
University of Alberta

Genetic Invariance� A New Paradigm for
Genetic Algorithm Design

by

Joseph Culberson

Technical Report TR �����
June ����

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Genetic Invariance� A New Paradigm for Genetic

Algorithm Design

Joseph C� Culberson � y

June �������� Revised May ������

Abstract

This paper presents some experimental results and analyses of the
gene invariant genetic algorithm�GIGA�� Although a subclass of the
class of genetic algorithms� this algorithm and its variations represent
a unique approach with many interesting results� The primary distin�
guishing feature is that when a pair of o�spring are created and chosen
as worthy of membership in the population they replace their parents�
With no mutation this has the e�ect of maintaining the original genetic
material over time� although it is reorganized�

In this paper no mutation is allowed� The only genetic operator
used is crossover� Several crossover operators are experimented with
and analyzed� The notion of a family is introduced and di�erent selec�
tion methods are analyzed�

Tests using simple functions� the De Jong �ve function test suite
and several deceptive functions are reported� GIGA performs as well
as traditional GAs� and sometimes better� The evidence indicates that
this method makes more e�ective use of the crossover operator� in part
because it never loses genetic material and thus has greater scope for
recombination�

A new view of crossover search space structures and approaches
to analysis are presented� Traditional methods of analysis for GAs
do not seem to apply since GIGAs cannot be said to give increased
trials to the best schemata in the usual sense� However� the analysis of
crossover search space structures may have applications in traditional
GA analysis�

�Supported by Natural Sciences and Engineering Research Council Grant No�
OGP����� Department of Computing Science� University of Alberta� Edmonton� Alberta�
Canada� T�G �H�� email	joe
cs�ualberta�ca

yThis paper is available via ftp thorhild�cs�ualberta�ca in pub�GIGA

�

� Introduction

Genetic algorithms have traditionally been designed using the guiding prin�
ciple of increased allocations of trials to those members which are most �t�
Analysis based on the study of schema �i�e� hyperplane� allocation indicates
that this is a reasonable thing to do ���� �	
� However� in this paper a dif�
ferent approach to the use of the crossover operators within a population of
individuals is taken� wherein it cannot be claimed that there are increased
trials for above average individuals� In this way we introduce an approach
to understanding and designing genetic algorithms based on the propaga�
tion of building blocks through a population� rather than their concentration
through convergence�

For a thorough introduction to genetic algorithms the reader is referred
to ��� �� ��� �	� 	
� Here we outline the basic features of genetic al�
gorithms �GAs� and the speci�cs peculiar to gene invariant genetic algo�
rithms�GIGAs��

A genetic algorithm maintains a population of n strings� called individuals
ormembers� Each string is of length l and is drawn from a set of � characters�
called the alphabet� Often the alphabet is binary� that is � � 	� but larger
character sets are allowed� and in some applications ��
 the alphabet is the
set of real numbers� and thus not even �nite� The population varies over
time under the control of the genetic algorithm as members are replaced
by new strings� These new strings are generated from previous members
through the action of various genetic operators to be discussed shortly� In
some cases ���
 n and l may vary with time� but in this paper they are
assumed to be �xed�

The members of a population are evaluated by the environment� which
means that the program has some means of determining the value of a string�
In the realm of function optimization� which will be the primary focus of
this paper� we supply a routine for computing a real value from any properly
de�ned string� These values may be modi�ed in some way� through scaling
for example��	
� This modi�ed value is referred to as the �tness of the string�

We designate the population by the matrix notation Pt
ij � which refers to

the jth character of the ith member of the population at time step t� To
refer to a particular member as a whole� we drop the second subscript� and
when no confusion arises we drop the superscript indicating time�

The genetic operator most often used to produce new strings is crossover�
Two members of the population P� and P� �called the parents� are selected�
and a pair �usually� of new strings C� and C� �called the children� is formed

	

in which for each j either

C�j � P�j and C�j � P�j

or
C�j � P�j and C�j � P�j

That is� the characters of the children are the same as those of the
parents� but may be switched between them� Various crossover types are
described in the literature� In one point crossover an integer k� � � k � l is
chosen� and for j � k the �rst condition holds� while for j � k the second
condition holds� In multipoint crossover a number of such points are chosen
and the intervals alternate between the two conditions� In uniform crossover�
the choice between the two conditions is made independently character by
character with some �xed probability p� �Because of symmetry� it does not
matter whether p applies to the �rst or second condition�� If p � �� then
we say the crossover is unbiased� otherwise it is more strongly biased the
further p is from one half� Additional crossover operations will be described
as required�

In the GIGA implementation used for the experiments in this paper
there is one point� multipoint with a user speci�ed number of cross points
and uniform crossover� Also there is the ability to specify that each crossover
be chosen from several possibilities with some �xed probability� When this
option is used we specify the proportional frequencies by fractions� See ��

for further details�

Other genetic operators include transpositions� reordering� reversal and
mutation��	
� These are not currently available in the program described in
this paper�

Important features of GAs are the methods of selection of parents and the
methods of creating new populations from the children� Two combinations
dominate the literature �with numerous variations��

� In Roulette wheel selection parents are selected all at once with a prob�
ability of being selected in proportion to their �tness� and the children
are used to make up the replacement population�

� Static genetic algorithms select parent pairs �possibly biased by �t�
ness� and produce child pairs� Individuals from the population are
selected for replacement by the children� and this selection is usually
done on the basis of �tness� where the least �t individuals have the
highest probability of being replaced�

�

In either case� individuals may be selected several times for mating� As a
result the population tends to evolve toward a set of highly similar individ�
uals� In particular� the probability that Pt

ij � Pt
kj for any two individuals i

and k increases rapidly with t� We refer to this as convergence of the pop�
ulation� To o�set this convergence� most GAs rely on mutation� and other
operators and conditions ��	
�

Gene invariant algorithms �GIGAs�� the subject of this paper� form a
subclass of genetic algorithms� principally distinguished by the notion that
the total genetic makeup of the population does not change with time� In
particular� the multiset of characters of any column of the population Pt

�j

does not change with time�� To maintain this invariance� it is only necessary
that a pair of children produced by the crossover operation replace their par�
ents in the population� The invariance rule then follows trivially� provided
there is no mutation or other genetic operator being used�

A family is a set of pairs produced by a set of crossover operations
performed on a single pair of parents� In GIGA when a pair of parents is
selected� they are used to generate a family� The number of pairs s is called
the family size� The best pair is selected from the family and replaces the
parents� If elitism is invoked� the selection of the best pair includes the
parents as part of the family� Many di�erent notions of what constitutes a
�best� pair can be de�ned� Some that have been tried are� the pair with
the largest maximum value �or the smallest minimum if we are minimizing��
the pair with largest di�erence in value� or even the pair with the smallest
di�erence� Usually we will use the �rst de�nition� unless otherwise noted�
with the maximum or minimum being understood in context�

The sequence of a selection of parents� production of a family and re�
placement of parents is called a mating cycle ormating� The program termi�
nates after a speci�ed number of matings m have been performed� The num�
ber of evaluations performed by the environment is no more than 	sm� n�
The number may be less because there is an equality test on parents and if
they are found equal� then no family is produced� See ��
 for details�

When replacing parents� we always put the child with the larger value
in the row of higher index� The e�ect� for well behaved functions� is that
the population will tend to become sorted by value� The e�cacy of the
sorting �and consequently the search� will depend on the selection criteria

