
The illiterate of the 21st century will not be those who cannot read and write, but those
who cannot learn, unlearn, and re-learn.

– Alvin Toffler



University of Alberta

The Baseline Approach to Agent Evaluation

by

Joshua Davidson

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Joshua Davidson
Spring 2014

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

Where the thesis is converted to, or otherwise made available in digital form, the University of
Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior

written permission.



To Kim
My co-author in life



Abstract

Efficient, unbiased estimation of agent performance is essential for drawing statistically sig-

nificant conclusions in multi-agent domains with high outcome variance. Näıve Monte Carlo

estimation is often insufficient, as it can require a prohibitive number of samples, especially

when evaluating slow-acting agents. Classical variance reduction techniques typically re-

quire careful encoding of domain knowledge or are intrinsically complex. In this work, we

introduce the baseline method of creating unbiased estimators for zero-sum, multi-agent

high-variance domains. We provide two examples of estimators created using this approach,

one that leverages computer agents in self-play, and another that utilizes existing player

data. We show empirically that these baseline estimators are competitive with state-of-

the-art techniques for efficient evaluation in variants of computer poker, a zero-sum domain

with notably high outcome variance. Additionally, we demonstrate how simple, yet effec-

tive, baseline estimators can be created and deployed in domains where efficient evaluation

techniques are currently non-existent.
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Chapter 1

Introduction

Efficiently evaluating agent performance is an important problem for many highly stochastic

artificial intelligence domains. An agent’s performance in this context is often measured as

the agent’s expected value given a particular environmental configuration. Measuring this

performance is typically achieved by averaging the values of the observed outcomes from

random samples of the agent and the environment. This process, referred to as Monte Carlo

estimation, provides an unbiased estimate of an agent’s true performance and is probably

the most common approach to evaluation given its simplicity.

Since the Monte Carlo approach only provides an estimate for the expected value of an

agent, the statistical confidence of this estimate must also be taken into consideration when

making claims regarding the agent’s true performance. In order to increase the level of

statistical significance when using Monte Carlo estimation, one can simply increase the

number of random samples being used in the evaluation. While not problematic when

the stochasticity of the agents or the environment is low, as the entropy in the system

increases, so does the number of samples required by Monte Carlo estimation in order to

produce statistically significant estimates. This problem is further compounded when the

costs associated with generating samples is high, such as when evaluating human agents or

slow-acting computer agents. In order to make such costs manageable, more sophisticated

evaluation techniques must be put to use in any high variance domain.

The main focus of this work explores a new approach to evaluating agent performance in

multi-agent, zero-sum domains. Entitled the baseline approach, this method is designed to

be an effective framework for creating low-variance, unbiased estimators that is as simple as

Monte Carlo estimation in agent evaluation settings. This work also provides two practical

implementations of the baseline approach designed for use in two different agent evaluation
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scenarios. The first application of the baseline approach is designed for situations where

access to competent computer agents for the evaluation domain exist and are easily acces-

sible. We call estimators created in this manner agent baseline estimators and show results

of their effectiveness in the domains of Texas hold ’em poker and Ad Auctions [22]. The

second application of our approach is targeted at a more general case of the agent evaluation

problem, one in which competent computer agents who can act in the evaluation domain

may not exist. In this case, creation of the baseline estimator relies on the existence of

player data for the domain of interest, which is often much more plentiful than competent

computer agents. We refer to estimators created using player data as data baseline estima-

tors, and we analyze their performance by experimenting in the domain of Texas hold ’em

poker on a mixture of human and computer agent data.

The overall goal for the analysis of both applications of the baseline approach is to show

that estimators of this nature are simple to implement, effective in their use, and should be

considered for many agent evaluation scenarios.
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Chapter 2

Background and Related Work

This chapter provides an overview of the core concepts regarding the problem of efficiently

evaluating agents in zero-sum domains. We begin with the definition of extensive form games

with imperfect information as a way of introducing some of the notation and terminology

used throughout the body of this work. Following this, we give the definition of Monte

Carlo estimation, since it is the method we will use as a base comparison for all of the

evaluation techniques explored in this work. The remainder of the chapter is then dedicated

to introducing various techniques for creating low-variance, unbiased estimators, which are

often referred to as variance reduction techniques. For each variance reduction technique,

we will describe its general formulation and when applicable, give examples of the technique

applied to the problem of agent evaluation. This chapter concludes with a brief description

of the various domains used in the empirical analysis of our approach.

2.1 Extensive Games With Imperfect Information

Extensive games provide a framework for describing multi-agent interaction in sequential

decision making problems. Agents in an extensive game are able to choose policies that can

reason about their plan of action whenever they are required to make a decision. Typically,

the agents and chance alternate acting within the game until some terminal history is

reached, upon which the players each receive some reward. In cases where an agent is

unable to observe other agents’ actions or the actions of chance, indistinguishable sequences

of events can be created from the point of view of the observing agent. Games with this

property are referred to as games with imperfect information and can be defined as follows:

Definition 1 (Extensive Game) [[16], p. 200] A finite extensive game with imperfect

information has the following properties and components:
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• A finite set of N players.

• A finite set H of sequences, the possible histories of actions such that the empty

sequence is in H and every prefix of a sequence in H is also in H. Z ⊆ H is the

set of terminal histories. A(h) = {a : (h, a) ∈ H} are the actions available after a

nonterminal history h ∈ H\Z.

• A player function P that assigns each nonterminal history to a member of N ∪ {c}

where c represents chance. P (h) is the player who takes an action after history h.

If P (h) = c, then chance determines the action after history h. Let Hi = {h ∈ H :

P (h) = i} be the set of histories where player i is next to act.

• A function σc that associates with every history h for which P (h) = c a probability

measure σc(·|h) on A(h) where each such probability measure is independent from one

another. Let σc(a|h) be the probability that action a occurs after history h.

• For each player i ∈ N , a partition Ii of Hi is the information partition for player

i with the property that A(h) = A(h′) whenever h and h′ are in the same member of

the partition. Ii ∈ Ii is an information set for player i.

• For each player i ∈ N , a utility function ui : Z → R that maps each of the the terminal

histories in Z to some real value, i.e.: ui(z) is the reward that player i receives when

reaching terminal history z. If
∑
i∈N

ui(z) = 0 for all z ∈ Z then the game is said to be

zero-sum.

Empirical analysis of the contributions presented in this work is performed in domains that

can all be represented by extensive form games of imperfect information that exhibit the

zero-sum constraint, although they need not necessarily be two-player .

2.2 Monte Carlo Estimation

In the context of agent evaluation, Monte Carlo estimation refers to the method of gen-

erating random repeated samples of agents interacting within a specific environment in

order to compute their relative performance to one another. By simply sampling outcomes

from the agents and the environment, the Monte Carlo method provides a näıve mechanism

for computing the performance of the agents when the samples are drawn in an identi-

cally and independently distributed (i.i.d.) fashion [12]. The volume of samples needed to

make statistically significant claims regarding an agent’s performance depends highly on the

stochasticity of the agent’s policies and of the environment itself.
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Formally, let X = (X1, . . . , Xn) be the random variable corresponding to the observed

outcomes of an agent whose expected value we are trying to estimate. The Monte Carlo

approach then averages together all of the samples of X in order to create an unbiased

estimator of E[X]. This average, denoted as X̄, is computed as

X̄ =
1

n

n∑
i=1

Xi (2.1)

where Xi is the outcome of a single sample of the agent’s behaviour and n is the number of

observed samples. It is clear from this that as we provide more samples, the variance of X̄

decreases by the following:

Var[X̄] = Var

[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

Var[Xi] =
Var[X]

n
(2.2)

Often the biggest problem with using the Monte Carlo method to estimate E[X] is that the

number of samples required to achieve some fixed level of accuracy may be arbitrarily large

for a given domain, as it is directly related to the variance of X [12].

2.3 Efficient Estimation

The goal of efficient estimation techniques is to increase the efficiency of the Monte Carlo

method when estimating E[X] by reducing the variance of the estimate. This can be done

by either reducing the number of samples required to compute an accurate estimate or by

increasing each sample’s quality without adding bias.

2.3.1 Antithetic Variates

Antithetic variates are one common approach to reducing the variance of an observed ran-

dom variable by generating antitheses to the statistic being estimated [12]. These antitheses

are produced by introducing negative dependancies between the observed variable, X, and

the corresponding antithetic variable, Y . The antithetic unbiased estimator, Z, is then

constructed by averaging the values of X and Y

Zi =
Xi + Yi

2
(2.3)

Given that X and Y have the same expected value, the expected value of Z is

E[Z] =
1

2
(E[X] + E[Y ])

E[Z] = E[X] (2.4)
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which shows that the antithetic estimator Z is an unbiased estimator of X. Seeing that

X and Y have the same distribution and therefore the same variance, the variance of Z is

computed as

Var[Z] =
Var[X] + Var[Y ] + 2Cov[X,Y ]

4

Var[Z] =
Var[X] + Cov[X,Y ]

2
(2.5)

From the reduced variance equation, it is clear that antithetic variate estimators rely on

Cov[X,Y ] < 0 in order to be more efficient than simple Monte Carlo estimation [12]. This

of course assumes that the effort required to create instances of Y is roughly equal to that

of generating samples of X.

The biggest drawback of using antithetic variates comes from the complications associated

with guaranteeing the negative covariance when generating the antithetic pairs. In the

context of agent evaluation, some solutions to this problem can have undesirable side effects,

such as introducing the inability to evaluate an individual agent’s skill [11].

Duplicate

Duplicate is a technique for producing antithetic pairs in multi-agent games. The duplicate

approach has been used successfully in bridge [26] and computer poker [1, 13, 19] and is a

potentially effective approach to variance reduction in scrabble-like games [21]. Duplicate

methods create antithetic pairs by replicating the starting and future chance events of a

game for each configuration of the players. For scrabble-like games, this is done by setting

the order in which the tiles will be drawn and in card games, it is achieved by fixing the

order of the cards in the deck. The score for each player is their average score across all

the permutations that were sampled. The intuition behind the duplicate approach is that

the variance associated with a particularly good or bad starting position will be reduced by

scoring each instance in this way.

Using the duplicate approach for agent evaluation can create logistical problems, particu-

larly when evaluating human agents. Since duplicate requires each player to play the same

sequence of random events multiple times, the players are required to forget all past knowl-

edge from previous replications. While not particularly problematic for many computer-

agent scenarios, this restriction essentially makes it impossible to evaluate human agents.

For instance, duplicate bridge is typically scored in a very different manner than the du-

plicate approach would suggest due to this problem [26] and using duplicate in computer

poker requires the use of teams, forgoing any attempt at evaluating the performance of
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individual players [19]. Combined with the potentially laborious and error-prone task of

creating each duplicate replication, the usefulness of using the duplicate approach to create

efficient, unbiased estimators is questionable for many agent evaluation scenarios.

2.3.2 Control Variates

Control variates provide another way of creating unbiased estimators with reduced sample

variance. The control variate approach is similar to that of antithetic variates in that it

attempts to exploit certain properties of the observed random variable X [12]. In particular

given the variable whose quantity is being estimated, X = (X1, . . . , Xi), the control variate

approach is to generate a correlated control variable, Y = (Y1, . . . , Yi), whose expected

value, E[Y ], is a known quantity. Given that every (Xi, Yi) pair is i.i.d, the control variate

estimator, Z, is defined such that each Zi is computed as

Zi = Xi − c(Yi − E[Y ]) (2.6)

The sample mean of the estimator, denoted as Z̄, is then equal to

Z̄ =
1

n

n∑
i=1

(Xi − c(Yi − E[Y ])) (2.7)

For any c ∈ R, Z̄ is an unbiased estimator of E[X] since

E[Z̄] = E[X̄ − c(Ȳ − E[Y ])]

= E[X̄]− E[c(Ȳ − E[Y ])]

= E[X̄]− c(E[Ȳ ]− E[Y ])

= E[X] (2.8)

and the variance of each Zi is equal to

Var[Zi] = Var[Xi − c(Yi − E[Y ])]

= Var[X] + c2Var[Y ]− 2cCov[X,Y ] (2.9)

From these equations, it follows that Z̄ has lower variance than the Monte Carlo estimate

when

c2Var[Y ] < 2cCov[X,Y ] (2.10)

This shows that the optimal choice of coefficient, c∗, is the one that minimizes the variance

of the estimator and is equal to

c∗ = −Cov[X,Y ]

Var[Y ]
(2.11)
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Thus, when using the optimal coefficient c∗, the resulting variance of Z is

Var[Z] = Var[X − c∗(Y − E[Y ])]Var[Y ]

= 1− ρ2X,Y (2.12)

where ρX,Y is the correlation between X and Y and 1−ρ2X,Y corresponds to the magnitude of

the resulting variance reduction. Essentially, the more the control variable and the observed

random variable co-vary, the less variance there will be in the resulting estimator.

The difficulty in practice when trying to use c∗ comes from the observation that if E[X]

is unknown, Var[X] and ρX,Y are likely to be unknown as well. In this situation, we

can estimate the optimal coefficient, ĉ, by replacing Var[X] and ρX,Y with their sample

counterparts. Let Ẑ be the estimator computed using the estimated optimal coefficient

ĉ. Note that by applying the strong law of large numbers, as the sample size n → ∞, ĉ

converges to c∗ with probability 1 [12]. This estimation introduces some bias, precisely, the

bias of Ẑ is equal to

Bias(Ẑ) = E[Ẑ]− E[X]

= −E[ĉ(Y − E[Y ])] (2.13)

This bias is not necessarily zero since ĉ and Ȳ are not independent in this setting. However

the bias is typically on the order of O(1/n) and the standard error being of O(1/
√

(n)) [12].

Some of the same problems that arise with antithetic variates are also true of control variates.

While the samples generated for use in the control do not have to be strictly negatively

correlated, they do require a high degree of correlation in order to make the resulting

estimator effective. Additionally, the fact that E[Y ] needs to be a known value is often

problematic. Control variates have, however, been used with success in agent evaluation [11]

and as a method of reducing variance in Monte Carlo Tree Search techniques [15, 23]. Since

the majority of this work is based off of this approach, we will describe an application of

control variates in Chapter 3.

