[LL]]

University of Alberta

S

o)

Genetic Invariance: A New Paradigm for
Genetic Algorithm Design

by

Joseph Culberson

Technical Report TR 92-02
June 1992

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Genetic Invariance: A New Paradigm for Genetic
Algorithm Design

Joseph C. Culberson * f

June 18,1992; Revised May 2,1994

Abstract

This paper presents some experimental results and analyses of the
gene invariant genetic algorithm(GIGA). Although a subclass of the
class of genetic algorithms, this algorithm and its variations represent
a unique approach with many interesting results. The primary distin-
guishing feature is that when a pair of offspring are created and chosen
as worthy of membership in the population they replace their parents.
With no mutation this has the effect of maintaining the original genetic
material over time, although it is reorganized.

In this paper no mutation is allowed. The only genetic operator
used is crossover. Several crossover operators are experimented with
and analyzed. The notion of a family 1s introduced and different selec-
tion methods are analyzed.

Tests using simple functions, the De Jong five function test suite
and several deceptive functions are reported. GIGA performs as well
as traditional GAs, and sometimes better. The evidence indicates that
this method makes more effective use of the crossover operator, in part
because it never loses genetic material and thus has greater scope for
recombination.

A new view of crossover search space structures and approaches
to analysis are presented. Traditional methods of analysis for GAs
do not seem to apply since GIGAs cannot be said to give increased
trials to the best schemata in the usual sense. However, the analysis of
crossover search space structures may have applications in traditional
GA analysis.

*Supported by Natural Sciences and Engineering Research Council Grant No.
OGP8053. Department of Computing Science, University of Alberta, Edmonton, Alberta,
Canada, T6G 2H1. email:joe@cs.ualberta.ca

"This paper is available via ftp thorhild.cs.ualberta.ca in pub/GIGA

1 Introduction

Genetic algorithms have traditionally been designed using the guiding prin-
ciple of increased allocations of trials to those members which are most fit.
Analysis based on the study of schema (i.e. hyperplane) allocation indicates
that this is a reasonable thing to do [17, 12]. However, in this paper a dif-
ferent approach to the use of the crossover operators within a population of
individuals is taken, wherein it cannot be claimed that there are increased
trials for above average individuals. In this way we introduce an approach
to understanding and designing genetic algorithms based on the propaga-
tion of building blocks through a population, rather than their concentration
through convergence.

For a thorough introduction to genetic algorithms the reader is referred
to [4, 5, 17, 12, 20]. Here we outline the basic features of genetic al-
gorithms (GAs) and the specifics peculiar to gene invariant genetic algo-
rithms(GIGAs).

A genetic algorithm maintains a population of n strings, called individuals
or members. Fach string is of length [and is drawn from a set of & characters,
called the alphabet. Often the alphabet is binary, that is @ = 2, but larger
character sets are allowed, and in some applications [5] the alphabet is the
set of real numbers, and thus not even finite. The population varies over
time under the control of the genetic algorithm as members are replaced
by new strings. These new strings are generated from previous members
through the action of various genetic operators to be discussed shortly. In
some cases [13] n and [may vary with time, but in this paper they are
assumed to be fixed.

The members of a population are evaluated by the environment, which
means that the program has some means of determining the value of a string.
In the realm of function optimization, which will be the primary focus of
this paper, we supply a routine for computing a real value from any properly
defined string. These values may be modified in some way, through scaling
for example[12]. This modified value is referred to as the fitness of the string.

We designate the population by the matrix notation Pfj,
the jth character of the ¢th member of the population at time step t. To
refer to a particular member as a whole, we drop the second subscript, and

which refers to

when no confusion arises we drop the superscript indicating time.

The genetic operator most often used to produce new strings is crossover.
Two members of the population Py and P (called the parents) are selected,
and a pair (usually) of new strings C; and C; (called the children) is formed

in which for each j either
Clj = P1] and CQJ = P2]

or
Clj = P2] and CQJ = P1]

That is, the characters of the children are the same as those of the
parents, but may be switched between them. Various crossover types are
described in the literature. In one point crossover an integer k, 1 < k < [is
chosen, and for j < k the first condition holds, while for 7 > k the second
condition holds. In multipoint crossover a number of such points are chosen
and the intervals alternate between the two conditions. In uniform crossover,
the choice between the two conditions is made independently character by
character with some fixed probability p. (Because of symmetry, it does not
matter whether p applies to the first or second condition.) If p = 0.5 then
we say the crossover is unbiased, otherwise it is more strongly biased the
further p is from one half. Additional crossover operations will be described
as required.

In the GIGA implementation used for the experiments in this paper
there is one point, multipoint with a user specified number of cross points
and uniform crossover. Also there is the ability to specify that each crossover
be chosen from several possibilities with some fixed probability. When this
option is used we specify the proportional frequencies by fractions. See [3]
for further details.

Other genetic operators include transpositions, reordering, reversal and
mutation[12]. These are not currently available in the program described in
this paper.

Important features of GAs are the methods of selection of parents and the
methods of creating new populations from the children. Two combinations
dominate the literature (with numerous variations);

o In Roulette wheel selection parents are selected all at once with a prob-
ability of being selected in proportion to their fitness, and the children
are used to make up the replacement population.

e Static genetic algorithms select parent pairs (possibly biased by fit-
ness) and produce child pairs. Individuals from the population are
selected for replacement by the children, and this selection is usually
done on the basis of fitness, where the least fit individuals have the
highest probability of being replaced.

In either case, individuals may be selected several times for mating. As a
result the population tends to evolve toward a set of highly similar individ-
uals. In particular, the probability that Pfj = ll;j for any two individuals 7
and k increases rapidly with t. We refer to this as convergence of the pop-
ulation. To offset this convergence, most GAs rely on mutation, and other
operators and conditions [12].

Gene invariant algorithms (GIGAs), the subject of this paper, form a
subclass of genetic algorithms, principally distinguished by the notion that
the total genetic makeup of the population does not change with time. In
particular, the multiset of characters of any column of the population Pi]«
does not change with time.! To maintain this invariance, it is only necessary
that a pair of children produced by the crossover operation replace their par-
ents in the population. The invariance rule then follows trivially, provided
there is no mutation or other genetic operator being used.

A family is a set of pairs produced by a set of crossover operations
performed on a single pair of parents. In GIGA when a pair of parents is
selected, they are used to generate a family. The number of pairs s is called
the family size. The best pair is selected from the family and replaces the
parents. If elitism is invoked, the selection of the best pair includes the
parents as part of the family. Many different notions of what constitutes a
“best” pair can be defined. Some that have been tried are: the pair with
the largest maximum value (or the smallest minimum if we are minimizing),
the pair with largest difference in value, or even the pair with the smallest
difference. Usually we will use the first definition, unless otherwise noted,
with the maximum or minimum being understood in context.

The sequence of a selection of parents, production of a family and re-
placement of parents is called a mating cycle or mating. The program termi-
nates after a specified number of matings m have been performed. The num-
ber of evaluations performed by the environment is no more than 2sm + n.
The number may be less because there is an equality test on parents and if
they are found equal, then no family is produced. See [3] for details.

When replacing parents, we always put the child with the larger value
in the row of higher index. The effect, for well behaved functions, is that
the population will tend to become sorted by value. The efficacy of the
sorting (and consequently the search) will depend on the selection criteria

!We will undoubtedly wish to relax this rule in future research, for example by adding
operators such as mutation and transposition. But in this paper, the rule will be adhered
to rigorously.

for the parents. Several mechanisms are available in the program, others are
suggested in [3] and readers are encouraged to develop their own.