�We will undoubtedly wish to relax this rule in future research� for example by adding
operators such as mutation and transposition� But in this paper� the rule will be adhered
to rigorously�

�

for the parents� Several mechanisms are available in the program� others are
suggested in ��
 and readers are encouraged to develop their own�

For many problems� crossing parents which di�er widely in value is likely
to produce o�spring of intermediate value� and so no progress will be made
either in the minimum or maximum values� This observation is based on
the assumption that similar values are re�ective of string similarities� an
assumption we must make if there is to be any use made of crossover��

Assuming we want to maximize or minimize some function� we are more
likely to make local progress in terms of increased �tness if we mate strings
of similar value� At the other extreme� crossing identical strings� or strings
with Hamming distance less than two will produce strings identical to their
parents�

In this implementation� we always select parents in adjacent rows of the
population� The selection varies over the population� so that P�

�
�P�

�
are

the �rst to mate� then P�

�
�P�

�
� and so on up to Pn��

n���P
n��
n � Then over the

next n � 	 matings the pairs are chosen from the top to the bottom� The
selection continues to alternate over the population� We refer to a set of n�	
matings as a pass meaning that we have passed once over the population�
Other selection orderings can be speci�ed if desired ��
�

To further improve the e�ciency of the program� the user can specify
that the population be sorted and maintained in sorted order� Populations
may initially be seeded by a random rotation� This means that a member
of the population is chosen at random� and then �� � further members are
chosen so that the characters in each position rotate through the alphabet�
A discussion of program options and operation together with suggestions for
future enhancements is presented in ��
� The source code can be found in
�	
�

Michael Lewchuk in his master�s thesis ���
 investigated a special case of
GIGA with analysis on the one max function and simulations on De Jong�s
test suite� In his method parent selection is restricted to that pair in the
population that is closest in value� each mating produces a family of size
one� and there is no elitism� That is� a single pair is produced and always
replaces the parents� The approach is interesting because nowhere is there
an explicit selection for optimal �or even superior� values� Although these
restrictions appear severe and defy almost all of the principles usually used

�In light of the results in section � similarities may mean the absence of certain charac�
ters or patterns� not just the presence of them� This discussion is necessarily vague until
we can determine formal and encompassing denitions for these concepts�

�

in GA design� the program nevertheless performs quite well on several of the
test functions� outperforming the simple GA in some cases� His simulations
were run on a program of his own� and this technique is not available at this
time in the online program�

In this paper� we examine three sets of experiments� These are available
as part of the programming system �	
� It is hoped that the reader will make
use of this program to verify the claims made in this paper� Note that the
use of a di�erent random number generator may cause some of the speci�c
results to vary�

Section 	 introduces the reader to the principle of propagation of val�
ues through the population by the action of crossover� Simple functions
with single runs and frequent output of the population help illustrate the
mechanisms used by GIGA to search functions for optimal values�

In section � we look at various deceptive functions� The well known
deceptive functions are easily solved by GIGA� Some seemingly much more
di�cult functions are devised on which GIGA exhibits a complex search
behavior that would be di�cult to mimic with a TGA� A provably di�cult
function is devised that is e�ective in deceiving the program� Analysis here
also illustrates the bene�t of more than one type of crossover being made
available to GIGA�

In section � GIGA is tested on De Jong�s �ve function test suite ��
� This
test suite has recently received criticism���� �� �� 	�� 		� �
 because tests have
shown that naive evolution�NE� �i�e� a GA using only mutation � which
means it is essentially a stochastic Hamming hill climber� often outperforms
traditional GAs�TGAs�� We show that GIGA using only crossover and no
mutation� often equals or out performs a TGA and sometimes equals NE�

Finally in section � a summary of claimed results and possibilities is
given� It is hoped the reader will be challenged to prove or disprove the
claims made throughout this paper� and extend the research in new direc�
tions�

� Some Simple Test Functions

The experiments in this section are on simple functions� They illustrate some
of the properties of GIGA and emphasize the di�erences between crossover
operators� The reader is encouraged to run the program on these functions
with the population printing turned on� and the sorting facilities turned
o�� This will illustrate how progress is achieved by GIGA� The e�ects of

�

One Max Experiments
� �a 	 �

Maximum ����� �	�� ���� ����
Minimum ���� ���� ���� �		�

Table �� Average evaluations on the one�max function�

changing various parameters can also be tested� The experiments in this
section have all been run with elitism and sorting turned on� and using the
random rotation method of initializing the population� When one point
crossover is used� the di�erent pairs of o�spring in a family are guaranteed
to be generated by di�erent crossover points�

The �rst set of experiments is on the well known one max or ones count�
ing function� wherein the value of a string is the number of ones in it� This
provides an opportunity to discuss the search space structures generated by
various crossover operators� and how GIGA exploits them� We then brie�y
discuss the majority function� computed as the absolute value of the number
of ones minus the number of zeroes� This illustrates the power of GIGA to
search severely bimodal functions� Finally we try GIGA on the simple bi�
nary number function� which shows the sorting nature of GIGA� Additional
simple functions are included in the program �	
�

The experiments on the one max function have the parameters l �
�� � � 	� s � 	 and averages are taken over � runs� Four experiments
are discussed� with input �les onemax��� onemax��a� onemax�� and
onemax�� available with the program �	
� Experiments � and �a use one
point crossover with populations of size � and 	 respectively� Experiments
� and � use uniform crossover with p � �� and p � �� respectively� The
population is of size n � �� The pair with the largest maximum was chosen
to replace the parents�

The average number of evaluations to �nd the maximum and minimum
values �note they are both found in the same search� for each experiment can
be found in table �� For � the program failed to �nd the minimum once and
the maximum twice in � mating cycles�starred entries�� The averages
are taken over the successful runs in this case� In all other experiments all
trials were successful�

Clearly the unbiased uniform crossover is superior on this function� One
point crossover bene�ts from an increase in population size but is still unable

�

to compete with even the biased uniform crossover� On the other hand�
not evident from the table� the biased uniform is the only one capable of
completely sorting the population� That is� given su�cient mating cycles
the population will eventually be sorted into two sets of strings� those with
value and those with value ��

A study of why these results occur illustrates both properties of the
various crossover types and the mechanism by which optimization is carried
out by GIGA� Because the population is sorted� at time t � adjacent
strings in the population will contain nearly equal numbers of ones� An
example is shown in �gure � where the di�erence between adjacent strings
is always three or less�

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

Figure �� An initial sorted population for one max

Using unbiased uniform crossover� the ones in the positions in which the
two parents di�er will be binomially distributed over the two children in each
crossover operation� The variance is large and so initially ones are quickly
removed from the low end of the population� and zeroes from the top� �For
a complete formal analysis� one must take into account the population size
when more than one mating is considered� Such an analysis is beyond the
scope of this paper��

With uniform crossover biased at p � ��� the children will di�er on
average by only ��	 characters from their parents even if we assume the par�
ents are complements� With only one or two of the ones being switched per
mating� it takes longer for the optimal to be found� The faster production
of the maximum and minimum by unbiased uniform crossover is due to the