2.3.3 Advantage Sum Estimators

Zinkevich et al. provided a general framework for creating unbiased estimators for agent

evaluation in stochastic domains, which are known as advantage sum estimators [27]. Ad-

vantage sum estimators are created by separating out the effects of skill, luck and positional

advantage for each decision an agent makes. Let H be the set of all reachable histories,

Z ⊆ H be the subset of all terminal histories and the utility function u : Z → R be the
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function that maps terminal histories to real values. The goal of the advantage sum estima-

tor is then to provide a low-variance, unbiased estimate for E[u] given the dynamics of the

system [27].

Given a value function V : H → R that maps histories to real values, let SV , LV and PV

be the components of V that correspond to the skill, luck and positional values of V . These

components can be described as follows [24]:

SVj
(z) =

∑
havz
P (h)6=c

Vj(ha)− Vj(h)

LVj (z) =
∑
havz
P (h)=c

Vj(ha)− Vj(h)

PVj
= Vj(∅)

Vj refers to the value function for player j, ha refers to the history h followed by action a

and the function P (h) determines which player acts after history h, either one of the agents

or chance, c. Given that

uj(z) = SVj
(z) + LVj

(z) + PVj
(2.14)

the advantage sum estimator is defined as

ûVj (z) = SVj (z) + PVj (z) (2.15)

It follows that advantage sum estimator provides an unbiased estimate of uj(z) when

E[LVj (z)] is zero from the observation that E[ûVj ] = E[uj ] and Var[ûVj ] ≤ Var[uj ]. Thus,

the key to creating an unbiased advantage sum estimator is being able to craft a value

function to satisfy this constraint, known as the zero-luck constraint.

DIVAT and MIVAT

DIVAT [6] and MIVAT [24] are both implementations of advantage sum estimators in the

domain of Texas hold ’em poker. The DIVAT estimator was created using a handcrafted

value function based on an expert-knowledge, hand-crafted policy specifically designed for

the two-player limit variant of Texas hold ’em. DIVAT evaluates the outcome for each action

in a hand by assuming that players play according to the DIVAT policy from that action

forward, much in the same way David Wolfe evaluated actions in the game of blackjack [25].

Each of the players is awarded a score based on how their play impacted the outcome of the

game by comparing the value realized by the player versus the value that would have been

achieved had the DIVAT policy been used in the same situation.
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This type of evaluation was proven to be unbiased by Zinkevich et al. [27] and the empirical

results showed that the DIVAT estimator was able to achieve a 75% to 85% reduction in

the variance over that of Monte Carlo estimation when evaluating agents in two-player limit

Texas hold ’em. Since the DIVAT estimator’s value function is based on a hand-coded

policy, its use is very limited outside the domain of two-player limit Texas hold ’em. Other

simpler, more generic policies have been experimented with using this framework, such as

always-call and always-raise, but these policies tend to underestimate or overestimate the

values of hands and produce much weaker low-variance estimators.

MIVAT [24] is an extension of the DIVAT framework that removes the need to hand-code

a value function. The MIVAT value function is instead learned from samples of player data

based on an optimization, the objective of which is to find a value function that minimizes

the variance of the estimator. By using a reformulation of the advantage sum estimator

approach, the resulting optimization is defined as

min
Vj

(
ûVj (zt)−

1

T

T∑
t′=1

ûVj (zt′)

)2

(2.16)

where z1, . . . , zT are sample outcomes from the data. For tractability, the MIVAT estimator

uses a linear value function such that

Vj(h) = φ(h)T θj (2.17)

where φ : H → Rd is a mapping of histories to a vector of d features. It turns out that the

optimal θ∗j has a closed-form solution [24], which is then used in the MIVAT value function.

MIVAT has the advantage over DIVAT in that it can be used in more domains than just

two-player limit Texas hold ’em. For instance, MIVAT has been used in multi-player and

no-limit variants of poker and can be used in any finite-horizon MDP or POMDP or in

any extensive form game. Using a base set of features, MIVAT performs equally as well as

DIVAT in two-player limit Texas hold ’em and outperforms DIVAT when DIVAT scores are

included as a feature. MIVAT, although much more flexible than DIVAT, requires designing

and selecting meaningful features in order to learn a value function capable of strong variance

reduction, which can be a non-trivial task in many domains.

2.3.4 Importance Sampling

Importance sampling is a variance reduction technique that attempts to lower the variance

of an observed random variable X = (Xi, . . . , Xn) by changing the underlying distribution

from which samples of X are generated. This is done by giving more weight to the important
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samples of X in order to increase sampling efficiency of Monte Carlo estimation [12]. More

specifically, assume that the random variable X has probability density f , and that each

Xi ∈ X is drawn according to f . Importance sampling states that instead of drawing

the samples Xi, . . . , Xn from the distribution f , they are drawn according to some other

probability density, g, that satisfies the equation

f(x) > 0⇒ g(x) > 0 (2.18)

This introduces bias into the sampling of X, however the bias can be accounted for by

weighting the terms properly when estimating E[X]. The weighting factor, w, is then done

according the likelihood ratio between f and g where

w(Xi) =
f(Xi)

g(Xi)
(2.19)

Let Z be the estimator such that

Zi = w(Xi)Xi (2.20)

The sample mean of the estimator, Z̄, is then

Z̄ =
1

n

n∑
i=1

Zi (2.21)

By ensuring that the weighting is done according to Equation 2.19, Z̄ is a provably unbiased

estimator of X̄ [12].

Comparing the variance when estimating E[X] with and without importance sampling de-

pends entirely on the choice of g. Given that the variance of Z is

Var[Z] = E[Z2]− (E[Z])2 (2.22)

we only need to consider the E[Z2] term when comparing the Var[X] to the Var[Z]. If we

expand this term out, we get

E[Z2] = w(X)X2 (2.23)

Comparing E[Z2] and E[X2] shows that an arbitrary choice of g could lead to an infinitely

larger or smaller variance in the importance sampling estimator. Unfortunately there is no

general rule for choosing g, thus choosing an effective importance sampling density is often

referred to as an “art” [12].

Importance Sampling and Poker

Importance sampling techniques have been used with success in the domain of computer

poker for both agent evaluation and policy selection [4, 7]. Bowling et al. [7] applied the
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importance sampling technique in the domain of Texas hold ’em poker as a way of creating

low-variance, unbiased estimators for post-game analysis. Although their work describes how

to apply importance sampling for different on-policy and off-policy cases, we will summarize

the off-policy full-information usage, as it is the most applicable to agent evaluation. Agent

evaluation in this setting refers to the situation where, given a function that maps terminal

histories to real values, V : Z → R, we would like to estimate Ez|σ[V (z)] where σ is the

policy we are creating the estimator for. The terms off-policy and full-information are used

to describe how the outcomes are generated and evaluated. In the off-policy scenario, the

outcomes are generated according to some distribution πσ̂, where σ̂ differs only for player i

from σ and the goal of the evaluation is to assess how well a different strategy would perform

in place of player i. Full-information in this context merely states that all of the information

for every outcome is observable, including all of the private information for each player.

The off-policy importance sampling estimator is constructed by examining the subset of

terminal histories U(z′) ⊆ Z such that z′ ∈ Z and z′ ∈ U(z′), where U(z′ ∈ Z) ⊆ Z is

a mapping of terminal histories to a set of terminal histories. In this mapping, z′ ∈ U(z′)

and an unbiased estimator is constructed by considering the history z′ whenever a history

from the set U(z′) is observed. Alternatively, the set of synthetic histories considered when

observing z can be denoted as the set U−1(z). The importance sampling estimator, VU (z),

is then

VU (z) =
∑

z′∈U−1(z)

V (z′)
πσ(z′)

πσ̂(U(z′))
(2.24)

The estimator weights the value of every z′ by the probability of reaching z′ according to

both πσ(z′) and πσ̂(U(z′)). Note that VU (z) is not an estimate of V (z), rather they have

the same expected value and good choices of U can be constructed to only consider known

strategies σi and σ̂i. Also, as long as πσ̂i (z) is non-zero for all z ∈ Z then VU is unbiased [7]

Ez|σ̂[VU (z)] = Ez|σ[V (z)] (2.25)

The simplest choice for U is simply U(z) = {z}, which is simply known as basic importance

sampling, where if σi = σ̂i, the weighting is 1 and is equal to simple Monte Carlo estimation.

Two other choices for U that only depend on σi and σ̂i are game ending actions and private

information importance sampling [7]. Importance sampling with game ending actions only

considers prefixes of z where the remaining decisions are for player i or chance. This allows

for the importance sampling estimator to evaluate actions that could have been made by

player i earlier in the sequence that would have ended the game early, such as folding in

Texas hold’ em poker. Importance sampling with private information considers the histories

where player i had differing private information as these histories are indistinguishable from
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the perspective of the other players. An example of this in Texas hold ’em would be the

situations where player i held different private cards. These two choices can also be combined

together and the value function V can also be replaced with any unbiased estimate of V ,

such as values from a duplicate estimator. Importance sampling in this manner only works

when the full strategy is known, which means it is limited to evaluating the performance of

accessible computer agents.

2.3.5 Additional Applied Statistical Estimators

In addition to the applications of efficient estimators previously described, this section sum-

marizes a collection of other work that does not specifically fall into any of the aforemen-

tioned general categories.

Monte Carlo Estimation in Blackjack

In the game of blackjack, David Wolfe explored the problem of evaluating how well an

agent performs with respect to an optimal policy [3, 25]. Since a good blackjack player

may have to play upwards of 1.2 million hands in order to get an accurate estimate of their

own skill [25], Wolfe used a form of Monte Carlo estimation based on the control variate

approach to reduce the variance for any given hand.

Wolfe’s method first involved creating a base oracle or near-oracle policy, denoted as σ.

This policy was then used to evaluate the performance of an agent, P , by comparing the

winnings of the agent, w(P ), to the winnings of base policy, w(σ), for a given state of the

deck. The estimated expected winnings of the agent then becomes

E[w(P )] = E[w(σ)] + E[w(P )− w(σ)] (2.26)

Seeing that the strategy of the agent being evaluated may not be known for every possible

deck configuration, Wolfe creates an estimator by assuming that after the agent acts, all

following actions will be according to that of σ. Scores are then assigned to the agent based

on the difference in the expected value it would have received for the actions in the agent’s

strategy that differ from σ. Formally, let Pi,j denote using the agent’s strategy for the

sequence of actions from i → j and σi,j be the sequence of actions from i → j according

to the policy σ. The expected value for the player then is the sum of these differences for

every action made in a given hand,

E[w(P )] = E[w(σ)] +

n∑
i=1

E[w(P0,i, σi+1,n)− w(P0,i−1, σi,n)] (2.27)
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Wolfe evaluated agents using a high-low counting strategy and observed that his evaluation

technique converged anywhere from 100 to 2500 times faster than that of pure Monte Carlo

estimation depending on the number of decks and the shuffling policy of the shoe. This

approach proved to be a powerful technique for agent evaluation and the basis for techniques

such as DIVAT. Unfortunately, Wolfe’s approach may not be tractable for many domains

as it requires creating a near oracle policy and computing the expected value of that policy

for all possible instances of the domain.

Monte Carlo Rollouts in Backgammon

In the game of backgammon, Gerald Tesauro considered the the task of computing the near-

oracle policy necessary to evaluate agent decisions using Wolfe’s approach highly impractical

for evaluating the play of backgammon agents [17]. When building his TD-Gammon agent,

he instead tackled this problem by using a form of Monte Carlo estimation, called rollouts,

to evaluate each action in the game. The Monte Carlo rollout approach estimates the score

of each action by randomly assigning future chance events to the game and playing the rest

of the moves out according to some fixed rollout policy, σ. This is then repeated multiple

times and the best play is recorded as the rollout that achieved the highest equity. The

difference between each rollout and the best one observed provides a score for the action

being evaluated and the average score for all of the rollouts provides a low-variance, unbiased

estimate for the value of that action. While the rollout policy may not be optimal, Tesauro

observed that the same policy tends to lose roughly equal amounts on either side of the

match when used to decide actions for both players during the rollouts. This means that

in backgammon, even intermediate policies tend to be sufficient in estimating the equity of

many of the actions.

Tesauro and Galperin also surmised that if the rollouts could be performed in real-time,

they could be used to provide low-variance estimates for action selection during play [18].

The main disadvantage to this approach comes from the speed at which the rollouts are

computed, which can be very slow for deep searches and uninformative if the depth is too

shallow.

Variance Reduction in Monte Carlo Tree Search

Recent work has been done using variance reduction methods in Monte Carlo Tree Search [23].

Monte Carlo Tree Search (MCTS) algorithms are methods of finding optimal decisions by

constructing search trees based on random samples for a given domain [8], a popular variant
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being the Upper Confidence Bound for Trees (UCT) algorithm [15]. The UCT algorithm

builds a partial search tree by using UCB1 [2] as the tree policy, treating the value of each

child node as the expected value approximated by the Monte Carlo rollouts that occurred

from the child node. Since these values are being treated as random variables with un-

known distributions and are being sampled according to some stochastic process, they can

be subject to both error and bias.

While much work has been done on reducing the bias of these estimates, Veness et al. ap-

proached the problem of reducing their variance by leveraging the variance reduction tech-

niques of control variates and antithetic variates [23]. Although general in approach, their

work specifically focused on applying these techniques as modifications to the UCT algo-

rithm.

The control variate modification to the UCT algorithm replaces the value of state-acton pairs

by a control variate counterpart. That is, for every given state-action pair (s, a) ∈ SxA, the

value, Xs,a, is replaced by

Zs,a = Xs,a − cs,a(Ys,a − E[Y s, a]) (2.28)

Here Ys,a acts as the control variable and has a known expected value for all state-action

pairs. The controls were generated such that for a random trajectory, St = st, At =

at . . . Sn = sn, An = an,

Yst,at =

n−1∑
i=t

E[I[b(Si+1]|Si = si, Ai = ai]− P[b(Si+1|Si = si, Ai = ai]) (2.29)

In this formulation, the function b : S → {true, false} acts as a boolean function applied

to the state S and I is the boolean indicator of that function. This simplifies the control

variate for any state-action pair since the expected value, E[Yst,at ], is zero [23].

The antithetic variates approach was applied to UCT by storing the realized trajectory

starting with si+1, ai+1 . . . sn, an for each state-action pair, si, ai, at each node in the tree.