For many problems, crossing parents which differ widely in value is likely
to produce offspring of intermediate value, and so no progress will be made
either in the minimum or maximum values. This observation is based on
the assumption that similar values are reflective of string similarities, an
assumption we must make if there is to be any use made of crossover.?
Assuming we want to maximize or minimize some function, we are more
likely to make local progress in terms of increased fitness if we mate strings
of similar value. At the other extreme, crossing identical strings, or strings
with Hamming distance less than two will produce strings identical to their
parents.

In this implementation, we always select parents in adjacent rows of the
population. The selection varies over the population, so that P9, PY are
the first to mate, then P, P and so on up to PZ:%, P"~%. Then over the
next n — 2 matings the pairs are chosen from the top to the bottom. The
selection continues to alternate over the population. We refer to a set of n—2
matings as a pass meaning that we have passed once over the population.
Other selection orderings can be specified if desired [3].

To further improve the efficiency of the program, the user can specify
that the population be sorted and maintained in sorted order. Populations
may initially be seeded by a random rotation. This means that a member
of the population is chosen at random, and then a — 1 further members are
chosen so that the characters in each position rotate through the alphabet.
A discussion of program options and operation together with suggestions for
future enhancements is presented in [3]. The source code can be found in
[2].

Michael Lewchuk in his master’s thesis [18] investigated a special case of
GIGA with analysis on the one max function and simulations on De Jong’s
test suite. In his method parent selection is restricted to that pair in the
population that is closest in value, each mating produces a family of size
one, and there is no elitism. That is, a single pair is produced and always
replaces the parents. The approach is interesting because nowhere is there
an explicit selection for optimal (or even superior) values. Although these
restrictions appear severe and defy almost all of the principles usually used

In light of the results in section 3 similarities may mean the absence of certain charac-
ters or patterns, not just the presence of them. This discussion is necessarily vague until
we can determine formal and encompassing definitions for these concepts.

in GA design, the program nevertheless performs quite well on several of the
test functions, outperforming the simple GA in some cases. His simulations
were run on a program of his own, and this technique is not available at this
time in the online program.

In this paper, we examine three sets of experiments. These are available
as part of the programming system [2]. It is hoped that the reader will make
use of this program to verify the claims made in this paper. Note that the
use of a different random number generator may cause some of the specific
results to vary.

Section 2 introduces the reader to the principle of propagation of val-
ues through the population by the action of crossover. Simple functions
with single runs and frequent output of the population help illustrate the
mechanisms used by GIGA to search functions for optimal values.

In section 3 we look at various deceptive functions. The well known
deceptive functions are easily solved by GIGA. Some seemingly much more
difficult functions are devised on which GIGA exhibits a complex search
behavior that would be difficult to mimic with a TGA. A provably difficult
function is devised that is effective in deceiving the program. Analysis here
also illustrates the benefit of more than one type of crossover being made
available to GIGA.

In section 4 GIGA is tested on De Jong’s five function test suite [8]. This
test suite has recently received criticism[11, 6, 9, 21, 22, 7] because tests have
shown that naive evolution(NE) (i.e. a GA using only mutation — which
means it is essentially a stochastic Hamming hill climber) often outperforms
traditional GAs(TGAs). We show that GIGA using only crossover and no
mutation, often equals or out performs a TGA and sometimes equals NE.

Finally in section 5 a summary of claimed results and possibilities is
given. It is hoped the reader will be challenged to prove or disprove the
claims made throughout this paper, and extend the research in new direc-
tions.

2 Some Simple Test Functions

The experiments in this section are on simple functions. They illustrate some
of the properties of GIGA and emphasize the differences between crossover
operators. The reader is encouraged to run the program on these functions
with the population printing turned on, and the sorting facilities turned
off. This will illustrate how progress is achieved by GIGA. The effects of

One Max Experiments
1 la 2 3
Maximum | 6586* 5239 1337 3347
Minimum | 5708*% 5577 1391 3225

Table 1: Average evaluations on the one-max function.

changing various parameters can also be tested. The experiments in this
section have all been run with elitism and sorting turned on, and using the
random rotation method of initializing the population. When one point
crossover is used, the different pairs of offspring in a family are guaranteed
to be generated by different crossover points.

The first set of experiments is on the well known one max or ones count-
ing function, wherein the value of a string is the number of ones in it. This
provides an opportunity to discuss the search space structures generated by
various crossover operators, and how GIGA exploits them. We then briefly
discuss the majority function, computed as the absolute value of the number
of ones minus the number of zeroes. This illustrates the power of GIGA to
search severely bimodal functions. Finally we try GIGA on the simple bi-
nary number function, which shows the sorting nature of GIGA. Additional
simple functions are included in the program [2].

The experiments on the one max function have the parameters | =
60,0 = 2,5 = 2 and averages are taken over 50 runs. Four experiments
are discussed, with input files onemax.1, onemax.la, onemax.2 and
onemax.3 available with the program [2]. Experiments 1 and la use one
point crossover with populations of size 10 and 20 respectively. Experiments
2 and 3 use uniform crossover with p = 0.50 and p = 0.05 respectively. The
population is of size n = 10. The pair with the largest maximum was chosen
to replace the parents.

The average number of evaluations to find the maximum and minimum
values (note they are both found in the same search) for each experiment can
be found in table 1. For 1 the program failed to find the minimum once and
the maximum twice in 5000 mating cycles(starred entries). The averages
are taken over the successful runs in this case. In all other experiments all
trials were successful.

Clearly the unbiased uniform crossover is superior on this function. One
point crossover benefits from an increase in population size but is still unable

to compete with even the biased uniform crossover. On the other hand,
not evident from the table, the biased uniform is the only one capable of
completely sorting the population. That is, given sufficient mating cycles
the population will eventually be sorted into two sets of strings, those with
value 0 and those with value 60.

A study of why these results occur illustrates both properties of the
various crossover types and the mechanism by which optimization is carried
out by GIGA. Because the population is sorted, at time ¢ = 0 adjacent
strings in the population will contain nearly equal numbers of ones. An
example is shown in figure 1 where the difference between adjacent strings
is always three or less.

23 001000111110000001000000001100000100111011011011101000010100

24
26
29
30
30
31
34
36
37

000010100001100010100100101101001000110100011000010001111011
010100100100010001111011000010100110011110000100100111100100
000000110101110001100111110011011100001100100101101101101000
011110001011111001000011100101000000000100111011110101011101
100001110100000110111100011010111111111011000100001010100010
111111001010001110011000001100100011110011011010010010010111
101011011011101110000100111101011001100001111011011000011011
111101011110011101011011010010110111001011100111101110000100
110111000001111110111111110011111011000100100100010111101011

Figure 1: An initial sorted population for one max

Using unbiased uniform crossover, the ones in the positions in which the
two parents differ will be binomially distributed over the two children in each
crossover operation. The variance is large and so initially ones are quickly
removed from the low end of the population, and zeroes from the top. (For
a complete formal analysis, one must take into account the population size
when more than one mating is considered. Such an analysis is beyond the
scope of this paper.)

With uniform crossover biased at p = 0.05, the children will differ on
average by only 1.2 characters from their parents even if we assume the par-
ents are complements! With only one or two of the ones being switched per
mating, it takes longer for the optimal to be found. The faster production
of the maximum and minimum by unbiased uniform crossover is due to the

higher variance it has.

However, when the population is nearly sorted, with only one or two 1’s
in a string of 0’s for example, the probability that exactly those two charac-
ters will be chosen by unbiased crossover is very small. Such a population,
produced using the biased uniform crossover, is shown in figure 2. Unbiased
crossover is unlikely to obtain even this much separation of zeroes and ones
in a reasonable time. Out of the 269 equally probable crossover possibilities
(using unbiased crossover) on the strings valued 3 and 57, only 14 will yield
an improvement.