�

higher variance it has�
However� when the population is nearly sorted� with only one or two ��s

in a string of �s for example� the probability that exactly those two charac�
ters will be chosen by unbiased crossover is very small� Such a population�
produced using the biased uniform crossover� is shown in �gure 	� Unbiased
crossover is unlikely to obtain even this much separation of zeroes and ones
in a reasonable time� Out of the 	�� equally probable crossover possibilities
�using unbiased crossover� on the strings valued � and ��� only �� will yield
an improvement�

Biased uniform on the other hand has a reasonable probability of select�
ing only one character as a crossover� and so one by one the remaining ones
are sorted from the strings of zeroes over a few thousand evaluations� For
optimization it is not reasonable to require the complete sorting of the pop�
ulation� Nevertheless� these arguments indicate that biased crossover may
work better with very small populations�

� ��

� ��

� ��

� ��

� ��

�� ��

�� ��

�� ��

�� ��

�� ��

Figure 	� A sorted population for one max after � matings by biased
uniform

Notice that GIGA works by moving the ones through the population
over time� instead of evolving toward populations containing many ones�

To understand the di�culties with one point crossover� we need to look
at the space over which the algorithm is searching� The search space of the
problem is the set of strings and their values that can be formed from the
alphabet� Notice that we are assuming a �xed length string� The values are
assigned by the black box environment� The encoding then is part of the
problem space de�nition�

�

The search space structure �SSS� imposed by an algorithm is a directed
graph where the vertices represent state information and an arc �x� y� means
there is some value that can be assigned to the vertices x and y such that
there is a possibility of the algorithm changing to state y from state x�
For GAs� the vertices are populations� and two populations are connected
if there is some genetic operation that will produce the second population
from the �rst� The precise de�nition will depend upon the speci�c GA being
implemented� For GIGA as described in this paper� there will be an arc if
exactly two members di�er� and the pair in y can be produced by a crossover
operation on the pair in x� Again the precise de�nition will depend on the
options chosen for the program�

The search space con�guration �SSC� imposed by an algorithm for a
speci�c problem will be the substructure allowed by the algorithm for the
speci�c values of the function� For example� using GIGA� once values are
assigned to the strings only those strings which are adjacent when sorted
�assuming sorting is maintained� will be able to participate in crossover�
Furthermore� depending on family size and whether elitism is selected etc� it
might not be possible to select certain child pairs� To be completely precise�
we would also need to take into account state information indicating which
pair in the population is next slated for mating� We will not formalize these
notions in this paper�

Arcs will have some probability �weight� associated with them indicating
the probability of the particular transition� and vertices will take on the value
of the maximum �or best� string in the population� The weights may depend
on the algorithm and the problem values�

We restrict our attention to a population of size two� The motivation is
that the local search space structure surrounding a pair of parents is in fact
a search space on a population of size two�

We de�ne the Hamming closure by saying C is in the Hamming closure
of P� and P� if for each � � j � l either Cj � P�j or Cj � P�j � If the
Hamming distance between parents is k� then the Hamming closure has 	k

strings and the search space has 	k�� vertices� These numbers are correct
even if � � 	 for the local space of two parents� The vertices are pairs of
strings complementary with respect to the Hamming closure of the parents�
and thus we will consider only complementary strings� �This ignores the
probability e�ects induced by variations in the number of characters between
positions of di�ering character values� For example� if l � k� then there may
be several cut points between some of the characters� and only one between
others� This could have probabilistic consequences if we are using one point

�

crossover��
Uniform crossover forms a complete graph on the vertices� If it is unbi�

ased then every point is equally likely to be generated� resulting in a random
search� Otherwise the points at smaller Hamming distance from the parents
have higher probability of being generated� and thus the search is biased�

Figure �� One Point Crossover Search Space on Ones Counting

One point crossover can only select from a number of points equal to the
Hamming distance between the parents� The local SSS is a hypercube of
dimension k � �� but the connections for the most part do not correspond
to the Hamming hypercube��

�A simple isomorphism demonstrating the hypercube can be constructed� select any
k � � bit string to map to an arbitrary point in the crossover space� For a neighbor
generated by a crossover at position i� �ip the ith bit of the string� This suggests a simple

��

Figure � illustrates the SSS for a pair of strings with k � � under one
point crossover� Since crossover is symmetric� we show undirected edges�
The contours group vertices of equal value under the ones counting function�
Notice that for the point ������� which is of value �� all edges lead to
lower valued points� As a result� using elitism and mating repeatedly on this
pair would never lead to an optimal value� For larger k� such false peaks
become much more numerous� and dominate the probable termination of
the process� For l � � and n � 	 it is extremely unlikely we would �nd the
optimal string�

When n is large enough� these false peaks in crossover space may be
eliminated� As the population becomes large� sorting the strings will lead
to adjacent strings having greater similarity� The similarity increases as the
ones are sorted from the zeroes under sequences of matings� This explains
why the larger population made it easier for GIGA to �nd optimal values
using one point crossover in experiment �a�

However� if we wish to completely separate the zeroes from the ones even
a larger population does not help� Eventually we must sort the characters
from the last two strings that are not pure zeroes or ones �if we do not stop
at a peak with even more strings�� For example� our population could look
like that in �gure 	� No one point crossover can improve that population�
For l � � the probability is high that GIGA with elitism will never be able
to complete the separation using one point crossover�

Several points should be made about this analysis� First� although it
may seem that one max is a trivial function� it in fact models very nicely
the requirements of propagating short building blocks of nearly equal value�
When one point crossover is used on functions which have such building
blocks� crossover points that break the blocks lead to low valued o�spring
that are eliminated by the replacement selection process� Ignoring these
useless crossover attempts� the blocks are recombined by one point crossover
in the same way as characters are in the one max function� Similar false
peaks can occur� One point crossover may be superior to uniform when
we are dealing with problems involving combination of long substrings� An
analysis of such a case is presented in section ����

Second� the search structure is independent of the value assignment�
Thus� the search will succeed or not depending on whether values form too

way of converting deceptive functions for Hamming hill climbers into ones for one point
crossover systems� Similarly� easy functions for hill climbing can be converted into easy
functions for crossover�

�	

Majority Experiments
� �a 	 �

Maximum ����� ������ �� ����

Table 	� Average evaluations on the majority function�

many false peaks in this structuring of the space� There are many functions
which could be de�ned to create false peaks on one point crossover�

Third� using a two point crossover �divide the strings into three segments�
and swap the middle segment� the one max function is no longer deceptive�
because we can always select out a single bit for crossover if necessary� This
suggests that two point crossover might be better for the combination of
building blocks when there are many of them in a string� However� if all
blocks do not have equal values� then there will exist functions for which
	�point crossover is also deceived�

Fourth� unbiased uniform crossover on a population of size two cannot
have false peaks� since it is a random search� However� when the population
is enlarged� the strings being mated are not complementary pairs� As a
result� the search will tend to search some regions with higher probability
than others� Thus� deception should be possible here as well� A full analysis
is needed�

� � � � �

Experiments major��� major��a� major�� and major�� optimize the
majority function� using one point crossover with populations of size � and
	� unbiased uniform and uniform at p � �� respectively� Other parame�
ters including string length are as in the one max experiments� Finding the
minimum� which occurs for equal numbers of �s and ��s in the string� is
trivial for GIGA� The number of evaluations required to �nd the maximum
value are shown for the three experiments in table 	�

It must be pointed out that one point crossover failed �� out of � times
to �nd the maximum on population size � and �� times out of � with pop�
ulation of 	 �starred entries�� Unbiased uniform does not seem to have any
advantage over the biased operator� The reader is encouraged to determine
why these results should occur�

��

For linear functions and many others replacing the parents with the
pair which has the maximal maximum� minimal minimum or maximum
di�erence in value yield equivalent behavior using GIGA ��
� Notice that
for the majority function� the three de�nitions are not equivalent� What
happens when we use the maximum di�erence de�nition The answer may
surprise you�

For the �nal simple function� we consider the binary number function�
that is the function which treats the string as a binary number� In this
function di�erent positions contribute widely di�erent values� Initially� the
leading bits will have the most e�ect on sorting� sometimes carrying low
order bits to the opposite end of the population fromwhere they are required�
The low order bits will then be found and moved through the population
after the high order bits have been selected� The opposite e�ect occurs at the
low end of the population� The visual e�ect seen on running the experiment
binary is the formation of triangular regions in the population� At the low
end we have leading zeroes� while at the high end we have leading ones� The
number of identical leading characters diminishes towards the center� The
experiment uses one point crossover� but the e�ects are very similar using
other crossover operators� The family size should be kept small to maximize
the delay of the e�ect�

A sample population taken after �� matings is shown in �gure � for
those who do not have access to the program�

A deterministic search on binary numbers can be set up using the non�
repeating one point crossover� Setting the population size to two �unlike
one max� the binary number function has no false peaks under one point
crossover�� and family size to l�� no more than l�� matings will be required
to optimize an l bit string� yielding both minimum and maximum�

� Deception

Goldberg ��	
 and others have designed functions that are deceptive to vari�
ous GAs� The principle reason we might be interested in such functions is to
further illuminate the means by which the algorithms succeed or fail� In this
section� we examine some of the deceptive functions of the literature� and
some new ones� The results show some interesting insights into the nature
of GIGA and of crossover search space structures in general�

��

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

Figure �� A sample population from the binary number function

��

��� Standard Deceptive Functions

Experiment goldberg�� uses � replications of Goldberg�s ���
 ��bit decep�
tion on � runs� It uses a population size of �� family size of �� one point
crossover and succeeds � out of � times with an average of 		�� evalua�
tions� This compares to 	�� as the best result from ��
� Note this is the
tightly coupled version of the deceptive problem� In this version� one point
crossover can recombine building blocks and fairly quickly they migrate to
the top�

However� if the loose version is used �where the �rst set of � bits occupy
positions ���	 etc�� or uniform crossover is used� then it is very di�cult
to propagate the substrings that are required� With populations of size
���� and long runs �from �� to ��� evaluations� the problem can
usually be solved� but this is not very competitive� Some improvement can
be had by using mixed crossover with about 	�� uniform at p � �� and
��� of ��point crossover� The ��point crossover has some ability to pick out
small subsets of bits that are not adjacent� but the probability is quite low�
Experiment goldberg�� solves � out of � cases� but requires an average
of ���� evaluations�

The problem is that the loosely ordered form is less helpful to crossover
search� Recombining building blocks is di�cult with the usual crossover
operators if the blocks consist of non�contiguous characters� Perhaps we
could design crossover operators that assume non�contiguous sequences as
counterparts to one point crossover� These might be able to take advantage
of well de�ned properties that the usual crossover operators cannot�

Experiment liepin�� uses � replications of Liepin�s ���� �
 ��bit decep�
tion �also tightly coupled� on � runs� It uses a population of �� family size
of �� one point crossover and succeeds � out of � times with an average
of ���	 evaluations� This compares to ��	� as the best result reported by
Eshelman ��
� Since this does not seem too di�cult� experiment liepin��
uses a ��bit version of Liepin�s function� This experiment uses a mixed
crossover operator� This succeeds on �� out of � trials� using an average of
	���� evaluations on the successes�

It should be noted that neither of these functions was designed to be
deceptive to GIGA� However� they are designed based on ideas of what
should be deceptive to a GA� and GIGAs are very special GAs� One thing
that makes them susceptible to GIGA is that selecting the characters needed
for the suboptimal point leaves exactly those characters required for the
optimal point� Thus� the building blocks are created towards the low valued

��

end of the population� then propagated up to the top�

��� Deceiving GIGA

So how do we build a deceptive function for GIGA Clearly� if we create
a single spike on one point in the problem space and assign every other
substring a value of zero� then neither GIGA nor any other randomized
algorithm will be able to �nd the point easily� Similarly� on a randomly
generated function� even if all strings have distinct values� the best we can
do is a random search taking exponential time on average� However� such
functions are of little interest in determining the boundaries of applicability
of a technique�

We want a function that exhibits a high degree of structure� one that
does not rely on shu!ing bits so that crossover is unable to build blocks� but
rather uses contiguous blocks so that if blocks become available they can be
combined� We want a function which de�nitely misleads GIGA� rather than
one that just loses it in a sea of randomness�

The usual deceptive functions presented and tested in the preceding sub�
section have the property that the optimal point is diametrically opposite
the suboptimal deceptive point in Hamming space� GIGA keeps all of the
original characters� and every character is guaranteed to appear in every
column of Pij � The ones collect at the high end of the population and the
zeroes are left to form optimal building blocks elsewhere� Once formed�
GIGA then propagates them upwards through the population�

Several more severe functions of this type were created for GIGA using
multi�character alphabets and longer substrings� We refer to these functions
as fd� through fd�� None of these proved particularly deceptive in practice�
but observing GIGA�s performance illustrates some interesting properties of
the program�

The functions each divide the string into substrings of size �� i�e� each
substring has length equal to the alphabet size� The substring of all zeroes is
assigned a value of ���� Any other substring is assigned a value according to
how many non�zero characters it has� Let t be the number of zero characters�
i�e� t � kfxi � gk� where x is the substring of characters� Then

fd��x� �

���
��

� � � t � �

� � t t � ��	
 otherwise

��

Suppose we visualize the Hamming space of this function over an al�
phabet of size � by pretending the space has been �attened into concentric
rings� with the optimal point at center� and points at Hamming distance i

in the ith ring�� We let height above the circular display represent the value
of the substring� Then the problem space is a bowl with stepped sides and a
single spike at the center� The more nearly correct the string is� the further
down the slope towards the center it lies� If more than ��	 of the characters
are zeroes� the value is zero� The idea was to create a large area near the
optimal point where GIGA must do a random search�

For our experiments we used a concatenation of �ve subproblems� The
�ve character version required an average of ���� evaluations averaged over
ten runs� The � character version required ����� evaluations averaged over
� runs with no failures to �nd the maximum� The input for � � � is in
the �le decept�d�� An experiment using � � �� can be found in the �le
decept�d����� The population size is ��� l � �� so that there are �ve
substrings� family size is �ve and one point crossover is used� The initial
population has a minimum value of �� and a maximum value of ��� which
means that at least one string has all �� characters non�zero in all �ve
substrings� This latter would occur with probability of ��� if all characters
were chosen independently although the random rotation used would alter
this probability a bit� The population is kept sorted by value�

We trace the search process here� but the reader is encouraged to run
the experiment and print every �th population to obtain a complete
picture of the process� The �rst string value of zero occurs after �����
evaluations� which means that every substring in some string has at least
� zero characters� This string is produced as a result of the concentration
of non�zero characters in the higher valued part of the population� As the
search continues more zero valued strings are produced� while the great
majority of strings obtain values of ��� After some time the �rst substring
of all zeroes is produced from the mating of two strings with at least ��	
zeroes� When a zero substring combines with a string with no zeroes so that
the substring is preserved� its value increases and so the string is sorted to
the high end of the population� Additional substrings of zeroes are formed