This stored trajectory can then be used to create antithetic paths through the space on

future iterations and the values of the two outcomes are averaged together as per the stan-

dard antithetic variate approach. Veness et al. showed that using these variance reduction

techniques in UCT provided a significant reduction in the number of simulations required

to reach a desirable level of play in three different test domains [23].

2.4 Evaluation Domains

In this section we introduce the domains for which the agent evaluation approaches explored

in this work were evaluated with. For each domain, a brief overview of the rules and any
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modifications that were made in the evaluation section are provided.

2.4.1 Texas Hold ’em Poker

Texas hold ’em is one of the most popular games in the family of poker card games. It has

appeared on television, in movies [10] and as a part of the World Series of Poker, a venue

where thousands of professionals compete every year for millions of dollars [20]. Texas hold

’em was also the variant of poker used for the Man versus Machine poker matches [19] and is

currently the variant of poker used by the Annual Computer Poker Competition (ACPC) [1].

These reasons, coupled with the intrinsically high outcome variance associated with poker

games, have made Texas hold ’em an enticing choice for benchmarking the performance of

agent evaluation techniques. In this section, we will outline the general rules common to all

forms of Texas Hold ’em poker, and describe the specific variants and rules used by the 2013

Annual Computer Poker Competition, with is the primary domain used in the evaluation

of our approach.

General Rules

Texas hold ’em poker is a card game played with anywhere from two to ten players using

the standard 52 card deck. Each hand of Texas hold ’em consists of four rounds, commonly

known as the pre-flop, flop, turn and river. Each round begins with a dealing phase, the

structure of which differs slightly between rounds. The dealing phase in the pre-flop has the

dealer deal every player two face-down hole cards, which is their private information for the

hand. In the remaining rounds, the dealer deals face-up cards which are shared between all

players, which are referred to as the board cards. Three board cards are dealt at the start of

the flop round and one more board card is dealt in each of the turn and river rounds. This

gives each player a maximum of seven cards from which to assemble their poker hand.

After the dealing phase in each round, a betting phase begins where the players are able to

take turns making one of three different actions. The players may place wagers, known as

bets, call a previously made bet, or fold their hand, forfeiting any wagers they have made

or called. The winner of a hand in Texas hold ’em is either the last player remaining if

everyone else folds, or the player with the best five card poker combination of their hole

cards and the board cards. The winner receives the other players’ wagers and the goal of

Texas hold ’em is to maximize one’s profit over many hands.
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Betting Structures

The betting structure in Texas hold ’em defines what legal betting actions are available to

players for a given situation. The most common betting structures, and those of interest in

this work, are that of no-limit and fixed-limit. The no-limit betting structure allows players

to make any size of bet greater than or equal to some minimum value and less than or equal

to the total amount of chips they currently have available to them. With fixed-limit, the

betting actions are split into two different fixed bet sizes, known as the small bet and big

bet. The small bet is the size of bet a player may make in the pre-flop and flop rounds and

the big bet, which is typically twice the size of the small bet, is used in the turn and river

rounds. The fixed-limit betting structure also specifies a maximum number of bets in each

round. This maximum is commonly equal to three bets in the pre-flop round and four in

every other round.

In both betting structures, the players may also check the bet, which is to make a bet of

zero chips. Players may also call a bet larger than their remaining chips which allows them

to continue in the hand, however they can only win or lose an amount equal to their own

wager. Any player who has wagered all of their remaining chips is referred to as being all-in

and may no longer perform any actions for the remainder of the hand.

ACPC Rule Modifications

The ACPC uses what is known as Doyle’s game in order to circumvent issues that can arise

regarding the amount of chips available to the players throughout the course of a match.

In Doyle’s game, all of the players have their chips reset to some pre-defined number before

each hand begins. In this way, each hand is played for exactly the same value and can be

considered independent of every other hand.

2.4.2 Trading Agent Competition

The Trading Agent Competition (TAC) is an annual computer agent competition where

autonomous agents interact in various trading agent type problems. Typically, agents in

this domain act as the broker or seller of goods and services in a simulated consumer market.

The particular domain explored in this work is that of the TAC Ad Auctions (TAC-AA)

game [22].
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TAC Ad Auctions

TAC-AA is a competition where the customers are simulated users of an internet search

engine and the agents must place bids for the placement of their advertisements in a home

entertainment market. The agents bids are in the form of the cost-per-click fee they are will-

ing to pay for a given advertisement with the highest bids receiving the best ad placement.

Simulated users in the system are then shown ads, which they may click on. Should the user

purchase the goods featured in the ad, revenue is generated for the agent who placed the

ad. The goal of the agents in this competition is to maximize their profit over the course of

a fixed number of days.

Customer Model

The customers in this environment are simulated users who act by querying a search engine,

clicking on advertisements and purchasing goods. Each user’s behaviour is decided by the

customer simulation model. The customer simulation model generates product and brand

dispositions for each user, which determine the queries that particular user will submit to

the search engine. Each query produces a ranked list of advertisements, called impressions,

from which the customer model provides transition probabilities for the user. These tran-

sition probabilities determine whether or not the user will click on an advertisement in the

impression, and whether or not the user will purchase a good once they have clicked on an

advertisement.

Agent Interaction

During each day of the simulation, the advertising agents simultaneously and secretively

place cost-per-click bids for the ads they wish to show given a particular user query. The

types of advertisements an agent may show are either generic or targeted, which effect a

user’s likelihood of viewing a particular ad. Each agent also has a product specialty which

impacts the likelihood of turning a product view into a sale. Agents may impose a spending

budget for the day, which forces the search engine to stop showing advertisements for the

agent once its budget is exhausted. At the end of each day, all of the agents receive a

general report which contains the average ranking of the agents and the type of ads each

agent chose to display for a random sample of user queries. Each agent also receives a report

containing information specific to their own advertisements, such as the average per-click

cost, the number of impressions that contained their advertisements, and the total number

of advertisement clicks they received.
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TAC-AA Rule Modifications

The rules regarding the scoring of the TAC-AA competition were modified in order to create

a zero-sum environment. This was done by averaging the scores of all of the agents after

each match and subtracting the average from each individual agent’s score.
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Chapter 3

The Baseline Approach

This chapter outlines a general approach for creating low-variance unbiased estimators based

on the control variate methods. We call this the baseline approach to variance reduction,

which provides a simple framework for creating control variable pairings in agent evaluation

scenarios. Estimators created using this framework are referred to as baseline estimators,

two different applications of which are detailed in Chapters 4 and 5.

3.1 Creating Baseline Estimators

The general baseline approach is mainly a reformulation of the control variate technique

described in Section 2.3.2. This reformulation facilitates easy control variable generation

when the environmental randomness in a domain is independent of the agents’ actions. In

this setting, we assume that the randomness of a domain can be represented as a single

random variable, Q, with q ∈ Q denoting the set of possible values for Q, and qi denoting

the i -th such instance drawn from Q. An example of this could be the seed of the random

number generator used to generate all of the stochastic events in the environment.

Let g : q → R be the function that specifies the performance of an agent for a particular

instance of the domain and X = g(Q) be the random variable whose expectation we are

estimating. In order to generate the control pairs for each instance in X, the baseline

approach utilizes a function β : q → R which we call the baseline scoring function. Applying

the baseline scoring function to an instance q ∈ Q produces a baseline score for the instance,

which can be seen as the expected level of performance for an agent given the random

instance. Creating the control variate for the observed instances is then achieved by creating

a baseline score for each qi instance.
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It is possible that some of the instances in the observed data are incomplete, meaning that

the chance events may be unknown. The baseline scoring function must be able to handle

this case in an unbiased fashion in order to produce an unbiased estimator. One example of

this would be to randomly assign the future chance events during the computation of the

baseline score for the instance.

The control variable, Y β , used in the baseline estimator is computed simply as

Y β = β(Q) (3.1)

and the equation for the baseline estimator, Zβ , is written as

Zβi = Xi − c(Y βi − E[Y β ]) (3.2)

The sample mean of this estimator, Z̄β , is then an unbiased estimator for X̄ by Equation

2.8 and has lower variance than X̄ when X and Y β are highly correlated.

3.2 The Expected Value of Y β in Zero-Sum Domains

So far, the baseline approach differs little from the underlying control variate approach,

and still suffers from the problem of using baseline scoring functions that have a known

E[Y β ]. One easy way to handle this problem is to produce a baseline scoring function

whose expected value is zero, the approach suggested by Veness et al. in their work on

using control variates in Monte Carlo Tree Search [23]. Imposing certain conditions on the

domain and the baseline scoring function ensures that E[Y β ] will be zero, resulting in the

baseline estimator being unbiased. The conditions are as follows:

1. The utility outcomes in the domain must be zero-sum.

2. The domain must be factorable into the environment structure itself and the assign-

ment of agents to possible positions within the environment. An example of environ-

ment positions would be the order that an agent must act in a game such as poker.

3. The agents are equally as often observed in each of the possible positions.

4. The β function must only depend on the environment structure, and not on any actions

of the participating agents, or on the configurations of specific agents to environment

positions.

5. The β function must return the same baseline scores for a given instance of the envi-

ronment.
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Given these restrictions, we can examine how they impact the expected value of the baseline

scoring function, β(Q), and show that it is indeed zero.

The second and third points consider the situation where one is sampling the environment

and randomly assigning agents to positions within the environment. The fourth and fifth

points state that since the returned baseline utilities only depend on the environment struc-

ture, each positional assignment must map to the same vector of utilities. Combining the

second, third, fourth and fifth points show that because each agent has a probability of 1
n

of being placed in each of the n environment positions, the expected baseline score is 1
n

times the sum of the baseline utilities over all of the positions. This sum must be zero from

condition one, and thus, the expected baseline score must be zero.

By substituting E[Y β ] = 0 in Equation 3.2, we get a simplified equation for the baseline

estimator

Zβi = Xi − c(Y βi ) (3.3)

and the expected value of the resulting baseline estimator, Z̄β , is equal to

E[Z̄β ] = E[X̄ − cȲ β ]

= E[X̄]− E[cȲ β ]

= E[X̄]− c(0)

= E[X] (3.4)

This shows that imposing these restrictions will guarantee that the baseline estimator will

be unbiased. While these restrictions are not required to produce baseline estimators, they

do provide a simple way of ensuring that a chosen baseline scoring function will produce

unbiased baseline estimators.
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Chapter 4

Agent Baseline

The agent baseline1 approach is the first major contribution of this work to the field of

agent evaluation. Agent baseline is an application of the baseline approach from Chapter 3

designed to create high-quality unbiased estimators for use in zero-sum stochastic domains.

This is achieved by leveraging the self-play of agents that exists in the evaluation domain.

We begin with the motivation that led to this application of the baseline approach as well

as the general details on how to create the baseline scoring function using existing agents.

Additionally, we will walk through the implementation details and provide empirical results

showing the performance of agent baseline estimators when evaluating computer poker and

ad-auction agents.

4.1 Motivation

The agent baseline approach is specifically tailored for creating estimators in stochastic

domains where obtaining competent computer agents is simple. Since baseline estimators

rely on a baseline scoring function that provides a benchmark level of expected performance

of agents within a domain, a natural way to produce this would be to use the actual values

that agents obtain in the game itself. Although any agent could be used to provide a

score for each observed environmental instance, slow-acting agents or those whose play

is not indicative of the agents being evaluated will likely decrease the potential variance

reduction of the resulting baseline estimator. This suggests that using competent and fast-

acting computer agents are an ideal choice for creating the baseline scoring function when

1Portions of this chapter appeared in the Proceedings of the 11th International Conference on Au-
tonomous Agents and Multi-agent Systems [11].
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evaluating decently skilled agents. Luckily fast, skilled computer agents exist for many of

the domains that require efficient agent evaluation.

The domain of Texas hold ’em poker provides an excellent example of an evaluation scenario

that could benefit from the use of an agent baseline estimator. Evident from the volume of

matches needed to create significant results in the Annual Computer Poker Competition [1],

there exists a need for efficient agent evaluation due to the high outcome variance inherent

in the game. Texas hold ’em poker is also a domain where there are many fast-acting,

highly-skilled computer agents, some of which can outperform the best human players in

the world [19]. The hypothesis, then, is that by creating baseline estimators by using the

values of competitive computer agents as the baseline scores for the observed instances, the

resulting estimators will yield highly-efficient, unbiased estimates of agent performance.

4.2 Creating the Baseline Estimator

Creating agent baseline estimators involves using computer agents to generate the required

baseline scoring function, β(Q), for each stochastic instance present in the evaluation.

Specifically, the agent baseline approach is to choose a single agent, referred to as the

baseline agent, and create this function by using that agent’s self-play on the observed in-

stances. This requires that the baseline agent be able to generate outcomes in self-play

easily for every instance of the domain, which we will represent with the function s : q 7→ R.

For each qi in Q, the values of the control variable are computed such that Y βi = s(qi). The

equation representing the resulting agent baseline estimator, denoted as Aβ , is then

Aβi = Xi − c(Y βi − E[Y β ]) (4.1)

which is equal to the underlying baseline estimator function defined in Equation 3.2.

4.2.1 Comparisons to DIVAT

One might observe that the agent baseline approach closely resembles the DIVAT ap-

proach [6], since both techniques require an agent, or policy, in order to preform evaluation.

In fact, these two approaches can be thought of as nearly equivalent if we reformulate the

way that chance acts for the domain. By moving all of the chance events to the start of the

game, the DIVAT approach will then simply calculate one DIVAT score for the sequence of

player actions that occurred, much in the same way that the agent baseline approach creates

one baseline score for any given observation. In this setting, a simple implementation of
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both techniques would be in fact equivalent if they shared the policy used for creating the

scores for each observation.

Although the agent baseline approach is similar to that of DIVAT, there exists a fundamental

difference in the necessary behaviour of the policy needed by each technique. While creating

an agent baseline estimator only requires that there exist some agent that can act within a

domain given some predefined set of chance outcomes, the types of policies that can be used

with the DIVAT approach are much more restrictive. DIVAT estimators require a strategy

that must be able to make reasonable decisions at all possible points in the game, even

those in which the strategy may never play itself. The baseline approach does not impose

this requirement and allows the strategy to play freely when evaluating each observation.