Biased uniform on the other hand has a reasonable probability of select-
ing only one character as a crossover, and so one by one the remaining ones
are sorted from the strings of zeroes over a few thousand evaluations. For
optimization it is not reasonable to require the complete sorting of the pop-
ulation. Nevertheless, these arguments indicate that biased crossover may
work better with very small populations.

0 00
0 00
0 00
0 00
3 000001000000010000000000000100000000000000000000000000000000
57 111110111111101111111111111011111111111111111111111111111111
60 1111111111431114111411141111111111131111311133111311111111111
60 1111111111431114111411141111111111131111311133111311111111111
60 1111111111431114111411141111111111131111311133111311111111111
60 1111111111431114111411141111111111131111311133111311111111111

Figure 2: A sorted population for one max after 3000 matings by biased
uniform

Notice that GIGA works by moving the ones through the population
over time, instead of evolving toward populations containing many ones.

To understand the difficulties with one point crossover, we need to look
at the space over which the algorithm is searching. The search space of the
problem is the set of strings and their values that can be formed from the
alphabet. Notice that we are assuming a fixed length string. The values are
assigned by the black box environment. The encoding then is part of the
problem space definition.

The search space structure (SSS) imposed by an algorithm is a directed
graph where the vertices represent state information and an arc (z, y) means
there is some value that can be assigned to the vertices z and y such that
there is a possibility of the algorithm changing to state y from state z.
For GAs, the vertices are populations, and two populations are connected
if there is some genetic operation that will produce the second population
from the first. The precise definition will depend upon the specific GA being
implemented. For GIGA as described in this paper, there will be an arc if
exactly two members differ, and the pair in y can be produced by a crossover
operation on the pair in z. Again the precise definition will depend on the
options chosen for the program.

The search space configuration (SSC) imposed by an algorithm for a
specific problem will be the substructure allowed by the algorithm for the
specific values of the function. For example, using GIGA, once values are
assigned to the strings only those strings which are adjacent when sorted
(assuming sorting is maintained) will be able to participate in crossover.
Furthermore, depending on family size and whether elitism is selected etc. it
might not be possible to select certain child pairs. To be completely precise,
we would also need to take into account state information indicating which
pair in the population is next slated for mating. We will not formalize these
notions in this paper.

Arcs will have some probability (weight) associated with them indicating
the probability of the particular transition, and vertices will take on the value
of the maximum (or best) string in the population. The weights may depend
on the algorithm and the problem values.

We restrict our attention to a population of size two. The motivation is
that the local search space structure surrounding a pair of parents is in fact
a search space on a population of size two.

We define the Hamming closure by saying C is in the Hamming closure
of Py and Py if for each 1 < j < [either C; = Py; or C; = Py;. If the
Hamming distance between parents is &, then the Hamming closure has 2*
strings and the search space has 2¥=1 vertices. These numbers are correct
even if a > 2 for the local space of two parents. The vertices are pairs of
strings complementary with respect to the Hamming closure of the parents,
and thus we will consider only complementary strings. (This ignores the
probability effects induced by variations in the number of characters between
positions of differing character values. For example, if [> k, then there may
be several cut points between some of the characters, and only one between
others. This could have probabilistic consequences if we are using one point

10

crossover.)

Uniform crossover forms a complete graph on the vertices. If it is unbi-
ased then every point is equally likely to be generated, resulting in a random
search. Otherwise the points at smaller Hamming distance from the parents
have higher probability of being generated, and thus the search is biased.

Figure 3: One Point Crossover Search Space on Ones Counting

One point crossover can only select from a number of points equal to the
Hamming distance between the parents. The local SSS is a hypercube of
dimension £ — 1, but the connections for the most part do not correspond
to the Hamming hypercube.?

7 A simple isomorphism demonstrating the hypercube can be constructed; select any
k — 1 bit string to map to an arbitrary point in the crossover space. For a neighbor
generated by a crossover at position i, flip the sth bit of the string. This suggests a simple

11

Figure 3 illustrates the SSS for a pair of strings with £ = 5 under one
point crossover. Since crossover is symmetric, we show undirected edges.
The contours group vertices of equal value under the ones counting function.
Notice that for the point 00100/11011, which is of value 4, all edges lead to
lower valued points. As a result, using elitism and mating repeatedly on this
pair would never lead to an optimal value. For larger k, such false peaks
become much more numerous, and dominate the probable termination of
the process. For [= 60 and n = 2 it is extremely unlikely we would find the
optimal string.

When n is large enough, these false peaks in crossover space may be
eliminated. As the population becomes large, sorting the strings will lead
to adjacent strings having greater similarity. The similarity increases as the
ones are sorted from the zeroes under sequences of matings. This explains
why the larger population made it easier for GIGA to find optimal values
using one point crossover in experiment la.

However, if we wish to completely separate the zeroes from the ones even
a larger population does not help. Eventually we must sort the characters
from the last two strings that are not pure zeroes or ones (if we do not stop
at a peak with even more strings). For example, our population could look
like that in figure 2. No one point crossover can improve that population.
For [= 60 the probability is high that GIGA with elitism will never be able
to complete the separation using one point crossover.

Several points should be made about this analysis. First, although it
may seem that one max is a trivial function, it in fact models very nicely
the requirements of propagating short building blocks of nearly equal value.
When one point crossover is used on functions which have such building
blocks, crossover points that break the blocks lead to low valued offspring
that are eliminated by the replacement selection process. Ignoring these
useless crossover attempts, the blocks are recombined by one point crossover
in the same way as characters are in the one max function. Similar false
peaks can occur. One point crossover may be superior to uniform when
we are dealing with problems involving combination of long substrings. An
analysis of such a case is presented in section 3.3.

Second, the search structure is independent of the value assignment.
Thus, the search will succeed or not depending on whether values form too

way of converting deceptive functions for Hamming hill climbers into ones for one point
crossover systems. Similarly, easy functions for hill climbing can be converted into easy
functions for crossover.

12

Majority Experiments
1 la 2 3
Maximum | 10516* 16331* 5001 4958

Table 2: Average evaluations on the majority function.

many false peaks in this structuring of the space. There are many functions
which could be defined to create false peaks on one point crossover.

Third, using a two point crossover (divide the strings into three segments,
and swap the middle segment) the one max function is no longer deceptive,
because we can always select out a single bit for crossover if necessary. This
suggests that two point crossover might be better for the combination of
building blocks when there are many of them in a string. However, if all
blocks do not have equal values, then there will exist functions for which
2-point crossover is also deceived.

Fourth, unbiased uniform crossover on a population of size two cannot
have false peaks, since it is a random search. However, when the population
is enlarged, the strings being mated are not complementary pairs. As a
result, the search will tend to search some regions with higher probability
than others. Thus, deception should be possible here as well. A full analysis
is needed.

* ok ok ok ok

Experiments major.1, major.la, major.2 and major.3 optimize the
majority function, using one point crossover with populations of size 10 and
20, unbiased uniform and uniform at p = 0.05 respectively. Other parame-
ters including string length are as in the one max experiments. Finding the
minimum, which occurs for equal numbers of 0’s and 1’s in the string, is
trivial for GIGA. The number of evaluations required to find the maximum
value are shown for the three experiments in table 2.

It must be pointed out that one point crossover failed 45 out of 50 times
to find the maximum on population size 10 and 31 times out of 50 with pop-
ulation of 20 (starred entries). Unbiased uniform does not seem to have any
advantage over the biased operator. The reader is encouraged to determine
why these results should occur.

13

For linear functions and many others replacing the parents with the
pair which has the maximal maximum, minimal minimum or maximum
difference in value yield equivalent behavior using GIGA [3]. Notice that
for the majority function, the three definitions are not equivalent. What
happens when we use the maximum difference definition? The answer may
surprise you!

For the final simple function, we consider the binary number function;
that is the function which treats the string as a binary number. In this
function different positions contribute widely different values. Initially, the
leading bits will have the most effect on sorting, sometimes carrying low
order bits to the opposite end of the population from where they are required.
The low order bits will then be found and moved through the population
after the high order bits have been selected. The opposite effect occurs at the
low end of the population. The visual effect seen on running the experiment
binary is the formation of triangular regions in the population. At the low
end we have leading zeroes, while at the high end we have leading ones. The
number of identical leading characters diminishes towards the center. The
experiment uses one point crossover, but the effects are very similar using
other crossover operators. The family size should be kept small to maximize
the delay of the effect.

A sample population taken after 1100 matings is shown in figure 4 for
those who do not have access to the program.

A deterministic search on binary numbers can be set up using the non-
repeating one point crossover. Setting the population size to two (unlike
one max, the binary number function has no false peaks under one point
crossover), and family size to [—1 no more than [—1 matings will be required
to optimize an [bit string, yielding both minimum and maximum.

3 Deception

Goldberg [12] and others have designed functions that are deceptive to vari-
ous GAs. The principle reason we might be interested in such functions is to
further illuminate the means by which the algorithms succeed or fail. In this
section, we examine some of the deceptive functions of the literature, and
some new ones. The results show some interesting insights into the nature
of GIGA and of crossover search space structures in general.

14

0000000000000000000000001
0000000000000000000100010
0000000000000001100000001
0000000001001011100000100
0000001101100110000010001
0000001110101000011001001
0000010000000111110000001
0000011010011100000010110
0001100110111110111100110
0001101001010000000101100
1110000011100000001110000
1110011100100111101001101
1111100011110010110111110
1111110010111101011001110
1111110100111111100011011
1111111101001001011110011
1111111111010010111111010
1111111111011101111111101
1111111111111111011111111
1111111111111111111111110

Figure 4: A sample population from the binary number function

15

3.1 Standard Deceptive Functions

Experiment goldberg.1 uses 10 replications of Goldberg’s [13] 3-bit decep-
tion on 50 runs. It uses a population size of 10, family size of 5, one point
crossover and succeeds 50 out of 50 times with an average of 2269 evalua-
tions. This compares to 20960 as the best result from [10]. Note this is the
tightly coupled version of the deceptive problem. In this version, one point
crossover can recombine building blocks and fairly quickly they migrate to
the top.

However, if the loose version is used (where the first set of 3 bits occupy
positions 0,10,20 etc.) or uniform crossover is used, then it is very difficult
to propagate the substrings that are required. With populations of size
75-100 and long runs (from 40,000 to 160,000 evaluations) the problem can
usually be solved, but this is not very competitive. Some improvement can
be had by using mixed crossover with about 2/3 uniform at p = 0.50 and
1/3 of 5-point crossover. The 5-point crossover has some ability to pick out
small subsets of bits that are not adjacent, but the probability is quite low.
Experiment goldberg.2 solves 10 out of 10 cases, but requires an average
of 107,070 evaluations.

The problem is that the loosely ordered form is less helpful to crossover
search. Recombining building blocks is difficult with the usual crossover
operators if the blocks consist of non-contiguous characters. Perhaps we
could design crossover operators that assume non-contiguous sequences as
counterparts to one point crossover. These might be able to take advantage
of well defined properties that the usual crossover operators cannot.

Experiment liepin.1 uses 10 replications of Liepin’s [19, 10] 5-bit decep-
tion (also tightly coupled) on 50 runs. It uses a population of 10, family size
of 10, one point crossover and succeeds 50 out of 50 times with an average
of 6842 evaluations. This compares to 11230 as the best result reported by
Eshelman [10]. Since this does not seem too difficult, experiment liepin.2
uses a 10-bit version of Liepin’s function. This experiment uses a mixed
crossover operator. This succeeds on 49 out of 50 trials, using an average of
24854 evaluations on the successes.

It should be noted that neither of these functions was designed to be
deceptive to GIGA. However, they are designed based on ideas of what
should be deceptive to a GA, and GIGAs are very special GAs. One thing
that makes them susceptible to GIGA is that selecting the characters needed
for the suboptimal point leaves exactly those characters required for the
optimal point. Thus, the building blocks are created towards the low valued

16

end of the population, then propagated up to the top.

3.2 Deceiving GIGA

So how do we build a deceptive function for GIGA? Clearly, if we create
a single spike on one point in the problem space and assign every other
substring a value of zero, then neither GIGA nor any other randomized
algorithm will be able to find the point easily. Similarly, on a randomly
generated function, even if all strings have distinct values, the best we can
do is a random search taking exponential time on average. However, such
functions are of little interest in determining the boundaries of applicability
of a technique.

We want a function that exhibits a high degree of structure; one that
does not rely on shuffling bits so that crossover is unable to build blocks, but
rather uses contiguous blocks so that if blocks become available they can be
combined. We want a function which definitely misleads GIGA, rather than
one that just loses it in a sea of randomness.

The usual deceptive functions presented and tested in the preceding sub-
section have the property that the optimal point is diametrically opposite
the suboptimal deceptive point in Hamming space. GIGA keeps all of the
original characters, and every character is guaranteed to appear in every
column of P;;. The ones collect at the high end of the population and the
zeroes are left to form optimal building blocks elsewhere. Once formed,
GIGA then propagates them upwards through the population.

Several more severe functions of this type were created for GIGA using
multi-character alphabets and longer substrings. We refer to these functions
as fq1 through fz4. None of these proved particularly deceptive in practice,
but observing GIGA’s performance illustrates some interesting properties of
the program.

The functions each divide the string into substrings of size a; i.e. each
substring has length equal to the alphabet size. The substring of all zeroes is
assigned a value of a+1. Any other substring is assigned a value according to
how many non-zero characters it has. Let ¢ be the number of zero characters,

ie. t = ||{z; = 0}||, where z is the substring of characters. Then
at+l t=a
fa(z)=¢ a—t t<a/2
0 otherwise

17

Suppose we visualize the Hamming space of this function over an al-
phabet of size a by pretending the space has been flattened into concentric
rings, with the optimal point at center, and points at Hamming distance ¢
in the 7th ring.? We let height above the circular display represent the value
of the substring. Then the problem space is a bowl with stepped sides and a
single spike at the center. The more nearly correct the string is, the further
down the slope towards the center it lies. If more than 1/2 of the characters
are zeroes, the value is zero. The idea was to create a large area near the
optimal point where GIGA must do a random search.

For our experiments we used a concatenation of five subproblems. The
five character version required an average of 7117 evaluations averaged over
ten runs. The 10 character version required 66585 evaluations averaged over
50 runs with no failures to find the maximum. The input for @ = 10 is in
the file decept.d1l. An experiment using a = 15 can be found in the file
decept.d1.15. The population size is 75, [= 75 so that there are five
substrings, family size is five and one point crossover is used. The initial
population has a minimum value of 65 and a maximum value of 75, which
means that at least one string has all 15 characters non-zero in all five
substrings. This latter would occur with probability of 0.35 if all characters
were chosen independently although the random rotation used would alter
this probability a bit. The population is kept sorted by value.

We trace the search process here, but the reader is encouraged to run
the experiment and print every 1000th population to obtain a complete
picture of the process. The first string value of zero occurs after 16145
evaluations, which means that every substring in some string has at least
7 zero characters. This string is produced as a result of the concentration
of non-zero characters in the higher valued part of the population. As the
search continues more zero valued strings are produced, while the great
majority of strings obtain values of 75. After some time the first substring
of all zeroes is produced from the mating of two strings with at least a/2
zeroes. When a zero substring combines with a string with no zeroes so that
the substring is preserved, its value increases and so the string is sorted to
the high end of the population. Additional substrings of zeroes are formed

*To be representative, the rings would have to increase rapidly in size. Suppose the
center point is a circle one millimeter in radius. For o« = 10 the distance five ring would
be about 2.8 meters wide, and the outer ring would have to be about 19.2 meters wide,
with outer boundary at 100 meters in order for the areas to be roughly representative.
For o = 15 the outer boundary would be 661.7 kilometers away from the center and the
outer ring would be 130.3 kilometers wide.

18

fairly quickly. The maximum string value increases by one after 111145,
139515, 143895, 244635 and 326395 evaluations. Each of these increases
means that one more substring of pure zeroes has been combined into the
top valued string. The last increase achieves the optimal value.

If we let N represent a substring of non-zero characters, and Z represent
a substring of zeroes, then at one point in this experiment the top three
strings look like

ZNNNZ
ZZNZN
Z7Z7NZ

The next lower string has no zero substring. The value of N is 15 and
that of Z is 16. Any cross that mixes a pair of substrings cannot lead to
an improved value. Thus, using one point crossover only crossover points
between substrings can improve the result. But, except for the probability of
selecting the appropriate crossover point, this looks like one point crossover
on the one max function. We see that no crossover on the last pair of
strings will lead to a higher value, although there are two points that would
yield equal value. The lower valued pair (at the top) could be combined
to produce the string ZZNZZ and then the top two could be combined to
produce the optimal. In fact, more zero strings are actually produced before
the program finally produces an optimal string in this run. As the top valued
string obtains more zero substrings, the difficulty of the recombination of
these blocks increases. Two point crossover would likely be more efficient
than one point if there were more replications of the problem.

Notice that uniform crossover would be extremely unlikely to produce
the desired recombination effects regardless of the bias. This low probability
of combining building blocks is usually referred to as its disruptive effect.
Uniform crossover might however produce the first zero substrings more
quickly. Considerations such as this were the reason for allowing more than
one type of crossover to be used in the program.

Clearly, a Hamming hill climber will fail miserably on this function,
since almost all changes will lead toward the plateau of maximum error.
Only substrings within Hamming distance strictly less than «/2 of the spike
have any chance of being converted to the optimal. A GA should also have
difficulty, because the likelyhood is great that the optimal substrings will
not be in the initial population, or even constructible from it after only a
few generations unless very high rates of mutation are used. After a few
generations the population will be converging around one or more points

19

on the false plateau, and then the probability of getting off of this plateau,
across the depression and hitting the spike is very small.

The reader is encouraged to turn off the sorting feature, and print out
intermediate populations to see where and how the substrings are formed,
and to watch their progress and combinations through the population. The
user will notice that elitism is very important to maintenance of these opti-
mal blocks. Also, experimenting with uniform crossover will quickly show it
to be significantly inferior on this problem, because it finds it very difficult
to propagate and combine these long substrings as units in the population.

Function fj was an attempt to make the problem harder for GIGA.
In this case, substrings with more than 3/4 of their characters correct (i.e.
zeroes) were assigned increasing values as the number of zero characters
increased. That is,

at+l t=a
a—t t<a/2

3 3
t—ZOé ZO[<t<O[
0 otherwise

faa(z) =

The idea was that these strings would then move up from the bottom of
the population, where they would tend to cross with the median value strings
which have more non-zero characters. This might make it harder for GIGA
to chance upon optimal substrings. Instead, this function is if anything
more readily solved by GIGA, taking an average of only 60421 evaluations.
Because they get values intermediate to the outer ring and the bottom,
the strings containing these nearly optimal substrings cluster together in
the middle of the population. Since GIGA mates all adjacent pairs equally
often, putting the strings with higher proportions of zero characters in the
middle does not hide them. In fact, it separates them from the strings with
as few as a/2 zero characters, and tends to more quickly concentrate zeroes.
The higher proportion of zero characters in these matings yield higher rates
of optimal substrings.

Function fy3 is the same as fy1, except that zero is assigned to any string
with up to two thirds of its characters non-zero. This means that there will
be many more substrings with erroneous characters at the bottom of the
population. Again, GIGA was able to defeat the supposed deceptive nature
of the function handily, although the search time did increase somewhat.

At this time frustration (of sorts) led to the creation of function fy4.
In this function, only the optimal substring and the substrings in which
all characters are non-zero get non-zero values. This puts the majority of

20

strings on the plane with value zero. It would seem this very large plane
should cause GIGA to degenerate at best to something akin to random
search. Although it does slow down somewhat, GIGA can still find the
optimal strings at @ = 10 using an average of 244440 evaluations.

How does it do it?

Notice that we are using random rotation to initialize the population.
Suppose for the sake of analysis, @« = 10, ! = 10 and population size n = 10.
Now think of the population as a (dynamically changing) 10 by 10 matrix,
where each row is one string member of the population. Random rotation
ensures that each character appears once in each column of the matrix,
and genetic invariance ensures this remains true throughout the program
run. When the population is initialized, 9/10 of the characters in any string
(on average) are non-zero. With just a few crossovers, we will with high
probability get a string with all characters non-zero. Due to elitism, there
is a sense in which this string can never be lost. Namely, there will always
be a completely non-zero string in the population after one is first found.

Thus, each column has effectively been reduced from 9 non-zero charac-
ters and one zero, to 8 non-zero characters and one zero. Notice we do not
care which 8 non-zero characters are in the remaining strings at any time,
only the number of them. The probability of selecting a non-zero character
is now 8/9, which is smaller than before, but still with recombination we
quickly get another non-zero string. Now the population will always have
(at least) two completely non-zero strings. This reduces the ratio of avail-
able characters to 7/8. Repeating this we eventually have just two strings
that are not completely non-zero. Since there are only two characters per
position that can be recombined (the other characters are locked up in the
higher valued completely wrong strings) there are only 219 = 1024 strings to
search through for the one which yields the last non-zero string and perforce
at the same stroke the optimal string. Of course, the search through this
subspace is essentially random, but it is small enough that is not a serious
impediment to the programs average behavior. We would need to mate
the bottom strings on average about 1024 times(varying slightly according
to what crossover operator we are using) until we form the optimal string.
Since we have 9 pairs in the population to mate, we allocate about 1/9 of the
matings to the bottom pair, and so we would require 9200 matings before
we find the optimal on average, after reaching the state where we have two
zero-valued strings.

Increasing the population and string size do not substantially change
the nature of this analysis, other than the statistical values and the need to

21

combine substrings into the optimal string. Increasing the alphabet size (and
at the same time the block size) rapidly increases the difficulty. For example,
at k = 15, the last string pair entails a search space of 65536 combinations,
to be searched at random. Much longer search times are required.

Function fy5 is the first attempt at a function which has its suboptimal
point not at the opposite pole in Hamming space from the optimal. Again
letting ¢t be the number of zero characters

a+l t=a
fas(z) =< 1 t<al2
a—1 a/2<t<a

As GIGA runs on this function, the best valued strings tend to have a/2
zero characters. These half-correct strings are concentrated at the top of
the population. Suppose we have n = a. Then mating the top two strings
yields the optimal string with probability of 0.5%, assuming unbiased uni-
form crossover and that each character occurrs once in each column of the
population. This means the function is not completely deceptive, and ex-
periments bear this out, although it is quite difficult and one point crossover
is not adequate. Turning elitism off seems to help form blocks faster, but
then they are lost before they can be combined into an optimal string. A
full analysis needs to be done on GIGAs behavior on this function.

If we choose instead to ramp up to a/3, then the algorithm will be led
towards strings with 1/3 zero characters. Function fzs implements this

a+l t=a
fd6($): i t<a/3
a—1t a/3<t<a

If all of the top strings have only approximately one third zero characters,
and all of the zero characters in the population tend to gather in the top
strings, then no mating can produce the optimal string. This suggests this
function is unlikely to be solved by GIGA. Experiments confirm this analysis.

3.3 Ancillary Analysis

For the deceptive functions fy; to fg4 notice that if we had been using a
binary code for the characters, and bitwise crossover, then it is likely that
we could have destroyed the capability of the algorithm to find the optimal.
The reason is that by rearranging the bits, we would have created more

22

non-zero characters, and destroyed the zeroes. We then would have had
all strings situated on the plateau and no further progress would have been
possible. This argues in favor of more natural representations instead of
binary encodings.

Selecting for minimal values, instead of maximal, would likely have
severely hampered the algorithm on this function, even though we know
the maximum point is located in the center of a depressed plane. It was
only by removing the non-zero characters, accomplished by selecting for
maximal values, that the search space was constricted enough to have any
hope of locating the maximum. It appears the best search is one that ex-
amines interesting features. If we concentrated entirely on the lower plane,
we are left wandering at random. If we allow the search to examine and
select for the suboptimal points, then eventually the remaining strings form
a small enough subspace to be interesting. Searching this space finds inter-
esting points in it. One wonders whether it would be possible to have more
than two levels of such emergent “interestingness” and developing behavioral
changes over time.

If we were using uniform crossover, then it is possible that after achiev-
ing the reduction to two zero-valued strings we would generate an optimal
substring more quickly. The reason is that given a pair of strings, we would
generate each point in the space with equal probability on every attempt.
In particular, we search all of the substrings at the same time with uniform
crossover, while one point can only mix at most one substring from the par-
ents. The point is that at this stage we want to move characters around at
random, because we do not yet have the building blocks. Without building
blocks, or indications of ascent, we can do no more than a random search,
and uniform crossover gives us such a search.

On the other hand once an optimal substring is found, it moves to the
top of the population where it must combine with other substrings from
other strings. Here, one point (or perhaps two or three point) crossover is
clearly superior to uniform. Uniform (at p = 0.5) would correctly combine
two ten character blocks into one string with probability of 2729, while one
point only needs to select the cut point between them. This has probability
1/l if the two blocks are in adjacent positions, and much larger if the blocks
are separated.

Similar comments apply to many other functions, including some of the
De Jong functions. At certain times, we wish to recombine strings to form
building blocks, and at other times we need to combine the blocks into
strings. Building the blocks is essentially a random search (although the

23

probabilities may be strongly biased as when we first start on function fyy to
build suboptimal non-zero blocks) while putting the blocks together requires
that certain points be made more accessible to the search than others.

These arguments strongly suggest the need for research into the possi-
bility of fluctuating crossover operations, that sometimes use one point and
sometimes uniform or biased uniform or multipoint crossover. It was af-
ter observing the results from this function that the mixed crossover option
was installed. This particular implementation is ad hoc, but the following
shows just how effective it can be sometimes. For a variant of function
f4a in which optimal blocks are assigned a value of 1000 with a = 10, the
first optimal block was found after 19330 evaluations using 1/2 unbiased
uniform and 1/2 one point crossover, while one point alone required 68230
evaluations for the same experimental setup. The complete solution required
171439 evaluations using mixed crossover while 249180 were required by one
point.

4 De Jong Test Suite

In this section we test GIGA on the De Jong test suite functions f; to f5 [8,
12]. One of the hazards in making comparisons between different algorithm
design paradigms is that in the desire to make our favorite paradigm win,
we may add so many target specific options and variations that the results
are not valid as support for the superiority of the general design. On the
other hand, if we compare a purely basic system to results that have had
years of tuning and additions of specialized variations, the results are likely
to look so bad in comparison that they may not reflect the potential of the
approach.

In this section, I try to take a balanced approach. In some instances,
considerable tuning has been done to get excellent results. Alternatively,
some of the tests have been performed using a single parameter setting
across all five functions, and the results compared to the default settings
(and some improved settings) of the well known GENESIS system[15]. Some
enhancements, such as Gray coding, have been tried and commented on.
Others, such as mutation which would violate the invariance property, have
been deliberately avoided, although it is likely they would afford further
improvement.

One purpose of this section is to show that the basic design of GIGA
has at least as much potential as the traditional GA design. Additional

24

Function | TGA NE CHC
fi 2323 805 1089
fo 16394 9201 9065
f3 2381 1270 1169
fs 4379 1719 1396

Table 3: Evaluations to Optimization from Eshelman and Schaffer

observations will be made as the experiments are described.

The De Jong test suite has been used as a basis for comparison of GA
techniques and other techniques for several years. It has recently been the
center of some controversy because it seems that stochastic hill climbing,
naive evolution (i.e. a GA with no crossover) and other techniques may out
perform the TGA on most of these functions[11].

We cite in table 3 results for functions fi, fo, fs, fs from Eshelman and
Schaffer [11] for two genetic algorithms and naive evolution. TGA used pro-
portional selection and the individual elitist strategy, a population size of
30, mutation rate of 0.01 and two point crossover at a rate of 0.95. It repre-
sents a high dependence on crossover in the traditional GA vein. CHC was
a non-traditional GA that used cross generational elitist selection, uniform
crossover and restarts on population convergence [10]. NE uses a traditional
GA, but no crossover, a population of size 10 and mutation rate of 0.023.
Thus, it represents the other end of the scale, reliance on stochastic hill
climbing. Table 3 provides the number of evaluations required to find an
optimal solution.

One of the concerns raised by the numbers in table 3 is that crossover
may be outperformed by other search operators. Another is a concern that
GAs may not be the superior method they are often considered to be by the
GA community.

We will use results from GIGA to argue that for f; and f5, crossover is
in fact very effective since we will do slightly better than TGA on f; and
as well as CHC on f3 using only crossover as a genetic operator. We note
that TGA uses a mutation rate of 0.01 and the NE results indicate that
without mutation TGA would have even poorer performance. Thus our use
of crossover in GIGA seems more effective than its use by TGA on these
two functions.

First we consider f;. The GIGA experiment, averaged over fifty runs,

25

uses a population of size 6, a mixed crossover strategy of 3/113 uniform
crossover biased at p = 0.04, 80/113 two point crossover, and 30/113 one
point crossover. The setup can be found in file dejong.spl. It is highly
tuned, and is quite sensitive to population size, at least up to a few hundred
evaluations on average. It succeeded 50 out of 50 times with an average of
2074 evaluations to find the minimum compared to 2323 for TGA.

The GIGA experiment for function f3 is in the file dejong.sp3 and
uses a population of size 15 with unbiased uniform crossover. It solves the
problem 50 out of 50 times, using an average of 1155 evaluations. This
problem seemed so easy that I did not waste much time trying to optimize
further. This is already sufficient to support the claim stated above.

For the remainder of our comparison, we will use the GENESIS sys-
tem with the default setup parameters, plus some modified parameters we
use when the GENESIS defaults seem particularly bad. In files dejong.1
through dejong.5 [2] are experiments over ten runs each for each of the
five De Jong functions. Except for string length, which is defined by the
functions, all five experiments use the same parameter settings. In each
case a population of size 20, family size of 2, elitism and mixed crossover
with 4/10 unbiased uniform, 4/10 one point and 2/10 two point crossover
was used. Little tuning was done in selecting these parameters, and that
almost exclusively on function f;. In each case the results nearly equal or
exceed the results of GENESIS using the default setup parameters, where
the comparison is based on the values achieved after an equal number of
evaluations.

Of course, the default parameters GENESIS uses are not always par-
ticularly good, and so for some of the functions other parameter settings
were tried. For function f; population was set to 30, crossover rate to 11.4,
and mutation to 0.01, with the other parameters left at the default values.
Initially the GA seemed to be a bit faster than GIGA, but after 4000 evalua-
tions GIGA using the standard setup above had a value comparable to that
of the GA (0.0051 compared to 0.0057 for the GA). The GA then leveled
off while GIGA continued to decline to 0.0027 at 20000 evaluations. Note
that the default mutation for the GA was 0.002 and thus under the assump-
tions based on table 3 we have given a significant benefit to the GA. Tuning
GIGA a little bit, as in file dejong.sp2 (the settings are described on the
following page) we can get averages over 50 runs as low as 0.001 after 20000
evaluations, with continuing declines to 0.000089. However, even with these
settings the optimal value is achieved only twelve times out of fifty in 25000
matings.

26

Similarly, for function f4, changing the default settings for GENESIS to
a population of size 30 (from 30,000), with crossover rate of 24 and mutation
rate of 0.01 gives much better results, which are comparable to those of the
standard GIGA experiment.

The standard GIGA input on f5 reached a value of 0.998004 (which is as
small as it gets using only six digits of output accuracy) in 3220 evaluations,
while the default GENESIS had reached only 1.1 (averaged over 10 trials)
and never went below 1.0 in 10000 trials. Changing the population to 30
from 200 and increasing the mutation rate did not improve the results for
the GA. Little further research has been done on this function as of this
writing.

Some of the numbers from the experiments (using the improved GEN-
ESIS settings) are presented in table 4. All experiments were over 10 runs.
The values cited for GENESIS are taken (from the column headed “Best”)
from the nearest number of trials to the cited number of evaluations, as
GENESIS prints out values at irregular intervals. The number of evaluations
from GIGA are computed by the formula given in section 1, i.e. 2sm + n.
This is a tight upper bound on the actual number of evaluations used to
produce the average values cited.

When we consider the preliminary nature of the research into GIGA,
these results are quite intriguing. As we suggest throughout this paper, and
in the accompanying document [3], there are many possible improvements
that could be made to GIGA.

For the De Jong functions, one claimed improvement in GAs is the use
of Gray codes. Gray codes reduce the effect of Hamming cliffs for GAs.
GIGA must move material upward (or downward) over a population, and so
we would intuitively expect that GIGA would be even more susceptible to
Hamming cliffs than the GA, if the cliffs tend to thwart crossover. The sup-
position is that if two adjacent values in the population have widely different
character strings, then crossing them is unlikely to allow any improvement.
This is not strictly true of course, and one need only consider the effects of
crossing 1000 and 0111 when evaluated as binary numbers to see that such
cliffs need not be a barrier to crossover in either GIGA or GAs. Notice that
for mutation the point 0111 definitely acts as a barrier to further progress,
in that only mutating the lead bit can yield improvement. On the other
hand 1000 responds favorably to mutation almost everywhere.

We now examine a sample population of GIGA from f; after it has
nearly found an optimal string. In figure 5 we print a partial population and
its evaluation, and have separated the two substrings used in the function

27

Function | Evaluations GIGA GENESIS

fi 2020 0.00357 0.00407
4020 0.00031 0.00021
6020 0.00005 0.00002
8020 0.00001 0
10020 0 0

fo 4020 0.0051 0.0057
8020 0.0036 0.00568
12020 0.0029 0.00568
16020 0.00277 0.00568
20020 0.00269 0.00568

f3 2020 0.4 0.1
2820 0.0 0.0

fa 4820 3.305 0.835
10020 -0.066 -0.231
14820 -0.711 -0.785
20020 -1.443 -0.964

fs 2020 0.998021 1.30190
4020 0.998004 1.10097

Table 4: De Jong function average values using GIGA and GENESIS

28

O OO O O O O O O O O O O O

O O O O O O O

.000001
.000004
.000247
.000261
.000596
.000961
.001346

.000001
.000004
.000217
.000285
.000596
.001053
.001346

.000000
.000001
.000165
.000261
.000596
.000782
.001119

10000 Matings

101111100111
101111101010
101111011101
101111110110
101111010100
101111001001
110000001100

101111100110
101111101100
101111010001
110000000101
101110111111
101110101011
110000110010

15000 Matings

101111100111
101111101010
101111011100
101111110111
101111010100
101111001001
110000001100

101111100110
101111101100
101111010001
110000000111
101110111111
101110101010
110000110010

20000 Matings

101111101000
101111100111
101111011111
101111110110
101111010100
101111001101
110000001000

Figure 5: Partial Population for f;

101111101000
101111100110
101111010111
110000000101
101110111111
101110110010
110000101010

29

definition for the readers convenience. Let the two substrings have values
yo and y;, where the value of a substring z is b(2)/1000 — 2.048, and b(z)
is the value of as a binary number. Function f; is defined as 100.0(y2 —
y1)* + (1.0 — yo)?.

The members shown are the lowest valued members taken 5000 matings
apart. The population in this case has 250 members, and so each adjacent
pair has received 20 or more matings between printings. The family size is
5, so this implies 100 crossover operations per pair between printings. The
crossover is a mixture of 30/95 uniform with p = 0.04, 30/95 one point,
10/95 two point, 5/95 5 point, and 20/95 10 point®. A version making 50
runs can be found in dejong.sp2. The populations come from printing out
the population of the first run of this experiment at the indicated times.

If we compare the strings with function values 0.000001 and 0.0, we
see that there is a small Hamming cliff, namely the last four bits of the first
substring are complements in the two values, and three bits are complements
in the second substring. This suggests that the Hamming cliff argument may
have some merit. However, there is an even greater difficulty. If we look
at the the first two strings after either 10000 or 15000 matings, which have
values 0.000001 and 0.000004, then we see that no crossover of these strings
could produce the optimal string. The required bits are simply not available.

The Hamming distance between the second and third strings of the pop-
ulation is 10 after 10000 matings and 9 after 15000 matings. In each case,
exactly two nonadjacent bits must be exchanged to produce the optimal
string, while any other cross would produce a pair of strings with a higher
minimal value. If we were using uniform crossover, this would imply that the
expected number of evaluations would be from 512 to 1024 before the opti-
mal string was produced. In fact, it appears that it was a mating between
the second and third strings that produced the optimal.

Similar blockings occur elsewhere in the population. Notice that it is
not the Hamming cliff per se that causes the problem, but rather that there
are few or no bits in strings with values close to the optimal that can be
exchanged to produce the optimal. On the other hand, mutation, or small
stochastic hill climbing excursions might aid in generating the optimal string
from the nearby strings.6

After this analysis, Gray code capability was added to the De Jong
functions. The tests in dejong.1 to dejong.5 were rerun interpreting the

®There is nothing magic about 95, its just what the frequencies added up to.
5The urge to violate invariance becomes almost overpowering here.

30

binary strings as Gray codes. The only case in which there was improvement
was in function number 2, although the test still failed to find an optimal
value. In all other cases the performance degraded significantly.