�To be representative� the rings would have to increase rapidly in size� Suppose the
center point is a circle one millimeter in radius� For � � �� the distance ve ring would
be about ��� meters wide� and the outer ring would have to be about ���� meters wide�
with outer boundary at ��� meters in order for the areas to be roughly representative�
For � � �� the outer boundary would be ����� kilometers away from the center and the
outer ring would be ����� kilometers wide�

��

fairly quickly� The maximum string value increases by one after �������
������� ������� 	����� and �	���� evaluations� Each of these increases
means that one more substring of pure zeroes has been combined into the
top valued string� The last increase achieves the optimal value�

If we let N represent a substring of non�zero characters� and Z represent
a substring of zeroes� then at one point in this experiment the top three
strings look like

ZNNNZ

ZZNZN

ZZZNZ

The next lower string has no zero substring� The value of N is �� and
that of Z is ��� Any cross that mixes a pair of substrings cannot lead to
an improved value� Thus� using one point crossover only crossover points
between substrings can improve the result� But� except for the probability of
selecting the appropriate crossover point� this looks like one point crossover
on the one max function� We see that no crossover on the last pair of
strings will lead to a higher value� although there are two points that would
yield equal value� The lower valued pair �at the top� could be combined
to produce the string ZZNZZ and then the top two could be combined to
produce the optimal� In fact� more zero strings are actually produced before
the program �nally produces an optimal string in this run� As the top valued
string obtains more zero substrings� the di�culty of the recombination of
these blocks increases� Two point crossover would likely be more e�cient
than one point if there were more replications of the problem�

Notice that uniform crossover would be extremely unlikely to produce
the desired recombination e�ects regardless of the bias� This low probability
of combining building blocks is usually referred to as its disruptive e�ect�
Uniform crossover might however produce the �rst zero substrings more
quickly� Considerations such as this were the reason for allowing more than
one type of crossover to be used in the program�

Clearly� a Hamming hill climber will fail miserably on this function�
since almost all changes will lead toward the plateau of maximum error�
Only substrings within Hamming distance strictly less than ��	 of the spike
have any chance of being converted to the optimal� A GA should also have
di�culty� because the likelyhood is great that the optimal substrings will
not be in the initial population� or even constructible from it after only a
few generations unless very high rates of mutation are used� After a few
generations the population will be converging around one or more points

��

on the false plateau� and then the probability of getting o� of this plateau�
across the depression and hitting the spike is very small�

The reader is encouraged to turn o� the sorting feature� and print out
intermediate populations to see where and how the substrings are formed�
and to watch their progress and combinations through the population� The
user will notice that elitism is very important to maintenance of these opti�
mal blocks� Also� experimenting with uniform crossover will quickly show it
to be signi�cantly inferior on this problem� because it �nds it very di�cult
to propagate and combine these long substrings as units in the population�

Function fd� was an attempt to make the problem harder for GIGA�
In this case� substrings with more than ��� of their characters correct �i�e�
zeroes� were assigned increasing values as the number of zero characters
increased� That is�

fd��x� �

�����
����

� � � t � �

� � t t � ��	
t � �

�
� �

�
� � t � �

 otherwise

The idea was that these strings would then move up from the bottom of
the population� where they would tend to cross with the median value strings
which have more non�zero characters� This might make it harder for GIGA
to chance upon optimal substrings� Instead� this function is if anything
more readily solved by GIGA� taking an average of only ��	� evaluations�
Because they get values intermediate to the outer ring and the bottom�
the strings containing these nearly optimal substrings cluster together in
the middle of the population� Since GIGA mates all adjacent pairs equally
often� putting the strings with higher proportions of zero characters in the
middle does not hide them� In fact� it separates them from the strings with
as few as ��	 zero characters� and tends to more quickly concentrate zeroes�
The higher proportion of zero characters in these matings yield higher rates
of optimal substrings�

Function fd� is the same as fd�� except that zero is assigned to any string
with up to two thirds of its characters non�zero� This means that there will
be many more substrings with erroneous characters at the bottom of the
population� Again� GIGA was able to defeat the supposed deceptive nature
of the function handily� although the search time did increase somewhat�

At this time frustration �of sorts� led to the creation of function fd��
In this function� only the optimal substring and the substrings in which
all characters are non�zero get non�zero values� This puts the majority of

	

strings on the plane with value zero� It would seem this very large plane
should cause GIGA to degenerate at best to something akin to random
search� Although it does slow down somewhat� GIGA can still �nd the
optimal strings at � � � using an average of 	���� evaluations�

How does it do it
Notice that we are using random rotation to initialize the population�

Suppose for the sake of analysis� � � �� l � � and population size n � ��
Now think of the population as a �dynamically changing� � by � matrix�
where each row is one string member of the population� Random rotation
ensures that each character appears once in each column of the matrix�
and genetic invariance ensures this remains true throughout the program
run� When the population is initialized� ��� of the characters in any string
�on average� are non�zero� With just a few crossovers� we will with high
probability get a string with all characters non�zero� Due to elitism� there
is a sense in which this string can never be lost� Namely� there will always
be a completely non�zero string in the population after one is �rst found�

Thus� each column has e�ectively been reduced from � non�zero charac�
ters and one zero� to � non�zero characters and one zero� Notice we do not
care which � non�zero characters are in the remaining strings at any time�
only the number of them� The probability of selecting a non�zero character
is now ���� which is smaller than before� but still with recombination we
quickly get another non�zero string� Now the population will always have
�at least� two completely non�zero strings� This reduces the ratio of avail�
able characters to ���� Repeating this we eventually have just two strings
that are not completely non�zero� Since there are only two characters per
position that can be recombined �the other characters are locked up in the
higher valued completely wrong strings� there are only 	�� � �	� strings to
search through for the one which yields the last non�zero string and perforce
at the same stroke the optimal string� Of course� the search through this
subspace is essentially random� but it is small enough that is not a serious
impediment to the programs average behavior� We would need to mate
the bottom strings on average about �	� times�varying slightly according
to what crossover operator we are using� until we form the optimal string�
Since we have � pairs in the population to mate� we allocate about ��� of the
matings to the bottom pair� and so we would require �	 matings before
we �nd the optimal on average� after reaching the state where we have two
zero�valued strings�

Increasing the population and string size do not substantially change
the nature of this analysis� other than the statistical values and the need to

	�

combine substrings into the optimal string� Increasing the alphabet size �and
at the same time the block size� rapidly increases the di�culty� For example�
at k � ��� the last string pair entails a search space of ����� combinations�
to be searched at random� Much longer search times are required�

Function fd� is the �rst attempt at a function which has its suboptimal
point not at the opposite pole in Hamming space from the optimal� Again
letting t be the number of zero characters

fd��x� �

���
��

�� � t � �
t t � ��	
�� t ��	 � t � �

As GIGA runs on this function� the best valued strings tend to have ��	
zero characters� These half�correct strings are concentrated at the top of
the population� Suppose we have n � �� Then mating the top two strings
yields the optimal string with probability of ���� assuming unbiased uni�
form crossover and that each character occurrs once in each column of the
population� This means the function is not completely deceptive� and ex�
periments bear this out� although it is quite di�cult and one point crossover
is not adequate� Turning elitism o� seems to help form blocks faster� but
then they are lost before they can be combined into an optimal string� A
full analysis needs to be done on GIGAs behavior on this function�

If we choose instead to ramp up to ���� then the algorithm will be led
towards strings with ��� zero characters� Function fd� implements this

fd��x� �

���
��

�� � t � �

t t � ���
�� t ��� � t � �

If all of the top strings have only approximately one third zero characters�
and all of the zero characters in the population tend to gather in the top
strings� then no mating can produce the optimal string� This suggests this
function is unlikely to be solved by GIGA� Experiments con�rm this analysis�

��� Ancillary Analysis

For the deceptive functions fd� to fd� notice that if we had been using a
binary code for the characters� and bitwise crossover� then it is likely that
we could have destroyed the capability of the algorithm to �nd the optimal�
The reason is that by rearranging the bits� we would have created more

		

non�zero characters� and destroyed the zeroes� We then would have had
all strings situated on the plateau and no further progress would have been
possible� This argues in favor of more natural representations instead of
binary encodings�

Selecting for minimal values� instead of maximal� would likely have
severely hampered the algorithm on this function� even though we know
the maximum point is located in the center of a depressed plane� It was
only by removing the non�zero characters� accomplished by selecting for
maximal values� that the search space was constricted enough to have any
hope of locating the maximum� It appears the best search is one that ex�
amines interesting features� If we concentrated entirely on the lower plane�
we are left wandering at random� If we allow the search to examine and
select for the suboptimal points� then eventually the remaining strings form
a small enough subspace to be interesting� Searching this space �nds inter�
esting points in it� One wonders whether it would be possible to have more
than two levels of such emergent �interestingness� and developing behavioral
changes over time�

If we were using uniform crossover� then it is possible that after achiev�
ing the reduction to two zero�valued strings we would generate an optimal
substring more quickly� The reason is that given a pair of strings� we would
generate each point in the space with equal probability on every attempt�
In particular� we search all of the substrings at the same time with uniform
crossover� while one point can only mix at most one substring from the par�
ents� The point is that at this stage we want to move characters around at
random� because we do not yet have the building blocks� Without building
blocks� or indications of ascent� we can do no more than a random search�
and uniform crossover gives us such a search�

On the other hand once an optimal substring is found� it moves to the
top of the population where it must combine with other substrings from
other strings� Here� one point �or perhaps two or three point� crossover is
clearly superior to uniform� Uniform �at p � ��� would correctly combine
two ten character blocks into one string with probability of 	���� while one
point only needs to select the cut point between them� This has probability
��l if the two blocks are in adjacent positions� and much larger if the blocks
are separated�

Similar comments apply to many other functions� including some of the
De Jong functions� At certain times� we wish to recombine strings to form
building blocks� and at other times we need to combine the blocks into
strings� Building the blocks is essentially a random search �although the

	�

probabilities may be strongly biased as when we �rst start on function fd� to
build suboptimal non�zero blocks� while putting the blocks together requires
that certain points be made more accessible to the search than others�

These arguments strongly suggest the need for research into the possi�
bility of �uctuating crossover operations� that sometimes use one point and
sometimes uniform or biased uniform or multipoint crossover� It was af�
ter observing the results from this function that the mixed crossover option
was installed� This particular implementation is ad hoc� but the following
shows just how e�ective it can be sometimes� For a variant of function
fd� in which optimal blocks are assigned a value of � with � � �� the
�rst optimal block was found after ���� evaluations using ��	 unbiased
uniform and ��	 one point crossover� while one point alone required ��	�
evaluations for the same experimental setup� The complete solution required
������ evaluations using mixed crossover while 	���� were required by one
point�

� De Jong Test Suite

In this section we test GIGA on the De Jong test suite functions f� to f� ���
�	
� One of the hazards in making comparisons between di�erent algorithm
design paradigms is that in the desire to make our favorite paradigm win�
we may add so many target speci�c options and variations that the results
are not valid as support for the superiority of the general design� On the
other hand� if we compare a purely basic system to results that have had
years of tuning and additions of specialized variations� the results are likely
to look so bad in comparison that they may not re�ect the potential of the
approach�

In this section� I try to take a balanced approach� In some instances�
considerable tuning has been done to get excellent results� Alternatively�
some of the tests have been performed using a single parameter setting
across all �ve functions� and the results compared to the default settings
�and some improved settings� of the well known GENESIS system���
� Some
enhancements� such as Gray coding� have been tried and commented on�
Others� such as mutation which would violate the invariance property� have
been deliberately avoided� although it is likely they would a�ord further
improvement�

One purpose of this section is to show that the basic design of GIGA
has at least as much potential as the traditional GA design� Additional

	�

Function TGA NE CHC

f� 	�	� �� ���
f� ����� �	� ���
f� 	��� �	� ����
f� ���� ���� ����

Table �� Evaluations to Optimization from Eshelman and Scha�er

observations will be made as the experiments are described�
The De Jong test suite has been used as a basis for comparison of GA

techniques and other techniques for several years� It has recently been the
center of some controversy because it seems that stochastic hill climbing�
naive evolution �i�e� a GA with no crossover� and other techniques may out
perform the TGA on most of these functions���
�

We cite in table � results for functions f�� f�� f�� f� from Eshelman and
Scha�er ���
 for two genetic algorithms and naive evolution� TGA used pro�
portional selection and the individual elitist strategy� a population size of
�� mutation rate of �� and two point crossover at a rate of ���� It repre�
sents a high dependence on crossover in the traditional GA vein� CHC was
a non�traditional GA that used cross generational elitist selection� uniform
crossover and restarts on population convergence ��
� NE uses a traditional
GA� but no crossover� a population of size � and mutation rate of �	��
Thus� it represents the other end of the scale� reliance on stochastic hill
climbing� Table � provides the number of evaluations required to �nd an
optimal solution�

One of the concerns raised by the numbers in table � is that crossover
may be outperformed by other search operators� Another is a concern that
GAs may not be the superior method they are often considered to be by the
GA community�

We will use results from GIGA to argue that for f� and f�� crossover is
in fact very e�ective since we will do slightly better than TGA on f� and
as well as CHC on f� using only crossover as a genetic operator� We note
that TGA uses a mutation rate of �� and the NE results indicate that
without mutation TGA would have even poorer performance� Thus our use
of crossover in GIGA seems more e�ective than its use by TGA on these
two functions�

First we consider f�� The GIGA experiment� averaged over �fty runs�

	�

uses a population of size �� a mixed crossover strategy of ����� uniform
crossover biased at p � ��� ����� two point crossover� and ����� one
point crossover� The setup can be found in �le dejong�sp�� It is highly
tuned� and is quite sensitive to population size� at least up to a few hundred
evaluations on average� It succeeded � out of � times with an average of
	�� evaluations to �nd the minimum compared to 	�	� for TGA�

The GIGA experiment for function f� is in the �le dejong�sp� and
uses a population of size �� with unbiased uniform crossover� It solves the
problem � out of � times� using an average of ���� evaluations� This
problem seemed so easy that I did not waste much time trying to optimize
further� This is already su�cient to support the claim stated above�

For the remainder of our comparison� we will use the GENESIS sys�
tem with the default setup parameters� plus some modi�ed parameters we
use when the GENESIS defaults seem particularly bad� In �les dejong��

through dejong�� �	
 are experiments over ten runs each for each of the
�ve De Jong functions� Except for string length� which is de�ned by the
functions� all �ve experiments use the same parameter settings� In each
case a population of size 	� family size of 	� elitism and mixed crossover
with ��� unbiased uniform� ��� one point and 	�� two point crossover
was used� Little tuning was done in selecting these parameters� and that
almost exclusively on function f�� In each case the results nearly equal or
exceed the results of GENESIS using the default setup parameters� where
the comparison is based on the values achieved after an equal number of
evaluations�

Of course� the default parameters GENESIS uses are not always par�
ticularly good� and so for some of the functions other parameter settings
were tried� For function f� population was set to �� crossover rate to �����
and mutation to ��� with the other parameters left at the default values�
Initially the GA seemed to be a bit faster than GIGA� but after � evalua�
tions GIGA using the standard setup above had a value comparable to that
of the GA ���� compared to ��� for the GA�� The GA then leveled
o� while GIGA continued to decline to �	� at 	 evaluations� Note
that the default mutation for the GA was �	 and thus under the assump�
tions based on table � we have given a signi�cant bene�t to the GA� Tuning
GIGA a little bit� as in �le dejong�sp� �the settings are described on the
following page� we can get averages over � runs as low as �� after 	
evaluations� with continuing declines to ���� However� even with these
settings the optimal value is achieved only twelve times out of �fty in 	�
matings�

	�

Similarly� for function f�� changing the default settings for GENESIS to
a population of size � �from ���� with crossover rate of 	� and mutation
rate of �� gives much better results� which are comparable to those of the
standard GIGA experiment�

The standard GIGA input on f� reached a value of ����� �which is as
small as it gets using only six digits of output accuracy� in �		 evaluations�
while the default GENESIS had reached only ��� �averaged over � trials�
and never went below �� in � trials� Changing the population to �
from 	 and increasing the mutation rate did not improve the results for
the GA� Little further research has been done on this function as of this
writing�

Some of the numbers from the experiments �using the improved GEN�
ESIS settings� are presented in table �� All experiments were over � runs�
The values cited for GENESIS are taken �from the column headed �Best��
from the nearest number of trials to the cited number of evaluations� as
GENESIS prints out values at irregular intervals� The number of evaluations
from GIGA are computed by the formula given in section �� i�e� 	sm � n�
This is a tight upper bound on the actual number of evaluations used to
produce the average values cited�

When we consider the preliminary nature of the research into GIGA�
these results are quite intriguing� As we suggest throughout this paper� and
in the accompanying document ��
� there are many possible improvements
that could be made to GIGA�

For the De Jong functions� one claimed improvement in GAs is the use
of Gray codes� Gray codes reduce the e�ect of Hamming cli�s for GAs�
GIGA must move material upward �or downward� over a population� and so
we would intuitively expect that GIGA would be even more susceptible to
Hamming cli�s than the GA� if the cli�s tend to thwart crossover� The sup�
position is that if two adjacent values in the population have widely di�erent
character strings� then crossing them is unlikely to allow any improvement�
This is not strictly true of course� and one need only consider the e�ects of
crossing � and ��� when evaluated as binary numbers to see that such
cli�s need not be a barrier to crossover in either GIGA or GAs� Notice that
for mutation the point ��� de�nitely acts as a barrier to further progress�
in that only mutating the lead bit can yield improvement� On the other
hand � responds favorably to mutation almost everywhere�

We now examine a sample population of GIGA from f� after it has
nearly found an optimal string� In �gure � we print a partial population and
its evaluation� and have separated the two substrings used in the function

	�

Function Evaluations GIGA GENESIS

f� 		 ���� ���
�	 ��� �	�
�	 �� �	
�	 ��
�	

f� �	 ��� ���
�	 ��� ����
�		 �	� ����
��	 �	�� ����
		 �	�� ����

f� 		 �� ��
	�	 � �

f� ��	 ���� ����
�	 ���� ��	��
���	 ����� �����
		 ������ �����

f� 		 ����	� �����
�	 ����� �����

Table �� De Jong function average values using GIGA and GENESIS

	�

� Matings

�	������ ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

�� Matings

�	������ ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

�	����
� ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

	 Matings

�	������ ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

�	������ ������������ ������������

�	����
� ������������ ������������

�	������ ������������ ������������

Figure �� Partial Population for f�

	�

de�nition for the readers convenience� Let the two substrings have values
y� and y�� where the value of a substring x is b�x���� 	���� and b�x�
is the value of x as a binary number� Function f� is de�ned as ���y�

�
�

y��
� � ���� y��

��
The members shown are the lowest valued members taken � matings

apart� The population in this case has 	� members� and so each adjacent
pair has received 	 or more matings between printings� The family size is
�� so this implies � crossover operations per pair between printings� The
crossover is a mixture of ���� uniform with p � ��� ���� one point�
���� two point� ���� � point� and 	��� � point�� A version making �
runs can be found in dejong�sp�� The populations come from printing out
the population of the �rst run of this experiment at the indicated times�

If we compare the strings with function values �� and �� we
see that there is a small Hamming cli�� namely the last four bits of the �rst
substring are complements in the two values� and three bits are complements
in the second substring� This suggests that the Hamming cli� argument may
have some merit� However� there is an even greater di�culty� If we look
at the the �rst two strings after either � or �� matings� which have
values �� and ��� then we see that no crossover of these strings
could produce the optimal string� The required bits are simply not available�

The Hamming distance between the second and third strings of the pop�
ulation is � after � matings and � after �� matings� In each case�
exactly two nonadjacent bits must be exchanged to produce the optimal
string� while any other cross would produce a pair of strings with a higher
minimal value� If we were using uniform crossover� this would imply that the
expected number of evaluations would be from ��	 to �	� before the opti�
mal string was produced� In fact� it appears that it was a mating between
the second and third strings that produced the optimal�

Similar blockings occur elsewhere in the population� Notice that it is
not the Hamming cli� per se that causes the problem� but rather that there
are few or no bits in strings with values close to the optimal that can be
exchanged to produce the optimal� On the other hand� mutation� or small
stochastic hill climbing excursions might aid in generating the optimal string
from the nearby strings��

After this analysis� Gray code capability was added to the De Jong
functions� The tests in dejong�� to dejong�� were rerun interpreting the

�There is nothing magic about ��� its just what the frequencies added up to�
�The urge to violate invariance becomes almost overpowering here�

�

binary strings as Gray codes� The only case in which there was improvement
was in function number 	� although the test still failed to �nd an optimal
value� In all other cases the performance degraded signi�cantly�

These experiments and analysis give support to the suspicion that Gray
coding the De Jong functions bene�ts the mutation operator by removing
the Hamming cli�s that act as barriers to stochastic bit�wise hill climbing�

The patterns in the population above do suggest that a crossover oper�
ator that exchanges just a few bits� say one or two or three� could be useful
in many situations� In fact� the use of uniform with p � �� and the �
point crossover are attempts to do just that� These are reasonably e�ective�
but the number of bits in the strings makes it di�cult to achieve the desired
e�ects with these operators� However� a better crossover would focus on the
positions in which the strings di�er� and select exactly k bits to exchange�
Crossover is a mechanism for restricting the search space to the Hamming
closure of two strings� It is reasonable then to design crossover operators
that focus on this space�

Tests using shifted centers ��
 were also performed� Only f� and f�
seemed to be signi�cantly a�ected by the o�sets� Function f� required
considerably more search time� while f� required considerably less� The
minimum value of the latter was increased due to the shift used� Little
experimentation or analysis has been done as of this writing�

Finally� a test using no sorting and no elitism seemed to perform marginally
better on f�� This may indicate that it is a good idea to either mate other
than adjacent pairs� or allow a bit of stochastic movement� or it may be a
statistical anomaly� It showed a slight improvement throughout the search
averaged over � runs�

� Conclusions

The analysis in this paper has shown the need to understand not only the
construction� propagation and recombination of building blocks� but also
the structure of the search space constructed by the crossover operators and
the mapping of function values onto that space� There seems to be little
opportunity to apply the study of hyperplane sampling that underlies much
of GA analysis to GIGA�

The schema theorem predicts the rapid increase of higher valued schemata
under GAs� The down side of that analysis is the rapid destruction of in�
formation that might prove valuable� GIGA on the other hand has the

��

capability of quite bizarre behavior� that not only takes advantage of the
functions in which the GA assumption holds but can also take advantage
of more indirect relationships in the functions� On the down side for the
current implementation of GIGA� it is sometimes hard to propagate values
when the crossover space does not re�ect value distribution in a helpful way�

In ���
 Grefenstette extends an analysis begun in ��
 and carried forward
in ���
� He de�nes monotonic �tness functions as ones which do not change
the relative orders of the elements with respect to the objective function�
GIGAs as currently implemented do not use �tness functions� or rather the
objective function is the �tness function� and in fact behavior is easily seen
to be una�ected by such scalings� Therefore� by default GIGA uses strictly
monotonic �tness�

A selection algorithm is monotonic ���
 if the growth rate of a represen�
tative of the search space in the population at time t� gr�xi� is related to its
value by

gr�xi� � gr�xj� �� f�xi� � f�xj�

It is strictly monotonic if in addition

f�xi� � f�xj� �� gr�xi� � gr�xj�

It is easily seen that GIGA does not satisfy these de�nitions� In fact�
it seems unlikely that any notion of increasing trials will help in the anal�
ysis of GIGA� Rather it is the recombination of material� and thereby its
propagation through the population that is the secret to its success� Re�
combination is the key to the e�ective use of a population of search space
instances� In this way GIGA may make better use of the recombinatorial
powers of crossover than traditional GAs in many situations�

A secondary population e�ect is memory of previous trials� and this may
be especially important if mutation is used� An argument can be made on
this basis for variable sized populations� that grow as mutation is used to
prevent too much loss of material� Such possibilities should be explored in
future research�

It may be reasonable to combine GIGAs with GAs� Some ideas have been
proposed in ���
� For example� a GIGA could be used for a while� then a GA
could be used to replace individuals of lower �tness� mutation introduced�
and the GIGA used for further recombination attempts� Such approaches
are left for future exploration� perhaps after a better understanding of the
crossover search space is obtained�

�	

References

��
 James E� Baker� Analysis of the E�ects of Selection in Genetic Algo�
rithms� PhD thesis� Vanderbilt University� Department of Computer
Science� �����

�	
 Joseph Culberson� GIGA program and experiments� ���	� ftp
thorhild�cs�ualberta�ca in pub�GIGA�SHAR�Z�

��
 Joseph C� Culberson� GIGA program description and operation� ftp
thorhild�cs�ualberta�ca� April ���	�

��
 Lawerence Davis� editor� Genetic Algorithms and Simulated Annealing�
Research Notes in Arti�cial intelligence� Morgan Kaufmann� �����

��
 Lawerence Davis� editor� Handbook of Genetic Algorithms� Van Nos�
trand Reinhold� �����

��
 Lawrence �David� Davis� Re� Gas and very fast simulated re�
annealing� GA�list� Genetic Algorithms Digest� ������ December �����
ftp ftp�aic�nrl�navy�mil�

��
 Lawrence �David� Davis� Re� Mutation� bitclimbing and test
suites� GA�list� Genetic Algorithms Digest� ��	�� January ���	� ftp
ftp�aic�nrl�navy�mil�

��
 K�A� DeJong� Analysis of Behavior of a Class of Genetic Adaptive
Systems� PhD thesis� The University of Michigan� �����

��
 Larry Eshelman� Bit�climbers and naive evolution� GA�list� Genetic
Algorithms Digest� ������ December ����� ftp ftp�aic�nrl�navy�mil�

��
 Larry J� Eshelman� The CHC adaptive search algorithm� How to
have safe search when engaging in nontraditional genetic recombina�
tion� In Gregory J� E� Rawlins� editor� Fondations of Genetic Algo�
rithms �FOGA I�� pages 	���	��� Morgan Kaufmann� �����

���
 Larry J� Eshelman and J� David Scha�er� Re� GAs and very fast
simulated re�annealing� GA�list� Genetic Algorithms Digest� ������ De�
cember ����� ftp ftp�aic�nrl�navy�mil�

��	
 David E� Goldberg� Genetic Algorithms in Search� Optimization and
Machine Learning� Addison�Wesley Publishing Company� Inc�� �����

��

���
 David E� Goldberg� Bradley Korb� and Kalyanmoy Deb� Messy genetic
algorithms� Motivation� analysis� and �rst results� Complex Systems�
��������� �����

���
 John J� Grefenstette� Conditions for implicit parallelism� In Gregory
J� E� Rawlins� editor� Foundations of Genetic Algorithms �FOGA I��
pages 	�	�	��� Morgan Kaufmann� �����

���
 John J� Grefenstette� GENESIS ��	ucsd� Enhanced version by
Nicol N� Schraudolph� ���� Version� ftp iuvax�cs�indianna�edu in
pub�alife�software�unix�GAucsd�

���
 John J� Grefenstette and James E� Baker� How genetic algorithms work�
A critical look at implicit parallelism� In John J� Grefenstette� editor�
Genetic Algorithms and Their Applications� Proceedings of the Third
International Conference on Genetic Algorithms� Erlbaum� �����

���
 John H� Holland� Adaptation in Natural and Arti�cial Systems� Uni�
versity of Michigan Press� �����

���
 Michael Lewchuk� Genetic invariance� A new approach to genetic al�
gorithms� Master�s thesis� University of Alberta� Edmonton Alberta�
April ���	� Technical Report TR �	�� �Genetic Invariance� A New
Type of Genetic Algorithm� ftp thorhild�cs�ualberta�ca�

���
 Gunar E� Liepins and Michael D� Vose� Representational issues in ge�
netic optimization� Journal of Experimental and Theoretical AI� May
�����

�	
 Gregory J� E� Rawlins� editor� Foundations of Genetic Algorithms�
Morgan Kaufmann� �����

�	�
 Bruce Rosen and Lester Ingber� Re� GAs and very fast simulated re�
annealing� GA�list� Genetic Algorithms Digest� ����� December �����
ftp ftp�aic�nrl�navy�mil�

�		
 Nici Schraudolph� Re� GAs and very fast simulated re�annealing�
GA�list� Genetic Algorithms Digest� ����� January ���	� ftp
ftp�aic�nrl�navy�mil�

��

