuréments.‘on
vitfified clay pipe, and 01\0165 for 11 measurements on concrete pipe.
The most comprehengive\ étudy of i:n—serviée r{;i:draulic roughness of
;ewers was made by Ackers, \Crickmore,‘ and Holmes (1964). This study'

o
comprised 340 field

experimenits. on sewers at 20 81,é§5f9‘ A1l but one of
the sewers carried perennial \foul sewage, the rémi;ining one being a

storm water overflow conduit. The ages of the sewers ‘ranged ffoxp two to

ohle,hun’ared years and were large, varying from 'l15“i'.n, (381 mm) to a
+, : s o - .

5 ft 6 in by 3 ft (1.7 x 0.9 m) \qulvert. * Invert gradients were from

erials were concreﬁe, vitrified clay ‘

0.045 to 0.00043. The conduit ma
tile, brick, steel lined with blitumln, and brick lined with steel.

Ackers et al. pointed out that it fisv better to measure velocity

Lo~
2]

directly than to estimate it from the’ di:"schargle and crosélsection,"aa

\

r
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relatively'small discrepancies ‘1n measured depths can give considerable
errors 1n the velocit:; deduced by the indirect method. Ackers et al.
used a radioactive tracer to measure the velocity. No, samplir;g was
involved. l'l‘he time of travel of.q tracer cloud over a ‘knou:n length was
determined ‘remetely. ‘ In 16 'of the se;veré, the radioactive-tracer
‘velocitl:y method was used .1" over 206 separate velocity 'determinatlons. ‘
Three of the siees were investigalted by two meghods, the salt?veloclty
and ‘radio-chemical dilution®', and the rest of the field work was baeed
on the 'dil‘utlon method'._ Ackers et al. do not ,indlcate whether they
' measured the velocirty or discharge using tlxe '‘radio~chemical dilution'
method. Altogether 63 salt-velocity and 56 ‘radio—chemical'dilul;tio'ril'
tests were made. |

Two radioactive tracers were used for‘. tne veloqéty"measurements -
Sodium 24 and Iodine 132‘. Sodium 24 was in the form of ‘so;iium
bicarbonate pellets ‘wtlich were dissolved. in acetic acid on site, using,
femote handling tongs. This-' solution was then poured into a s;;ring
loaded 'pop-v‘alve' injectdr.' Sodium 24 ‘has a converiiently short
half-life of 15 -hours apd emi.ts hard gamma rays which 'are notvabsorbedi
l;tuch in the surrounding fluid and are readily .dete,c‘table by a large-area
geiger counter. The dosing rate was well below the accepted safe level.‘

The injection valve, when triggered, released about a mil~lilitre of
solution, with an activity of the order of a millicurie, in a very bvri.ef‘
peflod of a millisecond or so. The injection was thro;agh a ‘spray nozzle
below the water ‘su;‘face, so‘ that. lmmediate" xﬁixlr;g over a mejor éart of
the cross-section was assured. A.'gei.ger counter tube was suspended a-

few inches above the surface at the next manhole downstream and its

output signal was recorded. A cable from tlxe ’iniection'valVVe“Q\ipplied a



‘time of injection' signal‘and~; corresponding event mark on the same .-
chart‘so théﬁ Fﬁe time of travel of the tracer was readily scaled to'the
centre of the geiger counter tracer, usiné the mid-ordinate rule %hich
is an approxfmate method of deterhininq the centroid of the time versus

R

increased radiocactivity plot. 'Consideration of.an altefnativeqxracet
.arose ‘from the desire to carry out a ée:ies of tests over a<per1;; of a
wéek or more,,fof.which a supply of Sodium 2? with its comparatively
shgft half life wéuld ﬁave been inadequate. Jodine 132 can be c0nverted-\
to; Tellurium 132 which has a half life of 78 hours, thég providing ;?2‘-
source of tréc;r sufficient for. a 4 to 5 day test seriés.

Vernier poinﬁ gaugés instal.ed ;t each end of the test length were
read‘ét intervals depending on the stability of flow cqnditions. The
depth of. flow was averaged ffom.a number of readings, either over the
whole test period, or over several‘distinct‘parts'of this period for
each of\whicg the flow remained appfoximately ;onstant. The test length
and igveﬁt slope were meagured' on cdﬁpletion df 'g gseries of runs.
Observations were also»made'of the temperatﬂre‘qf sewage, tﬁe condition
of the condui; abové and below water .level, the gond;éion aﬂd alignmént
of joints, and’the presence and extent of sliming and silting.

Ackers et al. made a check on the adequacy of the hixing of the

tracer. At two sites (in sewers of fairly large diameter) testing was

-

car?ied'out first in the usﬁal manner with the timinngéCtion,defined'
"from the injector to a single geigerrcounter, and then"the tests were

répeated with a second #;!get counter at the next‘manhdle downstream

R -

from the first. As the discharge vgfied slightly between the tests, the

velocities were reduced to comparable conditions by assuming the Manning

equation to be correct over. a small range of flow‘¥?epths, rf.e;

I RN
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v a R%/3, . Agreement between the single station and double station

\

i

m\%tl%ods was within - 4%, | E‘urtﬁer tests at the "same.sites v?ith - the
position of the injector 4in the cross-—section of flow .,varied for‘
succ'essive s‘hote showed no measureable "effect‘on the velg(:ity recorded,
and thus dlemonstrated 'that there was adequate ) mixing to permit the
adoption of the simpler, single station method . ‘

bFrom the test data Ackers et.al. evaluated ‘the hydraulic roughness,
ks' of me sewers using the Colebrook-White equation. A wide range of
‘ .‘ roughness values we}Mound, the limits being 0.009 mm in a clean 15 in
- (381 mm) diameter concrete pipe with well aligned joints .to 121.9 mm in

a slimed’ 27 in (686 mm) diameter concrete pipe with sediment on the‘

invert causing standing waves in the test length. Both of‘t'hese sewers

had been laid only two years.

For precast concrete pipe sewersva typical value of roughness was
1. 52 mm when sliming up to 1/4 in (6 4 mm) was present. In two concrete’
sewers with no sliming the much lower values of 0.030 mm- and 0.009 mm

were - recorded (no greater than the values obtained in 1aboratory tests

a ‘ N

'on new pipeS), while slime in excess of 3/8 in (9.5 mm)l or sediment in

~

the invert gave significantly higher values. Only two vitrified clay

pipes were tested. "An, 18 in (457 mm) diameter sewer with a thin slime
1ayer gave a value of k. of 0 9 mm compared with an anticipated value
when new 'o'ff0'1.5 mm,v and' ‘a 15 in (381 mm) diameter Oxford sewer with a
slime layer \up to 1/2 in (127 mm) thick gave a roughness value .of
18.3 mm. Th'e brick sewers tes'ted had roughnesses in the range
3 ‘l mm - 15‘ 2 mm, except for a: site where standing waves were present in
the test 1ength. " 'In general, the brickwork had good alignment, with

‘

joints' varyilng‘from well-‘fill'ed to;slightl-y open., The two lined gewers
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tested gave values approx mating those of the‘concrete pipes.

" Ackers had anticipated that the measured roughness| under free

\

surfece conditions might epend on the Froude number and that the

boundary she would also infiluence roughness through its effect .on the
¢ ' . ‘

A

growth of slfme.'' However, wheh roughness was plotted against the Froude

number, and the‘boundary shear\ parameter, RS, ' (where § is the inVert
‘ sl;pe) the correlation wes not ery clear.’ There was a distinct'trend
to nigh ronghness values at Froude numbers”hnder 1, where sliminé was.
present,'but Ackers'et elt could ot conclude whether this was due to

free surface effects (which would d sappeér under full bore conditions)

or the limited growth of slime tf%t can be mainteined ‘at the high
3 : ,

velocities (and hence high shears) th t‘are irplicit in the upper range

#

of Froude numbers. Apart from the tw cases where coarse sediment was

.

present, the data did indicate a genera rednction‘in ks with increased

shear stress at the boundary,

' When Ackers et al. plotted the appro imate slimé thickness againstc

" the boundary;shear parameter, RS, and;the‘velocity of flow, it was not
‘pos31b1e "to establish a clear‘cut‘relations ip . betﬁeen these‘variables.
-This may have been partly due tq the fact that gbservations of pipel

‘ condltions were obtainable only pt the ends o

the test 'lengths. From
- . . . '

~

the data no direct relationship between age an degree of‘sliming was

N

ev1dent and it appeared that a group of two year old sewers tested were

' as fully matured' as much older pipes.

Ackers, et al. concluded that hydraulic roughness depends oh the

-

"thickness and character of the slime layer. A groﬁth of 1 8 in (3.2 mm)‘

. or, less has little effect ‘on pipe capacity but beyond this figure the

‘ resistance to flow increases rapidly with slime thickness.
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Ackers et al. also concluded that sediment in the invert of a sewer

can have widely varying effects on the roughness value, depending on its

g bed form and the flow conditions.i It can either increase resistance to'

A

flow many times,lor'alternatively have little influence on flow capacity

other than to decrease the available cross-sectional area of pipe.

——

. Recently Ackers and Pitt (1984) surveyed 15 tunnels lined with

b

precast concrete segments, - ranging in diameter from 1,000 mm to’

il

1.

4,270 mm. The research consisted of two parts:

'

Surveys of 15 tunnels taking note of the tunnel alignment the stepsl‘

-

between adjacent segments, the type of lining and the ground '

.

'conditions.

. ' . » : S .
Hydraulic tests on 5 tunnels (2 flowing f:}l as water supply .

conduits, and 3 flowing part-full ashdrainage conduits).

They found that the main source of hydraulic resistance in segment-lined

'+

tunnels‘comes from the‘joints between segments. The main findings of

this study were:

\1f

The average values of hydraulic roughness, ks,_for the five tunnels

tested were in the range 0.5 to 2.1 mm.

~ Ve

A‘Correlation exists betweenAhydraulicvroughness and mean absolute'

joint step height and spacing. T - .

"The surface finish of precast concrete segments and the condition of

the jointing compound were generally good, and therefore, unlikely

‘to contribute significantly to hydraulic roughness.
‘ﬂNeither ageing nor deposition of “thin (<2 mm) layers - of slime or . .

sediment ‘was found to affect hydraulic roughness.. However, thicker o

7.0 7

'}deposits might reduce the difference in hydraulic resistance between



segmental and in-situ linings. _
| o L

0 . ,

hendérson (1984) calculated ks values f£from a Water Research Centreé
" (WRC) £1$§ survey‘of‘de in~serbice‘combined sanitary and‘storm sewers.
The materials of the sewers were &brick, clayware and concrete. The
largest size tested‘was 2,010 mm x 1,850 mm;‘and the smallest size wasﬁ
' 380 mm. buring.site inVestigations the sizeq' and internal condition of
the sewers were noted and measurements made‘or the depth of any deoosits
present. ? |

The data of the WRC surve*‘indicated a considerable range inlks
values;ion a given sewer magerial. The.lowest ks value measured was
0.2 mmn at a 4/D of 0.36 for.a 1,140 mm diameter‘ concréte sewer on a
slope of 0.0069 and the highest kg value yas<360 mm‘at a'd/p‘of 0.61 for
a.619 mm diameter’ orickwork‘sewer on a\sloée‘of 0.06?1; ‘

Henderson concluded that in pipes conveying foul sewage the rapid
deueloomentlof slime.over the perimeter\metted hy the dailf\cycle of
'flow' will significantl& increase ‘the roughness over ‘that ,of af clean
pipe.‘ He * noted that various studies confirm the rapid establishqpnt of
slime on the pipe wall accompanied ‘by an increase in rouqhness; ' The
slimed roughness is governed partly by pioe material with the smoother
surfaces tending to shedislimevmore readily. The flow velocity also
4 acts as a’ qpntrol on the erth of slime ‘that is able to form under the'c

shearing action of the flow. Henderson nq&ed that there was a greater"

tendency to thicker slime deposits in the flatterdkewers than in the

\

- steeply-sloping sewers. .t oo . ‘ X - ‘ 4&

Previous field stydies on sewers with sediment in the invert had’

'indicated that bedforms and the highest roughness values are associated'

[



due to washing out of bedforms, resulting in a. minimum k of 16 mun.

1

Iy

with part-full flow when . the Froude number is between 0.25 'and 0. S.