These experiments and analysis give support to the suspicion that Gray
coding the De Jong functions benefits the mutation operator by removing
the Hamming cliffs that act as barriers to stochastic bit-wise hill climbing.

The patterns in the population above do suggest that a crossover oper-
ator that exchanges just a few bits, say one or two or three, could be useful
in many situations. In fact, the use of uniform with p = 0.04 and the 10
point crossover are attempts to do just that. These are reasonably effective,
but the number of bits in the strings makes it difficult to achieve the desired
effects with these operators. However, a better crossover would focus on the
positions in which the strings differ, and select exactly & bits to exchange.
Crossover is a mechanism for restricting the search space to the Hamming
closure of two strings. It is reasonable then to design crossover operators
that focus on this space.

Tests using shifted centers [7] were also performed. Only f; and f3
seemed to be significantly affected by the offsets. Function f; required
considerably more search time, while f3 required considerably less. The
minimum value of the latter was increased due to the shift used. Little
experimentation or analysis has been done as of this writing.

Finally, a test using no sorting and no elitism seemed to perform marginally
better on f,. This may indicate that it is a good idea to either mate other
than adjacent pairs, or allow a bit of stochastic movement, or it may be a
statistical anomaly. It showed a slight improvement throughout the search
averaged over 50 runs.

5 Conclusions

The analysis in this paper has shown the need to understand not only the
construction, propagation and recombination of building blocks, but also
the structure of the search space constructed by the crossover operators and
the mapping of function values onto that space. There seems to be little
opportunity to apply the study of hyperplane sampling that underlies much
of GA analysis to GIGA.

The schema theorem predicts the rapid increase of higher valued schemata
under GAs. The down side of that analysis is the rapid destruction of in-
formation that might prove valuable. GIGA on the other hand has the

31

capability of quite bizarre behavior, that not only takes advantage of the
functions in which the GA assumption holds but can also take advantage
of more indirect relationships in the functions. On the down side for the
current implementation of GIGA, it is sometimes hard to propagate values
when the crossover space does not reflect value distribution in a helpful way.

In [14] Grefenstette extends an analysis begun in [1] and carried forward
in [16]. He defines monotonic fitness functions as ones which do not change
the relative orders of the elements with respect to the objective function.
GIGAs as currently implemented do not use fitness functions, or rather the
objective function is the fitness function, and in fact behavior is easily seen
to be unaffected by such scalings. Therefore, by default GIGA uses strictly
monotonic fitness.

A selection algorithm is monotonic [14] if the growth rate of a represen-
tative of the search space in the population at time ¢, gr(z;) is related to its
value by

gr(z:) < gr(z;) <= fla:;) < fz;)

It is strictly monotonic if in addition
fQai) < faj) == gr(zi) < gr(z;)

It is easily seen that GIGA does not satisfy these definitions. In fact,
it seems unlikely that any notion of increasing trials will help in the anal-
ysis of GIGA. Rather it is the recombination of material, and thereby its
propagation through the population that is the secret to its success. Re-
combination is the key to the effective use of a population of search space
instances. In this way GIGA may make better use of the recombinatorial
powers of crossover than traditional GAs in many situations.

A secondary population effect is memory of previous trials, and this may
be especially important if mutation is used. An argument can be made on
this basis for variable sized populations, that grow as mutation is used to
prevent too much loss of material. Such possibilities should be explored in
future research.

It may be reasonable to combine GIGAs with GAs. Some ideas have been
proposed in [18]. For example, a GIGA could be used for a while, then a GA
could be used to replace individuals of lower fitness, mutation introduced,
and the GIGA used for further recombination attempts. Such approaches
are left for future exploration, perhaps after a better understanding of the
crossover search space is obtained.

32

References

[1]

[2]

[3]

James E. Baker. Analysis of the Effects of Selection in Genetic Algo-
rithms. PhD thesis, Vanderbilt University, Department of Computer
Science, 1989.

Joseph Culberson. GIGA program and experiments, 1992. ftp
thorhild.cs.ualberta.ca in pub/GIGA/SHAR.Z.

Joseph C. Culberson. GIGA program description and operation. ftp
thorhild.cs.ualberta.ca, April 1992.

Lawerence Davis, editor. Genetic Algorithms and Simulated Annealing.
Research Notes in Artificial intelligence. Morgan Kaufmann, 1987.

Lawerence Davis, editor. Handbook of Genetic Algorithms. Van Nos-
trand Reinhold, 1991.

Lawrence “David” Davis. Re: Gas and very fast simulated re-
annealing. GA-list: Genetic Algorithms Digest, 5(37), December 1991.
ftp ftp.aic.nrl.navy.mil.

Lawrence “David” Davis. Re: Mutation, bitclimbing and test
suites. GA-list: Genetic Algorithms Digest, 6(2), January 1992. ftp
ftp.aic.nrl.navy.mil.

K.A. DeJong. Analysis of Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, The University of Michigan, 1975.

Larry Eshelman. Bit-climbers and naive evolution. GA-list: Genetic
Algorithms Digest, 5(39), December 1991. ftp ftp.aic.nrl.navy.mil.

Larry J. Eshelman. The CHC adaptive search algorithm: How to
have safe search when engaging in nontraditional genetic recombina-
tion. In Gregory J. E. Rawlins, editor, Fondations of Genetic Algo-
rithms (FOGA 1), pages 265-283. Morgan Kaufmann, 1991.

Larry J. Eshelman and J. David Schaffer. Re: GAs and very fast
simulated re-annealing. GA-list: Genetic Algorithms Digest, 5(37), De-
cember 1991. ftp ftp.aic.nrl.navy.mil.

David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Publishing Company, Inc., 1989.

33

[13]

[14]

[17]

[18]

David E. Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic
algorithms: Motivation, analysis, and first results. Complex Systems,
3:493-530, 1989.

John J. Grefenstette. Conditions for implicit parallelism. In Gregory
J. E. Rawlins, editor, Foundations of Genetic Algorithms (FOGA I),
pages 252-261. Morgan Kaufmann, 1991.

John J. Grefenstette. GENESIS 1.2ucsd. Enhanced version by
Nicol N. Schraudolph, 1991 Version. ftp iuvax.cs.indianna.edu in
pub/alife/software/unix/GAucsd.

John J. Grefenstette and James E. Baker. How genetic algorithms work:
A critical look at implicit parallelism. In John J. Grefenstette, editor,
Genetic Algorithms and Their Applications: Proceedings of the Third
International Conference on Genetic Algorithms. Erlbaum, 1989.

John H. Holland. Adaptation in Natural and Artificial Systems. Uni-
versity of Michigan Press, 1975.

Michael Lewchuk. Genetic invariance: A new approach to genetic al-
gorithms. Master’s thesis, University of Alberta, Edmonton Alberta,
April 1992. Technical Report TR 92-05 “Genetic Invariance: A New
Type of Genetic Algorithm” ftp thorhild.cs.ualberta.ca.

Gunar E. Liepins and Michael D. Vose. Representational issues in ge-

netic optimization. Journal of Frxperimental and Theoretical AI, May
1991.

Gregory J. E. Rawlins, editor. Foundations of Genetic Algorithms.
Morgan Kaufmann, 1991.

Bruce Rosen and Lester Ingber. Re: GAs and very fast simulated re-
annealing. GA-list: Genetic Algorithms Digest, 5(40), December 1991.
ftp ftp.aic.nrl.navy.mil.

Nici Schraudolph. Re: GAs and very fast simulated re-annealing.
GA-list: Genetic Algorithms Digest, 6(1), January 1992. ftp
ftp.aic.nrl.navy.mil.

34