For instance, in the game of poker, the policy used for a DIVAT estimator must be able to

act for all possible sequences of actions for all possible card combinations, whereas an agent

baseline policy is allowed to never take certain actions with certain sets cards. Allowing

for the use of less restrictive policies can make the agent baseline approach both simpler to

implement as well as more applicable to a broader range of domains.

4.3 Proof of Unbiasedness for Zero-Sum Domains

Agent baseline estimators created using the aforementioned approach are provably unbiased

for zero-sum domains since the Y β term from Equation 4.1 satisfies the conditions provided

in Section 3.2. The first condition holds trivially by the zero-sum domain restriction. Fur-

ther, since the second and third conditions only depend upon the domain, we assume that

these properties hold for any application of the agent baseline approach. This is certainly

true for the domains used for the evaluation of the baseline approach in this work. The

fourth condition holds as the agent baseline scoring function, s, only considers the chance

events from the observed instances in Q. The fifth condition holds true since there is a

one-to-one mapping from baseline scores to observed instances under the agent baseline

approach.

4.4 Implementation Details

In this section, we introduce some of the implementation details that were used in the

empirical analysis portion of this work. The implementation choices were all made with

the goal of reducing the potential variance introduced into the estimator while creating the

baseline scores for each instance of the domain.
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4.4.1 Strategy Sampling

While a single sample of the baseline agent in self-play can be used to create each Y βi , any

stochasticity inherent in the baseline agent can add variance to the resulting agent baseline

estimator, lowering its effectiveness. One way to overcome this variance would be to compute

the expected value of the baseline agent in self-play for each qi observed instance, effectively

reducing the variance of Y β to zero. This expected value computation may not be practical

in many domains, as it can be computationally expensive to perform an enumeration of all

possible self-play sequences for each qi. Instead of doing the full expected value computation,

multiple samples of the baseline agent’s self-play can be used to compute the values of Y β .

That is, for each observed instance, qi, we can compute Y βi as the average of m independent

samples of the baseline agent self-play. Each jth sample is computed by drawing different

self-play action sequences from the baseline agent, denoted as sj(qi). The new equation

used to create the control variable for the agent baseline estimator becomes

Y βi =
1

m

m∑
j=1

sj(qi) (4.2)

We refer to this technique as strategy sampling, which reduces the variance of the basic agent

baseline estimator and results in more accurate estimates.

The magnitude of this reduction depends on both m, the number of samples being averaged,

the amount of variance in the baseline agent’s policy used in creating the baseline scoring

function. Unfortunately this means that in order to set the value of m in a principled

manner for a particular domain, one must consider the costs of generating samples of the

baseline agent’s self-play scores and the variance inherent in the baseline agent’s policy.

4.4.2 Random Completion

Analogous to strategy sampling, one can also sample certain aspects of the environment

when creating the baseline scores. Similar to the private information importance sampling

approach [7], future chance events that were unobserved in each qi instance, can be randomly

sampled when computing the baseline score for qi, as long as they would have had no impact

on the values of Xi. For instance, in the game of poker, if one of the player folds before

the final round, the unobserved cards have no impact on the score of the hand, and thus

could have been any of valid remaining cards. Where the basic approach to creating agent

baseline estimators would assign the unobserved future chance events to a single instance,

the random completion method instead samples these unobserved future chance events,

using the average self-play score of these samples as the baseline score for the particular
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instance. Let c : q → q′ denote the function that generates an instance of the domain, q′,

which shares a common chance prefix with q, but has randomly generated future chance

events. For example, if q represents a hand of Texas hold ’em poker that ended before all

five of the public cards were dealt, q′ represents the same hand of poker where any missing

board cards are randomly dealt from the deck.

Then, for each qi, the agent baseline estimator’s control is computed as the average over m

samples of c(qi). By combining this with the aforementioned strategy sampling approach,

the resulting equation for the control is then

Y βi =
1

m

m∑
j=1

sj(cj(qi)) (4.3)

The effectiveness of the random completion approach depends both on how much of the

variance in the agent baseline estimator was due to randomness in the environment and

how that randomness impacted the baseline score. A similar analysis to that of the strategy

sampling approach must be done in order to set the value of m effectively, taking into

consideration the costs associated with sampling the environment and the agents. This

method can also be combined with strategy sampling, and assigning the number of samples

to each technique depends on the amount of variance that is inherent in the environment

and the variance of the baseline agent’s policy.

4.4.3 Use With Importance Sampling

The importance sampling techniques introduced by Bowling et al. [7] can also be used in

conjunction with the agent baseline approach. By applying an importance sampling function

to the outcome of the agent baseline scoring function for each observed instance, we can

compute a lower variance control for use in the estimator. Given an importance sampling

function, I, the function that computes Yβ becomes

Y βi = I(s(qi)) (4.4)

Importance sampling can also be combined with the either the strategy sampling or random

completion agent baseline implementations.

4.5 Evaluation

The agent baseline approach was evaluated using the variants of Texas hold ’em poker from

the Annual Computer Poker Competition and the modified version of the Trading Agent

27



Ad-Auction Competition described in Section 2.4.2. For each of the evaluation domains,

the details of the evaluation methodology are provided first, and followed by the results

of the experimentation. In the poker domains, the agent baseline estimator was compared

to the duplicate estimator, denoted as DUP, when applicable. The duplicate approach

was chosen as the performance benchmark due to it’s comparable simplicity to the agent

baseline approach and the fact that it was the agent evaluation technique used to evaluate

the matches in the 2013 ACPC [1].

For all of the no-limit evaluation, the data was pre-processed using all-in equity, a technique

that adjusts the value of hands that went all-in to reflect the expected value given the cards

known to the players at the time of an all-in. The all-in equity technique tends to help reduce

variance since the range of payouts being evaluated becomes smaller after it is applied.

The performance of each estimator is measured as one minus the ratio between the standard

error of the mean (SE) when using the estimator versus the standard error of the mean when

using a pure Monte Carlo (MC) approach. This ratio is presented as a percentage value and

referred to as the reduction percentage for a given estimator. Higher percentages correspond

to better reductions in variance, with values of 100% translating to zero-variance estimators.

Conversely, a value of 0% means that the estimator did not reduce the variance of the Monte

Carlo estimation. Negative numbers are also possible, which would imply that the estimator

actually increased the variance of the estimate. The intuition behind using this measure is

that an estimator with lower standard error will have more accurate estimated confidence

intervals, which translates to a better estimate of the true performance of an agent.

The question of cost is also an important part of comparing evaluation techniques, and will

be discussed for the different estimators employed in each domain.

4.5.1 Texas Hold ’em Poker

Experimental Design

The agent baseline approach in the domain of Texas Hold ’em poker was predominately

evaluated using data from the 2013 Annual Computer Poker Competition (ACPC). In ad-

dition to the analysis performed on the ACPC dataset, the agent baseline approach was

evaluated using two 1000-hand human versus computer-agent matches and one 4500-hand

human versus computer-agent match in the domain of two-player no-limit Texas hold ’em.

The human competitors in these matches were all high-calibre poker players and the com-

puter agents were of the same quality as the top entries in the 2013 ACPC two-player

no-limit competition.
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Evaluation of the ACPC matches was performed on two different datasets based on the

competition data, referred to as the top-competitors and all-competitors datasets. The top-

competitors dataset was a subset of the competition data that consisted of only the matches

between the best competitors for the given competition. The all-competitors dataset simply

contained all of the matches for the competition. Since there are two different ways winners

are decided in the ACPC competitions, the top-competitors dataset for each of the two-

player variants contained the five best agents as determined by each of the different winner

selection methods. This resulted in the dataset containing a total of eight different agents

for the two-player limit variant while there were only five in the two-player no-limit variant.

Due to the lack of entrants in the three-player limit competition, only the matches containing

two of the top three agents were included in the three-player top competitor dataset.

In order to fairly compare agent baseline estimators against duplicate and Monte Carlo

estimators, we treated the duplicate ACPC matches as independent samples in both the

Monte Carlo and agent baseline evaluations. As such, matches that did not contain a

corresponding duplicate entry were not included in the evaluation data.

The agent baseline estimators used in these experiments were implemented using the random

completion technique and setting m = 50. The choice of m was determined to be an

acceptable cost-performance trade-off for the evaluation of the agent baseline estimators.

The baseline agent for each estimator was chosen to be a fast-acting competition-grade

agent that did not appear in any of the evaluation data. The value of c from Equation 4.1

was chosen to be an estimate of c∗ by using Equation 2.11 on a 10% hold-out dataset for

each of the different agent match-ups.

Cost Analysis

The cost of estimation when using agent baseline estimators depends predominantly on

the time it takes to draw samples from the baseline agent in self-play. That is, if the

cost of drawing one self-play sample of a baseline agent is α, and the cost of drawing

one sample of two observed agents playing is γ, then the cost of the estimation is simply

α + γ. Comparing the cost of creating a random completion estimator with the cost of

creating a duplicate estimator means simply measuring the difference in mα to 2γ. That

is, when mα < 2γ, agent baseline estimation is more efficient than the duplicate equivalent.

This is almost always true when we are evaluating slow-acting computer agents or human

agents, since we typically have control over both α and m and not γ. Also, it may not be

possible to draw further samples of the agents interacting, for which γ is effectively infinite.
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Furthermore, the cost of creating agent baseline estimators can also be reduced by reusing

the baseline score calculations when creating estimators for multiple matches that share the

same random seeds. For large competitions with many different competitor pairings that

share random seeds, such as the ACPC competitions, this amortization effectively makes

the cost of creating agent baseline estimators zero. All of this analysis assumes that the

resulting performance of each estimator is equal.

Two-Player Limit ACPC Results

A bar plot displaying the performance of the duplicate and agent baseline estimators, eval-

uating the agents from the 2013 ACPC two-player limit competition, is presented in Figure

4.1. This bar plot displays the average performance for each of the estimators when applied

to each of the matches in the top-competitors and all-competitors datasets. Also displayed in

this figure is an estimated 95% confidence interval for each estimator’s average performance

computed as 1.96 ∗ SE, where SE is the standard error of the mean for the estimators per-

formance on the dataset. A line denoting the value of the agent baseline’s lower confidence

interval in included to help visualize any claims of statistical significance.

Both of the bar plots show that the agent baseline estimators have a higher average per-

formance than the duplicate estimators, although not by a statistically significant margin.

Also clear is the higher average performance of both estimators when evaluating the top

echelon of competitors. The average performance of the agent baseline estimators increases

from 49.8% to 64.5% between these two datasets and the duplicate estimators have a nearly

identical increase.

A more in-depth look at the results of the estimators used to evaluate the agents in the top-

competitors dataset is shown in Table 4.1. Here we can see that when evaluating matches

containing the best agents in the competition, the agent baseline estimators are strictly

better than their duplicate counterparts. Appendix A, A.2, shows the full evaluation for

each of the estimators performed on the all-competitors dataset. This table shows that

agent baseline estimators outperform the duplicate estimators in 73.3% of the matches.

Considering that the cost of the agent baseline evaluation is amortized by the shared seeds

between each pairing of competitors in ACPC competitions, evaluation using agent baseline

estimators should be considered as a replacement for duplicate estimation in future two-

player limit ACPC tournaments.
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Figure 4.1: 2013 ACPC Two-Player Limit Average Estimator Performance

Match Name MC SE DUP SE Aβ SE DUP % Aβ %

hyperborean iro/littlerock 9.42 3.56 3.26 62.25 65.33

hyperborean iro/marv 9.41 3.06 2.74 67.48 70.9

hyperborean iro/neopokerlab 10.22 3.5 3.28 65.76 67.94

hyperborean iro/zbot 6.49 2.33 2.15 64.03 66.78

hyperborean tbr/littlerock 9.8 4.17 4.07 57.47 58.5

hyperborean tbr/marv 10.51 4.05 3.96 61.43 62.29

hyperborean tbr/neopokerlab 10.64 4.35 4.28 59.15 59.82

hyperborean tbr/zbot 10.64 4.37 4.33 58.93 59.34

littlerock/marv 10.11 3.5 3.42 65.4 66.23

littlerock/neopokerlab 10.23 3.89 3.74 62.0 63.43

littlerock/zbot 10.26 4.01 3.87 60.95 62.29

marv/neopokerlab 10.14 3.35 3.22 66.96 68.2

marv/zbot 10.15 3.45 3.34 66.03 67.11

neopokerlab/zbot 10.27 3.73 3.67 63.7 64.22

Table 4.1: 2013 ACPC Two-Player Limit Top-Competitors Results

Three-Player Limit ACPC Results

The average performance of the duplicate and agent baseline estimators for the 2013 ACPC

three-player limit competition is displayed in Figure 4.2. Both estimators are not nearly
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as strong in this poker variant as they are for two-player limit, with the agent baseline

estimators only achieving an average performance of 28.6% on the all-competitors dataset.

Once again, both duplicate and agent baseline estimators see a boost in their average per-

formance when evaluating agents in the top-competitors dataset. This gain is roughly 5%

for the agent baseline estimators and only 2% for the duplicate estimators. Similar to the

two-player limit analysis, the agent baseline estimators have a higher average performance

for both datasets, although the difference is still without statistical significance.
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Figure 4.2: 2013 ACPC Three-Player Limit Average Estimator Performance

Table 4.2 provides a breakdown of the performance of both agent baseline and duplicate

estimators on the top-competitors dataset for this domain. This table shows that the agent

baseline estimators have better overall performance than the corresponding duplicate esti-

mators in all but two of the matches. Table A.2, presented in Appendix A, contains the

performance of the estimators on the all-competitors ACPC dataset, the results of which

show the agent baseline estimators outperforming the duplicate estimators in 63.3% of the

matches. The performance of agent baseline estimators, combined with the costs associated

with the six-way duplicate evaluation performed by the ACPC suggest that using duplicate

estimation in the three-player limit competition should be replaced by the agent baseline

approach for future competitions.