Weshing out of bedforms occurs when the Froude number is between 0. 55
‘ N

and 0 9. This effect was observed i one of thea sewers surveyed by the
' ?i

IWRC. In a silted sewer at Littlehampton ‘the roughness declined to 12 mm

as" relative depth increased but then began to rise again, peaking at

"

72 fom at Froude numbers around 0 3 and a relative depth of 0.5. - As the

Froude number increased beyond 0.4 the roughness declined, presumably

. ¢
) '

Y The WRC data suggests that the age of a\ sewer gives no direct
indicetion of the roughness. However Henderson indicated that several
reeearchers have. reported a progressive roughening of concrete' and

s

cement lined pipes, believed due to. chemical interaction between the

upipe ghrface and. effluent. This phenbmenon‘has been observed in both

I

A foul and .storm sewers, the rapidity and eventuai,degree of rbughening

being dependent upon ‘pipe composition, temperature and aggressiveness of

the eﬁfluent. vant (1963) suggests the“following ‘relationship.

e

A . ' . \ o ) :
" \ !

| ~

o= 0;56:10g{6 Age + 0.02 mm;i o o o ' (5) =~

"
&

K where*e 19'éfdepréciationfcoefficient (mm) to be added‘te"the kg value

1"

4

" of the pipe when new, "and age is measured in years.. Avrecentrsurvey of

#eap

eSbestos-cement sewers in the Middle East by Balfours ,Consuiting

Engineers/‘carried out in association with the‘WRC, reported extensivet

o
.

_‘corrosion in the severs ~from acid attack due to ' the formation 'of

v

hydrogen sulphide in the sceptic sewage. This problem is greater in hot

climates then in cold or moderate climetes.
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C. APPRAISAL OF PAST WORK. o A
in the C%est design information‘ for sewer pipes was Lbesed on,
laborator? tests.gith ﬁe¥ pipes flowing full with clean water. These
tests suggestedl lower roughness' values than. were warranted and‘
significantly underestimated roughness values for in service sewers.i_
hs a result of studies using new, well-aligned pipes great emphasia‘
came .to be placeddupon d:;%arenees in the roughness of the pipelmateriql
Iéurface.‘ More‘recent ffeld research suggests that the‘pipe nAteriai
exerts little direct,influence on the roughness becauee'of‘the huild—up
of slimes and deposits. However, the development‘offthis slime has‘heen‘
snown to be influenced by pipe material. Table 7 summarizes the salientl
features of past field testing. |
‘No changes'in'designdprocedures for sanitary sewers haue been made
in North Americé‘to'teke'acoount of the‘results ofAfield‘measurements of
) resistancelw coeftieients. i vh0wever,' in Britieni new ~‘resistance
coefficients for .different piping‘materials used in eewere have beenﬁ
.recpmmended. Thesei values’ are.;given in Table 8.. ‘In addition, ‘the
reeuits' ofll field tests have changed désign procedures for_‘sanitarfi
-sewers in 'Britain. * The ' Hydraulic Research Station (HRS) recomnendsn'
‘u31ng a comp081te roughness for . sewers.'“ Separate values of k ure

\

: a551gned to the slimed and clean. portions of the pipe, then‘g composite”

—

roughness is- determined based on the percent of the pipe perimeter which

‘1s,clean. With this simple perimeter—weighteq method, the composite‘
' roughness is ‘given bx\ :

,ksc'= p1ks1 +‘p2k52 * f'f‘pnksn S - L ‘GX
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O
where Ksc is ‘the composxte roughness, P is the proportion of perimeter

occup1ed by the different texture (kg) -and thefsuffixes refer to the

dissimilar sec%}ons. HRS suggests this simple_;gethod should be
L ' ‘ . o v : o

res'tricted to cases where | roughness is ' not widely dissimtlar

(ks max’/ks min should not‘exceeanO). Tests lndicate that' the’ composite

" roughness caleulated by this ,meehod tends to be hlgher than that‘

ey

\ ' . B

observed (by up to 20%) where the scale of ‘roughness‘ dissimilarity’

approaches‘the above constraint.
r ! v .
Photographs taken during Perkins and Gardiner's tests suggest 3§

dxstlnct zZones of sliming on the Lnternal pipe surfaces for a typical

daxly variation in depth over a range of 0.16 <'d/D < 0.6.- These are:

10% of the‘pefimefer is heavily slimed at and below the A.w.f. depth

)

(in the range 0.4'< 4/D <'O.55)*

:sQO% of the perimeter is slimed (below the d.w.f. depth) =~ '
~ S\ . ‘ . ;
10% of. the perimeter.is lightly slimed (above the d.w.f. depth)
\‘ ; ) ! v' n r, N
'40% of the perimeter is clean. o .

- #

The  values given above eppeer to be supported p§ fieidrevidence from

foul sewers la2id at gradients of 0.001" to 0.005. The assumed high?

roughness of the heavily slimed pipe wall ‘is consisfent with vthe

flndlngs of a number of hydréullc 1nvest1gat10ns 1nto dlscrete roughness
\u,
of a tipe"31m11ar to that p)esented by the bumps'%f sl1me. EQuivalent>\<

L

. \ "y

sand graln roughness has frequentfy been observed to be up' to 3 times

.the phy81ca1 helght of each element.

v,Based‘on,approximated kg values for the various secqigni_géyen in .

S
S

“a

N P

* d.w.f. refers to the perimeter wetted by. the daily eycle of.flow.
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Table 9, and the above values 4indicating the percent of the pipe
perimeteri which 1is slimed, the WRC developed estimates of typical

pipe~-full kg, values.

Tabléﬂe Roughness values 'recommendéd fop. sewers by - HRS (1983)
j » (pipe~fu11 flow) , '
# ‘ )

0, "

, kg (mm)
Normal Poor
- {
Slimed sewers. Sewers slimed to about half
, , depth; velociﬁf, when flowing half full, '
* approximately 0.75 m/s
. i
Concrete, spun or vertically cast 3.0 6.0
Asbeséoé—cement . : 3.0 .6.0
Ciayware o ‘ . ~ 1.5 ' 3.0
. 0
PVC (plastic) . : 0.6 1.5
. ooty
LML
Sewers slimed to dbout half depth; velocity
when flowing half full, approximately , .
1.2 m/é " _ ‘ ' .
Concrete, spun or vertically cast . 1.5 3.0
Asbestos-cement ‘ o ’ 0.6 1.5
Claywa:e' " - ‘0.3 A E 0.6
4 s
PVC (plastic) T 0.15 0.3, X
¥ §
. kg (mm)
[ ]
. T
- Sewer. Rising Mainss All materlals,
operating as follows oo ‘ Good Normal Poor
Mean velocity 1 m/s ’ 0.1 0.3 0.6
y-‘Meah velocity 1.5 m/s v -0.06 '0.15 0.30

Mean velocity 2 m/s . ' 0.03 0.06 0.15
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ITX. FIELD OBSERVATIONS
A. INTRODUCTION .

Extensive field testing of sewers conducted in Britain has led to
new recommendation§ for in—sefvice roﬁqhness coefficients fsf different
piping materials wused in sewers. vThe purpose  of the present
investigation was to defermine if similar conditions exisF in Western
FanadaT Field measureménts at various locapions in Edmonton of the flow
resistance of in-service sewers were conducted and are Aescribed herein.

As plastic (PVC) and concrete afe now the most commonly used sewer
piping materials in subdivisions, the emphasis in this study was on

these types in the size range from 200 mm to 400 mm. A wide range of
A . .
slopes, from steep to flat, was investigated. .. Because most of thé test
. sites had Jlow flows undgr normal circumstances, augmented~flow tests
were conducted .at selecéed sites to determine the resistance‘ under

~conditions more representative of design conditions.

B. GENERAL DESCRI?TION OF ENVESTIéATION

Only sites where close-to-uniform flow could be expected were
investiéated. This excluded sewers with a drop in the pipe invert at
the manhole. Most of the sites test;d had flat to moderate sloées, with
éhe excepti§n of two steep sites where PVC plastic pipe was tested. All
of the pipes tested were between two and five years old.

Measurements were made on 16 lengths of FVC‘plas;ic sewér and 6
lengths of coqcrete’ sewer. The 16 1eﬁgths of PVC‘ piée inc;uded 14
sing}e lengths (bet&een two‘consécptive manholes) - 5 commercial and 9
residential sites - and 2 double lengths (between three consecutive

manholes) - 1 commercial and 1 residential. The concrete sewers were

{ i
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.all in residential aieas.

In all, 117 resistance measur~ments were made for normal flow in

the 16 Jlengths of PVC sewer, and '517 on the 6 lengths of concrete

'sewer. The relative depths at these normal flows were generally quite

low. ‘ o «

i

After the pormal flow tests had been conducted, 'augmented—fiow

tests were conducted for 3 PVC and 3 concrete sewers to assess the

resistance to be expected under design flow conditions. In these tests

\ \

the flow in the sewers was increased by adding water from a hydrant. 1In
“all, 85 fésistance measurements were made on the 3 lengths of PVC sewer,

.

and 68 resistance measurements on the 3 lengths of concrete sewer.
The field tests consisted of: |

{. Discharge measurement using the continuous-injection fluorescent-
tracer dilution method.

2. Velocity measurement using the~sa1t—ve10c%§y method.

3. Flow depth measurement at the manhole using tape and weight, and

4. Average slope measurement between manholes using rod and level.

The hydraulic roughness of each sewer was determined using the

Colebrook-white pquation. ‘

a

C. DISCHARGE MEASUREMENTS
Accurate ﬁéthods of directly “measuring discharge include
installation.of a weir device in the bottom of the manhole, and tracer

P

Jdilution methods. Weir installation was considered ‘inappropriate’

because:

1. A weir would prevent a‘di:ect measurement of the flow depth within

the sewer.
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2. ,Installd&ion and reading of the head above the weir would require a

Iy ) ‘ . .
considerable. amount of work down the manhole. This would
Sop N ‘

necessitateulhe presence of a ciﬁy inspector and blower apparatus.
3. A weir wopld tend to trap tissue and debris, so altering its

'calibration,

4. It is desirable that the weir be calibrated in place, presumably

. 4 A
using tracer methods to determine the discharge. ‘

Therefore discharge measurement using tracer dilution was considered the

best alternative. Previous tracer dilution studies have demonstrated

that the flow rate can be measured within 5 percent with good mixing
4

conditions. :

A}

The tracer used in this study was Rhodamine-WT. This fluoresces in

- ~

the yelloy—orange~range of the visible spectrum, and can effectively be

used as a tracer because most background fluorescence will not interfere

.

wiﬁhhits analysis. 1In addition, Rhodamine~-WT is both biodegradable and

_non-toxic.

‘A fluorométer was,psed to analyze the tracer cqncengration. This
inst}umgnt measures the felagiQe intensity of 1light ehittéd:by a wgtgr
sumpIe;containing fluore;qent‘Substances. The i;tensity oé/fluorescent_
light emitted is éiféctly 'proportional 'go the aﬁount’ of fluoreéééﬁt

suEstanpes present. Fluorescent ‘tracer techn;ques,allow detection of

congentrations as low as parts per- billion. This is far superior t6

’

tracer techniques using colourimetri¢ dye or salt solutions.

Dischargé_measutementé using tracer dilution techniQues aée based
on the prinéiple of_conéerQaEidh of mass. Fluorescent dye is injected
into the séwer at a coﬁstﬁnt‘rate and concentrétion. Déwnétream'thé
effiuént -is sampled and th;v sgyet disch;¥§e 'dé;ermined 'usiﬁg the

.
' .



. . [
following relationship, which is based .on the aésumpcion that the tracer

,1'(;.,1) '

is fuiiy mixed with the effluent by the time the flow reaches "the

sampling station:
C .
i : : .
0 = agz | ' | (7)
m

' where Q is the effluent flow, q the dye flow (q << Q), Cy the input,

concentration and Cm' the measured concentration in - excess of

baékgroﬁnd. ) }herefbre, if a constant ‘tracer input 'flow rate 1is
maintained :a series of Qiscrete samples taken downsfieam‘ ppévide ‘a
series of sewer discharge me?surements. Co};ect;On of mulfiple di;créte
samples fo; later analysis was considered a simple and ‘accurate method
because any suspendedAéédiment and/or sewaqe‘that was present in the
sample would settle " to ghe bottom of the container and would not
interfere with the'fluorometer analysis. Only the 1.ml of sémp;e which
was re§ﬁired “or thé‘?luoromeper analysis waé taken from the tép of the
sample. ., 4 ' ‘ . » -

The dye injection apparatus was set up‘at thé‘gpstream manholé:aé
shown in ‘Figuies 4a and 4b. ‘The. conStapt tracer input. rate was
'established‘using’a’d;ip bottle for 'the normal flow measurements. Eo¥
the aﬁgmented—flow tests a ’positive dis;lécement, ‘Vaéiable *speeé,
periétalicAbuﬁp Qas.used.§ﬂiin bo'th instapces périodic\checks:of‘thé

input concentration and f£1b% :afe were made during the'ihjection‘periéd.



50

- N
.

(SIN) mHo::méuemou,u,mm: ye dn-3os Hmucwswuomxm ..,mv. aanbyyq

N posjesls < S

Buisoy

- 1aqqn.

St
!

puIm
woyj weass aAp - -
josjoud 0} sogq” .- o dwnd
- M oijelsalad

6nf 84p J01e19UBb |



, '
. v
s
!
- ' b
. 4
!
f
' N
f
‘e
. .
“
.
- t
-
)
.
@
) "

o Figure- 4b. - Photograph of Lekperimehtél s‘et_:-up‘. at . the. upstream "m'at;hole
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For ‘the present purposes a minimum target concentration at the
downstream manhole was considered to be 300 parts per billioa‘, For
Rhodamine-W'r this means that the sample> would be light pink. Below this

concentration significant errors would result from adsorption losses as

‘dis‘cus"sed below. This target concentration was determined in the field

by visual inspection. If a light pinkish colour  (or darker) could be
detected by the naked eye when a sample was taken, the- concentration was

considered to be sufficient. "If nd colour could be detected in the

7l

‘approximately 20% solution of Rhodamine-WT mixed with distilled water in

o
4

"wastewater sampling system capablefof automatically collec_ting samples

' sample, :the injection rate was iricreased until it was. Generally, a:

"standard solution of Rhodamine-WT was used, ' this being 300 ml of
a-% gal. jug (23 1).

‘O'riginally ~sampling was .to be conducted using a self-contained
at desired interVals. However,’ experience during‘the‘, first field test

indicated the sampler intake ‘ would continually become clogged with

R tissue. This required the line to be manually cleaned before eachf

\

sampling to ensure proper collection of 'the sample. " ‘Far subsequent

tests it was decided to simply manual,ly draw samples from the sewer

using a small bucket. Given the continous dye inJection ‘the timing of -

o

these samples is not critical. Samples were: taken Just after the salt_

L

peak. g ‘

After the field operation had been carried out the effluent samples ,
were brought into the laboratory and analyzed. \The samples were first..’
diknted so that the fluorometer was operating in ‘its 'linear range. _The R' ‘v
sample concentration was then measured and the flow rate in the sewer |

““‘\

determined from Equation 7. | . : : )
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The fluorometer' available " at _the | University of Alberta, “

Co
T

Environmental Engineering Laboratory was checked for calibration and
scale alignment prior to analysis work. A typical calibration is shown
in Figure 5. Note the calibration is linear‘ over a large range °
(O.jl—‘100 ppb) #ut at high concentrations readings are reduced due to a
phenomenon called ootical'éuenching. |

+ The most significant errors associated with discharge measurements

1

using fluorescent tracers are caused by dye adsorption and light scatter

caused by suspended sediment. The‘light scatter problem may be solved
‘ ' ' .tl ﬂ ‘ ' . o g 4
by allowing sediment to settle out before analysis, or by centrifuging

the sample.
Adsorption errors are caused by loss of tracer to surfaces of the

pipe, sample container, and any sediments present.‘ Unfortunately there
is‘no way to prevent these losses. However by working with sufficiently
high concentrations the .losses may be reduced to an insignificant‘-

'.level. Losses may also be reduced by using a dye such as Rhodamine-WT

which is' 1ess susceptible .to ,adsorption problems. To aid in

establishing an appropriate dosage level adsorption tes'ts -were conducted ‘

-

~ on samples of“influent,wastewater from tné‘Gold Bar qulution‘¢ontrol

Plant.' The 'results of‘ thel adsorption tests are _shown. in Table 10.
. R ‘ , .
"Evidently if the sample concentration is" above about 300 ppb the ‘

-

adsorption losses are acceptable, ‘errors being 1ess than 4 percent.
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Téble 10. Adsorppfbh Analysis ~ Gold Bar Influént

—

Dosed Concenération (ppbf'f Measu:ed ancentrAtion (ppb) //’“\\Eg¢d§ery

-

- 1.00 o 0.40 - 40.0

2.00 ' . 0.82 ’ 41.0 ‘
10.0 o 4.10 " a0 :
100 ‘ | 94.5 S 94.5

500 \ . 490.0 . : - 98.0

D. VELOCITY MEASUREMENTS

. Alternative methods considered for directly measuring the velocity
o - ‘

-Ati thin the sewer liné‘weré:

1. Measurement with a velocity meter.

2. Timing of floats travelling along the sever line. *

3, salt-dilution method.

Velocity meter measurements were not considered a viable method

A

because» it is “difficult to obtain the mean veloqity‘ from point

"measurements in - such shallow flows and, the meters are susceptible to
‘Iclogging wiﬁh tissue.‘ Furthermore,‘measurementq would Only be possible

.

fﬁat the man%qles.‘ Even if accu?ate; such, measurements would not give a
gooé‘&néﬁéatlon of the average velocity over the lenqth between: manholes,*
1f the flow was non-unlfofm. _ ‘ :"  o » - | |

Shrface‘qf;oats, 'althouéﬁ éimplé ';nd‘~cbﬁveniént‘ ﬁbi\ﬁgg; ‘giv;ﬁ

A.velocities horé:rép?esentatiVe'oflthe»max;mum‘;hah t£e.me#ﬁ¢‘VTé‘use

 .£his metH6d*a relafioﬂéhip‘bétweéq tﬁe‘maxim;m énd the meaﬁ‘yelopify

would have to be . established." | ‘
‘ The salt-dilution method was.considered the best. In this Qethod'a?l‘l

small VOlume of salt solution is*instantaneously‘injected into the séwer:

at a manhole. The conductivity of the efflﬁgnt in,exéeéq of background

’



. rejected.

56

conductivity at tue manhole downstream can 'then ‘be monltofed and‘
recoroed‘es e continuoua function of time. The setLup:at‘the oownstream

manhoie‘is shown 4in Figures 6§‘and 6b. Am example of the variation in

conductiVitS/ as the slug of ‘selt passes is shown "in Figufe 7- The“‘
centroid of the dispersion curve gives: the mean travel time between the

upstream 1mjection point and the probeq The’average velocity is then

calculated'from=; v

- 2 ‘ 8
v T . ) o - . (8),

where L = distance between manholes

t = time to centroid of dispersion curve(s) from injection‘time.
This rebresents_an average with respect to both distance along the sewer
and position within the flou‘crossfsectiOn.

The volume‘of‘salt‘solutionvih the ihjectioh bucket was generally

about 800 ml, and it was poured from a he1ght of 0.2 in 0.3 m above the

: water surface to ~assure that there was good mlxing it the point of

injeétion. With good mixing at the point of injectlon it is estimated
L C '

the error of this method of determininq Velocity woald be less thedi1%.
The. only problem eﬁcountered was that at very low ,flows Ehé'
conductivity probe in the sewe: wouid‘ become “clogoeq .witm‘vtiesue
paper;‘ When tuis‘oocutmed*tﬁe,d;spereion ourveuwouid exuibit a very
long tai}emd‘wpuld:not-come.beck to'eé}o. ‘Whete this occurred tests

&éfq repeated.=‘Washvweter,disohar§ed 1nto the sewer‘line‘during a'test

_ieiso oaused‘thenconductivity of‘the effluehtlto 1ncreasefoonsid€rebly

» . . f \ o LI '

" ‘and. this ceused the disperaionecufve on . the chart recorder ko peek.

y

..

- When this oocurred. it was, quitea obvious, and: those tests ‘were also

A C. .
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E. DEPTH MEASUREMENT

D;btp measurements at the manhole could be made simply and
accurately using a point gauée or scale at the bottom of the manhole.
However, this method was not feasible because safety procgdgres require
the manhole to bé vented with a blower and a safety harnéss be worn
every time the manhole is entered. A method of monitoring the water
level .from the 'surféée was desirable. Several metﬂods were

’

1nvestigﬁted. They included:

1. capacitance probes; e "‘5\\\\;*~—
2. - dipping meger; | '

3. sonic level recorder;

4. bubbler-manometer system; and @\A .
5. tape and weight.

The capacitance probes, dipping meter and sonic level recorder were
all considered unsatisfactory. The first two primarily because of
problems which would result from tissue paper ‘catching wupon the
" probes. The sonic level recqfdér appeared promisiﬁg but laboratory
‘1nvestigations indicdted the. calibrations weté unstable at the very high
;enéitiviﬁy setting required for the proposed measurements. A
bubbler-manometer system was therefore selected for initial tests.

The air line to the probe‘ and manometer was pressurized from an air
cylinder-regulator apparatué. The pressure c~ald be adjusted to just
allow air to bubble from the end of the probe. This pressure :was_
measured with the manometer. A cc;r;;action for the dis,t.qnce between the
probe foot and air outlets and miﬁot surface tension effects must be

- .

applied to ‘f.he manometer reading. ‘ Laboratory testing of the system

indicated a stable correction independent of the depth being measured.
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puring field tests the preke was suspended from a platform spanning the
manhole 1id. Sufficient slack was provided in the air line to allow the °
foot of the probe to rest upon the pipe bétéom. The prgbe was man;qlly
raised and lowered to allow it to ‘walk' to th; pipe iﬁvert and then the
line clamped in place. Experience showed that the probe must be cleaned.
of any tissue and relocated before each ‘individual measurement.

Sugsequently, it was decided to simply use a weight attached to a
measuring tape to obtain the depth measurements. The weight w&a
suspended from a‘reference point on the manhole rim until it juét came
into contact with the water surface. The depthAto the sewer invert was
also measured. The accuraéy of these depth measufemgﬁts would pe +2 mm.

The depth measuremeﬁts at the 'mahholes were Aot uséd directlylin
théqanalysis. Instead the dépthvwas computed from the measured averagé
velocity and dis;harge. This computéd depth would be more
representative of average conditions along the sewer length than a depth
measurement at each manhole. Because the depth measurements were'not
used> in the analysis only one dépth measurement, -géherally at tﬁe
downstream manhple, was taken to obtain a rough check on the calcul;ted
deéth. )

It was felt that 1rregu1arities in the pipe profile {(eg. sag) may
make a significant contribution to the apparent hydraulic roughness of a
line. A device to measure the depph of flow at locations ubetyeen C
manholes was thefefore‘qpnstiucted ;hd‘psed at two~si£es. Thg device
was similar toh ﬁhe manom'elter gppar!atus prcx'ri'ous*ly used to meaaui'e the
flow depths, bui: with a‘ horizontal air -probe, whi;h could be pulled

along the invei-t, substituted for the vertical probe. It is described

in more detail in Appendix 4. The horizontal air probe was used to

\
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)

L) R N
measure the variation in depth of flow along two in-service sewer *,

inverts: MH 23-22 in'Rivei‘bend and MH 17—15‘ in %horndale Industrial.
The Avérage flow “depth measdrements rant;ed betweenl 30750 fnm - during the<
testing period. . Simultaneous’ deétl. measufements were made at the
gpstream manhole and vérious positions along the seﬁer' invert; The
ratio of deptil at the manhole to that at various positions\v alpng the
invert are shown in Figure 8. It would appear that the flow at the
'i‘hornd;ile site  was near uniform whereas that at Riverbend may not have
been, but the scatter méke! it very diffilcult to discern.

Slime depésits around the perimeter of the pipe were not sampled in
detail at the manholes because previous studies';‘ indicated that there was
not a good correlaﬁion ‘between slime thickness and weight on the pipe
perimeter and hydraulic. roughness.: Yisual observations Qere made at the
manholes, and the conditidn qf the sewef pipe, and aﬁy depositions of
slime and sediment noted. Sediﬁént dep;hé weré meésured at both the
upstréam ané downstream manholes. The averages of these two depths were
asaﬁmed to exist along.ghe entire length of seéer. fhe depth to the
surfaég of the sediment wa;'méasured bf a tapg and weight suspended frdg
'; refereyce location on éhe manho1e‘rim‘and ;he'depth'to~£he‘invert was

. \ : . . L
also measured with a sharp gointed probe attached to a tape.

fA Te summerize,<£he q%ﬁerél procedﬁrg that was finéllf déQeloped’was
as follows: -
1. The dye injecéion apparatgs wasosei up atlfhé upstream mgnhole and .
" the desired Fasé flow rate set. This wasldétermined by trial and

error by visually inépecting a sample drawn from éhe downstream

NN .

manhole. If~thé dye‘;olour was eksily‘visible fhen~the injection

.....

'raté"whs-sufficient. The equipment'was
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T at the:downstream manhole.
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: o o N ‘ ‘
sufficlient ‘'to stabilize and to allow any initial dye adsorption to

the _sewer walls to occur. Generally this was About 15 minutes. .

The conductfvity meter, probe and chart recorder were then set up
] e

The dye feed'was sampled for concentration determination and its
flow rate measured. .This step was repeated-periodicall& throughout

the entire test period to ensure a constant mass flow rate was

v

»

maintained.
The conductivity'prope was checked to ensure it was clear of tissue
énd debris.

The slug of .salt solution was injected at the upstream manhole and
the chart recorder was started simultaneously at the downstream
location.. The quantity of salt solution required was determined by

trial-and error. A jug of tap water and concentrated salt solution

was on site. The salt ‘golution and tap water were mixed in the

~ injection bucket in various proportions depending on’ how high the

dispersion curve peaked. Before testing ‘was begun, initial trial
runs were‘made‘to determineithevmix of salt solution and water to

Y
-

'inject,at the upstream manhole.‘

4 , .
The depth to the water surface was measured from\ a reference '

location on the manhole rim using a weight and tape.

After the slug of salt solution had passed a sample of effluent was

taken . for: discharge determination. "‘ Lo '

_Steps 4 to 7 were repeated for each measurement, with the time and‘

the conductivity chart recorder speed noted  for each test.

Generally, ‘gix or j seven di.scharge and velocity ‘measurements.were ,

'

taken for the normal flow tests.
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9. The effluent temperature was measured at some time ‘during. the
tests.

10. The slope of the sewer line, as indicated by the manhole ihveig
N ., '4‘ . N ’ '

elevations, was surveyed either beforé of afgsr the test.

11. ‘The dye samples were brought into the laboratory and analyzed

+ within two days after field testing.

-

Initially this testing procedure was' conducted with the normal flow

in' the PVC and concrete sewer lines. Later augmented-flow tests were
oo

conducted at selected sites by‘adding water, from a nearby fire hydrant,

to the sewer at a manhole located one or two manholes Fpstream‘of.thé
o , : I -

§
test section.. U

- Y , o .
The procedure in the augmented-flow tests was' to start the test at

low depths and ‘then to incieasé the flow in steps with thé)hydran; water

until the maximum hydran;5 capacity was reached. The flow was then
gradually reduced - in éteps to approximately‘ its origiﬁélﬂ level.

-t *

Measurements for ‘the normal fléw:and‘at‘egéL step were not begun until

;uniform flow had been re-establisbed at-thelupsﬁreah ménhdle of the test

‘gection, which'waS‘generélly, 15 to 20 minutes. Generally, three sets
of measurements were made for éach flowfinctemeht, except‘at'the peak

\

‘~vflo§, for which ‘5 or 6 sets were made. ?ach flow increment was

naintained for 15 'to 30 minutes. At the higher flows less time was
: required to cémplgte the measurehents ‘bécahse the' velocities ﬂqre‘

-

greater.



Y o IV. RESULTS AND ANALYSIS = Y : .
) | . ’ ‘ ‘ | J
T The average depth in the sewer was determined from the average flow

N
'

area given by: ] " .
- R : y
‘A v : . o - , o (9)‘
~where Q = discharge determined from the.dyé dilution measurepents

v

average velocity determined from ' the salt-velocity

measurement. ‘ o
' » ) : - . ! '
The hydraulic radius, R, was then ‘calculated from the average flow
area and ‘the properties of a circle, and Manning.n determined from

) g3/
v

G0
The ,eqdiValgnt,‘sand. grain roughnesé; ks" was determined from the .
quebréokFWhite”férmulaé

-t 2.51y°

kg, = 14,800 '(Exp (— ) - ) . o (11)
' | 0.86 Y~ R /T - ‘ B L
" where R = Reynolds humbe:‘~= ﬂ%ﬁ‘*
"and v = kinematic viscosity (mz/s). ‘
. . . . ‘ .

A'Tables'11. and ‘12 give the‘,resuifs. obtained 'for‘ the plastic and
' concrete sewers at normal fioﬁs,' Table 13 gives the results for the

‘augmented-flow tests at the maximum d/D attained.. Additional sites had -

-

s
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to be ‘found to conduct ‘augmented~flow 'tests for the concrete sewers
because most of the sites where normal flow tests were conductedvdid not,

" have a hydrant nearby. Detajiled results are contalne;‘l inn Appendix 6.
At. two sites roughess measurements were made over the two lengths

' ' | e

of sewer line between three consecutiue manholes at low flows,
4d/D < 9~?rr/' The twol.sites tested . wefe }oetueen -manholee' 19~15 at
Thorndale and between manholes 103-101 at Stony Plain. The results were
much ' higher than the averages of the two roughness values of the
indi;idual lines for both sitee tested. fhe reason for this' is not

'

Clear. . o '

The data in Appendix 6 shows considerable variability in the values

'S P N

of the roughness.coefficients for any one line. This;va:iabliity is ‘not

. surprising, however, considering the circumstances of the measurements.

4

In many instances the‘;lows in' the sewer lines were actually unsteady

flows, since the lines had to accommodate the homes and businesses that
they servedl_ while considerable caution was exercised‘to insure that
. - ‘ .

the measurements were made "during perfods of relatively’ small flow

vchange) the undefi ed transient . nature of these flows can cause
(3

considerable scatter in the computed roughness coefficients. *  This

- - Al
»

problem was quite significant in residential areas where there were many

PR
- . LT

service c¢onnections. coming into “the se&er line heing tested. To

N

overcoﬁe this probieﬁ to-some extent,rthe dye injection equipment wasc‘“

LN . ¢

. set up'upstream of the test section, and flow samples wete taken at both'

-
4

';uthe upstream and downstream manhole of - the test sectiont If thel‘iuj

4‘, -
' .

_“‘iq\dicated discharges were siqniﬁcantly different the test was rejec:ted.f':

RN % S
. . n--:...

‘Accuracies for the dye) dilution technique for wastewater flovt'.

measureuient have been report&d in uhe Mtetatuta ‘to range between 1 and'

™

Tafe . K etd

ot
v,
-

“‘Py*,
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Sa; It is estimated that the accuracy of the discharge measurements in
this present studyiwe;e-becccr than 3%. The salt-velocity technique for
measuringl velocities in sewers 1s among one of the most accurate
techniques known, since only the time of travel of a tracer cloud over a
known length need be determined to arrive at the average ‘velocipy.
Because a chart recorder wee used to monitor the conduceivity of the
effluent as a continuous function of‘time, no sampling was required.
The accuracy of the salt velocity method would be less than 1%. The
accuracy ‘with which the sewerhlepe could be determined (dicregarding
tne unknown irregulafities in the profile) was within 0.1%.

A sensitivity analysis was carried ont to determine‘what influence

-

the measured parameters have on the rbughness coeffiocient. The analysis

was carried out for the following, extremes:

:where €, = % error in'V ' S ‘ .
., .‘ ¢ . ' . .

N A B
. ‘ I ‘ r ., .I, N i
_Parameter i . ! . ) Extremes -
Diameter T - Large ‘ " small
N . ' b B : B '
Relative Depghs <2~ ' More than half, full e Low |
Roughness ¢ . . High . " Low
Slaope ‘ , . High T - Low N

y -

B The detailed results and analysls are given in Appendix 5. For

W Faal

convenience ‘in presentation the variation in error of roughness at the

-~

extremee was approxfhated by a linear function 'between the error 'in

roughness and thcse in the measured parameters (i.e. V, Q, S) viz

€ ﬂee 4+ bE + cE_ R . (12)

Ty e - e
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EQ = % errxor in Q
€g = % error in §
€ = % error in kg :

and a, b, and c are coefficients. The values of the cggfficients ére

given in Table 14. They were determined from the results given in

N

Appendix" 5. The sensitivity analysis indicates that ks is most

sensitive to V and least sensitive ‘to Q. For example, for a 300 mm

.
-

diameter pipe with a roughness of 0.1 mm, a slope of 0.0010, and a“flow

A

depth of 0.10D, if the error in the measurement of V was 1%, in Q was 3%

and in S 0.1%, from Equation 12 the error in kg would be approximately

110%. AN

. From the sensitivity analysis and the errors in the measurements of

Q, V' and S discussed above, the error ih ks can range from 10 to

-
3 } \

‘ .
110%. An accurate evaluation of kg therefore requires very great

precision in measurements of the flow characteristics, particularly fo
a .

low roughness and flat slopes. On the other hand the discharge cépacity

computed is not sensitiv% to- the value of kg, used. For example, a three
. .. Ay .

fold increase in ks causes only about a. 7% decrease in flow capacity,

and a ten.fold increase an 18% decrease., It should also be noted that
’out-of—roundness, or.eliipticity, has on1y~%'minor effeét;ih reducing .

- ~ ' . i . T . * A .
the cross-sectional area, For a 5% out-of-roundness, the reduction in
' Vo o ‘ . »

4 -

.

area is less than 1%. R . - o
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Table 14. Sepsitivity Analysis

Specified parameters Sensitivity parameters

in Equation,12

D a/D S kg a b ¢
(mm) (mm) (v) Q" (s).
300 0.11 0.0010' 0.066 62.1 15.6 19.6
0.15 , 10.84 6.4 1.9 1.9,

0.09 0.010 0.23 16.6 4.0 5.0

0.12 10.19 6.0 1.8 1.8

s \ . _
‘ 0. 65 7:0.0010 '0.079 37.2 8.9 13.0
=~

16.12 6.4 1.3 2.2

f' 0.67 0.010 0.17 16.8 2.5 6.0

i . B

16.30 2601 1.2 2.2

800 0.09 0.0010 0.088 44.5 10.8 13.3
0.12 14.40 7.0 © 2.0 2.1

?’ . N ' . N % ..

- 0.09 0.010 0.21 18.6 4.3 5.4
B . 13.40° 6.8 1.9 2.0

R . : , o N A ,
e 1 0.64  0.0010 0.039 52.% 7.6 17.8°
. 19.86 7.6 1.4 2.6

1 _4' . ' N : , . N
| f’l 0.69 0.010 * 0.091 20,6 2.8 ‘7.3
. 2000 7.1 A3 2,7
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V. DISCUSSION

“

The  hydraulic ' roughness determined from. the normal flow
. \ . .

measurements are shown in Figures 9 and 10. It is evident that at these
flows the flow resistance is'significantly affected by more factors' 'than

’ . ' . ' N
just the pipe material. No slqnlfxcant dlfference is apparent between

0 wd
P

plastic and concrete sewer pipes. Other factors' include debris and-

S A ‘ Cn
§olids in the flow, sédlment on the pipe invert and sl:.me on the' pipe "

o ' ’ ®

walls. ,Any non—umformxty in the longrtudxnal «pipe proflle and jordt

eccentricities due to post—construction- settlemait would also c&?ﬁtribute;‘.‘

a

to the apparent roughness of the plpe at low flow. The 'result of all
i “ ~ ! . ' ‘A

. . .~ . ‘g b
these influences is that the apparent hydraulic roughness at low «flow in.

N L
a R -

an in-service sewer is orders of magnitude larger than the cléan’ water,
. X A . ! . ) Rt

new pipe “roughnes_s values typically used for . minimum. velocity'

assessments in sewer design. ' '

. * \ . . . . . ‘ - >

- Because these various factors have ‘a larger influence at low.flows -
A \ ' ’ .

' than high flows 1t can be antlcxpated that the effective roughness

e

shbuld decrease with 1ncreasz.ng relative depth. The results of the’
‘_augmented-flow tests'confirm this. 'rhese are shown in Flgures 11 and

©J2.  For example,,.%‘igure 11 Mshows th'at for some vlines-"the effec‘tive :
roughness cont:.nues to decrease to relatlve depths as h:.gh as" 9.8.‘

a

‘ Slmllar magm.tudes and varlatlons of roughness w:.th‘ relatlve depth for R

1n-servxcé\ewers have been reported 1n the lzterature by Ackers ‘et al.“.

L
td

(1964-) ~and‘ Henderson (1984). ,.Thls is .in. strong contrast to the

+ l'

: measurements for clean water and new p:.pe for wh:.ch the efﬁect:.ve
RCEE s .‘_ e .
4& . "oy
roughness J.S rfasonably constant for relat:.ve depths above\ about 0 3 as .

S ° Y

d:.scussed earl:.er., (Although baséd on several studa.es (Nealé and Prz.ce, g

c e

1964, Bock, 1966‘) tl'u.s latter conclus:.on is at vanance ‘w:.th the results

i “ . : [N

Y
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‘ ‘olf sé‘vera‘l earlj.ear test‘ sye‘ries -('Yarne.ll ‘and Woodward, 19205 wilcox‘,‘-
';/--" 1924) that héve"since been‘accepte'd'into the general 1it‘erature on sewer
| design.  To confirm the,above.conciusion simple analytical estimates

;vere ‘ma’de ‘of the .vv‘a‘ri-‘a“tion in hvdraulic rgughness w:Lth ’relative -depth.j“"

|
These estimates confiw¥m the trend fouhd by Bock and support the present

”

conclusion. Details’ of these calculations are given in Appendix 2.)
) . Another irm' of note is the ‘hysteresis' evident in ‘the variation

of kg ‘ 'with d/D‘ inv the. auqmented—'flow:'tests; The‘ roughness Was ‘found to

: be much' greater as the rows were being stepped d’own from the ‘maximum
S

than for the same relatrve depth as the flow was' being stepped up to the

)
,.-

maximum. 'rne reason for this js- not at all clear but it is 1likely

.
L

~o

related to the dlsturbance of the sedlment and sllme by the hlgh

'
-

"flo¢s.,' Some ev1dence for this is prov-ide‘d by the~tests between. MH 23—22 '

r

in Riverbend.' The f1rst test gave a roughness of 5 mm whereas the‘
second ‘test, carrled out after the sewer was cleaned' by the Cxty, qéve

. y
o

. a‘f.roughne‘ss of ,.10".xm‘n.f ST -‘v,, o

[ * RS

[ ~,‘| . ‘. ‘\

Previous invest1qators have concluded that flow res-ustance is . not
- governed so much by the age -and pipe mater:.al as by such 1tems as the

. SRR o

. sliming of the p:.pe wall, sedimend\ on the invert, ; Joz.nt eccentr:.citlesw

‘.

and uniformz.ty of the longitudin‘al prof:.le oflthe sewer.“

Nevertheless, ‘.':‘




' on th‘e“in-—servi‘ce hydraulic'roughnéss. They concluded from their tests
'%“ " f e . } c

[
fi_"l y tha-t plastlc sewers' had the 1owest 1n—serv1ce hydraulxc roughness and e
1 v ' i

'>thﬂ: blay, ‘stos—cement, a?d v'ertically sast c’oncrete were: rough'er,
" om ' - . o . . ' !
< with spun concrete having the poorest performance. N
vl « e o o o R :
A similar difference ‘bejweenn the hydraulic xoughness of PVC and
‘concrete lines for other. than!low flows is also evident in the present »
results. As.a typical example, - the hydraulic rougliness of,the sewers at
a relggive depth.of 0.5 was mpared. As shown . in Figure 13, if the

A '
'

Al

‘n ' 2 “ }

measuéd variations of ): w;th d/D as the flow was be1ng stepped up are

o et
& .

extrapolated ‘or | Lnterpolated to a flxed value of d/D =0, 5 the average

N ~

‘for PVC,zs "’abqut O.,8 mm while that for concrete is‘ about 2.1 mm.

a .
- b

(’I‘he normal relatlve flow depths 1n these sewers was about 0.1 to 0.2.
) Th).s s presumably’ the depth to whlch 51gn1f1cant slzme layers extend if

-~ w0 >

. they exlst.) ‘It should be p01nted out that the low roughness value for

concrete in’ Fxgure 13 did not have 'hysteresxs" evidnnt"in‘ the ‘variation“ﬁ

LY

.lv‘ ‘\ R

of k w1thx d/D, 1nd1cat1ng that there may not have ‘heen any signlflcant

o I
o ceoy

|
sllme l.ayers present for the higher flows to dlsturb. It should be

Typlcal quoted values for thllé 's:.tuatlon are

e
}
{

-‘for PVC and 0.,3 ., for concrete (Uni';"Bé,ll_.;_-Pla'stic‘l ,Pibej‘"'

Assoclatxon, ; 1982 ) .

foe
+

Ackers et al. (1964),\ Henderson ('1984”) and Perkms and Gardmer

[ . z‘,.'v

(1982) 1ndlcate that at steeper slopes the sl:.me bu:.ld-up on the pipe\

i ~, e ) W

i wall 1s 51gn1f1cantly less, presumably because the hxgher shear stress

) -

exerted cm the boundary :.mpedes the sl:.me growth. }_‘As a result the flozw

res:.stance 1sy1ess Where theg found lmxted /slz.me growth.. The boundary
hear stress ,‘ values ) whete they found reduced roughnesses were greater

e
-«
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{ ' 'gtress for ‘a fixed relative depth oé\%s from measurements BY
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\ B e 'wu v % “ . .. '8S g
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. LN in . ) '

RN

than about 5, Pa. The norjnal flq'wftests on pvQ pipe for the steep Slope "

‘sites _in Riverbend which, even at: these 1ow relative depths, ‘sustain

1 .
% ' ‘ ‘

‘bm%’ shears of 3.4 and 1.0 Pa, are 'conslstent ' vjxd‘r this, h}avi.hq

measured roughnesses of only about 0. 1. to 0.2 mm." I& might also be. -

‘noted that ‘ghe flow- at these. sites had Froude numbers.greater“ .than
. ' | P “ ’ ' e L ‘

¥ ! ' ' |

one. Hence the ldwer roudhness fourd' is cont:rary,'td expectation’s’ based’

’ ,on clean water  flows. . Powell ~and Pos'ey‘ (1959) fo.\md that the* Sdow
reslstémce lncreased for E‘roude numbers . greater than one, presumanl‘x
| | | ol
%\.;\ne-saus'e ~of the flow irregul'ar@t:,ies that can deVelop ) Vwith“‘ such g7
. A : » . " ’v T ' Co N ! . - ‘ ) B
‘supercritical flo‘ws. \ - . A -

s
"

An ,xrr:egular longltudlnal Pl‘OfJ:le c:an 'be responsxble for a hlgh
| apparent roughness, To isolate the contribution of 'this ‘to the measured
} A . 4 ' - ,

' )

BT

‘ roughneSs it is necessary «to know the- in-’serv*iée prof‘ile of the test
Ary ‘ .

] . . “L

- K

" sewers. A first’ effort to do this’in the present ‘tests, utxllzed t;hsz
v 2 v x5

airline apparatus\' described earlier‘ to measure the vanatlon 1n d
Lt ~‘A ¥P~ * N ¢ e . \' . Y :
i along the l;Lne under normal flow. condltlons but,. as mentloned th:.s wass.r

[ .
. NN '
A * y ) .

: felt to be. .unrellable. In the agsence of measurments, the R

V! AL Q

~o : . "H;S; . ! .

R ; .»,‘

' longi tudivnal p'rofi'les of the lines, . an analys;s was Earrled out to
! . S . . B v \ ' N e ‘%“ ‘ P .
" assess . the sens:LtJ.v;Lty of tfhe apparent roug‘hness to varlatlona J.n the

|
* o P
K iy

prof:.le of the sewer. “ A length of 120 m was used and a ‘paraboh,c

‘

deflectlon, elther a’ saq or nse' was assumed to ex:L‘st over 80 m of the

S e ot . A . : ‘ ' K “i

qentral portJ.on of the 11.'

.. the; center of the length. A gradually Varied flow analys:.s was carned

. e
R - . . H

’ out, assumlng unzform flow x:,sted at_ « the, d st o . From thp co

: calculated profile the app‘ ent ~roughness v"v,as’“',, etérnined nsing

w

s:.mtrlatz.ons of the field measu::ements af d‘escnbed in. Append:.x 3. ‘ 'rhe 1(

. "1,

. . R ; ;
o results ‘a‘ !‘iown :.n Fxgure 14. . 'I*hey confinp that the affect:.v

' [ P -
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hydraulic roughness is a strong function of the longitudinal profile, -

o

pqrtzcularly for low flows, and could explain some of the very high

hydraulic roughnesses measured. \Xt is therefore desirable that future
A

_measurements of the invert profile ba made using a sjope indicator

pulled through the sewgt and fhat'qther low slope, high roudhness linea
' g
be tested. There 1is little doubt that, for small sewers pear minimum

grade, settlement of the line after'consSruction could cause sufficient

variation in the sewer profile to significantly influence the effective

hydraulic roughness.

: A
For a sewer line with an irregular longitudinal profile, deposintion

~
a0

of sediment and sewage slimes may actually 'ihprove ‘thel hydraulic

characteristics at Jlow flows. The sediments and sewage -slimes would

“

deposit at the low points and improve the Jlongitudinal profile of the
sewer., When' the sediments .and slimes are‘ w;shed out the apparent
roughness of the sewer lipe could then increase. This may explain some
of the hystefesis evident in. the cur;es for thelaugmented~flow teét;,

There would seem to be three important considerations with regard

to the resistance to .flow in sewers. They are:
' \

1. The resistance, to flow for design flow conditions (full or near

. full). This.is the item of primary interest when sizing the pipe.
2. The minimum grade for the pipe. Traditionally this has been

goverried by a specified minimum scéuring velocity. In this
N o . )
circumstance the res}stance to ffbw‘under low flow conditions is of

.
-

}nteréstl

‘3. The resistance to flow under all flow conditions to allow accurate
! 4 ¢

anhlytigal routing of flows through the system.
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,The'%:lmary aim of the present investigation was to determine the
e ‘ '

in~se‘":'{r:1.)ée crllara‘c“t:eristlcg of sewers with regq:d to 1t:em\1 and‘ 2. The
measu{féments to date hﬁ."? béen for ‘flows’ varying from low to modefaée
(d4/D < 0.6) in both PVC and concrete sewers. T;nesé measurements have
‘ihdicated’th&t: ’

1. The effective roughness of fthe pipes is a strong,funétion of fhe

relative flow depth, being much higher for small debths and having

N )

its minimum value for full-pipe flow. The variation 1is consistent
with what has been found from othér, quite extensive, investigations

elsewhere (Henderson ' (1984), Ackers et al. (1964), Perkins and

' Gardiner (1982)). The higfxer roughness at 1ow,flo'w is dQue to one or
r l i

more of the following: |

) slime deposits over the portion of the pipe surface more
P ' | .

-

N or less continhélly in contact with the sewage.

(14) grade irregularjties in sewers of low slope.

|

C(144) sediment deposits in the invert. ’

However, for\ steep slopes, and therxefore higher boundary shear,
there appears to be lgss slime bui}d—up and the flow is much lesks
sensitive to :iine impérfections. Tﬁe' measured roughness \.was then
much closer to. th‘e’ clear .wa.ter—new pipe va‘lués. It would be
- anticipated that at steep slopes ‘the roughneés of the sewer would
not be. such a strongafunction o\f relative debt.h due to theré béing
. _ N ‘

less slime builkd—up on the pipe wall. Therefore, it appeafs that
the hydraulic'béhavioﬁr of a sewevx‘“ wil; be;cons'idera‘bly \different at
ia flAt s).ope than at a gteep éiope.. -

2. There is some indication from the measurements that there is ‘a

significant difference in the resistance to flow, for high flows,

[ Iy

~

>



between PVCv(k =x 0.8 mm) and concrete ()cs = 2.ilmm) sewers; This
is remarkably consistent with the values of io.é my  and 1.83mml
respectively- recommended for pipe~ full flow by Perkins and Gardiner . .
(1982) as discussed earlier. : - \
3. For Jlow flows the effective roughness can be very much higher than

for 4/D = 0.5 and varies substantially. It would appear from, the

~field measurements and the theoretical analysisjbarried out that the
greatest contributor to' the high apparent roughness at low flows and
flat slopes ‘could be irregularities in the pipe}tne profile- - %

Ah important factor affecting the design of "sewage systems 1s the«

3

minimum gradients at which pipes need to be laid. - In areas of flat

)

terrain the minimum gradients can have ) major influence on the cost of

[

the scheme becquse they tend to detggmfne the depth ,of excavation and

- the amount os éumping needed to discharge the flow to a treatment works

or ouqfall. Minimum gradjents are normally set in an effort to make the
!

pipe ‘self-cleansing'. A self-cleansing velocity may be defined either
' : o

as the velocity which prevents solids fxrom depositing, on the invert .of
i ' o
the pipe, or as the velocity needed to remove any deposits that may have

A

formed: the two .definitions are not necessarily synonymous. ., The
' A ' ‘ ‘h

self-cleansing veloeity for sewers given\by Equation 1 is based on a
minimum velue of shear stress to move ga;ticles when;the,pipe‘}s flowind'
full. | However care is needed when \applying the concebt to the
deposition of sediment in sewers which are designed to rarelly flow full.

The predent criteria‘for determining‘cleansing velocities in'eewers
presented in most texts in' North America do not take into account that

Iy

sanitary sewers rarely flow full, nor the significant increase in

£
l

hydraulic roughness 'as the relative depth decreases,'nor the influence

-



" A

\

of irregulatitigs.in the longifudinal profile. Nevertheless experience

A

suggests that these criteria used are effective.



o ‘ . VI. CONCLUSIONS

‘ o \ o B
Others have shown that the in-seryic¢e hydraulic ,roughness of

f
N

sanitacy sewers is governed by sliming of ‘the pipe wall, sediment

0

,deposition, and workmanship (e.g. joint displacement, post~construction

settlement) rather than by pipe material. Nevertheles®, the degree of
PR 3 ~ ! L R Jé' -
sliming seems to depend ,on the pipe material, and ‘henct, there is an

indirect relation between’ in-~service hydraulic roughness and pipe

Lo

material. For efample,v’preﬁious measugements have suggested a
significant difference exists between average in-service hydraulic

roughnéss of PVC and concrete sewers, being ‘about 0.6 mm for PVC and
}‘8 mm for concrete. These values are for pipe-full flow andﬂapply to

pipes with velocities of about 0.75 m/s, carrying sewage and slimed to

approximateifﬁhalf-depthz The results of field tests on such pipes in
Edmonton are cempatible with these findings, Yieldinq average values for
4/D = 0.5 of about 0.8 mm for PVC and 2.1 mm for concrete sewers with

Tnormal values of d4/D = 0.1. These roughnesses‘ere very much higher than

i

those recommended from clear—water new—pipe tests. Typical qnoted ‘

values for thxs situation are 0. 0015 mm for PVC and 0.3 mm fd% concrete

"t

(Unl—Bell Plastic Pxpe Assocxatlon, 1982). o ' . —
. -“\—- ‘

Y

There is a strong varxatxon in the effectlve roughness w1th d/D.

Thlezs largely due to. the non-unlform dlstrlbutlon of sewage "slimes and

L . l R ) ,‘ . . N , .

sedxment around the plpe perxmeter. The'variation in roughness, with
e

M

relative depth ‘18 much stronger than the usual'varlatlons presented in

‘ . . "
Il

Astandard textbooks. o ‘ .

' The apparent roughness at flat slopes and 1ow depths was very h;gh

-

: bexng orddxs of lagnitude hxgher than those usually assumed in: the

evaluetion‘of; scour velocxtles . A‘majqr contrlbutorgmo the ‘high



apparent roughness at low flows and flat slopes can belirreguldrities in
o o

the pipeline profile. i

) ' .

. ' . \
For steep slopes, and therefore higher boundary shear, there

appears to be less slime build-up and the flow is much less gehsitivé to

.." : ) ' . ,
line imperfections. The measured roughness was then much closer to the

clear-water new pipe values., It would be anticipated tﬁat‘ag steep

slopes'therroughness of the sewer would not be such a strong funetion of
. _ .

the relative depth dQue to there being less slime build-up on the'pipe
N . :

wall. Therefore, it appears that the hydraulic behaviour of a sewer

will be considerably different at a flat slope than for a steep slope..
. - ' »~ ) »
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VII.. RECOMMENDATIONS FOR FURTHER WORK

To firmly establish the variations in the roughnesses of in~servicg

.

. ;
sewers and -the reasons for the differences, the following tests and

measurements are recommended:

1.

The

A range of normal flow depths

"

Two-cycle augmented~f16w'tests up to at least a relative depth of
1
<

0.6 on fivad or more linés of each type. The two cyéles are reqyired
» | . . ‘ ‘ ' L

to assess the ‘hysteresis' evident in'the tests to date., The actual
\ ‘ . ; .

number of ﬁtests will dépend on what is required. to prﬁiide,
| n

\

convincing;,ebidence to .the regulatory agencies and will likely:

require reassessment as the data becomes available.

Documentation of the slime deposits around the perimeter, other
- 4 v [
t

' o

' irregularities, and the in-service flow regime for each pipe tested.

A

For , the sewers on a low grade, meésurement of the Jlongitudinal:

profile of the pipe. ‘

L . ' .

- ' \ . - ‘ o

- : \‘ ) ‘ % . 3
lines selected for these tests:should include:

up to at least 0.5D so as to vary the

»

fraction of the perimeter covered with slime.

:

‘Small aiametet pipes (200-300 mm) at Qrades well above the minimum

a

to assess - the efféct of wvelocity.on slimg growth and ité/hydraulici

‘charécteristics, as well as the effect of velocity and/or slope on

the other sources of apparent roughness.

N
. . . K °

i
| ‘
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P APPENDIX I
UNIFORM F1.OW FORMULAS
From the summation of forces acting on an element of fluld for

steady flow within a conduit of uniform cross-section, it can be shown

\

that

- 13
To = YRS, (13)

where 1 is the shear stress at the pipe wall, v the specific weight of

the fluid, R the hydraulic radius and S is the aslope of the .epergy

line. The hydraulic radius is given by

R -~ A/P\ (14)

where A jis the cross-sectional area of the flowing fluid and P the

wetted perimeter of the conduit. For opeﬁ channel flow the shear stress
on the channel boundary is not uniform and Ty 48 then the average.

From dimensional analysis T, can qlsp"be written as

P

. [
f .

2 . .
| " ‘
To=/f°r o (13)

where p is the density of the fluid .flowing with mean velocity V, and Ce

'

is a skin friction coefficient which is a function of Reynolds number R

and a diméhsionless length ‘scale, ks/D representing the boundary

roughness. Reyndids number is given by

AN

.

(16)

99
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where Vv is the kinematic viscosity of the fluid.

Substituting equation 15 into 13 gives

amn

For a pipe flowing full R = D/4A, where D {is the pipe diameter, and

S¢ = hy /L where h

L is the energy head Jlost over 'lepngth L of pipe.

’

Substituting into équation 17 and putting £ = 4Cf qive§

LR
fL Vv
hL D 'E‘(; ‘ (18)

where f is the Darcy~Weisgabh friction factor.
From the abowe development, consideriné only fuily tuerlent flow,

it can be.seen that resistance to flow depends upon two factors:

1. Fluid viscous forces expressed in terms of Reynolds pumber, and

2. The relative boundary roughness which may be expressed in terms of
the ratio between the Nikuradse e%uivélent—sand—grain roughness ke
gie. the roughness height projections of ;he éipg wall expressed in
terms of the height of equivalent sand grains.uniformly distributed '
on the pipe wali) and the diameter D for ﬁipqs flowing full, or its

- ’
. f

equivalent, 4R, for channel flow.

Experimental work by‘ Nikuradse in the 1930;5 showed thaﬁ the
relative importancé.of these two factors depends upon the size of the
viscous sublayer oﬁ the pipe wall in comparison to ;he height of the
pipe wali roughness projections expressed by ks. This led Nikuradse to

develop two resistance laws, one for smooth pipes where the wviscous
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sublayer deeply subherges . the roughness height projections, and one for
rough pipes where thé roughness heiyght projections'protrude through and
totally disrgpt the viscous sublayer.

‘For smooth pipﬁs the friction'factor is primacily a function of
skin fricﬁion {(L.e. Reynolds npumber), whereas for rough pipes the
friction factor is indepepdent of Reypnolds number and only a function of

. \
the ratio, ks/D, 75 energy losses in fully rough flow are predomipantly

a result of drag on the rougﬁpess elements.

However, there 4is an intermediéte range of flow which cannot be
{‘classifiéd as wholly smooth Sr rough.“In this case the roughness height
Projections are similar to the hefght of the viscous suplayer §n the
pipé wall .. Thereféqp résistance to flow 1is a function of" both Iskin
friction and drag on the Foughness elements. Colebrook and Whitg
developed an eméirlcal expression for the friction faétor for flow in

this transition region for commercial pipes which also applies for the
‘ \

\

© smooth and fully rough flow. It is

‘k_/D

. 1 : .51
L . ~0.86 1n (537- +;Z—§—) ‘ : (19)
/'t : R /E -

ThefManninq‘equation has been widely u ‘éifor channel - flow. It is

’

'
-

o1 2/3 . '
V.= =R / 51/? (for SI. units) . . (20)

[y

where n is an' empirical roughness coefficient referred to 'as the
‘Manning n'.

EquatiQn 20 may be manipulated to reveal®the relationship between f
. . I3

and Manning n. It is



\ 8 . ‘ |
¢ - 8an ‘ (21)

[

Like £, 41t is only for fully rough flows that n is constant for a given

relative roughness. For transitional flow conditions the Manning n will
vary slightly with Reynolds number. Unfortunately, sewer pipel flow

generally falls within this transitional category.

¢

102

From f, k_ can be calculated using equation 19, and n using

S

1
.

-equation 21,



' equatica can be rearranged to.

APPENDIX IX

VARIATION OF APPARENT ROUGHNESS WITH RELATIVE DEPTH v

~

'Many investigators believe that ity is_not completely coxrect to use

L

pipe flow relations to ,determine the .resjistance of npon~circular

’ 3,

conduits. Implicif ‘in repleing the diameter D by 4R in pipe friction

formulae is the as3umption that the departures from uniform distribution

[

. ! : \

of boundary shear stress ,have a minor influence on thehresystance‘to
/

flow. If this is pot sf the treatment of the conduit as an equivalent

A RV
o

pipe wiﬁh aiameteE eqaial to 4R does notl fully account for the
v '\\‘

.

‘cross-sectional shabe effect. This shortcoming of the hydraulic radius

in-representing waterway shape is well recognized (see, for example Shih

and Grigg, 1967). The argument has been about the error due to this

assumption. Some suggest that although there is an effect of channel
. L]

"

shape on flow characteristics, it is negligible for regular shapes such

\

as rectangular chapnels with aspect ratios (width/depth),'as low as 2.

Recently Kazemipour and Apelt (1979) developed a practical method
which takes account of the effectélof the cross-section shape. On the
. - : . L]
’ . " .
basis of, dimensional analysis they introduced Awo parameters to

' .
represent .shape effect: the ratio of wetted perimeter to surface width,

P/B and the ratio of surface width to average _depth, B/yav.

' L
t

It i= 'simple to show (Gerard, 1985) that the Colebrdok-Whi te

I} . N

%—:2.51n§+6.6‘ A - ~ o (22)

where V is the average boundary shear velocity 'given by ‘
« ‘ . . .

.103.
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where g is the gravitational constant, R the hydraulic radius and Sg the
slope of the energy line, The boundary roughhess parameter k is given

by " A

K=k +Kk ‘ o ‘ (24 .-

)

Where kg ks the, Nikux‘que equivalent 'sand gtai‘n, roughness  and k,, can be.

envisaged as a roughness height that would have an equivalent fIOw

\

fresistance as the viscous shear at the boundary. It is glven.by Lo ‘tu
v . ' s . { . T',
- 4 s -
.\q ‘— v o ’ :
i kvr—e.;!'\r ‘ | i ‘ oo o .(25)

where v is the Kinematic viscosity. It will be noted that
. . ‘ ) N

o

Sl

(26)

. <.]<‘

where C is the traditional Chezy coefficient. .That' 115, ‘v/v is simply .
the non-dimensional Chezy coefficient. Td‘distinguiehvbetween'the fwo,
. . Loy, -:-‘ o . , X .

. C will be used for the latter. That is. o o ’ ‘.
x . . R . B

¢, =g » o .an

\
.
L .

’ e o ,
As this is also a dimensionless average velocity an approptiate name

' would be cOnveyqnce coefficient.

¥

' Hence ‘the discharge in a conduit is simply given by

I
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4 .

Vo

Q= C,AfgRS, - ‘ (28)
| ' o . ‘ ‘ ' o v
| RN
whece C = 2.5 1n — + 6.6.
* k ‘

o \
b

Knowing R and k, C_ is simply calculated. This will be the form of
. L]
the Colebrdok—Whitewequation used herein since it is easy to apalyze for
' \ A . C )

shape effects. . “ e
'ASgpointed out ﬁy'kéuiegan (1938) ghe effect of shape is primarily
reflected in the éonstant 6.6. for example, for a Qide channel iﬁ
! becomes‘s;o. Hence this constant can:be replaced by a shapg paramétér B
‘ ‘ N o

which varies with cross-sectional shape. For example o .

= 2.5 1n—E~+ B : S (29)

N

" " 'The parametér B varies from 6.6 for pipe flow to 6.0 for flow in a wide
channel with a commonly accepted value of 6.2 for channel flow. It
would be expected that B is a function of the variables d/D, k,/D and

v ké/v or, considering the viscous effects to‘be included in k
® ' : \

-

“\

B = £(d/D, k/D) ' . , | o (30)

A simple analysis was carried out to estimate "how the shdpe‘
- parameter varies in a pipe flowing- part-full using a simple technique

~ similar ‘to- that "of 'ggulegaﬁ (1938) foruvothér:;;on-circuIAr conduit
shapes. Tﬁé flow .area in'thg»pipe was divided into a number of small
e;éments as ,shq;vn in Figure 15. Couglinvg\;b.etvieen‘;t».he‘elen'xents_ of fluid
.“v;asﬁ "not ;akgn into. ag:coixri‘t, 'i'his iimpli_;'es" that the isovels are-
éoncéntfic‘ ci_ré‘l‘es, so’ f.hét there "i;'s no shear Ibet‘ween the eleﬁlenfg , .apd-
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- of d/D at 1ow flows, and varies slightly with d/k.-

106

\
Figure 15. Flow elements in a part—fﬁull‘pipe.

n

that there are no seéondarv flows, neither of which is .completely

true. However, from experience with other sections (Gerard, 1974), 1t
o .
S » . »,
was felt to be an a‘aequate approximation for the present purposes.
‘ A N , ‘ S
Hencﬁ*‘within each pie-shaped element it could be assumed that.‘Ec'{uation‘

29 applied with B = 6.2. From the estimated velecities in the elements

the average velocity over .the waterway was ca]culated. Equation. 29 was' ‘-

¢

then solved for the shape parameter B. The variatron of B with relative . .
. - ! ' "fAm ,‘ '

depth. found vfor various values of q)f is shown in‘ Fiéure:16.

'Calculatiohs 'were - only catried to rﬁalf—full as with this ‘simple

algorlthm the value of B must equal 6. 2 at this depth and can vaty

‘lxttle from that at higher depths.‘

+
!

It can be seen that the shape parameter should be a strong function

i
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! From this and equation 29 it is evident that

"

The shape factor can'be'incérporated into an apparent' hydraulic

ot

roughness,'kapp where L o
lm
v ) ~ ‘k) l_’ .
v 2.5 1n + 6.2 A , . ‘ (31) .

* app ' Lo : S

-~ -

. app 12 ' L (32)
' ) k JB/2.5 " . - | o ;

| The calculated shape effect, expreSSéd in‘thisvfa;m, is shown in

Figure 17. . It is evident that apparent roughness due to the shape

effect should increase substantidlly at low relative depths. Also shown

0

I}

‘An Figure 17‘ is the 'vapiation in the shape effect deterhined
experimentally by Bock a(1966) for part full flow in ‘a smOoth pipe.
‘Considering the approxlmations involved ig the 51mple algorithm used for‘
the calculations ‘herein, the agreement is femarkably good; . The sensa of
the}d;sParity is cons1§tent withlthe observation Fhat secdndarf fiaws

act to reduce variations in boundary shear ‘and hence shape effect .

(Gerard, 1974).

-
Y

The‘Shape effect can also be expressed in tetms of Manning n. From

the défin;tion of n ahdlthe coﬁvéyance coefficienﬁ‘it is evident

1/6 ,
n = R (33)
c, Y9 "
Hence < ' ' . T
nap_g =‘ Ca _251n Rk + B

, ‘ (34)
n Ce app 2.5A;n‘§-+ 6.2 R o

! . 108Q
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3.5 ,
- Legend
3] . 4/k=6,000
d/k=3,500
4/k=800 . .
=100 - s :
4/k=10 .
2.5 MEASURED VARIATION, BOCK(1966)
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' Eiquté‘17.;‘lCa1cul§tea variation .of ratio of apparent roughﬁéésé td"

y

boundgry(roughesé, kabp/k, with relative depth.



This variation, deduceld from Bock's experimental ’x“esults i‘s“éompare.d in
Figure 2 with the ‘variati\o‘n gi‘ven in most textbooks'§n se\.‘r:er design,
thch ‘seems‘, to, be based on the‘ éarly measurerﬁenﬁs| ‘o‘f Ya‘rhell“ and
Woodward (1917)-. fhe two trends ;re obviously unrelated. The trend
found by Bock Ais 'supported by the above apalysis.

As mentioned ‘abové, the ‘ﬁheoretic§l analysis indicate§ .;hatf the
shape effgct decreasef with an jincrease in ;eﬂhtive rouqhneés. | Tts
significanée would be.f§rth§r reduced by the effeots of variation in
roughness around the boundary and other much Jlarger .infiueﬁces on the
épparént roughnéss,’such as the variations in pipe profile discusseé in

"Appendix 3, and sediment deposition in the invert. Hence no specific

allowance for shape effect was made in analysing the field data.



APPENDIX IXI

GRADUALLY VARIED ‘FLOW ANALXE§IS 'FOR A PIPE WITH NON-UNIFORM SLOPE
As mentioned in the text, it was suspected that some of the high

roughnesses measured were due to 6 variations in  pipeline profile.
) t . i \ ‘ '
Attempts were made to determine the in~-situ profile of a sewer line
using the airline apparatus descpibed in Appendix 4, but ,these had
limited success., In the absence of measurements- of the actual

longitudinal profiles of the lines, an apalysis was carried out to at
Py \ . ;
least assess the sensitivity of the calculated apparent roughness to

| variations in the sewer pfofile from the straight line assumed;

A length between mécholes of 120 m was ‘assum’ed, with a parabolic
vdet‘"lec'vt:ion, ‘either a 'sag or ri.sej cver 80 m cf the cehtfal portion 'of
the line as shown inﬂ?\igur‘e 18. 'A graduéliy “vdried rflow analysis was
then carried out to define the actual variation in ‘depth along the pipe.’

It
[}

for variods d‘ischarges ‘and profiles, assuming unifofm flow existed at -
lthe,downstfeah end. The direot step met;hod was used for ethe g’raduall)‘/
lwn:ied flow a‘nalyeis,‘iwith step lengths of :1Q m. For the purposes of
tﬁe _anelysie the_: 1I:>ipe bcundary rougheess was‘ taken to beks= (").08‘3 mm
»(Menning n “= 0.010). Oonly succrit‘icel flows were considexjed. |

‘From the results . of tﬁe gradually ‘\vraried flcw anaiyeis simula»ted
salt-velocity measurements could be determined and the apparent plpe
roughness . calculated using. the sa;ne procedure used to calculate the
rcughness‘ from the field measurements. 'I‘oj simulace che- salt—velocity
measurement. ehe average "velccicy over each segment was c_omputed by

Y P VG-

Vav = 2 ‘ ' | N T (3.5).

EaY

11



\ »\ \ b
100.5 e . | ‘ -
Legend | |
‘ ‘ . WATER SURFACE PROFILE
. 100.4 A : ‘ : INVERT PROFILE
» ~ .
100.3
g/ 100.24 | : | o
. -
— o o _— .
< . R __,,.’—r——"'"‘/ o
" 100 | - o ~
' ‘—J !1—‘ ‘ ! [E]
m ) » v
9e.94
‘ f
99.8‘ ——— |i —r - r— — — . 3
0 - 20 40 60 80 100 120+

- DISTANCE FROM D/S END (M) o

‘hFiguré 18. Calculated in#ert profile and water surface prbfilg for a.
' .dimensionless 'sag (z/D) of 0.3 and slope of 0.00050



A

A nd the time for'the simulated salt slug to travel betveen manpholes was
. i ‘ {

¢

vkl ' X
.:'¢alculated from

N
' t . I '% ‘ | (36)
R Y av l ! . -

. ST : .
4. Ct '
ﬁ?ne bx.4s the length of each step in the solution. As for the field

i,
'

measurements, the average flow area was computed by
- .

Aa 2 (37)

P : n

‘and the Averaqq"flow‘deptn was then determined from this axea and the

" properties ‘of a circle, | The apparent roughness was then determined

using: the Colebrook~White eéuation. A comparison‘ of this to , the
o ! Tt

ppecified roughnes$ 'then 1ndicated how sensitive the fleld measurements

f : : . o

f

are to an irregular longitudinal profile. pimensional analysis

indicates that these effects can be rqaéonably represented by

[ .
. } v

2 et (.,25, ,s) - (38)

; K ;;"‘ . k N '
kg s A | Vo
' N ' ’ ”;f"

where k; is the apparent roughness, kg the specifiég‘roughness, zZD the
H

jwli el

dimensionless sag or ‘rise, and 4/D the relative depth. The results are

‘given in Table 15. The ratio of apparent roughness to specified

‘roughnéss is plo;ted against the.relative depth for various values of

slopé and ‘of dimensiénless rise in Figure 19. That for sag is given in
the main body of the text, Figure 14. The ratio of apparent roughness

to speéigigd‘ioughness i plotted against dimensionleds sag or rise for

'

a fixed relative depth of 0.5 in Figure 20. It is evident that even at
[} L i ) R f
n
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Table 15. Calculated ratio of apparent roughness to pipe' boundary
roughness for a deflection in the pipeline profile. Pipe
length 120 m; deflection over central 80 m. '

Rpipe = 02010 | Ks pipe = 0-0829 mm
Max . Saq 0 . k'
pefl. or /s S %~ n' T —
cm., Rise ) N (mm) pipe s pipe
5 sag  2.00  0,0010  0.18  0.0140  2.19  1.40°  26.39
5 sag "3.00  0.0010 0.21 0.0133 1.68 1.33 20.26
5 sag 15.00 0.,0010 0.46  0.0115 0.52 1.15 6.22
© 5 sag 20,00  0.0010 0.54  0.0112 0.41 1.12 4.90
5 sag 25.00 0.0010 0.16° 0.0110 0.34 1.10 . '4.10
5 sag 30.00 0.,0010 0.69  0.0109 0.29 1.09 3.51
5 sag 135,00 0.0010 0.77 ~ 0.0107 0.24  1.07 2.93
5 sag  2.00 0.00050 0.22 0.0155 3.89 1.55 46.93
5 sag  3.00 0.00050 0.26 0.0143 2.57 1,43 30.97
5 sag  5.00 0.00050 0.33  0.0132  .1.55 1.32 18.65
5 sag 10.00  0.00050 0.46  0.0121 0.80 1.21 9.64
5 sag 15.00 0.00050 0.57 0.0116  0.53 1.16  6.40
5 sag 20.00 0.00050 0.68 0.0113  .0.36 1.13° 4.40
5 sag 25.00 0.00050 0.79 0.0109 , 0.23 1.09 2.77
5 sag  0.500 0.00010 0.20 0.0224 17.72 2.24 213.70
S sag  1.00  0.00010 0.26 0.0181 8.18 1.81 98.63
5 sag 5.00 0.00010 0.51 0.0128 0.97 " 1.28 11.73
5 sag 10.00 0.00010 0.74 0.0113 0.15 1.13 1.84
10 . sag 3.00 0.00050 0.33 0.0223 21.49 . 2.23 259.25
10 ' sag 5.00 0.00050 " 0.40 0.0185 10.36 1.85  124.96
10 sag 10.00 0.00050 0.52 0.0150 ° 3.58 1.50 43.20
10 sag 15.00 0.00050 0.63 0.0135:- 1.77 1.35 21.43
10 sag - 0.500 0.00010 0.28 0.0415 104.52 4.15 1,260.83
10 sag 1.00 0.00010 0.33 0.0292 50.20  2.92 605.58
10 sag 5.00 0.00010 0:57 0.0156 4.34 1.56 52.34
10 sag 7.00 0.00010 0.66  0.0140 2.05 1.40 ' 24.74
15 sag .4.00 0.00050 0.43 0.0271  45.58 2.7 549.87
15 sag 5.00 0.00050 0.46° 0.0243 32.30  2.43 389.61
15 sag 10.00 0.00050 0.58 0.0178 _ 9.15 1.78  110.33
15 sag . 0.500 0.00010 0.35 0.0644 239.27  .6.44 2,886%.22
15’ sag  1.00 0.00010 0.40 0.0416 128.28 4.16 1,547.36
15 sag 2.00 0.00010 0.47 0.0283 ,53.24 - 2.83 . 642,23
15 sag 3.00 0.00010 0.53 0.0231 - 27.56 2.3] 332.49

15 sag 4.00 0.00010 0.58 0.020 15.96 ° 2.01 192.54
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to pipe boundary

Table 15. Calculated ratio
roughness fqr a deflection in the pipeline profile. Pipe
length 120 m; deflegtion over central 80 m (continued)

, Max. Sag Q ' k.
Defl. or 1/s S %‘ n' ke o d X ‘s
cm. Rise (mm) pipe. s pipe:

)l .

20 sag 0.500 0.00010 0.41 0.0886 377.91 8.86 4,558.62
20 sag -~1.00  0.00010 ‘0.46 © 0.0540 218.96 5.40 2,641.24
20 sag 2.00 0.00010 0.50 0.0412 139.50 4.12 1,682.79
5 rise 7.00 0.0010 0.30  0.0112 0.44 1.12 5.37
5 rise 10.00 0.0010 0,36 0.0108 . 0.29 1.08 3.55
5 . rise 15.00 0.0010 0.43 0.0104°  0.16 1.04 . 1.99
5 rise 20.00 0.0010 "0.50 0.0101 0.094 1.01 1.13
5 rise 25.00 0.0010 0.57 ° 0.00981 0.049 0.98 0.b9
5 rise 30.00 0.0010 0.63 0.00962 0.021 0.96 0,25

5 rise 35.00 0.0010 0.70 0.00949  0.0025 0.95 "0.030
S rise 2.00 0.00050 20.20 0.0126 1.05 1.26 12.69
5 rise 3.00 0.00050 - 0.24 0.0117 '0.55 1,17 6.66
5 rise 5.00 0.00050 0.30 0.0107 0.19 1.07 2.33
5 rise 7.50 @. 00050 0.35  0.0101 0.038 1.01 - 0.46

!
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v

| '

‘this large dept,ﬁ' the “error . can beA'qubstahtial partic‘ularlxy forl low ‘;

slopes. : "‘ . N C ) - | |

The plOﬁs"would hagg different values vif” another 'Specified

roughness had been used, but‘they would indicate the same treﬂd; that
A

the apparent roughness increases dramatically at low relative depths angd _, = ¥

flat slopes.

o .
( A

The steepest slope analysed was limited by ‘the need for the flow. to

remain subcritical throughout for the algorithm used.
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AIRLINE DEPTH MEASUREMENTS

~As mentioned in the text, it was anticipatéd that some of the high

roughnesses measured may have been due to variations in pipeline

pfofile. To measure the variation in' depth along the sewer line that

would exist with an irregular profile an airline apparatus was

constructed.

, [ ‘
The airline apparatus consisted: of a probe, which was a metal tube:

15.6 mm diameter and 1,016 mm long, with holes around the circumference

.

at the centre of its léngtﬁ to emit air. As shown in Figuxe 21, the

.probe was connected to an air oylinder-regulator apparatus, and this in

.

turn was connected 'to an open ended U-tube manometer. The pressﬁre in

the cylinder was adjusted to justwalow air to bu?b&e through the holes
in the probe,. this pressure being directly related. to the water depth
over the probe. The pressure was then measured on the manometer: The

complete apparatus was calibrated by measurements in a flume.  These

' measurements indicated a stable correction of 6 mm should be applied to

the manometer-readiné.
In the field, the probe was pulleg along the sewer-ihvert from the

downstream manhole. At regplar intervals the manometer and the depth at

»

the upstream manhole were read.

Two lines were tested with the airline apparatus: MH17-15 at

- AN

Thorndale and MH23-22 at Riverbend. Initial flow resistance

¥

measurements between MH23-22 in Riverbend had given a roughness of 5 mm

a

‘whereas the second test, carried out after the sewer was 'cleaned' by

the City, gavé a2 roughness of 10 mm. It was antiéipated that-a sag in

-

the - line might have caused these results. -

19 o x 5 K

. To investigate this

- T e
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"

)
v

possibiiitylla‘irline depth = measurements were taken. ’Airline depth

»

measurements were‘ taken bet‘ween MH17-15 at Thorpdale to establish if

uniform flow was oécurring before resistance measurements were taken.

v

Tﬁe results of these measurements show considerable‘ scatter; as
indicated in Figure 8, and po definite trend could be determined. The
reason for this scatter is not clear. It may‘ have been due, to the

uns teady nature of the flow, but 'attempts were made to reduce this

"

problem by taking simultaneous measurements at the upstream manhole and

e manometer. Because r}\q clear 'trends could be discerned from the

line depth mea‘sure‘menvts, they were abandoned.

121



APPENDIX V

"
v

A : SENSITIVITY ANALYSIS
As mentioned in the text, a sensitivity analysis was carried out to
determine what influence the measured parameters have on the hydraulic

rougﬁneés calculated from the Colebrook-White equation: The analysis

was carried out for' typical extremes:

[

Parameter ‘ : Extremes:

Digmetef . o Large ‘ " small
‘ Reiative depthl Mére‘than ha%f full | Low '
ﬁoughness : | High ' LQQ
,Slope . T High - ‘ Low
) Af'eacn “treme the'vémiation in.the hydraulic rougﬁness estimate -
'wés determin fof fixed percentage va;iations in the various‘heasﬁred~

parameters. The results are given in Table 16. From these results the

variation in the error in hydraulic 'roughness around each extreme was: "

.

expressed as a linear function of the errors in'-the measured parameters "

as given in Table 14 of the main body of the text.
The sensitivity‘analysis indicates that the roughness coefficient

. 5 ‘" N N B Y
is most sensitive to. the value of V measureﬁ, and least sensitive to the

value of O measured. FdrgexémPle, at a low flow depth; flat slope, and
Ipw‘roughness‘a 5% error in V giyes a 310% error in the‘determinatibn:of

ks..,On the other hand, at high roughness[ flat slope, ahd‘low flow

depth a'5% error in V givés a 30% error in thé determination of k_. The
. " . , » \: . -‘
‘'relative depth oniy has a significant influence on the error for flat

122 S - o
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slopes and . low roughness. The e}ff‘ect of the diameter‘was also only
significant in these circumstances, but was even‘ less than that of the
 relative depth. A combipation of high roughness and steep slope caused

thée least .errors in kg due to errxors in the measured parameters.
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Table 15A. Sehs;ﬁivitf Analysis

. D = 300 mm, O =1 &/s, 4/D = 0.11, S = 0.0010, n = 0.010, kg = 0,066 mm

A
[

Parameter % Variation in Parameter % variation in n & Variation in kg
l . . il ) "
Q ‘ 5 : ‘ ' 2.6 ) 77.9
v 5 ‘ oY s 1310.4
B | } , :
S ' 5 o .+ 3.0 98.2

P = 300 mm, O = 10.%/s, d/D = 0.34, S = 0.0010, 'n.= 0.010, kg = 0.088 mm

43.6

9 5 2.0 ‘
v 5 7.3 203.0
S 5 2.6 62.0

D = 300 mm, Q = 30 &/s, 4/D = 0.65, S = 0.0010, n = 0.010, k, = 0.079 mm -

i O ’ T e
o ~ 5 r 1.4 SERTE Y= TN
5 . 6.6 ' 185.9 . .
5 . \ ' 2.6 ' 65.2

P

D = 300 mm, Q'='1 &/s; d/D = 0.15, § = 0.0010, n = 0.020, k, = 10.84 mn

\

0 5. 2.4 9.4
v 5 L 7.3 ‘ 31.8
< 2.8 9.4

'
N

'D = 300 mm, Q.= 15 &/s, d/D = 0.65, S = 0.0010, n = 0:020, kg = 16.12 mm

o , 5 - SRS DO S " 6.4
v - . . 6.6 : 32,0

s 2.5 T e
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Table 16. Sensitivity Analys
D = 300 mm,. Q = 2 &/8,

is (continued)

125 ¢

4/D = 0.09, S = 0.010, n = 0.010, )(s = 0.23 mm

Parameter

in Parameter % Variation in n "% Variation in kg

D
L
\

.

% Variatioch
bo | 5 2.3 20,2
v 5 7. 83.2
s 5 2.5 25.2
D = 300 mm, © = 100 &/s, 4/D = 0.67, S = 0.010, n = 0,010, kg = 0.17 mm |
o 5 1.3 12.5
v . 5 6.3 83.9
s 5 2.5 29.8
p = 300 mm, Q = 2 %/s, 4/D = 0.12, § = 0.010, n = 0.020, k, = 10.19 mm
.9 5 . 9.0
v 5 7.6 | 130.2
s 5 2.5 - 8.9
D = 300 mm, O'= 50 &/s, 4/D = 0.67, S = 0.010, n = 0.020, k, = 16.30 mm
e 5 1.3 6.0
v 5 . 6.3 30.4
5. 2.5 1.2
2 i :
N
S X ;
= 800 mm, © = 10 %/s, 4/D = 0.09, S = 0.0010, n = 0.010, k_ =:0.088 mn.

153.9
222.4
66.6
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"Table 16. Sensitivity Apalysis (continued)

.
| o N
. . !
'
1

P = 800 mm, Q = 400 /s, a/b = 0.64, S = 0,0010, n =,0.010, Kg = 04039

mm s
Parametex % Variation in Parameter A& Variation im n % Variation in ke
t 1 .
Q . 5 : ].4_"‘\ ; 37.9
v - " 6.6 " 263.2
s - 5 ‘ 2.5 89,2

D = 800 mm, Q = 8 &/s, 4/D = 9.1Q, S = 0.0010, R =~ 0,020, kg = 14,40 ‘mm

5 ' 2.3 10,2

5. s 34.9
s ‘ s, ‘ 2.5 10.5

D = 800 mm, Q = 200 &/s, d4/D = 0.64, S = 0.0010, n = 0,020, kg = 19.86"

{ [
i

mm

o 5 . 1.4 7.1

e , 8 : 6.6 38.2
| ‘ 5 : , 2.5 13.2
‘, - s

' ’ : . ‘ . -
D = 800 mm, Q = 30 1/s, 4/D = 0.09, S = 0.010, n = Q.010, kg = 0.2% mm
0 o 5 o s2.20 © o 21.5
\' 5 ‘ 7.6 " 93.1

-

79
'Y
w

2.5 . 27.1
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Table 16. " Sensitivity i\nalysis (continued)

h\
e ‘ . |
. N - ‘
D = 800 mm, O = 1,400 &/s, d/D =.0,69, S = 0,014, n.= 0,010, k, = 0.091
m ’ ' m
. \
# l

Parameter % Variatioh in Parameter A Variation im n % variation in kg

. 0 e~ 5 v . 1.2 x 1450
v 5 . 6.2, 102.9
s K 5 . 2.5 36.5

D ~ 800 mm, O = 15 &/s, d4/D = 0,09, S = 0.010, n = 0.020, k, 2 13.40 mm

»

a

,pa . v ' !

§ 0 . 5 ‘ . 2.2 9.5
v 5 . 1.6 34.0
s . 5 2.5 10.0

.

D = 800 mm, Q = 700 &/s, d4/D = 0.69, S = 0.010, n = 0,020, k., = 20.00 mm ‘=

.
) »
et

\
'

L0 5 1.2 64
v 5 | 6.2 35.4
s 5 2.5 , 13.3 1

R} . ﬁ‘i y )
\ ' ' ' M &
"\



APPENDIX VI

RESULTS OF FIELD HEASUREHENTS‘
R .

The raw data of the field teéts *is presented in the following
tables, as f0119ws:
(a) Column 1 . -~ measured flow (L/s).
(b) Column 2 ~ measu}ed velécity in (m/s).
(¢) Column 3 '~ measured flow depth at one of the manholes (mm).*
{(d) Column 4 -~ calculated avarage flow depth based on A m» Q/V kmm).'
(e) Column 5 ~ ratio of depth to diameter.
(£) Column 6 ~ calculated hydraulic radius based on A a Q/V.
(g) Column 7 ~ Reynolds pumber = i%:A
(h) Column 8 ' ~ the friction factor calculated from the

Darcy-Weisbach equation.

(1) Column 9 ~ equivalent sand grain roughness, K computed from

5°
the Colebrook-White equation (mm).

(3) Column 10 -~ relative roughness for channel flow, where
R = hydraulic radius.

(k) Column 11 ~ Manning n calculated from Manning's equation.

(1) cColumn 12 ~ Froude number.

The ayerage and standard deviations are also given for all of the

ta

important variables for each field test.

In lines where there is sediment present the depth recordéd
is the actual flow depth about the sediment.
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