Two-Player No-Limit ACPC Results

Figure 4.3 shows the average performance of the agent baseline and duplicate estimators

for the 2013 ACPC two-player no-limit competition matches. The graphs in this figure
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Match Name MC SE DUP SE Aβ SE DUP % Aβ %

HITSZ/littlerock/hyperborean iro 22.58 16.33 15.88 28.31 29.77

HITSZ/littlerock/hyperborean tbr 24.51 17.37 17.5 29.47 28.68

liacc/littlerock/hyperborean iro 26.41 21.36 18.01 20.3 31.93

liacc/littlerock/hyperborean tbr 27.75 21.41 19.0 23.59 31.62

littlerock/hyperborean iro/kempfer 17.85 11.41 10.93 35.84 38.64

littlerock/hyperborean tbr/kempfer 18.8 12.18 11.87 34.92 36.78

neopokerlab/HITSZ/hyperborean iro 22.51 16.42 16.03 27.65 28.88

neopokerlab/HITSZ/hyperborean tbr 24.61 17.53 17.77 29.06 27.84

neopokerlab/HITSZ/littlerock 22.16 16.32 15.95 26.95 28.09

neopokerlab/hyperborean iro/kempfer 17.38 11.7 10.98 32.55 36.75

neopokerlab/hyperborean tbr/kempfer 18.54 12.69 12.22 31.54 34.04

neopokerlab/liacc/hyperborean iro 26.43 22.07 18.98 17.52 28.26

neopokerlab/liacc/hyperborean tbr 27.74 22.29 19.99 20.3 27.93

neopokerlab/liacc/littlerock 26.3 22.25 19.18 16.51 27.12

neopokerlab/littlerock/hyperborean iro 13.04 7.16 6.56 45.05 49.64

neopokerlab/littlerock/hyperborean tbr 19.23 11.04 10.32 42.59 46.35

neopokerlab/littlerock/kempfer 17.36 11.7 11.23 32.54 35.25

Table 4.2: 2013 ACPC Three-Player Limit Top-Competitors Results

show that the duplicate and agent baseline estimators achieve a nearly identical average

performance of approximately 20% when evaluating the top-competitors dataset. When

comparing the estimators on the entire population of agents for this competition, the dupli-

cate estimators perform only slightly better on average, with a mean performance of around

15% compared to the 14% realized by the agent baseline estimators. Once again however,

these differences are not of statistical significance.

Analyzing the full top-competitor results from Table 4.3 further reinforces this equality. On

this dataset, the agent baseline estimators perform only slightly better that the duplicate

estimators on just over half of the matches. Table A.3 in Appendix A shows the results of

these estimators for the all-competitors dataset, from which the duplicate estimators achieve

a better average performance than the agent baseline estimators on just 55% of the matches.

These results show that both duplicate and agent baseline estimators perform equally well

in this domain.

33



Aβ DUP
Top Competitors

0

5

10

15

20

25

St
an

da
rd

 E
rr

or
 R

ed
uc

tio
n 

( %
 )

Aβ DUP
All Competitors

0

5

10

15

20

25

St
an

da
rd

 E
rr

or
 R

ed
uc

tio
n 

( %
 )

Figure 4.3: 2013 ACPC Two-Player No-Limit Average Estimator Performance

Match Name MC SE DUP SE Aβ SE DUP % Aβ %

hyperborean iro/koypetition 50.26 41.27 40.19 17.88 20.04

hyperborean iro/nyx 27.63 22.13 22.14 19.91 19.86

hyperborean iro/slumbot 11.44 8.94 8.85 21.87 22.68

hyperborean iro/tartanian6 46.58 35.95 36.96 22.82 20.66

hyperborean tbr/koypetition 51.61 43.73 42.8 15.27 17.08

hyperborean tbr/nyx 37.81 31.03 31.49 17.93 16.73

hyperborean tbr/slumbot 34.55 28.24 28.02 18.27 18.89

hyperborean tbr/tartanian6 50.22 41.08 42.22 18.21 15.93

koypetition/nyx 45.17 35.7 35.21 20.97 22.06

koypetition/slumbot 46.59 37.02 35.9 20.54 22.95

koypetition/tartanian6 48.18 38.14 37.5 20.85 22.16

nyx/slumbot 22.14 17.16 17.13 22.52 22.63

nyx/tartanian6 39.56 30.93 31.35 21.8 20.75

slumbot/tartanian6 37.73 29.46 29.49 21.91 21.83

Table 4.3: 2013 ACPC Two-Player No-Limit Top-Competitors Results

Two-Player No-Limit Human vs Computer-Agent Results

Table 4.4 provides the results for the two 1000-hand human versus computer-agent matches

that were run using the duplicate-like approach previously executed in the two-player limit
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man versus machine competitions [19]. The duplicate estimator in this approach is created

by having both human players play against the computer agent with their cards swapped.

Since this type of evaluation does not allow for individual skill to be assessed, the duplicate

estimator is left blank for these entries in the table.

Match MC MC SE Aβ SE DUP SE Aβ % DUP %

Match A Human 1 39.55 491.12 403.51 — 17.84 —

Match A Human 2 -1597.75 683.90 557.11 — 18.54 —

Match A Team -779.1 421.28 346.88 315.54 17.66 25.1

Match B Human 1 78.78 465.62 379.94 — 18.40 —

Match B Human 2 -146.63 442.31 287.99 — 34.89 —

Match B Team -33.93 321.04 239.49 239.52 25.40 24.39

Table 4.4: Two-Player No-Limit Human vs Computer-Agent Results (1000-Hand Matches)

In match A, the duplicate estimator achieves the best performance when evaluating the

team play, and both the agent baseline estimator and duplicate estimator are nearly equal

for match B’s team evaluation. TheMC column shows the win-rate for each of the players

or for the team, the units of which are in mili-big-blinds per hand (mbb/h), a standard unit

of measure for this domain. This is provided in order to demonstrate how using duplicate

estimators in the human versus computer-agent setting can be extremely misleading. When

combining the two human players’ scores and computing a 95% confidence interval, the

team loses with confidence in match A. This is solely due to the horrible performance of

Human 2 in this match. Given the choice, it is obvious that Human 1 would prefer to

be evaluated alone since the results show a statistical tie for this player. Being able to

individually evaluate players is one large advantage that agent baseline estimators have over

duplicate estimators when evaluating human players.

4.5.2 Trading Agent Competition: Ad Auctions

Experimental Design

In order to test the performance of agent baseline estimators in domains where no other

methods of efficient evaluation are typically performed, we evaluated agents in a mock

Trading Agent Ad Auction tournament [22]. This experiment involved using six open-

source agents and two random agents in order to create an eight-player tournament. The

two random agents were used due to a lack of available open source agents and the software
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not supporting fewer than eight agent tournaments. The tournament consisted of 100 ten-

day matches, where each of the agents was assigned a random specialization before the

beginning of each match. This provided a mechanism for capturing the environmental

stochasticity needed to create the agent baseline estimators. Three different agent baseline

estimators were created using three of the six open-source agents from the tournament. For

practicality reasons surrounding the computational time required to run a tournament, only

one sample of each baseline agent’s self-play was used to create the corresponding baseline

estimator.

Results

Table 4.5 shows the resulting standard error reduction for each of the competitors when

being evaluated using the three agent baseline estimators based on the epfl, crocodile and

metroclick bots, respectively labeled Aβ1 ,Aβ2 and Aβ3 . The effects vary, ranging from a 0.1%

to a 53% reduction in the standard error, with the agent baseline estimator Aβ3 having the

best overall performance. As only one self-play sample was used in the calculation due to

the unavailability of a fast-acting baseline agent, additional performance gains are likely

to be realized by using the strategy sampling techniques. This experiment does however

show that agent baseline estimators should be considered for competitions of this nature,

especially in the absence of other efficient evaluation techniques.

Player MC SE Aβ1 SE Aβ2 SE Aβ3 SE Aβ1 % Aβ2 % Aβ3 %

tau 0.689 0.635 0.636 0.551 7.78 7.64 19.98

crocodile11 0.862 0.851 0.851 0.812 1.36 1.28 5.82

crocodile 1.01 0.825 0.953 0.805 18.30 5.65 20.31

epfl 1.245 1.217 1.210 1.178 2.26 2.80 5.34

metroclick 1.449 1.308 1.267 0.677 9.72 12.59 53.25

Schlemazl 0.923 0.922 0.923 0.922 0.12 0.01 0.17

Table 4.5: TAC-AA Tournament (100 Ten-Day Matches)
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Chapter 5

Data Baseline

The data baseline approach is another application of the basic baseline approach from Chap-

ter 3 and marks the second major contribution of this work to the field of agent evaluation

techniques. Data baseline leverages the availability of large volumes of player data to create

the baseline scoring function for use in agent evaluation. In this chapter, we will describe

the motivation behind the data baseline approach, as well as the general approach to imple-

menting estimators of this nature. We will also provide the details of the empirical analysis

used to evaluate the performance of data baseline estimators in the domain of Texas hold

’em in addition to the specifics involved with the implementation of data baseline estimators

for this domain.

5.1 Motivation

The data baseline approach is designed to address the problems with the agent baseline

approach in situations where there are no readily available competent computer agents for

the evaluation domain. One possible solution to this problem would be to try and use simple

rule-based agents to create the necessary agent baseline scores. This solution is unlikely to

be effective since the power of agent baseline estimators comes from the correlation between

the baseline agent’s self-play and that of the agents being evaluated. Another solution would

be to simply create a competent agent to use as the baseline agent. This solution is also

problematic due to the large amount of effort involved with engineering an agent of the

required skill.

The data baseline approach solves this issue for domains where there are volumes of data

consisting of players competing with one another. Data baseline uses this existing player
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data directly in the computation of the baseline scores, thus removing the need for an

underlying baseline agent. Fortunately, player data is often a much more abundant resource

than competitive computer agents in many domains, especially those for which there are

large communities of human players. Also potentially beneficial to using this type of data is

the likelihood of higher correlation when evaluating similar types of players. An example of

this would be to use human data when evaluating human players. In fact, we hypothesize

that using data baseline created with tailored data would produce highly efficient estimators

capable of better performance than agent baseline estimators in domains where both can

be created.

5.2 Creating the Baseline Estimator

In order to create a data baseline estimator, one must provide the necessary baseline scoring

function, β(Q), in order to create the control variable Y β . While there are conceptually

many different ways to create this mapping using existing player data, we will outline several

possible implementations, starting with the obvious mapping that assumes there is a perfect

match in the player data for each instance being evaluated. In what follows, it is assumed

that a dataset D = {(q1, u1), (q2, u2), . . . , (qn, un)} exists, and contains examples of agents

interacting on instances of the domain in question, qi, along with the utilities, ui, the agents

received on that domain instance.

5.2.1 Perfect Matching

One option for creating β(Q) is to simply find an exact match in the dataset for the domain

instance being evaluated, which we call q ∈ V al(Q). In other words, if the dataset D

contains instances where the exact environmental realization from the evaluation domain

instance occurred (q ∈ D), then the mapping simply returns the value obtained for each

agent on that instance from the dataset. If q /∈ D, we return zero for the instance. If

more than one instance in D corresponds to any given q, then the average utility values are

returned. Let D(q) ⊆ D be the set of instances (qi, ui) in the dataset D such that q = qi.We

can now define the Perfect Match function PMD : V al(Q)→ R as

PMD(q) =

{
1

|D(q)|
∑

(qi,ui)∈D(q) ui if |D(q)| > 0

0 otherwise
(5.1)

A perfect matching implementation of data baseline is then created using β = PMD to

generate the values for Y β . The agent baseline approach is actually a special case of the
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perfect matching implementation where the perfect matches are generated post-hoc using a

computer agent in self-play, either by sampling the agent once for each instance or multiple

times in the case of the strategy sampling technique.

5.2.2 Nearest Neighbour

Since in most domains it is unlikely that there exists an exact match in our dataset, D,

for every possible domain instance, q ∈ Q, another option is to instead return the value

of the nearest match. The hope here is that by choosing nearby matches, the values will

be very close to the values of an exact match if it were to exist. For some domains, the

notion of distance over domain instances may be ill-defined, leaving us with no explicit way

to return the nearest match. In these situations, the intuitive approach is to first map

domain instances to some d dimensional feature space, Rd, both when constructing D and

querying D for a match. By doing this, we can use a well-defined distance measure such

as Euclidean distance when searching D. Let φ : V al(Q) → Rd be the function that maps

domain instances to a d dimensional feature vector. We define the function NEL, which

returns the entry (qi, ui) in D, such that qi minimizes the L-distance in the feature space

to the input domain instance q.

NELD(q) = arg min
(qi,ui)∈D

L(φ(q), φ(qi))

The Nearest Neighbour function NNL
D : V al(Q)→ R then simply returns the utility value,

u, of nearest entry,

NNL
D(q) = NELD(q)[2]

where the [i] operator returns the i-th element of a dataset entry, which in this case is the

utility value of the nearest database entry. The nearest neighbour data baseline approach

then proceeds by setting β = NND.

5.2.3 k-Nearest Neighbour

One possible shortcoming of the previous idea is that depending on a single returned entry

could lead to high variance in the control variate, which decreases the amount of variance

reduction that can be achieved by the resulting baseline estimator. Instead of returning a

single nearest entry, we can instead have the mapping function return the k nearest entries

in the dataset and average their values. We refer to this as the k-Nearest Neighbour mapping

function. More precisely, if we let k-NELD(q) return the k nearest entries from dataset D,

39



according to distance metric L in the feature space, then the k-Nearest Neighbour function

k-NNL
D : V al(Q)→ R can be defined as

k-NNL
D(q) =

1

k

 ∑
(qi,ui)∈k-NEL

D(q)

ui

 (5.2)

The k-Nearest Neighbour data baseline estimator is then created by setting β = k-NNL
D.

In all cases, the resulting data baseline estimator, Dβ, is defined as

Dβ
i = Xi − c(Y βi − E[Y β ]) (5.3)

5.2.4 Comparisons to MIVAT

Much in the same ways that agent baseline approach is similar to DIVAT, the data baseline

approach also shares some properties with the MIVAT approach to agent evaluation. Both

the data baseline and MIVAT techniques require a pre-existing volume of player data in order

from which to create an estimator as well as a method of mapping player data to features

space. The main difference between these two techniques, aside from the way in which the

estimators are applied, revolves around the types of features required by each technique and

how the features are used. Since the MIVAT approach makes use of the player data as a

part of a closed-form optimization, in order for the optimization to be tractable, the value

function needs to be linear in the features imposed on the data [24]. The data baseline

approach however imposes no such restriction when using the proposed nearest-neighbour

method of searching for baseline scores. Although the use of non-linear features within the

data baseline approach is not explored in this work, removing such a restriction makes data

baseline a more flexible approach than MIVAT for creating estimators from existing player

data.

5.3 Proof of Unbiasedness for Zero-Sum Domains

Regardless of the chosen mapping from dataset instances to baseline scores, in order for the

resulting data baseline estimator to be unbiased, we either need to know the value of E[Y β ]

or show that it is zero. By assuming that the data baseline estimators are operating in zero-

sum domains, we can use the conditions outlined in Section 3.2 to prove that these mapping

functions produce an expected value of zero for the control variable Y β . The first of these

conditions is held trivially via our domain assumption. The second and third conditions

only depend on the environment, and as such the choice of the β baseline scoring function
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does not impact this. The fourth and fifth conditions are satisfied directly for each of the

mapping functions we provided since none of them depend on the actions of the agents

for a given domain instance nor will they return a different set of values anytime they are

called for a given domain instance. Thus, any choice of mapping function that satisfies these

conditions in a zero-sum domain will produce an unbiased data baseline estimator, the three

aforementioned mapping functions being examples of this.

5.4 Implementation Details

In this section we introduce the data baseline implementation details that were used in the

evaluation. Specifically, we provide the details regarding the data structure used to store

the dataset and the choices involved when implementing the baseline scoring function. The

data baseline estimators used in the empirical analysis were all created using the k-Nearest

Neighbour (k-NN) baseline scoring function using Euclidean distance. Since all of the

evaluation was done using Texas hold ’em domains, many of the implementation choices are

specific to player data within this domain.

5.4.1 Storage

Recall that the k-Nearest Neighbour mapping function requires a search over the baseline

dataset, D, where each instance is mapped to a feature vector in Rd. A näıve search for

a nearest entry in our dataset could take O(n) time, which for large datasets would be

very costly. We instead use a kd-tree [5] data structure as a way to store the dataset while

allowing for efficient searches over the data. A kd-tree is essentially a multi-dimensional

binary search tree [9], where k refers to the dimensionality of the search space. Nearest

neighbour queries for a given point when using kd-trees are O(log n) as long as the tree

remains balanced, a condition that is fairly easy to enforce when no deletions or insertions

are performed after initial construction of the tree.

5.4.2 Feature Representation

The features chosen to represent the data are based on the notion of expected hand strength, a

function that maps poker hands to real numbers according to their likelihood of winning [14].

Each hand in the dataset is represented by an eight dimensional feature vector whose entries

correspond to the expected hand strength for each player, given their private cards and the
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public cards available during each round of the game. For example, the hand Q♦J♠ vs

Q♥K♥ with the board cards J♦K♠8♥6♥2♣, has a corresponding feature vector of [0.581,

0.634, 0.784, 0.866, 0.776, 0.899, 0.794, 0.891]. If a hand is incomplete, meaning that it is

missing board cards due to players folding before the river round, random board cards are

used for these rounds when generating the feature vector. This was done to ensure that

information corresponding to the players’ actions is not unintentionally encoded into the

feature space representation for the hand, potentially biasing the estimation.

5.4.3 Sensitivity of k

The value of k used in the k-Nearest Neighbour data mapping for each of the different types

of Texas hold ’em was determined through a parameter study using past ACPC data. Data

baseline estimators were created using the past ACPC data for each of the ACPC poker

domains and evaluated using a small subset of holdout data. The average performance of

the resulting estimators was recorded for varying values of k, the results of which can be

seen in Figure 5.1. This graph shows that the best choice of k within each of the poker

variants was fairly robust to change with little variance in performance across k values.

The peak performance was around k = 16 for both two-player and three-player limit Texas

hold ’em and around k = 128 for two-player no-limit Texas hold ’em. We speculate that

the discrepancy between the optimal k values for no-limit and limit games centre around

the variance in the payouts between the two games coupled with the variance intrinsic

in the policies of the various agents. Given that the range of payouts for no-limit games

is much greater than their limit counterparts, it is very possible that any given hand may

realize a wide variety of payouts in both the evaluation and query datasets. While averaging

out the values of many near hands when creating the estimator helps to achieve a better

baseline score for each no-limit hand, a better solution would be to have many samples of

the stochastic agents playing the same hand and average the values of those samples. Based

on these results, we set k = 16 for the limit variants of poker and k = 128 for the no-limit

variants in our experimentation.

5.4.4 Dataset Size

In order to grasp the impact that the size of the data baseline dataset has on the performance

of the resulting baseline estimator, we experimented with datasets of different sizes in the

ACPC poker domains using random subsets drawn from the 2013 ACPC data. The graph in

Figure 5.2 shows the effect that varying the amount of available data has on the performance
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Figure 5.1: Sensitivity of k for k-NN Search

of the data baseline estimator for each of the domains. As expected, the performance of

the estimator increases as the number of hands contained in the dataset increases, with

somewhat diminishing returns. As suggested by these results, in order achieve the best

possible performance during the evaluation, we decided to include as much data as was

available when implementing each data baseline estimator.
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Figure 5.2: Performance for Varying Sizes of the Baseline Dataset
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5.5 Evaluation

The data baseline approach was evaluated using the same three Texas hold ’em domains

that were used in the agent baseline evaluation. This was done in order to compare the

performance of data baseline estimators to agent baseline estimators in domains where

both can be used. However, in many applications, a competent agent may be unavailable,

making data baseline the only choice. In this evaluation, we explore how different datasets

impact the performance of the data baseline estimators when evaluating both human and

computer agents in order to test the hypothesis that using datasets representative of the

types of players being evaluated will increase the performance of the data baseline estimator.

Additionally, we also simulate the scenario of evaluating agents in domains where there are

no competitive agents by comparing the performance of data baseline estimators to agent

baseline estimators created using simple rule-based agents. As with the evaluation done

with the agent baseline estimators, the results are mainly reported as the reduction in

standard error between the various estimators and the Monte Carlo approach and presented

as percentage values. Once again, all of the no-limit evaluation, the data was pre-processed

using the all-in equity variance reduction technique.

5.5.1 ACPC Texas Hold ’em Poker

Experimental Design

Evaluation of the data baseline approach was performed using the ACPC match data from

each of the three 2013 competitions. For each of the different competitions, we compared

the performance of data baseline estimators to the performance of various agent baseline

estimators. Replicating the agent baseline experimentation, the estimators are evaluated

using the same top-competitor and all-competitor datasets for each of the competitions.

For all of the evaluation performed on the top-competitors and all-competitors ACPC

dataset, past ACPC data was used as the internal dataset for the baseline estimators. This

past data amounted to roughly two million unique hands for each of the the two-player games

and around three hundred thousand unique hands for three-player limit. In the two-player

limit analysis, data baseline estimators were also created using a dataset that consisted of

nearly five million hands of human players of varying skill playing against competition grade

computer agents.

As a benchmark, agent baseline estimators were created for each domain by using a com-

petition level agent that did not appear in the 2013 competitions. In order to simulate a
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likely approach in a domain where this level of agent does not exist, we created three more

agent baseline estimators using simple rule based approaches: always-call, call-or-raise and

random. The always-call (AC) agent only performs the call action, which was shown by Kan

et al. to be an effective choice of policy for creating DIVAT estimators in two-player limit

games [6]. The call-or-raise (CR) agent chooses actions with a 50% chance of calling and a

50% chance of making any raise and the random (RAND) agent acts with equal probability

of performing any valid action.

Cost Analysis

The costs of creating data baseline estimators for use in this type of evaluation consist of

the cost required to populate the data structure used to store the estimator’s dataset and

the cost of generating the various baseline scores for each observed hand. This assumes

that there already exists a corpus of player data that can be used as the internal dataset.

Storing the data in a kd-tree, as per our implementation, requires O(rn log n) time to build

the tree, where r is the dimensionality of the feature representation of the data and n is

the number of data points being added to the tree. The dominating cost then comes from

creating the baseline scores for each observed hand. Unlike the agent baseline approach,

where generating a baseline score for an observed hand was O(1), the cost of generating

the baseline scores is on the order of O(k log n) (or in the worst case O(kn2)) for a fixed

choice of k when using the chosen k-Nearest Neighbours search to build the data baseline

estimator. Fortunately, the cost of using data baseline for the evaluation is still likely to be

lower than the cost of gathering additional samples from computer agents who are slow to

act. Once again these costs can also be amortized by reusing data baseline estimators when

evaluating competition data where matches share the same random seeds.

Two-Player Limit ACPC Results

Figure 5.3 shows the results of the different baseline estimators when evaluating the 2013

ACPC two-player limit competition data. The data baseline estimators built using the

past ACPC data and the human versus computer-agent data, Dβ
(ACPC) and Dβ

(HUMAN),

achieve nearly equal performance in this analysis. Both estimators average a reduction in the

standard error of approximately 44% when evaluating the all-competitors dataset, and this

performance increases nearly 5% when evaluating the top-competitors dataset. The data

baseline estimators also outperform the simple rule-based agent baseline estimators, Aβ(AC),

Aβ(CR), and Aβ(RAND), with statistical significance, albeit by a small margin. Their average

performance is comparable to the competition level agent baseline estimators, Aβ(COMP ),
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with only a 5% difference separating the two techniques. The fact that the data baseline

estimators built using human or ACPC data have almost identical performance in this

domain suggest that there is an advantage to using a tailored dataset when evaluating

agents, since the human dataset contained nearly 2.5 times as many entries as the ACPC

dataset. This analysis also suggests that the data baseline estimators are less sensitive to

the types of players being evaluated than agent baseline estimators, due to the significantly

smaller drop in performance between the top-competitor and all-competitor evaluations.
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Figure 5.3: 2013 ACPC Two-Player Limit Average Estimator Performance

Three-Player Limit ACPC Results

Consistent with the two-player limit ACPC evaluation, Figure 5.4 shows that the estimators

built using the data baseline approach perform better than all of the simple rule based agent

baseline estimators with 95% confidence. Also consistent with the two-player limit ACPC

evaluation is the 5% gap between the average performance of the competitive agent baseline

and data baseline estimators when evaluating the all-competitors dataset for this compe-

tition. The average performance of the data baseline estimators on the top-competitors

dataset is nearly identical to their performance on the all-competitors dataset, whereas the

estimators created with the agent baseline approach suffer nearly a 5% drop in average per-

formance between the two evaluation datasets. This further suggest that the performance

of data baseline estimators is not sensitive to the varying skill of the agents being evaluated.
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Figure 5.4: 2013 ACPC Three-Player Limit Average Estimator Performance

Two-Player No-Limit ACPC Results

The results for the evaluation of the 2013 ACPC two-player no-limit matches are presented

in Figure 5.5. The average performance of the data baseline estimators are once again

slightly better than all three of the rule-based agent baseline estimators with 95% confidence.

When evaluating the all-competitors dataset, the estimators created using the data baseline

approach are able to achieve an average reduction in the standard error of approximately 9%,

which is still only 5% lower than that of the competition grade agent baseline estimators

on the same data. It is worth noting that the lower overall performance of all of the

estimators for this domain is consistent with the results seen in the agent baseline analysis

from Chapter 4. Not obvious from the presentation of these results was the presence of two

abysmal agents in the competition, who each lost almost the maximum possible amount

in every match. The inclusion of these agents in the analysis helps to explain some of

the drop in average performance between the top-competitor and all-competitors datasets.

Once again however, the data baseline estimator suffers much less of a performance drop

between the two evaluation scenarios, reinforcing their robustness when evaluating agents

with varying levels of skill.
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Figure 5.5: 2013 ACPC Two-Player No-Limit Average Estimator Performance

5.5.2 Human Texas Hold ’em Poker

Experimental Design

For the task of evaluating human play, the data baseline approach was evaluated using

data gathered from four human versus computer-agent poker matches and one human ver-

sus human poker tournament. In the human versus computer-agent setting, data baseline

estimators were used to evaluate the human players in four different matches, each match

consisting of a different human player competing against a top-level computer agent in the

one thousand hands of two-player no-limit Texas hold ’em. Two different data baseline

estimators for this evaluation were created, one using a dataset of thirty thousand hands of

human versus computer-agent play and the other using the past ACPC data. Both of these

estimators were then compared to agent baseline estimators built using the same agent from

the two-player no-limit ACPC analysis.

The human versus human analysis was executed using data from a competition held by the

International Federation of Poker in 2011 [13]. This competition was a six-player no-limit

duplicate poker tournament similar in format to the competitions in the ACPC. Due to

the complexity of running their duplicate tournament, only 144 total unique hands were

played by the competitors. Unfortunately, since data in this domain is highly guarded by

both poker players and poker companies due to privacy concerns, we were forced to use

this small amount of data for both evaluation and building the estimator. This was done
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using leave-one-out cross-validation on each of the six matches on the existing data. Two

different data baseline estimators were created using the remaining data by either including

or excluding the duplicate entries from the other matches. Including the duplicate entries

in the validation helps to give an idea of what an estimator in this domain would be capable

of, if it was built with a more sufficiently sized dataset. We compared the performance

of the two data baseline estimators to an agent baseline estimator created using a simple

always-call rule-based agent.

Cost Analysis

The experimentation involving human play used the exact same implementation choices

that were made in the ACPC experiments and thus the costs associated with the evaluation

are exactly the same as those in Section 5.5.1. The fact that gathering human samples can

be orders of magnitudes slower than sampling computer agents, the overall costs associated

with creating data baseline estimators have even less of an impact on the total evaluation

cost for this type of domain.

Two-Player No-Limit Human versus Computer-Agent Results

Table 5.1 shows the performance of the data baseline and agent baseline estimators for the

four different human versus computer-agent matches. In this domain, the data baseline

estimators outperform the agent baseline estimators in three of the four matches as well

as on average. Also suggested from these results is the presence of the same relationship

between the size of the baseline estimator dataset and the quality of the data being used

that was observed in the two-player limit ACPC analysis. Although the ACPC dataset is

almost 100 times larger than the human versus computer-agent dataset, the data baseline

estimators created with either dataset achieves similar performance in this domain. This

result, combined with the performance versus dataset size analysis, reinforces the observation

that using tailored datasets can increase overall performance in data baseline estimators.

Six-Player No-Limit Human versus Human Results

The cross-validation results for the six-player no-limit human tournament are shown in Table

5.2. Since a competition level agent from which to create an agent baseline estimator does

not exist in this domain, we compared the data baseline estimator to an agent baseline esti-

mator created using an always-call rule-based agent. Although the sample size is extremely
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Match Reduction ( % )

Estimator 1 2 3 4 Avg

Aβ(COMP ) 1.37 10.91 8.62 0.79 5.42

Dβ
(Human) 4.31 2.30 16.43 15.25 9.57

Dβ
(ACPC) 5.53 10.66 15.71 10.61 10.63

Table 5.1: Two-Player No-Limit Human vs Computer-Agent Results (1000-Hand Matches)

small, the data baseline estimator created when leaving duplicate hands out of the dataset

is able to achieve some reduction of the standard error. This performance is also better than

that of the always-call agent baseline estimator in five of the six matches. The results are

much better in the idealistic case where we include the duplicate hands in the data baseline

estimator, gaining a substantial performance increase in five of the six matches. Although

further experimentation with larger sample sizes is needed, the results indicate that data

baseline estimators could be useful in these types of real world competitive human scenarios.

Match Avg Reduction ( % )

Estimator 1 2 3 4 5 6 Avg

Aβ(AC) 2.60 0.54 0.77 0.40 0.97 0.37 0.94

Dβ
(No−Dup) 1.17 0.76 2.16 0.92 1.33 0.61 1.15

Dβ
(Dup) 7.40 5.18 7.11 10.24 1.60 6.45 6.33

Table 5.2: Six-Player No-Limit Human Tournament (144-Hand Matches)
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Chapter 6

Conclusions

This work has demonstrated that the baseline approach to agent evaluation provides a simple

method for creating efficient, unbiased estimators in highly stochastic multi-agent domains.

Applications of this approach are easily implemented by merely choosing unbiased baseline

scoring functions, two examples of which we have provided an in-depth analysis.

6.1 Agent Baseline

The agent baseline application of baseline estimators was shown to be a superior alternative

to the duplicate approach currently used in the domain of Texas hold ’em computer poker.

Not only is the agent baseline approach able to create unbiased estimators for computer

poker domains, but for any zero-sum domain where there is a similarly skilled computer

agent that can be used to create the necessary baseline scoring function, such as the Trading

Agent Ad Auction Competition. The agent baseline approach is also particularly useful for

evaluating computer-agent versus human scenarios where, unlike the duplicate approach,

individual skill assessments can be made. While it is conceivable that there are situations

where creating a duplicate estimator would be advantageous over agent baseline estimators,

such as situations where a the agents being evaluated behave drastically different than the

baseline agent, this scenario did not occur in any of the evaluation performed in this work.

Agent evaluation using agent baseline estimators should be a serious consideration for any

computer agent competition, human versus computer-agent competition or even human

versus human matches in domains where strong computer agents exist.
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6.2 Data Baseline

Creating baseline estimators using the data baseline approach addresses one major short-

coming of the agent baseline approach: the situation where there are simply no available

competitive agents for the domain agent evaluation is being performed within. Data baseline

estimators leverage existing player data to overcome this limitation with the intuition that

for many domains, this data is much easier to obtain than competitive computer agents.

By using player data to generate the baseline estimators, we have shown that creating effi-

cient, unbiased estimators is possible for a much broader category of domains, and that the

penalty in performance when compared to agent baseline estimators is minor. Data baseline

estimators also outperform agent baseline estimators created with weak underlying baseline

agents, and are well suited for creating tailored estimation based on both agent skill and

style of play. This allows for efficient evaluation of a broader class of players. For domains

where the agent baseline approach cannot be deployed, the data baseline approach should

be strongly considered, especially if there is an abundance of player data for the domain.

52



Bibliography

[1] Annual Computer Poker Competition. http://www.computerpokercompetition.org.

[2] Peter Auer, N Cesa-Bianchi, and P Fischer. Finite-time Analysis of the Multi-Armed
Bandit Problem. Machine learning, 47:235–256, 2002.

[3] Roger R. Baldwin, Wilbert E. Centey, Maisel Hebert, and James P. McDermott. The
Optimum Strategy in Blackjack. Journal of the American Statistical Association,
51(275):429–439, 1956.

[4] Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. Online implicit agent
modelling. In Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-Agent Systems, pages 255–262. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

[5] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative Search-
ing. Communications of the ACM, 18(9):509–517, September 1975.

[6] Darse Billings and Morgan Kan. A Tool for the Direct Assessment of Poker Decisions.
The International Computer Games Association Journal,, 29(3):119–142, 2006.

[7] Michael Bowling, Michael Johanson, Neil Burch, and Duane Szafron. Strategy Evalua-
tion in Extensive Games with Importance Sampling. In Proceedings of the 25th Annual
International Conference on Machine Learning (ICML), 2008.

[8] Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter I Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and
Simon Colton. A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–49, 2012.

[9] T.H. Cormen. Introduction to Algorithms. Mit Press, 2009.

[10] John Dahl. Rounders. Miramax Films, 1998.

[11] Joshua Davidson, Christopher Archibald, and Michael Bowling. Baseline: Practical
Control Variates for Agent Evaluation in Zero-Sum Domains. In AAMAS ’13 Pro-
ceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent
Systems, pages 1005–1012, 2013.

[12] Paul Glasserman. Monte Carlo Methods in Financial Engineering. Springer, 2003.

[13] International Federation of Poker. http://www.pokerfed.org/.

[14] Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling. Evaluating
State-Space Abstractions in Extensive-Form Games. In Proceedings of the Twelfth
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 271–278, 2013.
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Appendix A

2013 ACPC Baseline Full
Results

A.1 Two Player Limit

Match Name MC SE DUP SE Aβ SE Dβ SE DUP % Aβ % Dβ %

HITSZ/chump1 13.26 7.96 8.81 8.81 40.0 33.61 33.58

HITSZ/chump12 9.73 5.86 6.21 6.61 39.76 36.15 32.07

HITSZ/hyperborean iro 9.92 5.04 4.89 5.09 49.16 50.7 48.71

HITSZ/hyperborean tbr 10.42 5.34 5.51 5.6 48.76 47.16 46.22

HITSZ/liacc 15.88 7.56 9.23 8.93 52.39 41.86 43.75

HITSZ/littlerock 9.85 5.01 4.97 5.15 49.09 49.56 47.7

HITSZ/marv 9.57 4.72 4.52 4.81 50.68 52.75 49.75

HITSZ/neopokerlab 9.91 5.1 4.97 5.12 48.58 49.83 48.36

HITSZ/propokertools 9.92 5.0 5.03 5.19 49.64 49.25 47.7

HITSZ/slugathorus 13.6 9.02 9.33 9.13 33.71 31.42 32.85

HITSZ/unamur iro 9.63 5.26 5.4 5.38 45.33 43.93 44.1

HITSZ/unamur tbr 10.28 5.44 5.87 5.74 47.05 42.88 44.13

HITSZ/zbot 10.02 5.09 5.0 5.16 49.16 50.13 48.46

chump1/chump12 11.32 7.32 6.88 7.22 35.34 39.22 36.28

feste iro/HITSZ 10.02 4.98 5.43 5.51 50.26 45.79 44.99

feste iro/hyperborean iro 9.2 4.13 3.72 4.18 55.1 59.5 54.57

feste iro/liacc 14.9 8.42 8.51 8.24 43.53 42.9 44.74

feste iro/littlerock 9.51 4.21 4.1 4.42 55.72 56.94 53.58

feste iro/marv 10.19 4.31 4.01 4.46 57.71 60.67 56.25

feste iro/neopokerlab 10.28 4.66 4.32 4.74 54.64 57.96 53.93

feste iro/propokertools 10.32 4.52 4.45 4.77 56.2 56.85 53.74

feste iro/slugathorus 12.57 8.04 8.04 7.99 36.03 36.03 36.42

. . . continued on next page
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Match Name MC SE DUP SE Aβ SE Dβ SE DUP % Aβ % Dβ %

feste iro/unamur iro 9.26 4.52 4.62 4.68 51.2 50.18 49.46

feste iro/zbot 10.32 4.68 4.38 4.77 54.7 57.54 53.84

feste tbr/HITSZ 10.22 4.97 5.68 5.76 51.32 44.44 43.62

feste tbr/chump1 12.29 6.98 7.58 7.52 43.23 38.32 38.82

feste tbr/chump12 9.36 5.72 4.71 5.59 38.88 49.68 40.28

feste tbr/hyperborean tbr 9.73 4.41 4.5 4.56 54.69 53.73 53.15

feste tbr/liacc 15.32 7.74 8.45 7.91 49.44 44.82 48.35

feste tbr/littlerock 9.36 4.21 4.11 4.35 55.03 56.07 53.51

feste tbr/marv 10.31 4.44 4.19 4.55 56.93 59.39 55.86

feste tbr/neopokerlab 10.43 4.82 4.52 4.85 53.82 56.66 53.52

feste tbr/propokertools 10.46 4.66 4.6 4.87 55.44 56.01 53.43

feste tbr/slugathorus 14.41 9.04 9.28 9.06 37.25 35.63 37.12

feste tbr/unamur tbr 9.87 4.8 5.16 5.05 51.39 47.71 48.77

feste tbr/zbot 10.48 4.8 4.55 4.86 54.18 56.57 53.64

hyperborean iro/liacc 14.04 8.28 7.94 7.91 41.03 43.44 43.64

hyperborean iro/littlerock 9.42 3.56 3.26 4.16 62.25 65.33 55.77

hyperborean iro/marv 9.41 3.06 2.74 3.9 67.48 70.9 58.55

hyperborean iro/neopokerlab 10.22 3.5 3.28 4.43 65.76 67.94 56.68

hyperborean iro/propokertools 10.22 3.79 3.55 4.5 62.88 65.29 55.94

hyperborean iro/slugathorus 12.35 7.91 7.66 7.83 35.97 37.98 36.63

hyperborean iro/unamur iro 9.16 4.39 4.09 4.47 52.09 55.39 51.2

hyperborean iro/zbot 6.49 2.33 2.15 2.84 64.03 66.78 56.2

hyperborean tbr/chump1 12.31 7.45 7.41 7.46 39.48 39.81 39.39

hyperborean tbr/chump12 9.3 5.81 4.36 5.51 37.54 53.16 40.78

hyperborean tbr/liacc 14.58 8.26 8.45 8.09 43.32 42.06 44.49

hyperborean tbr/littlerock 9.8 4.17 4.07 4.46 57.47 58.5 54.46

hyperborean tbr/marv 10.51 4.05 3.96 4.49 61.43 62.29 57.3

hyperborean tbr/neopokerlab 10.64 4.35 4.28 4.78 59.15 59.82 55.12

hyperborean tbr/propokertools 10.63 4.49 4.42 4.81 57.79 58.45 54.73

hyperborean tbr/slugathorus 12.78 8.18 8.11 8.09 36.01 36.58 36.69

hyperborean tbr/unamur tbr 9.89 4.66 4.97 4.93 52.92 49.77 50.2

hyperborean tbr/zbot 10.64 4.37 4.33 4.8 58.93 59.34 54.91

liacc/chump1 17.6 9.46 11.13 11.0 46.23 36.74 37.47

liacc/chump12 13.02 8.74 7.13 8.2 32.89 45.24 37.03

liacc/littlerock 14.17 8.42 8.14 8.06 40.58 42.6 43.17

liacc/marv 13.14 6.54 6.4 6.25 50.18 51.25 52.43

liacc/neopokerlab 14.02 8.47 8.23 8.15 39.58 41.3 41.86

liacc/propokertools 14.3 8.59 8.31 8.24 39.91 41.86 42.35

liacc/slugathorus 19.28 11.28 12.31 11.89 41.51 36.14 38.31

liacc/unamur iro 13.92 8.06 8.34 8.13 42.05 40.06 41.57

liacc/unamur tbr 14.31 7.63 8.3 7.93 46.67 42.02 44.58

liacc/zbot 14.21 8.44 8.16 8.08 40.6 42.59 43.14

. . . continued on next page
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Match Name MC SE DUP SE Aβ SE Dβ SE DUP % Aβ % Dβ %

littlerock/chump1 11.52 7.0 6.87 6.95 39.27 40.32 39.67

littlerock/chump12 8.61 5.3 3.82 5.1 38.43 55.66 40.81

littlerock/marv 10.11 3.5 3.42 4.3 65.4 66.23 57.47

littlerock/neopokerlab 10.23 3.89 3.74 4.55 62.0 63.43 55.48

littlerock/propokertools 10.25 3.95 3.94 4.63 61.48 61.57 54.77

littlerock/slugathorus 12.37 7.89 7.72 7.83 36.2 37.58 36.68

littlerock/unamur iro 9.17 4.44 4.25 4.52 51.6 53.63 50.71

littlerock/unamur tbr 9.86 4.79 4.73 4.88 51.43 52.06 50.5

littlerock/zbot 10.26 4.01 3.87 4.62 60.95 62.29 54.97

marv/chump1 11.08 6.38 6.25 6.31 42.44 43.58 43.01

marv/chump12 8.57 5.21 3.54 4.97 39.27 58.65 42.03

marv/neopokerlab 10.14 3.35 3.22 4.25 66.96 68.2 58.09

marv/propokertools 10.13 3.51 3.45 4.3 65.37 65.94 57.52

marv/slugathorus 12.03 7.13 6.91 7.05 40.71 42.55 41.38

marv/unamur iro 10.15 4.6 4.32 4.73 54.7 57.41 53.42

marv/unamur tbr 10.47 4.72 4.6 4.86 54.87 56.07 53.55

marv/zbot 10.15 3.45 3.34 4.3 66.03 67.11 57.68

neopokerlab/chump1 15.85 9.66 9.43 9.51 39.05 40.52 39.97

neopokerlab/chump12 11.89 7.37 5.21 7.02 38.02 56.2 40.92

neopokerlab/propokertools 10.25 3.92 3.8 4.59 61.77 62.96 55.18

neopokerlab/slugathorus 12.32 7.96 7.76 7.88 35.37 36.99 36.07

neopokerlab/unamur iro 10.21 4.89 4.64 5.0 52.14 54.55 51.07

neopokerlab/unamur tbr 10.52 5.04 4.99 5.2 52.05 52.58 50.53

neopokerlab/zbot 10.27 3.73 3.67 4.57 63.7 64.22 55.53

propokertools/chump1 11.52 6.95 6.9 6.98 39.65 40.13 39.43

propokertools/chump12 8.64 5.34 3.82 5.11 38.15 55.81 40.78

propokertools/slugathorus 12.42 7.96 7.79 7.9 35.94 37.25 36.44

propokertools/unamur iro 10.25 4.91 4.74 5.04 52.1 53.77 50.89

propokertools/unamur tbr 10.59 5.13 5.09 5.27 51.51 51.89 50.24

propokertools/zbot 10.27 4.01 3.88 4.61 60.98 62.21 55.1

slugathorus/chump1 15.45 10.44 11.08 11.15 32.38 28.23 27.8

slugathorus/chump12 11.34 8.04 7.27 7.79 29.05 35.89 31.26

slugathorus/unamur iro 10.85 6.92 7.07 7.05 36.23 34.82 35.01

slugathorus/unamur tbr 12.91 8.2 8.47 8.36 36.49 34.36 35.23

slugathorus/zbot 12.47 7.96 7.77 7.88 36.15 37.69 36.8

unamur iro/zbot 10.28 4.94 4.73 5.07 51.96 53.99 50.65

unamur tbr/chump1 11.46 6.98 7.31 7.33 39.12 36.22 36.01

unamur tbr/chump12 8.99 5.71 4.78 5.46 36.51 46.85 39.3

unamur tbr/zbot 10.62 5.08 5.07 5.27 52.16 52.29 50.43

zbot/chump1 11.64 7.06 6.87 6.95 39.4 41.03 40.28

zbot/chump12 8.66 5.37 3.82 5.15 37.99 55.9 40.57

Table A.1: 2013 Two-Player Limit ACPC Full Results
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A.2 Three Player Limit

Match Name MC SE DUP SE Aβ SE Dβ SE DUP % Aβ % Dβ %

HITSZ/hyper iro/kempfer 21.72 16.44 16.6 16.53 24.5 23.52 23.82

HITSZ/hyper tbr/kempfer 23.55 16.98 18.14 17.85 27.79 22.86 24.05

HITSZ/liacc/hyper iro 35.7 25.8 27.91 27.14 26.65 21.84 23.8

HITSZ/liacc/hyper tbr 38.07 26.69 29.43 28.47 29.42 22.71 25.14

HITSZ/liacc/kempfer 35.16 24.08 28.5 27.41 30.45 18.69 21.67

HITSZ/liacc/littlerock 35.34 25.63 27.86 27.12 26.2 21.12 23.01

HITSZ/littlerock/hyper iro 22.58 16.33 15.88 16.19 28.31 29.77 28.33

HITSZ/littlerock/hyper tbr 24.51 17.37 17.5 17.6 29.47 28.68 28.19

HITSZ/littlerock/kempfer 21.54 16.2 16.65 16.5 25.02 22.7 23.37

liacc/hyper iro/kempfer 25.72 20.92 19.44 19.46 18.96 24.29 24.23

liacc/hyper tbr/kempfer 27.25 21.13 20.47 20.33 22.43 24.71 25.22

liacc/littlerock/hyper iro 26.41 21.36 18.01 18.46 20.3 31.93 30.13

liacc/littlerock/hyper tbr 27.75 21.41 19.0 19.2 23.59 31.62 30.8

liacc/littlerock/kempfer 25.45 20.85 19.34 19.34 18.49 23.9 23.89

littlerock/hyper iro/kempfer 17.85 11.41 10.93 11.98 35.84 38.64 32.79

littlerock/hyper tbr/kempfer 18.8 12.18 11.87 12.72 34.92 36.78 32.27

neopoker/HITSZ/hyper iro 22.51 16.42 16.03 16.24 27.65 28.88 27.89

neopoker/HITSZ/hyper tbr 24.61 17.53 17.77 17.75 29.06 27.84 27.87

neopoker/HITSZ/kempfer 21.17 15.87 16.38 16.24 25.27 22.64 23.27

neopoker/HITSZ/liacc 35.7 25.89 28.43 27.48 26.24 20.28 22.8

neopoker/HITSZ/littlerock 22.16 16.32 15.95 16.12 26.95 28.09 27.23

neopoker/hyper iro/kempfer 17.38 11.7 10.98 11.91 32.55 36.75 31.42

neopoker/hyper tbr/kempfer 18.54 12.69 12.22 12.89 31.54 34.04 30.45

neopoker/liacc/hyper iro 26.43 22.07 18.98 19.15 17.52 28.26 27.55

neopoker/liacc/hyper tbr 27.74 22.29 19.99 19.96 20.3 27.93 27.98

neopoker/liacc/kempfer 25.95 21.59 20.25 20.19 17.27 21.9 22.11

neopoker/liacc/littlerock 26.3 22.25 19.18 19.31 16.51 27.12 26.56

neopoker/littlerock/hyper iro 13.04 7.16 6.56 7.99 45.05 49.64 38.68

neopoker/littlerock/hyper tbr 19.23 11.04 10.32 11.84 42.59 46.35 38.4

neopoker/littlerock/kempfer 17.36 11.7 11.23 12.07 32.54 35.25 30.47

Table A.2: 2013 Three-Player Limit ACPC Full Results

A.3 Two Player No-Limit
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Match Name MC SE DUP SE Aβ SE Dβ SE DUP % Aβ % Dβ %

HITSZ/Sartre 31.9 30.97 31.32 31.06 2.92 1.8 2.63

HITSZ/entropy 41.92 36.73 38.39 36.8 12.37 8.42 12.21

HITSZ/hugh 22.06 15.7 19.38 17.99 28.82 12.14 18.47

HITSZ/hyperborean iro 33.4 30.61 31.3 30.74 8.35 6.28 7.96

HITSZ/hyperborean tbr 86.78 77.5 82.97 80.96 10.7 4.4 6.7

HITSZ/kempfer 35.41 24.86 30.72 27.9 29.78 13.22 21.2

HITSZ/koypetition 20.06 17.01 17.95 17.29 15.2 10.53 13.81

HITSZ/liacc 228.45 139.88 212.17 199.17 38.77 7.13 12.82

HITSZ/littlerock 27.42 25.71 26.28 25.97 6.24 4.16 5.31

HITSZ/neopokerlab 35.26 25.31 30.17 28.03 28.22 14.45 20.5

HITSZ/nyx 22.16 19.66 20.55 20.07 11.27 7.26 9.43

HITSZ/slumbot 26.69 24.14 24.96 24.49 9.57 6.49 8.25

HITSZ/tartanian6 47.85 44.0 45.13 44.2 8.05 5.69 7.63

Sartre/entropy 37.92 31.35 31.93 32.65 17.33 15.79 13.91

Sartre/hugh 34.81 30.07 29.47 30.39 13.62 15.35 12.7

Sartre/hyperborean iro 29.79 24.18 24.36 25.3 18.84 18.24 15.07

Sartre/hyperborean tbr 53.17 48.18 48.64 48.51 9.4 8.53 8.76

Sartre/kempfer 46.42 40.61 40.57 40.66 12.52 12.6 12.4

Sartre/koypetition 44.44 35.91 35.42 37.52 19.2 20.3 15.57

Sartre/liacc 84.07 78.78 81.58 81.37 6.29 2.96 3.22

Sartre/littlerock 26.26 22.33 22.34 23.2 14.94 14.92 11.64

Sartre/neopokerlab 42.4 33.76 34.69 35.95 20.38 18.19 15.21

Sartre/nyx 26.82 21.18 21.51 22.71 21.02 19.79 15.32

Sartre/slumbot 23.53 19.3 19.37 20.2 17.96 17.68 14.14

Sartre/tartanian6 43.34 35.39 36.25 37.21 18.33 16.34 14.14

entropy/hugh 30.9 27.2 27.33 28.36 11.97 11.53 8.22

entropy/hyperborean iro 34.36 28.81 28.51 30.45 16.14 17.01 11.38

entropy/hyperborean tbr 50.5 43.96 46.08 46.25 12.94 8.76 8.41

entropy/kempfer 56.08 49.31 48.66 50.67 12.08 13.24 9.65

entropy/koypetition 51.1 42.36 42.64 45.22 17.1 16.56 11.52

entropy/liacc 71.08 68.47 69.66 69.6 3.67 1.99 2.08

entropy/littlerock 32.75 28.2 27.99 29.19 13.9 14.54 10.88

entropy/neopokerlab 41.58 36.7 36.38 37.92 11.73 12.52 8.81

entropy/nyx 33.2 27.89 27.79 29.12 15.99 16.28 12.26

entropy/slumbot 29.68 25.03 24.46 26.16 15.67 17.61 11.86

entropy/tartanian6 50.67 42.72 42.87 44.56 15.68 15.38 12.06

hugh/hyperborean iro 34.32 29.26 28.11 29.96 14.74 18.1 12.71

hugh/hyperborean tbr 38.84 34.5 33.23 34.66 11.17 14.43 10.75

hugh/kempfer 56.77 47.96 48.98 51.03 15.53 13.72 10.11

hugh/koypetition 61.01 51.32 50.73 53.1 15.88 16.85 12.97

hugh/liacc 118.07 110.7 115.76 115.13 6.24 1.96 2.49

hugh/littlerock 36.37 31.58 30.99 32.35 13.19 14.81 11.07

. . . continued on next page
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Match Name MC SE DUP SE Aβ SE Dβ SE DUP % Aβ % Dβ %

hugh/neopokerlab 51.43 44.45 44.61 46.76 13.57 13.25 9.08

hugh/nyx 31.95 27.73 26.55 28.31 13.21 16.92 11.4

hugh/slumbot 27.99 24.59 23.19 24.94 12.13 17.15 10.91

hugh/tartanian6 54.0 46.23 45.14 46.74 14.38 16.41 13.45

hyperborean iro/kempfer 41.44 35.4 34.23 36.1 14.56 17.39 12.87

hyperborean iro/koypetition 50.26 41.27 40.19 43.37 17.88 20.04 13.71

hyperborean iro/liacc 56.28 54.4 54.98 55.16 3.34 2.31 1.98

hyperborean iro/littlerock 26.77 22.03 21.87 23.5 17.7 18.29 12.21

hyperborean iro/neopokerlab 44.44 37.15 36.0 38.52 16.41 18.98 13.31

hyperborean iro/nyx 27.63 22.13 22.14 24.01 19.91 19.86 13.08

hyperborean iro/slumbot 11.44 8.94 8.85 9.75 21.87 22.68 14.8

hyperborean iro/tartanian6 46.58 35.95 36.96 39.06 22.82 20.66 16.14

hyperborean tbr/kempfer 86.9 75.61 76.39 75.97 12.99 12.09 12.58

hyperborean tbr/koypetition 51.61 43.73 42.8 45.09 15.27 17.08 12.64

hyperborean tbr/liacc 69.8 65.86 68.17 68.16 5.65 2.33 2.35

hyperborean tbr/littlerock 34.82 30.14 29.81 31.07 13.42 14.39 10.75

hyperborean tbr/neopokerlab 54.62 45.54 46.44 47.89 16.63 14.98 12.32

hyperborean tbr/nyx 37.81 31.03 31.49 33.24 17.93 16.73 12.1

hyperborean tbr/slumbot 34.55 28.24 28.02 30.33 18.27 18.89 12.21

hyperborean tbr/tartanian6 50.22 41.08 42.22 43.58 18.21 15.93 13.22

kempfer/koypetition 74.23 61.89 62.16 64.0 16.63 16.27 13.79

kempfer/liacc 132.17 120.57 127.32 126.35 8.78 3.67 4.4

kempfer/littlerock 31.68 28.33 26.41 28.29 10.58 16.61 10.69

kempfer/neopokerlab 49.96 43.93 41.0 44.26 12.08 17.93 11.4

kempfer/nyx 37.8 32.23 31.16 32.84 14.74 17.57 13.12

kempfer/slumbot 33.9 29.44 28.06 29.83 13.15 17.21 11.98

kempfer/tartanian6 64.82 54.73 54.31 55.47 15.57 16.22 14.43

koypetition/liacc 116.74 113.05 113.83 113.9 3.16 2.49 2.44

koypetition/littlerock 47.57 38.14 37.97 40.97 19.83 20.19 13.87

koypetition/neopokerlab 50.12 41.1 40.1 42.96 18.0 19.99 14.28

koypetition/nyx 45.17 35.7 35.21 38.3 20.97 22.06 15.21

koypetition/slumbot 46.59 37.02 35.9 39.53 20.54 22.95 15.16

koypetition/tartanian6 48.18 38.14 37.5 40.26 20.85 22.16 16.45

liacc/littlerock 58.82 57.46 57.45 57.66 2.31 2.33 1.97

liacc/neopokerlab 89.71 84.31 87.85 87.72 6.03 2.07 2.22

liacc/nyx 55.92 54.46 54.34 54.63 2.62 2.83 2.31

liacc/slumbot 49.18 48.03 48.04 48.24 2.34 2.32 1.91

liacc/tartanian6 71.77 69.31 70.34 70.5 3.44 2.0 1.77

littlerock/neopokerlab 38.71 31.84 31.68 33.97 17.75 18.16 12.24

littlerock/nyx 25.87 20.91 21.41 22.8 19.17 17.23 11.86

littlerock/slumbot 22.52 18.42 18.2 19.73 18.24 19.2 12.41

littlerock/tartanian6 38.7 30.58 31.39 33.13 20.99 18.9 14.39

. . . continued on next page
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Match Name MC SE DUP SE Aβ SE Dβ SE DUP % Aβ % Dβ %

neopokerlab/nyx 41.42 33.99 33.5 35.84 17.92 19.12 13.47

neopokerlab/slumbot 36.98 30.7 29.67 32.44 16.99 19.78 12.29

neopokerlab/tartanian6 47.78 38.83 39.29 41.16 18.74 17.77 13.87

nyx/slumbot 22.14 17.16 17.13 18.9 22.52 22.63 14.67

nyx/tartanian6 39.56 30.93 31.35 33.38 21.8 20.75 15.62

slumbot/tartanian6 37.73 29.46 29.49 31.42 21.91 21.83 16.74

Table A.3: 2013 Two-Player No-Limit ACPC Full Results
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